WO2013080553A1 - 固体電解質 - Google Patents

固体電解質 Download PDF

Info

Publication number
WO2013080553A1
WO2013080553A1 PCT/JP2012/007670 JP2012007670W WO2013080553A1 WO 2013080553 A1 WO2013080553 A1 WO 2013080553A1 JP 2012007670 W JP2012007670 W JP 2012007670W WO 2013080553 A1 WO2013080553 A1 WO 2013080553A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
peak
ppm
sulfide
less
Prior art date
Application number
PCT/JP2012/007670
Other languages
English (en)
French (fr)
Inventor
弘幸 ▲樋▼口
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US14/362,315 priority Critical patent/US20140315103A1/en
Priority to CN201280059168.9A priority patent/CN103959546A/zh
Publication of WO2013080553A1 publication Critical patent/WO2013080553A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/002Inorganic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid electrolyte and an electrolyte layer, an electrode, and a battery manufactured using the solid electrolyte.
  • Patent Document 1 Li 2 S and P 2 S 5 are mixed at a specific molar ratio (68:32 to 73:27), subjected to mechanical milling treatment, and subjected to heat treatment, thereby providing high ion conduction. It has been reported that glass ceramic electrolyte particles having a degree ( ⁇ 2 ⁇ 10 ⁇ 3 S / cm) can be obtained.
  • the material of Patent Document 1 is in contact with water, easily generates (hydrolyzes) hydrogen sulfide, and is limited in use in a high dew point environment.
  • Patent Document 2 glass electrolyte particles obtained by mixing Li 2 S and P 2 S 5 at a molar ratio of 75:25 and mechanically milling them are not easily hydrolyzed.
  • Patent Document 2 the ionic conductivity is greatly lowered instead of reducing the hydrolyzability.
  • An object of the present invention is to provide a solid electrolyte that is hardly hydrolyzed and has high ionic conductivity.
  • the following solid electrolyte and the like are provided.
  • 1. Contains lithium, phosphorus and sulfur as constituents, In 31 P-NMR, it has a peak (first peak) in the region of 81.0 ppm or more and 88.0 ppm or less, The peak intensity ratio with respect to the first peak is 0.5 or less even if it has no peak other than the region of 81.0 ppm or more and 88.0 ppm or less.
  • a battery comprising at least one of the electrolyte layer according to 10.6 and 7, and the electrode according to 8 and 9. 11.
  • 12 Glass containing lithium or sodium, phosphorus and sulfur as constituent components is heated at an average of 20 ° C./min or more, and is heated at the glass transition temperature to the crystallization temperature + 120 ° C. for 0.005 minutes to 10 hours.
  • a method for producing a solid electrolyte comprising: 13.
  • the produced solid electrolyte has a peak (first peak) in a region of 81.0 ppm or more and 88.0 ppm or less in 31 P-NMR,
  • the peak intensity ratio with respect to the first peak is 0.5 or less even if it has no peak other than the region of 81.0 ppm or more and 88.0 ppm or less.
  • the ionic conductivity of the manufactured solid electrolyte is 5 ⁇ 10 ⁇ 4 S / cm or more,
  • the average value of hydrogen sulfide concentration in the air is 200 ppm or less.
  • the manufacturing method of the solid electrolyte of 13. 15. 15. The method for producing a solid electrolyte according to any one of 12 to 14, wherein the glass is heated with a compound containing a halogen element.
  • a solid electrolyte that is difficult to hydrolyze and has high ionic conductivity can be provided.
  • FIG. It is a figure which shows the apparatus which manufactured the sulfide type glass ceramic in manufacture example 3.
  • FIG. It is a figure which shows the relationship between the temperature of the solid electrolyte glass heated in Example 1 and Comparative Example 1, and heating time.
  • 3 is a diagram illustrating a method for measuring ion conductivity in Example 1.
  • FIG. It is a figure which shows the measuring apparatus of the hydrogen sulfide density
  • the first solid electrolyte of the present invention contains phosphorus, lithium and sulfur as components, and has a peak in the region of 81.0 ppm or more and 88.0 ppm or less in 31 P-NMR (first The peak relative to the first peak even if it has no peak other than the region of 81.0 ppm or more and 88.0 ppm or less, or has a peak other than the region of 81.0 ppm or more and 88.0 ppm or less.
  • the intensity ratio is 0.5 or less.
  • Peak intensity is defined as the height from the baseline to the peak top.
  • the region of the first peak is preferably 81.0 ppm or more and 87.0 ppm or less, and more preferably 81.5 ppm or more and 86.5 ppm or less.
  • the peak intensity ratio with respect to the first peak is preferably 0.45 or less, and more preferably 0.4 or less.
  • the first solid electrolyte has an ionic conductivity of 5 ⁇ 10 ⁇ 4 S / cm or more, preferably 6 ⁇ 10 ⁇ 4 S / cm or more, and preferably 7 ⁇ 10 ⁇ 4 S / cm or more. Is more preferable. The higher the ionic conductivity, the better. For example, the upper limit may be 5 ⁇ 10 ⁇ 2 S / cm.
  • the above solid electrolyte may contain halogen in addition to lithium, phosphorus and sulfur.
  • the solid electrolyte preferably satisfies the following formula (A).
  • a to e represent the composition ratio of each element, and a: b: c: d: e is 1 to 12: 0 to 0.2: 1: 0.1 to 9: 0 to 9. Fulfill.
  • b is 0.
  • composition ratio of each element can be controlled by adjusting the blending amount of the raw material compound when producing the solid electrolyte, as will be described later.
  • M is represented by the following formula (B).
  • X is represented by the following formula (C).
  • one of l to o is 1 and the other is 0.
  • the second solid electrolyte of the present invention contains lithium or sodium, phosphorus and sulfur as constituent components, and has an ionic conductivity of 5 ⁇ 10 ⁇ 4 S / cm or more. Further, when 0.1 g of solid electrolyte is put in a 100 ml container, and the air having a humidity of 80 to 90% is passed through the container at 500 ml / min for 60 minutes, the average value of hydrogen sulfide concentration in the air is 200 ppm or less. is there.
  • the second solid electrolyte may contain halogen in addition to lithium or sodium, phosphorus and sulfur.
  • halogen in addition to lithium or sodium, phosphorus and sulfur.
  • the solid electrolyte When the second solid electrolyte contains sodium, phosphorus and sulfur, the solid electrolyte preferably satisfies the following formula (A ′). Na a M b P c S d X e (A ′) In the formula (A ′), a to e, M and X are the same as in the above formula (A). Further, the ionic conductivity of the second solid electrolyte is the same as that of the first solid electrolyte.
  • the second solid electrolyte has a hydrogen sulfide concentration average value measured by the above method of 200 ppm or less, and has high hydrolysis resistance.
  • the average value of hydrogen sulfide concentration is preferably 150 ppm or less, and more preferably 130 ppm or less.
  • the average value of hydrogen sulfide concentration determined by the above method is used as an index of hydrolysis resistance.
  • the average value of hydrogen sulfide concentration can be measured by the method described in Examples.
  • the first solid electrolyte preferably has the same hydrogen sulfide concentration average value measured by the above method as that of the second solid electrolyte.
  • glass containing lithium or sodium, phosphorus and sulfur as constituent components is heated at an average of 20 ° C./min or more, and the glass transition temperature (Tg) of the glass is increased. It is a solid electrolyte obtained by heating at crystallization temperature (Tc) + 120 ° C. for 0.005 minutes to 10 hours. The method for heating and heating the glass is as described later.
  • the shape of the first and second solid electrolytes (hereinafter also referred to as the solid electrolyte of the present invention) is not particularly limited, and may be particulate or sheet-like.
  • the electrolyte of the present invention is solid at 25 ° C. If it is particulate, when forming the electrolyte layer, the electrolyte layer can be produced by applying a slurry containing the solid electrolyte or electrolyte precursor of the present invention as described later.
  • the solid electrolyte of this invention can be manufactured by heating the glass which is an electrolyte precursor.
  • the electrolyte layer of the present invention can be manufactured by heating under a predetermined heating condition described later. Moreover, an electrolyte layer can also be manufactured using an electrostatic method.
  • the volume-based average particle diameter is preferably 0.01 ⁇ m or more and 500 ⁇ m or less.
  • the measurement method of the volume reference average particle diameter (Mean Volume Diameter, hereinafter referred to as “particle diameter”) is preferably performed by a laser diffraction particle size distribution measurement method.
  • the laser diffraction particle size distribution measurement method can measure the particle size distribution without drying the composition, and measures the particle size distribution by irradiating a particle group in the composition with laser and analyzing the scattered light. be able to.
  • the average particle size is measured using a dried solid electrolyte or a sulfide-based glass that is a precursor thereof.
  • a measurement example when the laser diffraction type particle size distribution measuring device is a master sizer 2000 manufactured by Malvern Instruments Ltd. is as follows.
  • a dried solid electrolyte or a sulfide-based glass that is a precursor thereof is added, and the particle size is measured.
  • the amount of “dried solid electrolyte or its precursor sulfide-based glass” added is within the specified range of the laser scattering intensity corresponding to the particle concentration (10 to 20 on the operation screen specified by Mastersizer 2000). %) And add to adjust. If this range is exceeded, multiple scattering may occur, and an accurate particle size distribution may not be obtained. On the other hand, when the amount is less than this range, the SN ratio is deteriorated, and there is a possibility that accurate measurement cannot be performed.
  • the laser scattering intensity is displayed based on the addition amount of “the dried solid electrolyte or the sulfide-based glass that is a precursor thereof”. Therefore, the addition amount that falls within the laser scattering intensity may be found.
  • the optimum amount of the “dried solid electrolyte or sulfide glass as a precursor thereof” is about 0.01 g to 0.05 g, although the optimum amount varies depending on the type of the ion conductive material.
  • the solid electrolyte of the present invention is not limited to the electrolyte produced by the following production method.
  • the solid electrolyte of the present invention can be produced by heating an electrolyte precursor (glass) or a mixture of a compound containing an electrolyte precursor and a halogen element by a predetermined method.
  • the electrolyte precursor usually has a peak in the region of 81.0 ppm or more and 88.0 ppm or less in 31 P-NMR (referred to as the first peak), and is 81.0 ppm or more and 88.0 ppm or less as in the first electrolyte.
  • the peak intensity ratio with respect to the first peak is 0.5 or less, even if it has no peak other than the region, or has a peak other than the region of 81.0 ppm or more and 88.0 ppm or less, and the above formula It is a compound satisfying (A) or (A ′).
  • the electrolyte precursor can be produced by reacting the following raw material a with a compound containing a halogen element as required by a predetermined method.
  • the electrolyte precursor may or may not contain a halogen element, and a compound containing a halogen element described later may or may not be added to the electrolyte precursor.
  • the method for mixing the electrolyte precursor and the compound containing a halogen element is not particularly limited, and examples thereof include a method of mixing in a mortar and a method of mechanical milling.
  • Li 2 S lithium sulfide
  • P 2 S 3 phosphorus trisulfide
  • P 2 S 5 phosphorus pentasulfide
  • SiS 2 silicon sulfide
  • Li 4 SiO 4 lithium orthosilicate
  • Al 2 S 3 aluminum sulfide
  • simple phosphorus P
  • simple sulfur S
  • silicon Si
  • GeS 2 germanium sulfide
  • B 2 S 3 diboron trisulfide
  • Li 3 PO 4 lithium phosphate
  • Li 4 GeO 4 lithium germanate
  • LiBO 2 lithium metaborate
  • LiAlO 3 lithium aluminate
  • Preferred raw materials a are Li 2 S (lithium sulfide) and P 2 S 5 (phosphorus pentasulfide).
  • a corresponding Na-containing compound can be used as the raw material a instead of the Li-containing compound.
  • lithium sulfide those commercially available without particular limitation can be used, but those having high purity are preferred.
  • Lithium sulfide can be produced, for example, by the method described in JP-A-7-330312, JP-A-9-283156, JP-A 2010-163356, and Japanese Patent Application No. 2009-238952.
  • lithium hydroxide and hydrogen sulfide are reacted at 70 ° C. to 300 ° C. in a hydrocarbon-based organic solvent to produce lithium hydrosulfide, and then this reaction solution Lithium sulfide is synthesized by dehydrosulfurization.
  • lithium hydroxide and hydrogen sulfide are reacted at 10 ° C. to 100 ° C. in an aqueous solvent to produce lithium hydrosulfide, and this reaction solution is then desulfurized.
  • Lithium sulfide is synthesized by hydrogenation.
  • Lithium sulfide preferably has a total lithium oxide lithium salt content of 0.15% by mass or less, more preferably 0.1% by mass or less, and a content of lithium N-methylaminobutyrate. The content is preferably 0.15% by mass or less, more preferably 0.1% by mass or less.
  • the solid electrolyte obtained by the melt quenching method or the mechanical milling method becomes a glassy electrolyte (fully amorphous).
  • the obtained electrolyte may become a crystallized product from the beginning.
  • the content of lithium N-methylaminobutyrate is 0.15% by mass or less, a deteriorated product of lithium N-methylaminobutyrate does not deteriorate the cycle performance of the lithium ion battery.
  • lithium sulfide with reduced impurities is used, a high ion conductive electrolyte can be obtained.
  • the lithium sulfides described in JP-A-7-330312 and JP-A-9-283156 preferably contain a lithium salt of sulfur oxide and the like, and thus are preferably purified.
  • lithium sulfide produced by the method for producing lithium sulfide described in JP-A 2010-163356 has a very small content of sulfur oxide lithium salt and the like, so it is used for production of sulfide glass without purification. Also good.
  • Preferred examples of the purification method include the purification method described in International Publication No. 2005/40039 pamphlet. Specifically, the lithium sulfide obtained as described above is washed at a temperature of 100 ° C. or higher using an organic solvent.
  • diphosphorus pentasulfide P 2 S 5
  • P 2 S 5 diphosphorus pentasulfide
  • the compound containing a halogen element is a compound represented by the following formula (E), and one kind of compound or a plurality of compounds may be used.
  • Y includes alkali metals such as lithium, sodium, and potassium, and lithium is particularly preferable.
  • X is the same as in the above formula (C).
  • Examples of the compound containing a halogen element include LiX ′.
  • X ' is a halogen element, preferably Br or I.
  • Examples of the compound containing a halogen element include LiF, LiCl, LiBr, and LiI.
  • the ratio (molar ratio) of lithium sulfide to diphosphorus pentasulfide is preferably 60:40 to 90:10, more preferably 65:35 to 85:15, and particularly preferably 67:33 to 80:20. . Further, the ratio (molar ratio) of the total of lithium sulfide and diphosphorus pentasulfide to the halogen element is preferably 50:50 to 100: 0, more preferably 60:40 to 100: 0, and particularly preferably 70:30 to 100: 0.
  • a method for producing sulfide glass there are a melt quench method, a mechanical milling method (MM method), a slurry method in which raw materials are reacted in an organic solvent, a solid phase method, and the like.
  • (A) Melting and quenching method The melting and quenching method is described, for example, in JP-A-6-279049 and International Publication No. 2005/119706. Specifically, a predetermined amount of P 2 S 5 , Li 2 S, and a halogen-containing compound mixed in a mortar and pelletized are placed in a carbon-coated quartz tube and vacuum-sealed. After making it react at a predetermined reaction temperature, it is put into ice and rapidly cooled to obtain an electrolyte precursor that is a sulfide-based glass.
  • the reaction temperature is preferably 400 ° C to 1000 ° C, more preferably 800 ° C to 900 ° C.
  • the reaction time is preferably 0.1 hour to 12 hours, more preferably 1 to 12 hours.
  • the quenching temperature of the reaction product is usually 10 ° C. or less, preferably 0 ° C. or less, and the cooling rate is usually about 1 to 10000 K / sec, preferably 10 to 10000 K / sec.
  • MM method The mechanical milling method (hereinafter referred to as “MM method”) is described in, for example, JP-A-11-134937, JP-A-2004-348972, and JP-A-2004-348993. Specifically, P 2 S 5 , Li 2 S, and a halogen-containing compound are mixed in a predetermined amount in a mortar, and are reacted for a predetermined time using, for example, various ball mills, thereby being a sulfide-based glass. An electrolyte precursor is obtained.
  • MM method using the above raw materials can be reacted at room temperature. According to the MM method, since a glass solid electrolyte can be produced at room temperature, there is an advantage that a raw material is not thermally decomposed and an electrolyte precursor which is a sulfide-based glass having a charged composition can be obtained.
  • the MM method has an advantage that it can be finely powdered simultaneously with the production of the electrolyte precursor that is a sulfide-based glass.
  • various types such as a rotating ball mill, a rolling ball mill, a vibrating ball mill, and a planetary ball mill can be used.
  • the rotational speed may be several tens to several hundreds of revolutions / minute, and the treatment may be performed for 0.5 hours to 100 hours.
  • balls of a ball mill may be used by mixing balls having different diameters.
  • an organic solvent may be added to the raw material to form a slurry, and the slurry may be mechanically milled.
  • the temperature in the mill during the mechanical milling process may be adjusted. It is preferable that the raw material be 60 ° C. or higher and 160 ° C. or lower during mechanical milling.
  • (C) Slurry method The slurry method is described in WO 2004/093099 pamphlet and WO 2009/047977 pamphlet. Specifically, an electrolyte precursor that is sulfide glass is obtained by reacting a predetermined amount of P 2 S 5 particles, Li 2 S particles, and a halogen-containing compound in an organic solvent for a predetermined time.
  • the halogen-containing compound is preferably dissolved in an organic solvent or is a particle.
  • the slurry containing the raw material may be reacted while being circulated between the bead mill and the reaction vessel. Further, as described in International Publication No. 2009/047977 pamphlet, the reaction can be efficiently progressed by previously pulverizing the raw material lithium sulfide.
  • a polar solvent having a solubility parameter of 9.0 or more for example, methanol, diethyl carbonate, acetonitrile, etc.
  • a polar solvent having a solubility parameter of 9.0 or more for example, methanol, diethyl carbonate, acetonitrile, etc.
  • the reaction temperature is preferably 20 ° C. or higher and 80 ° C. or lower, more preferably 20 ° C. or higher and 60 ° C. or lower.
  • the reaction time is preferably 1 hour or longer and 16 hours or shorter, more preferably 2 hours or longer and 14 hours or shorter.
  • the compound containing lithium sulfide, diphosphorus pentasulfide and halogen as raw materials is in the form of a solution or slurry by the addition of an organic solvent.
  • the amount of the raw material (total amount) added to 1 liter of the organic solvent is about 0.001 kg or more and 1 kg or less.
  • they are 0.005 kg or more and 0.5 kg or less, Most preferably, they are 0.01 kg or more and 0.3 kg or less.
  • the organic solvent is not particularly limited, but an aprotic organic solvent is particularly preferable.
  • the aprotic organic solvent include aprotic organic solvents (for example, hydrocarbon organic solvents), aprotic polar organic compounds (for example, amide compounds, lactam compounds, urea compounds, organic sulfur compounds, cyclic organic phosphorus). And the like can be suitably used as a single solvent or a mixed solvent.
  • a saturated hydrocarbon, an unsaturated hydrocarbon, or an aromatic hydrocarbon can be used as the hydrocarbon organic solvent.
  • saturated hydrocarbon include hexane, pentane, 2-ethylhexane, heptane, decane, and cyclohexane.
  • unsaturated hydrocarbon include hexene, heptene, cyclohexene and the like.
  • Aromatic hydrocarbons include toluene, xylene, decalin, 1,2,3,4-tetrahydronaphthalene and the like. Of these, toluene and xylene are particularly preferable.
  • the hydrocarbon solvent is preferably dehydrated in advance.
  • the water content is preferably 100 ppm by weight or less, and particularly preferably 30 ppm by weight or less.
  • ketones such as acetone and methyl ethyl ketone
  • ethers such as tetrahydrofuran
  • alcohols such as ethanol and butanol
  • esters such as ethyl acetate
  • halogenated hydrocarbons such as dichloromethane and chlorobenzene.
  • (D) Solid phase method The solid phase method is described in, for example, non-patent literature “HJ Deiseroth, et.al., Angew.Chem.Int.Ed.2008, 47, 755-758”. Specifically, a predetermined amount of a compound containing P 2 S 5 , Li 2 S and halogen is mixed in a mortar and heated at a temperature of 100 to 900 ° C., whereby the electrolyte of the present invention which is a sulfide-based glass is used. A precursor is obtained.
  • Manufacturing conditions such as temperature conditions, processing time, and charge for the melt quenching method, MM method, slurry method and solid phase method can be appropriately adjusted according to the equipment used.
  • a method for producing sulfide glass an MM method, a slurry method or a solid phase method is more preferable. Since it can be produced at a low cost, the MM method and the slurry method are more preferable, and the slurry method is particularly preferable.
  • the solid electrolyte is obtained by heat-treating the sulfide glass.
  • the heat treatment is preferably performed in an environment having a dew point of ⁇ 40 ° C. or lower, more preferably in an environment having a dew point of ⁇ 60 ° C. or lower.
  • the pressure at the time of heating may be a normal pressure or a reduced pressure.
  • the atmosphere may be air or an inert atmosphere. Further, heating may be performed in a solvent (for example, a hydrocarbon-based organic solvent) as described in JP 2010-186744 A.
  • the heat treatment temperature is preferably not less than Tg of the electrolyte precursor and not more than (Tc + 120 ° C.) of the electrolyte precursor (Tg: glass transition temperature, Tc: crystallization temperature). If it is less than Tg, the production time of the solid electrolyte may become very long. For example, when Tg is 170 ° C. and Tc is 230 ° C., the heat treatment temperature is 170 ° C. or higher and 350 ° C. or lower, preferably 175 ° C. or higher and 330 ° C. or lower.
  • the solid electrolyte after heat treatment may contain impurities and the like, and the ionic conductivity may decrease. More preferably, it is (Tg + 5 ° C.) or more and (Tc + 110 ° C.) or less, and more preferably (Tg + 10 ° C.) or more and (Tc + 100 ° C.) or less.
  • the heat treatment time is preferably 0.005 minutes or more and 10 hours or less. More preferably, it is 0.005 minutes or more and 5 hours or less, and particularly preferably 0.01 minutes or more and 3 hours or less. If it is less than 0.005 minutes, the solid electrolyte after heat treatment contains a large amount of an electrolyte precursor, and the ionic conductivity may be lowered. If it exceeds 10 hours, impurities etc. are contained in the solid electrolyte after the heat treatment, and the ionic conductivity may be lowered.
  • the heating is preferably rapidly performed up to the above heat treatment temperature.
  • the average heating rate is 20 ° C./min or more. If it is less than 20 ° C./minute, the ion conductivity may not be sufficiently high. More preferably, it is 50 degreeC / min or more, Most preferably, it is 100 degreeC / min or more. There is no particular upper limit on the average rate of temperature increase, but it is, for example, 20000 ° C./min or less.
  • Electrolyte-containing material contains the solid electrolyte.
  • the electrolyte-containing material of the present invention only needs to contain the above-mentioned solid electrolyte, may further contain a compound containing a halogen element, and may contain an organic solvent.
  • any one or more of the following binder (binder), positive electrode active material, negative electrode active material, and conductive additive may be included.
  • Electrolyte Layer The electrolyte layer of the present invention may be an electrolyte layer constituting a battery or a sheet.
  • First electrolyte layer The first electrolyte layer is an electrolyte layer containing the solid electrolyte. Other electrolytes may be included in addition to the electrolyte, and the following binder may be included.
  • the second electrolyte layer is an electrolyte layer manufactured using the solid electrolyte. It may be manufactured using the solid electrolyte, for example, it may be manufactured by applying a slurry containing the solid electrolyte, the following binder and solvent, or manufactured by an electrostatic coating method using the granular solid electrolyte. May be.
  • Electrode The electrode of the present invention may be an electrode layer constituting a battery or may be a sheet.
  • a 1st electrode is an electrode containing the said solid electrolyte and a normal active material.
  • Other electrolytes may be included in addition to the solid electrolyte, and a binder described later may be included.
  • the active material include a positive electrode active material and a negative electrode active material described later.
  • the second electrode is an electrode manufactured using the solid electrolyte and usually containing an active material.
  • Other electrolytes may be included in addition to the solid electrolyte, and a binder described later may be included.
  • the active material include a positive electrode active material and a negative electrode active material described later.
  • the second electrode only needs to be manufactured using the solid electrolyte.
  • the second electrode may be manufactured by applying a slurry containing the solid electrolyte, an active material described later, a binder, and a solvent. You may manufacture by the electrostatic coating method using a granular thing among substances.
  • the first battery of the present invention is a battery in which at least one of a positive electrode layer, an electrolyte layer, and a negative electrode layer contains the electrolyte of the present invention.
  • Each layer can be manufactured by a known method. In the case of producing a positive electrode layer, a negative electrode layer and / or an electrolyte layer using an electrolyte precursor, the positive electrode layer and the like are formed using the electrolyte precursor, and then heated under the predetermined heating conditions. This battery can also be manufactured.
  • a positive electrode layer contains a positive electrode active material, electrolyte, and a conductive support agent. Moreover, you may contain a binder as needed.
  • Positive electrode active material a material capable of inserting and releasing lithium ions, and a material known as a positive electrode active material in the battery field can be used.
  • positive electrode active materials include, for example, elemental sulfur (S), titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), iron sulfide (FeS, FeS 2 ), and copper sulfide (CuS) in the sulfide system.
  • Nickel sulfide (Ni 3 S 2 ), lithium sulfide (Li 2 S), niobium selenide (NbSe 3 ), organic disulfide compounds, carbon sulfide compounds, sulfur, metal indium, and the like can be used.
  • S and Li 2 S having a high theoretical capacity can be used.
  • Organic disulfide compounds and carbon sulfide compounds are exemplified below.
  • X is a substituent
  • n and m are each independently an integer of 1 to 2
  • p and q are each independently an integer of 1 to 4.
  • Z is —S— or —NH—
  • n is an integer of 2 to 300 repetitions.
  • Electrolyte is at least one of a polymer-based solid electrolyte, an oxide-based solid electrolyte, the solid electrolyte of the present invention, or an electrolyte precursor thereof.
  • the polymer-based solid electrolyte is not particularly limited.
  • materials used as polymer electrolytes such as fluororesin, polyethylene oxide, polyacrylonitrile, polyacrylate, derivatives thereof, and copolymers thereof can be used.
  • fluororesin examples include those containing, as a structural unit, vinylidene fluoride (VdF), hexafluoropropylene (HFP), tetrafluoroethylene (TFE), and derivatives thereof.
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • a homopolymer such as polyvinylidene fluoride (PVdF), polyhexafluoropropylene (PHFP), polytetrafluoroethylene (PTFE), or a copolymer of VdF and HFP (hereinafter, this copolymer is referred to as “ Binary copolymers and ternary copolymers such as P (VdF-HFP) ”may be mentioned.
  • oxide-based solid electrolyte there is a crystal having a perovskite structure such as LiN, LISICON, Thio-LISON, La 0.55 Li 0.35 TiO 3, or NASICON type structure. LiTi 2 P 3 O 12 and these crystallized electrolytes can be used.
  • the conductive auxiliary agent should just have electroconductivity.
  • the conductivity of the conductive auxiliary agent is preferably 1 ⁇ 10 3 S / cm or more, more preferably 1 ⁇ 10 5 S / cm or more.
  • Examples of the conductive assistant include substances selected from carbon materials, metal powders and metal compounds, and mixtures thereof.
  • conductive aids include carbon, nickel, copper, aluminum, indium, silver, cobalt, magnesium, lithium, chromium, gold, ruthenium, platinum, beryllium, iridium, molybdenum, niobium, osnium, rhodium, tungsten and zinc.
  • the carbon material include carbon black such as ketjen black, acetylene black, denka black, thermal black and channel black, graphite, carbon fiber, activated carbon and the like. These can be used alone or in combination of two or more. Among them, acetylene black, denka black, and ketjen black having high electron conductivity are preferable.
  • the positive electrode layer may contain a binder.
  • the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resins such as fluororubber, thermoplastic resins such as polypropylene and polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, Natural butyl rubber (NBR) or the like can be used alone or as a mixture of two or more.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-dienemer
  • NBR Natural butyl rubber
  • an aqueous dispersion of cellulose or styrene butadiene rubber (SBR), which is an aqueous binder can also be used.
  • the proportions of the positive electrode active material, the electrolyte, the conductive auxiliary agent and the like are not particularly limited, and for example, a known proportion can be used.
  • the thickness of the positive electrode layer is preferably 0.01 mm or more and 10 mm or less.
  • the positive electrode layer can be produced by a known method. For example, it can be produced by a coating method or an electrostatic method (electrostatic spray method, electrostatic screen method, etc.).
  • Negative electrode layer It is preferable that a negative electrode layer contains a negative electrode active material, electrolyte, and a conductive support agent. Since the positive electrode layer and the negative electrode layer are the only difference between whether the electrode active material is a positive electrode active material or a negative electrode active material, only the negative electrode active material will be described here, and the same matters as the positive electrode layer will be described. Omitted.
  • Negative electrode active material As the negative electrode active material, a material capable of inserting and releasing lithium ions, and a material known as a negative electrode active material in the battery field can be used.
  • carbon materials specifically artificial graphite, graphite carbon fiber, resin-fired carbon, pyrolytic vapor-grown carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin-fired carbon, polyacene, pitch-based carbon Examples thereof include fibers, vapor-grown carbon fibers, natural graphite, and non-graphitizable carbon. Or it may be a mixture thereof.
  • it is artificial graphite.
  • an alloy in combination with a metal itself such as metallic lithium, metallic indium, metallic aluminum, metallic silicon, or another element or compound can be used as the negative electrode material.
  • silicon, tin, and lithium metal having a high theoretical capacity are preferable.
  • Electrolyte layer contains a solid electrolyte and may contain a binder.
  • the solid electrolyte in the electrolyte layer is preferably fused. Fusion means that a part of the solid electrolyte particles is dissolved and the dissolved part is integrated with other solid electrolyte particles.
  • the electrolyte layer may be a solid electrolyte plate.
  • the plate-like body includes a case where part or all of the solid electrolyte particles are dissolved to form a plate-like body.
  • the thickness of the electrolyte layer is preferably 0.001 mm or more and 1 mm or less. Since the electrolyte and the binder are the same as those of the positive electrode layer, description thereof is omitted.
  • (D) Current collector As the current collector, a known current collector can be used. For example, a layer coated with Au or the like that reacts with a sulfide-based solid electrolyte such as Au, Pt, Al, Ti, or Cu can be used.
  • the second battery of the present invention is a battery in which at least one of the positive electrode layer, the electrolyte layer, and the negative electrode layer is manufactured using the electrolyte of the present invention.
  • the difference between the first battery and the second battery is that the second battery is manufactured using a solid electrolyte in which at least one of the positive electrode layer, the electrolyte layer, and the negative electrode layer is manufactured using the electrolyte of the present invention. Therefore, description of similar matters is omitted.
  • the lithium-based electrolyte has been described in detail above, but the same effects as described above are also exhibited in alkali metal electrolytes such as sodium and divalent cation electrolytes such as magnesium.
  • Production and purification of lithium sulfide were carried out in the same manner as described in the examples of WO 2005/040039 pamphlet. Specifically, it was performed as follows.
  • Lithium Sulfide Lithium sulfide was produced according to the method of the first aspect (two-step method) of JP-A-7-330312. Specifically, 3326.4 g (33.6 mol) of N-methyl-2-pyrrolidone (NMP) and 287.4 g (12 mol) of lithium hydroxide were charged into a 10-liter autoclave equipped with a stirring blade at 300 rpm, 130 The temperature was raised to ° C. After the temperature rise, hydrogen sulfide was blown into the liquid at a supply rate of 3 liters / minute for 2 hours.
  • NMP N-methyl-2-pyrrolidone
  • 287.4 g (12 mol) of lithium hydroxide 287.4 g (12 mol)
  • this reaction solution was heated in a nitrogen stream (200 cc / min) to dehydrosulfide a part of the reacted hydrogen sulfide.
  • water produced as a by-product due to the reaction between hydrogen sulfide and lithium hydroxide started to evaporate, but this water was condensed by the condenser and extracted out of the system.
  • the temperature of the reaction solution rose, but when the temperature reached 180 ° C., the temperature increase was stopped and the temperature was kept constant. After the dehydrosulfurization reaction was completed (about 80 minutes), the reaction was completed to obtain lithium sulfide.
  • the planetary ball mill was rotated at a low speed (85 rpm) to sufficiently mix lithium sulfide and diphosphorus pentasulfide. Thereafter, the rotational speed of the planetary ball mill was gradually increased to 370 rpm, and mechanical milling was performed at a rotational speed of 370 rpm for 20 hours.
  • the powder was vitrified (sulfide glass).
  • Tg glass transition point
  • Tc crystallization temperature
  • the 31 P-NMR measurement was performed at room temperature by attaching a 5 mm CP / MAS probe to a JNM-CMXP302 NMR apparatus manufactured by JEOL Ltd.
  • the 31 P-NMR spectrum was measured using a single pulse method at a 90 ° pulse of 4 ⁇ s and a magic angle rotation number of 8.6 kHz. Chemical shifts were obtained by using ammonium hydrogen phosphate as an external standard (1.3 ppm). The measurement range was 0 to 150 rpm.
  • a sulfide-based glass ceramic was produced using the apparatus 1 shown in FIG.
  • a stirrer 10 Ashizawa Finetech Co., Ltd. Star Mill Minizea (0.15 L) (bead mill) was used and charged with 450 g of 0.5 mm ⁇ zirconia balls.
  • the reaction vessel 20 a 1.5 L glass reactor with a stirrer was used.
  • the contents were circulated between the reaction tank 20 and the agitator 10 at a flow rate of 400 mL / min by the pump 54, and the temperature of the reaction tank 20 was increased to 80 ° C.
  • the main body of the stirrer 10 was operated under conditions of a peripheral speed of 8 m / s by passing warm water by external circulation so that the liquid temperature could be maintained at 70 ° C. Slurries were collected every 2 hours and dried at 150 ° C. to obtain a white powder. When X-ray diffraction measurement was performed on the powder obtained after the reaction for 12 hours, it was found that the raw material lithium sulfide remained slightly, but almost disappeared and became substantially glass. It was.
  • thermophysical properties of this glass were examined by DSC, the glass transition point (Tg) was 170 ° C. and the crystallization temperature (Tc) was 230 ° C. Further, when 31 P-NMR measurement was carried out in the same manner as in Production Example 2, a first peak was observed at 84.9 ppm, and the maximum intensity ratio of other peaks to the first peak was 0.19. It was.
  • thermophysical properties of this glass were examined by DSC, the glass transition point (Tg) was 155 ° C., and the crystallization temperature (Tc) was 192 ° C. Further, when 31 P-NMR measurement was performed in the same manner as in Production Example 2, a first peak was observed at 83.0 ppm, and the maximum ratio of the intensity ratios of the other peaks to the first peak was 0.08. It was.
  • thermophysical properties of this glass were examined by DSC, the glass transition point (Tg) was 130 ° C. and the crystallization temperature (Tc) was 162 ° C. Further, when 31 P-NMR measurement was carried out in the same manner as in Production Example 2, a first peak was observed at 83.1 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.12. It was.
  • thermophysical properties of this glass were examined by DSC, the glass transition point (Tg) was 184 ° C. and the crystallization temperature (Tc) was 226 ° C. Further, when 31 P-NMR measurement was carried out in the same manner as in Production Example 2, a first peak was observed at 85.2 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.11. It was.
  • thermophysical properties of this glass were examined by DSC, the glass transition point (Tg) was 205 ° C. and the crystallization temperature (Tc) was 236 ° C. Further, when 31 P-NMR measurement was performed in the same manner as in Production Example 2, a main peak was observed at 89.4 ppm. Several peaks smaller than this peak were observed, but no peak (first peak) was observed in the region of 81.0 ppm to 88.0 ppm.
  • Example 1 [Heat treatment of sulfide-based solid electrolyte glass] 300 mg of the sulfide-based solid electrolyte glass obtained in Production Example 2 was compacted into a cylindrical shape having a diameter of 10 mm. This green compact was sandwiched between two stainless steel plates heated to 300 ° C. At this time, the green compact was heated to about 300 ° C. in about 2 minutes. Therefore, the average heating rate was about 140 ° C./min. The relationship between the temperature of the green compact and the heating time is shown in FIG.
  • the green compact was heated in that state for 10 minutes.
  • the ionic conductivity of the green compact after heating was measured and found to be 9.9 ⁇ 10 ⁇ 4 S / cm.
  • the real part Z ′ ( ⁇ ) at the point where ⁇ Z ′′ ( ⁇ ) is the minimum is the bulk resistance R ( ⁇ ) of the electrolyte.
  • the conductivity ⁇ was calculated.
  • the distance between the leads was measured at about 60 cm.
  • the average value of hydrogen sulfide concentration was obtained by measuring the amount of hydrogen sulfide generated using the apparatus shown in FIG. First, the sample was pulverized well in a mortar in a nitrogen glow box with an dew point of ⁇ 80 ° C. 0.1 g of this crushed sample was sealed in a 100 ml Schlenk bottle and set at the position shown in FIG.
  • the air once passed through the water was circulated through the Schlenk bottle at 500 ml / min.
  • the humidity in the air in the Schlenk bottle was 80 to 90%.
  • the gas discharged from the Schlenk bottle 1 minute to 1 minute 45 seconds after the start of distribution was collected and used as a sample gas for measurement.
  • the sulfur content was quantified by the ultraviolet fluorescence method using TS-100 manufactured by Mitsubishi Chemical Analytech, and the hydrogen sulfide concentration was calculated.
  • the gas sample was qualitatively analyzed with a gas chromatograph using an Agilent 6890 (with a sulfur selective detector (SIEVERS355)), it was confirmed that the sulfur content was 99% or more of hydrogen sulfide gas.
  • Fig. 5 shows an example of the relationship between wet air circulation time and hydrogen sulfide concentration.
  • the curve is obtained by smoothing each measurement point.
  • the average value (ppm) of hydrogen sulfide concentration was obtained by dividing the area (ppm ⁇ min) surrounded by the curve, the vertical axis and the horizontal axis by 60 minutes. .
  • Example 2 Heat treatment of sulfide-based solid electrolyte glass Except that the temperature of the stainless steel plate was 250 ° C., heat treatment was performed in the same manner as in Example 1, and the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured. The results are shown in Table 1. In addition, the average temperature increase rate was about 110 ° C./min. 31 P-NMR measurement was conducted in the same manner as in Production Example 2. As a result, the first peak was shown at 84.9 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.07.
  • Example 3 Heat treatment of sulfide-based solid electrolyte glass Except for setting the heat treatment time to 1 minute, the heat treatment was performed in the same manner as in Example 1, and the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured. The results are shown in Table 1. In addition, the average temperature increase rate was about 140 ° C./min. 31 P-NMR measurement was performed in the same manner as in Production Example 2. As a result, the first peak was shown at 85.2 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.08.
  • Example 4 Heat treatment of sulfide-based solid electrolyte glass
  • a heat treatment was performed in the same manner as in Example 1 except that the sulfide-based solid electrolyte glass obtained in Production Example 3 was used, and the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured.
  • the results are shown in Table 1.
  • the average temperature increase rate was about 140 ° C./min.
  • 31 P-NMR measurement was performed in the same manner as in Production Example 2.
  • the first peak was shown at 85.2 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.08.
  • Example 5 Heat treatment of sulfide-based solid electrolyte glass
  • Heat treatment was performed in the same manner as in Example 1 except that the sulfide-based solid electrolyte glass obtained in Production Example 4 was used, the temperature of the stainless steel plate was set to 210 ° C., and the heat treatment time was set to 1 minute. The average value of hydrogen concentration was measured. The results are shown in Table 1. In addition, the average temperature increase rate was about 120 ° C./min. 31 P-NMR measurement was conducted in the same manner as in Production Example 2. As a result, the first peak was shown at 83.1 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was 0.06.
  • Example 6 Heat Treatment of Sulfide-Based Solid Electrolyte Glass
  • Heat treatment temperature was 210 ° C.
  • the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured.
  • the results are shown in Table 1.
  • the average temperature increase rate was about 120 ° C./min.
  • 31 P-NMR measurement was conducted in the same manner as in Production Example 2. As a result, the first peak was observed at 83.0 ppm, and the maximum intensity ratio of the other peaks to the first peak was 0.07.
  • Example 7 Heat Treatment of Sulfide-Based Solid Electrolyte Glass
  • a heat treatment was performed in the same manner as in Example 1 except that the sulfide-based solid electrolyte glass obtained in Production Example 6 was used, and the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured.
  • the results are shown in Table 1.
  • the average temperature increase rate was about 140 ° C./min.
  • 31 P-NMR measurement was conducted in the same manner as in Production Example 2.
  • the first peak was shown at 85.0 ppm, and the maximum ratio of the intensity ratios of the other peaks to the first peak was 0.12.
  • Comparative Example 1 Heat Treatment of Sulfide Solid Electrolyte Glass
  • the sulfide-based solid electrolyte glass powder obtained in Production Example 2 was put into a stainless steel tube, set in an oven preheated to 300 ° C., and left for 2 hours.
  • 300 mg of the powder was compacted into a cylindrical shape with a diameter of 10 mm, and the ionic conductivity ⁇ of the green compact was measured in the same manner as in Example 1.
  • the average temperature rising rate was about 5 ° C./min.
  • 31 P-NMR measurement was conducted in the same manner as in Production Example 2.
  • the first peak was shown at 85.1 ppm, and the maximum of the intensity ratios of the other peaks to the first peak was less than 0.10. .
  • the green compact was pulverized with a mortar, and the hydrogen sulfide concentration average value of the sample was measured in the same manner as in Example 1. The results are shown in Table 1. Further, for the sample pulverized with a mortar, a green compact was produced again and the ionic conductivity was measured. The value was almost the same as the above value.
  • Comparative Example 2 [Heat Treatment of Sulfide Solid Electrolyte Glass] A heat treatment was performed in the same manner as in Example 1 except that the sulfide-based solid electrolyte glass obtained in Production Example 7 was used, and the ionic conductivity ⁇ and the hydrogen sulfide concentration average value were measured. The results are shown in Table 1. In addition, the average temperature increase rate was about 140 ° C./min. 31 P-NMR measurement was performed in the same manner as in Production Example 2. As a result, peaks were observed at 86.1 ppm (first peak) and 91.2 ppm. The peak intensity of the latter with respect to the former (first peak) was 1.17. Further, for the sample pulverized with a mortar, a green compact was produced again and the ionic conductivity was measured. The value was almost the same as the above value.
  • any of the sulfide-based glass ceramics of Examples 1 to 7 has high ionic conductivity and excellent hydrolysis resistance, and can be used in a relatively high dew point environment. Such materials have not been known so far.
  • the sulfide glass ceramic of Comparative Example 1 is excellent in hydrolysis resistance but has low ionic conductivity and is not suitable for battery use.
  • the sulfide-based glass ceramic of Comparative Example 2 showed high ionic conductivity, but was inferior in hydrolysis resistance. It is difficult to raise the dew point of the working environment with this material.
  • the solid electrolyte of the present invention can be used for a member of a lithium ion battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

構成成分として、リチウム、リン及び硫黄を含み、31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピーク(第1ピーク)を有し、前記81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は有していても前記第1ピークに対するピーク強度比が0.5以下であり、イオン伝導度が5×10-4S/cm以上である固体電解質。

Description

固体電解質
 本発明は、固体電解質、並びにそれを用いて製造された電解質層、電極及び電池に関する。
 全固体電池の分野において、従来から、硫化物系固体電解質材料が知られている。例えば、特許文献1には、LiSとPを特定のモル比(68:32~73:27)で混合し、それをメカニカルミリング処理し、熱処理を施すことで、高いイオン伝導度(~2×10-3S/cm)を有するガラスセラミックス電解質粒子が得られることが報告されている。
 しかしながら、特許文献1の材料は水と接触し、硫化水素を発生(加水分解)しやすく、高露点環境での使用に制限がある。
 LiSとPを75:25のモル比で混合し、それをメカニカルミリング処理したガラス電解質粒子は加水分解しにくいことが知られている(例えば、特許文献2)。しかしながら、特許文献2の技術では、加水分解性が低減する代わりにイオン伝導度が大きく低下してしまう。
特開2005-228570号公報 特開2010-199033号公報
 本発明の目的は、加水分解しにくく、高いイオン伝導度を有する固体電解質を提供することである。
 本発明によれば、以下の固体電解質等が提供される。
1.構成成分として、リチウム、リン及び硫黄を含み、
 31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピーク(第1ピーク)を有し、
 前記81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は有していても前記第1ピークに対するピーク強度比が0.5以下であり、
 イオン伝導度が5×10-4S/cm以上である固体電解質。
2.構成成分として、リチウム又はナトリウム、リン並びに硫黄を含み、
 イオン伝導度が5×10-4S/cm以上であり、
 100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である固体電解質。
3.構成成分として、リチウム又はナトリウム、リン並びに硫黄を含むガラスを平均20℃/分以上で昇温して、前記ガラスのガラス転移温度~結晶化温度+120℃で0.005分~10時間加熱して得られた2に記載の固体電解質。
4.100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である1に記載の固体電解質。
5.構成成分として、さらにハロゲンを含む1~4のいずれかに記載の固体電解質。
6.1~5のいずれかに記載の固体電解質を含む電解質層。
7.1~5のいずれかに記載の固体電解質を用いて製造された電解質層。
8.1~5のいずれかに記載の固体電解質を含む電極。
9.1~5のいずれかに記載の固体電解質を用いて製造された電極。
10.6及び7に記載の電解質層、並びに8及び9に記載の電極のうち少なくとも1つを含む電池。
11.正極層、電解質層及び負極層の少なくとも1つが、1~5のいずれかに記載の固体電解質を用いて製造された電池。
12.構成成分として、リチウム又はナトリウム、リン並びに硫黄を含むガラスを平均20℃/分以上で昇温して、前記ガラスのガラス転移温度~結晶化温度+120℃で0.005分~10時間加熱することを含む固体電解質の製造方法。
13.製造される固体電解質が、31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピーク(第1ピーク)を有し、
 前記81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は有していても前記第1ピークに対するピーク強度比が0.5以下であり、
 イオン伝導度が5×10-4S/cm以上である12記載の固体電解質の製造方法。
14.製造される固体電解質のイオン伝導度が5×10-4S/cm以上であり、
 100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である12又は13記載の固体電解質の製造方法。
15.前記ガラスをハロゲン元素を含む化合物とともに加熱する12~14のいずれかに記載の固体電解質の製造方法。
 本発明によれば、加水分解しにくく、高いイオン伝導度を有する固体電解質が提供できる。
製造例3で硫化物系ガラスセラミックスを製造した装置を示す図である。 実施例1及び比較例1で加熱した固体電解質ガラスの温度と加熱時間の関係を示す図である。 実施例1におけるイオン伝導度の測定方法を示す図である。 実施例及び比較例における硫化水素濃度平均値の測定装置を示す図である。 硫化水素濃度平均値の測定における、ウェットエア流通時間と硫化水素濃度の関係の一例を示す図である。
1.本発明の固体電解質
 本発明の第1の固体電解質は、構成成分として、リン、リチウム及び硫黄を含み、31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピークを有し(第1ピークと称する)、81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は81.0ppm以上88.0ppm以下の領域以外にピークを有していても、第1ピークに対するピーク強度比が0.5以下である。
 81.0ppm以上88.0ppm以下の領域に複数ピークがある場合は、その中で最大のものを第1ピークとする。ピーク強度は、ベースラインからピークトップまでの高さで定義する。
 第1ピークの領域は、好ましくは81.0ppm以上87.0ppm以下であり、より好ましくは81.5ppm以上86.5ppm以下である。
 81.0ppm以上88.0ppm以下の領域以外にピークを有する場合、第1ピークに対するピーク強度比は、好ましくは0.45以下であり、より好ましくは0.4以下である。
 第1の固体電解質は、イオン伝導度が5×10-4S/cm以上であり、6×10-4S/cm以上であることが好ましく、7×10-4S/cm以上であることがさらに好ましい。
 尚、イオン伝導度は高ければ高いほど好ましいが、例えば、上限として5×10-2S/cmを挙げることができる。
 上記の固体電解質は、リチウム、リン及び硫黄の他、ハロゲンを含んでもよい。
 固体電解質は、下記式(A)を満たすことが好ましい。
Li・・・(A)
 式(A)において、a~eは各元素の組成比を示し、a:b:c:d:eは1~12:0~0.2:1:0.1~9:0~9を満たす。
 好ましくは、bは0である。
 また、好ましくはa、c及びdの比はa:c:d=1~9:1:3~7であり、さらに好ましくはa:c:d=2~4.5:1:3.5~5である。
 各元素の組成比は、後述するように、固体電解質を製造する際の原料化合物の配合量を調整することにより制御できる。
 Mは下記式(B)で表される。
ZnSiCuGaGe・・・(B)
 f~kは、各元素の組成比を示し、それぞれ0以上1以下であり、f+g+h+i+j+k=1である。好ましくは、f、i及びjは0であり、g及びhはそれぞれ0以上1以下であり、g+h+k=1である。
 Xは、下記式(C)で表される。
ClBr・・・(C)
 l~oは、各元素の組成比を示し、それぞれ0以上1以下であり、l+m+n+o=1である。好ましくは、l及びmは0であり、n及びoはそれぞれ0以上1以下であり、n+o=1である。より好ましくは、l及びmは0であり、n及びoはそれぞれ0又は1であり、n+o=1である。
 また、好ましくは、l~oのうち、1つが1であり、他は0である。
 本発明の第2の固体電解質は、構成成分として、リチウム又はナトリウム、リン並びに硫黄を含み、イオン伝導度が5×10-4S/cm以上である。また、100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの上記空気中の硫化水素濃度平均値が200ppm以下である。
 第2の固体電解質は、リチウム又はナトリウム、リン並びに硫黄の他、ハロゲンを含んでもよい。第2の固体電解質が、リチウム、リン及び硫黄を含む場合、これら構成成分は上記第1の固体電解質と同様である。
 第2の固体電解質が、ナトリウム、リン及び硫黄を含む場合、固体電解質は下記式(A’)を満たすことが好ましい。
Na・・・(A’)
 式(A’)において、a~e、M及びXは上記式(A)と同様である。
 また、第2の固体電解質のイオン伝導度は、第1の固体電解質と同様である。
 第2の固体電解質は、上記の方法で測定した硫化水素濃度平均値が200ppm以下であり、耐加水分解性が高い。硫化水素濃度平均値は150ppm以下であることが好ましく、130ppm以下であることがより好ましい。
 一般に、硫化物系固体電解質は加水分解すると硫化水素を発生する。従って、同条件で加水分解したとき、硫化水素の発生量が少ないほど耐加水分解性が高い。本発明において、上記の方法で求めた硫化水素濃度平均値を、耐加水分解性の指標とする。硫化水素濃度平均値は、実施例に記載の方法で測定できる。
 また、第1の固体電解質も、好ましくは、上記の方法で測定した硫化水素濃度平均値は第2の固体電解質と同様である。
 本発明の第2の固体電解質は、好ましくは、構成成分としてリチウム又はナトリウム、リン並びに硫黄を含むガラスを、平均20℃/分以上で昇温して、このガラスのガラス転移温度(Tg)~結晶化温度(Tc)+120℃で0.005分~10時間加熱して得られた固体電解質である。
 ガラスの昇温、加熱方法は後述する通りである。
 第1及び2の固体電解質(以下、本発明の固体電解質ともいう)の形状は特に制限はなく、粒子状であってもシート状であってもよい。本発明の電解質は25℃で固体である。
 粒子状であれば、電解質層を形成する際に、後述するように本発明の固体電解質又は電解質前駆体を含むスラリーを塗布することにより電解質層を製造することができる。尚、本発明の固体電解質は、電解質前駆体であるガラスを加熱して製造できる。
 電解質前駆体を用いて電解質シートを製造する場合には、電解質前駆体を用いて電解質層を形成後、後述する所定の加熱条件により加熱して本発明の電解質層を製造することもできる。
 また、静電法を用いて電解質層を製造することもできる。
 本発明の固体電解質が粒子状である場合には、体積基準平均粒径が0.01μm以上500μm以下であることが好ましい。
 体積基準平均粒径(Mean Volume Diameter、以下「粒径」という。)の測定方法は、レーザー回折式粒度分布測定方法により行うことが好ましい。
 レーザー回折式粒度分布測定方法は、組成物を乾燥せずに粒度分布を測定することができ、組成物中の粒子群にレーザーを照射してその散乱光を解析することで粒度分布を測定することができる。
 本発明では、乾燥した固体電解質又はその前駆体である硫化物系ガラスを用いて平均粒径を測定する。
 レーザー回折式粒度分布測定装置がMalvern Instruments Ltd社製マスターサイザー2000である場合の測定例は以下の通りである。
 まず、装置の分散槽に脱水処理されたトルエン(和光純薬製、製品名:特級)110mlを入れ、さらに分散剤として脱水処理されたターシャリーブチルアルコール(和光純薬製、特級)を6%添加する。
 上記混合物を十分混合した後、「乾燥した固体電解質又はその前駆体である硫化物系ガラス」を添加して粒子径を測定する。「乾燥した固体電解質又はその前駆体である硫化物系ガラス」の添加量は、マスターサイザー2000で規定されている操作画面で、粒子濃度に対応するレーザー散乱強度が規定の範囲内(10~20%)に収まるように加減して加える。この範囲を超えると多重散乱が発生し、正確な粒子径分布を求めることができなくなるおそれがある。また、この範囲より少ないとSN比が悪くなり、正確な測定ができないおそれがある。
 マスターサイザー2000では、「乾燥した固体電解質又はその前駆体である硫化物系ガラス」の添加量に基き、レーザー散乱強度が表示されるので、上記レーザー散乱強度に入る添加量を見つけるとよい。
 「乾燥した固体電解質又はその前駆体である硫化物系ガラス」の添加量はイオン伝導性物質の種類等により最適量は異なるが、概ね0.01g~0.05g程度である。
 次に、本発明の固体電解質の製造方法を説明するが、本発明の固体電解質は下記の製造方法により製造された電解質に限定されないことはいうまでもない。
 本発明の固体電解質は、電解質前駆体(ガラス)、又は電解質前駆体とハロゲン元素を含む化合物の混合物を所定の方法により加熱することにより製造することができる。
 電解質前駆体は通常、第1の電解質と同様に、31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピークを有し(第1ピークと称する)、81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は81.0ppm以上88.0ppm以下の領域以外にピークを有していても、第1ピークに対するピーク強度比が0.5以下であり、かつ上記式(A)又は(A’)を満たす化合物である。
 電解質前駆体は、下記原料aと、必要に応じてハロゲン元素を含む化合物とを所定の方法により反応させて製造することができる。
 尚、電解質前駆体にハロゲン元素が含まれていても含まれていなくてもよく、また、電解質前駆体に後述するハロゲン元素を含む化合物を添加しても添加しなくてもよい。
 電解質前駆体とハロゲン元素を含む化合物の混合方法は特に制限はなく、乳鉢で混合する方法、メカニカルミリング処理する方法等を例示できる。
 原料aとしては、LiS(硫化リチウム)、P(三硫化二リン)(五硫化二リン)、SiS(硫化珪素)、LiSiO(オルト珪酸リチウム)、Al(硫化アルミニウム)、単体リン(P)、単体の硫黄(S)、シリコン(Si)、GeS(硫化ゲルマニウム)、B(三硫化二ホウ素)、LiPO(燐酸リチウム)、LiGeO(ゲルマン酸リチウム)、LiBO(メタホウ酸リチウム)、LiAlO(リチウムアルミネート)等を用いることができる。
 好ましい原料aは、LiS(硫化リチウム)及びP(五硫化二リン)である。
 また、ナトリウム、リン及び硫黄を含む固体電解質を製造する場合、原料aとしては、上記Li含有化合物の代わりに、これに対応するNa含有化合物を用いることができる。
 原料aとして、LiS(硫化リチウム)及びP(五硫化二リン)を用いた場合の電解質前駆体の製造方法について説明する。
 硫化リチウムは、特に制限なく工業的に入手可能なものが使用できるが、高純度のものが好ましい。
 硫化リチウムは、例えば、特開平7-330312号、特開平9-283156号、特開2010-163356、特願2009-238952に記載の方法により製造することができる。
 特開2010-163356に記載の硫化リチウムの製法は、炭化水素系有機溶媒中で水酸化リチウムと硫化水素とを70℃~300℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成する。
 特願2009-238952に記載の硫化リチウムの製法は、水溶媒中で水酸化リチウムと硫化水素とを10℃~100℃で反応させて、水硫化リチウムを生成し、次いでこの反応液を脱硫化水素化することにより硫化リチウムを合成する。
 硫化リチウムは、硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であることが好ましく、より好ましくは0.1質量%以下であり、かつN-メチルアミノ酪酸リチウムの含有量が0.15質量%以下であることが好ましく、より好ましくは0.1質量%以下である。
 硫黄酸化物のリチウム塩の総含有量が0.15質量%以下であると、溶融急冷法やメカニカルミリング法で得られる固体電解質は、ガラス状電解質(完全非晶質)となる。一方、硫黄酸化物のリチウム塩の総含有量が0.15質量%を越えると、得られる電解質は、最初から結晶化物となるおそれがある。
 また、N-メチルアミノ酪酸リチウムの含有量が0.15質量%以下であると、N-メチルアミノ酪酸リチウムの劣化物がリチウムイオン電池のサイクル性能を低下させることがない。このように不純物が低減された硫化リチウムを用いると、高イオン伝導性電解質が得られる。
 特開平7-330312号及び特開平9-283156号に記載の硫化リチウムは、硫黄酸化物のリチウム塩等を含むため、精製することが好ましい。
 一方、特開2010-163356に記載の硫化リチウムの製法で製造した硫化リチウムは、硫黄酸化物のリチウム塩等の含有量が非常に少ないため、精製せずに硫化物系ガラスの製造に用いてもよい。
 好ましい精製法としては、例えば、国際公開2005/40039号パンフレットに記載された精製法等が挙げられる。具体的には、上記のようにして得られた硫化リチウムを、有機溶媒を用いて100℃以上の温度で洗浄する。
 五硫化二リン(P)は、工業的に製造され、販売されているものであれば、特に限定なく使用することができる。
 ハロゲン元素を含む化合物は、下記式(E)に示す化合物であり、1種の化合物を用いてもよく、複数の化合物を用いてもよい。
Y-X・・・(E)
 式中、Yは、リチウム、ナトリウム、カリウム等のアルカリ金属類が挙げられ、特にリチウムが好ましい。Xは、上記式(C)と同様である。
 ハロゲン元素を含む化合物は、例えばLiX’を挙げることができる。X’はハロゲン元素であり、好ましくは、Br、Iである。ハロゲン元素を含む化合物としては、LiF、LiCl、LiBr、LiI等が挙げられる。
 硫化リチウムと五硫化二リンの割合(モル比)は、好ましくは60:40~90:10、より好ましくは65:35~85:15であり、特に好ましくは67:33~80:20である。
 また、硫化リチウムと五硫化二リンの合計とハロゲン元素の割合(モル比)は、好ましくは50:50~100:0、より好ましくは60:40~100:0、特に好ましくは70:30~100:0である。
 硫化物系ガラス(電解質前駆体)の製造方法としては、溶融急冷法、メカニカルミリング法(MM法)、有機溶媒中で原料を反応させるスラリー法、固相法等がある。
(ア)溶融急冷法
 溶融急冷法は、例えば、特開平6-279049号公報、国際公開第2005/119706号パンフレットに記載されている。
 具体的には、PとLiSとハロゲンを含む化合物とを所定量乳鉢にて混合しペレット状にしたものを、カーボンコートした石英管中に入れ真空封入する。所定の反応温度で反応させた後、氷中に投入し急冷することにより、硫化物系ガラスである電解質前駆体が得られる。
 反応温度は、好ましくは400℃~1000℃、より好ましくは、800℃~900℃である。反応時間は、好ましくは0.1時間~12時間、より好ましくは、1~12時間である。
 上記反応物の急冷温度は、通常10℃以下、好ましくは0℃以下であり、その冷却速度は、通常1~10000K/秒程度、好ましくは10~10000K/秒である。
(イ)メカニカルミリング法
 メカニカルミリング法(以下、「MM法」という。)は、例えば、特開平11-134937、特開2004-348972、特開2004-348973に記載されている。
 具体的には、PとLiSとハロゲンを含む化合物とを所定量乳鉢にて混合し、例えば、各種ボールミル等を使用して所定時間反応させることにより、硫化物系ガラスである電解質前駆体が得られる。
 上記原料を用いたMM法は、室温で反応を行うことができる。MM法によれば、室温でガラス固体電解質を製造できるため、原料の熱分解が起らず、仕込み組成の硫化物系ガラスである電解質前駆体を得ることができるという利点がある。
 また、MM法では、硫化物系ガラスである電解質前駆体の製造と同時に、微粉末化できるという利点もある。MM法は回転ボールミル、転動ボールミル、振動ボールミル、遊星ボールミル等種々の形式を用いることができる。MM法の条件としては、例えば、遊星型ボールミル機を使用した場合、回転速度を数十~数百回転/分とし、0.5時間~100時間処理すればよい。
 また、特開2010-90003に記載されているように、ボールミルのボールは異なる径のボールを混合して使用してもよい。また、特開2009-110920や特開2009-211950に記載されているように、原料に有機溶媒を添加してスラリー状にし、このスラリーをメカニカルミリング処理してもよい。また、特開2010-30889に記載のようにメカニカルミリング処理の際のミル内の温度を調整してもよい。
 メカニカルミリングの際に原料が60℃以上160℃以下になるようにすることが好ましい。
(ウ)スラリー法
 スラリー法は、国際公開第2004/093099号パンフレット、国際公開第2009/047977号パンフレットに記載されている。
 具体的には、所定量のP粒子とLiS粒子とハロゲンを含む化合物とを有機溶媒中で所定時間反応させることにより、硫化物系ガラスである電解質前駆体が得られる。
 ハロゲンを含む化合物は、有機溶媒に溶解するか、又は粒子であることが好ましい。
 ここで、特開2010-140893号公報に記載されているように、反応を進行させるため、原料を含むスラリーをビーズミルと反応容器との間で循環させながら反応させてもよい。
 また、国際公開第2009/047977号パンフレットに記載されているように、原料の硫化リチウムを予め粉砕しておくと効率的に反応を進行させることができる。
 また、特願2010-270191号公報に記載されているように、原料の硫化リチウムの比表面積を大きくするために溶解パラメーターが9.0以上の極性溶媒(例えば、メタノール、ジエチルカーボネート、アセトニトリル等)に所定時間浸漬してもよい。
 反応温度は、好ましくは20℃以上80℃以下、より好ましくは20℃以上60℃以下である。反応時間は、好ましくは1時間以上16時間以下、より好ましくは、2時間以上14時間以下である。
 原料である硫化リチウム、五硫化二りん及びハロゲンを含む化合物が、有機溶媒の添加により溶液又はスラリー状になる程度であることが好ましい。通常、有機溶媒1リットルに対する原料(合計量)の添加量は0.001kg以上1kg以下程度となる。好ましくは0.005kg以上0.5kg以下、特に好ましくは0.01kg以上0.3kg以下である。
 有機溶媒としては特に制限はないが、非プロトン性有機溶媒が特に好ましい。
 非プロトン性有機溶媒としては、非プロトン性有機溶媒(例えば、炭化水素系有機溶媒)、非プロトン性の極性有機化合物(例えば、アミド化合物,ラクタム化合物,尿素化合物,有機イオウ化合物,環式有機リン化合物等)を単独溶媒として、又は混合溶媒として、好適に使用することができる。
 炭化水素系有機溶媒としては、飽和炭化水素、不飽和炭化水素又は芳香族炭化水素が使用できる。
 飽和炭化水素としては、ヘキサン、ペンタン、2-エチルヘキサン、ヘプタン、デカン、シクロヘキサン等が挙げられる。不飽和炭化水素しては、ヘキセン、ヘプテン、シクロヘキセン等が挙げられる。芳香族炭化水素としては、トルエン、キシレン、デカリン、1,2,3,4-テトラヒドロナフタレン等が挙げられる。
 これらのうち、特にトルエン、キシレンが好ましい。
 炭化水素系溶媒は、あらかじめ脱水されていることが好ましい。具体的には、水分含有量として100重量ppm以下が好ましく、特に30重量ppm以下であることが好ましい。
 尚、必要に応じて炭化水素系溶媒に他の溶媒を添加してもよい。具体的には、アセトン、メチルエチルケトン等のケトン類、テトラヒドロフラン等のエーテル類、エタノール、ブタノール等のアルコール類、酢酸エチル等のエステル類等、ジクロロメタン、クロロベンゼン等のハロゲン化炭化水素等が挙げられる。
(エ)固相法
 固相法は例えば、非特許文献「H-J.Deiseroth,et.al.,Angew.Chem.Int.Ed.2008,47,755-758」に記載されている。具体的には、PとLiSとハロゲンを含む化合物を所定量乳鉢にて混合し、100~900℃の温度で加熱することにより、硫化物系ガラスである本発明の電解質の前駆体が得られる。
 上記溶融急冷法、MM法、スラリー法及び固相法の温度条件、処理時間、仕込み料等の製造条件は、使用設備等に合わせて適宜調整することができる。
 硫化物ガラスの製造法としては、MM法、スラリー法又は固相法がより好ましい。低コストで製造可能であることから、MM法、スラリー法がより好ましく、特にスラリー法が好ましい。
 固体電解質は、上記硫化物ガラスを加熱処理することにより得られる。加熱処理は、露点-40℃以下の環境下で行うことが好ましく、より好ましくは露点-60℃以下の環境下で行うことが好ましい。
 加熱時の圧力は、常圧であってもよく、減圧下であってもよい。雰囲気は、空気であってもよく、不活性雰囲気下であってもよい。また、特開2010-186744号公報に記載されているような溶媒中(例えば、炭化水素系有機溶媒)で加熱してもよい。
 熱処理温度は、好ましくは、電解質前駆体のTg以上、電解質前駆体の(Tc+120℃)以下である(Tg:ガラス転移温度、Tc:結晶化温度)。Tg未満だと固体電解質の製造時間が非常に長くなるおそれがある。
 例えば、Tgが170℃、Tcが230℃の場合、熱処理温度は170℃以上350℃以下であり、好ましくは175℃以上330℃以下である。
 (Tc+120℃)を超えると、熱処理後の固体電解質に不純物等が含まれ、イオン伝導度が低下する恐れがある。より好ましくは(Tg+5℃)以上(Tc+110℃)以下、さらに好ましくは(Tg+10℃)以上(Tc+100℃)以下である。
 熱処理時間は、0.005分以上10時間以下が好ましい。さらに好ましくは0.005分以上5時間以下であり、特に好ましくは0.01分以上3時間以下である。
 0.005分未満であると、熱処理後の固体電解質に電解質前駆体が多く含まれ、イオン伝導度が低くなるおそれがある。10時間を越えると、熱処理後の固体電解質に不純物等が含まれ、イオン伝導度が低下する恐れがある。
 昇温方法は、好ましくは、上記の熱処理温度まで急速に加熱する。
 例えば、平均昇温速度は20℃/分以上である。20℃/分未満だと、イオン伝導度が十分高くならない恐れがある。さらに好ましくは50℃/分以上であり、特に好ましくは100℃/分以上である。
 平均昇温速度の上限は特にないが、例えば、20000℃/分以下である。
2.電解質含有物
 本発明の電解質含有物は、上記固体電解質を含む。
 本発明の電解質含有物は、上記固体電解質を含んでいればよく、ハロゲン元素を含む化合物をさらに含んでいてもよく、有機溶媒を含んでいてもよい。また、下記バインダー(結着剤)、正極活物質、負極活物質及び導電助剤のいずれか1つ以上を含んでいてもよい。
3.電解質層
 本発明の電解質層は、電池を構成する電解質層であってもよく、シート状であってもよい。
(1)第1の電解質層
 第1の電解質層は、上記固体電解質を含む電解質層である。上記電解質以外に他の電解質を含んでいてもよく、下記バインダーを含んでいてもよい。
(2)第2の電解質層
 第2の電解質層は、上記固体電解質を用いて製造された電解質層である。
 上記固体電解質を用いて製造されていればよく、例えば、上記固体電解質、下記バインダー及び溶媒を含むスラリーを塗布して製造してもよく、粒状の上記固体電解質を用いて静電塗布法により製造してもよい。
4.電極
 本発明の電極は、電池を構成する電極層であってもよく、シート状であってもよい。
(1)第1の電極
 第1の電極は、上記固体電解質と通常活物質を含む電極である。上記固体電解質以外に他の電解質を含んでいてもよく、後述するバインダーを含んでいてもよい。活物質としては、後述する正極活物質、負極活物質が挙げられる。
(2)第2の電極
 第2の電極は、上記固体電解質を用いて製造され、通常活物質を含む電極である。上記固体電解質以外に他の電解質を含んでいてもよく、後述するバインダーを含んでいてもよい。活物質としては、後述する正極活物質、負極活物質が挙げられる。
 第2の電極は、上記固体電解質を用いて製造されていればよく、例えば、上記固体電解質、後述する活物質、バインダー及び溶媒を含むスラリーを塗布して製造してもよく、固体電解質と活物質のうち、粒状のものを用いて静電塗布法により製造してもよい。
5.電池
(1)第1の電池
 本発明の第1の電池は、正極層、電解質層、負極層の少なくとも1つが、上記本発明の電解質を含む電池である。各層は、公知の方法により製造することができる。
 電解質前駆体を用いて正極層、負極層及び/又は電解質層を製造する場合には、電解質前駆体を用いて正極層等を形成後、上記所定の加熱条件により加熱して本発明の第1の電池を製造することもできる。
 以下に、上記電池の各層について説明する。
(A)正極層
 正極層は、正極活物質と電解質と導電助剤を含むことが好ましい。また、必要に応じバインダーを含んでもよい。
(i)正極活物質
 正極活物質としては、リチウムイオンの挿入脱離が可能な物質、電池分野において正極活物質として公知のものが使用できる。
 例えば、V、LiCoO、LiNiO、LiMnO、LiMn、Li(NiCoMn)O(0<a<1、0<b<1、0<c<1、a+b+c=1)、LiNi1-YCo、LiCo1-YMn、LiNi1-YMn(0≦Y<1)、Li(NiCoMn)O(0<a<2、0<b<2、0<c<2、a+b+c=2)、LiMn2-ZNi、LiMn2-ZCo(0<Z<2)、LiCoPO、LiFePO、酸化ビスマス(Bi)、鉛酸ビスマス(BiPb)、酸化銅(CuO)、酸化バナジウム(V13)、LiCoO,LiNiO,LiMn,LiFePO,LiCoPO,LiMn1/3Ni1/3Co1/3,LiMn1.5Ni0.5等の酸化物が挙げられる。
 上記以外の正極活物質としては、例えば、硫化物系では、単体硫黄(S)、硫化チタン(TiS)、硫化モリブデン(MoS)、硫化鉄(FeS、FeS)、硫化銅(CuS)及び硫化ニッケル(Ni)、硫化リチウム(LiS)、セレン化ニオブ(NbSe)、有機ジスルフィド化合物、カーボンスルフィド化合物、硫黄、金属インジウム等が使用できる。好ましくは、高い理論容量を有するS、LiSが使用できる。
 有機ジスルフィド化合物及びカーボンスルフィド化合物を以下に例示する。
Figure JPOXMLDOC01-appb-C000001
 式(A)~(C)において、Xはそれぞれ置換基であり、n及びmはそれぞれ独立に1~2の整数であり、p及びqはそれぞれ独立に1~4の整数である。
 式(D)において、Zはそれぞれ-S-又は-NH-であり、nは繰返数2~300の整数である。
Figure JPOXMLDOC01-appb-C000002
(ii)電解質
 電解質は、ポリマー系固体電解質、酸化物系固体電解質、本発明の固体電解質又はその電解質前駆体の少なくとも1つである。
(a)ポリマー系固体電解質
 ポリマー系固体電解質は、特に制限はない。例えば、特開2010-262860号公報に開示されているように、フッ素樹脂、ポリエチレンオキサイド、ポリアクリロニトリル、ポリアクリレートやこれらの誘導体、共重合体等のポリマー電解質として用いられる材料が挙げられる。
 フッ素樹脂としては、例えば、フッ化ビニリデン(VdF)、ヘキサフルオロプロピレン(HFP)、テトラフルオロエチレン(TFE)や、これらの誘導体等を構成単位として含むものが挙げられる。具体的には、ポリフッ化ビニリデン(PVdF)、ポリヘキサフルオロプロピレン(PHFP)、ポリテトラフルオロエチレン(PTFE)等のホモポリマーや、VdFとHFPとの共重合体(以下、この共重合体を「P(VdF-HFP)」と示す場合がある。)等の2元共重合体や3元共重合体等が挙げられる。
(b)酸化物系固体電解質
 酸化物系固体電解質としては、LiN、LISICON類、Thio-LISICON類、La0.55Li0.35TiO等のペロブスカイト構造を有する結晶や、NASICON型構造を有するLiTi12、さらにこれら結晶化させた電解質等を用いることができる。
(iii)導電助剤
 導電助剤は、導電性を有していればよい。導電助剤の導電率は、1×10S/cm以上が好ましく、より好ましくは1×10S/cm以上である。
 導電助剤としては、炭素材料、金属粉末及び金属化合物から選択される物質や、これらの混合物が挙げられる。
 導電助剤の具体例としては、炭素、ニッケル、銅、アルミニウム、インジウム、銀、コバルト、マグネシウム、リチウム、クロム、金、ルテニウム、白金、ベリリウム、イリジウム、モリブデン、ニオブ、オスニウム、ロジウム、タングステン及び亜鉛からなる群より選択される少なくとも1つの元素を含む物質が好ましい。
 より好ましくは、導電性が高い炭素単体、炭素、ニッケル、銅、銀、コバルト、マグネシウム、リチウム、ルテニウム、金、白金、ニオブ、オスニウム又はロジウムを含む金属単体、混合物又は化合物である。
 炭素材料の具体例としては、ケッチェンブラック、アセチレンブラック、デンカブラック、サーマルブラック、チャンネルブラック等のカーボンブラック、黒鉛、炭素繊維、活性炭等が挙げられる。これらは単独でも2種以上でも併用可能である。
 中でも、電子伝導性が高いアセチレンブラック、デンカブラック、ケッチェンブラックが好適である。
(iv)バインダー
 正極層は、バインダーを含んでもよい。
 バインダーとしては、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン-プロピレン-ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)等を単独で、又は2種以上の混合物として用いることができる。
 また、水系バインダーであるセルロース系やスチレンブタジエンゴム(SBR)の水分散体等を用いることもできる。
 正極活物質、電解質及び導電助剤等の割合は特に制限は無く、例えば、公知の割合を用いることができる。
 正極層の厚さは、0.01mm以上10mm以下であることが好ましい。正極層は、公知の方法により製造することができる。例えば、塗布法、静電法(静電スプレー法、静電スクリーン法等)により製造することができる。
(B)負極層
 負極層は、負極活物質と電解質と導電助剤を含むことが好ましい。
 正極層と負極層は、電極活物質が正極活物質であるか負極活物質であるかの違いのみであるため、ここでは負極活物質についてのみ説明し、正極層と同様の事項はその説明を省略する。
(i)負極活物質
 負極活物質としては、リチウムイオンの挿入脱離が可能な物質、電池分野において負極活物質として公知のものが使用できる。
 例えば、炭素材料、具体的には、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び難黒鉛化性炭素等が挙げられる。又はその混合物でもよい。好ましくは、人造黒鉛である。
 また、金属リチウム、金属インジウム、金属アルミ、金属ケイ素等の金属自体や他の元素、化合物と組合わせた合金を、負極材として用いることができる。中でも、高い理論容量を有するケイ素、スズ、リチウム金属が好ましい。
(C)電解質層
 電解質層は、固体電解質を含み、バインダーも含んでいてもよい。
 電解質層の固体電解質は、融着していていることが好ましい。融着とは、固体電解質粒子の一部が溶解し、溶解した部分が他の固体電解質粒子と一体化することを意味する。
 また、電解質層は、固体電解質の板状体であってもよい。尚、板状体とは、固体電解質粒子の一部又は全部が溶解し、板状体になっている場合も含む。
 電解質層の厚さは、0.001mm以上1mm以下であることが好ましい。
 尚、電解質及びバインダーは正極層と同様であるので、その説明を省略する。
(D)集電体
 集電体は、公知の集電体を用いることができる。例えば、Au、Pt、Al、Tiや、Cu等のように硫化物系固体電解質と反応するものをAu等で被覆した層が使用できる。
(2)第2の電池
 本発明の第2の電池は、正極層、電解質層及び負極層の少なくとも1つが、上記本発明の電解質を用いて製造された電池である。
 第1の電池と第2の電池の違いは、第2の電池が正極層、電解質層及び負極層の少なくとも1つが、本発明の電解質を用いて製造された固体電解質を用いて製造されたことのみであるので、同様の事項は説明を省略する。
 以上、リチウム系電解質について詳述したが、ナトリウム系等のアルカリ金属系電解質、マグネシウム系等の二価カチオン系電解質等においても、上述と同様の効果を示す。
製造例1[硫化リチウム(LiS)の製造、精製]
 硫化リチウムの製造及び精製は、国際公開第2005/040039号パンフレットの実施例に記載の方法と同様に行った。
 具体的には、下記のように行った。
(1)硫化リチウム(LiS)の製造
 硫化リチウムは、特開平7-330312号公報の第1の態様(2工程法)の方法に従って製造した。具体的には、撹拌翼のついた10リットルオートクレーブにN-メチル-2-ピロリドン(NMP)3326.4g(33.6モル)及び水酸化リチウム287.4g(12モル)を仕込み、300rpm、130℃に昇温した。昇温後、液中に硫化水素を3リットル/分の供給速度で2時間吹き込んだ。
 続いて、この反応液を窒素気流下(200cc/分)昇温し、反応した硫化水素の一部を脱硫化水素化した。昇温するにつれ、上記硫化水素と水酸化リチウムの反応により副生した水が蒸発を始めたが、この水はコンデンサにより凝縮し系外に抜き出した。水を系外に留去すると共に反応液の温度は上昇するが、180℃に達した時点で昇温を停止し、一定温度に保持した。脱硫化水素反応が終了後(約80分)反応を終了し、硫化リチウムを得た。
(2)硫化リチウムの精製
 上記(1)で得られた500mLのスラリー反応溶液(NMP-硫化リチウムスラリー)中のNMPをデカンテーションした後、脱水したNMP100mLを加え、105℃で約1時間撹拌した。その温度のままNMPをデカンテーションした。さらにNMP100mLを加え、105℃で約1時間撹拌し、その温度のままNMPをデカンテーションし、同様の操作を合計4回繰り返した。デカンテーション終了後、窒素気流下230℃(NMPの沸点以上の温度)で硫化リチウムを常圧下で3時間乾燥した。得られた硫化リチウム中の不純物含有量を測定した。
 尚、亜硫酸リチウム(LiSO)、硫酸リチウム(LiSO)並びにチオ硫酸リチウム(Li)の各硫黄酸化物、及びN-メチルアミノ酪酸リチウム(LMAB)の含有量は、イオンクロマトグラフ法により定量した。その結果、硫黄酸化物の総含有量は0.13質量%であり、LMABは0.07質量%であった。
製造例2[硫化物系固体電解質ガラス(LiS/P(モル比)=75/25)の製造-メカニカルミリング法-]
 製造例1で製造した硫化リチウムを用いて、国際公開第07/066539号パンフレットの実施例1に準拠した方法で硫化物系ガラスの製造を行った。
 具体的には、下記のように行った。
 製造例1で製造した硫化リチウム0.383g(0.00833mol)と五硫化二燐(アルドリッチ社製)0.618g(0.00278mol)をよく混合した。そして、この混合した粉末と直径10mmのジルコニア製ボール10個と遊星型ボールミル(フリッチュ社製:型番P-7)アルミナ製ポットに投入し完全密閉するとともにこのアルミナ製ポット内に窒素を充填し、窒素雰囲気にした。
 そして、はじめの数分間は、遊星型ボールミルの回転を低速回転(85rpm)にして硫化リチウムと五硫化二燐を十分混合した。その後、徐々に遊星型ボールミルの回転数を上げ370rpmまで回転数を上げ、回転数370rpmで20時間メカニカルミリングを行った。
 このメカニカルミリング処理をして得られた白黄色の粉体をX線測定により評価した結果、ガラス化(硫化物ガラス)していることが確認できた。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は172℃、結晶化温度(Tc)は231℃であった。
 また、下記のように31P-NMR測定を行ったところ、85.0ppmに第1ピークを示し、他のピークの第1ピークに対する強度比(I他/I第1)のうちで最大のものは0.21であった。
 31P-NMRの測定は、日本電子株式会社製JNM-CMXP302NMR装置に5mmCP/MASプローブを取り付けて室温で行った。31P-NMRスペクトルはシングルパルス法を用い、90°パルス4μs、マジック角回転の回転数8.6kHzで測定した。化学シフトは、リン酸水素アンモニウムを外部標準(1.3ppm)として用いることにより得た。尚、測定範囲は0~150rpmとした。
製造例3[硫化物系固体電解質ガラス(LiS/P(モル比)=75/25)の製造-スラリー法-]
 製造例1で製造した硫化リチウムを用いて、特開2010-140893号公報の実施例1と同様の方法で硫化物系ガラスの製造を行った。
 具体的には、下記のように行った。
 図1に示す装置1を用いて硫化物系ガラスセラミックスを製造した。撹拌機10として、アシザワ・ファインテック社製スターミルミニツェア(0.15L)(ビーズミル)を用い、0.5mmφジルコニアボール450gを仕込んだ。反応槽20として、攪拌機付の1.5Lガラス製反応器を使用した。
 製造例1で製造した硫化リチウム45.90g(75mol%)とアルドリッチ社製五硫化二燐74.10g(25mol%)に、広島和光純薬製社製脱水トルエン1080g(水分量8ppm)を加えた混合物を反応槽20及び撹拌機10に充填した。
 ポンプ54により内容物を400mL/分の流量で反応槽20と撹拌機10内とを循環させ、反応槽20を80℃になるまで昇温した。
 撹拌機10本体は、液温が70℃に保持できるよう外部循環により温水を通水し、周速8m/sの条件で運転した。2時間ごとにスラリを採取し、150℃にて乾燥して白色粉末を得た。12時間反応後得られた粉末についてX線回析測定を行ったところ、原料である硫化リチウムは僅かに残存しているが、ほとんど消失しており、実質的にガラスとなっていることが分かった。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は170℃、結晶化温度(Tc)は230℃であった。
 また、製造例2と同様に31P-NMR測定を行ったところ、84.9ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.19であった。
製造例4[硫化物系固体電解質ガラス(LiS/P/LiI(モル比)=63/21/16)の製造-メカニカルミリング法-]
 原料として、製造例2で得られた硫化物系固体電解質0.781g及びよう化リチウム0.221gを用いた以外は、製造例2と同様にして硫化物系固体電解質ガラスを得た。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は155℃、結晶化温度(Tc)は192℃であった。
 また、製造例2と同様に31P-NMR測定を行ったところ、83.0ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.08であった。
製造例5[硫化物系固体電解質ガラス(LiS/P/LiI(モル比)=52/17/31)の製造-メカニカルミリング法-]
 原料として、製造例2で得られた硫化物系固体電解質0.600g及びよう化リチウム0.400gを用いた以外は、製造例2と同様にして硫化物系固体電解質ガラスを得た。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は130℃、結晶化温度(Tc)は162℃であった。
 また、製造例2と同様に31P-NMR測定を行ったところ、83.1ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.12であった。
製造例6[硫化物系固体電解質ガラス(LiS/P(モル比)=80/20)の製造-メカニカルミリング法-]
 硫化リチウムの量を0.453g(0.00985mol)、五硫化二燐の量を0.548g(0.00246mol)とした以外は製造例2と同様の操作を行った。X線回析測定を行ったところ、原料である硫化リチウムは僅かに残存しているが、ほとんど消失しており、実質的にガラスとなっていることが分かった。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は184℃、結晶化温度(Tc)は226℃であった。
 また、製造例2と同様に31P-NMR測定を行ったところ、85.2ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.11であった。
製造例7[硫化物系固体電解質ガラス(LiS/P(モル比)=70/30)の製造-メカニカルミリング法-]
 硫化リチウムの量を0.326g(0.00709mol)、五硫化二燐の量を0.674g(0.00303mol)とした以外は製造例2と同様にして硫化物系固体電解質ガラスを得た。
 このガラスの熱物性をDSCにて調べたところ、ガラス転移点(Tg)は205℃、結晶化温度(Tc)は236℃であった。
 また、製造例2と同様に31P-NMR測定を行ったところ、89.4ppmにメインピークを示した。このピークより小さなピークはいくつか見られたが、81.0ppm~88.0ppmの領域にはピーク(第1ピーク)は見られなかった。
実施例1[硫化物系固体電解質ガラスの加熱処理]
 製造例2で得られた硫化物系固体電解質ガラス300mgを直径10mmの円筒形状に圧粉成形した。この圧粉体を300℃に加熱した2枚のステンレス板の間に挟んだ。このとき、圧粉体は約2分でほぼ300℃まで昇温された。従って、平均昇温速度は約140℃/分であった。圧粉体の温度と加熱時間の関係を図2に示す。
 製造例2と同様に31P-NMR測定を行ったところ、85.2ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.07であった。
 その後、その状態で圧粉体を10分間加熱した。加熱後の圧粉体のイオン伝導度を測定したところ、9.9×10-4S/cmであった。
 イオン伝導度(σ)の測定法は次の通りである。
 まず、電解質材料200mg~300mgを直径10mmの円筒形状に圧粉成形したものを測定用試料とした(試料断面積S=0.785cm)。ノギスで円筒状試料の高さを測定し、それをL(cm)とした。その圧粉体試料片の上下から電極端子を取り、交流インピーダンス法により測定し(周波数範囲:5MHz~0.5Hz)、Cole-Coleプロットを得た。結果を図3に示す。
 高周波側領域に観測される円弧の右端付近で、-Z’’(Ω)が最小となる点での実数部Z’(Ω)を電解質のバルク抵抗R(Ω)とし、以下式に従い、イオン伝導度σを計算した。
R=ρ(L/S)、σ=1/ρ
 尚、試料片端面から測定器までのリードの距離が長いと、円弧がはっきりと観測されない場合がある。本実施例ではリードの距離を約60cmとして測定した。
 次に、加熱した圧粉体を乳鉢で粉砕し、その試料の耐加水分解性を評価した。耐加水分解性は、下記方法により硫化水素濃度平均値を測定した評価した。硫化水素濃度平均値は20.2ppmであった。結果を表1に示す。
 硫化水素濃度平均値は、図4に示す装置を用いて硫化水素の発生量を測定して求めた。
 まず、露点-80℃の環境の窒素グローボックス内で試料を乳鉢でよく粉砕した。この粉砕した試料0.1gを100mlシュレンク瓶内に封じて、図4に示した位置にセットした。
 次に、一旦水中に通した空気を500ml/分でシュレンク瓶内を流通させた。流通開始直後にシュレンク瓶内の空気中の湿度は、80~90%となっていた。流通開始1分後~1分45秒後にシュレンク瓶から排出されたガスを捕集して測定用のサンプルガスとした。
 サンプルガスは、三菱化学アナリテック製TS-100を用いて紫外蛍光法により硫黄分を定量して、硫化水素濃度を算出した。尚、ガスサンプルをアジレント6890(硫黄選択検出器(SIEVERS355)付)を用いてガスクロマトグラフにて定性分析したところ、硫黄分は99%以上硫化水素ガスになっていることを確認できた。
 流通開始5分後~5分45秒後、流通開始10分後~10分45秒後、流通開始20分後~20分45秒後、流通開始60分後~60分45秒後にシュレンク瓶から排出されたガスについても同様に測定した。
 図5にウェットエア流通時間と硫化水素濃度の関係の一例を示す。曲線は各測定点をスムージングしたもので、この曲線と縦軸、横軸で囲まれた面積(ppm・分)を時間60分で除することにより、硫化水素濃度平均値(ppm)を求めた。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例2[硫化物系固体電解質ガラスの加熱処理]
 ステンレス板の温度を250℃とした以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約110℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、84.9ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.07であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例3[硫化物系固体電解質ガラスの加熱処理]
 熱処理時間を1分とした以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約140℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、85.2ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.08であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例4[硫化物系固体電解質ガラスの加熱処理]
 製造例3で得られた硫化物系固体電解質ガラスを用いた以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約140℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、85.2ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.08であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例5[硫化物系固体電解質ガラスの加熱処理]
 製造例4で得られた硫化物系固体電解質ガラスを用い、ステンレス板の温度を210℃、熱処理時間を1分とした以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約120℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、83.1ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.06であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例6[硫化物系固体電解質ガラスの加熱処理]
 製造例5で得られた硫化物系固体電解質ガラスを用い、熱処理温度を210℃とした以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約120℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、83.0ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.07であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
実施例7[硫化物系固体電解質ガラスの加熱処理]
 製造例6で得られた硫化物系固体電解質ガラスを用いた以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約140℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、85.0ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.12であった。
 また、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。このことから本実施例で得られた高いイオン伝導度は、非特許文献1で見られたような融着効果によるものでないことが確認された。
比較例1[硫化物系固体電解質ガラスの加熱処理]
 製造例2で得られた硫化物系固体電解質ガラス粉体をステンレス管に投入し、予め300℃に加熱したオーブンにセットし、2時間放置した。上記粉体300mgを直径10mmの円筒形状に圧粉成形し、実施例1と同様にしてその圧粉体のイオン伝導度σを測定した。尚、平均昇温速度は、約5℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、85.1ppmに第1ピークを示し、他のピークの第1ピークに対する強度比のうちで最大のものは0.10未満であった。
 また、圧粉体を乳鉢で粉砕し、その試料について実施例1と同様にして硫化水素濃度平均値を測定した。結果を表1に示す。
 さらに、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。
 尚、オーブンにて加熱したため、硫化物系固体電解質ガラス粉体が300℃になるには約60分の時間を有した。即ち、この加熱過程での平均の昇温速度は約5℃/分であった。ガラス粉体の温度と加熱時間の関係を図2に示す。
比較例2[硫化物系固体電解質ガラスの加熱処理]
 製造例7で得られた硫化物系固体電解質ガラスを用いた以外は、実施例1と同様に熱処理を行い、イオン伝導度σ及び硫化水素濃度平均値を測定した。結果を表1に示す。尚、平均昇温速度は、約140℃/分であった。
 製造例2と同様に31P-NMR測定を行ったところ、86.1ppm(第1ピーク)と91.2ppmにピークを示した。前者(第1ピーク)に対する後者のピーク強度は1.17であった。
 さらに、乳鉢で粉砕した試料について、再度、圧粉体を作製しイオン伝導度を測定したが、その値は上記の値とほぼ同じであった。
 実施例1~7の硫化物系ガラスセラミックスはいずれも、イオン伝導度が高く、また、耐加水分解性にも優れており比較的高い露点環境で使用できる。このような材料はこれまで知られていなかった。
 比較例1の硫化物系ガラスセラミックスは、耐加水分解性には優れるが、イオン伝導度が低く電池用途に適さない。比較例2の硫化物系ガラスセラミックスは、高いイオン伝導度を示すが、耐加水分解性に劣っていた。本材料では作業環境の露点を上げることは難しい。
Figure JPOXMLDOC01-appb-T000001
 本発明の固体電解質は、リチウムイオン電池の部材に用いることができる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献及び本願のパリ優先の基礎となる日本出願明細書の内容を全てここに援用する。

Claims (15)

  1.  構成成分として、リチウム、リン及び硫黄を含み、
     31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピーク(第1ピーク)を有し、
     前記81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は有していても前記第1ピークに対するピーク強度比が0.5以下であり、
     イオン伝導度が5×10-4S/cm以上である固体電解質。
  2.  構成成分として、リチウム又はナトリウム、リン並びに硫黄を含み、
     イオン伝導度が5×10-4S/cm以上であり、
     100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である固体電解質。
  3.  構成成分として、リチウム又はナトリウム、リン並びに硫黄を含むガラスを平均20℃/分以上で昇温して、前記ガラスのガラス転移温度~結晶化温度+120℃で0.005分~10時間加熱して得られた請求項2に記載の固体電解質。
  4.  100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である請求項1に記載の固体電解質。
  5.  構成成分として、さらにハロゲンを含む請求項1~4のいずれかに記載の固体電解質。
  6.  請求項1~5のいずれかに記載の固体電解質を含む電解質層。
  7.  請求項1~5のいずれかに記載の固体電解質を用いて製造された電解質層。
  8.  請求項1~5のいずれかに記載の固体電解質を含む電極。
  9.  請求項1~5のいずれかに記載の固体電解質を用いて製造された電極。
  10.  請求項6及び7に記載の電解質層、並びに請求項8及び9に記載の電極のうち少なくとも1つを含む電池。
  11.  正極層、電解質層及び負極層の少なくとも1つが、請求項1~5のいずれかに記載の固体電解質を用いて製造された電池。
  12.  構成成分として、リチウム又はナトリウム、リン並びに硫黄を含むガラスを平均20℃/分以上で昇温して、前記ガラスのガラス転移温度~結晶化温度+120℃で0.005分~10時間加熱することを含む固体電解質の製造方法。
  13.  製造される固体電解質が、31P-NMRにおいて81.0ppm以上88.0ppm以下の領域にピーク(第1ピーク)を有し、
     前記81.0ppm以上88.0ppm以下の領域以外にピークを有さないか、又は有していても前記第1ピークに対するピーク強度比が0.5以下であり、
     イオン伝導度が5×10-4S/cm以上である請求項12記載の固体電解質の製造方法。
  14.  製造される固体電解質のイオン伝導度が5×10-4S/cm以上であり、
     100mlの容器に0.1gの固体電解質を入れて、この容器に湿度80~90%の空気を500ml/分で60分間通じたときの前記空気中の硫化水素濃度平均値が200ppm以下である請求項12又は13記載の固体電解質の製造方法。
  15.  前記ガラスをハロゲン元素を含む化合物とともに加熱する請求項12~14のいずれかに記載の固体電解質の製造方法。
PCT/JP2012/007670 2011-12-02 2012-11-29 固体電解質 WO2013080553A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/362,315 US20140315103A1 (en) 2011-12-02 2012-11-29 Solid electrolyte
CN201280059168.9A CN103959546A (zh) 2011-12-02 2012-11-29 固体电解质

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-264797 2011-12-02
JP2011264797A JP6077740B2 (ja) 2011-12-02 2011-12-02 固体電解質

Publications (1)

Publication Number Publication Date
WO2013080553A1 true WO2013080553A1 (ja) 2013-06-06

Family

ID=48535042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007670 WO2013080553A1 (ja) 2011-12-02 2012-11-29 固体電解質

Country Status (4)

Country Link
US (1) US20140315103A1 (ja)
JP (1) JP6077740B2 (ja)
CN (1) CN103959546A (ja)
WO (1) WO2013080553A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147937B2 (en) 2013-09-02 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material
US10833359B2 (en) 2017-09-08 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material including sulfide layer and oxide layer, and battery incorporating the solid electrolyte material

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015002052A (ja) * 2013-06-14 2015-01-05 出光興産株式会社 正極合材及びそれを用いた固体リチウム電池
JP2016072077A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
JP6761928B2 (ja) * 2014-12-05 2020-09-30 国立大学法人豊橋技術科学大学 固体電解質ガラス及びその製造方法、固体電解質ガラス用前駆体、サスペンジョン、リチウムイオン電池用電極並びにリチウムイオン電池
US10807877B2 (en) * 2016-10-28 2020-10-20 Toyota Motor Europe Increasing ionic conductivity of LiTi2(PS4)3 by Al doping
US10680281B2 (en) * 2017-04-06 2020-06-09 GM Global Technology Operations LLC Sulfide and oxy-sulfide glass and glass-ceramic films for batteries incorporating metallic anodes
KR102359583B1 (ko) 2017-05-08 2022-02-07 현대자동차주식회사 고체전해질 및 이를 포함하는 전고체 전지의 제조방법
DE112018002679T5 (de) * 2017-05-24 2020-03-05 Idemitsu Kosan Co., Ltd. Sulfid-festelektrolyt
JP6589940B2 (ja) * 2017-06-06 2019-10-16 トヨタ自動車株式会社 硫化物固体電解質材料の製造方法
CN109326773B (zh) * 2017-08-01 2021-12-28 天极新能源实业(深圳)有限公司 一种电极活性材料、电池电极及半导体纳米电池
JP2019200851A (ja) 2018-05-14 2019-11-21 トヨタ自動車株式会社 固体電解質、全固体電池および固体電解質の製造方法
US11152640B2 (en) * 2018-10-05 2021-10-19 University Of Maryland Lithium bismuth oxide compounds as Li super-ionic conductor, solid electrolyte, and coating layer for Li metal battery and Li-ion battery
CN111864256B (zh) * 2019-04-25 2021-07-13 宁德时代新能源科技股份有限公司 硫化物固态电解质及全固态锂二次电池
CN110120509B (zh) * 2019-05-23 2021-01-12 桑德新能源技术开发有限公司 一种全固态电池及其制备方法
CN110120508B (zh) * 2019-05-23 2021-02-19 桑德新能源技术开发有限公司 一种全固态电池及其制备方法
WO2021065230A1 (ja) * 2019-10-02 2021-04-08 古河機械金属株式会社 硫化物系無機固体電解質材料の製造方法
US20240030488A1 (en) 2020-11-30 2024-01-25 Furukawa Co., Ltd. Sulfide-based inorganic solid electrolyte material, solid electrolyte, solid electrolyte membrane, and lithium ion battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095342A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
WO2007066539A1 (ja) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性硫化物系固体電解質及びそれを用いた全固体リチウム電池
JP2010218827A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 結晶化硫化物固体電解質材料の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5021137A (en) * 1986-07-25 1991-06-04 Ceramatec, Inc. Ceramic solid electrolyte based electrochemical oxygen concentrator cell
JP2003208919A (ja) * 2002-01-15 2003-07-25 Idemitsu Petrochem Co Ltd リチウムイオン伝導性硫化物ガラス及びガラスセラミックスの製造方法並びに該ガラスセラミックスを用いた全固体型電池
CN100514510C (zh) * 2004-06-04 2009-07-15 出光兴产株式会社 高性能全固体锂电池
DE102007048289A1 (de) * 2007-10-08 2009-04-09 Universität Siegen Lithium-Argyrodite
JP5448038B2 (ja) * 2009-02-27 2014-03-19 公立大学法人大阪府立大学 硫化物固体電解質材料
CN103003890B (zh) * 2010-07-22 2016-01-20 丰田自动车株式会社 硫化物固体电解质玻璃、硫化物固体电解质玻璃的制造方法和锂固体电池
JP5553004B2 (ja) * 2010-11-08 2014-07-16 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および硫化物固体電解質材料の製造方法
JP5443445B2 (ja) * 2011-07-06 2014-03-19 トヨタ自動車株式会社 硫化物固体電解質材料、リチウム固体電池、および、硫化物固体電解質材料の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004095342A (ja) * 2002-08-30 2004-03-25 Matsushita Electric Ind Co Ltd 全固体電池とその製造方法
WO2007066539A1 (ja) * 2005-12-09 2007-06-14 Idemitsu Kosan Co., Ltd. リチウムイオン伝導性硫化物系固体電解質及びそれを用いた全固体リチウム電池
JP2010218827A (ja) * 2009-03-16 2010-09-30 Toyota Motor Corp 結晶化硫化物固体電解質材料の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HELLMUT ECKERT ET AL.: "Structural transformation of non-oxide chalcogenide glasses. The short- range order of lithium sulfide (Li2S)- phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR", CHEM. MATER., vol. 2, no. 3, May 1990 (1990-05-01), pages 273 - 279, XP002514101 *
SHO NAKAGAWA ET AL.: "Lithium Niji Denchiyo Kotai Denkaishitsu no Kozo Kaiseki", IDEMITSU TECHNICAL REPORT, 2008, pages 81 - 90 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10147937B2 (en) 2013-09-02 2018-12-04 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material
EP3043412B1 (en) * 2013-09-02 2020-04-29 Mitsubishi Gas Chemical Company, Inc. Solid-state battery and method for manufacturing electrode active material
US10833359B2 (en) 2017-09-08 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Solid electrolyte material including sulfide layer and oxide layer, and battery incorporating the solid electrolyte material

Also Published As

Publication number Publication date
JP2013118092A (ja) 2013-06-13
CN103959546A (zh) 2014-07-30
JP6077740B2 (ja) 2017-02-08
US20140315103A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP6077740B2 (ja) 固体電解質
JP7178452B2 (ja) 硫化物固体電解質
JP6234665B2 (ja) 固体電解質
JP6139864B2 (ja) 固体電解質成形体及びその製造方法、並びに全固体電池
US9859562B2 (en) Positive electrode mix
JP5841384B2 (ja) 負極合材及びそれを用いた全固体リチウムイオン電池
JP2016134316A (ja) 固体電解質
JP2012243408A (ja) リチウムイオン電池
JP5898965B2 (ja) 硫化物系固体電解質組成物
US11183708B2 (en) Method for producing sulfide solid electrolyte and sulfur-based material
JP6518745B2 (ja) 結晶化固体電解質
JP6073107B2 (ja) 固体電解質
JP2017045613A (ja) 硫化物固体電解質及びその製造方法
JP2017199631A (ja) 硫化物固体電解質、電極合材及びリチウムイオン電池
JP5864993B2 (ja) 複合電極材料及びその製造方法、並びに該複合電極材料を用いたリチウム電池
JP2012190772A (ja) 全固体リチウムイオン電池及び正極合材
JP2014192093A (ja) 負極合材
JP2014093263A (ja) 固体電解質及びリチウム電池
JP2013069415A (ja) 負極合材及びそれを用いた全固体リチウムイオン電池
JP5921492B2 (ja) 負極合材、電極及びリチウムイオン電池
JP5940345B2 (ja) リチウムイオン電池
JP6212592B2 (ja) 負極合材、電極及びリチウムイオン電池
JP2012160415A (ja) 二次電池用電極材料、電極及び二次電池
JP2014160629A (ja) 負極材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12854291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14362315

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12854291

Country of ref document: EP

Kind code of ref document: A1