WO2013073574A1 - 半導体装置およびその製造方法、電子部品 - Google Patents

半導体装置およびその製造方法、電子部品 Download PDF

Info

Publication number
WO2013073574A1
WO2013073574A1 PCT/JP2012/079509 JP2012079509W WO2013073574A1 WO 2013073574 A1 WO2013073574 A1 WO 2013073574A1 JP 2012079509 W JP2012079509 W JP 2012079509W WO 2013073574 A1 WO2013073574 A1 WO 2013073574A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating film
electrode
semiconductor device
wiring
forming
Prior art date
Application number
PCT/JP2012/079509
Other languages
English (en)
French (fr)
Inventor
敏郎 三橋
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to CN201280050894.4A priority Critical patent/CN103875063B/zh
Priority to US14/345,234 priority patent/US9478481B2/en
Publication of WO2013073574A1 publication Critical patent/WO2013073574A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/485Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body consisting of layered constructions comprising conductive layers and insulating layers, e.g. planar contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/481Internal lead connections, e.g. via connections, feedthrough structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/486Via connections through the substrate with or without pins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/147Semiconductor insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • H01L24/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68318Auxiliary support including means facilitating the separation of a device or wafer from the auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68372Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support a device or wafer when forming electrical connections thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/05001Internal layers
    • H01L2224/05005Structure
    • H01L2224/05009Bonding area integrally formed with a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05647Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/11001Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate
    • H01L2224/11002Involving a temporary auxiliary member not forming part of the manufacturing apparatus, e.g. removable or sacrificial coating, film or substrate for supporting the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1302Disposition
    • H01L2224/13025Disposition the bump connector being disposed on a via connection of the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16235Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a via metallisation of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • H01L2224/171Disposition
    • H01L2224/1718Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/17181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to a semiconductor device having a through electrode, a method for manufacturing the same, and an electronic component (package) including the semiconductor device.
  • Patent Documents 1 and 2 A semiconductor device having a through electrode is disclosed in, for example, Patent Documents 1 and 2.
  • the semiconductor devices of Patent Documents 1 and 2 include a Si substrate, a through electrode provided on the Si substrate, an electrode pad formed on the surface of the Si substrate, and a rearrangement wiring layer formed on the electrode pad. .
  • Such a semiconductor device is manufactured, for example, by the following method. First, electrode pads are formed on the surface of the Si substrate via an insulating film, and a rearrangement wiring layer is formed. Next, dry etching is performed from the back surface of the Si substrate to the middle of the Si substrate using a first etching gas (SF 6 ). Thereafter, the remaining portion of the Si substrate is dry-etched using a second etching gas (C 4 F 8 ) to form a through hole reaching the electrode pad. Then, an insulating film is formed on the side surface of the through hole, and a through electrode is formed inside the insulating film. Through the above steps, a semiconductor device having a through electrode is obtained.
  • SF 6 first etching gas
  • C 4 F 8 second etching gas
  • a semiconductor device selectively includes a semiconductor substrate, a gate insulating film formed on the surface of the semiconductor substrate, an interlayer insulating film formed on the gate insulating film, and a predetermined pattern on the interlayer insulating film.
  • a surface electrode including a plurality of wirings having a buried damascene structure, and an inter-wiring insulating film disposed between the wirings adjacent to each other using a part of the interlayer insulating film, and the surface of the semiconductor substrate A through electrode penetrating between the back surface and electrically connected to the front surface electrode; and a via insulating film provided between the through electrode and the semiconductor substrate.
  • the semiconductor device includes, for example, a step of forming a gate insulating film on a surface of a semiconductor substrate, a step of selectively forming an electrode layer having a predetermined pattern on the gate insulating film, A step of forming an interlayer insulating film so as to cover the electrode layer; and a plurality of wirings having the same pattern as the electrode layer by selectively embedding an electrode material having the same pattern as the electrode layer in the interlayer insulating film by a damascene method Forming a surface electrode including a part of the interlayer insulating film between the wirings adjacent to each other and including an inter-wiring insulating film having an opposite pattern to the electrode layer; and from the back surface of the semiconductor substrate A through hole is formed by removing the semiconductor substrate and the electrode layer by etching, and at the same time, a protrusion having the same pattern as the inter-wiring insulating film is formed in the through hole.
  • the semiconductor device also includes a step of selectively embedding a predetermined pattern of an insulating layer on the surface of the semiconductor substrate, a step of forming a gate insulating film on the surface of the semiconductor substrate, and an interlayer insulation on the gate insulating film.
  • the semiconductor device can be manufactured by the method for manufacturing a semiconductor device of the present invention (claim 16).
  • an electrode layer having a pattern opposite to the inter-wiring insulating film of the surface electrode or an insulating layer having the same pattern as the inter-wiring insulating film of the surface electrode is formed in advance.
  • the via insulating film is raised in the same pattern as the inter-wiring insulating film at the position directly above the etching residue (the position immediately above the inter-wiring insulating film). Is done. That is, in the via insulating film, a step is generated between a portion where there is an etching residue and a portion where there is no etching residue. In the via insulating film etching step, the above-mentioned raised portion becomes an etching margin of the same pattern as the inter-wiring insulating film for the non-raised portion, so the via insulating film is etched until the surface electrode wiring is exposed. Even so, the etching amount of the inter-wiring insulating film by the etching can be eliminated or reduced.
  • the electrode material is plated and grown, the seed film can be formed on the inner surface of the through-hole with a good film property, so that generation of voids (voids) can be prevented.
  • generation of voids in the through electrode can be prevented, and a semiconductor device having higher reliability than the conventional one can be realized.
  • the surface electrode is opposed to the through electrode by forming a through hole having a diameter smaller than that of the surface electrode.
  • the step of forming the electrode layer is performed in the same step as the gate electrode of the semiconductor element formed on the surface of the semiconductor substrate (claim 14), wherein the semiconductor substrate is a silicon substrate.
  • the semiconductor substrate is a silicon substrate.
  • the step of forming the insulating layer includes the step of forming the shallow trench of the predetermined pattern by etching the semiconductor substrate from the surface, and filling the insulating material into the shallow trench, thereby forming the insulating layer. And a step of forming the semiconductor substrate so as to be embedded on the back surface side with respect to the front surface of the semiconductor substrate.
  • STI Shallow Trench Isolation
  • the wiring and the inter-wiring insulating film are formed flush with each other on a connection surface of the surface electrode with the through electrode. According to this configuration, the coating property of the seed film on the bottom surface of the through hole can be further improved.
  • the wiring and the inter-wiring insulating film may be alternately arranged in a stripe pattern on the surface electrode.
  • the wiring may include a Cu wiring (Claim 6).
  • the surface electrode may include a multi-layer electrode laminated via a plurality of the interlayer insulating films.
  • the semiconductor device of the present invention may include a surface bump for external connection arranged at a position immediately above the through electrode so that the surface electrode is placed between the through electrode. Item 8) may include a back-surface bump for external connection arranged at an end of the through electrode on the back surface side (Claim 9).
  • the through electrode may be formed in a columnar shape (claim 10).
  • the surface of the semiconductor substrate may include an element formation surface on which a plurality of semiconductor elements are formed.
  • the electronic component of the present invention according to any one of claims 1 to 11, wherein an interposer having a plurality of external terminals on a back surface and the surface of the interposer are stacked with the surface facing upward.
  • FIG. 1 is a schematic cross-sectional view of an electronic component according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing the system configuration of the electronic component shown in FIG.
  • FIG. 3 is a layout diagram of through electrodes in the Si interposer and the arithmetic chip in FIG.
  • FIG. 4 is a schematic cross-sectional view for explaining the structure of the arithmetic chip in FIG. 1 (first embodiment), and shows an enlarged portion where the through electrode is provided.
  • FIG. 5 is a diagram showing an example of the shape of the lower insulating film in FIG. 4, and shows an enlarged portion surrounded by a broken line V in FIG. 4.
  • 6 is a layout diagram of the surface pad (lower pad) of FIG.
  • FIG. 1 is a schematic cross-sectional view of an electronic component according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing the system configuration of the electronic component shown in FIG.
  • FIG. 3 is a layout diagram of through
  • FIG. 7A is a diagram illustrating a part of the manufacturing process of the arithmetic chip in FIG. 4.
  • FIG. 7B is a diagram showing a step subsequent to FIG. 7A.
  • FIG. 7C is a diagram showing a step subsequent to FIG. 7B.
  • FIG. 7D is a diagram showing a step subsequent to FIG. 7C.
  • FIG. 7E is a diagram showing a step subsequent to FIG. 7D.
  • FIG. 7F is a diagram showing a step subsequent to that in FIG. 7E.
  • FIG. 7G is a diagram showing a step subsequent to that in FIG. 7F.
  • FIG. 7H is a diagram showing a step subsequent to FIG. 7G.
  • FIG. 7I is a diagram showing a step subsequent to that in FIG. 7H.
  • FIG. 7J is a diagram showing a step subsequent to that in FIG. 7I.
  • FIG. 7K is a diagram showing a step subsequent to that in FIG. 7J.
  • FIG. 7L is a diagram showing a step subsequent to that in FIG. 7K.
  • FIG. 7M is a diagram showing a step subsequent to that in FIG. 7L.
  • 7N is a diagram showing a step subsequent to that in FIG. 7M.
  • FIG. 7O is a diagram showing a step subsequent to that in FIG. 7N.
  • FIG. 7P is a view showing the next step of FIG.
  • FIG. 7Q is a diagram showing a step subsequent to that in FIG. 7P.
  • FIG. 8 is a schematic cross-sectional view for explaining the structure of the arithmetic chip in FIG.
  • FIG. 9A is a diagram illustrating a part of the manufacturing process of the arithmetic chip in FIG. 8.
  • FIG. 9B is a diagram showing a step subsequent to FIG. 9A.
  • FIG. 9C is a diagram showing a step subsequent to FIG. 9B.
  • FIG. 9D is a diagram showing a step subsequent to FIG. 9C.
  • FIG. 9E is a diagram showing a step subsequent to that in FIG. 9D.
  • FIG. 9F is a diagram showing a step subsequent to that in FIG. 9E.
  • FIG. 9G is a diagram showing a step subsequent to that in FIG. 9F.
  • FIG. 9H is a diagram showing a step subsequent to that in FIG. 9G.
  • FIG. 9A is a diagram illustrating a part of the manufacturing process of the arithmetic chip in FIG. 8.
  • FIG. 9B is a diagram showing a step subsequent to FIG. 9A.
  • FIG. 9C is a diagram showing a step subsequent to FIG.
  • FIG. 9I is a diagram showing a step subsequent to that in FIG. 9H.
  • FIG. 9J is a diagram showing a step subsequent to FIG. 9I.
  • FIG. 9K is a diagram showing a step subsequent to that in FIG. 9J.
  • FIG. 9L is a diagram showing a step subsequent to that in FIG. 9K.
  • FIG. 9M is a diagram showing a step subsequent to that in FIG. 9L.
  • FIG. 9N is a diagram showing a step subsequent to FIG. 9M.
  • FIG. 9O is a diagram showing a step subsequent to that in FIG. 9N.
  • FIG. 9P is a diagram showing a step subsequent to FIG. 9O.
  • FIG. 1 is a schematic cross-sectional view of an electronic component 1 according to an embodiment of the present invention.
  • FIG. 2 is a block diagram schematically showing the system configuration of the electronic component 1 of FIG.
  • the electronic component 1 includes a resin interposer 2, an arithmetic chip 4, a Si interposer 5 and a memory chip 6 and a resin package 7 stacked in order from the surface 3 of the resin interposer 2, and includes a power supply wiring 8 and a signal system inside. Wiring 9 is incorporated.
  • the arithmetic chip 4, The Si interposer 5 and the memory chip 6 are examples of a plurality of semiconductor devices stacked on the surface 3 of the resin interposer 2, and are not limited thereto.
  • the resin interposer 2 is made of a resin (for example, epoxy resin) substrate, and the arithmetic chip 4 and the like are laminated on the front surface 3 thereof, and a plurality of external terminals 11 are formed on the back surface 10 thereof.
  • the size of the resin interposer 2 is 14 mm square, and may be, for example, 10 mm square to 15 mm square.
  • the thickness is 0.7 mm, and may be, for example, 0.6 mm to 0.7 mm.
  • External terminal 11 is a terminal for electrical connection with a land (electrode) on a mounting board (printed wiring board).
  • the external terminals 11 are formed in a ball shape using a metal material such as solder, for example, and are arranged in a matrix at intervals, for example.
  • Each external terminal 11 is electrically connected to a back surface bump 19 (described later) of the arithmetic chip 4 through a conductive via (not shown) penetrating between the front surface 3 and the back surface 10 of the resin interposer 2. ing.
  • the arithmetic chip 4, the Si interposer 5 and the memory chip 6 are formed to have the same size, and are arranged and stacked so that their side surfaces are aligned.
  • the size of these chips is 10 mm square, and may be, for example, 6 mm square to 10 mm square. It is smaller than the resin interposer 2 and the thickness of the chip is 0.05 mm, and may be 0.04 mm to 0.06 mm, for example.
  • the arithmetic chip 4 as a semiconductor device between the memory chip 6 as the second semiconductor device in the uppermost layer and the resin interposer 2 has a logic as shown in FIG. (Logic)
  • a control circuit 12 is incorporated.
  • the logic / control circuit 12 is connected to the power supply system wiring 8 and the signal system wiring 9 of the electronic component 1.
  • the arithmetic chip 4 has a plurality of semiconductor elements such as transistors (for example, CMOS transistors), diodes, resistors, and capacitors that constitute the logic / control circuit 12 formed on the surface 13 thereof. That is, in the arithmetic chip 4, the surface 13 facing the memory chip 6 is an element forming surface, and the arithmetic chip 4 is laminated on the resin interposer 2 with the element forming surface 13 facing upward.
  • the arithmetic chip 4 and the Si interposer 5 as a semiconductor device are formed with a plurality of through-electrodes 17 and 18 penetrating between the front surfaces 13 and 15 and the back surfaces 14 and 16, respectively.
  • the back surface bumps 19 and 20 are provided one by one at the end portions on the back surfaces 14 and 16 side of the 18.
  • the back bumps 19 and 20 are formed in a ball shape using a metal material such as solder, for example. Further, the back bump 19 of the arithmetic chip 4 is electrically connected to the semiconductor element on the front surface 13.
  • the uppermost memory chip 6 includes a memory cell array 21 (in this embodiment, SRAM: Static Random Access Memory cell array) and a control circuit 22 are incorporated, and the power supply wiring 8 and the signal wiring 9 of the electronic component 1 are connected to these circuits 21 and 22.
  • the control circuit 22 is connected to the memory cell array 21 by the power supply wiring 8
  • the memory cell array 21 is connected to the logic / control circuit 12 of the arithmetic chip 4 by the signal wiring 9.
  • a plurality of semiconductor elements such as transistors, diodes, resistors, and capacitors constituting the memory cell array 21 and the control circuit 22 are formed on the back surface 23.
  • the back surface 23 facing the arithmetic chip 4 is an element forming surface, and the memory chip 6 is laminated on the resin interposer 2 with the element forming surface 23 facing downward. Further, the memory chip 6 is provided with a plurality of back surface bumps 24 on the back surface 23 thereof.
  • the back bump 24 is formed in a ball shape using a metal material such as solder, for example.
  • the back surface bump 24 is electrically connected to the semiconductor element on the back surface 23.
  • the back surface bumps 24 of the memory chip 6 are relayed by the through electrodes 18 and the back surface bumps 20 of the Si interposer 5 and are electrically connected to the through electrodes 17 and the back surface bumps 19 of the arithmetic chip 4 having different pitches. Thereby, the plurality of stacked semiconductor chips are electrically connected to each other and are electrically connected to the external terminals 11 of the resin interposer 2.
  • the Si interposer 5 responsible for electrical relay is disposed between them.
  • the terminal pitch is exactly the same.
  • the Si interposer 5 may be omitted.
  • the resin package 7 (for example, epoxy resin) seals only the front surface 3 side of the resin interposer 2 so that the back surface 10 of the resin interposer 2 is exposed, and the arithmetic chip 4, the Si interposer 5 and the memory chip 6 are These chips are entirely covered so that they are not exposed.
  • the resin package 7 is formed so that the side surface thereof is flush with the side surface of the resin interposer 2.
  • FIG. 3 is a layout diagram of the through electrodes 17 and 18 in the Si interposer 5 and the arithmetic chip 4 of FIG. As shown in FIG. 1, in this embodiment, through electrodes 17 and 18 are provided in the arithmetic chip 4 and the Si interposer 5 among the plurality of stacked semiconductor chips 4 to 6, respectively.
  • the through electrodes 17 arranged in a plurality of rows are provided in a ring shape along the peripheral edge 26 surrounding the central portion 25 of the arithmetic chip 4.
  • the through-electrodes 17 of the arithmetic chip 4 may be provided in an annular shape along the peripheral edge 26 of the arithmetic chip 4 as a whole, for example, randomly arranged at random.
  • the arithmetic chip 4 can send electric power and an electric signal to the memory chip 6 by using the through electrode 17. That is, the through electrode 17 of the arithmetic chip 4 forms the power supply system wiring 8 and the signal system wiring 9 of the electronic component 1, and power and signals are transmitted through the wirings 8 and 9.
  • the single row of through electrodes 18 are provided in a ring shape along the peripheral edge 28 surrounding the central portion 27 of the Si interposer 5 (hereinafter, these through electrodes 18 are connected to the peripheral edge). 28), and a plurality of groups are arranged in a matrix in the central portion 27 surrounded by the peripheral edge portion 28, with the plurality of through electrodes 18 as one group (hereinafter referred to as a matrix). These through electrodes 18 may be referred to as the through electrodes 18 in the central portion 27).
  • each through electrode 18 in the peripheral portion 28 is arranged directly above each through electrode 17 of the arithmetic chip 4 so as to be arranged on the same straight line as each through electrode 17 of the arithmetic chip 4. .
  • a plurality of blocks are provided with the plurality of through electrodes 18 arranged in a matrix as one block.
  • eight groups are arranged in a matrix of 2 rows and 4 columns (2 ⁇ 4), and each group has through electrodes 18 of 4 rows and 64 columns (4 ⁇ 64).
  • Two blocks are provided as one block, that is, a total of 512 through electrodes 18 are provided per group. Since there are eight groups, 4096 (512 ⁇ 8 groups) through electrodes 18 are provided in the entire Si interposer 5.
  • the Si interposer 5 uses, for example, the through electrode 18 in the central portion 27 to center the arithmetic chip 4 (for example, the logic / control circuit 12) and the memory chip 6 (for example, the memory cell array 21).
  • An electric signal having the number of bits (4096 bits in this embodiment) of the number of through-electrodes 18 of the unit 27 can be relayed. That is, the through electrode 18 in the central portion 27 of the Si interposer 5 forms the signal system wiring 9 of the electronic component 1, and electrical signals are transmitted and received bidirectionally by the wiring 9.
  • the arrangement and number of the through electrodes 18 are merely examples of the present invention, and can be appropriately changed according to the design of each electronic component 1. For example, 256 penetration electrodes 18 in one block may be arranged in a matrix of 8 rows and 32 columns (8 ⁇ 32).
  • the Si interposer 5 can relay the electric power and the electric signal sent from the arithmetic chip 4 to the memory chip 6 (for example, the control circuit 22), for example, using the through electrode 18 of the peripheral portion 28. That is, the through electrode 18 at the peripheral edge 28 of the Si interposer 5 forms the power supply system wiring 8 and the signal system wiring 9 of the electronic component 1, and electric power and electrical signals are transmitted by the wirings 8 and 9.
  • FIG. 4 is a schematic cross-sectional view for explaining the structure (first embodiment) of the arithmetic chip 4 of FIG. 1, and shows an enlarged portion where the through electrode 17 is provided.
  • FIG. 5 is a diagram showing an example of the shape of the lower insulating film 43 in FIG. 4, and shows an enlarged portion surrounded by a broken line V in FIG.
  • FIG. 6 is a layout diagram of the surface pad 37 (lower pad 40) of FIG.
  • the arithmetic chip 4 includes a Si substrate 29 as a semiconductor substrate constituting the main body of the arithmetic chip 4, a gate insulating film 30, an interlayer insulating film 31 (first to fifth interlayer insulating films 32 to 36), and a surface electrode.
  • a front surface pad 37, a through electrode 17, a via insulating film 38, a front surface bump 39, and a back surface bump 19 are included.
  • the Si substrate 29 is, for example, a substrate having a thickness of 30 ⁇ m to 50 ⁇ m, and a gate insulating film 30 and a plurality of (in this embodiment, five layers) interlayer insulating films 31 are formed in this order on the surface 13 (element forming surface). Are stacked.
  • the gate insulating film 30 is a film integral with a gate insulating film included in a transistor (not shown) formed on the surface 13 and is shared with the transistor.
  • the surface pad 37 is formed in a rectangular shape, and in this embodiment, has a multilayer pad structure embedded in a plurality of interlayer insulating films.
  • the front surface pad 37 is formed in a square shape having a length and width L 1 ⁇ L 2 of 25.7 ⁇ m ⁇ 25.7 ⁇ m (when the design rule is 90 nm), and the third interlayer insulation
  • Each of the second interlayer insulating film 33 and the fourth interlayer insulating film 35 disposed above and below the film 34 has a two-layer pad structure in which a surface pad 37 is embedded.
  • the surface pad 37 includes a lower pad 40 embedded in the second interlayer insulating film 33 and an upper pad 41 embedded in the fourth interlayer insulating film 35.
  • the surface pad 37 may be rectangular or circular.
  • the lower pad 40 has a damascene structure selectively embedded in the second interlayer insulating film 33 in a stripe pattern, and a second pad 42 between the lower wirings 42 made of copper (Cu) and the lower wirings 42 adjacent to each other. And a stripe-shaped lower insulating film 43 (inter-wiring insulating film) disposed using a part of the interlayer insulating film 33.
  • the lower wirings 42 and the lower insulating films 43 are alternately arranged in a stripe shape.
  • the width W 1 of the lower wiring 42 is about 1 ⁇ m
  • the width W 2 of the lower insulating film 43 is about 0.3 ⁇ m
  • the thickness T 1 of the lower pad 40 is about 0.3 ⁇ m.
  • the width W 1 and the width W 2 are not particularly limited as long as they do not cause dishing in the lower wiring 42 when the lower wiring 42 is embedded in the first interlayer insulating film 32 by the damascene method.
  • the shape of the lower insulating film 43 in the lower pad 40 may be flush with the lower wiring 42 on the connection surface with the through electrode 17.
  • the lower wiring 42 may be raised toward the through electrode 17 side.
  • the lower wiring 42 may be recessed on the opposite side of the through electrode 17.
  • the lower pads 40 may have the stripe directions regularly aligned in the same direction on the Si substrate 29 (the column on the right side of FIG. 6), or under the vertical stripes.
  • the stripe direction may be irregular, such that the side pads 40 and the lower pads 40 of the horizontal stripes are alternately arranged (the left column in FIG. 6).
  • the upper pad 41 also has an upper wiring 44 made of copper (Cu) having a damascene structure selectively embedded in the fourth interlayer insulating film 35 in a stripe pattern, and upper wirings adjacent to each other.
  • the 44 includes a stripe-shaped upper insulating film 45 (inter-wiring insulating film) disposed using a part of the fourth interlayer insulating film 35 between them, but the pitch P 1 (adjacent to each other) of the upper insulating film 45 is included. the distance between the upper insulating film 45) is different from the pitch P 2 of the lower insulating film 43.
  • the pitch P 1 of the upper insulating film 45 is made wider than the pitch P 2 of the lower insulating film 43, and the upper insulating film 45 is directly above the lower wiring 42 and has the same width as the lower wiring 42.
  • the width W 3 of the upper wiring 44 is wider than the width W 1 of the lower wiring 42, for example, about 1.8 ⁇ m.
  • the width W 3 and the width W 4 are not particularly limited as long as they do not cause dishing in the upper wiring 44 when the upper wiring 44 is embedded in the fourth interlayer insulating film 35 by the damascene method.
  • the shape of the lower insulating film 43 shown in FIGS. 5A to 5C can be applied to the shape of the upper insulating film 45, and the layout of the lower pad 40 shown in FIG. This can be applied to the layout of the pad 41.
  • a plurality of conductive materials (for example, tungsten (W)) penetrating the third interlayer insulating film 34 are provided between the lower wiring 42 of the lower pad 40 and the upper wiring 44 of the upper pad 41 that overlap each other. It is electrically connected via the via 46.
  • the layer structure of the surface pad 37 is not limited to a two-layer structure, and may be, for example, a three-layer structure, a four-layer structure, a five-layer structure, or a layer structure having more than that.
  • the wiring material of the surface pad 37 may be a metal material other than Cu as long as it can form a damascene structure.
  • the through electrode 17 is made of copper (Cu), and penetrates the Si substrate 29, the gate insulating film 30 and the first interlayer insulating film 32 from the back surface 14 of the Si substrate 29 perpendicularly to the back surface 14. It is formed in a cylindrical shape reaching the lower pad 40). Thereby, the through electrode 17 and the surface pad 37 are aligned on the same straight line in the thickness direction of the Si substrate 29.
  • the through electrode 17 and the surface pad 37 are not necessarily arranged on the same straight line.
  • the surface pad 37 leads rewiring or the like from the end of the through electrode 17 on the surface 13 side of the Si substrate 29. Thus, it may be arranged at a position away from the through electrode 17 in plan view.
  • each surface pad 40, 41 is opposed to the through electrode 17 in a plan view, and is opposed to the through electrode 17 in the same planar shape as the through electrode 17, and from the opposed portions 47, 48 in the lateral direction (Si substrate 29). Overhanging portion 49, surrounding the opposing portions 47, 48. 50.
  • the lower pad 40 of the multilayer surface pad 37 directly connected to the through electrode 17 is extended between the gate insulating film 30 and the interlayer insulating film 31 (first interlayer insulating film 32).
  • An electrode layer 51 having the same stripe pattern as that of the lower wiring 42 of the portion 49 is formed.
  • the electrode layer 51 is a layer formed in the same layer as a gate electrode (not shown) included in a transistor (not shown) formed on the surface 13, and is made of the same material as the Si substrate 29. Made of some polysilicon.
  • the material of the electrode layer 51 is preferably changed to the same material as that of the adopted substrate.
  • the via insulating film 38 is made of silicon oxide (SiO 2 ), and is provided between the through electrode 17 and the Si substrate 29 and over the entire back surface 14 of the Si substrate 29.
  • the via insulating film 38 includes a main body portion 52 that covers the side surface (circumferential surface) of the through electrode 17 and a back surface portion 53 that covers the back surface 14 of the Si substrate 29.
  • the main body portion 52 of the via insulating film 38 and the back surface portion 53 of the via insulating film 38 are integrally formed with each other.
  • the via insulating film 38 is formed so that the main body 52 is thinner than the back surface 53.
  • the main body 52 has a thickness of about 0.5 ⁇ m
  • the back surface 53 has a thickness of about 1 ⁇ m.
  • One surface bump 39 is arranged on the fifth interlayer insulating film 36 one by one at a position directly above the through electrode 17 so that the surface pad 37 is placed between the surface bump 39 and the through electrode 17.
  • Each surface bump 39 is electrically connected to the upper pad 41 that overlaps with each other through a conductive (for example, tungsten (W)) via 54 that penetrates the fourth interlayer insulating film 35.
  • Each surface bump 39 is connected to, for example, the back surface bump 20 (see FIG. 1) of the Si interposer 5 in a state where the Si interposer 5 is stacked on the arithmetic chip 4.
  • one back surface bump 19 is provided at each end of the through electrode 17 on the back surface 14 side.
  • the configuration of the arithmetic chip 4 described above is also employed in the Si interposer 5 that is a semiconductor substrate (Si substrate) on which the through electrodes 18 are formed.
  • 7A to 7Q are diagrams showing a part of the manufacturing process of the arithmetic chip 4 of FIG. 4 in the order of processes.
  • a semiconductor element is formed by ion implantation (for example, n-type ions, p-type ions) into the surface 13 of the Si substrate 29 by a known method. Impurity regions are formed.
  • a gate insulating film 30 is formed by a thermal oxidation method.
  • an electrode layer 51 is formed simultaneously with the gate electrode of the semiconductor element (MOSFET). By forming the electrode layer 51 in the same process as the gate electrode, the electrode layer 51 can be efficiently formed without increasing the number of processes.
  • a photoresist 55 (for example, an organic resist such as polyimide) having an opening in a region where the lower insulating film 43 is to be formed is formed on the electrode layer 51.
  • an etching gas is supplied to the electrode layer 51 through the photoresist 55 to dry-etch the electrode layer 51.
  • the electrode layer 51 is formed in the same pattern as the lower wiring 42 (a pattern opposite to the lower insulating film 43).
  • the photoresist 55 is removed.
  • a first interlayer insulating film 32, a second interlayer insulating film 33, and a lower layer are formed on the gate insulating film 30 by a known semiconductor device manufacturing technique such as a damascene method, photolithography, or CVD.
  • the side pad 40, the third interlayer insulating film 34, the via 46, the fourth interlayer insulating film 35, the upper pad 41, the fifth interlayer insulating film 36, the via 54, and the surface bump 39 are formed in this order.
  • the lower pad 40 is formed by a damascene method so that the lower wiring 42 has the same pattern as the electrode layer 51 and the lower insulating film 43 has the opposite pattern to the electrode layer 51.
  • a glass substrate 57 (support) is attached to the surface 13 side of the Si substrate 29 via an adhesive 56.
  • the Si substrate 29 is ground from the back surface 14 side (back grind) using a grinder or the like to thin the Si substrate 29. In this embodiment, grinding is performed until the Si substrate 29 having a thickness of 700 ⁇ m or more reaches 30 ⁇ m to 50 ⁇ m.
  • a photoresist 58 for example, an organic resist such as polyimide
  • an etching gas is supplied to the Si substrate 29 through the photoresist 58 to dry-etch the Si substrate 29 from the back surface 14 side. This etching is continued until a part of the Si substrate 29, the gate insulating film 30 and the electrode layer 51 (the part disposed immediately under the opening of the photoresist 58) is removed. Thereby, a through hole 59 is formed in the Si substrate 29.
  • each through hole 59 the portion immediately above the lower insulating film 43 in the first interlayer insulating film 32 has the same pattern as the lower insulating film 43 toward the opening end of the through hole 59 as an etching residue. It will remain as the protruding part 60 which protrudes.
  • the first interlayer insulating film 32 that forms the bottom surface of the through hole 59 is etched while leaving the photoresist 58 when the through hole 59 is formed. This etching is continued until the lower wiring 42 is exposed.
  • the protruding portion 60 of the first interlayer insulating film 32 has an etching margin of the same pattern as that of the lower insulating film 43 with respect to the other portions. Therefore, when the lower wiring 42 is exposed, the protruding portion 60 A part remains on the lower insulating film 43 as an etching residue.
  • the surface pad 37 (the lower pad 40) and the protrusion 60 exposed in the through hole 59 are covered by the CVD method.
  • a via insulating film 38 is formed on the inner surface of the through hole 59 and the back surface 14 of the Si substrate 29.
  • the via insulating film 38 is raised in the same pattern as the lower insulating film 43 by the height of the protruding portion 60 at a position immediately above the protrusion 60 of the etching residue (a position directly above the lower insulating film 43). Is done. That is, in the via insulating film 38, a step is generated between the portion where the protrusion 60 is present and the portion where the protrusion 60 is absent.
  • the portion of the via insulating film 38 that faces the opening end of the through hole 59, specifically, the portion on the surface pad 37 (bottom surface portion) is selectively removed by etch back. .
  • the lower pad 40 in which the lower wiring 42 and the lower insulating film 43 are substantially flush with each other is exposed again in the through hole 59.
  • a seed film for example, a Ti / Cu laminated film
  • Cu is plated from the seed film by electrolytic plating.
  • the inside of the via insulating film 38 in the through hole 59 is filled with Cu (electrode material), and the through electrode 17 electrically connected to the surface pad 37 is formed.
  • the excess portion of the through electrode 17 (the portion outside the through hole 59) is CMP (Chemical Mechanical Polishing) until the polished surface is flush with the back surface portion 53 of the via insulating film 38. Polish and remove by the method. Thereafter, as shown in FIG. 7P, one back bump 19 is formed on each through electrode 17 and the Si substrate 29 is removed from the glass substrate 57 as shown in FIG. can get.
  • CMP Chemical Mechanical Polishing
  • the lower surface of the lower surface pad 40 that is directly connected to the through electrode 17 (exposed in the through hole 59) of the multilayer surface pad 37 through the steps of FIGS. 7A to 7E.
  • An electrode layer 51 having a pattern opposite to that of the side insulating film 43 is formed in advance. 7J, when the through hole 59 is formed by etching the Si substrate 29 from the back surface 14 toward the front surface pad 37, the lower insulating film 43 in the first interlayer insulating film 32 is formed as an etching residue. Can be left as a protruding portion 60 that protrudes in the same pattern as the lower insulating film 43 toward the opening end of the through hole 59.
  • the via insulating film 38 is located at the position directly above the protrusion 60 of the etching residue (the position directly above the lower insulating film 43). Is raised in the same pattern as the lower insulating film 43. That is, in the via insulating film 38, a step is generated between the portion where the protrusion 60 is present and the portion where the protrusion 60 is absent. In the etching process of the via insulating film 38 in FIG. 7M, the raised portion of the via insulating film 38 becomes an etching margin of the same pattern as that of the lower insulating film 43 with respect to the non-lifted portion. Even if the via insulating film 38 is etched until the wiring 42 is exposed, the etching amount of the lower insulating film 43 by the etching can be eliminated or reduced.
  • the occurrence of a step between the lower wirings 42 of the lower pad 40 can be suppressed. Therefore, when Cu is plated and grown in the process of FIG. 7N, the seed film can be formed on the inner surface of the through-hole 59 with a good film property, so that generation of voids (holes) can be prevented.
  • the via insulating film 38 is etched, the lower insulating film 43 is removed by etching together with the via insulating film 38, and a step is generated between the lower wirings 42.
  • the film may not be formed well. As a result, voids may occur in the vicinity of the stepped portion between the lower wirings 42 in the through electrode 17 after plating growth.
  • the arithmetic chip 4 of FIG. 4 since the generation of voids in the through electrode 17 can be prevented, a semiconductor chip with higher reliability than the conventional one can be realized. And according to the electronic component 1 of FIG. 1, since the arithmetic chip 4 and Si interposer 5 which can prevent generation
  • FIG. 8 is a schematic cross-sectional view for explaining the structure (second embodiment) of the arithmetic chip 4 in FIG. 1 and shows an enlarged portion where the through electrode 17 is provided.
  • parts corresponding to the parts shown in FIG. 4 are given the same reference numerals as those parts. Further, in the following, detailed description of the parts denoted by the same reference numerals is omitted.
  • the electrode layer 51 is not formed, and instead, with respect to the surface 13 of the Si substrate 29 with the same stripe pattern as the lower insulating film 43 of the overhanging portion 49 of the lower pad 40. Thus, an insulating layer 61 selectively embedded on the back surface 14 side is formed.
  • FIG. 9A to 9P are diagrams showing a part of the manufacturing process of the arithmetic chip in FIG. 8 in the order of the processes.
  • the Si substrate 29 having a thickness of 700 ⁇ m or more is formed on the surface 13 with the same pattern as the lower insulating film 43 (with the lower wiring 42 and A photoresist 62 having an opening of the opposite pattern) is formed.
  • an etching gas is supplied to the Si substrate 29 through the photoresist 62, and the Si substrate 29 is dry-etched from the surface 13 side. Thereby, the shallow trench 63 of the pattern is formed.
  • the shallow trench 63 is filled with SiO 2 (insulating material) by a CVD method.
  • the insulating layer 61 embedded in the Si substrate 29 is formed by removing the SiO 2 outside the shallow trench 63 by CMP.
  • the step of forming the insulating layer 61 shown in FIGS. 9A to 9D is the same as the step of forming a plurality of element isolation regions in the Si substrate 29 by, for example, an STI (Shallow Trench Isolation) step. Therefore, the insulating layer 61 can be formed efficiently.
  • the gate insulating film 30 is formed by thermal oxidation.
  • a first interlayer insulating film 32, a second interlayer insulating film 33, and a lower layer are formed on the gate insulating film 30 by a known semiconductor device manufacturing technique such as a damascene method, photolithography, or CVD.
  • the side pad 40, the third interlayer insulating film 34, the via 46, the fourth interlayer insulating film 35, the upper pad 41, the fifth interlayer insulating film 36, the via 54, and the surface bump 39 are formed in this order.
  • the lower pad 40 is formed by a damascene method so that the lower wiring 42 has a pattern opposite to the insulating layer 61 and the lower insulating film 43 has the same pattern as the insulating layer 61.
  • a glass substrate 57 (support) is attached to the surface 13 side of the Si substrate 29 via an adhesive 56.
  • the Si substrate 29 is ground from the back surface 14 side (back grind) using, for example, a grinder or the like, and the Si substrate 29 is thinned. In this embodiment, grinding is performed until the Si substrate 29 having a thickness of 700 ⁇ m or more reaches 30 ⁇ m to 50 ⁇ m.
  • a photoresist 58 for example, an organic resist such as polyimide
  • an etching gas is supplied to the Si substrate 29 through the photoresist 58, and the Si substrate 29 is dry-etched from the back surface 14 side. This etching is continued until the Si substrate 29 is removed and the insulating layer 61 and the gate insulating film 30 are exposed. Thereby, a through hole 59 is formed in the Si substrate 29.
  • the insulating layer 61 remains in each through hole 59 as a protruding portion that protrudes in the same pattern as the lower insulating film 43 toward the opening end of the through hole 59.
  • the insulating layer 61, the gate insulating film 30, and the first interlayer insulating film 32 that form the bottom surface of the through hole 59 are left with the photoresist 58 remaining when the through hole 59 is formed. Etch. This etching is continued until the lower wiring 42 is exposed. At this time, the portion where the insulating layer 61 is formed becomes the etching margin of the same pattern as the lower insulating film 43 with respect to the other portions. Therefore, when the lower wiring 42 is exposed, the first interlayer insulating film is formed. The portion immediately below the insulating layer 61 in 32 remains on the lower insulating film 43 as a protruding portion 64 (etching residue).
  • a via insulating film 38 is formed on the inner surface of the through hole 59 and the back surface 14 of the Si substrate 29.
  • the via insulating film 38 is raised in the same pattern as the lower insulating film 43 by the height of the protruding portion 60 at a position immediately above the protruding portion 64 (a position immediately above the lower insulating film 43). That is, in the via insulating film 38, a step is generated between the portion where the protrusion 64 is present and the portion where the protrusion 64 is absent.
  • a portion of the via insulating film 38 that faces the opening end of the through hole 59, specifically, a portion on the surface pad 37 (bottom surface portion) is selectively removed by etch back. .
  • the lower pad 40 in which the lower wiring 42 and the lower insulating film 43 are substantially flush with each other is exposed again in the through hole 59.
  • a seed film for example, a Ti / Cu laminated film
  • Cu is plated from the seed film by electrolytic plating.
  • the inside of the via insulating film 38 in the through hole 59 is filled with Cu (electrode material), and the through electrode 17 electrically connected to the surface pad 37 is formed.
  • the excess portion of the through electrode 17 (the portion outside the through hole 59) is CMP (Chemical Mechanical Polishing) method until the polished surface is flush with the back surface portion 53 of the via insulating film 38. Polish and remove.
  • CMP Chemical Mechanical Polishing
  • the back surface bump 19 is formed on each through electrode 17 one by one, and the Si substrate 29 is removed from the glass substrate 57 as shown in FIG. can get.
  • An insulating layer 61 having the same pattern as that of the side insulating film 43 is formed in advance. 9I, when the through hole 59 is formed by etching the Si substrate 29 from the back surface 14 toward the front surface pad 37 in the step of FIG. 9I, the insulating layer 61 is transferred to the opening end of the through hole 59 as an etching residue. It can be left as an etching residue protruding in the same pattern as the lower insulating film 43.
  • the via insulating film 38 is located at the position directly above the protrusion 64 of the etching residue (the position directly above the lower insulating film 43). Is raised in the same pattern as the lower insulating film 43. That is, in the via insulating film 38, a step is generated between the portion where the protrusion 64 is present and the portion where the protrusion 64 is absent. In the etching process of the via insulating film 38 in FIG. 9L, the raised portion of the via insulating film 38 becomes an etching margin of the same pattern as that of the lower insulating film 43 with respect to the unraised portion. Even if the via insulating film 38 is etched until the wiring 42 is exposed, the etching amount of the lower insulating film 43 by the etching can be eliminated or reduced.
  • the occurrence of a step between the lower wirings 42 of the lower pad 40 can be suppressed. Therefore, when Cu is plated and grown in the process of FIG. 9M, the seed film can be formed on the inner surface of the through-hole 59 with a good film property, so that generation of voids (holes) can be prevented. Thereby, in the arithmetic chip 4 of FIG. 8, generation
  • the through electrode 17 may have an elliptical column shape, a quadrangular column shape, a hexagonal column shape, or an octagonal column shape.
  • the step of forming the electrode layer 51 is performed in the same step as the step of forming the gate electrode of the semiconductor element (MOSFET), but may be performed independently.
  • the step of forming the insulating layer 61 is performed in the same step as the STI step of forming the element isolation region on the Si substrate 29, but may be performed independently.
  • various design changes can be made within the scope of matters described in the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】貫通電極におけるボイドの発生を防止することができ、従来に比べて信頼性の高い半導体装置およびその製造方法、ならびに電子部品を提供すること。 【解決手段】Si基板29上のゲート絶縁膜30上に電極層51を形成する。ゲート絶縁膜30上に層間絶縁膜31を形成した後、ダマシン法により電極層51と同一パターンの下側配線42と、反対パターンの下側絶縁膜43を含む下側パッド40を形成する。次に、貫通孔59を形成し、同時に、貫通孔59内に下側絶縁膜43と同一パターンの突出部60が形成された第1層間絶縁膜32を露出させる。そして、突出部60の一部がエッチング残渣として残るように第1層間絶縁膜32をエッチングした後、ビア絶縁膜38を形成し、貫通孔59の底面のビア絶縁膜38をエッチングする。次に、貫通孔59のビア絶縁膜38の内側に電極材料をめっき成長させることにより、貫通電極17を形成する。

Description

半導体装置およびその製造方法、電子部品
 本発明は、貫通電極を有する半導体装置およびその製造方法、ならびに当該半導体装置を備える電子部品(パッケージ)に関する。
 近年、貫通電極を有する半導体装置を複数積層して、小型、大容量、高機能の電子部品を形成する技術が開発されている。
 貫通電極を有する半導体装置は、たとえば、特許文献1および2に開示されている。
 特許文献1および2の半導体装置は、Si基板と、Si基板に設けられた貫通電極と、Si基板の表面に形成された電極パッドと、電極パッド上に形成された再配置配線層とを含む。
 係る半導体装置は、たとえば、以下の方法により製造される。まず、Si基板の表面に絶縁膜を介して電極パッドを形成し、再配置配線層を形成する。次に、第1のエッチングガス(SF)を用いて、Si基板の裏面からSi基板の途中までドライエッチングする。その後、第2のエッチングガス(C)を用いてSi基板の残りの部分をドライエッチングすることにより、電極パッドに達する貫通孔を形成する。そして、貫通孔の側面に絶縁膜を形成し、絶縁膜の内側に貫通電極を形成する。以上の工程を経て、貫通電極を有する半導体装置が得られる。
特開2011-86773号公報 特開2011-86850号公報
 本発明の目的は、貫通電極におけるボイドの発生を防止することができ、従来に比べて信頼性の高い半導体装置およびその製造方法を提供することである。
 本発明の他の目的は、半導体装置の貫通電極におけるボイドの発生を防止することができ、従来に比べて信頼性の高い電子部品を提供することである。
 本発明の半導体装置は、半導体基板と、前記半導体基板の表面に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に形成された層間絶縁膜と、前記層間絶縁膜に所定パターンで選択的に埋め込まれたダマシン構造を有する複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて配置された配線間絶縁膜とを含む表面電極と、前記半導体基板の前記表面と裏面との間を貫通し、前記表面電極に電気的に接続された貫通電極と、前記貫通電極と前記半導体基板との間に設けられたビア絶縁膜とを含む(請求項1)。
 この半導体装置は、たとえば、半導体基板の表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に、所定パターンの電極層を選択的に形成する工程と、前記ゲート絶縁膜上に、前記電極層を覆うように層間絶縁膜を形成する工程と、ダマシン法により前記電極層と同一パターンの電極材料を前記層間絶縁膜に選択的に埋め込むことにより、前記電極層と同一パターンの複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて形成され、前記電極層と反対パターンの配線間絶縁膜とを含む表面電極を形成する工程と、前記半導体基板の裏面からエッチングして前記半導体基板および前記電極層を
除去することにより貫通孔を形成し、同時に、当該貫通孔内に前記配線間絶縁膜と同一パターンの突出部が形成された前記層間絶縁膜を露出させる工程と、前記突出部の一部がエッチング残渣として残るように、前記貫通孔を介して前記表面電極の前記配線が露出するまで前記層間絶縁膜をエッチングする工程と、前記貫通孔の底面および側面にビア絶縁膜を形成する工程と、前記表面電極の前記配線が露出するまで、前記貫通孔の前記底面の前記ビア絶縁膜をエッチングする工程と、前記貫通孔の前記ビア絶縁膜の内側に電極材料をめっき成長させることにより、前記表面電極に電気的に接続されるように貫通電極を形成する工程とを含む、本発明の半導体装置の製造方法(請求項13)により製造することができる。
 また、この半導体装置は、半導体基板の表面に、所定パターンの絶縁層を選択的に埋め込む工程と、前記半導体基板の前記表面にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上に層間絶縁膜を形成する工程と、ダマシン法により前記絶縁層と反対パターンの電極材料を前記層間絶縁膜に選択的に埋め込むことにより、前記絶縁層と反対パターンの複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて形成され、前記絶縁層と同一パターンの配線間絶縁膜とを含む表面電極を形成する工程と、前記半導体基板の裏面からエッチングして前記半導体基板を除去することにより貫通孔を形成し、同時に、当該貫通孔内に前記配線間絶縁膜と同一パターンの前記絶縁層を露出させる工程と、前記層間絶縁膜における前記絶縁層の直下の部分がエッチング残渣として残るように、貫通孔を介して前記表面電極の前記配線が露出するまで前記層間絶縁膜をエッチングする工程と、前記貫通孔の底面および側面にビア絶縁膜を形成する工程と、前記表面電極の前記配線が露出するまで、前記貫通孔の前記底面の前記ビア絶縁膜をエッチングする工程と、前記貫通孔の前記ビア絶縁膜の内側に電極材料をめっき成長させることにより、前記表面電極に電気的に接続されるように貫通電極を形成する工程とを含む、本発明の半導体装置の製造方法(請求項16)により製造することもできる。
 本発明の方法によれば、表面電極の配線間絶縁膜と反対パターンの電極層、もしくは表面電極の配線間絶縁膜と同一パターンの絶縁層を予め形成する。これにより、半導体基板を裏面から表面電極へ向かってエッチングして貫通孔を形成したときに、配線間絶縁膜上に、層間絶縁膜の突出部の一部、もしくは層間絶縁膜における絶縁層の直下の部分をエッチング残渣として残すことができる。
 そのため、ビア絶縁膜を形成したときに、エッチング残渣の直上位置(配線間絶縁膜の直上位置)においては、ビア絶縁膜が、当該エッチング残渣の高さ分、配線間絶縁膜と同一パターンで嵩上げされる。すなわち、ビア絶縁膜において、エッチング残渣がある部分とない部分との間に段差が生じる。
 ビア絶縁膜のエッチング工程においては、上記嵩上げされた部分が嵩上げされていない部分に対して配線間絶縁膜と同一パターンのエッチングマージンとなるので、表面電極の配線が露出するまでビア絶縁膜をエッチングしても、当該エッチングによる配線間絶縁膜のエッチング量をなくすか、少なくすることができる。
 その結果、表面電極の配線間における段差の発生を抑えることができる。よって、電極材料をめっき成長させる際、貫通孔の内面にシード膜を良好な被膜性で形成することができるので、ボイド(空孔)の発生を防止することができる。
 これにより、本発明の半導体装置では、貫通電極におけるボイドの発生を防止することができ、従来に比べて信頼性の高い半導体装置を実現することができる。
 また、本発明の半導体装置は、たとえば、前記貫通孔を形成する工程において、前記表面電極の径よりも小さな径を有する貫通孔を形成することにより、前記表面電極が、前記貫通電極に対向する対向部と、前記対向部から横方向に張り出した張出部と、前記ゲート
絶縁膜と前記層間絶縁膜との間に配置され、前記張出部の前記配線と同一パターンの電極層とをさらに含んでいてもよいし(請求項2)、前記半導体基板の前記表面に埋め込まれ、前記張出部の前記配線間絶縁膜と同一パターンの絶縁層をさらに含んでいてもよい(請求項3)。
 また、前記電極層を形成する工程は、前記半導体基板の前記表面に形成された半導体素子のゲート電極と同一の工程で実行されることが好ましく(請求項14)、前記半導体基板がシリコン基板である場合、ポリシリコン層を形成する工程を含むことが好ましい(請求項15)。
 この方法により、工程数を増加させずに、効率よく電極層を形成することができる。
 また、前記絶縁層を形成する工程は、前記半導体基板を前記表面からエッチングすることにより前記所定パターンのシャロートレンチを形成する工程と、前記シャロートレンチに絶縁材料を充填することにより、前記絶縁層を前記半導体基板の前記表面に対して前記裏面側へ埋め込むように形成する工程とを含むことが好ましい(請求項17)。
 この方法によれば、たとえば、STI(Shallow Trench Isolation:シャロートレンチアイソレーション)工程により半導体基板に複数の素子分離領域を形成する場合に、当該STI工程と同一工程で絶縁層を形成することができるので、効率よく絶縁層を形成することができる。
 また、本発明の半導体装置では、前記表面電極における前記貫通電極との接続面において、前記配線と前記配線間絶縁膜は面一に形成されていることが好ましい(請求項4)。
 この構成によれば、貫通孔の底面に対するシード膜の被膜性を一層向上させることができる。
 また、本発明の半導体装置では、前記表面電極において前記配線と前記配線間絶縁膜は、交互にストライプ状に配列されていてもよい(請求項5)。
 また、前記配線は、Cu配線を含んでいてもよい(請求項6)。また、前記表面電極は、複数の前記層間絶縁膜を介して積層された多層電極を含んでいてもよい(請求項7)。
 また、本発明の半導体装置は、前記貫通電極との間に前記表面電極が置かれるように前記貫通電極の直上位置に配置された、外部接続用の表面バンプを含んでいてもよいし(請求項8)、前記貫通電極の前記裏面側の端部に配置された、外部接続用の裏面バンプを含んでいてもよい(請求項9)。
 また、前記貫通電極は、円柱状に形成されていてもよい(請求項10)。
 また、前記半導体基板の前記表面は、複数の半導体素子が形成された素子形成面を含んでいてもよい(請求項11)。
 また、本発明の電子部品は、裏面に複数の外部端子を有するインタポーザと、前記インタポーザの表面に、前記表面が上方に向く姿勢で積層された請求項1~11のいずれか一項に記載の半導体装置と、複数の裏面バンプを有し、当該裏面バンプが前記貫通電極に電気的に接続されるように前記半導体装置の前記表面に積層された第2半導体装置と、前記半導体装置および前記第2半導体装置を封止する樹脂パッケージとを含む(請求項12)。
 この構成によれば、本発明の半導体装置が搭載されているので、従来に比べて信頼性の高い電子部品を実現することができる。
図1は、本発明の一実施形態に係る電子部品の模式的な断面図である。 図2は、図1の電子部品のシステム構成を模式的に示すブロック図である。 図3は、図1のSiインタポーザおよび演算チップにおける貫通電極のレイアウト図である。 図4は、図1の演算チップの構造(第1実施形態)を説明するための模式的な断面図であって、貫通電極が設けられた部分を拡大して示している。 図5は、図4の下側絶縁膜の形状の例を示す図であって、図4の破線Vで囲まれた部分を拡大して示している。 図6は、図4の表面パッド(下側パッド)のレイアウト図である。 図7Aは、図4の演算チップの製造工程の一部を示す図である。 図7Bは、図7Aの次の工程を示す図である。 図7Cは、図7Bの次の工程を示す図である。 図7Dは、図7Cの次の工程を示す図である。 図7Eは、図7Dの次の工程を示す図である。 図7Fは、図7Eの次の工程を示す図である。 図7Gは、図7Fの次の工程を示す図である。 図7Hは、図7Gの次の工程を示す図である。 図7Iは、図7Hの次の工程を示す図である。 図7Jは、図7Iの次の工程を示す図である。 図7Kは、図7Jの次の工程を示す図である。 図7Lは、図7Kの次の工程を示す図である。 図7Mは、図7Lの次の工程を示す図である。 図7Nは、図7Mの次の工程を示す図である。 図7Oは、図7Nの次の工程を示す図である。 図7Pは、図7Oの次の工程を示す図である。 図7Qは、図7Pの次の工程を示す図である。 図8は、図1の演算チップの構造(第2実施形態)を説明するための模式的な断面図であって、貫通電極が設けられた部分を拡大して示している。 図9Aは、図8の演算チップの製造工程の一部を示す図である。 図9Bは、図9Aの次の工程を示す図である。 図9Cは、図9Bの次の工程を示す図である。 図9Dは、図9Cの次の工程を示す図である。 図9Eは、図9Dの次の工程を示す図である。 図9Fは、図9Eの次の工程を示す図である。 図9Gは、図9Fの次の工程を示す図である。 図9Hは、図9Gの次の工程を示す図である。 図9Iは、図9Hの次の工程を示す図である。 図9Jは、図9Iの次の工程を示す図である。 図9Kは、図9Jの次の工程を示す図である。 図9Lは、図9Kの次の工程を示す図である。 図9Mは、図9Lの次の工程を示す図である。 図9Nは、図9Mの次の工程を示す図である。 図9Oは、図9Nの次の工程を示す図である。 図9Pは、図9Oの次の工程を示す図である。
 以下では、本発明の実施の形態を、添付図面を参照して詳細に説明する。
 図1は、本発明の一実施形態に係る電子部品1の模式的な断面図である。図2は、図1の電子部品1のシステム構成を模式的に示すブロック図である。
 電子部品1は、樹脂インタポーザ2と、樹脂インタポーザ2の表面3から順に積層された演算チップ4、Siインタポーザ5およびメモリチップ6と、樹脂パッケージ7とを含み、内部に電源系配線8および信号系配線9が組み込まれている。なお、演算チップ4、
Siインタポーザ5およびメモリチップ6は、樹脂インタポーザ2の表面3に積層された複数の半導体装置の一例であり、これに限るものではない。
 樹脂インタポーザ2は、樹脂製(たとえば、エポキシ樹脂)基板からなり、その表面3に演算チップ4等が積層され、その裏面10に複数の外部端子11が形成されている。樹脂インタポーザ2のサイズは、14mm角であり、たとえば、10mm角~15mm角であってもよい。厚さは、0.7mmであり、たとえば、0.6mm~0.7mmであってもよい。
 外部端子11は、実装基板(プリント配線板)上のランド(電極)との電気接続用の端子である。外部端子11は、たとえば、半田などの金属材料を用いてボール状に形成されており、たとえば、互いに間隔を空けて行列状に配置されている。各外部端子11は、樹脂インタポーザ2の表面3と裏面10との間を貫通する導電性のビア(図示せず)を介して、演算チップ4の裏面バンプ19(後述)に電気的に接続されている。
 演算チップ4、Siインタポーザ5およびメモリチップ6は、この実施形態では、互いに同じ大きさで形成されており、互いに側面が揃うように整って積層されている。これらのチップのサイズは、10mm角であり、たとえば、6mm角~10mm角であってもよい。樹脂インタポーザ2よりも小さく、チップの厚さは、0.05mmであり、たとえば、0.04mm~0.06mmであってもよい。
 これら複数の半導体チップ4~6のうち、最上層の第2半導体装置としてのメモリチップ6と樹脂インタポーザ2との間にある半導体装置としての演算チップ4には、図2に示すように、論理(Logic)・制御回路12が組み込まれている。論理・制御回路12には
、電子部品1の電源系配線8および信号系配線9が接続されている。また、演算チップ4には、その表面13に当該論理・制御回路12を構成するトランジスタ(たとえばCMOSトランジスタ)、ダイオード、抵抗、キャパシタなどの複数の半導体素子が形成されている。つまり、演算チップ4では、メモリチップ6に対向する表面13が素子形成面であり、この素子形成面13が上方に向く姿勢で演算チップ4が樹脂インタポーザ2に積層されている。
 また、演算チップ4および半導体装置としてのSiインタポーザ5には、それぞれ表面13,15と裏面14,16との間を貫通する複数の貫通電極17,18が形成されており、各貫通電極17,18の裏面14,16側の端部に1つずつ裏面バンプ19,20が設けられている。裏面バンプ19,20は、たとえば、半田などの金属材料を用いてボール状に形成されている。また、演算チップ4の裏面バンプ19は、表面13上の半導体素子に電気的に接続されている。
 一方、最上層のメモリチップ6には、メモリセルアレイ21(この実施形態では、SRAM:Static
Random Access Memoryのセルアレイ)および制御回路22が組み込まれて
おり、これらの回路21,22には、電子部品1の電源系配線8および信号系配線9が接続されている。具体的には、制御回路22は電源系配線8によりメモリセルアレイ21に接続されており、メモリセルアレイ21は信号系配線9により演算チップ4の論理・制御回路12に接続されている。また、メモリチップ6には、その裏面23に当該メモリセルアレイ21および制御回路22を構成するトランジスタ、ダイオード、抵抗、キャパシタなどの複数の半導体素子が形成されている。つまり、メモリチップ6では、演算チップ4に対向する裏面23が素子形成面であり、この素子形成面23が下方に向く姿勢でメモリチップ6が樹脂インタポーザ2に積層されている。また、メモリチップ6には、その裏面23に複数の裏面バンプ24が設けられている。裏面バンプ24は、たとえば、半田などの金属材料を用いてボール状に形成されている。この裏面バンプ24は、裏面23上の半
導体素子に電気的に接続されている。
 そして、メモリチップ6の裏面バンプ24は、Siインタポーザ5の貫通電極18および裏面バンプ20により中継されて、ピッチの異なる演算チップ4の貫通電極17および裏面バンプ19に電気的に接続されている。これにより、積層配置された複数の半導体チップが互いに電気的に接続され、樹脂インタポーザ2の外部端子11に電気的に接続されることとなる。
 なお、この実施形態では、演算チップ4とメモリチップ6との端子ピッチが互いに異なるので、これらの間に電気的な中継を担うSiインタポーザ5を配置しているが、当該端子ピッチが全く同じである場合には、Siインタポーザ5は省略されていてもよい。
 樹脂パッケージ7(たとえば、エポキシ樹脂)は、樹脂インタポーザ2の裏面10を露出させるように、樹脂インタポーザ2の表面3側のみを封止しており、演算チップ4、Siインタポーザ5およびメモリチップ6が露出しないようにこれらのチップの全体を覆っている。また、樹脂パッケージ7は、その側面が樹脂インタポーザ2の側面と面一に揃うように形成されている。
 図3は、図1のSiインタポーザ5および演算チップ4における貫通電極17,18のレイアウト図である。
 図1で示したように、この実施形態では、積層配置された複数の半導体チップ4~6のうち、演算チップ4およびSiインタポーザ5それぞれに貫通電極17,18が設けられている。
 演算チップ4では、たとえば、複数列(この実施形態では、2列)に整列した貫通電極17が、演算チップ4の中央部25を取り囲む周縁部26に沿って環状に設けられている。なお、演算チップ4の貫通電極17は、たとえば、それぞれが不規則にランダムに配置され、全体として演算チップ4の周縁部26に沿った環状に設けられていてもよい。
 これにより、演算チップ4は、貫通電極17を利用して、メモリチップ6に電力および電気信号を送ることができる。つまり、演算チップ4の貫通電極17が電子部品1の電源系配線8および信号系配線9を形成し、当該配線8,9により電力および信号が送られる。
 一方、Siインタポーザ5では、たとえば、単列の貫通電極18が、Siインタポーザ5の中央部27を取り囲む周縁部28に沿って環状に設けられているとともに(以下、これらの貫通電極18を周縁部28の貫通電極18ということがある。)、当該周縁部28に取り囲まれた中央部27に、複数の貫通電極18を1つの群として、複数の群が行列状に配置されている(以下、これらの貫通電極18を中央部27の貫通電極18ということがある。)。
 周縁部28の各貫通電極18は、この実施形態では、それぞれ演算チップ4の各貫通電極17と同一直線上に配置されるように、演算チップ4の各貫通電極17の直上に配置されている。
 中央部27の貫通電極18の各群では、行列状に配置された複数の貫通電極18を1つのブロックとして、複数のブロックが設けられている。具体的には、この実施形態では、8つの群が2行4列(2×4)の行列状に配置されており、各群では、4行64列(4×64)の貫通電極18を1ブロックとして2ブロック、つまり1つの群当たり合計512個の貫通電極18が設けられている。この群が8群あるので、Siインタポーザ5全体では、4096個(512個×8群)の貫通電極18が設けられている。
 これにより、Siインタポーザ5は、たとえば、中央部27の貫通電極18を利用して
、演算チップ4(たとえば、論理・制御回路12)とメモリチップ6(たとえば、メモリセルアレイ21)との間に中央部27の貫通電極18の数のビット数(この実施形態では、4096ビット)の電気信号を中継することができる。つまり、Siインタポーザ5の中央部27の貫通電極18が電子部品1の信号系配線9を形成し、当該配線9により電気信号が双方向に送受信される。なお、貫通電極18の配置や数は、本発明の一例に過ぎず、それぞれの電子部品1の設計に合わせて適宜変更することができる。たとえば、1ブロック256個の貫通電極18は、8行32列(8×32)の行列状に配置されていてもよい。
 また、Siインタポーザ5は、たとえば、周縁部28の貫通電極18を利用して、演算チップ4からメモリチップ6(たとえば、制御回路22)へと送られる電力および電気信号を中継することができる。つまり、Siインタポーザ5の周縁部28の貫通電極18が電子部品1の電源系配線8および信号系配線9を形成し、当該配線8,9により電力および電気信号が送られる。
 図4は、図1の演算チップ4の構造(第1実施形態)を説明するための模式的な断面図であって、貫通電極17が設けられた部分を拡大して示している。図5は、図4の下側絶縁膜43の形状の例を示す図であって、図4の破線Vで囲まれた部分を拡大して示している。図6は、図4の表面パッド37(下側パッド40)のレイアウト図である。
 演算チップ4は、演算チップ4の本体をなす半導体基板としてのSi基板29と、ゲート絶縁膜30と、層間絶縁膜31(第1~第5層間絶縁膜32~36)と、表面電極としての表面パッド37と、貫通電極17と、ビア絶縁膜38と、表面バンプ39と、裏面バンプ19とを含む。
 Si基板29は、たとえば、厚さ30μm~50μmの基板であり、その表面13(素子形成面)に、ゲート絶縁膜30および複数(この実施形態では、5層)の層間絶縁膜31がこの順に積層されている。ゲート絶縁膜30は、当該表面13に形成されたトランジスタ(図示せず)が有するゲート絶縁膜と一体な膜であり、当該トランジスタとの間で共有されている。
 表面パッド37は、四角形状に形成されており、この実施形態では、複数の層間絶縁膜に埋め込まれた多層パッド構造を有している。
 具体的には、表面パッド37は、縦横の長さL×Lが25.7μm×25.7μmのサイズ(デザインルールが90nmの場合)の正方形状に形成されており、第3層間絶縁膜34の上下に配置された第2層間絶縁膜33および第4層間絶縁膜35それぞれに表面パッド37が埋め込まれた2層パッド構造を有している。この表面パッド37は、第2層間絶縁膜33に埋め込まれた下側パッド40と、第4層間絶縁膜35に埋め込まれた上側パッド41とを含む。なお、表面パッド37は、長方形状や円形状であってもよい。
 下側パッド40は、第2層間絶縁膜33にストライプパターンで選択的に埋め込まれたダマシン構造を有する、銅(Cu)からなる下側配線42と、互いに隣り合う下側配線42間に第2層間絶縁膜33の一部を用いて配置されたストライプ状の下側絶縁膜43(配線間絶縁膜)とを含む。
 これにより、下側パッド40では、下側配線42と下側絶縁膜43が、交互にストライプ状に配列されている。下側配線42の幅Wは1μm程度、下側絶縁膜43の幅Wは0.3μm程度、下側パッド40の厚さTは0.3μm程度である。幅Wおよび幅Wについては、ダマシン法により下側配線42を第1層間絶縁膜32に埋め込む際、下側配線42にディッシングが生じない範囲であれば、特に制限されるものではない。
 また、下側パッド40において下側絶縁膜43の形状は、図5(a)に示すように、貫
通電極17との接続面において下側配線42と面一に揃っていてもよいし、図5(b)に示すように、下側配線42に対して貫通電極17側に盛り上がっていてもよい。また、図5(c)に示すように、下側配線42に対して貫通電極17の反対側に凹んでいてもよい。
 また、図6に示すように、下側パッド40は、Si基板29上において、ストライプ方向が規則的に同じ方向に揃っていてもよいし(図6の紙面右側の列)、縦ストライプの下側パッド40および横ストライプの下側パッド40が交互に配置されるなど、ストライプ方向が不規則であってもよい(図6の紙面左側の列)。
 上側パッド41も、下側パッド40と同様に、第4層間絶縁膜35にストライプパターンで選択的に埋め込まれたダマシン構造を有する、銅(Cu)からなる上側配線44と、互いに隣り合う上側配線44間に第4層間絶縁膜35の一部を用いて配置されたストライプ状の上側絶縁膜45(配線間絶縁膜)とを含んでいるが、上側絶縁膜45のピッチP(互いに隣り合う上側絶縁膜45間の距離)が下側絶縁膜43のピッチPと異なっている。
 この実施形態では、上側絶縁膜45のピッチPが下側絶縁膜43のピッチPよりも広くされていて、上側絶縁膜45が下側配線42の直上に、下側配線42と同じ幅W(=W)で下側配線42の1列置きに配置されている。これにより、上側配線44の幅Wは下側配線42の幅Wよりも広く、たとえば、1.8μm程度となっている。また、上側パッド41の厚さTは0.3μm程度(=T)である。また、幅Wおよび幅Wについては、ダマシン法により上側配線44を第4層間絶縁膜35に埋め込む際、上側配線44にディッシングが生じない範囲であれば、特に制限されるものではない。
 なお、図5(a)~図5(c)に示した下側絶縁膜43の形状は上側絶縁膜45の形状に適用することができ、図6に示した下側パッド40のレイアウトは上側パッド41のレイアウトに適用することができる。
 そして、互いに上下に重なり合う下側パッド40の下側配線42と上側パッド41の上側配線44との間は、第3層間絶縁膜34を貫通する複数の導電性(たとえば、タングステン(W))のビア46を介して電気的に接続されている。
 なお、表面パッド37の層構造は、2層構造に限らず、たとえば、3層構造、4層構造、5層構造、それ以上の層構造であってもよい。また、表面パッド37の配線材料は、ダマシン構造を形成することができる材料であれば、Cu以外の金属材料であってもよい。
 貫通電極17は、銅(Cu)からなり、Si基板29の裏面14から当該裏面14に対して垂直にSi基板29、ゲート絶縁膜30および第1層間絶縁膜32を貫通して表面パッド37(下側パッド40)に達する円柱状に形成されている。これにより、貫通電極17および表面パッド37は、Si基板29の厚さ方向に同一直線上に並んでいる。なお、貫通電極17および表面パッド37は、必ずしも同一直線上に並んでいる必要はなく、たとえば、表面パッド37は、貫通電極17のSi基板29の表面13側端部から再配線等を引き回すことにより、平面視において貫通電極17から離れた位置に配置されていてもよい。
 貫通電極17は、表面パッド37の縦横の長さL,Lよりも小さい径Rを有しており、図4の破線で示すように、Si基板29の表面13側から見たときの平面視において表面パッド37の外周よりも内側に収まっている。この実施形態では、たとえば、R=10μm程度である。
 これにより、各表面パッド40,41は、平面視で貫通電極17に重なって対向する、貫通電極17と同じ平面形状の対向部47,48と、対向部47,48から横方向(Si基板29の表面13に沿う方向)に張り出し、対向部47,48を取り囲む張出部49,
50とを含む。
 そして、この実施形態では、ゲート絶縁膜30と層間絶縁膜31(第1層間絶縁膜32)との間に、多層表面パッド37のうち貫通電極17に直接接続された下側パッド40の張出部49の下側配線42と同一のストライプパターンの電極層51が形成されている。
 電極層51は、この実施形態では、当該表面13に形成されたトランジスタ(図示せず)が有するゲート電極(図示せず)と同一層に形成された層であり、Si基板29と同一材料であるポリシリコンからなる。なお、基板としてSi基板29以外のものを用いる場合には、電極層51の材料も、当該採用された基板の材料と同じものに変更することが好ましい。
 ビア絶縁膜38は、酸化シリコン(SiO)からなり、貫通電極17とSi基板29との間およびSi基板29の裏面14全域に設けられている。
 この実施形態では、ビア絶縁膜38は、貫通電極17の側面(周面)を覆う本体部52およびSi基板29の裏面14を覆う裏面部53を含む。ビア絶縁膜38の本体部52およびビア絶縁膜38の裏面部53は、互いに一体的に形成されている。
 また、ビア絶縁膜38は、本体部52が裏面部53に比べて薄く形成されている。たとえば、本体部52の厚さが0.5μm程度であり、裏面部53の厚さが1μm程度である。
 表面バンプ39は、第5層間絶縁膜36上において、貫通電極17との間に表面パッド37が置かれるように、貫通電極17の直上位置に1つずつ配置されている。各表面バンプ39は、互いに上下に重なり合う上側パッド41に対して、第4層間絶縁膜35を貫通する導電性(たとえば、タングステン(W))のビア54を介して電気的に接続されている。また、各表面バンプ39は、演算チップ4上にSiインタポーザ5を積層した状態において、たとえば、Siインタポーザ5の裏面バンプ20(図1参照)と接続される。
 裏面バンプ19は、前述のように、各貫通電極17の裏面14側の端部に1つずつ設けられている。
 以上説明した演算チップ4の構成は、この実施形態では、貫通電極18が形成された半導体基板(Si基板)であるSiインタポーザ5にも採用されている。
 図7A~図7Qは、図4の演算チップ4の製造工程の一部を工程順に示す図である。
 図4の演算チップ4を製造するには、まず、公知の方法により、Si基板29の表面13に対してイオン注入(たとえば、n型イオン、p型イオン)することにより、半導体素子を構成する不純物領域が形成される。
 次に、図7Aに示すように、熱酸化法によりゲート絶縁膜30を形成する。
 次に、図7Bに示すように、CVD法により、ゲート絶縁膜30上にポリシリコンを堆積させることにより、半導体素子(MOSFET)のゲート電極と同時に電極層51を形成する。ゲート電極と同一工程で電極層51を形成することにより、工程数を増加させずに、効率よく電極層51を形成することができる。
 次に、図7Cに示すように、電極層51上に、下側絶縁膜43を形成すべき領域に開口を有するフォトレジスト55(たとえば、ポリイミド等の有機レジスト)を形成する。
 次に、図7Dに示すように、フォトレジスト55を介して電極層51にエッチングガスを供給して、電極層51をドライエッチングする。これにより、電極層51が、下側配線42と同一パターン(下側絶縁膜43と反対パターン)に形成される。その後、図7Eに示すように、フォトレジスト55が除去される。
 次に、図7Fに示すように、ダマシン法、フォトリソグラフィ、CVD等の公知の半導
体装置の製造技術により、ゲート絶縁膜30上に、第1層間絶縁膜32、第2層間絶縁膜33、下側パッド40、第3層間絶縁膜34、ビア46、第4層間絶縁膜35、上側パッド41、第5層間絶縁膜36、ビア54および表面バンプ39を順に形成する。この際、下側パッド40は、ダマシン法により、下側配線42が電極層51と同一パターンとなり、下側絶縁膜43が電極層51と反対パターンとなるように形成する。
 次に、図7Gに示すように、Si基板29の表面13側に、接着剤56を介してガラス基板57(支持体)を貼り付ける。
 次に、図7Hに示すように、たとえば、グラインダなどを用いて、Si基板29を裏面14側から研削して(バックグラインド)、Si基板29を薄化する。この実施形態では、700μm以上のSi基板29が30μm~50μmになるまで研削する。
 次に、図7Iに示すように、Si基板29の裏面14に、貫通電極17を形成すべき領域に開口を有するフォトレジスト58(たとえば、ポリイミド等の有機レジスト)を形成する。
 次に、図7Jに示すように、フォトレジスト58を介してSi基板29にエッチングガスを供給して、Si基板29を裏面14側からドライエッチングする。このエッチングは、Si基板29、ゲート絶縁膜30および電極層51の一部(フォトレジスト58の開口直下に配置された部分)が除去されるまで続けられる。これにより、Si基板29に貫通孔59が形成される。同時に、各貫通孔59内には、エッチング残渣として、第1層間絶縁膜32における下側絶縁膜43の直上の部分が、貫通孔59の開口端へ向かって下側絶縁膜43と同一パターンで突出する突出部60として残ることとなる。
 次に、図7Kに示すように、貫通孔59を形成したときのフォトレジスト58を残した状態で、貫通孔59の底面を形成する第1層間絶縁膜32をエッチングする。このエッチングは、下側配線42が露出するまで続けられる。この際、第1層間絶縁膜32の突出部60がそれ以外の部分に対して下側絶縁膜43と同一パターンのエッチングマージンとなるので、下側配線42が露出した時点で、突出部60の一部がエッチング残渣として下側絶縁膜43上に残る。
 次に、図7Lに示すように、フォトレジスト58を除去した後、CVD法により、貫通孔59内に露出している表面パッド37(下側パッド40)および突出部60が覆われるように、貫通孔59の内面およびSi基板29の裏面14にビア絶縁膜38を形成する。この際、エッチング残渣の突出部60の直上位置(下側絶縁膜43の直上位置)においては、ビア絶縁膜38が、当該突出部60の高さ分、下側絶縁膜43と同一パターンで嵩上げされる。すなわち、ビア絶縁膜38において、突出部60がある部分とない部分との間に段差が生じる。
 次に、図7Mに示すように、エッチバックにより、ビア絶縁膜38における貫通孔59の開口端に臨む部分、具体的には、表面パッド37上の部分(底面部分)を選択的に除去する。これにより、貫通孔59内に、下側配線42と下側絶縁膜43とがほぼ面一に揃った下側パッド40が再度露出する。
 次に、図7Nに示すように、ビア絶縁膜38の表面にシード膜(たとえば、Ti/Cuの積層膜)をスパッタした後、電解めっきにより、当該シード膜からCuをめっき成長させる。これにより、貫通孔59におけるビア絶縁膜38の内側にCu(電極材料)が充填され、表面パッド37に電気的に接続された貫通電極17が形成される。
 次に、図7Oに示すように、研磨面がビア絶縁膜38の裏面部53と面一に揃うまで、貫通電極17の余分な部分(貫通孔59外の部分)をCMP(Chemical Mechanical Polishing)法により研磨して除去する。
 その後、図7Pに示すように、各貫通電極17に1つずつ裏面バンプ19を形成し、図7Qに示すように、Si基板29をガラス基板57から取り外すことにより、図4の演算チップ4が得られる。
 以上、この実施形態の方法によれば、図7A~図7Eの工程を経て、多層表面パッド37のうち貫通電極17に直接接続された(貫通孔59内に露出する)下側パッド40の下側絶縁膜43と反対パターンの電極層51を予め形成する。
 これにより、図7Jの工程において、Si基板29を裏面14から表面パッド37へ向かってエッチングして貫通孔59を形成したときに、エッチング残渣として、第1層間絶縁膜32における下側絶縁膜43の直上の部分を、貫通孔59の開口端へ向かって下側絶縁膜43と同一パターンで突出する突出部60として残すことができる。
 そのため、図7Lの工程において、ビア絶縁膜38を形成したときに、エッチング残渣の突出部60の直上位置(下側絶縁膜43の直上位置)においては、ビア絶縁膜38が、当該突出部60の高さ分、下側絶縁膜43と同一パターンで嵩上げされる。すなわち、ビア絶縁膜38において、突出部60がある部分とない部分との間に段差が生じる。
 そして、図7Mのビア絶縁膜38のエッチング工程においては、ビア絶縁膜38の嵩上げされた部分が嵩上げされていない部分に対して下側絶縁膜43と同一パターンのエッチングマージンとなるので、下側配線42が露出するまでビア絶縁膜38をエッチングしても、当該エッチングによる下側絶縁膜43のエッチング量をなくすか、少なくすることができる。
 その結果、下側パッド40の下側配線42間における段差の発生を抑えることができる。よって、図7Nの工程においてCuをめっき成長させる際、貫通孔59の内面にシード膜を良好な被膜性で形成することができるので、ボイド(空孔)の発生を防止することができる。
 逆を言えば、ビア絶縁膜38のエッチング時に、下側絶縁膜43がビア絶縁膜38と共にエッチング除去されて、下側配線42間に段差が生じると、この段差部分にめっき成長のためのシード膜が良好に形成されないおそれがある。その結果、めっき成長後の貫通電極17には、下側配線42間の段差部分付近にボイドが発生することがある。
 これに対し、図4の演算チップ4では、貫通電極17におけるボイドの発生を防止することができるので、従来に比べて信頼性の高い半導体チップを実現することができる。
 そして、図1の電子部品1によれば、上記したようなボイド(空孔)の発生を防止できる演算チップ4およびSiインタポーザ5が搭載されているので、従来に比べて信頼性の高い電子部品を実現することができる。
 図8は、図1の演算チップ4の構造(第2実施形態)を説明するための模式的な断面図であって、貫通電極17が設けられた部分を拡大して示している。なお、図8において、前述の図4に示す各部に対応する部分には、それらの各部と同一の参照符号を付している。また、以下では、同一の参照符号を付した部分についての詳細な説明を省略する。
 図8の演算チップ4では、電極層51が形成されておらず、代わりに、下側パッド40の張出部49の下側絶縁膜43と同一のストライプパターンでSi基板29の表面13に対して裏面14側に選択的に埋め込まれた絶縁層61が形成されている。
 図9A~図9Pは、図8の演算チップの製造工程の一部を工程順に示す図である。
 図8の演算チップ4を製造するには、まず、図9Aに示すように、700μm以上の厚さを有するSi基板29を表面13に、下側絶縁膜43と同一パターン(下側配線42と反対パターン)の開口を有するフォトレジスト62を形成する。
 次に、図9Bに示すように、フォトレジスト62を介してSi基板29にエッチングガ
スを供給して、Si基板29を表面13側からドライエッチングする。これにより、当該パターンのシャロートレンチ63を形成する。
 次に、図9Cに示すように、当該シャロートレンチ63にCVD法によりSiO(絶縁材料)を充填する。
 次に、図9Dに示すように、シャロートレンチ63外のSiOをCMPで除去することにより、Si基板29に埋め込まれた絶縁層61が形成される。この図9A~図9Dで示した絶縁層61を形成する工程は、たとえば、STI(Shallow Trench Isolation:シャロートレンチアイソレーション)工程によりSi基板29に複数の素子分離領域を形成する工程と同一工程で行うことができるので、効率よく絶縁層61を形成することができる。その後、熱酸化によりゲート絶縁膜30を形成する。
 次に、図9Eに示すように、ダマシン法、フォトリソグラフィ、CVD等の公知の半導体装置の製造技術により、ゲート絶縁膜30上に、第1層間絶縁膜32、第2層間絶縁膜33、下側パッド40、第3層間絶縁膜34、ビア46、第4層間絶縁膜35、上側パッド41、第5層間絶縁膜36、ビア54および表面バンプ39を順に形成する。この際、下側パッド40は、ダマシン法により、下側配線42が絶縁層61と反対パターンとなり、下側絶縁膜43が絶縁層61と同一パターンとなるように形成する。
 次に、図9Fに示すように、Si基板29の表面13側に、接着剤56を介してガラス基板57(支持体)を貼り付ける。
 次に、図9Gに示すように、たとえば、グラインダなどを用いて、Si基板29を裏面14側から研削して(バックグラインド)、Si基板29を薄化する。この実施形態では、700μm以上のSi基板29が30μm~50μmになるまで研削する。
 次に、図9Hに示すように、Si基板29の裏面14に、貫通電極17を形成すべき領域に開口を有するフォトレジスト58(たとえば、ポリイミド等の有機レジスト)を形成する。
 次に、図9Iに示すように、フォトレジスト58を介してSi基板29にエッチングガスを供給して、Si基板29を裏面14側からドライエッチングする。このエッチングは、Si基板29が除去され、絶縁層61およびゲート絶縁膜30が露出するまで続けられる。これにより、Si基板29に貫通孔59が形成される。同時に、各貫通孔59内には、絶縁層61が、貫通孔59の開口端へ向かって下側絶縁膜43と同一パターンで突出する突出部として残ることとなる。
 次に、図9Jに示すように、貫通孔59を形成したときのフォトレジスト58を残した状態で、貫通孔59の底面を形成する絶縁層61、ゲート絶縁膜30および第1層間絶縁膜32をエッチングする。このエッチングは、下側配線42が露出するまで続けられる。この際、絶縁層61が形成されている部分がそれ以外の部分に対して下側絶縁膜43と同一パターンのエッチングマージンとなるので、下側配線42が露出した時点で、第1層間絶縁膜32における絶縁層61の直下の部分が突出部64(エッチング残渣)として下側絶縁膜43上に残る。
 次に、図9Kに示すように、フォトレジスト58を除去した後、CVD法により、貫通孔59内に露出している表面パッド37(下側パッド40)および突出部64(第1層間絶縁膜32)が覆われるように、貫通孔59の内面およびSi基板29の裏面14にビア絶縁膜38を形成する。この際、突出部64の直上位置(下側絶縁膜43の直上位置)においては、ビア絶縁膜38が、当該突出部60の高さ分、下側絶縁膜43と同一パターンで嵩上げされる。すなわち、ビア絶縁膜38において、突出部64がある部分とない部分との間に段差が生じる。
 次に、図9Lに示すように、エッチバックにより、ビア絶縁膜38における貫通孔59の開口端に臨む部分、具体的には、表面パッド37上の部分(底面部分)を選択的に除去する。これにより、貫通孔59内に、下側配線42と下側絶縁膜43とがほぼ面一に揃った下側パッド40が再度露出する。
 次に、図9Mに示すように、ビア絶縁膜38の表面にシード膜(たとえば、Ti/Cuの積層膜)をスパッタした後、電解めっきにより、当該シード膜からCuをめっき成長させる。これにより、貫通孔59におけるビア絶縁膜38の内側にCu(電極材料)が充填され、表面パッド37に電気的に接続された貫通電極17が形成される。
 次に、図9N示すように、研磨面がビア絶縁膜38の裏面部53と面一に揃うまで、貫通電極17の余分な部分(貫通孔59外の部分)をCMP(Chemical Mechanical Polishing)法により研磨して除去する。
 その後、図9Oに示すように、各貫通電極17に1つずつ裏面バンプ19を形成し、図9Pに示すように、Si基板29をガラス基板57から取り外すことにより、図8の演算チップ4が得られる。
 以上、この実施形態の方法によれば、図9A~図9Dの工程を経て、多層表面パッド37のうち貫通電極17に直接接続された(貫通孔59内に露出する)下側パッド40の下側絶縁膜43と同一パターンの絶縁層61を予め形成する。
 これにより、図9Iの工程において、Si基板29を裏面14から表面パッド37へ向かってエッチングして貫通孔59を形成したときに、エッチング残渣として、絶縁層61を、貫通孔59の開口端へ向かって下側絶縁膜43と同一パターンで突出するエッチング残渣として残すことができる。
 そのため、図9Kの工程において、ビア絶縁膜38を形成したときに、エッチング残渣の突出部64の直上位置(下側絶縁膜43の直上位置)においては、ビア絶縁膜38が、当該突出部64の高さ分、下側絶縁膜43と同一パターンで嵩上げされる。すなわち、ビア絶縁膜38において、突出部64がある部分とない部分との間に段差が生じる。
 そして、図9Lのビア絶縁膜38のエッチング工程においては、ビア絶縁膜38の嵩上げされた部分が嵩上げされていない部分に対して下側絶縁膜43と同一パターンのエッチングマージンとなるので、下側配線42が露出するまでビア絶縁膜38をエッチングしても、当該エッチングによる下側絶縁膜43のエッチング量をなくすか、少なくすることができる。
 その結果、下側パッド40の下側配線42間における段差の発生を抑えることができる。よって、図9Mの工程においてCuをめっき成長させる際、貫通孔59の内面にシード膜を良好な被膜性で形成することができるので、ボイド(空孔)の発生を防止することができる。
 これにより、図8の演算チップ4では、貫通電極17におけるボイドの発生を防止することができ、従来に比べて信頼性の高い半導体チップを実現することができる。
 以上、本発明の実施形態を説明したが、本発明は、他の形態で実施することもできる。
 たとえば、貫通電極17は、楕円柱状、四角柱状、六角柱状、八角柱状であってもよい。
 また、図7A~図7Eの工程において、電極層51を形成する工程は、半導体素子(MOSFET)のゲート電極を形成する工程と同一工程で行ったが、独立して行ってもよい。
 また、図9A~図9Dの工程において、絶縁層61を形成する工程は、Si基板29に
素子分離領域を形成するSTI工程と同一工程で行ったが、独立して行ってもよい。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 1  電子部品
 2  樹脂インタポーザ
 3  (樹脂インタポーザの)表面
 4  演算チップ
 5  Siインタポーザ
 6  メモリチップ
 7  樹脂パッケージ
 8  電源系配線
 9  信号系配線
 10 (樹脂インタポーザの)裏面
 11 外部端子
 12 論理・制御回路
 13 (演算チップの)表面
 14 (演算チップの)裏面
 15 (Siインタポーザの)表面
 16 (Siインタポーザの)裏面
 17 (演算チップの)貫通電極
 18 (Siインタポーザの)貫通電極
 19 (演算チップの)裏面バンプ
 20 (Siインタポーザの)裏面バンプ
 21 メモリセルアレイ
 22 制御回路
 23 (メモリチップの)裏面
 24 (メモリチップの)裏面バンプ
 25 (演算チップの)中央部
 26 (演算チップの)周縁部
 27 (Siインタポーザの)中央部
 28 (Siインタポーザの)周縁部
 29 Si基板
 30 ゲート絶縁膜
 31 層間絶縁膜
 32 第1層間絶縁膜
 33 第2層間絶縁膜
 34 第3層間絶縁膜
 35 第4層間絶縁膜
 36 第5層間絶縁膜
 37 表面パッド
 38 ビア絶縁膜
 39 表面バンプ
 40 下側パッド
 41 上側パッド
 42 下側配線
 43 下側絶縁膜
 44 上側配線
 45 上側絶縁膜
 46 ビア
 47 (下側パッドの)対向部
 48 (上側パッドの)対向部
 49 (下側パッドの)張出部
 50 (上側パッドの)張出部
 51 電極層
 52 (ビア絶縁膜の)本体部
 53 (ビア絶縁膜の)裏面部
 54 ビア
 55 フォトレジスト
 56 接着剤
 57 ガラス基板
 58 フォトレジスト
 59 貫通孔
 60 突出部
 61 絶縁層
 62 フォトレジスト
 63 シャロートレンチ
 64 突出部

Claims (17)

  1.  半導体基板と、
     前記半導体基板の表面に形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に形成された層間絶縁膜と、
     前記層間絶縁膜に所定パターンで選択的に埋め込まれたダマシン構造を有する複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて配置された配線間絶縁膜とを含む表面電極と、
     前記半導体基板の前記表面と裏面との間を貫通し、前記表面電極に電気的に接続された貫通電極と、
     前記貫通電極と前記半導体基板との間に設けられたビア絶縁膜とを含む、半導体装置。
  2.  前記表面電極は、前記貫通電極に対向する対向部と、前記対向部から横方向に張り出した張出部と、前記ゲート絶縁膜と前記層間絶縁膜との間に配置され、前記張出部の前記配線と同一パターンの電極層とをさらに含む、請求項1に記載の半導体装置。
  3.  前記表面電極は、前記貫通電極に対向する対向部と、前記対向部から横方向に張り出した張出部と前記半導体基板の前記表面に埋め込まれ、前記張出部の前記配線間絶縁膜と同一パターンの絶縁層とをさらに含む、請求項1に記載の半導体装置。
  4.  前記表面電極における前記貫通電極との接続面において、前記配線と前記配線間絶縁膜は面一に形成されている、請求項1~3のいずれか一項に記載の半導体装置。
  5.  前記表面電極において前記配線と前記配線間絶縁膜は、交互にストライプ状に配列されている、請求項1~4のいずれか一項に記載の半導体装置。
  6.  前記配線は、Cu配線を含む、請求項1~5のいずれか一項に記載の半導体装置。
  7.  前記表面電極は、複数の前記層間絶縁膜を介して積層された多層電極を含む、請求項1~6のいずれか一項に記載の半導体装置。
  8.  前記半導体装置は、前記貫通電極との間に前記表面電極が置かれるように前記貫通電極の直上位置に配置された、外部接続用の表面バンプを含む、請求項1~7のいずれか一項に記載の半導体装置。
  9.  前記半導体装置は、前記貫通電極の前記裏面側の端部に配置された、外部接続用の裏面バンプを含む、請求項1~8のいずれか一項に記載の半導体装置。
  10.  前記貫通電極は、円柱状に形成されている、請求項1~9のいずれか一項に記載の半導体装置。
  11.  前記半導体基板の前記表面は、複数の半導体素子が形成された素子形成面を含む、請求項1~10のいずれか一項に記載の半導体装置。
  12.  裏面に複数の外部端子を有するインタポーザと、
     前記インタポーザの表面に、前記表面が上方に向く姿勢で積層された請求項1~11のいずれか一項に記載の半導体装置と、
     複数の裏面バンプを有し、当該裏面バンプが前記貫通電極に電気的に接続されるように前記半導体装置の前記表面に積層された第2半導体装置と、
     前記半導体装置および前記第2半導体装置を封止する樹脂パッケージとを含む、電子部
    品。
  13.  半導体基板の表面にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜上に、所定パターンの電極層を選択的に形成する工程と、
     前記ゲート絶縁膜上に、前記電極層を覆うように層間絶縁膜を形成する工程と、
     ダマシン法により前記電極層と同一パターンの電極材料を前記層間絶縁膜に選択的に埋め込むことにより、前記電極層と同一パターンの複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて形成され、前記電極層と反対パターンの配線間絶縁膜とを含む表面電極を形成する工程と、
     前記半導体基板の裏面からエッチングして前記半導体基板および前記電極層を除去することにより貫通孔を形成し、同時に、当該貫通孔内に前記配線間絶縁膜と同一パターンの突出部が形成された前記層間絶縁膜を露出させる工程と、
     前記突出部の一部がエッチング残渣として残るように、前記貫通孔を介して前記表面電極の前記配線が露出するまで前記層間絶縁膜をエッチングする工程と、
     前記貫通孔の底面および側面にビア絶縁膜を形成する工程と、
     前記表面電極の前記配線が露出するまで、前記貫通孔の前記底面の前記ビア絶縁膜をエッチングする工程と、
     前記貫通孔の前記ビア絶縁膜の内側に電極材料をめっき成長させることにより、前記表面電極に電気的に接続されるように貫通電極を形成する工程とを含む、半導体装置の製造方法。
  14.  前記電極層を形成する工程は、前記半導体基板の前記表面に形成された半導体素子のゲート電極と同一の工程で実行される、請求項13に記載の半導体装置の製造方法。
  15.  前記半導体基板がシリコン基板であり、
     前記電極層を形成する工程が、ポリシリコン層を形成する工程を含む、請求項13または14に記載の半導体装置の製造方法。
  16.  半導体基板の表面に、所定パターンの絶縁層を選択的に埋め込む工程と、
     前記半導体基板の前記表面にゲート絶縁膜を形成する工程と、
     前記ゲート絶縁膜上に層間絶縁膜を形成する工程と、
     ダマシン法により前記絶縁層と反対パターンの電極材料を前記層間絶縁膜に選択的に埋め込むことにより、前記絶縁層と反対パターンの複数の配線と、互いに隣り合う前記配線間に前記層間絶縁膜の一部を用いて形成され、前記絶縁層と同一パターンの配線間絶縁膜とを含む表面電極を形成する工程と、
     前記半導体基板の裏面からエッチングして前記半導体基板を除去することにより貫通孔を形成し、同時に、当該貫通孔内に前記配線間絶縁膜と同一パターンの前記絶縁層を露出させる工程と、
     前記層間絶縁膜における前記絶縁層の直下の部分がエッチング残渣として残るように、貫通孔を介して前記表面電極の前記配線が露出するまで前記層間絶縁膜をエッチングする工程と、
     前記貫通孔の底面および側面にビア絶縁膜を形成する工程と、
     前記表面電極の前記配線が露出するまで、前記貫通孔の前記底面の前記ビア絶縁膜をエッチングする工程と、
     前記貫通孔の前記ビア絶縁膜の内側に電極材料をめっき成長させることにより、前記表面電極に電気的に接続されるように貫通電極を形成する工程とを含む、半導体装置の製造方法。
  17.  前記絶縁層を形成する工程は、前記半導体基板を前記表面からエッチングすることにより前記所定パターンのシャロートレンチを形成する工程と、前記シャロートレンチに絶縁
    材料を充填することにより、前記絶縁層を前記半導体基板の前記表面に対して前記裏面側へ埋め込むように形成する工程とを含む、請求項16に記載の半導体装置の製造方法。
PCT/JP2012/079509 2011-11-15 2012-11-14 半導体装置およびその製造方法、電子部品 WO2013073574A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280050894.4A CN103875063B (zh) 2011-11-15 2012-11-14 半导体装置及其制造方法、电子部件
US14/345,234 US9478481B2 (en) 2011-11-15 2012-11-14 Semiconductor device, method for manufacturing same, and electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011249939A JP5998459B2 (ja) 2011-11-15 2011-11-15 半導体装置およびその製造方法、電子部品
JP2011-249939 2011-11-15

Publications (1)

Publication Number Publication Date
WO2013073574A1 true WO2013073574A1 (ja) 2013-05-23

Family

ID=48429629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079509 WO2013073574A1 (ja) 2011-11-15 2012-11-14 半導体装置およびその製造方法、電子部品

Country Status (4)

Country Link
US (1) US9478481B2 (ja)
JP (1) JP5998459B2 (ja)
CN (1) CN103875063B (ja)
WO (1) WO2013073574A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263370B2 (en) * 2013-09-27 2016-02-16 Qualcomm Mems Technologies, Inc. Semiconductor device with via bar
JP2016092061A (ja) * 2014-10-30 2016-05-23 株式会社東芝 半導体装置および固体撮像装置
KR102400185B1 (ko) 2014-11-12 2022-05-20 삼성전자주식회사 관통전극을 갖는 반도체 소자
JP6539992B2 (ja) * 2014-11-14 2019-07-10 凸版印刷株式会社 配線回路基板、半導体装置、配線回路基板の製造方法、半導体装置の製造方法
US9502272B2 (en) * 2014-12-29 2016-11-22 Taiwan Semiconductor Manufacturing Company, Ltd. Devices and methods of packaging semiconductor devices
JP2017050340A (ja) * 2015-08-31 2017-03-09 株式会社ソシオネクスト 半導体装置、及び半導体装置の製造方法
CN108091621A (zh) * 2017-12-21 2018-05-29 乐健科技(珠海)有限公司 内嵌开关芯片的器件模组及其制作方法
JP2019145737A (ja) * 2018-02-23 2019-08-29 ソニーセミコンダクタソリューションズ株式会社 半導体装置および半導体装置の製造方法
EP4170712A3 (en) 2018-03-29 2023-07-12 AT & S Austria Technologie & Systemtechnik Aktiengesellschaft Electronic assembly and electronic system with impedance matched interconnect structures
KR102572413B1 (ko) 2019-08-28 2023-08-30 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리 장치 및 그 제조 방법
CN111834232B (zh) * 2020-06-12 2021-04-09 珠海越亚半导体股份有限公司 一种无特征层结构的转接载板及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036104A (ja) * 2005-07-29 2007-02-08 Nec Electronics Corp 半導体装置およびその製造方法
JP2009164481A (ja) * 2008-01-09 2009-07-23 Sony Corp 半導体装置及びその製造方法
WO2010070826A1 (ja) * 2008-12-17 2010-06-24 パナソニック株式会社 貫通電極の形成方法及び半導体装置
JP2011009645A (ja) * 2009-06-29 2011-01-13 Toshiba Corp 半導体装置及びその製造方法
JP2011071239A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 半導体装置の製造方法
JP2011108690A (ja) * 2009-11-12 2011-06-02 Panasonic Corp 半導体装置及びその製造方法
JP2011228419A (ja) * 2010-04-19 2011-11-10 Renesas Electronics Corp 半導体集積回路装置および半導体集積回路装置の製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293523A (ja) 1995-02-21 1996-11-05 Seiko Epson Corp 半導体装置およびその製造方法
JP2004095849A (ja) 2002-08-30 2004-03-25 Fujikura Ltd 貫通電極付き半導体基板の製造方法、貫通電極付き半導体デバイスの製造方法
JP4568039B2 (ja) * 2004-06-30 2010-10-27 ルネサスエレクトロニクス株式会社 半導体装置およびそれを用いた半導体モジュール
JP4753725B2 (ja) * 2006-01-20 2011-08-24 エルピーダメモリ株式会社 積層型半導体装置
CN100580936C (zh) 2006-10-04 2010-01-13 三菱电机株式会社 显示装置及其制造方法
JP2008112136A (ja) 2006-10-04 2008-05-15 Mitsubishi Electric Corp 表示装置及びその製造方法
JP5289830B2 (ja) 2008-06-06 2013-09-11 ルネサスエレクトロニクス株式会社 半導体装置
JP5438980B2 (ja) * 2009-01-23 2014-03-12 ラピスセミコンダクタ株式会社 半導体装置の製造方法
JP5101575B2 (ja) 2009-07-28 2012-12-19 株式会社東芝 半導体装置およびその製造方法
US8183678B2 (en) * 2009-08-04 2012-05-22 Amkor Technology Korea, Inc. Semiconductor device having an interposer
JP5697898B2 (ja) * 2009-10-09 2015-04-08 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及びその製造方法
JP2011082450A (ja) * 2009-10-09 2011-04-21 Elpida Memory Inc 半導体装置及びこれを備える情報処理システム
JP5532394B2 (ja) 2009-10-15 2014-06-25 セイコーエプソン株式会社 半導体装置及び回路基板並びに電子機器
JP5703556B2 (ja) * 2009-10-19 2015-04-22 セイコーエプソン株式会社 半導体装置及び半導体装置の製造方法、回路基板並びに電子機器
KR20120090417A (ko) * 2011-02-08 2012-08-17 삼성전자주식회사 반도체 장치 및 이의 제조 방법
JP5733002B2 (ja) * 2011-04-28 2015-06-10 富士通セミコンダクター株式会社 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036104A (ja) * 2005-07-29 2007-02-08 Nec Electronics Corp 半導体装置およびその製造方法
JP2009164481A (ja) * 2008-01-09 2009-07-23 Sony Corp 半導体装置及びその製造方法
WO2010070826A1 (ja) * 2008-12-17 2010-06-24 パナソニック株式会社 貫通電極の形成方法及び半導体装置
JP2011009645A (ja) * 2009-06-29 2011-01-13 Toshiba Corp 半導体装置及びその製造方法
JP2011071239A (ja) * 2009-09-24 2011-04-07 Toshiba Corp 半導体装置の製造方法
JP2011108690A (ja) * 2009-11-12 2011-06-02 Panasonic Corp 半導体装置及びその製造方法
JP2011228419A (ja) * 2010-04-19 2011-11-10 Renesas Electronics Corp 半導体集積回路装置および半導体集積回路装置の製造方法

Also Published As

Publication number Publication date
US9478481B2 (en) 2016-10-25
JP2013105957A (ja) 2013-05-30
CN103875063B (zh) 2017-05-17
CN103875063A (zh) 2014-06-18
JP5998459B2 (ja) 2016-09-28
US20140346668A1 (en) 2014-11-27

Similar Documents

Publication Publication Date Title
JP5998459B2 (ja) 半導体装置およびその製造方法、電子部品
JP5994167B2 (ja) 半導体装置およびその製造方法、電子部品
JP5984134B2 (ja) 半導体装置およびその製造方法、電子部品
US7602047B2 (en) Semiconductor device having through vias
JP6399887B2 (ja) Tsv構造を具備した集積回路素子及びその製造方法
US7932602B2 (en) Metal sealed wafer level CSP
US20130119547A1 (en) Integrated circuit device including through-silicon via structure having offset interface
KR20170011366A (ko) 반도체 칩 및 이를 가지는 반도체 패키지
KR20150043932A (ko) Tsv 구조를 구비한 집적회로 소자 및 그 제조 방법
KR102013770B1 (ko) 반도체 소자 및 그 제조 방법
JP2007250760A (ja) 半導体装置
KR101883379B1 (ko) 반도체 장치
US8921984B2 (en) Through silicon via in semiconductor device
JP2013074263A (ja) 半導体装置
US6803304B2 (en) Methods for producing electrode and semiconductor device
US9257369B2 (en) Semiconductor device having a base film and manufacturing method for same
JP5919943B2 (ja) シリコンインターポーザ
JP2008186976A (ja) 半導体装置及びその製造方法
JP5751131B2 (ja) 半導体装置及びその製造方法
US20230033087A1 (en) Semiconductor package
KR20140038195A (ko) Tsv구조 형성 방법
KR20130047045A (ko) 본딩 패드를 구비한 반도체 집적 회로 장치 및 그 제조방법
JP2008124271A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850082

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345234

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12850082

Country of ref document: EP

Kind code of ref document: A1