WO2013089015A1 - 放射線検出パネルの製造装置及び放射線検出パネルの製造方法 - Google Patents

放射線検出パネルの製造装置及び放射線検出パネルの製造方法 Download PDF

Info

Publication number
WO2013089015A1
WO2013089015A1 PCT/JP2012/081674 JP2012081674W WO2013089015A1 WO 2013089015 A1 WO2013089015 A1 WO 2013089015A1 JP 2012081674 W JP2012081674 W JP 2012081674W WO 2013089015 A1 WO2013089015 A1 WO 2013089015A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
conversion substrate
detection panel
radiation detection
manufacturing
Prior art date
Application number
PCT/JP2012/081674
Other languages
English (en)
French (fr)
Inventor
仁 千代間
篤也 吉田
渉 松山
豊雄 山本
會田 博之
勇一 榛葉
Original Assignee
株式会社 東芝
東芝電子管デバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝, 東芝電子管デバイス株式会社 filed Critical 株式会社 東芝
Priority to CN201280045409.4A priority Critical patent/CN103814412B/zh
Priority to KR1020167024626A priority patent/KR101798812B1/ko
Priority to KR1020147005519A priority patent/KR20140058592A/ko
Priority to EP12856845.8A priority patent/EP2793234B1/en
Priority to JP2013549229A priority patent/JP6030068B2/ja
Publication of WO2013089015A1 publication Critical patent/WO2013089015A1/ja
Priority to US14/301,460 priority patent/US9880292B2/en
Priority to US15/697,162 priority patent/US9964652B2/en
Priority to US15/697,127 priority patent/US10007004B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal

Definitions

  • Embodiments of the present invention relate to a radiation detection panel manufacturing apparatus and a radiation detection panel manufacturing method.
  • the X-ray detection panel includes a phosphor film that converts X-rays (radiation) into light, and a photoelectric conversion element that converts the light into an electrical signal.
  • a phosphor film that converts X-rays (radiation) into light
  • a photoelectric conversion element that converts the light into an electrical signal.
  • Such an X-ray detection panel can contribute to the overall reduction in size and weight of the X-ray flat panel detection device as compared with a conventional X-ray image tube.
  • the X-ray flat panel detection apparatus converts image information obtained by X-rays transmitted through the inspection object into digital electrical information.
  • the X-ray flat surface detection apparatus can enjoy many conveniences of digital information processing such as digital image processing and digital image storage.
  • This X-ray flat panel detection device is used in a wide range of fields, such as medical applications used for patient diagnosis and treatment, dental applications, industrial applications such as nondestructive testing, and scientific researches such as structural analysis.
  • medical applications used for patient diagnosis and treatment such as medical applications used for patient diagnosis and treatment, dental applications, industrial applications such as nondestructive testing, and scientific researches such as structural analysis.
  • highly accurate image extraction by digital information processing and high-speed image detection become possible, and reduction of undesired X-ray (radiation) exposure dose, rapid inspection, rapid diagnosis, etc. An effect can be expected.
  • the scintillator material is formed of a material containing cesium (Cs) and iodine (I) as main components used in conventional X-ray image tubes.
  • CsI cesium iodide
  • the scintillator material having cesium iodide (hereinafter referred to as CsI) as a main component and forming a columnar crystal can improve sensitivity and resolution due to the light guiding effect as compared with scintillator materials forming other particulate crystals.
  • the phosphor film In order to ensure a high sensitivity state of the X-ray flat panel detection device, it is necessary to obtain a sufficient amount of light (fluorescent light) converted from X-rays, and the phosphor film needs to have a certain thickness. In the case of using a scintillator material mainly composed of CsI, the thickness of the phosphor film is often set to about 500 ⁇ m.
  • the phosphor film tends to reduce the resolution of the image as the film thickness increases.
  • the film forming method of the scintillator material is disclosed in a conventional method of manufacturing an X-ray image tube, a method of manufacturing an X-ray flat detection device, and the like. Also, as a similar manufacturing method, a method of manufacturing a radiation image conversion panel using a stimulable phosphor is known.
  • the manufacturing apparatus which vapor-deposits a scintillator material on the surface of a photoelectric conversion board
  • substrate has a vacuum chamber and the crucible arrange
  • the photoelectric conversion substrate is horizontally disposed above the crucible in the vacuum chamber.
  • the scintillator material is heated and evaporated with a kiln.
  • the evaporated scintillator material is deposited on the surface of the photoelectric conversion substrate.
  • the scintillator material may be deposited on the surface of the photoelectric conversion substrate.
  • the present invention has been made in view of the above points, and an object thereof is to manufacture a radiation detection panel capable of improving productivity and forming a radiation detection panel having good resolution characteristics. It is in providing the manufacturing method of a panel.
  • FIG. 1 is a cross-sectional view schematically showing an X-ray plane detection apparatus including an X-ray detection panel manufactured using the method of manufacturing an X-ray detection panel according to an embodiment.
  • FIG. 2 is an exploded perspective view showing a part of the X-ray plane detection apparatus.
  • FIG. 3 is a schematic configuration view showing the vacuum evaporation apparatus according to the one embodiment.
  • FIG. 4 is a graph showing the change in MTF relative value with respect to the rotational speed of the photoelectric conversion substrate.
  • FIG. 5 is a schematic view showing a part of the vacuum vapor deposition apparatus, showing a crucible and a photoelectric conversion substrate.
  • FIG. 6 is another schematic view showing a part of the vacuum vapor deposition apparatus, showing a crucible and a photoelectric conversion substrate.
  • FIG. 8 is a view showing a coordinate system in which coordinates are associated with the vacuum chamber, the crucible and the photoelectric conversion substrate shown in FIG. 3 and FIG.
  • FIG. 9 is a diagram showing the coordinate system shown in FIG. 8, and is a diagram showing the component in the growth direction of the columnar crystal of the point P at each moment.
  • FIG. 10 shows crystal growth vectors with respect to the length (radial radius) from the substrate center when the incident angles are 45 °, 50 °, 55 °, 60 °, 65 °, 70 ° and 75 ° under the predetermined conditions. It is a figure which shows the change of the relative length of the perpendicular
  • FIG. 11 shows crystal growth with respect to the length (radius) from the center of the substrate when the incident angles are 45 °, 50 °, 55 °, 60 °, 65 °, 70 ° and 75 ° under the above predetermined conditions. It is a figure which shows the change of the relative length of the component of the radial direction of a vector by a graph.
  • FIG. 12 shows crystals with respect to the length (radial radius) from the substrate center when the incident angles are 45 °, 50 °, 55 °, 60 °, 65 °, 70 ° and 75 ° under other predetermined conditions. It is a figure which shows the change of the relative length of the perpendicular
  • FIG. 13 shows crystals with respect to the length (radial radius) from the substrate center when the incident angles are 45 °, 50 °, 55 °, 60 °, 65 °, 70 ° and 75 ° under other predetermined conditions. It is a figure which shows the change of the relative length of the component of the radial direction of a growth vector by a graph.
  • FIG. 14 is a view showing the photoelectric conversion substrate, the heat conductor, the holding mechanism, and the heat radiating portion shown in FIG. 3, and is a schematic view for explaining the function of the heat conductor.
  • An apparatus for manufacturing a radiation detection panel includes an evaporation source that evaporates a scintillator material and radiates the same upward, an evaporation source located on the vertically upper side of the evaporation source, and a deposition surface of a photoelectric conversion substrate being the evaporation source. And a holding mechanism for holding the photoelectric conversion substrate in a state of being exposed to and inclined with respect to the vertical axis.
  • an evaporation source for evaporating and emitting a scintillator material, and the scintillator material emitted from the evaporation source are deposited on a deposition surface of a photoelectric conversion substrate.
  • a holding mechanism for holding the photoelectric conversion substrate, and the photoelectric conversion substrate are positioned beyond the holding mechanism toward the photoelectric conversion substrate, and are arranged at intervals in the holding mechanism, and are blackened by facing the holding mechanism.
  • a heat conductor having the
  • the manufacturing method of the radiation detection panel which concerns on one Embodiment is the said photoelectric conversion in the state which the vapor deposition surface of a photoelectric conversion board
  • substrate exposes to the said evaporation source, and becomes oblique with respect to a vertical axis vertically upward side from the evaporation source.
  • a substrate is disposed, and the scintillator material is evaporated by the evaporation source and emitted vertically upward, and the scintillator material is vapor-deposited on the vapor deposition surface to form a phosphor film.
  • the scintillator material is deposited on the deposition surface of the photoelectric conversion substrate to form a phosphor film, and the scintillator material is deposited on the deposition surface.
  • the temperature of the photoelectric conversion substrate is controlled within the range of 70 ° C. to 140 ° C., and the temperature of the photoelectric conversion substrate after the initial stage of the deposition is controlled within the range of 125 ° C. to 190 ° C.
  • FIG. 1 is a cross-sectional view schematically showing an X-ray plane detection apparatus.
  • the X-ray flat detection apparatus is a large X-ray flat detection apparatus.
  • the X-ray flat detection device includes an X-ray detection panel 2, a moisture-proof cover 3, a support substrate 4, a circuit board 5, a lead plate 6 for X-ray shielding, a heat radiation insulation sheet 7, a connection member 8, a housing 9, a flexible circuit board 10 and an entrance window 11 are provided.
  • FIG. 2 is an exploded perspective view showing a part of the X-ray plane detection apparatus.
  • the X-ray detection panel 2 includes a photoelectric conversion substrate 21 and a phosphor film 22.
  • the photoelectric conversion substrate 21 includes a glass substrate having a thickness of 0.7 mm, and a plurality of light detection portions 28 two-dimensionally formed on the glass substrate.
  • the light detection unit 28 includes a TFT (thin film transistor) 26 as a switching element and a PD (photodiode) 27 as a photo sensor.
  • the TFT 26 and the PD 27 are formed using, for example, a-Si (amorphous silicon) as a base material.
  • the size in the direction along the plane of the photoelectric conversion substrate 21 is, for example, a square, and one side is 50 cm.
  • the length of one side of the photoelectric conversion substrate 21 is, for example, 13 to 17 inches.
  • the phosphor film 22 is formed directly on the photoelectric conversion substrate 21.
  • the phosphor film 22 is located on the X-ray incident side of the photoelectric conversion substrate 21.
  • the phosphor film 22 converts X-rays into light (fluorescent light).
  • the PD 27 converts the light converted by the phosphor film 22 into an electrical signal.
  • the phosphor film 22 is formed by depositing a scintillator material on the photoelectric conversion substrate 21.
  • a scintillator material a material containing cesium iodide (CsI) as a main component can be used.
  • the thickness of the phosphor film 22 is set in the range of 100 to 1000 ⁇ m. More suitably, the thickness of the phosphor film 22 is set in the range of 200 to 600 ⁇ m in order to evaluate the sensitivity and the resolution.
  • the thickness of the phosphor film 22 is adjusted to 500 ⁇ m.
  • a scintillator material a material in which thallium (Tl) or thallium iodide (TlI) is added to CsI which is a main component is used.
  • the phosphor film 22 can emit light (fluorescent light) of an appropriate wavelength when X-rays are incident.
  • the added thallium iodide (TlI) is several% or less, and therefore the cesium iodide (CsI) concentration ratio in the scintillator material occupies 95% or more.
  • the moistureproof cover 3 completely covers the phosphor film 22 and is sealed to the phosphor film 22.
  • the moistureproof cover 3 is made of, for example, an aluminum alloy.
  • the thickness of the moisture-proof cover 3 is increased, the X-ray dose incident on the phosphor film 22 is attenuated, and the sensitivity of the X-ray detection panel 2 is lowered. Therefore, it is desirable that the thickness of the moistureproof cover 3 be as small as possible.
  • the thickness of the moisture-proof cover 3 is set in the range of 50 to 500 ⁇ m. In this embodiment, the thickness of the moistureproof cover 3 is adjusted to 200 ⁇ m.
  • a plurality of pads for connecting to the outside are formed on the outer peripheral portion of the photoelectric conversion substrate 21, a plurality of pads for connecting to the outside are formed.
  • the plurality of pads are used as an input of an electrical signal for driving the photoelectric conversion substrate 21 and an output of an output signal.
  • the assembly of the X-ray detection panel 2 and the moistureproof cover 3 is formed by laminating thin members, so the assembly is light and has low strength. For this reason, the X-ray detection panel 2 is fixed to one flat surface of the support substrate 4 via the adhesive sheet.
  • the support substrate 4 is formed of, for example, an aluminum alloy, and has the strength necessary to stably hold the X-ray detection panel 2.
  • the circuit board 5 is fixed to the other surface of the support substrate 4 via the lead plate 6 and the heat radiation insulation sheet 7.
  • the circuit board 5 is fixed to the support board 4 by a screw or the like.
  • the circuit board 5 and the X-ray detection panel 2 are connected via the flexible circuit board 10.
  • a thermocompression bonding method using an ACF (anisotropic conductive film) is used to connect the flexible circuit board 10 and the photoelectric conversion board 21. By this method, electrical connection of a plurality of fine signal lines is secured.
  • a connector corresponding to the flexible circuit board 10 is mounted on the circuit board 5.
  • the circuit board 5 is electrically connected to the X-ray detection panel 2 via the connector and the like.
  • the circuit board 5 electrically drives the X-ray detection panel 2 and electrically processes an output signal from the X-ray detection panel 2.
  • the housing 9 accommodates the X-ray detection panel 2, the moistureproof cover 3, the support substrate 4, the circuit board 5, the lead plate 6, the heat radiation insulation sheet 7, and the connection member 8.
  • the housing 9 has an opening formed at a position facing the X-ray detection panel 2.
  • the connection member 8 is fixed to the housing 9 and supports the support substrate 4.
  • the entrance window 11 is attached to the opening of the housing 9.
  • the entrance window 11 seals the opening of the housing 9. Since the entrance window 11 transmits X-rays, the X-rays pass through the entrance window 11 and enter the X-ray detection panel 2.
  • the entrance window 11 is formed in a plate shape and has a function of protecting the inside of the housing 9.
  • the entrance window 11 is desirably thinly formed of a material having a low X-ray absorptivity. Thereby, the scattering of the X-rays and the attenuation of the X-ray generated at the entrance window 11 can be reduced. Then, a thin and light X-ray detector can be realized.
  • the X-ray detection device is formed as described above.
  • FIG. 3 is a schematic block diagram showing the vacuum deposition apparatus 30.
  • the vacuum deposition apparatus 30 includes a vacuum chamber 31, a crucible 32 as an evaporation source for heating, melting and evaporating a scintillator material, heaters 33 and 34, a cover 35, a heat conductor 36, a holding mechanism 37, A heat dissipation unit 38 and a motor 39 are provided as a temperature control unit.
  • the vacuum chamber 31 is formed in a box shape larger in the height direction (vertical direction, vertical direction) than in the width direction (horizontal direction).
  • a vacuum evacuation device (vacuum pump) (not shown) is attached to the vacuum chamber 31, and the vacuum evacuation device can maintain the inside of the vacuum chamber 31 at a pressure lower than the atmospheric pressure.
  • the vacuum deposition apparatus 30 utilizes a vacuum deposition method performed under an environment where the pressure is set to a desired value below atmospheric pressure.
  • the crucible 32 is disposed below the vacuum chamber 31.
  • a scintillator material in which TlI is added to the main component CsI is introduced.
  • a scintillator material having a concentration ratio of cesium iodide (CsI) of 95% or more can be used.
  • Another method is to introduce a scintillator material having a concentration of 100% cesium iodide (CsI) and evaporate a small amount of thallium iodide (TlI) from another small crucible. Since the structure of the columnar crystals is determined by cesium iodide (CsI) even in the latter case, the description of the effects regarding the arrangement of the crucible 32 in the vacuum chamber 31 is the same.
  • the central tip of the crucible 32 is formed in a tubular shape (chimney shape) and extends in the height direction of the vacuum chamber 31.
  • An evaporation port 32 a located at the tip of the crucible 32 opens upward from the vacuum chamber 31.
  • the scintillator material is emitted vertically upward around the vertical axis passing through the center of the evaporation port 32a.
  • the heater 33 is provided around the crucible 32.
  • the heater 33 heats the crucible 32, and the temperature of the crucible 32 is adjusted to be equal to or higher than the melting point of the scintillator material.
  • the heater 33 heats the crucible 32 to about 700.degree.
  • the temperature of the crucible 32 can be measured by a thermometer (not shown), and the monitoring of the temperature of the crucible 32 and the driving of the heater 33 can be performed by a heater driving unit (not shown).
  • the evaporation element of the scintillator material is emitted above the vacuum chamber 31 through the evaporation port 32 a of the crucible 32.
  • the tip of the crucible 32 is formed in a cylindrical shape, radiation of a scintillator material with high directivity can be performed. From the above, it is possible to concentrate on the direction in which the photoelectric conversion substrate 21 is located and to radiate the scintillator material. The directivity of radiation of the scintillator material can be adjusted by adjusting the length of the tip of the weir 32.
  • the heater 34 is provided around the tip of the crucible 32 to heat the tip of the crucible 32. Thereby, it can prevent that the front-end
  • the cover 35 covers the crucible 32 and the heaters 33 and 34. The cover 35 suppresses the diffusion of heat conduction from the crucible 32 and the heaters 33, 34.
  • the cover 35 is formed with a cooling path through which a coolant (for example, water) flows.
  • the heat conductor 36 is located above the inside of the vacuum chamber 31 and is fixed to the vacuum chamber 31.
  • the heat conductor 36 is formed, for example, in a plate shape having a thickness of 3 mm.
  • aluminum can be utilized, for example.
  • the heat conductor 36 has a function of transmitting the heat of the heat radiating portion 38 to the photoelectric conversion substrate 21 and the holding mechanism 37 by heat conduction, and transmitting the heat of the photoelectric conversion substrate 21 and the holding mechanism 37 to the heat radiating portion 38 ing.
  • the heat conductor 36 also has a function of protecting the adhesion of the scintillator material to the heat radiating portion 38 and the like.
  • the holding mechanism 37 faces the heat conductor 36 and is located closer to the center of the vacuum chamber 31 than the heat conductor 36.
  • the holding mechanism 37 holds the photoelectric conversion substrate 21 in a state where the deposition surface of the photoelectric conversion substrate 21 is exposed.
  • the photoelectric conversion substrate 21 is held in an inclined state such that the deposition surface forms an acute angle with the height direction of the vacuum chamber 31.
  • the heat radiating portion 38 faces the heat conductor 36 and is located closer to the side wall of the vacuum chamber 31 than the heat conductor 36.
  • the heat radiating portion 38 is connected to the vacuum chamber 31, and the heat generated in the heat radiating portion 38 can be transferred to the vacuum chamber 31.
  • the heat dissipation unit 38 is an assembly of a heat conductor and a heater.
  • the heater of the heat radiating portion 38 heats the photoelectric conversion substrate 21.
  • the temperature of the photoelectric conversion substrate 21 can be measured by a thermometer (not shown), and the monitoring of the temperature of the photoelectric conversion substrate 21 and the driving of the heater of the heat dissipation unit 38 can be performed by a heater driving unit (not shown).
  • the heat generated by the heater of the heat radiating portion 38 is transferred to the photoelectric conversion substrate 21 through the heat conductor 36 by heat conduction.
  • the heat generated by the heater of the heat radiating portion 38 may be transmitted to the photoelectric conversion substrate 21 through the heat conductor of the heat radiating portion 38 and the holding mechanism 37.
  • the heat generated in the photoelectric conversion substrate 21 is transferred to the heat conductor of the heat radiating portion 38 through the heat conductor 36 by heat conduction.
  • the heat generated in the photoelectric conversion substrate 21 may be transmitted to the heat conductor of the heat dissipation unit 38 via the holding mechanism 37 further.
  • the heat transferred to the heat conductor of the heat sink 38 is transferred to the vacuum chamber 31.
  • the motor 39 is airtightly attached to the vacuum chamber 31.
  • the shaft of the motor 39 is located through a through hole formed in the heat radiating portion 38 and a through hole formed in the heat conductor 36.
  • the holding mechanism 37 is attached to the shaft of the motor 39 and is detachable from the shaft.
  • the center of the photoelectric conversion substrate 21 is opposed to the shaft of the motor 39. Then, by operating the motor 39, the holding mechanism 37 is rotated. Then, the photoelectric conversion substrate 21 rotates with an axis along the normal to the center of the photoelectric conversion substrate 21 as a rotation axis.
  • the vacuum vapor deposition apparatus 30 includes two heat conductors 36, two holding mechanisms 37, two heat dissipation parts 38 and two motors 39. For this reason, the vacuum evaporation system 30 can simultaneously form the phosphor film 22 on the two photoelectric conversion substrates 21.
  • the position of one holding mechanism 37 and the position of the other holding mechanism 37 are symmetrical with respect to the vertical axis passing through the evaporation port 32a.
  • the two holding mechanisms 37 are obliquely disposed so that the deposition surfaces of the photoelectric conversion substrate 21 face each other.
  • An angle ⁇ between the deposition surface of one photoelectric conversion substrate 21 and the deposition surface of the other photoelectric conversion substrate 21 is an acute angle.
  • the vacuum evaporation apparatus 30 is formed.
  • the evaporation elements of the scintillator material emitted from the evaporation port of the crucible 32 are deposited on the photoelectric conversion substrate 21 located above the vacuum chamber 31. At that time, the evaporation element of the scintillator material is incident on the photoelectric conversion substrate 21 from an oblique direction.
  • the incident angle of the scintillator material to the photoelectric conversion substrate 21 is ⁇ .
  • the incident angle ⁇ is an angle formed by the normal line of the photoelectric conversion substrate 21 and the incident direction of the scintillator material (an imaginary line connecting the center of the evaporation port 32 a and an arbitrary point on the deposition surface of the photoelectric conversion substrate 21) inside.
  • 60 ° at the center of the photoelectric conversion substrate 21.
  • 70 °.
  • 45 °.
  • the vacuum evaporation apparatus 30 and the photoelectric conversion substrate 21 including the light detection unit 28 are prepared.
  • the photoelectric conversion substrate 21 is attached to the holding mechanism 37.
  • the holding mechanism 37 to which the photoelectric conversion substrate 21 is attached is carried into the vacuum chamber 31 and attached to the shaft of the motor 39.
  • the vacuum chamber 31 is sealed, and the inside of the vacuum chamber 31 is evacuated using an evacuation apparatus.
  • the motor 39 is operated to rotate the photoelectric conversion substrate 21.
  • the timing to start the operation of the motor 39 is not particularly limited and can be variously changed. For example, based on the result of monitoring the temperature of the crucible 32, the timing to start the operation of the motor 39 may be adjusted.
  • the scintillator material in the crucible 32 evaporates, whereby the scintillator material is deposited on the photoelectric conversion substrate 21. Since the scintillator material deposited on the photoelectric conversion substrate 21 has heat, the photoelectric conversion substrate 21 is heated during the deposition period. As described above, by depositing the scintillator material on the photoelectric conversion substrate 21, the phosphor film 22 (FIG. 2) is formed on the photoelectric conversion substrate 21. Thus, the manufacture of the phosphor film 22 is completed.
  • the evaporation element of the scintillator material incident on the photoelectric conversion substrate 21 forms a crystal on the photoelectric conversion substrate 21.
  • fine crystal grains are formed on the photoelectric conversion substrate 21 at the initial stage of vapor deposition, when vapor deposition is continued, crystal grains eventually grow as columnar crystals.
  • the growth direction of the columnar crystals is opposite to the incident direction of the evaporation element. Therefore, when the evaporation element obliquely enters the photoelectric conversion substrate 21, the columnar crystals grow in the oblique direction.
  • the inert gas such as argon (Ar) gas in the vacuum chamber 31 is being deposited before. Gas was introduced, and the pressure in the vacuum chamber 31 was raised to about 1 ⁇ 10 ⁇ 2 to 1 Pa.
  • the evaporation element flies due to the presence of the above-mentioned inert gas, and enters the photoelectric conversion substrate 21 from multiple directions. As a result, the growth direction of the columnar crystals is the direction along the normal to the photoelectric conversion substrate 21.
  • the scintillator material is deposited on the photoelectric conversion substrate 21 without introducing an inert gas. Then, the vacuum evaporation method is performed under an environment where the pressure is maintained at 1 ⁇ 10 ⁇ 2 Pa or less by vacuum evacuation. Thus, growth in which the columnar crystals become thick can be reduced, and crystal growth in the direction along the normal line of the photoelectric conversion substrate 21 can be promoted.
  • the rotational speed of the photoelectric conversion substrate 21 will be described.
  • the photoelectric conversion substrate 21 is rotated. Thereby, the thickness of the phosphor film 22 can be made uniform over the entire surface of the photoelectric conversion substrate 21.
  • the directions of the crystal growth vectors can be averaged, and in total, the columnar crystals can be grown in the direction along the normal line of the photoelectric conversion substrate 21.
  • the direction of the crystal growth vector is the growth direction of the columnar crystal.
  • the rotational speed of the photoelectric conversion substrate 21 is a main factor in averaging the directions of the crystal growth vectors.
  • the inventor of the present application investigated the MTF (modulation transfer function) value with respect to the rotational speed of the photoelectric conversion substrate 21.
  • the survey results are shown in FIG. FIG. 4 is a graph showing a change in MTF relative value with respect to the rotational speed of the photoelectric conversion substrate 21.
  • the MTF value at the periphery of the photoelectric conversion substrate 21 and the rotation speed of the photoelectric conversion substrate 21 at 2 rpm, 4 rpm, 6 rpm, and 2 rpm, 6 rpm, 10 rpm, respectively.
  • the MTF value at the center of the photoelectric conversion substrate 21 was plotted.
  • the MTF values at the center of the are not plotted. However, even if the rotation speed of the photoelectric conversion substrate 21 is changed, it can be seen that the MTF value at the peripheral portion of the photoelectric conversion substrate 21 and the MTF value at the central portion of the photoelectric conversion substrate 21 shift substantially in the same manner. In addition, it can be seen that the MTF value rapidly decreases when the rotational speed of the photoelectric conversion substrate 21 is less than 4 rpm.
  • the MTF value gradually increases when the rotational speed of the photoelectric conversion substrate 21 is 4 rpm or more. Therefore, when rotating the photoelectric conversion substrate 21, it is desirable to set the rotational speed of the photoelectric conversion substrate 21 to 4 rpm or more. Moreover, it is more desirable to keep the rotational speed of the photoelectric conversion substrate 21 constant during deposition.
  • the vacuum vapor deposition apparatus 30 may be formed such that ⁇ ⁇ 60 ° at the center of the photoelectric conversion substrate 21.
  • the deposition surface of the photoelectric conversion substrate 21 faces the bottom wall of the vacuum chamber 31 as the incident angle ⁇ approaches 0 °, the width of the vacuum chamber 31 widens, and as a result, the volume of the vacuum chamber 31 increases. . The above is remarkable when the photoelectric conversion substrate 21 is large.
  • the vacuum deposition device 30 it is desirable to form the vacuum deposition device 30 so that 45 ° ⁇ ⁇ at the center of the photoelectric conversion substrate 21 in consideration of the device load such as the vacuum exhaust device, the productivity, and the utilization efficiency of the scintillator material.
  • FIG. 5 is a schematic view showing a part of the vacuum deposition apparatus 30, and is a view showing the crucible 32 and the photoelectric conversion substrate 21.
  • the distance (linear distance) from the evaporation port 32a of the crucible 32 to the center of the photoelectric conversion substrate 21 (vapor deposition surface) is R.
  • the length from the center of the photoelectric conversion substrate 21 (vapor deposition surface) in the direction along the plane of the photoelectric conversion substrate 21 is L.
  • the growth direction of the columnar crystals at each portion of the photoelectric conversion substrate 21 is determined from the integration result of the vapor deposition vectors Va (Va1, Va2, Va3).
  • the direction of the vapor deposition vector is the incident direction of the evaporation element.
  • FIG. 6 is another schematic view showing a part of the vacuum deposition apparatus 30, and is a view showing the crucible 32 and the photoelectric conversion substrate 21.
  • the crystal growth vector is directed to the inside of the photoelectric conversion substrate 21 at the top of the photoelectric conversion substrate 21 (see, for example, the crystal growth vector Vb2).
  • the crystal growth vector is directed to the outside of the photoelectric conversion substrate 21 (see, for example, the crystal growth vector Vb1). Since the photoelectric conversion substrate 21 rotates during vapor deposition, components of the crystal growth vector Vb (Vb1, Vb2) in the direction along the plane of the photoelectric conversion substrate 21 cancel each other.
  • the component of the crystal growth vector Vb in the direction along the plane of the photoelectric conversion substrate 21 is taken as Dh.
  • a component of the crystal growth vector Vb in the direction along the normal of the photoelectric conversion substrate 21 is Dv.
  • components Dh and Dv are respectively represented by the following equations at positions of length L from the center of photoelectric conversion substrate 21 Be done.
  • the degree of influence of the growth of columnar crystals in the direction along the plane of the photoelectric conversion substrate 21 can be evaluated with a component ratio (Dh / Dv) which is a ratio of the component Dh to the component Dv.
  • the incident angle ⁇ 1 40 °, 45 °, 50 °, 60 °, 70 °, in the case of a 75 °, the length L and the distance R ratio of the crystal growth vectors for (L / R) It is a figure which shows the change of a component ratio (Dh / Dv) by a graph.
  • the inside direction of the photoelectric conversion substrate 21 is represented by +
  • the outside direction of the photoelectric conversion substrate 21 is represented by ⁇ .
  • FIG. 7 shows the result of simulation using the above equations (1) and (2). As shown in FIG. 7, when the length of one side of the photoelectric conversion substrate 21 is 50 cm, the length L is in the range of 0 to 25 cm.
  • the range of the ratio (L / R) is 0.15 to 0.2. In view of this range, if the incident angle theta 1 is at 70 ° or less, it can be seen that the ⁇ 1 (Dh / Dv).
  • the component ratio (Dh / Dv) is the value shown in FIG. 7 because the actual growth of columnar crystals is affected by the deviation of the amount of evaporation forward during evaporation, which is called cosine law, and a small amount of residual gas. Even smaller (closer to 0). From the above, it is appropriate that 45 ° ⁇ ⁇ 1 ⁇ 70 ° in combination with the lower limit of the incident angle ⁇ described above. The foregoing has described the results of a simple simulation.
  • the inventors of the present application simulated the effect of the rotation of the photoelectric conversion substrate 21 more precisely and accurately.
  • the crystal verticality promotion of the crystal growth in the direction along the normal to the photoelectric conversion substrate 21
  • the crystal normality is further improved, and the inclination of the columnar crystals is substantially zero.
  • FIG. 8 is a view showing a coordinate system in which coordinates are associated with the vacuum chamber 31, the crucible 32 and the photoelectric conversion substrate 21.
  • the deposition surface of the photoelectric conversion substrate 21 is taken as an XY plane, and the rotation axis of the photoelectric conversion substrate 21 (axis along the normal to the center of the deposition surface) is taken as Z.
  • the center of the evaporation port 32a is a point O.
  • the central axis (vertical axis) of the crucible 32 passing the point O is located on the XZ plane.
  • T be the intersection of the central axis of the crucible 32 and the X axis.
  • the point T corresponds to the top of the vacuum deposition apparatus 30. It can be assumed that the evaporation element (vapor deposition particles) of the scintillator material is emitted from the point O, and can be assumed to be emitted around the central axis of the crucible 32 as the symmetry axis.
  • the incident angle theta 1 is a parameter characterizing the oblique deposition, and the line segment between the coordinate system origin and O, which is an angle formed on the inside of the Z-axis.
  • the point P is on the deposition surface (X-Y plane) of the photoelectric conversion substrate 21 and represents the deposition position.
  • L be the radius of curvature (linear distance from the coordinate system origin to point P) and ⁇ be the rotation angle, the coordinates X P of the point P, the coordinates Y P of the Y axis, and the coordinates Z P of the Z axis It can be expressed as
  • radius L is less linear distance L O of the coordinate system origin to the point P. That is, L ⁇ L 2 O , and more practically, L ⁇ L 2 O.
  • an angle formed between the central axis (segment OT) of the crucible 32 and the incident direction (segment OP) to the point P is ⁇ .
  • the inside of the vacuum chamber 31 is in a sufficiently high vacuum state, and the evaporation elements released from the crucible 32 directly reach the deposition surface of the photoelectric conversion substrate 21.
  • the evaporation elements are emitted symmetrically (axisymmetric) with respect to the central axis of the crucible 32.
  • Equation 8 an equation based on Equation 6 is shown in Equation 8
  • Equation 9 an equation based on Equation 9
  • FIG. 9 is a diagram showing the coordinate system shown in FIG. 8 and a diagram showing components of the growth direction (crystal growth vector) of the columnar crystal at point P at each moment.
  • the component in the direction perpendicular to the photoelectric conversion substrate 21 (vapor deposition surface) is Da
  • the component in the radial direction is Db
  • the component in the rotational direction is Dc. Note that the relative value of each component is focused on, and the coefficient applied to all components is 1.
  • the component Da is shown in equation 10
  • the component Db is shown in equation 11
  • the component Dc is shown in equation 12.
  • f ( ⁇ ) is a function representing the distribution of evaporation elements, and is a function of ⁇ from axial symmetry. Further, ⁇ itself is a function depending on ⁇ 1 , ⁇ , L, L o , R, that is, ⁇ ( ⁇ 1 , ⁇ , L, L o , R).
  • Equation 13 The component in the direction perpendicular to the photoelectric conversion substrate 21 (the vapor deposition surface) is represented by Equation 13 and the component in the radial direction is represented by Equation 14.
  • Equation 17 shows the component in the direction perpendicular to the photoelectric conversion substrate 21 (vapor deposition surface)
  • Equation 18 shows the component in the radial direction
  • Equation 19 shows the component in the rotational direction ( ⁇ direction).
  • the deposition state can be simulated by performing numerical integration or by analytically determining integration.
  • the component in the direction perpendicular to the photoelectric conversion substrate 21 (vapor deposition surface) obtained from the above exact solution of the COS law is shown in FIG.
  • the uniformity of the vertical component of the crystal growth vector is good. That is, it can be seen that the uniformity of the vertical component of the crystal growth vector is good at 45 ° ⁇ ⁇ 1 ⁇ 70 °. And it can be paraphrased that the uniformity of vapor deposition film thickness (thickness of the fluorescent substance film 22) is ensured. Further, by the incident angle theta 1 is replaced, it can be seen that the vertical component of the crystal growth vector (deposited film thickness) is entirely shifted. Then, in accordance with the incident angle theta 1 is increased, it is found that the deposition efficiency is lowered.
  • the radial direction component is shown in FIG. 11, the incident angle theta 1 to 45 °, 50 °, 55 ° , 60 °, 65 °, 70 °, in the case of a 75 °, the length from the center of the photoelectric conversion substrate 21 (evaporation surface) (v It is a figure which shows the change of the relative length of the component of the radial direction of crystal growth vector with respect to diameter (L) with a graph.
  • the length L was a target of evaluation within the range of 0 to 0.5 m.
  • the inside direction of the photoelectric conversion substrate 21 is represented by ⁇
  • the outside direction of the photoelectric conversion substrate 21 is represented by +.
  • the columnar crystals are inclined inward
  • the columnar crystals are inclined in the outward direction.
  • the effect of averaging the radial components of the crystal growth vector is obtained by the rotation of the photoelectric conversion substrate 21.
  • the radial component is sero.
  • the radial component of the crystal growth vector tends to increase. The trend indicates that depends largely on the incident angle theta 1. As seen from the results, when 55 ° ⁇ ⁇ 1 ⁇ 60 °, the inclination of the columnar crystals is substantially zero.
  • the ratio of the radial component to the vertical component of the crystal growth vector if L ⁇ 0.3 m, the ratio of the radial component to the vertical component falls within ⁇ 3%. Even if 50 ° ⁇ ⁇ 1 ⁇ 65 °, if L ⁇ 0.3 m, the ratio of the radial component to the vertical component falls within ⁇ 10%. It can be expected that crystals having very good verticality can be obtained practically.
  • L O 1 m
  • the results when evaluated as R 1 m in FIGS.
  • FIG. 12 shows the length (dynamic) of the photoelectric conversion substrate 21 (deposited surface) from the center when the incident angle ⁇ 1 is 45 °, 50 °, 55 °, 60 °, 65 °, 70 °, 75 °. It is a figure which shows the change of the relative length of the perpendicular
  • the length L was a target of evaluation within the range of 0 to 0.5 m.
  • the temperature of the photoelectric conversion substrate 21 in the vapor deposition period will be described.
  • a method is employed in which the adhesion of the vapor deposition film is increased by heating the vapor deposition substrate.
  • the aim is to increase the adhesion of the deposited film by enhancing the active state of the evaporation element incident on the deposition substrate and the surface of the deposition substrate.
  • the photoelectric conversion substrate 21 is a substrate in which TFTs 26 and PDs 27 having a-Si as a base material are formed on a glass substrate. Further, although omitted in the description of the configuration of the photoelectric conversion substrate 21 described above, a protective layer is formed on the photoelectric conversion substrate 21. The protective layer secures the surface smoothness, protection and electrical insulation of the photoelectric conversion substrate 21. The protective layer is formed of an organic film or a laminated film of an organic film and a thin inorganic film in view of the required function.
  • the photoelectric conversion substrate 21 When depositing the scintillator material on the surface of the photoelectric conversion substrate 21, if the temperature of the photoelectric conversion substrate 21 is raised, the photoelectric conversion substrate 21 may be damaged or the adhesion of the phosphor film 22 may be reduced. It may cause sexual deterioration.
  • substrate at the time of vapor deposition does not make a problem.
  • an organic resin agent such as an acrylic resin or a silicone resin is often used from the request of optical characteristics and a photo-etching pattern forming function.
  • epoxy resins and the like can also be materials for the protective film, but there is a glass transition point in any organic resin, and at temperatures above this glass transition point, the thermal expansion coefficient of the organic film increases And, softening of the organic film starts.
  • the influence on the stability of the vapor deposited film is large.
  • the temperature of the photoelectric conversion substrate 21 during deposition be a higher temperature.
  • the inventor of the present application investigated changes in the state of the phosphor film 22 with respect to the temperature of the photoelectric conversion substrate 21 during the vapor deposition period. Then, whether or not peeling occurred in the formed phosphor film 22 was investigated, and the quality of the phosphor film 22 was determined.
  • substrate 21 of a vapor deposition period was changed by the vapor deposition initial stage and after vapor deposition initial stage.
  • the deposition initial stage is the timing at which the formation of the phosphor film 22 on the photoelectric conversion substrate 21 is started. Specifically, the timing can be set by opening the shutter provided at the tip (evaporation port) of the crucible 32.
  • the survey results are shown in Table 1 below.
  • the forced test is a method of applying a fixed amount of a cure shrinkable resin such as an epoxy resin, for example, on the phosphor film 22 and locally forcing a film stress due to cure shrinkage.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition is adjusted to 125 ° C., and the temperature of the photoelectric conversion substrate 21 after the initial stage of deposition is adjusted to 160 to 170 ° C. There was no occurrence of peeling on the phosphor film 22 even after the above.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of vapor deposition was adjusted to 140 ° C., and the temperature of the photoelectric conversion substrate 21 after the initial stage of vapor deposition was adjusted to 170 to 190 ° C. After the forced test, peeling occurred in the phosphor film 22.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition was adjusted to 150 to 180 ° C., and the temperature of the photoelectric conversion substrate 21 after the initial stage of deposition was adjusted to 180 to 195 ° C. Peeling occurred in the formed phosphor film 22.
  • the influence of the temperature of the photoelectric conversion substrate 21 at the initial stage of the deposition is particularly large.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of vapor deposition exceeds 140 ° C., it is expected that the risk of occurrence of peeling of the formed phosphor film 22 is significantly increased. Therefore, it is desirable to suppress the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition to 140 ° C. or less.
  • an appropriate phosphor film 22 without film peeling was formed even at a temperature condition of 125 ° C.
  • the temperature conditions after the initial stage of deposition are related to the crystal growth conditions of the phosphor film 22, and therefore, the influence on the characteristics of the phosphor film 22 such as sensitivity. Is also assumed. Therefore, 125 degrees C or more is a suitable range.
  • the temperature of the photoelectric conversion substrate 21 is preferably in the range of 125 ° C. to 190 ° C., whereby the phosphor film 22 can be formed without occurrence of peeling.
  • the upper limit of the temperature of the photoelectric conversion substrate 21 in the vapor deposition period is determined.
  • the lower limit of the temperature of the photoelectric conversion substrate 21 in the vapor deposition period is restricted from the viewpoint of characteristics.
  • the inventor of the present application has found that the sensitivity characteristic of the X-ray detection panel 2 has a correlation with the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition.
  • the ratio is about 0.6 times the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition. Sensitivity characteristics are proportional. Therefore, when the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition decreases, the sensitivity characteristic of the X-ray detection panel 2 also decreases.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition is preferably 70 ° C. or more.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition is controlled within the range of 70 ° C. to 140 ° C. It is desirable to control the temperature of the photoelectric conversion substrate 21 within the range of 125 ° C. to 190 ° C.
  • the temperature of the photoelectric conversion substrate 21 in the initial stage of deposition within the range of 70 ° C. to 125 ° C. and to control the temperature of the photoelectric conversion substrate 21 after the initial stage of deposition within the range of 125 ° C. to 170 ° C. .
  • FIG. 14 is a view showing the photoelectric conversion substrate 21, the heat conductor 36, the holding mechanism 37, and the heat radiating portion 38 shown in FIG. 3, and a schematic view for explaining the function of the heat conductor 36.
  • a large-sized crucible 32 is used, and a few kg (for example, 6 kg) or more of scintillator material is introduced into the crucible 32.
  • the temperature of crucible 32 is heated to about 700 ° C. to raise the melting temperature of CsI.
  • the heat conductor 36 is disposed to face the entire area of the photoelectric conversion substrate 21 and the holding mechanism 37.
  • the surface of the heat conductor 36 opposed to the photoelectric conversion substrate 21 and the holding mechanism 37 is referred to as a surface S1
  • the surface of the heat conductor 36 opposed to the heat dissipation portion 38 is referred to as a back surface S2.
  • the heat conductor 36 can dissipate the radiant heat from the back surface S2 side to the heat radiating portion 38.
  • the heat radiating portion 38 plays a role of transferring heat to the vacuum chamber 31 by thermal conduction.
  • the heat conductor 36 is interposed between the holding mechanism 37 (photoelectric conversion substrate 21) and the heat radiating portion 38, and the distance between the heat conductor 36 and the holding mechanism 37 (photoelectric conversion substrate 21) Also, the distance between the heat conductor 36 and the heat radiating portion 38 is made as short as possible.
  • the emissivity of the front surface S1 and the back surface S2 be close to 1, and the heat conductor 36 be formed using a material with high thermal conductivity, thereby further suppressing the overheating of the photoelectric conversion substrate 21. be able to.
  • the surface S1 and the back surface S2 of the heat conductor 36 are blackened.
  • the heat conductor 36 can ensure high emissivity. This is because the emissivity of the surface S1 and the back surface S2 subjected to the blackening treatment is about 95%, as compared with the emissivity of the metallic glossy surface formed of aluminum or the like being about several tens of percent. . It can be seen that the radiation from the front surface S1 and the back surface S2 is close to perfect black body radiation. Furthermore, it is more effective if the surface of the holding mechanism 37 and the surface of the heat radiating portion 38 are subjected to surface treatment (blackening treatment) to increase the emissivity.
  • the photoelectric conversion substrate 21 when manufacturing the radiation panel, the photoelectric conversion substrate 21 is disposed so that 45 ° ⁇ ⁇ ⁇ 70 ° at the center of the photoelectric conversion substrate 21. ing. Next, a scintillator material is vapor-deposited on the photoelectric conversion substrate 21 to form a phosphor film 22.
  • the load on the apparatus such as the vacuum exhaust device can be reduced, and productivity and utilization efficiency of the scintillator material can be improved.
  • productivity can be improved.
  • ⁇ ⁇ 70 ° at the center of the photoelectric conversion substrate 21 (Dh / Dv) ⁇ 1 can be obtained, and thinner columnar crystals can be formed. Therefore, the resolution of the X-ray detection panel 2 Can contribute to the improvement of
  • the vacuum evaporation method is performed under an environment where the pressure is 1 ⁇ 10 ⁇ 2 Pa or less.
  • the rotational speed of the photoelectric conversion substrate 21 is 4 rpm or more.
  • the MTF value gradually increases, which can contribute to the improvement of the resolution of the X-ray detection panel 2.
  • the temperature of the photoelectric conversion substrate 21 at the initial stage of deposition is controlled within the range of 70 ° C. to 140 ° C., and the temperature of the photoelectric conversion substrate 21 after the initial stage of deposition is 125 ° C. It is controlled within the range of ° C.
  • the phosphor film 22 can be formed without occurrence of peeling, which can contribute to the formation of the X-ray detection panel 2 excellent in sensitivity characteristics.
  • the vacuum deposition apparatus 30 includes three heat conductors 36, three holding mechanisms 37, three heat dissipation units 38, and three motors 39.
  • the three holding mechanisms 37 can be arranged equidistantly by 120 ° in the circumferential direction around the central axis (vertical axis) of the weir 32.
  • TlI may be introduced into a crucible (small-sized crucible) prepared separately from the crucible 32 (large-sized crucible), and CsI and TlI can be simultaneously deposited to obtain the above-described effect.
  • the shape of the heat conductor 36 is not limited to a plate shape, and can be variously modified such as a block structure.
  • the heat conductor 36 may be formed in a shape according to the arrangement of the photoelectric conversion substrate 21, the shape of the holding mechanism 37, the positional relationship with the heat radiating portion 38, and the like.
  • the heat conductor 36 is formed using aluminum to increase the thermal conductivity, but the invention is not limited to aluminum, and various modifications are possible, and a material such as copper (Cu) is used.
  • the heat conductor 36 may be formed utilizing it.
  • the present invention is not limited to this, and the embodiment described above using another material as the scintillator material And similar effects can be obtained.
  • CsI cesium iodide
  • the above-described technology is not limited to the application to an X-ray detection panel manufacturing apparatus and method, and can be applied to various radiation detection panel manufacturing apparatuses and methods.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Physical Vapour Deposition (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

 放射線検出パネルの製造方法は、蒸発源より鉛直上方側で、光電変換基板(21)の蒸着面が蒸発源に露出しかつ鉛直軸に対して斜めとなる状態に光電変換基板を配置する。蒸発源により、シンチレータ材を蒸発させ鉛直上方へ向けて放射し、上記蒸着面上にシンチレータ材を蒸着させ蛍光体膜を形成する。

Description

放射線検出パネルの製造装置及び放射線検出パネルの製造方法
 本発明の実施形態は、放射線検出パネルの製造装置及び放射線検出パネルの製造方法に関する。
 近年、放射線検出パネルとして、X線検出パネルが実用化されてきている。X線検出パネルは、X線(放射線)を光に変換する蛍光体膜と、その光を電気信号に変換する光電変換素子とを含んでいる。このようなX線検出パネルは、従来のX線イメージ管に比べ、X線平面検出装置の全体的な小型軽量化に貢献することができる。X線平面検出装置は、検査対象物を透過したX線で得られる画像情報をデジタル電気情報に変換する。X線平面検出装置は、デジタル画像処理やデジタル画像保存など、デジタル情報処理の多くの利便性を享受することができる。
 このX線平面検出装置は、患者の診断や治療に使用する医療用や歯科用、非破壊検査などの工業用、構解析などの科学研究用など、広い分野で使われている。それぞれの分野において、デジタル情報処理による高精度な画像抽出、高速度な画像検出が可能となることにより、不所望なX線(放射線)被爆量の低減や、迅速な検査、迅速な診断などの効果が期待できる。
 X線平面検出装置の蛍光体膜には、シンチレータ材の技術を転用することが多い。シンチレータ材は、従来のX線イメージ管で用いられているセシウム(Cs)及びヨウ素(I)を主成分とする材料で形成されている。ヨウ化セシウム(以下CsI)を主成分とし柱状結晶を成す上記シンチレータ材は、他の粒子状結晶を成すシンチレータ材に比較し、光ガイド効果による感度と解像度の向上を図ることができる。
 X線平面検出装置の感度の高い状態を確保するためには、X線から変換される光(蛍光)の量を十分に得る必要があり、蛍光体膜はある程度の厚みを有する必要がある。CsIを主成分としたシンチレータ材を使用する場合、蛍光体膜の厚さを500μmほどにすることが多い。
 一方、蛍光体膜は、膜厚の増加に伴い画像の解像度を低下させる傾向にある。蛍光体膜が、高感度と高解像度とを達成するためには、シンチレータ材の柱状結晶をより細く、かつ厚み方向により一様に形成できる蒸着方法が望ましい。
 なお、シンチレータ材の成膜方法に関しては、従来のX線イメージ管の製造方法やX線平面検出装置の製造方法などにおいて開示されている。また、類似した製造方法としては輝尽性蛍光体を用いた放射線像変換パネルの製造方法が知られている。
 また、光電変換基板の表面にシンチレータ材を蒸着させる製造装置は、真空チャンバと、真空チャンバ内に配置された坩堝とを有している。シンチレータ材を蒸着させる際、真空チャンバ内において坩堝の上方に光電変換基板を水平に配置する。その後、坩堝でシンチレータ材を加熱し蒸発させる。これにより、蒸発したシンチレータ材は光電変換基板の表面に蒸着する。さらに、光電変換基板を水平面内で回転させながら、シンチレータ材を光電変換基板の表面に蒸着させる場合もある。
特開平10-40840号公報 特開2003-262673号公報 特開2005-164534号公報 特開2009-236705号公報
 ところで、シンチレータ材の蒸着を行うX線検出パネルを製造するための装置及び方法では、生産性の向上や、形成した蛍光体膜の解像度特性を考慮する必要がある。しかしながら、一般に開示されている蒸着方法では、上述の課題を解決する手法としては不十分である。 
 この発明は以上の点に鑑みなされたもので、その目的は、生産性の向上を図ることができ、解像度特性の良好な放射線検出パネルを形成することができる放射線検出パネルの製造装置及び放射線検出パネルの製造方法を提供することにある。
図1は、一実施形態に係るX線検出パネルの製造方法を使用して製造されたX線検出パネルを含むX線平面検出装置を概略的に示す断面図である。 図2は、上記X線平面検出装置の一部を示す分解斜視図である。 図3は、上記一実施形態に係る真空蒸着装置を示す概略構成図である。 図4は、光電変換基板の回転速度に対するMTF相対値の変化をグラフで示す図である。 図5は、上記真空蒸着装置の一部を示す模式図であり、坩堝及び光電変換基板を示す図である。 図6は、上記真空蒸着装置の一部を示す他の模式図であり、坩堝及び光電変換基板を示す図である。 図7は、入射角θを40°、45°、50°、60°、70°、75°とした場合の、比(L/R)に対する成分比(Dh/Dv)の変化をグラフで示す図である。 図8は、図3及び図5に示した真空チャンバ、坩堝及び光電変換基板に座標を対応させた座標系を示す図である。 図9は、図8に示した座標系を示す図であり、各瞬間における点Pの柱状結晶の成長方向の成分を示す図である。 図10は、所定条件において、入射角を45°、50°、55°、60°、65°、70°、75°とした場合の、基板中心からの長さ(動径)に対する結晶成長ベクトルの垂直成分の相対長さの変化をグラフで示す図である。 図11は、上記所定条件において、入射角を45°、50°、55°、60°、65°、70°、75°とした場合の、基板中心からの長さ(動径)に対する結晶成長ベクトルの動径方向の成分の相対長さの変化をグラフで示す図である。 図12は、他の所定条件において、入射角を45°、50°、55°、60°、65°、70°、75°とした場合の、基板中心からの長さ(動径)に対する結晶成長ベクトルの垂直成分の相対長さの変化をグラフで示す図である。 図13は、他の所定条件において、入射角を45°、50°、55°、60°、65°、70°、75°とした場合の、基板中心からの長さ(動径)に対する結晶成長ベクトルの動径方向の成分の相対長さの変化をグラフで示す図である。 図14は、図3に示した光電変換基板、熱伝導体、保持機構及び放熱部を示す図であり、熱伝導体の機能を説明する模式図である。
 一実施形態に係る放射線検出パネルの製造装置は、シンチレータ材を蒸発させ鉛直上方へ向けて放射させる蒸発源と、前記蒸発源より鉛直上方側に位置し、光電変換基板の蒸着面が前記蒸発源に露出しかつ鉛直軸に対して斜めとなる状態に前記光電変換基板を保持する保持機構と、を備える。
 また、一実施形態に係る放射線検出パネルの製造装置は、シンチレータ材を蒸発させ放射させる蒸発源と、前記蒸発源から放射される前記シンチレータ材が光電変換基板の蒸着面上に蒸着されるように前記光電変換基板を保持する保持機構と、前記光電変換基板から向かって前記保持機構を越えて位置し、前記保持機構に間隔を置いて配向配置され、前記保持機構に対向し黒色化処理が施された表面を有する熱伝導体と、を備える。
 また、一実施形態に係る放射線検出パネルの製造方法は、蒸発源より鉛直上方側で、光電変換基板の蒸着面が前記蒸発源に露出しかつ鉛直軸に対して斜めとなる状態に前記光電変換基板を配置し、前記蒸発源により、シンチレータ材を蒸発させ鉛直上方へ向けて放射し、前記蒸着面上に前記シンチレータ材を蒸着させ蛍光体膜を形成する。
 また、一実施形態に係る放射線検出パネルの製造方法は、光電変換基板の蒸着面上にシンチレータ材を蒸着させ蛍光体膜を形成し、前記蒸着面上に前記シンチレータ材を蒸着させる際、蒸着初期の前記光電変換基板の温度を70℃乃至140℃の範囲内に制御し、前記蒸着初期以降の前記光電変換基板の温度を125℃乃至190℃の範囲内に制御する。
 以下、図面を参照しながら一実施形態に係るX線検出パネルの製造装置及びX線検出パネルの製造方法について詳細に説明する。始めに、上記X線検出パネルの製造方法を使用して製造されたX線検出パネルの構成について説明する。ここでは、X線検出パネルを利用するX線平面検出装置の全体的な構成についても説明する。
 図1は、X線平面検出装置を概略的に示す断面図である。図1に示すように、X線平面検出装置は、大型のX線平面検出装置である。X線平面検出装置は、X線検出パネル2、防湿カバー3、支持基板4、回路基板5、X線遮蔽用の鉛プレート6、放熱絶縁シート7、接続部材8、筐体9、フレキシブル回路基板10、及び入射窓11を備えている。
 図2は、X線平面検出装置の一部を示す分解斜視図である。図1及び図2に示すように、X線検出パネル2は、光電変換基板21と、蛍光体膜22とを有している。光電変換基板21は、0.7mm厚のガラス基板と、ガラス基板上に2次元的に形成された複数の光検出部28とを備えている。光検出部28は、スイッチング素子としてのTFT(薄膜トランジスタ)26及びフォトセンサとしてのPD(フォトダイオード)27を有している。TFT26及びPD27は、例えばa-Si(アモルファスシリコン)を基材として形成されている。光電変換基板21の平面に沿った方向のサイズは、例えば正方形であり、1辺が50cmである。なお、大型のX線平面検出装置において、光電変換基板21の一辺の長さは、例えば13乃至17インチである。
 蛍光体膜22は、光電変換基板21上に直接形成されている。蛍光体膜22は、光電変換基板21のX線の入射側に位置している。蛍光体膜22は、X線を光(蛍光)に変換するものである。なお、PD27は、蛍光体膜22で変換された光を電気信号に変換するものである。
 蛍光体膜22は、光電変換基板21上にシンチレータ材を蒸着させることにより形成されている。シンチレータ材としては、ヨウ化セシウム(CsI)を主成分とする材料を用いることができる。蛍光体膜22の厚みは、100乃至1000μmの範囲内に設定されている。より適切には、感度と解像度とを評価して、蛍光体膜22の厚みは、200乃至600μmの範囲内に設定されている。
 この実施形態において、蛍光体膜22の厚みは、500μmに調整されている。シンチレータ材としては、主成分であるCsIにタリウム(Tl)またはヨウ化タリウム(TlI)を添加した材料を用いている。これにより、蛍光体膜22は、X線が入射されることにより適切な波長の光(蛍光)を放出することができる。
 例えば、添加するヨウ化タリウム(TlI)は数%乃至それ以下であり、よってシンチレータ材中のヨウ化セシウム(CsI)濃度割合は95%以上を占めると好ましい。
 図1に示すように、防湿カバー3は、蛍光体膜22を完全に覆い、蛍光体膜22に封着されている。防湿カバー3は、例えばアルミニウム合金で形成されている。防湿カバー3の厚みが大きくなると、蛍光体膜22に入射されるX線量が減衰し、X線検出パネル2の感度の低下を招いてしまう。このため、防湿カバー3の厚みはなるべく小さくした方が望ましい。防湿カバー3の厚みを設定するに当たっては、各種パラメータ(防湿カバー3の形状の安定性、製造に耐える強度、蛍光体膜22に入射されるX線の減衰量)のバランスを考慮している。防湿カバー3の厚みは、50乃至500μmの範囲内に設定されている。この実施形態において、防湿カバー3の厚みは、200μmに調整されている。
 光電変換基板21の外周部には、外部と接続するための複数のパッドが形成されている。複数のパッドは、光電変換基板21の駆動のための電気信号の入力及び出力信号の出力に使用される。
 上記X線検出パネル2及び防湿カバー3の集合体は、薄い部材を積層して構成されているため、上記集合体は、軽く、強度の低いものである。このため、X線検出パネル2は、粘着シートを介して支持基板4の平坦な一面に固定されている。支持基板4は、例えばアルミニウム合金で形成され、X線検出パネル2を安定して保持するために必要な強度を有している。
 支持基板4の他面には、鉛プレート6と放熱絶縁シート7とを介して回路基板5が固定されている。回路基板5はねじ等で支持基板4に固定されている。回路基板5及びX線検出パネル2は、フレキシブル回路基板10を介して接続されている。フレキシブル回路基板10と、光電変換基板21との接続には、ACF(非等方性導電フィルム)を利用した熱圧着法が用いられる。この方法により、複数の微細な信号線の電気的接続が確保される。回路基板5には、フレキシブル回路基板10に対応するコネクタが実装されている。回路基板5は、上記コネクタなどを介してX線検出パネル2に電気的に接続されている。回路基板5は、X線検出パネル2を電気的に駆動し、かつ、X線検出パネル2からの出力信号を電気的に処理するものである。
 筐体9は、X線検出パネル2、防湿カバー3、支持基板4、回路基板5、鉛プレート6、放熱絶縁シート7、接続部材8を収容している。筐体9は、X線検出パネル2と対向した位置に形成された開口を有している。接続部材8は、筐体9に固定され、支持基板4を支持している。
 入射窓11は、筐体9の開口に取付けられている。入射窓11は、筐体9の開口を密閉している。入射窓11はX線を透過するため、X線は入射窓11を透過してX線検出パネル2に入射される。入射窓11は、板状に形成され、筐体9内部を保護する機能を有している。入射窓11は、X線吸収率の低い材料で薄く形成することが望ましい。これにより、入射窓11で生じる、X線の散乱と、X線量の減衰とを低減することができる。そして、薄くて軽いX線検出装置を実現することができる。X線検出装置は、上記のように形成されている。
 次に、X線検出パネル2の製造装置に利用する真空蒸着装置について説明する。 
 図3は、真空蒸着装置30を示す概略構成図である。図3に示すように、真空蒸着装置30は、真空チャンバ31、シンチレータ材を加熱溶融して蒸発させる蒸発源としての坩堝32、ヒータ33、34、カバー35、熱伝導体36、保持機構37、温度調整部としての放熱部38及びモータ39を備えている。
 真空チャンバ31は、幅方向(水平方向)に比べ高さ方向(垂直方向、鉛直方向)に大きい箱状に形成されている。真空チャンバ31には図示しない真空排気装置(真空ポンプ)が取付けられ、真空排気装置は真空チャンバ31内を大気圧以下の圧力に保持することができる。真空蒸着装置30は、圧力を大気圧以下の所望の値に設定した環境下で行う真空蒸着法を利用している。
 坩堝32は、真空チャンバ31内の下方に配置されている。坩堝32内には、主成分であるCsIにTlIが添加されたシンチレータ材が投入される。例えば、ヨウ化セシウム(CsI)の濃度割合が95%以上のシンチレータ材を利用することができる。他には、ヨウ化セシウム(CsI)の濃度100%のシンチレータ材を投入し、少量のヨウ化タリウム(TlI)を別の小さな坩堝から蒸発させる方法もある。後者の場合でも柱状結晶の構造はヨウ化セシウム(CsI)により決定されるので、真空チャンバ31内の坩堝32の配置に関する作用効果の説明は同じである。
坩堝32の中央の先端部は、筒状(煙突状)に形成され、真空チャンバ31の高さ方向に延出している。坩堝32の先端に位置する蒸発口32aは、真空チャンバ31の上方を向いて開口している。シンチレータ材は、蒸発口32aの中心を通る鉛直軸を中心に、鉛直上方に放射される。
 ヒータ33は坩堝32の周囲に設けられている。ヒータ33は坩堝32を加熱し、坩堝32の温度がシンチレータ材の融点以上となるように調整されている。ここでは、ヒータ33は、坩堝32を約700℃に加熱している。なお、坩堝32の温度は図示しない温度計で計測することができ、坩堝32の温度のモニタリングと、ヒータ33の駆動は図示しないヒータ駆動部で行うことができる。
 上記のように坩堝32が加熱されることにより、シンチレータ材の蒸発元素が坩堝32の蒸発口32aを通って真空チャンバ31の上方に放射される。また、坩堝32の先端部は筒状に形成されているため、指向性の高いシンチレータ材の放射を行うことができる。上記のことから、光電変換基板21が位置する方向に集中してシンチレータ材の放射を行うことができる。なお、坩堝32の先端部の長さを調整することにより、シンチレータ材の放射の指向性を調整することができる。
 この実施形態において、大型のX線検出パネル2を製造するため、光電変換基板21には多量(例えば400g)のシンチレータ材を蒸着する必要がある。このため、坩堝32には大型のものを利用し、坩堝32内には数kg(例えば6kg)以上のシンチレータ材が投入されている。
 ヒータ34は、坩堝32の先端部の周囲に設けられ、坩堝32の先端部を加熱している。これにより、坩堝32の先端部が閉塞することを防止することができる。 
 カバー35は、坩堝32及びヒータ33、34を覆っている。カバー35は、坩堝32及びヒータ33、34からの熱伝導の拡散を抑制する。カバー35には、冷却液(例えば水)が流れる冷却路が形成されている。
 熱伝導体36は、真空チャンバ31内の上方に位置し、真空チャンバ31に固定されている。熱伝導体36は、例えば厚さ3mmの板状に形成されている。熱伝導体36を形成する材料としては、例えばアルミニウムを利用することができる。熱伝導体36は、熱伝導により、放熱部38の熱を光電変換基板21及び保持機構37に伝えたり、光電変換基板21及び保持機構37の熱を放熱部38に伝えたりする機能を有している。また、熱伝導体36は、放熱部38などへのシンチレータ材の付着を防護する機能も有している。
 保持機構37は、熱伝導体36に対向し、熱伝導体36よりも真空チャンバ31の中心側に位置している。保持機構37は、光電変換基板21の蒸着面を露出させた状態で、光電変換基板21を保持する。光電変換基板21は、蒸着面が真空チャンバ31の高さ方向に対して鋭角をなすように傾斜した状態で保持されている。
 放熱部38は、熱伝導体36に対向し、熱伝導体36よりも真空チャンバ31の側壁側に位置している。放熱部38は真空チャンバ31に接続され、放熱部38に生じる熱は真空チャンバ31に伝達可能である。詳細には図示しないが、放熱部38は、熱伝導体及びヒータの集合体である。放熱部38のヒータは光電変換基板21を加熱するものである。なお、光電変換基板21の温度は図示しない温度計で計測することができ、光電変換基板21の温度のモニタリングと、放熱部38のヒータの駆動は図示しないヒータ駆動部で行うことができる。
 放熱部38のヒータが発生する熱は、熱伝導により熱伝導体36を介して光電変換基板21に伝えられる。放熱部38のヒータが発生する熱は、放熱部38の熱伝導体や保持機構37をさらに介して光電変換基板21に伝えられてもよい。
 一方、光電変換基板21に発生する熱は、熱伝導により熱伝導体36を介して放熱部38の熱伝導体に伝えられる。光電変換基板21に発生する熱は、保持機構37をさらに介して放熱部38の熱伝導体に伝えられてもよい。放熱部38の熱伝導体に伝えられた熱は、真空チャンバ31に伝達される。
 モータ39は、真空チャンバ31に気密に取付けられている。モータ39のシャフトは、放熱部38に形成された貫通口及び熱伝導体36に形成された貫通口を通って位置している。なお、保持機構37は、モータ39のシャフトに取付けられ、シャフトに着脱可能である。光電変換基板21の中心は、モータ39のシャフトに対向している。そして、モータ39を稼動させることにより、保持機構37が回転する。すると、光電変換基板21は、光電変換基板21の中心の法線に沿った軸を回転軸として回転する。
 この実施形態において、真空蒸着装置30は、熱伝導体36、保持機構37、放熱部38及びモータ39を2つずつ備えている。このため、真空蒸着装置30は、2枚の光電変換基板21に同時に蛍光体膜22を形成することができる。一方の保持機構37の位置と他方の保持機構37の位置とは、蒸発口32aを通る鉛直軸に対して対称である。光電変換基板21の蒸着面同士が互いに向き合うように、2台の保持機構37は、それぞれ斜めに配置されている。一方の光電変換基板21の蒸着面と他方の光電変換基板21の蒸着面との内側になす角度αは鋭角である。上記のように、真空蒸着装置30が形成されている。
 坩堝32の蒸発口から放射されるシンチレータ材の蒸発元素は、真空チャンバ31の上方に位置した光電変換基板21に蒸着する。その際、シンチレータ材の蒸発元素は、光電変換基板21に斜め方向から入射される。ここで、光電変換基板21へのシンチレータ材の入射角をθとする。入射角θは、光電変換基板21の法線とシンチレータ材の入射方向(蒸発口32aの中心と光電変換基板21蒸着面の任意の点とを結ぶ仮想線)とが内側になす角である。
 この実施形態では、光電変換基板21の中心において、θ=60°である。光電変換基板21の最上部(真空チャンバ31の天井壁側の光電変換基板21の端部)において、θ=70°である。光電変換基板21の最下部(坩堝32側の光電変換基板21の端部)において、θ=45°である。
 上記真空蒸着装置30は、θ=0°となる真空蒸着装置に比べ、真空チャンバ31の体積を低減することができる。これにより、真空排気装置などの装置負荷を低減することができる。また、真空引きに掛かる時間を短縮できるため、生産性の向上を図ることができる。 
 また、上記真空蒸着装置30では、シンチレータ材の利用効率を大幅に向上することができる。
 次に、X線検出パネル2の製造方法として、真空蒸着装置30を使用した蛍光体膜22の製造方法について説明する。 
 蛍光体膜22の製造が開始されると、まず、真空蒸着装置30と、光検出部28を含む光電変換基板21とを用意する。続いて、光電変換基板21を保持機構37に取付ける。その後、光電変換基板21が取付けられた保持機構37を真空チャンバ31内に搬入し、モータ39のシャフトに取付ける。
 次いで、真空チャンバ31を密閉し、真空排気装置を用いて真空チャンバ31内を真空引きする。続いて、モータ39を稼動させて光電変換基板21を回転させる。なお、モータ39の稼動を開始するタイミングは、特に限定されるものではなく種々変更可能である。例えば、坩堝32の温度のモニタリング結果に基づいて、モータ39の稼動を開始するタイミングを調整してもよい。
 次いで、ヒータ33、34を用いての坩堝32の加熱と、カバー35に形成された冷却路における冷却液の循環と、を開始する。その後、坩堝32内のシンチレータ材が蒸発することにより、光電変換基板21上にシンチレータ材が蒸着する。なお、光電変換基板21上に蒸着するシンチレータ材は熱を持っているため、蒸着期間において光電変換基板21は加熱される。上記のように、光電変換基板21上にシンチレータ材を蒸着することにより、光電変換基板21上に蛍光体膜22(図2)が形成される。これにより、蛍光体膜22の製造が終了する。
 次に、真空チャンバ31内の圧力について説明する。 
 光電変換基板21上に入射したシンチレータ材の蒸発元素は、光電変換基板21上に結晶を形成する。蒸着初期の段階において光電変換基板21上に形成されるのは微小な結晶粒であるが、蒸着を継続すると、やがて結晶粒が柱状結晶となって成長する。柱状結晶の成長方向は、蒸発元素の入射方向の逆である。したがって、蒸発元素が光電変換基板21に斜めに入射する場合、柱状結晶はその斜め方向に成長することになる。
 このような柱状結晶の成長を抑制し、光電変換基板21の法線に沿った方向に柱状結晶を成長させるため、以前は、蒸着中の真空チャンバ31内にアルゴン(Ar)ガスなどの不活性ガスを導入し、真空チャンバ31内の圧力を1×10-2乃至1Paほどに上昇させていた。蒸発元素は、上記不活性ガスの存在により飛翔し、光電変換基板21へ多方向から入射するようになる。この結果、柱状結晶の成長方向は、光電変換基板21の法線に沿った方向となる。
 しかしながら、不活性ガスの導入により真空チャンバ31内の圧力を上げた場合、光電変換基板21への蒸発元素の入射方向は全方向に亘るため、柱状結晶の成長は、柱状結晶が太くなる方向にも促進される。結果的には、柱状結晶が太くなり、X線検出パネル2の解像度が低下することになる。この問題を克服するため、本実施形態では、光電変換基板21上にシンチレータ材を蒸着させる際、不活性ガスの導入無しに行っている。そして、真空引きして圧力が1×10-2Pa以下となる状態を維持した環境下で行う真空蒸着法を利用している。これにより、柱状結晶が太くなる成長を低減することができ、光電変換基板21の法線に沿った方向への結晶成長を促進させることができる。
 次に、光電変換基板21の回転速度について説明する。 
 光電変換基板21への蒸発元素の入射方向を平均化するため、光電変換基板21上にシンチレータ材を蒸着させる際、光電変換基板21を回転させている。これにより、蛍光体膜22の厚みを光電変換基板21全面に亘って一様にすることができる。
 また、結晶成長ベクトルの向きを平均化することができ、トータルで光電変換基板21の法線に沿った方向に柱状結晶を成長させることができる。ここで、結晶成長ベクトルの向きは柱状結晶の成長方向である。この結果、より細い柱状結晶を形成することができるため、X線検出パネル2の解像度の向上を図ることができる。
 上記結晶成長ベクトルの向きの平均化には、光電変換基板21の回転速度が主要な要素となる。ここで、本願発明者は、光電変換基板21の回転速度に対するMTF(modulation transfer function)値について調査した。調査結果を図4に示す。図4は、光電変換基板21の回転速度に対するMTF相対値の変化をグラフで示す図である。図4には、光電変換基板21の回転速度を2rpm、4rpm、6rpm、とした場合の光電変換基板21の周辺部でのMTF値と、光電変換基板21の回転速度を2rpm、6rpm、10rpm、とした場合の光電変換基板21の中心部でのMTF値と、をプロットした。
 図4に示すように、光電変換基板21の回転速度を10rpmとした場合の光電変換基板21の周辺部でのMTF値と、光電変換基板21の回転速度を4rpmとした場合の光電変換基板21の中心部でのMTF値と、はプロットしていない。しかしながら、光電変換基板21の回転速度を変えても、光電変換基板21の周辺部でのMTF値と、光電変換基板21の中心部でのMTF値とは、ほぼ同様に推移することが分かる。また、光電変換基板21の回転速度が4rpm未満になると、MTF値が急低下することが分かる。
 一方、光電変換基板21の回転速度が4rpm以上では、MTF値が漸増することが分かる。従って、光電変換基板21を回転させる際、光電変換基板21の回転速度を4rpm以上とすることが望ましい。また、蒸着中は、光電変換基板21の回転速度を一定に保つとより望ましい。
 次に、光電変換基板21の中心における入射角θの下限について説明する。 
 本実施形態では、光電変換基板21の中心においてθ=60°となるように真空蒸着装置30を形成した場合について説明したが、これに限定されるものではなく種々変形可能である。真空蒸着装置30は、光電変換基板21の中心においてθ<60°となるように形成されていてもよい。しかし、入射角θが0°に近づくほど、光電変換基板21の蒸着面は真空チャンバ31の底壁を向くため、真空チャンバ31の幅が広がり、結果として真空チャンバ31の体積が増えることになる。上記のことは、光電変換基板21が大型である場合に顕著である。
 また、真空チャンバ31の体積圧縮率は、sinθ(入射角θのsin)に概ね比例するものである。言い換えると、真空チャンバ31の体積はcosθに略比例する。このため、0°≦θ<45°の範囲内では、真空チャンバ31の体積圧縮率は比較的緩慢であるが、一方で、θ=45°の場合に、真空チャンバ31の体積圧縮率は漸く70%程となる。45°<θの場合は、θ=45°の場合に比べて、体積圧縮率がより変化し、真空チャンバ31の体積圧縮率がより高くなる。これにより、真空チャンバ31の体積のより効率的な削減効果を得ることができる。
 このため、真空排気装置などの装置負荷、生産性、シンチレータ材の利用効率を考慮すると、真空蒸着装置30を、光電変換基板21の中心において45°≦θとなるように形成することが望ましい。
 次に、光電変換基板21の中心における入射角θの上限について説明する。 
 図5は、上記真空蒸着装置30の一部を示す模式図であり、坩堝32及び光電変換基板21を示す図である。図5に示すように、光電変換基板21の蒸着面の中心における入射角θを、ここではθとする。坩堝32の蒸発口32aから光電変換基板21(蒸着面)の中心までの距離(直線距離)をRとする。光電変換基板21の平面に沿った方向において、光電変換基板21(蒸着面)の中心からの長さをLとする。
 完全な真空状態では、蒸発元素の入射方向の反対側に結晶成長する。蒸着中に光電変換基板21は回転するため、蒸着ベクトルVa(Va1、Va2、Va3)の積算結果から光電変換基板21のそれぞれの個所の柱状結晶の成長方向が決まる。ここで、蒸着ベクトルの向きは蒸発元素の入射方向である。
 図6は、上記真空蒸着装置30の一部を示す他の模式図であり、坩堝32及び光電変換基板21を示す図である。図6に示すように、光電変換基板21の最上部では、結晶成長ベクトルは光電変換基板21の内側に向くことが分かる(例えば、結晶成長ベクトルVb2参照)。光電変換基板21の最下部では、結晶成長ベクトルは光電変換基板21の外側に向くことが分かる(例えば、結晶成長ベクトルVb1参照)。蒸着中に光電変換基板21は回転するため、結晶成長ベクトルVb(Vb1、Vb2)の光電変換基板21の平面に沿った方向の成分は、互いに相殺される。
 ここで、結晶成長ベクトルVbの光電変換基板21の平面に沿った方向の成分をDhとする。結晶成長ベクトルVbの光電変換基板21の法線に沿った方向の成分をDvとする。簡単なシミュレーションとして、結晶成長ベクトルVbの大きさが距離Rの二乗に反比例すると仮定した場合、光電変換基板21の中心から長さLの位置において、成分Dh、Dvは、それぞれ次の式で表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 光電変換基板21の平面に沿った方向への柱状結晶の成長の影響度は、成分Dhと、成分Dvとの比である成分比(Dh/Dv)を持って評価することができる。ここで、xは、光電変換基板21と坩堝32の蒸発口32aとの距離の相対寸法を特徴つける値であり、長さLと距離Rとの比(L/R)である(x=L/R)。
 図7は、入射角θを40°、45°、50°、60°、70°、75°とした場合の、長さLと距離Rとの比(L/R)に対する結晶成長ベクトルの成分比(Dh/Dv)の変化をグラフで示す図である。図7の縦軸では、光電変換基板21の内側方向を+とし、光電変換基板21の外側方向を-として表している。図7は、上記数1、2を用いてシミュレーションした結果を表している。図7に示すように、光電変換基板21の1辺の長さが50cmの場合、長さLは、0乃至25cmの範囲内である。一方、上記真空蒸着装置30の構造から、距離Rは150cm前後(100数10乃至200cm)が現実的な距離である。従って、比(L/R)の範囲は0.15乃至0.2となる。この範囲を考慮すると、入射角θが70°以下であれば、(Dh/Dv)<1とできることが分かる。
 実際の柱状結晶の成長には、コサイン則と呼ばれる蒸発時の前方へ蒸発量の偏りや、微量な残留ガスなどの影響を受けるため、成分比(Dh/Dv)は、図7に示した値よりも更に小さくなる(0に近づく)。 
 上記のことから、上述した入射角θの下限と併せると、45°≦θ≦70°であることが適切である。以上、簡単なシミュレーションの結果について説明した。
 ここで本願発明者等は、光電変換基板21の回転による効果をより精密かつ正確にシミュレーションした。その結果、50°≦θ≦65°であると、結晶垂直性(光電変換基板21の法線に沿った方向への結晶成長の促進性)がよりことが分かった。55°≦θ≦60°であると、結晶垂直性がさらによいことが分かり、柱状結晶の傾斜が略ゼロになることが分かった。
 次に、上記精密かつ正確なシミュレーションした内容について説明する。 
 ここで、斜め蒸着のモデル式を作成するためには、どの様な座標系を取るかが大切である。そこで、光電変換基板21の回転を考慮して、座標系を図8の様に設定した。図8は、真空チャンバ31、坩堝32及び光電変換基板21に座標を対応させた座標系を示す図である。
 図8に示すように、光電変換基板21の蒸着面をX-Y平面とし、光電変換基板21の回転軸(蒸着面の中心の法線に沿った軸)をZとする。蒸発口32aの中心を点Oとしている。点Oを通る坩堝32の中心軸(鉛直軸)は、X-Z平面上に位置している。坩堝32の中心軸とX軸との交点をTとする。例えば、点Tは真空蒸着装置30の頂点に相当する。シンチレータ材の蒸発元素(蒸着粒子)は、点Oから放射されると仮定することができ、坩堝32の中心軸を対称軸として周囲へ放射されると仮定することができる。
 入射角θは、斜め蒸着を特徴付けるパラメータであり、座標系原点と点Oとの線分と、Z軸との内側になす角度である。点Pは、光電変換基板21の蒸着面(X-Y平面)上にあり、蒸着位置を表している。動径(座標系原点から点Pまでの直線距離)をL、回転角をφとすると、点PのX軸の座標X、Y軸の座標Y、及びZ軸の座標Zを次のように表すことができる。
=L×cosφ
=L×sinφ
=0
 また、動径Lは、座標系原点から点Pまでの直線距離L以下である。すなわち、L≦Lであり、より現実的にはL<Lである。その他、坩堝32の中心軸(線分OT)と、点Pへの入射方向(線分OP)との内側になす角度をηとする。
 ここで、まず一般式を導出する。一般式を導出する際、次の4点を仮定している。
(1)真空チャンバ31内は十分に高真空の状態にあり、坩堝32から放出された蒸発元素は直接光電変換基板21の蒸着面に到達する。
(2)蒸発元素は、坩堝32の中心軸に関して対称(軸対称)に放射される。
(3)各瞬間における柱状結晶の成長方向は、蒸発元素の入射方向の逆である。
(4)光電変換基板21は一様に回転する。すなわち、角度φは一様に変化する。
 そして、一般式を導出するため、上記座標系から、点Pの座標を数3に、点Oの座標を数4に、点Tの座標を数5に、点Oから点Tに向かうベクトルを数6に、点Oから点Pに向かうベクトルを数7に示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
 また、数6に基づく数式を数8に、数7に基づく数式を数9に、それぞれ示す。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 図9は、図8に示した座標系を示す図であり、各瞬間における点Pの柱状結晶の成長方向(結晶成長ベクトル)の成分を示す図である。図9に示すように、光電変換基板21(蒸着面)に垂直な方向の成分をDa、動径方向の成分をDb、回転方向(φ方向)の成分をDcとする。なお、各成分の相対値に注目し、全成分にかかる係数は1とする。成分Daを数10に、成分Dbを数11に、成分Dcを数12に示す。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
 f(η)は、蒸発元素の分布を表す関数であり、軸対称性からηの関数である。また、η自体が、θ、φ、L、L、Rに依存する関数であり、すなわちη(θ,φ,L,L,R)である。
 上記のことから、長期的にみた場合の、点Pの柱状結晶の成長方向の成分を求めることができる。なお、図8から分かるように、ηおよびfはφの偶関数であることに注意する。そして、光電変換基板21を回転する効果を考慮するためにはφで積分すればよい。
 光電変換基板21(蒸着面)に垂直な方向の成分を数13に、動径方向の成分を数14に示す。
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 なお、回転方向(φ方向)の成分に関しては、φに関する奇関数の積分となるため、ゼロ(0)となる。
 より具体的に計算を行うためには、f(η)の関数形が必要である。上述のように微小平面から蒸発における角度分布はcos則で良く近似できる。よって、f(η)=cos(η)の近似モデルを採用する。具体的には数15及び数16に示す関係式を利用する。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 なお、Tはφを含まない関数であることに注意する。以上を考慮すると、cos則を用いた蒸着モデル式を求めることができる。cos則を用いた蒸着モデル式を、数17、数18及び数19に示す。数17は光電変換基板21(蒸着面)に垂直な方向の成分を示し、数18は動径方向の成分を示し。数19は回転方向(φ方向)の成分を示している。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 なお、上述したように、回転方向(φ方向)の成分に関しては、φに関する奇関数の積分となるため、ゼロとなる。
 これらの数値を得るためには、数値積分を行うか、解析的に積分を求めれば蒸着状態をシミュレーションできる。上記のCOS則の厳密解から求めた光電変換基板21(蒸着面)に垂直な方向の成分を図10に示す。
 図10は、入射角θを45°、50°、55°、60°、65°、70°、75°とした場合の、光電変換基板21(蒸着面)の中心からの長さ(動径)Lに対する結晶成長ベクトルの垂直成分の相対長さの変化をグラフで示す図である。図10において、距離L及び距離Rとしては現実的な値を仮定しており、L=1m、R=1.5mである。長さLは、0乃至0.5mの範囲内を評価の対象とした。一辺の長さが17インチの光電変換基板21であれば、長さLの最大値は0.3m(=0.43÷2×√2)であり、L≦0.5mを満たしている。
 図10から分かるように、長さLが変化しても、結晶成長ベクトルの垂直成分の均一性が良いという特徴がある。すなわち、45°≦θ≦70°において、結晶成長ベクトルの垂直成分の均一性が良いことが分かる。そして、蒸着膜厚(蛍光体膜22の厚み)の均一性が確保されると言い換えることもできる。また、入射角θが替わることにより、結晶成長ベクトルの垂直成分(蒸着膜厚)が全体的にシフトすることが分かる。そして、入射角θが大きくなるに従い、蒸着効率が低下することが分かる。
 他方、動径方向の成分を図11に示す。図11は、入射角θを45°、50°、55°、60°、65°、70°、75°とした場合の、光電変換基板21(蒸着面)の中心からの長さ(動径)Lに対する結晶成長ベクトルの動径方向の成分の相対長さの変化をグラフで示す図である。図11において、L=1m、R=1.5mである。長さLは、0乃至0.5mの範囲内を評価の対象とした。
 図11の縦軸では、光電変換基板21の内側方向を-とし、光電変換基板21の外側方向を+として表している。-であれば柱状結晶が内側方向に傾斜し、逆に+であれば柱状結晶が外側方向に傾斜する。
 図11から分かるように、光電変換基板21(蒸着面)の中心(回転軸)の位置では、光電変換基板21の回転により、結晶成長ベクトルの動径成分の平均化の効果が得られ、動径方向の成分はセロとなる。一方、長さLが大きくなるにつれ(L>0)、結晶成長ベクトルの動径成分が大きくなる傾向にある。上記傾向は入射角θに大きく依存することを示している。結果を見ると、55°≦θ≦60°では、柱状結晶の傾斜が略ゼロとなる。結晶成長ベクトルの動径成分と垂直成分との比率を見ると、L≦0.3mであれば、動径成分と垂直成分との比が±3%以内に収まる。50°≦θ≦65°であっても、L≦0.3mであれば、動径成分と垂直成分との比が±10%以内に収まる。実用的に非常に良い垂直性を有する結晶が得られることを期待できる。
 上述したように、図10及び図11には、L=1m、R=1.5mとして評価した場合の結果を示した。次に、L=1m、R=1mとして評価した場合の結果を図12及び図13に示す。
 図12は、入射角θを45°、50°、55°、60°、65°、70°、75°とした場合の、光電変換基板21(蒸着面)の中心からの長さ(動径)Lに対する結晶成長ベクトルの垂直成分の相対長さの変化をグラフで示す図である。図13は、入射角θを45°、50°、55°、60°、65°、70°、75°とした場合の、光電変換基板21(蒸着面)の中心からの長さ(動径)Lに対する結晶成長ベクトルの動径方向の成分の相対長さの変化をグラフで示す図である。図12及び図13において、長さLは、0乃至0.5mの範囲内を評価の対象とした。
 図12及び図13に示すように、結果は図10及び図11(R=1.5m)と類似の傾向を示している。但し、距離Rが短くなる分、結晶成長ベクトルの垂直成分の均一性が低下し、結晶成長ベクトルの動径成分の傾き変動が大きくなることが分かる。
 しかしながら、この場合も、図10及び図11に示した例と同様の結論に至る。結果を見ると、55°≦θ≦60°では、柱状結晶の傾斜が略ゼロとなる。結晶成長ベクトルの動径成分と垂直成分との比率を見ると、L≦0.3mであれば、動径成分と垂直成分との比が±6.5%以内に収まる。55°≦θ≦60°となるように光電変換基板21を配置し、入射角θを所定範囲に設定することにより、一層の結晶垂直性の向上が期待できる。
 50°≦θ≦65°であっても、L≦0.3mであれば、動径成分と垂直成分との比が-13%乃至+10%の範囲内に収まり、垂直性のよい結晶が得られることが期待できる。従って、より垂直性の良いシンチレータ材の結晶が必要な場合、50°≦θ≦65°に設定することがより望ましい。
 次に、蒸着期間における光電変換基板21の温度について説明する。 
 通常の蒸着においては被蒸着基板を加熱することにより蒸着膜の付着力を上げる方法が採られている。この狙いは、被蒸着基板に入射した蒸発元素と被蒸着基板の表面との活性状態を高めることにより蒸着膜の付着力を高めることである。
 ところで、光電変換基板21は、ガラス基板上にa-Siを基材としたTFT26やPD27が作り込まれた基板である。また、上述した光電変換基板21の構成の説明では省略したが、光電変換基板21の上層には保護層が形成されている。保護層は、光電変換基板21の表面の平滑化、保護及び電気絶縁性を確保するものである。保護層はその求められる機能から有機膜、又は有機膜と薄い無機膜との積層膜で形成されている。
 光電変換基板21の表面にシンチレータ材を蒸着させる際、光電変換基板21の温度を上昇させると、光電変換基板21がダメージを受けたり、蛍光体膜22の付着力が低下したりするなど、信頼性の低下を引き起こす恐れがある。なお、X線イメージ管においては、アルミニウムで形成された基板上にシンチレータ材を蒸着させる方法及び構成を採っているため、蒸着の際の基板の温度を問題とすることは無い。
 上記のことから、TFT26及びPD27、さらに配線部の接続部などを考慮すると、光電変換基板21の温度を200数十℃以内に抑えることが望ましい。さらに、有機膜(保護膜)を考慮すると、光電変換基板21の温度を上記温度より低く抑えることが望ましい。
 有機膜の材料としては、光学的特性やフォトエッチングパターン形成機能などの要請から、特にアクリル系やシリコーン系などの有機樹脂剤が利用されることが多い。上記の他には、エポキシ系樹脂なども保護膜の材料に成り得るが、いずれの有機樹脂にもガラス転移点が存在し、このガラス転移点以上の温度では、有機膜の熱膨張係数の増加や、有機膜の軟化が始まる。
 従って、蒸着時の保護膜(光電変換基板21)の温度が大幅にガラス転移点を超えると、蒸着膜が安定となる。特に、光電変換基板21上へ蛍光体膜22の形成が始まる蒸着初期において、蒸着膜の安定度に与える影響は大きい。一方、蛍光体膜22(結晶膜)の形成を考慮した場合、蒸着中の光電変換基板21の温度はより高い温度であることが望ましい。
 ここで、本願発明者は、蒸着期間に光電変換基板21の温度に対する蛍光体膜22の状態の変化について調査した。そして、形成された蛍光体膜22に剥離の発生があるかどうかを調査し、蛍光体膜22の品質を判定した。調査する際、蒸着期間の光電変換基板21の温度を、蒸着初期と、蒸着初期以降とで変えて行った。ここで、蒸着初期とは、光電変換基板21上への蛍光体膜22の形成を開始するタイミングである。具体的には、坩堝32の先端部(蒸発口)に設けたシャッタを開くことにより、そのタイミングを設定できる。次の表1に調査結果を示す。
Figure JPOXMLDOC01-appb-T000020
 表1に示すように、蒸着初期の光電変換基板21の温度を100℃、蒸着初期以降の光電変換基板21の温度を125℃にそれぞれ調整したところ、形成された蛍光体膜22に剥離の発生は無く、強制試験を経ても蛍光体膜22に剥離の発生は無かった。ここで、強制試験とは、例えばエポキシ樹脂などの硬化収縮性樹脂を蛍光体膜22上に一定量塗布し、硬化収縮による膜応力を局所的に強制負荷する方法である。
 蒸着初期の光電変換基板21の温度を125℃、蒸着初期以降の光電変換基板21の温度を160乃至170℃にそれぞれ調整したところ、形成された蛍光体膜22に剥離の発生は無く、強制試験を経ても蛍光体膜22に剥離の発生は無かった。
 蒸着初期の光電変換基板21の温度を140℃、蒸着初期以降の光電変換基板21の温度を170乃至190℃にそれぞれ調整したところ、形成された蛍光体膜22に剥離の発生は無かったが、強制試験を経ると蛍光体膜22に剥離が発生した。
 蒸着初期の光電変換基板21の温度を150乃至180℃、蒸着初期以降の光電変換基板21の温度を180乃至195℃にそれぞれ調整したところ、形成された蛍光体膜22に剥離が発生した。
 蛍光体膜22の光電変換基板21への付着安定性に関しては、特に蒸着初期の光電変換基板21の温度の影響が大きい。蒸着初期の光電変換基板21の温度が140℃を超えると、形成された蛍光体膜22に剥離が発生するリスクが大幅に増加することが予想される。従って、蒸着初期の光電変換基板21の温度は140℃以下に抑えた方が望ましい。
 また、蒸着初期以降においては、125℃の温度条件でも膜剥れの無い適切な蛍光体膜22が形成できたことは上述の通りである。なお、125℃より低温側でも成膜は可能であるが、一方、蒸着初期以降の温度条件は蛍光体膜22の結晶成長条件に関連するため、感度などの蛍光体膜22の特性への影響も想定される。よって、125℃以上が適正範囲である。
 このため、蒸着初期以降においては、光電変換基板21の温度を125℃乃至190℃の範囲内とした方が望ましく、これにより、蛍光体膜22を剥離の発生無しに形成することができる。上記のように、蛍光体膜22の光電変換基板21への付着安定性の観点から、蒸着期間における光電変換基板21の温度の上限が判定される。
 一方、蒸着期間における光電変換基板21の温度の下限は、特性面から制約を受ける。ここで、本願発明者は、X線検出パネル2の感度特性が蒸着初期の光電変換基板21の温度と相関性があること、を見出した。
 蒸着初期の光電変換基板21の温度が65℃乃至85℃の範囲内では、諸要因の影響はあるものの、平均的には蒸着初期の光電変換基板21の温度に対し約0.6倍の比率で感度特性が比例する。従って、蒸着初期の光電変換基板21の温度が低くなるとX線検出パネル2の感度特性も低くなる。
 また、蒸着初期の光電変換基板21の温度が低下すると、結果的には蒸着初期以降の光電変換基板21の温度も低下する傾向となる。その結果、上述の結晶成長へ影響が想定される。また、上記のような感度低下現象を確認することができた。このため、X線検出パネル2が低感度を示すリスクを考慮すると、蒸着初期の光電変換基板21の温度は70℃以上が望ましい。
 上述した検討結果から、本実施形態において、光電変換基板21上にシンチレータ材を蒸着させる際、蒸着初期の光電変換基板21の温度を70℃乃至140℃の範囲内に制御し、蒸着初期以降の光電変換基板21の温度を125℃乃至190℃の範囲内に制御することが望ましい。
 また、蒸着初期の光電変換基板21の温度を70℃乃至125℃の範囲内に制御し、蒸着初期以降の光電変換基板21の温度を125℃乃至170℃の範囲内に制御した方がより好ましい。
 次に、真空チャンバ31内部で起こる熱伝導について説明する。 
 図14は、図3に示した光電変換基板21、熱伝導体36、保持機構37及び放熱部38を示す図であり、熱伝導体36の機能を説明する模式図である。上述したように、蛍光体膜22を形成するため、坩堝32には大型のものを利用し、坩堝32内には数kg(例えば6kg)以上のシンチレータ材が投入される。坩堝32の温度は、CsIの溶融温度より高くするため約700℃に加熱される。
 図3及び図8に示すように、従って、坩堝32からの放射(輻射)熱は大きいため、真空チャンバ31内の上方に位置した光電変換基板21は強く加熱される。さらに、蒸着中の蒸発元素が光電変換基板に熱エネルギを持ち込むため、光電変換基板21の温度は大きく上昇する。
 そこで、光電変換基板21及び保持機構37の全域に対向するように熱伝導体36を配置している。ここで、光電変換基板21及び保持機構37と対向した熱伝導体36の面を表面S1、放熱部38と対向した熱伝導体36の面を裏面S2とする。これにより、熱伝導体36は、光電変換基板21及び保持機構37からの放射熱を表面S1側で吸収することができるため、光電変換基板21の過熱を抑制し、光電変換基板21の温度を上述した適正な値に制御することが可能となる。
 また、熱伝導体36は、裏面S2側から放熱部38に放射熱を発散することができる。放熱部38のヒータを駆動しない場合、放熱部38は、熱伝導により熱を真空チャンバ31に伝える役割を果たしている。
 放射熱は、対向する両者の間の距離が短ければより効率良く伝えることができる。このため、本実施形態では、熱伝導体36を保持機構37(光電変換基板21)と放熱部38の間に介在させ、熱伝導体36及び保持機構37(光電変換基板21)間の距離、並びに熱伝導体36及び放熱部38間の距離を極力短くしている。
 また、表面S1と裏面S2の放射率をそれぞれ1に近づけ、熱伝導率の高い材料を利用して熱伝導体36を形成することが望ましく、これにより、光電変換基板21の過熱を一層抑制することができる。
 本実施形態において、熱伝導体36の表面S1及び裏面S2には、それぞれ黒色化処理が施されている。これにより、熱伝導体36は高い放射率を確保することができる。これは、アルミニウムなどで形成された金属光沢面の放射率が数10%程度であるのに比べ、黒色化処理が施された表面S1及び裏面S2の放射率は約95%を示すためである。表面S1及び裏面S2からの放射は、完全黒体放射に近いことが分かる。さらに、保持機構37の表面及び放熱部38の表面にも、放射率を上げる表面処理(黒色化処理)を施せば、より効果的である。
 以上のように構成されたX線検出パネルの製造方法によれば、放射線パネルを製造する際、光電変換基板21の中心において45°≦θ≦70°となるように光電変換基板21を配置している。次いで、光電変換基板21上にシンチレータ材を蒸着させ蛍光体膜22を形成している。
 光電変換基板21の中心において45°≦θとすることにより、真空排気装置などの装置負荷を低減することができ、生産性やシンチレータ材の利用効率の向上を図ることができる。特に大型のX線検出パネル2の製造において、生産性を向上させることができる。また、光電変換基板21の中心においてθ≦70°とすることにより、(Dh/Dv)<1とすることができ、より細い柱状結晶を形成することができるため、X線検出パネル2の解像度の向上に寄与することができる。
 圧力を1×10-2Pa以下とした環境下で行う真空蒸着法を利用している。これにより、柱状結晶が太くなる成長を低減することができ、光電変換基板21の法線に沿った方向への結晶成長を促進させることができる。 
 光電変換基板21の回転速度を4rpm以上としている。これにより、MTF値が漸増するため、X線検出パネル2の解像度の向上に寄与することができる。
 光電変換基板21上にシンチレータ材を蒸着させる際、蒸着初期の光電変換基板21の温度を70℃乃至140℃の範囲内に制御し、蒸着初期以降の光電変換基板21の温度を125℃乃至190℃の範囲内に制御している。これにより、蛍光体膜22を剥離の発生無しに形成することができ、感度特性に優れたX線検出パネル2の形成に寄与することができる。
 上記のことから、生産性の向上を図ることができ、X線検出パネル2の解像度特性の向上に寄与する蛍光体膜22を形成することができるX線検出パネル2の製造方法を得ることができる。また、製造歩留まりが高い蛍光体膜22を形成することができるX線検出パネル2の製造方法を得ることができる。
 本発明の一つの実施形態を説明したが、実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 例えば、上述した実施形態では、2枚のX線検出パネル2を同時に製造したが、1枚のX線検出パネル2のみを製造する場合や、3枚のX線検出パネル2を同時に製造する場合であっても上述した効果を得ることができる。3枚のX線検出パネル2を同時に製造する場合、真空蒸着装置30は、熱伝導体36、保持機構37、放熱部38及びモータ39を3つずつ備えている。例えば、3つの保持機構37は、坩堝32の中心軸(鉛直軸)を中心とした周方向に120°ずつずらして等間隔に配置することができる。
 坩堝32内には、CsIのみが投入されていてもよい。この場合、坩堝32(大型坩堝)とは別に用意した坩堝(小型坩堝)にTlIを投入し、CsIと、TlIを同時に蒸着しても上述した効果を得ることができる。
 熱伝導体36の形状は、板状に限定されるものではなく、ブロック構造など、種々変形可能である。熱伝導体36は、光電変換基板21の配置、保持機構37の形状、放熱部38との位置関係などに応じた形状に形成されていればよい。上述した実施形態では、熱伝導率を高めるためにアルミニウムを利用して熱伝導体36を形成したが、アルミニウムに限定されるものではなく、種々変形可能であり、銅(Cu)などの材料を利用して熱伝導体36が形成されていてもよい。
 上述した実施形態では、シンチレータ材にヨウ化セシウム(CsI)を主成分とする材料を利用したが、これに限定されるものではなく、シンチレータ材に他の材料を利用しても上述した実施形態と類似した効果を得ることができる。
 上述した技術は、X線検出パネルの製造装置及び製造方法への適用に限定されるものではなく、各種の放射線検出パネルの製造装置及び製造方法に適用することができる。

Claims (22)

  1.  シンチレータ材を蒸発させ鉛直上方へ向けて放射させる蒸発源と、
     前記蒸発源より鉛直上方側に位置し、光電変換基板の蒸着面が前記蒸発源に露出しかつ鉛直軸に対して斜めとなる状態に前記光電変換基板を保持する保持機構と、を備える放射線検出パネルの製造装置。
  2.  前記保持機構に取付けられ、前記保持機構とともに前記光電変換基板を回転させる駆動部をさらに備える請求項1に記載の放射線検出パネルの製造装置。
  3.  前記蒸発源より鉛直上方側に位置し、他の光電変換基板の他の蒸着面が前記蒸発源に露出しかつ前記鉛直軸に対して斜めとなる状態に前記他の光電変換基板を保持する他の保持機構をさらに備え、
     前記蒸着面と前記他の蒸着面との内側になす角度は鋭角である請求項1に記載の放射線検出パネルの製造装置。
  4.  前記蒸発源は、前記シンチレータ材を放射させる蒸発口を有し、
     前記保持機構の位置と前記他の保持機構の位置とは、前記蒸発口を通る前記鉛直軸に対して対称である請求項3に記載の放射線検出パネルの製造装置。
  5.  前記蒸発源は、前記シンチレータ材を放射させる蒸発口を有し、
     前記蒸発口の中心と前記蒸着面の任意の点とを結ぶ仮想線と、前記蒸着面の法線との内側になす角度をθとすると、
     前記保持機構は、前記蒸着面の中心において45°≦θ≦70°となるように前記光電変換基板を保持し、
     前記駆動部は、前記蒸着面の中心の法線に沿った軸を回転軸として前記保持機構とともに前記光電変換基板を回転させる請求項2に記載の放射線検出パネルの製造装置。
  6.  前記保持機構は、前記蒸着面の中心において50°≦θ≦65°となるように前記光電変換基板を保持する請求項5に記載の放射線検出パネルの製造装置。
  7.  前記蒸発源及び保持機構を収容し、前記駆動部が取付けられた矩形箱状に形成された真空チャンバをさらに備え、
     前記角度θは前記真空チャンバの高さ方向及び幅方向に平行な平面上で規定される角度であり、
     前記真空チャンバの体積はcosθに略比例する請求項5に記載の放射線検出パネルの製造装置。
  8.  シンチレータ材を蒸発させ放射させる蒸発源と、
     前記蒸発源から放射される前記シンチレータ材が光電変換基板の蒸着面上に蒸着されるように前記光電変換基板を保持する保持機構と、
     前記光電変換基板から向かって前記保持機構を越えて位置し、前記保持機構に間隔を置いて配向配置され、前記保持機構に対向し黒色化処理が施された表面を有する熱伝導体と、を備える放射線検出パネルの製造装置。
  9.  前記保持機構に取付けられ、前記保持機構とともに前記光電変換基板を回転させる駆動部をさらに備える請求項8に記載の放射線検出パネルの製造装置。
  10.  前記熱伝導体は、黒色化処理が施された裏面をさらに有する請求項8に記載の放射線検出パネルの製造装置。
  11.  前記保持機構から向かって前記熱伝導体を越えて位置し、前記熱伝導体を通じて前記光電変換基板の温度を調整する温度調整部をさらに備えている請求項8に記載の放射線検出パネルの製造装置。
  12.  前記温度調整部は、前記蒸着面上に前記シンチレータ材を蒸着させる際、蒸着初期の前記光電変換基板の温度を70℃乃至140℃の範囲内に制御し、前記蒸着初期以降の前記光電変換基板の温度を125℃乃至190℃の範囲内に制御する請求項11に記載の放射線検出パネルの製造装置。
  13.  蒸発源より鉛直上方側で、光電変換基板の蒸着面が前記蒸発源に露出しかつ鉛直軸に対して斜めとなる状態に前記光電変換基板を配置し、
     前記蒸発源により、シンチレータ材を蒸発させ鉛直上方へ向けて放射し、前記蒸着面上に前記シンチレータ材を蒸着させ蛍光体膜を形成する放射線検出パネルの製造方法。
  14.  前記蒸着面上に前記シンチレータ材を蒸着させる際、前記光電変換基板を回転させる請求項13に記載の放射線検出パネルの製造方法。
  15.  前記光電変換基板を配置する際、前記シンチレータ材の入射方向と前記蒸着面の法線との内側になす角度をθとすると、前記蒸着面の中心において45°≦θ≦70°となるように前記光電変換基板を配置し、
     前記光電変換基板を回転させる際、前記蒸着面の中心の法線に沿った軸を回転軸として前記光電変換基板を回転させる請求項14に記載の放射線検出パネルの製造方法。
  16.  前記光電変換基板を配置する際、前記蒸着面の中心において50°≦θ≦65°となるように前記光電変換基板を配置する請求項15に記載の放射線検出パネルの製造方法。
  17.  光電変換基板の蒸着面上にシンチレータ材を蒸着させ蛍光体膜を形成し、
     前記蒸着面上に前記シンチレータ材を蒸着させる際、蒸着初期の前記光電変換基板の温度を70℃乃至140℃の範囲内に制御し、前記蒸着初期以降の前記光電変換基板の温度を125℃乃至190℃の範囲内に制御する放射線検出パネルの製造方法。
  18.  蒸着初期の前記光電変換基板の温度を70℃乃至125℃の範囲内に制御し、
     前記蒸着初期以降の前記光電変換基板の温度を125℃乃至170℃の範囲内に制御する請求項17に記載の放射線検出パネルの製造方法。
  19.  前記蒸着面上に前記シンチレータ材を蒸着させる際、前記光電変換基板を回転させる請求項17に記載の放射線検出パネルの製造方法。
  20.  真空引きして圧力が1×10-2Pa以下となる状態を維持した環境下で行う真空蒸着法を利用する請求項14又は19に記載の放射線検出パネルの製造方法。
  21.  前記光電変換基板を回転させる際、前記光電変換基板の回転速度を4rpm以上とする請求項14又は19に記載の放射線検出パネルの製造方法。
  22.  前記シンチレータ材に、ヨウ化セシウム(CsI)を主成分とする材料を用いることを特徴とする請求項13又は17に記載の放射線検出パネルの製造方法。
PCT/JP2012/081674 2011-12-16 2012-12-06 放射線検出パネルの製造装置及び放射線検出パネルの製造方法 WO2013089015A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201280045409.4A CN103814412B (zh) 2011-12-16 2012-12-06 放射线检测面板的制造装置及放射线检测面板的制造方法
KR1020167024626A KR101798812B1 (ko) 2011-12-16 2012-12-06 방사선 검출 패널의 제조장치 및 방사선 검출 패널의 제조방법
KR1020147005519A KR20140058592A (ko) 2011-12-16 2012-12-06 방사선 검출 패널의 제조장치 및 방사선 검출 패널의 제조방법
EP12856845.8A EP2793234B1 (en) 2011-12-16 2012-12-06 Device for producing radiation detection panel and method for producing radiation detection panel
JP2013549229A JP6030068B2 (ja) 2011-12-16 2012-12-06 放射線検出パネルの製造装置
US14/301,460 US9880292B2 (en) 2011-12-16 2014-06-11 Apparatus and method of manufacturing radiation detection panel
US15/697,162 US9964652B2 (en) 2011-12-16 2017-09-06 Apparatus and method of manufacturing radiation detection panel
US15/697,127 US10007004B2 (en) 2011-12-16 2017-09-06 Apparatus and method of manufacturing radiation detection panel

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-276157 2011-12-16
JP2011276158 2011-12-16
JP2011276208 2011-12-16
JP2011-276207 2011-12-16
JP2011276207 2011-12-16
JP2011-276158 2011-12-16
JP2011276157 2011-12-16
JP2011-276208 2011-12-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/301,460 Continuation US9880292B2 (en) 2011-12-16 2014-06-11 Apparatus and method of manufacturing radiation detection panel
US14/301,460 Division US9880292B2 (en) 2011-12-16 2014-06-11 Apparatus and method of manufacturing radiation detection panel

Publications (1)

Publication Number Publication Date
WO2013089015A1 true WO2013089015A1 (ja) 2013-06-20

Family

ID=48612468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081674 WO2013089015A1 (ja) 2011-12-16 2012-12-06 放射線検出パネルの製造装置及び放射線検出パネルの製造方法

Country Status (7)

Country Link
US (3) US9880292B2 (ja)
EP (1) EP2793234B1 (ja)
JP (2) JP6030068B2 (ja)
KR (2) KR20140058592A (ja)
CN (1) CN103814412B (ja)
TW (1) TWI489490B (ja)
WO (1) WO2013089015A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021752A (ja) * 2013-07-16 2015-02-02 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線検査装置
US9530530B2 (en) 2015-01-22 2016-12-27 Canon Kabushiki Kaisha Scintillator panel, radiation detector, and methods for manufacturing the same
JP2017173174A (ja) * 2016-03-24 2017-09-28 国立大学法人静岡大学 放射線検出素子の製造方法
JP2019196513A (ja) * 2018-05-08 2019-11-14 株式会社アルバック 成膜装置
JP2020176326A (ja) * 2019-04-22 2020-10-29 キヤノン電子管デバイス株式会社 真空蒸着装置及び蒸着膜の製造方法
US11181650B2 (en) 2017-06-15 2021-11-23 Canon Kabushiki Kaisha Scintillator plate, radiation imaging apparatus, and method of manufacturing scintillator plate
CN117092490A (zh) * 2023-10-09 2023-11-21 深圳市凌科凯特电子有限公司 适用于pcb板的自动化检测治具

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104812207B (zh) * 2014-01-28 2019-03-08 Ge医疗系统环球技术有限公司 换热装置、x射线检测装置和x射线成像设备
JP2016025233A (ja) * 2014-07-22 2016-02-08 株式会社東芝 基板処理装置、及び基板処理方法
US10016171B2 (en) 2014-11-12 2018-07-10 Epica International, Inc. Radiological imaging device with improved functionality
US11270600B2 (en) * 2017-05-16 2022-03-08 United States Department Of Energy Method and device for passive detection of physical effects
JP7292161B2 (ja) * 2018-10-11 2023-06-16 キヤノン株式会社 シンチレータ製造装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426586A (ja) * 1990-05-18 1992-01-29 Fujitsu Ltd 分子線結晶成長用基板ホルダ
JPH05249299A (ja) * 1992-03-05 1993-09-28 Konica Corp 放射線画像変換パネルの製造方法
JPH1040840A (ja) 1996-07-19 1998-02-13 Toshiba Electron Eng Corp 放射線励起蛍光面及びその製造方法ならびにその放射線励起蛍光面を含むx線イメージ管
JP2003262673A (ja) 2002-03-11 2003-09-19 Canon Inc 放射線検出装置及びその製造方法
JP2004340913A (ja) * 2002-07-25 2004-12-02 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
JP2005164534A (ja) 2003-12-05 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及び放射線像変換パネルの製造方法
WO2007058022A1 (ja) * 2005-11-18 2007-05-24 Konica Minolta Medical & Graphic, Inc. 放射線用シンチレータプレート
JP2009014526A (ja) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル及びその製造方法
JP2009236705A (ja) 2008-03-27 2009-10-15 Toshiba Corp 放射線検出装置
JP2010014469A (ja) * 2008-07-02 2010-01-21 Fujifilm Corp 放射線像変換パネルの製造方法
JP2010025620A (ja) * 2008-07-16 2010-02-04 Konica Minolta Medical & Graphic Inc 放射線画像変換パネルとその製造方法
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2131243A1 (en) 1993-09-27 1995-03-28 Kenneth R. Paulson Process for forming a phosphor
JPH11100674A (ja) * 1997-09-26 1999-04-13 Shibaura Mechatronics Corp 真空処理装置
CN2632980Y (zh) * 2003-07-16 2004-08-11 上海大学 制作有机电致发光薄膜用的真空蒸发加热装置
WO2006016505A1 (en) * 2004-08-10 2006-02-16 Canon Kabushiki Kaisha Radiation detecting apparatus, scintillator panel, their manufacturing method and radiation detecting system
JP4770737B2 (ja) * 2004-11-04 2011-09-14 コニカミノルタエムジー株式会社 放射線画像変換パネル
JP2007315866A (ja) 2006-05-24 2007-12-06 Fujifilm Corp 放射線画像変換パネルおよび放射線画像変換パネルの製造方法
JP2008082872A (ja) * 2006-09-27 2008-04-10 Fujifilm Corp 放射線検出器の製造方法
JP2009013435A (ja) * 2007-06-29 2009-01-22 Fujifilm Corp 基板ホルダ及び真空成膜装置
US8436322B2 (en) * 2008-03-31 2013-05-07 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel
US8735830B1 (en) * 2011-04-19 2014-05-27 Radiation Monitoring Devices, Inc. Zinc telluride scintillators

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426586A (ja) * 1990-05-18 1992-01-29 Fujitsu Ltd 分子線結晶成長用基板ホルダ
JPH05249299A (ja) * 1992-03-05 1993-09-28 Konica Corp 放射線画像変換パネルの製造方法
JPH1040840A (ja) 1996-07-19 1998-02-13 Toshiba Electron Eng Corp 放射線励起蛍光面及びその製造方法ならびにその放射線励起蛍光面を含むx線イメージ管
JP2003262673A (ja) 2002-03-11 2003-09-19 Canon Inc 放射線検出装置及びその製造方法
JP2004340913A (ja) * 2002-07-25 2004-12-02 Konica Minolta Holdings Inc 放射線画像変換パネル及び放射線画像変換パネルの製造方法
JP2005164534A (ja) 2003-12-05 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線像変換パネル及び放射線像変換パネルの製造方法
WO2007058022A1 (ja) * 2005-11-18 2007-05-24 Konica Minolta Medical & Graphic, Inc. 放射線用シンチレータプレート
JP2009014526A (ja) * 2007-07-05 2009-01-22 Konica Minolta Medical & Graphic Inc 放射線画像変換パネル及びその製造方法
JP2009236705A (ja) 2008-03-27 2009-10-15 Toshiba Corp 放射線検出装置
JP2010014469A (ja) * 2008-07-02 2010-01-21 Fujifilm Corp 放射線像変換パネルの製造方法
JP2010025620A (ja) * 2008-07-16 2010-02-04 Konica Minolta Medical & Graphic Inc 放射線画像変換パネルとその製造方法
JP2011022068A (ja) * 2009-07-17 2011-02-03 Konica Minolta Medical & Graphic Inc シンチレータパネル

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2793234A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015021752A (ja) * 2013-07-16 2015-02-02 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線検査装置
US9530530B2 (en) 2015-01-22 2016-12-27 Canon Kabushiki Kaisha Scintillator panel, radiation detector, and methods for manufacturing the same
JP2017173174A (ja) * 2016-03-24 2017-09-28 国立大学法人静岡大学 放射線検出素子の製造方法
US11181650B2 (en) 2017-06-15 2021-11-23 Canon Kabushiki Kaisha Scintillator plate, radiation imaging apparatus, and method of manufacturing scintillator plate
JP2019196513A (ja) * 2018-05-08 2019-11-14 株式会社アルバック 成膜装置
JP7044627B2 (ja) 2018-05-08 2022-03-30 株式会社アルバック 成膜装置
JP2020176326A (ja) * 2019-04-22 2020-10-29 キヤノン電子管デバイス株式会社 真空蒸着装置及び蒸着膜の製造方法
CN117092490A (zh) * 2023-10-09 2023-11-21 深圳市凌科凯特电子有限公司 适用于pcb板的自动化检测治具

Also Published As

Publication number Publication date
TWI489490B (zh) 2015-06-21
EP2793234A1 (en) 2014-10-22
JP2015206800A (ja) 2015-11-19
JP6030068B2 (ja) 2016-11-24
KR20140058592A (ko) 2014-05-14
US9880292B2 (en) 2018-01-30
KR101798812B1 (ko) 2017-11-16
US20140295062A1 (en) 2014-10-02
US20170363752A1 (en) 2017-12-21
CN103814412B (zh) 2016-09-07
EP2793234A4 (en) 2015-08-05
JPWO2013089015A1 (ja) 2015-04-27
US10007004B2 (en) 2018-06-26
KR20160110535A (ko) 2016-09-21
US9964652B2 (en) 2018-05-08
JP6092318B2 (ja) 2017-03-08
US20170363751A1 (en) 2017-12-21
TW201337950A (zh) 2013-09-16
EP2793234B1 (en) 2019-09-25
CN103814412A (zh) 2014-05-21

Similar Documents

Publication Publication Date Title
WO2013089015A1 (ja) 放射線検出パネルの製造装置及び放射線検出パネルの製造方法
JP4725533B2 (ja) シンチレータパネル
US7964855B2 (en) Scintillator panel
US9304212B2 (en) Scintillator panel and manufacturing method therefor and radiation detector and manufacturing method therefor
JP2008122275A (ja) シンチレータパネル、その製造方法及び放射線イメージセンサ
US7531817B2 (en) Scintillator panel
JP2012088152A (ja) 放射線検出装置
JP2015001387A (ja) 放射線検出器の製造方法
JP6508790B2 (ja) 放射線検出器の製造方法
JP2009236704A (ja) 放射線検出装置
JP2008032407A (ja) シンチレータパネルおよび放射線検出装置
JP2010276571A (ja) シンチレータパネルおよび放射線画像検出装置
JP5597930B2 (ja) 放射線画像検出装置とその製造方法
JP2009236705A (ja) 放射線検出装置
JP2010091402A (ja) 放射線検出装置の製造方法および放射線検出装置
JP5369906B2 (ja) 放射線像変換パネル、及び放射線像検出装置
JP2024025165A (ja) 放射線撮像装置の製造方法、放射線撮像装置および放射線撮像システム
WO2016009815A1 (ja) 放射線検出器およびシンチレータパネル
JP2017173174A (ja) 放射線検出素子の製造方法
JP2010107354A (ja) 放射線変換パネルおよび放射線変換パネルの作製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549229

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005519

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE