WO2013073319A1 - 多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法 - Google Patents

多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法 Download PDF

Info

Publication number
WO2013073319A1
WO2013073319A1 PCT/JP2012/076093 JP2012076093W WO2013073319A1 WO 2013073319 A1 WO2013073319 A1 WO 2013073319A1 JP 2012076093 W JP2012076093 W JP 2012076093W WO 2013073319 A1 WO2013073319 A1 WO 2013073319A1
Authority
WO
WIPO (PCT)
Prior art keywords
main shaft
rotation
countershaft
angle
gear
Prior art date
Application number
PCT/JP2012/076093
Other languages
English (en)
French (fr)
Inventor
明彦 宝田
Original Assignee
オリエンタルモーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリエンタルモーター株式会社 filed Critical オリエンタルモーター株式会社
Priority to ES12848893.9T priority Critical patent/ES2638332T3/es
Priority to US13/261,897 priority patent/US9528855B2/en
Priority to CN201280055927.4A priority patent/CN103930748B/zh
Priority to EP12848893.9A priority patent/EP2789967B1/en
Priority to KR1020147012549A priority patent/KR101942130B1/ko
Publication of WO2013073319A1 publication Critical patent/WO2013073319A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders
    • G01D5/2452Incremental encoders incorporating two or more tracks having an (n, n+1, ...) relationship
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/26Details of encoders or position sensors specially adapted to detect rotation beyond a full turn of 360°, e.g. multi-rotation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2205/00Indexing scheme relating to details of means for transferring or converting the output of a sensing member
    • G01D2205/20Detecting rotary movement
    • G01D2205/28The target being driven in rotation by additional gears

Definitions

  • the present invention relates to an apparatus for detecting a multi-rotation absolute rotation angle and a method for detecting the rotation angle. More specifically, the present invention relates to a multi-rotation absolute rotation by detecting an angle within one rotation of a plurality of rotation shafts having different gear ratios. The present invention relates to a device for detecting an angle and a method for detecting a rotation angle thereof.
  • the first absolute position detector (resolver) RS1 in the first stage is used for both region determination and the number of rotations in one rotation. Therefore, there is a problem that accuracy is particularly required. That is, the discrimination of the region within one rotation and the number of rotations in Patent Document 1 are performed based on the waveform shown in FIG. 5, and ⁇ 10 obtained by Equation (3) is the absolute position (mechanical angle) within one rotation. (See paragraph [0022]), but the calculation result of ⁇ 10 is used for discrimination of 26 rotations ⁇ 4 regions, so that it needs to be able to withstand 104 (26 ⁇ 4) divisions. On the other hand, the accuracy of 27 divisions is sufficient at ⁇ 20 in FIG. 6, and the accuracy of 29 divisions is sufficient at ⁇ 30 in FIG.
  • Patent Document 2 discloses an encoder having the same four angle detection shafts as Patent Document 1, but the gear G0 and the gear G1 are connected at a gear ratio of 1: 1, and the single angle detector of the gear G1 is a gear. It is used only for region discrimination of the G0 quadruple angle detector.
  • Patent Document 1 obtains a detection range of 20368 rotations from three signals of 26 rotation cycles, 27 rotation cycles, and 29 rotation cycles, while Patent Document 2 mechanically has 27 rotation cycles, 29 rotation cycles to 783 rotations. Stays in the detection range for rotation.
  • Patent Document 1 obtains three rotation period signals to obtain multi-rotation information by taking the difference between the three sub-shaft rotation angles connected at different speed ratios with respect to the rotation angle of the main shaft.
  • the number of gear teeth of the countershaft is set to 1 with respect to the number of gear teeth fastened to the main shaft.
  • the present invention has been made to solve the above-described problem, and includes a main shaft gear attached to the main shaft, a first counter gear and a second counter gear that are gear-coupled to the main shaft gear, and first and second counter shafts. It consists of first and second countershafts that transmit the rotation of the gear, A set of angle detectors comprising a main shaft angle detector for detecting a main shaft rotation angle, and first and second sub shaft angle detectors for detecting first and second sub shaft rotation angles.
  • the angle detector of the main shaft outputs an N-fold angle detection value P 0 (NX) of N cycles per rotation of the main shaft, and the angle detectors of the first and second counter shafts are 1 of one cycle per rotation of the main shaft.
  • a set of angle detectors for outputting the double angle detection values P 1 (1X) and P 2 (1X) , respectively;
  • the number of teeth of the first countershaft gear is a difference between the number of teeth of the main shaft gear and an integer a of 2 or more, and the difference of the number of teeth a and the shaft angle multiplier N of the angle detector provided on the main shaft.
  • a gear mechanism having a relationship that is an integral multiple of the product, and the difference in the number of teeth between the main shaft gear and the second counter gear is 1.
  • the multi-rotation angle detection device for determining the multi-rotation absolute rotation angle of the main shaft from the rotation angle detection values of the main shaft, the first sub-axis, and the second sub-axis, From the N double angle detection value P 0 (NX) detected by the angle detector of the main shaft and the first double angle detection value P 1 (1X) of the first counter shaft detected by the angle detector of the first sub shaft, the first When the number of teeth on the countershaft is M, a signal P 0 ((aN / M) ⁇ X) with M / aN rotation of the main shaft as one cycle is obtained, and from the signal P 0 ((aN / M) ⁇ X) , A discriminant value indicating what number of N cycles the N double angle detection value P 0 (NX) detected by the spindle angle detector is obtained, and the discriminant value and the N double angle detection value P 0 are obtained.
  • Main axis rotation angle detection means for synthesizing a single angle detection value P 0 (1X) of the main shaft in one cycle per main shaft rotation from (NX) ;
  • a first countershaft periodic signal indicating a difference in rotational speed between the main shaft and the first subshaft is generated from the main shaft 1 ⁇ angle detection value P 0 (1X) and the first subshaft 1 ⁇ angle detection value P 1 (1X).
  • the main axis and the second sub-axis are obtained from the main shaft 1 ⁇ angle detection value P 0 (1X) and the second sub-axis 1 ⁇ angle detection value P 2 (1X) detected by the second counter-axis angle detector.
  • Generating a second countershaft period signal indicating a difference in the number of revolutions, and obtaining a spindle speed from the first countershaft period signal and the second countershaft period signal; Is a multi-rotation angle detector.
  • the present invention further includes a third countershaft in addition to the first and second countershafts, wherein the difference in the number of teeth between the main shaft gear and the third subshaft is 1, and the main shaft single angle detection value P 0 (1X ) And the 1st double angle detection value P 3 (1X) of the second countershaft detected by the angle detector of the third countershaft, the third countershaft periodic signal indicating the difference in the rotational speed between the main shaft and the third countershaft And the main shaft rotational speed detection means obtains the main shaft rotational speed from the first counter shaft periodic signal, the second counter shaft periodic signal, and the third counter shaft periodic signal. It is.
  • the present invention provides a main shaft gear attached to a main shaft that transmits rotation of a rotation drive source, a first counter gear and a second counter gear that are gear-coupled to the main shaft gear, and first and second counter gears.
  • An angle detector for the main shaft that detects the rotation angle of the main shaft, and the first and second sub shafts for detecting the rotation angle of the first and second sub shafts.
  • a set of angle detectors comprising an angle detector for the shaft, the angle detector for the main shaft outputting an N double angle detection value P 0 (NX) of N cycles per rotation of the main shaft, and the first and second sub-detectors
  • the shaft angle detector includes a set of angle detectors that output 1-fold angle detection values P 1 (1X) and P 2 (1X) of one cycle per rotation of the sub shaft,
  • the number of teeth of the first countershaft gear has a tooth number difference of an integer a of 2 or more than that of the main shaft gear, and the tooth number difference a and the shaft angle multiplier N of the angle detector provided on the main shaft.
  • a gear mechanism having a relationship that is an integral multiple of the product and the difference in the number of teeth of the main shaft gear and the second counter gear is 1.
  • Detecting the double angle detection values P 1 (1X) and P 2 (1X) respectively; From the N double angle detection value P 0 (NX) detected by the angle detector of the main shaft and the first double angle detection value P 1 (1X) of the first counter shaft detected by the angle detector of the first sub shaft, the first When the number of teeth on the countershaft is M, a signal P 0 ((aN / M) ⁇ X) with M / aN rotation of the main shaft as one cycle is obtained, and from the signal P 0 ((aN / M) ⁇ X) , By obtaining a discriminating value for specifying the number of cycles of N cycles, the N double angle detection value P 0 (NX) detected by the angle detector of the spindle is within one revolution of the spindle.
  • a 1-fold angle detection value P 0 (1X) of the spindle for one cycle per rotation of the spindle is combined, and the 1-fold angle detection value P 0 (1X) of the spindle is 1 generates a first countershaft periodic signal indicating the difference in rotational speed of from countershaft one double angle detection value P 1 and (1X) and the main shaft and the first counter shaft, further 1 double angle detection value P 0 of the main shaft (1X )
  • the second countershaft periodic signal indicating the rotational speed difference between the main shaft and the second subshaft from the second countershaft detected value P2 (1X) detected by the second countershaft angle detector.
  • determining the rotational speed of the main spindle from the first countershaft period signal and the second countershaft period signal Is a multi-rotation angle detection method.
  • the present invention further includes a third countershaft in addition to the first and second countershafts, the difference in the number of teeth between the main shaft gear and the third subshaft is 1, and the single-fold angle detection value P 0 of the main shaft.
  • (1X) and the third third countershaft showing the difference in rotational speed of from a second 1 double angle detection value P 3 of the countershaft detected by the countershaft of the angle detector (1X) and the main shaft and the third countershaft
  • the step of generating the periodic signal and determining the rotational speed of the main spindle further includes the step of determining the rotational speed of the main spindle from the first countershaft periodic signal, the second countershaft periodic signal, and the third countershaft periodic signal. This is a characteristic multi-rotation angle detection method.
  • an N double-angle detector that outputs a detection signal of N cycles at one rotation is used for the main shaft, and a single double-angle detector is used for the secondary shaft.
  • the single angle detector does not require a particularly high accuracy compared to the second and subsequent sub-axes, and even when an angle detector having an equivalent accuracy is used, the accuracy of each angle detector A multi-rotation detection range that makes the best use of can be obtained.
  • FIG. 1 It is a block diagram which shows the gear mechanism of the rotation angle detection apparatus which detects the multi rotation absolute rotation angle which concerns on one Example of this invention.
  • the block diagram of the rotation angle calculating part for calculating the multi-rotation absolute rotation angle of a spindle is shown. It is a figure which shows the signal waveform output from each angle detector of a main axis
  • FIG. 5 shows a waveform of a periodic signal output from a rotation angle detector of each sub shaft with respect to the main shaft rotation speed according to one embodiment of the present invention. It is a table
  • the rotation angle detection device aims to improve the detection resolution of the multi-rotation absolute rotation angle and widen the multi-rotation detection range.
  • description will be made based on a rotation angle detection device configured by a gear having a specific number of teeth, but these numerical values can be changed in accordance with the spirit of the present invention.
  • FIG. 1 is a block diagram showing a gear mechanism 1 of a rotation angle detection device for detecting a multi-rotation absolute rotation angle according to an embodiment of the present invention.
  • a main shaft 10a connected to a rotation shaft of a motor 10 is connected to a main shaft gear 10b having a tooth number R of 28, and the main shaft 10a detects a rotation angle ⁇ 0 within one rotation of the main shaft 10a.
  • a resolver RS0 which is an angle detector, is attached.
  • the resolver RS0 outputs an angle detection signal corresponding to a rotation angle of 0 to 360 degrees.
  • the resolver RS0 is an N double angle (NX) angle detector that outputs an N period signal every time the main shaft 10a makes one rotation.
  • NX N double angle
  • An angle detector other than the resolver may be used.
  • a rotation angle means an angle within one rotation (0 to 360 degrees)
  • a rotation angle means a multi-rotation angle.
  • the main shaft gear 10b is gear-coupled to the first to third counter shaft gears 11b, 12b, 13b, and the rotation of each counter shaft gear is transmitted to the first to third counter shafts 11a, 12a, 13a, respectively.
  • the numbers of teeth M, Q, and S of the first to third countershaft gears 11b, 12b, and 13b are 32, 27, and 29, respectively.
  • the rotation angles ⁇ 0 to ⁇ 3 of the first to third countershafts 11a, 12a, and 13a are detected by resolvers RS1 to RS3 attached to the first to third countershafts 11a, 12a, and 13a.
  • the resolvers RS1 to RS3 output angle detection (value) signals corresponding to rotation angles from 0 to 360 degrees.
  • the resolvers RS1 to RS3 are 1 ⁇ (1 ⁇ ) angle detectors that output a signal of one cycle each time each sub-axis rotates once, but angle detectors other than the resolver may be used.
  • the number of teeth R of the main shaft gear 10b and the number of teeth M, Q, and S of the first to third countershaft gears 11b, 12b, and 13b are a is an integer of 2 or more
  • the number of teeth R and M of the main shaft gear 10b and the first countershaft gear 11b are 28 and 32, respectively. Therefore, when the main shaft 10a rotates eight times, the first countershaft gear 11b The relationship between the main shaft gear 10b and the first countershaft gear 11b is restored to the original. That is, between the main shaft gear 10b and the first counter shaft gear 11b, the mutual gear position reaches the original position in a cycle of eight main shaft rotations. Further, since the number Q of teeth of the second countershaft gear 12b is 27, the relationship between the gear positions of the mainshaft gear 10b and the second countershaft gear 12b reaches the original position every time the main shaft 10a rotates 27 times. Further, since the number S of teeth of the third countershaft gear 13b is 29, when the main shaft 10a rotates 29 times, the relationship between the gear positions of the main shaft gear 10b and the third countershaft gear 13b reaches the original position.
  • a periodic signal of one cycle can be calculated every 8 rotations of the main shaft 10a from the detection signals of the resolvers RS0 and RS1 that detect the rotation angles of the main shaft 10a and the first auxiliary shaft 11a, Further, a period signal of one cycle can be calculated every 27 rotations of the main shaft 10a from the detection signal of the resolver RS0 and the detection signal of the resolver RS2 that detects the rotation angle of the second counter shaft 12a. A period signal of one cycle can be calculated every 29 rotations of the main shaft 10a from the signal and the detection signal of the resolver RS3 that detects the rotation angle of the third counter shaft 12a.
  • the multi-rotation absolute rotation angle of the main shaft 10a is obtained from the values of these three periodic signals.
  • the range of the rotation angle at which the multi-rotation absolute rotation angle can be obtained is 6264 (8 ⁇ 27 ⁇ 29) rotation which is the least common multiple of these three periods.
  • the main shaft 10a spans the range of 6264.
  • a multi-rotation absolute rotation angle of 10a can be obtained.
  • a calculation method for obtaining the multi-rotation absolute rotation angle ⁇ c of the main shaft 10a from the detection signal values of the resolvers RS0 to RS3 will be described.
  • FIG. 2 is a block diagram of the rotation angle calculation unit 20 for calculating the multi-rotation absolute rotation angle ⁇ c of the main shaft 10a.
  • the rotation angles of the main shaft 10a and the first to third sub shafts 11a, 12a, and 13a are detected by resolvers RS0 to RS3, respectively, and two sinusoidal detection voltages (sin component and cosin component) that are 90 ° out of phase.
  • the two detection voltages are converted from analog values into, for example, 12-bit digital values by the AD converter 23 and sent to the RD conversion arithmetic circuit 24, respectively.
  • the RD conversion arithmetic circuit 24 calculates angle detection values P 0 (4X) , P 1 (1X) , P 2 (1X) , and P 3 (1X) from the received two digital values (sin component and cosin component ) , respectively. Is done.
  • (4X) and (1X) attached to the symbol of the detection value indicate the values of the signals output from the quadruple angle and single angle detectors, respectively.
  • the detection voltages of the resolvers RS0 to RS3 include errors due to variations in the resolvers RS0 to RS3 themselves and various factors such as magnetic, circuit, and mechanical accuracy. Signal offset correction and amplitude correction are performed, and various precision corrections such as error correction for the actual rotation angle and correction related to the detected value of each rotation axis are performed.
  • FIG. 3 shows changes in the detected values P 0 (4X) , P 1 (1X) , P 2 (1X) , and P 3 (1X) obtained as described above with respect to the rotational speed of the main shaft 10a.
  • the horizontal axis in FIG. 3 indicates the number of rotations of the main shaft 10a, and the vertical axis indicates the electrical angle of each axis corresponding to the value detected in each detected value. For ease of understanding, the vertical axis in FIG.
  • the detection value P0 (4X) shown in FIG. 3A is a quadruple angle detector because the angle detector RS0 is a quadruple angle detector, so that a detection value of four periods is output every time the main shaft 10a makes one rotation.
  • FIGS. 3B to 3D show changes in the rotation angle of the countershaft that has been shifted according to the gear ratio determined by the number of teeth of the main shaft gear and the number of teeth of the subshaft gear.
  • the detected value P 0 (4X) is shown as a waveform that monotonously increases in the positive direction with respect to the rotation of the main shaft 10a, but the detected values P 1 (1X) , P 2 (1X) , P 3 (1X ) Monotonously decreases in the negative direction indicates that the rotation directions of the first to third countershafts 11a, 12a, and 13a are opposite to those of the main shaft 10a.
  • the angle detector RS0 since the angle detector RS0 generates an N-fold angle output, the detected value P 0 (NX) of the main shaft is an angle obtained by multiplying the multi-rotation angle ⁇ 0 of the main shaft 10a by N by a basic unit amount u per rotation. Since it is the remainder divided, it can be expressed as the following equation (1).
  • mod (x, a) represents a remainder operation for obtaining a remainder when x is divided by a
  • a numerical value N represents a double angle number (4 in the present embodiment) of the angle detector RS0
  • U represents the basic unit amount per rotation of the rotating shaft (360 ° in this embodiment).
  • the multi-rotation angles ⁇ 1 , ⁇ 2 , ⁇ 3 of the first to third countershafts 11a, 12a, 13a are expressed as in the equations (2) to (4), they are detected by a single angle detector.
  • the detected values P 1 (1X) , P 2 (1X) , and P 3 (1X) of the rotation angles of the first to third counter shafts are the remainders obtained by dividing the multi-rotation angles of the respective sub shafts by the basic unit amount u. Therefore, it is expressed by the following formulas (5) to (7).
  • the angle detector RS0 attached to the main shaft is an N-multiple angle detector that outputs an N period signal every rotation of the main shaft
  • the detected value output from this angle detector is shown in FIG.
  • the output value of the angle detector is not a value that uniquely indicates the rotation angle of the spindle. Therefore, in the case of the N-fold angle detector, in order to determine the rotation angle of the main shaft, which detection region the output detection value is the value of the main shaft, in other words, the detection value belonging to what number of sawtooth wave It is necessary to determine whether it exists.
  • a discriminant value is generated as follows using the difference between the rotation amounts of the main shaft and the first sub shaft. Since the detected value of the main shaft is N double angle and the detected value of the first sub shaft is 1 double angle, the detected value of the difference in the rotation amount cannot be calculated as it is. Therefore, first, as shown in the following equation (8), By obtaining a remainder obtained by dividing the result of multiplying the first counter axis detection value P 1 (1X) by N by the basic unit amount u, the detection value P 1 (NX) of the N double angle is detected from the detection value of the single angle detector. Is generated.
  • the quadruple angle detection value P1 (4X) of the first sub-axis has a waveform shown in FIG. 4B with respect to the rotational speed of the main shaft.
  • FIG. 4A shows a detection value P0 (4X) of a quadruple angle of the main shaft 11a.
  • a periodic signal P 0 ((aN / M) ⁇ X) of one cycle is obtained every time the main shaft rotates M / aN from the addition result of the main axis and the first sub-axis N multiple angle.
  • the periodic signal shown in FIG. 4C has a sawtooth waveform that monotonously increases every time the main shaft rotates twice. Further, the signal waveform of the detected value P0 (4X) of the main shaft 11a shown in FIG. 4A has a sawtooth waveform, but a sawtooth wave of 8 cycles within one cycle of the periodic signal of FIG. 4C. Is repeated. Therefore, the value calculated by the equation (9) is the value of the sawtooth wave at which position of the four sawtooth waves within the spindle rotation is the detected angle value PO (4X) detected by the main shaft angle detector RS0. It can be used as a discriminant value for discriminating.
  • the sawtooth wave of the detected angle P 0 (NX) of the spindle is repeated M / a cycles within one cycle of the periodic signal of FIG. 4C, and the value of the periodic signal of FIG. Is divided into M / a regions, it is possible to determine in which determination region within one rotation of the main shaft the detected angle value P 0 (NX) is located.
  • a stepped waveform signal is generated from the periodic signals of FIGS. 4A and 4C, and the region of the detected value P 0 (NX) is determined based on the stepped waveform.
  • the stepped waveform R 0 shown in FIG. 5A can be generated from the periodic signal shown in FIG.
  • the equation (10) is expressed as (a) in FIG.
  • a stepped waveform R (0-7) having (M / a) -1) steps (seven steps in this embodiment ) is shown.
  • This periodic signal is a signal representing a difference in rotation angle between the main shaft and the sub shaft.
  • the main shaft gear and the sub shaft gear are meshed at the same position for each cycle of the periodic signal.
  • the gear position of the main shaft and the sub shaft at a certain point in time is set as the initial position (the position where the main shaft rotation speed is expressed as 0). It is the figure which showed how many times it shifted
  • FIG. 6A shows a periodic signal of the first countershaft representing a change in the shift angle of the gear position of the first countershaft with respect to the gear position of the main spindle, and FIG. FIG.
  • FIG. 6C shows a periodic signal of the second countershaft representing a change in the shift angle of the shaft gear position
  • FIG. 6C shows a change in the shift angle of the gear position of the third countershaft with respect to the gear position of the main shaft.
  • the axis periodic signal is shown.
  • the combinations of the values of the periodic signals are all different from the initial position of the combination in which the values of the periodic signals are all 0 until the spindle rotates and returns to the initial position again. That is, a certain combination of periodic signal values exists only during a period from the initial position to the next initial position. Therefore, if the combination of the values of the periodic signals is obtained, the rotational speed of the spindle from the initial position can be obtained.
  • the rotational speed of the main spindle from the main spindle speed corresponding to the value of the periodic signal is defined as the relative rotational speed of each sub-axis within one period of each periodic signal (at the initial position, each sub-axis
  • the rotational speed of the main shaft from the initial position can be obtained from the combination of the relative rotational speeds.
  • the period until all the periodic signals return to the initial position is obtained by the least common multiple of the period of each periodic signal.
  • the angle detector for each sub-axis is a single angle, it is necessary to convert the detection value obtained from the angle detector for the main axis into a detection value of a single angle. Accordingly, the detected value P 0 (NX) of the N-fold angle main axis and the above equation (11) are used to synthesize the detected value P 0 (1X) of the 1 ⁇ angle by the following equation (12).
  • the periodic signal of the second secondary axis is obtained as a periodic signal of one period every 27 rotations of the main shaft. It is done.
  • the detected value P3 (1X) of the third sub-axis is added to the detected value P0 (1X) of the main shaft, one period is obtained every time the main shaft rotates S as shown in the following equation (15).
  • the periodic signal of the third counter axis is obtained with a period signal of one period every 29 rotations of the main axis. .
  • the relative rotational speed of each countershaft gear is then calculated.
  • the relative rotation speed is obtained by multiplying each period by the ratio of the value of the periodic signal to the basic unit quantity u because the period of the periodic signal of each sub-axis is known.
  • the following equations (16), (17), and (18) are equations for calculating the relative rotational speeds m1 to m3 with respect to the first to third countershaft gears.
  • the relationship between the multi-rotational speed n of the main shaft and the relative rotational speeds m1 to m3 of each sub-axis is calculated in advance and stored in a storage device (for example, ROM) as a reference table as shown in FIG.
  • a storage device for example, ROM
  • the multi-rotation rotational speed of the spindle that matches the combination of the relative rotational speeds can be obtained. For example, if the relative rotational speeds of the first to third countershaft gears are 4, 18, and 22, the rotational speed of the main shaft is 6228 from the reference table of FIG.
  • the multi-rotation speed of the main shaft can be obtained (if the same gear number as in this example, it can be detected up to 216 revolutions). If the relative rotational speed of the first and second countershafts is 5, 24, the rotational speed of the main shaft is 213 from the reference table of FIG.
  • the multi-rotation absolute rotation angle of the main shaft is obtained by adding the multi-rotation rotation number of the main shaft and the rotation angle within one rotation of the main shaft.
  • the rotation angle within one rotation of the main shaft can be obtained by determining the region of the output signal P 0 (4X) from the quadruple-angle detector RS0 of the main shaft.
  • step 81 the angle detector RS0 attached to the main shaft 10a shown in FIG. 1 attaches the quadruple angle detection value P0 (4X) to the first to third auxiliary shafts 11a, 12a, and 13a.
  • the detected angle detectors RS1 to RS3 detect the detection values P 1 (1X) to P 3 (1X) of 1 ⁇ angle, respectively. These detected values show the waveforms shown in FIG. 3 with respect to the rotational speed of the spindle.
  • the process proceeds to step 82, in order to determine to which determination region the main shaft detection value P 0 (4X) belongs in one rotation of the main shaft. 8), the detection value P1 (1X) of the first double angle of the first sub-axis is converted into the detection value P1 (4X) of the quadruple angle.
  • the quadruple-angle detection value P0 (4X) of the main axis is added to the quadruple-angle detection value P1 (4X) to generate a discrimination value for discriminating the discrimination region.
  • This discriminant value indicates the discriminant waveform shown in FIG. 4C with respect to the rotational speed of the spindle.
  • the detected value detected by the spindle angle detector RS0 is determined from the discriminant value to which of the sawtooth waves shown in FIG. 4 (a) belongs to.
  • the rotation angle of the main shaft is derived from the detected value.
  • the determination region to which the detection value belongs is specified by the determination value. As will be described below, this determination value is further processed, and the detected angle of the main shaft is combined to obtain the rotation angle of the main shaft. be able to.
  • step 84 the discriminant value obtained in step 83 is subjected to the processing shown in equation (10), thereby generating the stepped waveform value shown in FIG. Further, the stepped waveform value is substituted into the equation (11) to generate a stepped waveform value of one rotation and one period of the spindle shown in FIG. 5B. Proceeding to step 85, the stepped waveform value is substituted into equation (12) to synthesize a single-angle main axis detection value. The detected value of the main shaft of 1 ⁇ angle indicates the rotation angle of the main shaft as shown in FIG.
  • the periodic signal values of the first to third sub-axes are generated in step 86 according to the equations (13) to (15). These known signal values with respect to the spindle speed are as shown in FIGS. 6 (a) to 6 (c).
  • the periodic signal values of the first to third countershafts are generated, in step 87, the relative rotational speed of the first to third countershafts with respect to the main shaft is obtained by equations (16) to (18).
  • a combination that matches the relative rotational speeds m1 to m3 of the first to third countershafts is searched from the reference table shown in FIG. 7, and the spindle rotational speed n for the matched combination is output.
  • the spindle rotational speed n is obtained, the process proceeds to step 88, and the spindle rotational angle is added to the spindle rotational speed n to finally obtain a multi-rotation absolute rotational angle.
  • the first sub-axis detection value is multiplied by N, It is necessary to satisfy.
  • the accuracy required for the angle detector of the first countershaft of the present invention is the same as that of the single angle angle detector attached to the main shaft. It will be good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 本検出装置は、主軸ギヤ10bと歯車接合した第1~第3副軸ギヤを具備する歯車機構1からなり、主軸ギヤと第1副軸ギヤの歯数差は、2又はそれを越える整数aであり、また主軸ギヤと第2副軸ギヤの歯数差は、1であり、第1軸の歯数は主軸に対する歯数差と主軸検出器の軸倍角の積の整数倍の関係を有する。角度検出器RS0~RS3の検出値は、デジタル化された角度検出値P0(4X),P1(1X),P2(1X),P3(1X)として多回転演算回路25に与えられる。主軸の検出値P0(4X)の判別領域が判別され、主軸の回転角度が求められる。さらに主軸と第1~第3副軸との間の回転角度の差を表す周期信号値をそれぞれ生成し、各周期信号値から求められた第1~第3副軸の相対回転数の組み合わせに基づいて主軸の回転数を求める。主軸の回転数に回転角度を加えて多回転アブソリュート回転角を得ることができる。

Description

多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法
 本発明は、多回転アブソリュート回転角を検出する装置及びその回転角を検出する方法に関し、さらに詳しくは、変速比が異なる複数の回転軸の1回転以内の角度を検出して、多回転アブソリュート回転角を検出する装置及びその回転角を検出する方法に関する。
 回転駆動源である、例えばモータの軸回転を多回転に亘って制御することは、工作機械、ロボット等の移動体の位置制御に必要である。特に、1回転内の角度を高い分解能で検出すると共に、より多くの回転に亘たる角度情報を得ることが極めて重要になる。しかしながら、分解能を高くし、かつ角度情報をより多くの回転に対応させる回転角検出装置は、従来から多くの提案が行われてきた。
 特許第3665732号公報に開示された絶対位置検出方法では、1回転内の検出分解能を高くし、かつ多回転検出範囲を広くするために、軸倍角の異なる2つの角度検出器を1つの軸の角度検出に使用する場合、角度検出器の数が増え、ギヤ機構が複雑になり、ギヤ機構が大きくなるという課題に対処するために、第1軸に4倍角のレゾルバを使用し、第2軸には1倍角のレゾルバを使用することにより、分解能を4倍に向上させながら、多回転検出範囲を縮小させず、かつレゾルバを増やさない方法が提案されている。
特許第3665732号公報 特開2009-229396号公報
 従来の検出方法には、特許文献2の段落[0006]に記述されているように、最初の第1段目の絶対位置検出器(レゾルバ)RS1は1回転内の領域判別と回転回数の両方の用途に使用されるため、特に精度が要求されるという問題があつた。すなわち、特許文献1の1回転内の領域判別及び回転回数の判別は、図5に示される波形に基づいて行われ、式(3)で求められるθ10は1回転内のアブソリュート位置(機械角)の判定に利用できるが(段落[0022]参照)、θ10の計算結果は、26回転×4領域の判別に使用されるため、104(26×4)分割に耐えうる精度が要求される。これに対して、図6のθ20では27分割の精度、第7図のθ30では29分割の精度で良い。
 特許文献1の構成では、RS1,RS2,RS3の3つの1倍角レゾルバを使用しているがRS1のみに他のレゾルバより4倍近く高い精度が求められる。そこでRS1のみ高い精度を持つレゾルバを使うか、RS1,RS2,RS3を同等の精度を有するレゾルバを使用し、本来RS2,RS3の持つ検出精度から得られるはずの回転周期を使わずに、検出範囲を狭めて使用することになる。設置スペースや設計・製造面の制約上、RS1のみ精度の特別に高い角度検出器を用いるのは難しいケースが多い。また部品を共通にする観点からもRS1~RS3に同等な精度の1倍角レゾルバを使用するのが好ましい場合が多い。
 特許文献2は、特許文献1と同じ4つの角度検出軸を有するエンコーダを開示しているが、歯車G0と歯車G1を1対1のギヤ比で接続し、歯車G1の1倍角検出器は歯車G0の4倍角検出器の領域判別のみに使用している。特許文献1が26回転周期、27回転周期、29回転周期の3つの信号から20368回転の検出範囲を得ているのに対し、特許文献2は機械的には27回転周期、29回転周期から783回転に検出範囲を得ているのに留まる。
 また、特許文献1の図5の信号波形に基づく判別は、4周期/回転と1周期/26回転の信号が混在しており、2つの信号を判別するのは面倒であるという点で、信号処理上の問題がある。さらに特許文献1では主軸の回転角に対して、異なる変速比で連結された3つの副軸回転角の差を取ることにより、3つの回転周期信号を求め多回転情報を得ている。副軸のギヤ歯数は主軸に締結されたギヤ歯数に対して歯数差を1としている。歯数差を1とした場合ひとつの主軸ギヤに対して、歯数が+1、-1の2つの軸を連結できるが3つ以上は別のギヤを主軸に設ける必要がある。
 本発明は、上記課題を解決するためなされたもので、主軸に取り付けられた主軸ギヤ、主軸ギヤと歯車結合する第1副軸ギヤ及び第2副軸ギヤ、及び、第1及び第2副軸ギヤの回転をそれぞれ伝達する第1及び第2副軸から構成され、
 主軸の回転角度を検出する主軸の角度検出器、及び、第1及び第2副軸の回転角度を検出する第1及び第2副軸の角度検出器からなる一組の角度検出器であって、主軸の角度検出器は、主軸1回転当たりN周期のN倍角検出値P0(NX)を出力し、第1及び第2副軸の角度検出器は、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ出力する、一組の角度検出器を備え、
 第1副軸ギヤの歯数は、主軸ギヤと歯数差2又はそれを越える整数aの歯数差を有し、かつ歯数差aと主軸に設けられた角度検出器の軸倍角Nの積に対して整数倍であり、また主軸ギヤと第2副軸ギヤとの歯数差は、1である関係を有するギヤ機構であって、
主軸、第1副軸、及び、第2副軸の回転角度検出値から主軸の多回転アブソリュート回転角を求める多回転角度検出装置において、
 主軸の角度検出器によって検出されたN倍角検出値P0(NX)と第1副軸の角度検出器によって検出された第1副軸の1倍角検出値P1(1X)とから、第1副軸の歯数をMとすると、主軸のM/aN回転を1周期とする信号P0((aN/M)×X)を求め、信号P0((aN/M)×X)により、主軸の角度検出器によって検出されたN倍角検出値P0(NX)がN周期の内の何番目の周期の値であるかを示す判別値を得て、判別値とN倍角検出値P0(NX)とから主軸1回転当たり1周期の主軸の1倍角検出値P0(1X)を合成する主軸回転角検出手段と、
 主軸の1倍角検出値P0(1X)と第1副軸の1倍角検出値P1(1X)とから主軸と第1副軸との回転数の差を示す第1副軸周期信号を生成し、さらに主軸の1倍角検出値P0(1X)と第2副軸の角度検出器によって検出された第2副軸の1倍角検出値P2(1X)とから主軸と第2副軸との回転数の差を示す第2副軸周期信号を生成し、第1副軸周期信号と第2副軸周期信号とから主軸の回転数を求める主軸回転数検出手段と、
 から構成される多回転角度検出装置である。
 また本発明は、第1及び第2副軸に加えて、第3副軸を備え、主軸ギヤと第3副軸の歯数差は1であり、さらに主軸の1倍角検出値P0(1X)と第3副軸の角度検出器によって検出された第2副軸の1倍角検出値P3(1X)とから主軸と第3副軸との回転数の差を示す第3副軸周期信号を生成し、主軸回転数検出手段は、第1副軸周期信号、第2副軸周期信号、及び、第3副軸周期信号から主軸の回転数を求めることを特徴とする多回転角度検出装置である。
 さらに、本発明は、 回転駆動源の回転を伝達する主軸に取り付けられた主軸ギヤ、主軸ギヤと歯車結合する第1副軸ギヤ及び第2副軸ギヤ、及び、第1及び第2副軸ギヤの回転をそれぞれ伝達する第1及び第2副軸から構成され
主軸の回転角度を検出する主軸の角度検出器、及び、第1及び第2副軸の回転角度を検出する第1及び第2副軸の角度検出器からなる一組の角度検出器であって、主軸の角度検出器は、主軸1回転当たりN周期のN倍角検出値P0(NX)を出力し、第1及び第2副軸の角度検出器は、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ出力する、一組の角度検出器を備え、
 第1副軸ギヤの歯数は、主軸ギヤと歯数差2またはそれを越える整数aの歯数差を有し、かつ歯数差aと主軸に設けられた角度検出器の軸倍角Nの積に対して整数倍であり、また主軸ギヤと第2副軸ギヤの歯数差は、1である関係を有するギヤ機構であって、
主軸、第1副軸、及び、第2副軸の回転角度検出値から主軸の多回転アブソリュート回転角を求める多回転角度検出装置において、
 主軸の回転角度である、主軸1回転当たりN周期のN倍角検出値P0(NX)を検出し、かつ第1及び第2副軸の回転角度である、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ検出する段階と、
 主軸の角度検出器によって検出されたN倍角検出値P0(NX)と第1副軸の角度検出器によって検出された第1副軸の1倍角検出値P1(1X)とから、第1副軸の歯数をMとすると、主軸のM/aN回転を1周期とする信号P0((aN/M)×X)を求め、信号P0((aN/M)×X)により、主軸の角度検出器によって検出されたN倍角検出値P0(NX)がN周期の内の何番目の周期の値であるかを特定するための判別値を得ることにより、主軸の1回転内の回転角度を求める段階と、
 判別値とN倍角検出値P0(NX)とから主軸1回転当たり1周期の主軸の1倍角検出値P0(1X)を合成し、また主軸の1倍角検出値P0(1X)と第1副軸の1倍角検出値P1(1X)とから主軸と第1副軸との回転数の差を示す第1副軸周期信号を生成し、さらに主軸の1倍角検出値P0(1X)と第2副軸の角度検出器によって検出された第2副軸の1倍角検出値P2(1X)とから主軸と第2副軸との回転数の差を示す第2副軸周期信号を生成し、第1副軸周期信号と第2副軸周期信号とから主軸の回転数を求める段階と、
 から構成される多回転角度検出方法である。
 またさらに、本発明は、第1及び第2副軸に加えて、さらに第3副軸を備え、主軸ギヤと第3副軸の歯数差は1であり、主軸の1倍角検出値P0(1X)と第3副軸の角度検出器によって検出された第2副軸の1倍角検出値P3(1X)とから主軸と第3副軸との回転数の差を示す第3副軸周期信号を生成し、主軸の回転数を求める段階は、第1副軸周期信号、第2副軸周期信号、及び、第3副軸周期信号から主軸の回転数を求める段階をさらに含むことを特徴とする多回転角度検出方法である。
 1回転以内の検出分解能を得るために、主軸には1回転でN周期の検出信号を出力するN倍角検出器を用い、副軸には1倍角検出器を使用して、第1副軸の1倍角検出器には第2副軸以降の副軸と較べて特別に高い精度を要求することなく、さらに同等の精度を有する角度検出器を用いた場合でも、それぞれの角度検出器が有する精度を最大限に活かした多回転検出範囲を得ることができる。また、主軸の検出値に対する領域判別と回転回数を簡単に導出することが可能となる。さらに、主軸に使用するギヤの個数を減らすことができる。
本願発明の一実施例に係る多回転アブソリュート回転角を検出する回転角検出装置のギヤ機構を示すブロック図である。 主軸の多回転アブソリュート回転角を算出するための回転角演算部のブロック図を示す。 本願発明の一実施例に従って、主軸回転数に対する主軸及び各副軸の各角度検出器から出力される信号波形を示す図である。 本願発明の一実施例に従って、主軸の判別領域を判別するための信号波形を示す。 本願発明の一実施例に従って、主軸の1回転内の回転角度を求めるための信号波形を示す。 本願発明の一実施例に従って、主軸回転数に対する各副軸の回転角度検出器から出力される周期信号の波形を示す。 本願発明の一実施例に従って、主軸回転数と各副軸の相対回転数との関係を示す表である。 主軸及び副軸の回転角度から主軸の多回転アブソリュート回転角を求める手順を説明するフローチャートである。
 本願発明に係る回転角検出装置は、多回転アブソリュート回転角の検出分解能を向上させると共に、多回転検出範囲を広くすることを目的とする。以下の実施例では、特定の歯数を具備するギヤで構成された回転角検出装置に基づいて説明するが、本願発明の趣旨に従って、それらの数値は変更することが可能である。
 図1は、本願発明の一実施例に係る多回転アブソリュート回転角を検出する回転角検出装置のギヤ機構1を示すブロック図である。図1において、モータ10の回転軸に結合された主軸10aは、歯数Rが28である主軸ギヤ10bに結合され、その主軸10aには、主軸10aの1回転内の回転角度θを検出するための角度検出器であるレゾルバRS0が取り付けられる。例えば、レゾルバRS0は、0から360度の回転角度に対応する角度検出信号を出力する。レゾルバRS0は、主軸10aが1回転する毎にN周期の信号を出力するN倍角(NX)の角度検出器であるが、本実施例では4倍角の角度検出器を用いる。またレゾルバ以外の角度検出器を用いてもよい。なお、以下の記述において、回転角度という場合は、1回転内の角度(0から360度)を意味し、多回転の角度を意味する場合は、多回転角という。
 主軸ギヤ10bは、第1~第3副軸ギヤ11b,12b,13bと歯車結合され、各副軸ギヤの回転は、第1~第3副軸11a,12a,13aにそれぞれ伝達される。第1~第3副軸ギヤ11b,12b,13bの歯数M,Q,Sは、それぞれ32,27,29である。第1~第3副軸11a,12a,13aの回転角度θ~θは、第1~第3副軸11a,12a,13aに取り付けられたレゾルバRS1~RS3によって検出される。レゾルバRS1~RS3は、レゾルバRS0と同様に、0から360度の回転角度に対応する角度検出(値)信号を出力する。レゾルバRS1~RS3は、それぞれの副軸が1回転する毎に1周期の信号を出力する1倍角(1X)の角度検出器であるが、レゾルバ以外の角度検出器を用いてもよい。
 主軸ギヤ10bの歯数R、及び、第1~第3副軸ギヤ11b,12b,13bの歯数M,Q,Sは、aが2以上の整数であるとすると、
Figure JPOXMLDOC01-appb-M000001
が成立し、第1副軸ギヤの歯数Mは、kが1以上の整数、Nが2以上の整数であるとすると、M=k×a×Nが成立する関係で選択することができ、本実施例では、R=28、Q=27、S=29、a=4、N=4、k=2、M=32が選択される。
 図1に示される回転角検出装置1において、主軸ギヤ10b及び第1副軸ギヤ11bの歯数R,Mがそれぞれ28,32であるので、主軸10aが8回転すると第1副軸ギヤ11bは7回転し、主軸ギヤ10bと第1副軸ギヤ11bのギヤ位置の関係は元に戻る。すなわち、主軸ギヤ10bと第1副軸ギヤ11bの間では、主軸8回転の周期で相互のギヤ位置は元の位置に達する。また、第2副軸ギヤ12bの歯数Qが27であるので、主軸10aが27回転する毎に主軸ギヤ10bと第2副軸ギヤ12bのギヤ位置の関係は元の位置に達する。さらに、第3副軸ギヤ13bの歯数Sが29であるので、主軸10aが29回転すると主軸ギヤ10bと第3副軸ギヤ13bのギヤ位置の関係は元の位置に達する。
 以上のような関係から、主軸10a及び第1副軸11aの回転角度をそれぞれ検出するレゾルバRS0,RS1の検出信号から主軸10aが8回転する毎に1周期の周期信号を計算することができ、またレゾルバRS0の検出信号と第2副軸12aの回転角度を検出するレゾルバRS2の検出信号とから主軸10aが27回転する毎に1周期の周期信号を計算することができ、さらにレゾルバRS0の検出信号と第3副軸12aの回転角度を検出するレゾルバRS3の検出信号とから主軸10aが29回転する毎に1周期の周期信号を計算することができる。最終的に、これら3つの周期信号の値から主軸10aの多回転アブソリュート回転角が求められる。この多回転アブソリュート回転角を求めることのできる回転角の範囲は、これら3つの周期の最小公倍数である6264(8×27×29)回転であり、その結果主軸10aが6264する範囲に亘る、主軸10aの多回転アブソリュート回転角を求めることができる。以下、レゾルバRS0~RS3の検出信号値から、主軸10aの多回転アブソリュート回転角θcを求める計算方法について、説明する。
 図2は、主軸10aの多回転アブソリュート回転角θcを算出するための回転角演算部20のブロック図を示す。主軸10a、及び第1~第3副軸11a,12a,13aの回転角度は、レゾルバRS0~RS3によってそれぞれ検出され、90°位相のずれた2つの正弦波状の検出電圧(sin成分,cosin成分)が信号線21a,21b,21c,21dを経由してAD変換器23にそれぞれ送られる。2つの検出電圧は、AD変換器23でアナログ値から、例えば12ビットのデジタル値へ変換され、それぞれRD変換演算回路24へ送られる。RD変換演算回路24は、受信した2つのデジタル値(sin成分,cosin成分)から角度検出値P0(4X),P1(1X),P2(1X),P3(1X)がそれぞれ計算される。なお、検出値の記号に付された(4X)及び(1X)は、4倍角及び1倍角の角度検出器から出力された信号の値であることをそれぞれ示す。また、レゾルバRS0~RS3の検出電圧は、レゾルバRS0~RS3自体のばらつきや、磁気・回路・機械精度などの様々な要因で誤差を含むため、検出電圧をそのまま角度に変換するのではなく、電圧信号のオフセット補正、振幅補正を施し、実際の回転角に対する誤差補正や、各回転軸の検出値に関連する補正など様々な精度補正が施される。
 上述のような処理が施された検出値P0(4X),P1(1X),P2(1X),P3(1X)は、多回転演算回路25に送られる。図3に、上述のようにして求められた検出値P0(4X),P1(1X),P2(1X),P3(1X)の主軸10aの回転数に対する変化を示す。図3の横軸は、主軸10aの回転数を、また縦軸は、各検出値で検出された値に対応する各軸の電気角を示し、理解を容易にするために図3の縦軸は、0°から360°の度数法で表すが、0から1の値で表してもよい。図3(a)に示される検出値P0(4X)は、角度検出器RS0が4倍角の角度検出器であるので、主軸10aが1回転する毎に4周期の検出値が出力される。また、図3(b)~(d)は、主軸ギヤの歯数と副軸ギヤの歯数で定まる変速比に従って変速された副軸の回転角度の変化をそれぞれ示す。なお、検出値P0(4X)が、主軸10aの回転に対して正方向に単調増加する波形で示されているが、検出値P1(1X),P2(1X),P3(1X)が負の方向に単調減少するは、第1~第3副軸11a,12a,13aの回転方向が主軸10aに対して逆であることを示す。
 図2の多回転演算部25は、図3に示される検出値P0(4X),P1(1X),P2(1X),P3(1X)を受け取ると、以下説明する演算を実行して、それらの検出値から最終的に主軸10aの多回転アブソリュート回転角θを算出する。まず、角度検出器RS0がN倍角の出力を生成するので、主軸の検出値P0(NX)は、主軸10aの多回転角θをN倍した角度を1回転当たりの基本単位量uで除した剰余であるから、次式(1)として表すことができる。
Figure JPOXMLDOC01-appb-M000002
なお、以下の計算式では、mod(x,a)はxをaで割ったときの剰余を求める剰余演算を表し、数値Nは角度検出器RS0の倍角数(本実施例では4)を表し、uは回転軸1回転当たりの基本単位量(本実施例では360°)を表す。
 次に、第1~第3副軸11a,12a,13aは、それぞれ主軸ギヤ10bと歯車結合しているから、第1~第3副軸11a,12a,13aの多回転角θ,θ,θは、次式(2)~(4)で表される。なお、各式の先頭に付されたマイナス記号は、各副軸が主軸に対して反対方向の回転であることを示す。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 第1~第3副軸11a,12a,13aの多回転角θ,θ,θが式(2)~(4)のように表されるので、1倍角の角度検出器によって検出される第1~第3副軸の回転角度の検出値P1(1X),P2(1X),P3(1X)は、各副軸の多回転角を基本単位量uで除した剰余であるから、次式(5)~(7)で表される。
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
なお、上述のとおり、本実施例における、第1~第3副軸11a,12a,13aの歯数は、それぞれM=32,Q=27,S=29である。
 主軸に取り付けられた角度検出器RS0は、主軸1回転毎にN周期の信号を出力するN倍角の角度検出器であるので、この角度検出器から出力される検出値は、図3(a)の4倍角の波形が示すように、角度検出器の出力値は、主軸の回転角度を一意的に示す値ではない。したがって、N倍角の角度検出器では、主軸の回転角度を決定するために、出力された検出値が主軸におけるどの判別領域の値であるか、換言すれば何番目ののこぎり波に属する検出値であるかを判別する必要がある。
 主軸と第1副軸の回転量の差を利用して以下のように判別値を生成する。主軸の検出値はN倍角であり、第1副軸の検出値は1倍角であるため、そのままでは回転量の差の検出値を計算できない、そこで、まず次式(8)に示すように、第1副軸検出値P1(1X)をN倍した結果を基本単位量uで除した剰余を求めることにより、1倍角の角度検出器の検出値からN倍角の検出値P1(NX)を生成する。
Figure JPOXMLDOC01-appb-M000009
第1副軸の4倍角の検出値P1(4X)は、主軸の回転数に対して図4(b)に示す波形となる。なお、図4(a)は、主軸11aの4倍角の検出値P0(4X)を示す。
 次に主軸と第1副軸の検出値の差を求める。本実施例では主軸の回転を正とした時の副軸の回転を負として扱っているので加算することにより差を求める。
剰余計算において、mod(a,c)+mod(b,c)=mod(a+b,c)が成立するから、第1副軸のN倍角の検出値P1(NX)が求められると、その検出値に主軸検出値P0(NX)を加えると、次式(9)に示されるように、M/aN回転の周期信号が得られる。よって主軸と第1副軸N倍角の加算結果から、主軸がM/aN回転する毎に1周期の周期信号P0((aN/M)×X) が得られる。
Figure JPOXMLDOC01-appb-M000010
なお、式(9)の周期信号の波形を図4(c)に示す。本実施例で選択された数値a=4,N=4,M=32,u=360を代入すると、2(=M/aN)回転周期の信号となる。
 図4(c)に示される周期信号は、主軸が2回転する毎に単調増加するのこぎり波状の波形を有する。また、図4(a)に示される主軸11aの検出値P0(4X)の信号波形ものこぎり波状の波形を有するが、図4(c)の周期信号の1周期内に8周期ののこぎり波が繰り返される。したがって、式(9)によって計算された値は、主軸の角度検出器RS0によって検出された角度検出値P0(4X)が主軸回転内における4つのこぎり波のどの位置ののこぎり波の値であるかを判別するための判別値として用いることができる。一般的には、図4(c)の周期信号の1周期内に、主軸の角度検出値P0(NX)ののこぎり波がM/a周期繰り返され、図4(c)の周期信号の値をM/a個の領域に分けることにより、角度検出値P0(NX)が主軸1回転内のどの判別領域に位置しているかを判別することができる。
 さらに、以下述べるように、図4(a)及び図4(c)の周期信号から階段状波形の信号を生成し、その階段状波形に基づいて検出値P0(NX)の領域判別を行うこともできる。すなわち、次式(10)に示す計算を行うことにより、図4(c)に示す周期信号から図5(a)に示す階段状波形Rを生成することができる。
Figure JPOXMLDOC01-appb-M000011
式(10)に本実施例で選択された数値a=4,N=4,M=32,u=360を代入すると、式(10)は、図5(a)に示されるように、((M/a)-1)段(本実施例では7段)の階段を有する階段状波形R(0-7)を示す。
 さらに、式(10)で求められた階段状波形RをNで割った剰余を求める次式(11)の処理を実行することにより、(N-1)段の階段状波形R’を生成することができる。
Figure JPOXMLDOC01-appb-M000012
式(11)にN=4を代入すると、式(11)は、図5(b)に示されるように3段(N-1段)の階段を有する階段状波形R(0-3)’を示す。このように、主軸1回転の周期に対応する階段状波形が生成されたことにより、主軸の4倍角検出器RS0から得られる検出信号の領域判別値とすることができる。
 次に、主軸に対する各副軸の周期信号の生成について説明する。この周期信号は、主軸と副軸との間の回転角度の差を表す信号である。換言すれば、主軸ギヤと副軸ギヤは、周期信号の1周期毎に、同じ位置で噛み合わされる。図6は、ある時点での主軸と副軸のギヤ位置を初期位置とし(主軸回転数が0と表記された位置)、主軸が回転するにつれて主軸のギヤ位置に対して副軸のギヤ位置が何度ずれるかを示した図である。図6(a)は、主軸のギヤ位置に対する第1副軸のギヤ位置のずれ角度の変化を表す第1副軸の周期信号を、図6(b)は、主軸のギヤ位置に対する第2副軸のギヤ位置のずれ角度の変化を表す第2副軸の周期信号を、そして図6(c)は、主軸のギヤ位置に対する第3副軸のギヤ位置のずれ角度の変化を表す第3副軸の周期信号を示す。図6において、周期信号の値が全て0である組み合わせの初期位置から主軸が回転し、再び初期位置に戻るまでの間において、周期信号の値の組み合わせは全て異なる。つまり、ある周期信号の値の組み合わせは、初期位置から次の初期位置までの周期の間に唯一存在する。したがって周期信号の値の組み合わせを求めれば、初期位置からの主軸の回転数を求めることができる。換言すれば、周期信号の値が0に対応する主軸回転数からの主軸の回転数を、各周期信号の1周期内における各副軸の相対回転数と定義すると(初期位置では、各副軸の相対回転数は、すべて0である)、相対回転数の組み合わせから、初期位置からの主軸の回転数を求めることができる。全ての周期信号が初期位置に復帰するまでの周期は、各周期信号の周期の最小公倍数で求められる。本実施例では、第1~第3副軸の周期は、それぞれ8,27,29であるので、それらの最小公倍数は、6264(=8×27×29)となる。したがって、各副軸の周期信号から各副軸の相対回転数を求めることにより、以下説明するように、主軸の多回転アブソリュート回転角(本実施例では、6264回転までの回転角)を求めることができる。
 まず、周期信号を得るためには、同じ倍角の角度検出器から出力される検出値を用いる必要がある。本実施例では、各副軸の角度検出器は1倍角であるので、主軸の角度検出器から得られる検出値を1倍角の検出値に変換する必要がある。そこで、N倍角の主軸の検出値P0(NX)と上式(11)を用いて、次式(12)により1倍角の主軸検出値P0(1X)を合成する。
Figure JPOXMLDOC01-appb-M000013
式(12)により合成された主軸の1倍角検出値P0(1X)は、本実施例で選択された数値a=4,N=4,M=32,u=360を代入すると、図5(c)に示されるように、主軸が1回転する毎に1周期の単調に増加するのこぎり波の波形となる。
 主軸の1倍角検出値P0(1X)が合成されると、次式(13)に示されるように主軸の1倍角検出値P0(1X)と第1副軸の検出値P1(1X)を足すことにより、主軸がM/a回転する毎に1周期の第1副軸の周期信号が得られる。
Figure JPOXMLDOC01-appb-M000014
なお、剰余計算において、mod(a,c)+mod(b,c)=mod(a+b,c)が成立する。ここで、式(13)に本実施例における数値a=4,M=32,u=360を代入すると、図6(a)に示されるように、主軸が8回転する毎に1周期の周期信号が得られる。
 また、主軸の1倍角検出値P0(1X)に第2副軸の検出値P2(1X)を加えると、次式(14)に示されるように、主軸がQ回転する毎に1周期の第2副軸の周期信号が得られ、実施例では、図6(b)に示されるように、第2副軸の周期信号は、主軸が27回転する毎に1周期の周期信号が得られる。さらに、主軸の1倍角検出値P0(1X)に第3副軸の検出値P3(1X)を加えると、次式(15)に示されるように主軸がS回転する毎に1周期の第3副軸の周期信号が得られ、実施例では、図6(c)に示されるように、第3副軸の周期信号は、主軸が29回転する毎に1周期の周期信号が得られる。
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000016
 各副軸の周期信号が求められると、次に、各副軸ギヤの相対回転数を計算する。相対回転数は、各副軸の周期信号の周期は既知であるので、基本単位量uに対する周期信号の値の比に各周期を乗ずることにより求められる。次式(16),(17),(18)は、第1~第3副軸ギヤに対する相対回転数m1~m3を計算する式を示す。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 主軸の多回転回転数nと各副軸の相対回転数m1~m3の関係を予め計算し、図7に示されるように参照表として記憶装置(例えば、ROM等)に記憶させておけば、その参照表を検索することにより相対回転数の組み合わせに一致する主軸の多回転回転数を求めることができる。例えば、第1~第3副軸ギヤの相対回転数が4,18,22であれば、図7の参照表から、主軸の回転数は、6228となる。また、別の実施例として、副軸が2つの場合でも、主軸の多回転回転数を求めることができ(本実施例と同じギヤ数であれば、216回転まで検出することができる)、例えば、第1及び第2副軸の相対回転数が5,24であれば、図7の参照表から、主軸の回転数は、213となる。
 主軸の多回転アブソリュート回転角は、主軸の多回転回転数と主軸の1回転内の回転角度を合算することにより求められる。主軸の1回転内の回転角度は、主軸の4倍角検出器RS0からの出力信号P0(4X)を領域判別して求めることができる。また、図5(c)に示される1倍角に合成された主軸検出値P0(1X)から求めてもよい。
 次に、図8に示されるフローチャート80を参照して、主軸及び副軸の回転角度から主軸の多回転アブソリュート回転角を求める手順について説明する。まず、ステップ81において、図1に示される主軸10aに取り付けられた角度検出器RS0は、4倍角の検出値P0(4X)を、また第1~第3副軸11a,12a,13aに取り付けられた角度検出器RS1~RS3は、1倍角の検出値P1(1X)~P3(1X)をそれぞれ検出する。これらの検出値は、主軸の回転数に対して図3に示される波形を示す。
 主軸及び副軸の検出値が検出されると、ステップ82に進み、主軸の検出値P0(4X)が主軸1回転内のどの判別領域に属する値であるかを判別するために、式(8)に従って、第1副軸の1倍角の検出値P1(1X)から4倍角の検出値P1(4X)に変換される。次に、ステップ83において、この4倍角の検出値P1(4X)に主軸の4倍角の検出値P0(4X)を加え、判別領域を判別するための判別値が生成される。この判別値は、主軸の回転数に対して図4(c)に示される判別波形を示す。従って、主軸の角度検出器RS0によって検出された検出値は、この判別値から、図4(a)に示すのこぎり波の内の何番目ののこぎり波に属する値であるかが判別される。この判別によって、検出値から主軸の回転角度が導出される。以上の判別は、判別値によって検出値が属する判別領域を特定するが、以下説明するように、この判別値をさらに処理し、1倍角の主軸検出値を合成して、主軸の回転角度を求めることができる。
 ステップ84において、ステップ83で求められた判別値を式(10)に示す処理を行うことにより、図5(a)に示す階段状の波形値を生成する。さらに、この階段状の波形値を式(11)に代入し、図5(b)に示す主軸1回転1周期の階段状波形値を生成する。ステップ85に進んで、この階段状波形値を式(12)に代入し、1倍角の主軸検出値を合成する。この1倍角の主軸検出値は、図5(c)に示されるように、主軸の回転角度を示す。
 図5(c)に示す1倍角の主軸検出値が得られると、ステップ86で、式(13)~(15)に従って、第1~第3副軸の周期信号値が生成される。主軸回転数に対するこれらの周知信号値は、図6(a)~(c)に示されるとおりである。第1~第3副軸の周期信号値が生成されると、ステップ87において、第1~第3副軸の主軸に対する相対回転数が式(16)~(18)によって求められる。図7に示される参照表から第1~第3副軸の相対回転数m1~m3に一致する組み合わせが検索され、一致した組み合わせに対する主軸回転数nが出力される。主軸回転数nが求められると、ステップ88に進み、主軸回転数nに主軸回転角度を加えることにより、最終的に多回転アブソリュート回転角が得られる。
 最後に、本発明に用いられる歯車機構において、上述した領域判別を正しく実行するために、第1副軸の角度検出器に対して要求される精度について検討する。まず、主軸及び第1副軸検出値の1回転当たりの誤差の絶対値をそれぞれe,eと仮定する。主軸に1倍角の角度検出器を用い、主軸と第1副軸との間でM回転周期の判別を行う場合、一般的には、e+eは、次式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000020
ここで、e≒0であるとすると、第1副軸の角度検出器に要求される誤差は、次式(19)に収まる必要がある。
Figure JPOXMLDOC01-appb-M000021
となる。
 次に、本発明のように、主軸にN倍角検出器を用いた場合、第1副軸検出値をN倍しているので、
Figure JPOXMLDOC01-appb-M000022
を満たす必要がある。
ここで、e≒0であるとすると、
Figure JPOXMLDOC01-appb-M000023
が成立し、a=Nとする場合、
Figure JPOXMLDOC01-appb-M000024
となる。結局、式(20)は式(19)と同じであるので、本発明の第1副軸の角度検出器に要求される精度は、主軸に取り付けられた1倍角の角度検出器と同じ精度でよいことになる。
 これに対して、特許文献1に開示された歯車構成の下で、主軸にN倍角の角度検出器を用い、同文献で示された処理を行う場合に、第1の従動歯車に要求される精度は、次式を満たす必要がある。
Figure JPOXMLDOC01-appb-M000025
ここで、e≒0であるとすると、
Figure JPOXMLDOC01-appb-M000026
となり、1倍角の角度検出器を使った場合のN倍の精度が必要になることが分かる。
1 ギヤ機構
10 モータ
11a,12a,13a 第1~第3副軸
11b,12b,13b 第1~第3副軸ギヤ
20 回転角演算部
21a,21b,21c,21d 信号線
23 AD変換器
24 RD変換演算回路
25 多回転演算回路
RS0~RS3 レゾルバ
θ 主軸の回転角度
θ~θ 第1~第3副軸の回転角度

Claims (10)

  1.  主軸に取り付けられた主軸ギヤ、前記主軸ギヤと歯車結合する第1副軸ギヤ及び第2副軸ギヤ、及び、前記第1及び第2副軸ギヤの回転をそれぞれ伝達する第1及び第2副軸から構成され、
     前記主軸の回転角度を検出する主軸の角度検出器、及び、前記第1及び第2副軸の回転角度を検出する第1及び第2副軸の角度検出器からなる一組の角度検出器であって、前記主軸の角度検出器は、主軸1回転当たりN周期のN倍角検出値P0(NX)を出力し、前記第1及び第2副軸の角度検出器は、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ出力する、一組の角度検出器を備え、
     前記第1副軸ギヤの歯数は、前記主軸ギヤと歯数差2又はそれを越える整数aの歯数差を有し、かつ歯数差aと前記主軸に設けられた角度検出器の軸倍角Nの積に対して整数倍であり、また前記主軸ギヤと前記第2副軸ギヤとの歯数差は、1である関係を有するギヤ機構であって、
    前記主軸、前記第1副軸、及び、前記第2副軸の回転角度検出値から主軸の多回転アブソリュート回転角を求める多回転角度検出装置において、
     前記主軸の角度検出器によって検出された前記N倍角検出値P0(NX)と前記第1副軸の角度検出器によって検出された前記第1副軸の1倍角検出値P1(1X)とから、前記第1副軸の歯数をMとすると、主軸のM/aN回転を1周期とする信号P0((aN/M)×X)を求め、前記信号P0((aN/M)×X)により、前記主軸の角度検出器によって検出されたN倍角検出値P0(NX)が前記N周期の内の何番目の周期の値であるかを示す判別値を得て、前記判別値と前記N倍角検出値P0(NX)とから主軸1回転当たり1周期の主軸の1倍角検出値P0(1X)を合成する主軸回転角検出手段と、
    前記主軸の1倍角検出値P0(1X)と前記第1副軸の1倍角検出値P1(1X)とから前記主軸と前記第1副軸との回転数の差を示す第1副軸周期信号を生成し、さらに前記主軸の1倍角検出値P0(1X)と前記第2副軸の角度検出器によって検出された第2副軸の1倍角検出値P2(1X)とから前記主軸と前記第2副軸との回転数の差を示す第2副軸周期信号を生成し、前記第1副軸周期信号と前記第2副軸周期信号とから主軸の回転数を求める主軸回転数検出手段と、
     から構成されることを特徴とする多回転角度検出装置。
  2.  前記ギヤ機構は、前記主軸ギヤと歯車結合する第3副軸ギヤ、及び、前記第3副軸ギヤの回転を伝達する第3副軸をさらに具備し、
     前記角度検出器は、前記第3副軸1回転当たり1周期の前記第3副軸の1倍角検出値P3(1X)を出力し、
     主軸回転数検出手段は、前記主軸の1倍角検出値P0(1X)と前記第3副軸の1倍角検出値P3(1X)とから前記主軸と前記第3副軸との回転数の差を示す第3副軸の周期信号をさらに生成し、前記第1副軸の周期信号、前記第2副軸の周期信号、及び、前記第3副軸の周期信号から主軸の回転数を求める、
     ことを特徴とする請求項1記載の多回転角度検出装置。
  3.  前記第1及び第2副軸に加えて、さらに第3副軸を備え、前記主軸ギヤと前記第3副軸の歯数差は1であり、前記主軸の1倍角検出値P0(1X)と前記第3副軸の角度検出器によって検出された第2副軸の1倍角検出値P3(1X)とから前記主軸と前記第3副軸との回転数の差を示す第3副軸周期信号を生成し、前記主軸回転数検出手段は、前記第1副軸周期信号、前記第2副軸周期信号、及び、前記第3副軸周期信号から主軸の回転数を求めることを特徴とする請求項1記載の多回転角度検出装置。
  4.  第3副軸ギヤの歯数をSとすると、第2副軸ギヤの歯数がQ=R-1のとき、第3副軸ギヤの歯数はS=R+1であり、第2副軸ギヤの歯数がQ=R+1のとき、第3副軸ギヤの歯数はS=R-1である、
     ことを特徴とする請求項2記載の多回転角度検出装置。
  5.  前記判別値P0((aN/M)×X)は、前記第1副軸の角度検出器によって検出された前記第1副軸の1倍角検出値P1(1X)をN倍した値を1周期当たりの基本単位量uで割った剰余である第1副軸のN倍角検出値P1(NX)を算出し、前記主軸のN倍角検出値P0(NX)及び前記第1副軸のN倍角検出値P1(NX)の和又は差を基本単位量uで割った剰余であることを特徴とする請求項1記載の多回転角度検出装置。
  6.  回転駆動源の回転を伝達する主軸に取り付けられた主軸ギヤ、前記主軸ギヤと歯車結合する第1副軸ギヤ及び第2副軸ギヤ、及び、前記第1及び第2副軸ギヤの回転をそれぞれ伝達する第1及び第2副軸から構成され
    前記主軸の回転角度を検出する主軸の角度検出器、及び、前記第1及び第2副軸の回転角度を検出する第1及び第2副軸の角度検出器からなる一組の角度検出器であって、前記主軸の角度検出器は、主軸1回転当たりN周期のN倍角検出値P0(NX)を出力し、前記第1及び第2副軸の角度検出器は、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ出力する、一組の角度検出器を備え、
     前記第1副軸ギヤの歯数は、前記主軸ギヤと歯数差2またはそれを越える整数aの歯数差を有し、かつ歯数差aと前記主軸に設けられた角度検出器の軸倍角Nの積に対して整数倍であり、また前記主軸ギヤと前記第2副軸ギヤの歯数差は、1である関係を有するギヤ機構であって、
    前記主軸、前記第1副軸、及び、前記第2副軸の回転角度検出値から主軸の多回転アブソリュート回転角を求める多回転角度検出装置において、
     前記主軸の回転角度である、主軸1回転当たりN周期のN倍角検出値P0(NX)を検出し、かつ第1及び第2副軸の回転角度である、副軸1回転当たり1周期の1倍角検出値P1(1X),P2(1X)をそれぞれ検出する段階と、
     前記主軸の角度検出器によって検出されたN倍角検出値P0(NX)と前記第1副軸の角度検出器によって検出された第1副軸の1倍角検出値P1(1X)とから、前記第1副軸の歯数をMとすると、主軸のM/aN回転を1周期とする信号P0((aN/M)×X)を求め、前記信号P0((aN/M)×X)により、前記主軸の角度検出器によって検出されたN倍角検出値P0(NX)が前記N周期の内の何番目の周期の値であるかを特定するための判別値を得ることにより、主軸の1回転内の回転角度を求める段階と、
     前記判別値とN倍角検出値P0(NX)とから主軸1回転当たり1周期の主軸の1倍角検出値P0(1X)を合成し、また主軸の1倍角検出値P0(1X)と第1副軸の1倍角検出値P1(1X)とから主軸と第1副軸との回転数の差を示す第1副軸周期信号を生成し、さらに主軸の1倍角検出値P0(1X)と前記第2副軸の角度検出器によって検出された第2副軸の1倍角検出値P2(1X)とから前記主軸と前記第2副軸との回転数の差を示す第2副軸周期信号を生成し、前記第1副軸周期信号と前記第2副軸周期信号とから主軸の回転数を求める段階と、
     から構成されることを特徴とする多回転角度検出方法。
  7.  前記ギヤ機構は、前記主軸ギヤと歯車結合する第3副軸ギヤ、及び、前記第3副軸ギヤの回転を伝達する第3副軸をさらに具備し、
     前記角度検出器は、前記第3副軸1回転当たり1周期の前記第3副軸の1倍角検出値P3(1X)を出力し、
     主軸回転数検出手段は、前記主軸の1倍角検出値P0(1X)と前記第3副軸の1倍角検出値P3(1X)とから前記主軸と前記第3副軸との回転数の差を示す第3副軸の周期信号をさらに生成し、前記第1副軸の周期信号、前記第2副軸の周期信号、及び、前記第3副軸の周期信号から主軸の回転数を求める、
     ことを特徴とする請求項6記載の多回転角度検出方法。
  8.  前記第1及び第2副軸に加えて、さらに第3副軸を備え、前記主軸ギヤと前記第3副軸の歯数差は1であり、前記主軸の1倍角検出値P0(1X)と前記第3副軸の角度検出器によって検出された第2副軸の1倍角検出値P3(1X)とから前記主軸と前記第3副軸との回転数の差を示す第3副軸周期信号を生成し、前記主軸の回転数を求める段階は、前記第1副軸周期信号、前記第2副軸周期信号、及び、前記第3副軸周期信号から主軸の回転数を求める段階をさらに含むことを特徴とする請求項1記載の多回転角度検出装置。
     ことを特徴とする請求項6記載の多回転角度検出方法。
  9.  前記第3副軸ギヤの歯数をSとすると、前記第2副軸ギヤの歯数がQ=R-1のとき、前記第3副軸ギヤの歯数はS=R+1であり、前記第2副軸ギヤの歯数がQ=R+1のとき、前記第3副軸ギヤの歯数はS=R-1である、
     ことを特徴とする請求項7記載の多回転角度検出方法。
  10.  前記判別値P0((aN/M)×X)は、前記第1副軸の角度検出器によって検出された前記第1副軸の1倍角検出値P1(1X)をN倍した値を1周期当たりの基本単位量uで割った剰余である第1副軸のN倍角検出値P1(NX)を算出し、前記主軸のN倍角検出値P0(NX)及び前記第1副軸のN倍角検出値P1(NX)の和又は差を基本単位量uで割った剰余であることを特徴とする請求項6記載の多回転角度検出方法。
PCT/JP2012/076093 2011-11-14 2012-10-09 多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法 WO2013073319A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES12848893.9T ES2638332T3 (es) 2011-11-14 2012-10-09 Dispositivo de detección de ángulo de rotación absoluto de múltiples vueltas y método para la detección de ángulo de rotación absoluto
US13/261,897 US9528855B2 (en) 2011-11-14 2012-10-09 Multi-turn absolute rotation angle detection device and method of detecting absolute rotation angle
CN201280055927.4A CN103930748B (zh) 2011-11-14 2012-10-09 多旋转绝对旋转角检测装置以及检测绝对旋转角的方法
EP12848893.9A EP2789967B1 (en) 2011-11-14 2012-10-09 Multi-turn absolute rotation angle detection device and method for detecting absolute rotation angle
KR1020147012549A KR101942130B1 (ko) 2011-11-14 2012-10-09 다회전 앱솔루트 회전각 검출 장치 및 앱솔루트 회전각을 검출하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011248663A JP5420624B2 (ja) 2011-11-14 2011-11-14 多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法
JP2011-248663 2011-11-14

Publications (1)

Publication Number Publication Date
WO2013073319A1 true WO2013073319A1 (ja) 2013-05-23

Family

ID=48429389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076093 WO2013073319A1 (ja) 2011-11-14 2012-10-09 多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法

Country Status (7)

Country Link
US (1) US9528855B2 (ja)
EP (1) EP2789967B1 (ja)
JP (1) JP5420624B2 (ja)
KR (1) KR101942130B1 (ja)
CN (1) CN103930748B (ja)
ES (1) ES2638332T3 (ja)
WO (1) WO2013073319A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122615A1 (en) * 2014-03-28 2017-02-01 Allied Motion Stockholm AB Method for deriving an absolute multiturn rotational angle of a rotating shaft, and a device therefore

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500907B (zh) 2011-01-07 2015-09-21 Oriental Motor Co Ltd 多圈旋轉絕對旋轉角之檢測裝置及該旋轉角之檢測方法
JP5545769B2 (ja) 2011-07-12 2014-07-09 オリエンタルモーター株式会社 アブソリュート変位量を算出する装置及びその方法
JP6224349B2 (ja) * 2013-05-15 2017-11-01 株式会社アイエイアイ ステッピングモータ制御システム及びステッピングモータ制御方法
GB2527819A (en) * 2014-07-03 2016-01-06 Moog Controls Ltd Rotation transducer
JP7076683B2 (ja) * 2016-06-27 2022-05-30 Smc株式会社 位置検出装置
DE102017108863A1 (de) * 2017-04-26 2018-10-31 Valeo Schalter Und Sensoren Gmbh Ermitteln eines Drehwinkels einer Lenkwelle mittels dreier Zahnräder
JP6626476B2 (ja) * 2017-07-13 2019-12-25 オリエンタルモーター株式会社 歯車を適正位置に保持する歯車支持機構を用いる回転角検出装置
KR101881559B1 (ko) * 2017-07-19 2018-08-24 성균관대학교산학협력단 다회전 검출 장치 및 방법
EP3459844B1 (en) * 2017-09-25 2022-07-13 Ratier-Figeac SAS Actuator position sensor mechanism
US10670386B2 (en) * 2018-04-19 2020-06-02 Infineon Technologies Ag Multi-turn counter sensor failure detection
JP7234577B2 (ja) * 2018-10-31 2023-03-08 セイコーエプソン株式会社 ロボットシステム、ロボット制御方法、及びエンコーダー
JP7234580B2 (ja) 2018-10-31 2023-03-08 セイコーエプソン株式会社 ロボットシステム、ロボット制御方法、及びエンコーダー

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106691A (ja) * 1981-12-21 1983-06-25 株式会社エスジ− アブソリュート位置検出装置
JPS60239608A (ja) * 1984-05-15 1985-11-28 Toshiba Mach Co Ltd アブソリユ−ト位置の検知方法および検知装置
JPH0421813U (ja) * 1990-06-11 1992-02-24
JP2002107178A (ja) * 2000-09-29 2002-04-10 Sanyo Denki Co Ltd 絶対位置検出方法
JP2009229396A (ja) 2008-03-25 2009-10-08 Sanyo Denki Co Ltd バッテリレス絶対位置検出用エンコーダ

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339950A (en) * 1980-02-19 1982-07-20 Lendino Nicholas C Counting mechanism attachment for a fuel tank
JPS59190612A (ja) 1983-04-13 1984-10-29 Fanuc Ltd 絶対位置検出方法
JPS603099A (ja) * 1983-06-20 1985-01-09 株式会社エスジ− アブソリユ−ト位置検出装置
JPS60239618A (ja) 1984-05-15 1985-11-28 Toshiba Mach Co Ltd 回転体の回転量をアブソリユ−ト値で検知する方法およびその装置
JPS614918A (ja) * 1984-06-20 1986-01-10 Toyota Motor Corp レゾルバを用いた多回転の回転位置検出用アブソリユ−トセンサ
JPS6117913A (ja) 1984-07-04 1986-01-25 Omron Tateisi Electronics Co ロ−タリエンコ−ダ
JPS61258113A (ja) * 1985-05-10 1986-11-15 Yokogawa Hewlett Packard Ltd 位置エンコ−ダ
JPS63118614A (ja) * 1986-11-07 1988-05-23 Toyota Motor Corp 多回転アブソリユ−トエンコ−ダの多回転検出装置
FR2609136B1 (fr) * 1986-12-31 1989-12-01 Camara Alpha Egalisateur de couple pour arbres contrarotatifs
JPS63242028A (ja) 1987-03-30 1988-10-07 Ishikawajima Harima Heavy Ind Co Ltd 多回転絶対番地型位置検出器
JPH0353114A (ja) * 1989-07-21 1991-03-07 Sony Magnescale Inc 位置検出装置
JPH0330648U (ja) * 1989-08-04 1991-03-26
JPH0371009A (ja) * 1989-08-10 1991-03-26 Mitsubishi Kasei Corp 位置信号補正装置
JPH0421813A (ja) 1990-05-16 1992-01-24 Matsushita Electric Ind Co Ltd 光ビーム走査装置
JPH04130218A (ja) * 1990-09-20 1992-05-01 Sony Magnescale Inc 位置検出装置
JPH0635932B2 (ja) 1991-02-12 1994-05-11 株式会社エスジー アブソリュート回転位置検出装置
JPH0538243A (ja) 1991-08-06 1993-02-19 Shimano Inc 釣り竿の糸ガイド製造方法
JPH05141911A (ja) * 1991-11-16 1993-06-08 Yamaha Corp ロータリエンコーダ
JPH0672187A (ja) 1992-05-28 1994-03-15 Mitsubishi Electric Corp 自動変速機付車両用エンジン制御装置及びその制御方法
US5457371A (en) * 1993-08-17 1995-10-10 Hewlett Packard Company Binary locally-initializing incremental encoder
DE19506938A1 (de) * 1995-02-28 1996-08-29 Bosch Gmbh Robert Verfahren und Vorrichtung zur Winkelmessung bei einem drehbaren Körper
US6026925A (en) 1995-12-19 2000-02-22 Denso Corporation Electrically driven power assisting device
US5950052A (en) 1996-09-17 1999-09-07 Seiko Epson Corporation Image forming apparatus
DE19855960A1 (de) * 1998-12-04 2000-06-08 Bosch Gmbh Robert Vorrichtung und Verfahren zur Messung der Winkellage eines drehbaren Körpers
JP2001004405A (ja) 1999-06-22 2001-01-12 Sankyo Seiki Mfg Co Ltd 磁気式エンコーダ装置
JP3704462B2 (ja) * 2000-09-29 2005-10-12 山洋電気株式会社 リラクタンスレゾルバを用いた絶対位置検出器
DE10048911C1 (de) * 2000-10-02 2002-04-25 Ruf Electronics Gmbh Verfahren und Vorrichtung zur Bestimmung der Absolutposition bei Weg- und Winkelgebern
JP2002116057A (ja) * 2000-10-06 2002-04-19 Yaskawa Electric Corp 多回転式絶対値エンコーダ装置
EP1437575B1 (en) * 2001-10-19 2006-08-30 Kabushiki Kaisha Yaskawa Denki Multirotation type encoder
AU2003223180A1 (en) 2002-02-14 2003-09-04 Bvr Technologies Company Methods and apparatus for sensing angular position of a rotatable shaft
JP3967963B2 (ja) 2002-05-29 2007-08-29 オークマ株式会社 アブソリュート変位検出装置
EP1382950B1 (en) 2002-07-10 2006-07-26 JTEKT Corporation Torque sensor
JP2004138606A (ja) 2002-09-24 2004-05-13 Yazaki Corp 舵角センサ
JP4241012B2 (ja) * 2002-11-25 2009-03-18 パナソニック株式会社 回転角度検出装置
DE10332413B3 (de) * 2003-07-16 2005-04-28 Ic Haus Gmbh Positionsmessvorrichtung zum Ermitteln von Winkel- oder Längenpositionen
KR100610380B1 (ko) * 2003-11-11 2006-08-09 현대모비스 주식회사 차량용 조향축의 절대조향각 측정방법
JP2006017663A (ja) * 2004-07-05 2006-01-19 Alps Electric Co Ltd 回転角検出装置
DE502005003618D1 (de) 2004-08-28 2008-05-21 Luk Lamellen & Kupplungsbau Verfahren zum Bestimmen der Phasenlage einer Nockenwelle einer Brennkraftmaschine
JP2007078459A (ja) * 2005-09-13 2007-03-29 Yaskawa Electric Corp 多回転式絶対値エンコーダおよび回転機械
DE102006006359A1 (de) * 2006-02-11 2007-08-16 Leopold Kostal Gmbh & Co. Kg Drehwinkelsensor sowie Verfahren zum Bestimmen der absoluten Winkelstellung eines über mehrere Runden drehbaren Körpers
US7775129B2 (en) 2006-04-10 2010-08-17 Panasonic Corporation Rotation angle sensor
JP2008039737A (ja) 2006-08-10 2008-02-21 Yaskawa Electric Corp 多回転量算出方法、バッテリーレス多回転式絶対値エンコーダ装置およびこれを用いた減速機付アクチュエータ
EP2080992A4 (en) * 2006-11-10 2011-06-08 Furukawa Electric Co Ltd APPARATUS FOR DETERMINING THE ROTATION ANGLE
JP4197036B2 (ja) 2007-02-07 2008-12-17 トヨタ自動車株式会社 動力伝達装置の制御装置
JP4992516B2 (ja) * 2007-04-02 2012-08-08 パナソニック株式会社 回転角度検出装置
JP4443585B2 (ja) * 2007-04-17 2010-03-31 三菱電機株式会社 伝達比可変機構用センサシステム及びこれを用いた操舵装置
DE102008011448A1 (de) * 2008-02-27 2009-09-03 Valeo Schalter Und Sensoren Gmbh Anordnung zur Erfassung eines Drehwinkels
JP5167456B2 (ja) * 2008-03-17 2013-03-21 多摩川精機株式会社 アブソリュートセンサの多回転検出方法
JP4572951B2 (ja) 2008-04-11 2010-11-04 富士ゼロックス株式会社 記録材移動装置及び画像形成装置
US7579829B1 (en) 2008-07-06 2009-08-25 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Inductive multi-turn encoder
US20100235054A1 (en) * 2009-03-11 2010-09-16 Kostal Of America Steering angle sensor
WO2011049978A2 (en) 2009-10-19 2011-04-28 BEI Duncan Electronics Multi-turn sensor
US8493572B2 (en) 2010-05-05 2013-07-23 Mitutoyo Corporation Optical encoder having contamination and defect resistant signal processing
TWI500907B (zh) 2011-01-07 2015-09-21 Oriental Motor Co Ltd 多圈旋轉絕對旋轉角之檢測裝置及該旋轉角之檢測方法
DE102011106339B4 (de) * 2011-03-04 2012-12-06 Auma Riester Gmbh & Co. Kg Messvorrichtung zur Erfassung des Absolutdrehwinkels eines rotierenden Messobjekts
JP5545769B2 (ja) 2011-07-12 2014-07-09 オリエンタルモーター株式会社 アブソリュート変位量を算出する装置及びその方法
JP5899412B2 (ja) * 2011-12-09 2016-04-06 パナソニックIpマネジメント株式会社 回転角度検出装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58106691A (ja) * 1981-12-21 1983-06-25 株式会社エスジ− アブソリュート位置検出装置
JPS60239608A (ja) * 1984-05-15 1985-11-28 Toshiba Mach Co Ltd アブソリユ−ト位置の検知方法および検知装置
JPH0421813U (ja) * 1990-06-11 1992-02-24
JP2002107178A (ja) * 2000-09-29 2002-04-10 Sanyo Denki Co Ltd 絶対位置検出方法
JP3665732B2 (ja) 2000-09-29 2005-06-29 山洋電気株式会社 絶対位置検出方法
JP2009229396A (ja) 2008-03-25 2009-10-08 Sanyo Denki Co Ltd バッテリレス絶対位置検出用エンコーダ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2789967A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122615A1 (en) * 2014-03-28 2017-02-01 Allied Motion Stockholm AB Method for deriving an absolute multiturn rotational angle of a rotating shaft, and a device therefore
EP3122615A4 (en) * 2014-03-28 2017-06-28 Allied Motion Stockholm AB Method for deriving an absolute multiturn rotational angle of a rotating shaft, and a device therefore

Also Published As

Publication number Publication date
ES2638332T3 (es) 2017-10-19
US9528855B2 (en) 2016-12-27
KR20140099867A (ko) 2014-08-13
CN103930748A (zh) 2014-07-16
US20140290079A1 (en) 2014-10-02
CN103930748B (zh) 2016-08-24
KR101942130B1 (ko) 2019-01-24
JP5420624B2 (ja) 2014-02-19
EP2789967B1 (en) 2017-05-31
EP2789967A4 (en) 2015-10-28
EP2789967A1 (en) 2014-10-15
JP2013104778A (ja) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5420624B2 (ja) 多回転アブソリュート回転角検出装置及びアブソリュート回転角を検出する方法
KR101502259B1 (ko) 다회전 앱솔루트 회전각을 검출하는 장치 및 그 회전각을 검출하는 방법
JP5341714B2 (ja) 位相差式レゾルバ
JPH0373808B2 (ja)
JP4142607B2 (ja) バリアブルリラクタンスレゾルバ
JP5256174B2 (ja) 磁気式アブソリュートエンコーダ
JP2011107048A5 (ja)
US9841947B2 (en) Device and method for calculating absolute amount of displacement, and method for same
CN110998244B (zh) 角度检测器
JP5473984B2 (ja) 多回転アブソリュート回転角検出装置
JP5473953B2 (ja) 多回転アブソリュート回転角検出装置
US7119717B2 (en) Encoder output divider and R/D converter
JP6951804B2 (ja) エンコーダ開発用信号発生装置
JP4727283B2 (ja) 多回転絶対角度検出方法および検出装置
JP2007271372A (ja) 回転センサ
JP2004132912A (ja) 絶対値エンコーダ
RU2480707C1 (ru) Способ измерения угла и устройство для его осуществления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12848893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147012549

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012848893

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012848893

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13261897

Country of ref document: US