WO2013069762A1 - 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子 - Google Patents

含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子 Download PDF

Info

Publication number
WO2013069762A1
WO2013069762A1 PCT/JP2012/079092 JP2012079092W WO2013069762A1 WO 2013069762 A1 WO2013069762 A1 WO 2013069762A1 JP 2012079092 W JP2012079092 W JP 2012079092W WO 2013069762 A1 WO2013069762 A1 WO 2013069762A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
phenyl
pyridyl
nitrogen
Prior art date
Application number
PCT/JP2012/079092
Other languages
English (en)
French (fr)
Inventor
秀典 相原
祐児 岡
桂甫 野村
田中 剛
内田 直樹
Original Assignee
東ソー株式会社
公益財団法人相模中央化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社, 公益財団法人相模中央化学研究所 filed Critical 東ソー株式会社
Priority to US14/357,396 priority Critical patent/US9252368B2/en
Priority to CN201280066833.7A priority patent/CN104039773B/zh
Priority to KR1020147015612A priority patent/KR102003090B1/ko
Priority to EP12847767.6A priority patent/EP2778160B1/en
Publication of WO2013069762A1 publication Critical patent/WO2013069762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole

Definitions

  • the present invention relates to a cyclic azine compound having a nitrogen-containing fused aromatic group and a method for producing the same.
  • the cyclic azine compound of the present invention is useful as a component of a fluorescent or phosphorescent organic electroluminescent device because it has good charge transport properties and forms a stable thin film.
  • the present invention further relates to a high-efficiency organic electroluminescent device excellent in driveability and luminescent properties, wherein this cyclic azine compound is used in at least one organic compound layer of the organic electroluminescent device.
  • the organic electroluminescent element has a configuration in which a light emitting layer containing a light emitting material is sandwiched between a hole transport layer and an electron transport layer, and an anode and a cathode are attached to both outer sides of the sandwich structure.
  • An organic electroluminescent element is an element that utilizes light emission (fluorescence or phosphorescence) when excitons generated by recombination of holes and electrons injected into a light emitting layer are deactivated, and is applied to a display or the like. ing.
  • the cyclic azine compound of the present invention includes both 1,3,5-triazine compounds and pyrimidine compounds.
  • This 1,3,5-triazine compound is novel and is characterized by having a nitrogen-containing fused aromatic group directly or via a phenylene group on the phenyl group at the 2-position of the triazine ring.
  • the pyrimidine compound is novel and has a nitrogen-containing fused aromatic group directly or via a phenylene group on the phenyl group at the 2-position of the pyrimidine ring.
  • Patent Document 1 discloses an example of an organic electroluminescent element containing a 1,3,5-triazine derivative as a constituent component.
  • This 1,3,5-triazine derivative is a compound having no nitrogen-containing fused aromatic group and is different from the 1,3,5-triazine derivative of the present invention.
  • Patent Document 2 describes a 1,3,5-triazine derivative, which includes a compound containing a 1,3,5-triazine ring and a nitrogen-containing aromatic group. Specific examples are not described.
  • 1,3,5-triazine derivatives useful as components of organic electroluminescent devices include triazine derivatives having two phenanthrenyl groups (see, for example, Patent Document 3) and triazine derivatives having two isoquinolinyl groups (For example, refer to Patent Document 4)
  • triazine derivatives two nitrogen-containing fused aromatic groups are symmetrically arranged on the phenyl group at the 2-position of the triazine ring via an arylene group.
  • Their chemical structure is different from the 1,3,5-triazine compounds of the present invention.
  • an electron transport material used for an organic electroluminescence device is inferior in durability to a hole transport material, and a device having the electron transport material has a short lifetime. Few materials with excellent durability give long-lasting elements. Furthermore, a material that can be driven at a low voltage of a device that has durability and leads to low power consumption cannot be found in conventional compounds, and a new material is desired.
  • a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms is directly or via a phenylene group on the phenyl group at the 2-position of the triazine ring. It has been found that a cyclic azine compound having a bonded structure has a high glass transition temperature (Tg) and can form a stable amorphous film by vacuum deposition. Furthermore, when an organic electroluminescent device using the above-mentioned cyclic azine compound as an electron transport layer was created, it was found that a device having a long lifetime and reduced power consumption compared to a general-purpose organic electroluminescent device was found. It was. The present invention has been completed based on these findings.
  • the present invention relates to the general formula (1)
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms, X represents a phenylene group, and n represents an integer of 0 to 3.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • two R 1 in B (OR 1 ) 2 may be the same or different
  • two R 1 are And can also form a ring containing an oxygen atom and a boron atom.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group, n represents an integer of 0 to 3.
  • Z 1 represents a leaving group.
  • the compound represented by formula (1) is subjected to a coupling reaction in the presence of a base and a palladium catalyst, or in the presence of a base, a palladium catalyst, and an alkali metal salt.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom, an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group, or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms
  • X represents a phenylene group
  • n represents an integer of 0 to 3).
  • the present invention provides a compound of the general formula (8)
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom, an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group, or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms. 1 represents a leaving group.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group
  • n represents an integer of 0 to 3.
  • R 1 represents a hydrogen atom, 1 carbon atom.
  • two R 1 in B (OR 1 ) 2 may be the same or different, and the two R 1 together contain an oxygen atom and a boron atom;
  • a compound represented by (2) can be subjected to a coupling reaction in the presence of a base and a palladium catalyst, or in the presence of a base, a palladium catalyst, and an alkali metal salt.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom, an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group, or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms, X represents a phenylene group, and n represents an integer of 0 to 3.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms, X represents a phenylene group, n represents an integer of 0 to 3, and Z 1 represents a leaving group.
  • Ar 2 ′ represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • two R's in B (OR 1 ) 2 1 may be the same or different, and two R 1 and a compound represented by the also possible.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 ′ represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group, or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms
  • Ar 3 Represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms, X represents a phenylene group, and n represents an integer of 0 to 3.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom, an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group, or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms
  • X represents a phenylene group
  • n represents an integer of 0 to 3).
  • the present invention relates to a light emitting element.
  • the cyclic azine compound of the present invention has a high Tg and can form a stable amorphous thin film.
  • the cyclic azine compound of the present invention is useful as a material for an organic electroluminescence device, and can be used particularly as an electron transport material.
  • An organic electroluminescent device using the cyclic azine compound of the present invention as a constituent component has a long life and a low driving voltage.
  • FIG. 3 is a cross-sectional view of an organic electroluminescent element produced in Test Example-1.
  • examples of the aromatic hydrocarbon group having 6 to 18 carbon atoms represented by Ar 1 include a phenyl group, a naphthyl group, an anthranyl group, a perylenyl group, and a triphenylenyl group. These may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • the alkyl group as a substituent may be linear, branched or cyclic, and may be further substituted with one or more halogen atoms.
  • One or more phenyl groups as a substituent may be substituted with a halogen atom or the like.
  • Examples of the phenyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group include a phenyl group, p-tolyl group, m-tolyl group, o-tolyl group, 4-trifluoromethyl Phenyl group, 3-trifluoromethylphenyl group, 2-trifluoromethylphenyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group, mesityl group, 2-ethylphenyl Group, 3-ethylphenyl group, 4-ethylphenyl group, 2,4-diethylphenyl group, 3,5-diethylphenyl group, 2-propylphenyl group, 3-propylphenyl group, 4-propylphenyl group, 2, 4-dipropylphenyl group, 3,5-dipropylphenyl group, 2-isoprop
  • a phenyl group, a p-tolyl group, an m-tolyl group, an o-tolyl group, a 2,6-dimethylphenyl group, and 4-tert-butylphenyl are preferable in terms of performance as a material for an organic electroluminescent device.
  • Group, 4-biphenylyl group, 3-biphenylyl group, 2-biphenylyl group, 1,1 ′: 4 ′, 1 ′′ -terphenyl-4-yl group, 1,1 ′: 2 ′, 1 ′′ -terphenyl- 4-yl group and 1,1 ′: 3 ′, 1 ′′ -terphenyl-5′-yl group are preferable.
  • phenyl group, p-tolyl group, 4-tert-butylphenyl group, 4 -Biphenylyl group and 3-biphenylyl group are more preferable.
  • Examples of the naphthyl group which is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group include a 1-naphthyl group, 2-naphthyl group, 4-methylnaphthalen-1-yl group, 4- Trifluoromethylnaphthalen-1-yl group, 4-ethylnaphthalen-1-yl group, 4-propylnaphthalen-1-yl group, 4-butylnaphthalen-1-yl group, 4-tert-butylnaphthalen-1-yl Group, 5-methylnaphthalen-1-yl group, 5-trifluoromethylnaphthalen-1-yl group, 5-ethylnaphthalen-1-yl group, 5-propylnaphthalen-1-yl group, 5-butylnaphthalene-1 -Yl group, 5-tert-butylnaphthalen-1-yl group, 6-methylnaphthalen-2-yl group
  • 1-naphthyl group 4-methylnaphthalen-1-yl group, 4-tert-butylnaphthalen-1-yl group, 5-methylnaphthalene- 1-yl group, 5-tert-butylnaphthalen-1-yl group, 4-phenylnaphthalen-1-yl group, 2-naphthyl group, 6-methylnaphthalen-2-yl group, 6-tert-butylnaphthalene-2
  • a -yl group, a 7-methylnaphthalen-2-yl group or a 7-tert-butylnaphthalen-2-yl group is preferred.
  • a 2-naphthyl group is more preferable in terms of easy synthesis.
  • Ar 2 is a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or 9 to 15 nitrogen-containing fused-ring aromatic groups are represented.
  • Examples of the aromatic hydrocarbon group having 6 to 18 carbon atoms represented by Ar 2 include a phenyl group, a biphenylyl group, a naphthyl group, an anthranyl group, a phenanthrenyl group, a perylenyl group, a triphenylenyl group, and a pyrenyl group. These may be substituted with a phenyl group or a pyridyl group.
  • a phenyl group, a biphenylyl group, or a phenanthrenyl group is preferable in terms of good performance as a material for an organic electroluminescent element, and these may be substituted with a phenyl group or a pyridyl group.
  • Examples of the phenyl group unsubstituted or substituted with a phenyl group or a pyridyl group, and the biphenylyl group unsubstituted or substituted with a phenyl group or a pyridyl group include, in addition to a phenyl group, a 2- (2-pyridyl) phenyl group 3- (2-pyridyl) phenyl group, 4- (2-pyridyl) phenyl group, 2- (3-pyridyl) phenyl group, 3- (3-pyridyl) phenyl group, 4- (3-pyridyl) phenyl group 2- (4-pyridyl) phenyl group, 3- (4-pyridyl) phenyl group, 4- (4-pyridyl) phenyl group, 2,4-bis (2-pyridyl) phenyl group, 2,6-bis ( 2-pyridyl) phenyl group
  • a phenyl group, 4-biphenylyl group, 3-biphenylyl group, 2-biphenylyl group, 3- (2-pyridyl) phenyl group, 4- (2) are preferable in terms of performance as an organic electroluminescent element material.
  • -Pyridyl) phenyl group 1,1 ': 4', 1 "-terphenyl-4-yl group, 1,1 ': 2', 1" -terphenyl-4-yl group, 1,1 ': 3 ', 1 "-terphenyl-5'-yl group, 3'-(2-pyridyl) biphenyl-3-yl group, 3 '-(3-pyridyl) biphenyl-3-yl group, 4'-(2- A pyridyl) biphenyl-4-yl group and a 4 ′-(3-pyridyl) biphenyl-4-yl group are preferred, and a phenyl group, 4-biphenylyl group, 3-biphenylyl group, 4- (2- Pyridyl) phenyl group, 4 '-(3-pyridyl) biphe Le-4-yl group is more preferred.
  • Examples of a phenanthrenyl group substituted with a pyridyl group, an unsubstituted or triphenylenyl group substituted with a phenyl group or a pyridyl group, and a pyrenyl group unsubstituted or substituted with a phenyl group or a pyridyl group include a 1-naphthyl group 2-naphthyl group, 1-anthranyl group, 2-anthranyl group, 9-anthranyl group, 1-phenanthrenyl group, 2-phenanthrenyl group, 3-phenanthren
  • An anthracen-9-yl group is preferred. From the viewpoint of easy synthesis, a 9-anthranyl group and a 9-phenanthrenyl group are more preferable.
  • Examples of the nitrogen-containing fused aromatic group having 9 to 15 carbon atoms represented by Ar 2 include a quinolinyl group, an isoquinolinyl group, a phenanthrolinyl group, a naphthyridinyl group, a quinoxanyl group, a phenanthridinyl group, and an acridinyl group. Etc. can be illustrated.
  • 2-quinolinyl group, 8-quinolinyl group, 1-isoquinolinyl group, 3-isoquinolinyl group, 4-isoquinolinyl group, 5-isoquinolinyl group, 6-isoquinolinyl group, 7-isoquinolinyl group, 8-isoquinolinyl group 2-naphthyridinyl group, 2-quinoxanyl group, 6-phenanthridinyl group, 9-acridinyl group, 2-phenanthrolinyl group, 3-phenanthrolinyl group, 4-phenanthrolinyl group, 5- A phenanthrolinyl group etc. can be illustrated.
  • isoquinolinyl group, phenanthrolinyl group and quinolinyl group are preferable from the viewpoint of good performance as a material for an organic electroluminescence device, and 1-isoquinolinyl group, 3-isoquinolinyl group, 4-isoquinolinyl group and 5-isoquinolinyl group are preferable.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • the nitrogen-containing fused aromatic group having 9 to 15 carbon atoms include those similar to the nitrogen-containing fused aromatic group having 9 to 15 carbon atoms exemplified for Ar 2 .
  • an isoquinolinyl group, a phenanthrolinyl group, and a quinolinyl group are preferable in terms of good performance as a material for an organic electroluminescent element.
  • n represents an integer of 0 to 3.
  • n is preferably 0 to 2, and more preferably 0 to 1.
  • Ar 2 and Ar 3 are preferably the same.
  • the cyclic azine compound of the present invention can be produced by a method including step 1 represented by the following reaction formula.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group, two R 1 in B (OR 1 ) 2 may be the same or different, and two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group, and n represents an integer of 0 to 3.
  • Z 1 represents a leaving group.
  • B (OR 1 ) 2 in the compound represented by the general formula (2) is B (OH) 2 , B (OMe) 2 , B (O i Pr) 2 , B ( Examples thereof include OBu) 2 and B (OPh) 2 .
  • Examples of B (OR 1 ) 2 in the case where two R 1 are combined to form a ring containing an oxygen atom and a boron atom include groups represented by the following (I) to (VI): It can be illustrated.
  • the group represented by (II) is preferable in that the yield is good.
  • the leaving group represented by Z 1 in the compound represented by the general formula (3) is not particularly limited, but for example, a chlorine atom, a bromine atom or an iodine atom can give. Of these, a bromine atom is preferred because of its good yield.
  • Compound (3) is, for example, Journal of Organic Chemistry, 2007, 72, 2318-2328, or Org. Biomol. Chem. 2008, No. 6, pages 1320 to 1322, or JP-A-2008-280330 [0061] to [0076].
  • Step 1 the compound (2) is reacted with the compound (3) in the presence of a base and a palladium catalyst, optionally a base, a palladium catalyst, and an alkali metal salt, to produce the cyclic azine compound of the present invention.
  • the target product can be obtained in high yield by applying reaction conditions of a general Suzuki-Miyaura reaction.
  • Examples of the palladium catalyst that can be used in “Step 1” include palladium salts such as palladium chloride, palladium acetate, palladium trifluoroacetate, and palladium nitrate. Further, divalent palladium complexes such as ⁇ -allyl palladium chloride dimer, palladium acetylacetonato, zerovalent palladium complexes such as bis (dibenzylideneacetone) palladium, tris (dibenzylideneacetone) dipalladium, dichlorobis (triphenylphosphine) palladium Palladium complexes having phosphine as a ligand such as tetrakis (triphenylphosphine) palladium and dichloro (1,1′-bis (diphenylphosphino) ferrocene) palladium can be exemplified.
  • palladium salts such as palladium chloride, palladium acetate,
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield, is easily available, and a palladium complex having triphenylphosphine as a ligand is more preferable in terms of a good yield.
  • the amount of the palladium catalyst used in “Step 1” is not particularly limited as long as it is a so-called catalyst amount. However, the molar ratio of the palladium catalyst to the compound (2) is 1: 5 to 1: 200 is preferred.
  • the palladium complex which has these tertiary phosphines as a ligand may be prepared in a reaction system by adding a tertiary phosphine or a salt thereof to a palladium salt, a divalent palladium complex or a zerovalent palladium complex. it can.
  • Tertiary phosphines include triphenylphosphine, trimethylphosphine, tributylphosphine, tri (tert-butyl) phosphine, tricyclohexylphosphine, tert-butyldiphenylphosphine, 9,9-dimethyl-4,5-bis (diphenylphosphino ) Xanthene, 2- (diphenylphosphino) -2 ′-(N, N-dimethylamino) biphenyl, 2- (di-tert-butylphosphino) biphenyl, 2- (dicyclohexylphosphino) biphenyl, bis (diphenylphos Fino) methane, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,1′-bis (dip
  • Triphenylphosphine, 1,1′-bis (diphenylphosphino) ferrocene or tri (tert-butyl) phosphine is preferable because it is easily available. Triphenylphosphine is more preferable in terms of good yield.
  • the molar ratio of the tertiary phosphine to the palladium salt or complex compound is preferably 1:10 to 10: 1, and more preferably 1: 2 to 3: 1 in terms of a good yield.
  • the base that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, and sodium phosphate.
  • Sodium carbonate, cesium carbonate, and potassium phosphate are preferable in terms of good rate.
  • the molar ratio of the base to the compound (2) is not particularly limited, but is preferably 1: 2 to 100: 1, and more preferably 1: 1 to 10: 1 in terms of a good yield.
  • the reaction of “Step 1” can also be carried out in the presence of an alkali metal salt.
  • alkali metal salts that can be used include lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, sodium bromide, sodium iodide, potassium fluoride, potassium chloride, and potassium bromide.
  • Lithium or potassium salt is preferred in terms of points, and lithium chloride or potassium chloride is more preferred in terms of good yield.
  • the molar ratio of the alkali metal salt to the compound (2) is not particularly limited, but is preferably 1: 2 to 100: 1, and more preferably 1: 1 to 10: 1 in terms of a good yield.
  • the molar ratio of the compound (3) and the compound (2) used in “Step 1” is not particularly limited, but is preferably 1: 1 to 5: 1, and 2: 1 to 3: 1 in terms of good yield. Further preferred.
  • the reaction of “Step 1” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene.
  • a mixed solvent in which these are appropriately combined may be used. It is desirable to use a mixed solvent of toluene, ethanol and water in terms of good yield.
  • the cyclic azine compound of the present invention can be obtained by performing a normal treatment after completion of “Step 1”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
  • Compound (2) which is a raw material of “Step 1” for producing the cyclic azine compound of the present invention, includes, for example, Step 2 shown by the following reaction formula as shown in Reference Examples-6 to 8 described later. It can be manufactured by a method.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • Z 2 represents a leaving group.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • two R 1 in B (OR 1 ) 2 may be the same or different
  • two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • the leaving group represented by Z 2 of the compound represented by the general formula (5) is not particularly limited, but for example, a chlorine atom, a bromine atom or an iodine atom can give. Among these, a bromine atom is preferable in terms of a good yield.
  • Step 2 compound (5) in the presence of a base and a palladium catalyst is converted to a compound represented by general formula (6) (hereinafter referred to as borane compound (6)) or a compound represented by general formula (7) (hereinafter referred to as “following”). , Diboron compound (7)) to produce compound (2) used in “Step 1”.
  • the reaction conditions disclosed in The Journal of Organic Chemistry, 60, 7508-7510, 1995 or Journal of Organic Chemistry, 65, 164-168, 2000 are applied.
  • the target product can be obtained with good yield.
  • Examples of the palladium catalyst that can be used in “Step 2" include the same parapalladium salts, divalent palladium complexes, zero-valent palladium complexes, and palladium complexes having phosphine as a ligand exemplified in "Step 1". can do.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield.
  • a palladium complex having triphenylphosphine as a ligand is particularly preferable because it is easily available and yield is good.
  • the amount of the palladium catalyst used in “Step 2” is not particularly limited as long as it is a so-called catalyst amount. However, the molar ratio of the palladium catalyst to the compound (5) is 1:50 to 1: 10 is preferred.
  • a palladium complex having a tertiary phosphine as a ligand can also be prepared in a reaction system by adding a tertiary phosphine to a palladium salt, a divalent palladium complex or a zerovalent palladium complex.
  • a tertiary phosphine the tertiary phosphine exemplified in “Step 1” can be exemplified. Among them, triphenylphosphine is preferable because it is easily available.
  • the molar ratio of the tertiary phosphine and the palladium salt or complex compound used in “Step 2” is not particularly limited, but is preferably 1:10 to 10: 1, and 1: 2 to 5: 1 in terms of good yield. Is more preferable.
  • Step 2 must be carried out in the presence of a base.
  • Bases that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and potassium acetate is desirable in terms of a good yield.
  • the molar ratio of base to compound (5) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of good yield.
  • the molar ratio of the borane compound (6) or diboron compound (7) and the compound (5) used in “Step 2” is not particularly limited, but is preferably 1: 1 to 5: 1 and is 2 in terms of good yield. 1 to 3: 1 is more preferable.
  • the reaction of “Step 2” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene. These may be appropriately combined and used as a mixed solvent. It is desirable to use tetrahydrofuran in terms of a good yield.
  • the compound (2) obtained in this step may be isolated after the reaction, but may be subjected to “Step 1” without isolation.
  • cyclic azine compound of the present invention can also be produced by a method including step 3 represented by the following reaction formula.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents a hydrogen atom; an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group, two R 1 in B (OR 1 ) 2 may be the same or different, and two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group, and n represents an integer of 0 to 3.
  • Z 1 represents a chlorine atom or a bromine atom.
  • Step 3 the compound represented by the general formula (8) (hereinafter referred to as the compound (8)) is synthesized in the presence of a base and a palladium catalyst, or in the presence of a base, a palladium catalyst, and an alkali metal salt.
  • compound (1) is produced by reacting with a compound represented by 9) (hereinafter referred to as compound (9)).
  • Examples of the palladium catalyst that can be used in “Step 3” include the same parapalladium salts, divalent palladium complexes, zerovalent palladium complexes, and palladium complexes having phosphine as a ligand exemplified in “Step 1”. can do.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield, is easily available, and a palladium complex having triphenylphosphine as a ligand is particularly preferable in terms of a good yield.
  • the amount of the palladium catalyst used in “Step 3” is not particularly limited as long as it is a so-called catalyst amount, but the molar ratio of the palladium catalyst to the compound (8) is 1:50 to 1: 10 is preferred.
  • the palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt, divalent palladium complex or zerovalent palladium complex.
  • a tertiary phosphine the tertiary phosphine exemplified in “Step 1” can be exemplified. Among them, triphenylphosphine is preferable because it is easily available.
  • the molar ratio of the tertiary phosphine and the palladium salt or complex compound used in “Step 3” is not particularly limited, but is preferably 1:10 to 10: 1, and 1: 2 to 5: 1 in terms of a good yield. Is more preferable.
  • Step 3 must be performed in the presence of a base.
  • Bases that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and potassium carbonate is desirable in terms of a good yield.
  • the molar ratio of the base to the compound (8) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the alkali metal salt that can be used in “Step 3” is not particularly limited, and examples thereof include lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, and sodium bromide.
  • Lithium chloride or potassium chloride is desirable in terms of good yield.
  • the molar ratio of the alkali metal salt to the compound (8) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the molar ratio of the compound (9) and the compound (8) used in “Step 3” is not particularly limited, but is preferably 1: 1 to 5: 1, and is preferably 1: 1 to 3: 1 in terms of good yield. Further preferred.
  • the reaction of “Step 3” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene. These may be appropriately combined and used as a mixed solvent. It is desirable to use tetrahydrofuran in terms of a good yield.
  • the cyclic azine compound of the present invention can be obtained by performing a normal treatment after completion of “Step 3”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
  • Ar 2 may be substituted with a group other than hydrogen, that is, a phenyl group or a pyridyl group.
  • a compound (hereinafter referred to as compound (8 ′)) which is an aromatic hydrocarbon group having 6 to 18 carbon atoms or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms (these groups are represented by “Ar 2 ′ ”) It can be produced by a method including Step 4 shown by the following reaction formula.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 ′ represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • two R 1 in B (OR 1 ) 2 may be the same or different
  • two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • X represents a phenylene group
  • n represents an integer of 0 to 3.
  • Z 1 and Z 2 represent a chlorine atom or a bromine atom.
  • Step 4 a compound represented by the general formula (10) (hereinafter referred to as the compound (10)) is converted into a compound represented by the general formula (11) (hereinafter referred to as the compound (11)) in the presence of a base and a palladium catalyst. ) To produce the compound (8) used in “Step 3”.
  • Examples of the palladium catalyst that can be used in “Step 4” include the same parapalladium salts, divalent palladium complexes, zerovalent palladium complexes, and palladium complexes having phosphine as a ligand exemplified in “Step 1”. can do.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield.
  • a palladium complex having triphenylphosphine as a ligand is particularly preferable because it is easily available and yield is good.
  • the amount of the palladium catalyst used in “Step 4” is not particularly limited as long as it is a so-called catalyst amount. However, the molar ratio of the palladium catalyst to the compound (10) is 1:50 to 1: 10 is preferred.
  • the palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt, divalent palladium complex or zerovalent palladium complex.
  • tertiary phosphine the tertiary phosphine exemplified in “Step 1” can be exemplified.
  • triphenylphosphine or 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl is preferable because it is easily available.
  • the molar ratio of the tertiary phosphine and palladium salt or complex compound used in “Step 4” is not particularly limited, but is preferably 1:10 to 10: 1, and 1: 2 to 5: 1 in terms of good yield. Is more preferable.
  • Step 4 must be carried out in the presence of a base.
  • Bases that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and potassium carbonate is desirable in terms of a good yield.
  • the molar ratio of the base and the compound (10) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the molar ratio of the compound represented by the general formula (11) used in “Step 4” (hereinafter referred to as the compound (11)) and the compound (8) is not particularly limited, but is preferably 1: 1 to 5: 1. A ratio of 1: 1 to 3: 1 is more preferable in terms of a good yield.
  • the reaction of “Step 4” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, and xylene. These may be appropriately combined and used as a mixed solvent. It is desirable to use toluene or ethanol in terms of a good yield.
  • the compound (10) obtained in this step may be isolated after the reaction, but may be subjected to “Step 3” without isolation.
  • cyclic azine compound of the present invention can also be produced by a method comprising step 5 represented by the following reaction formula.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • Ar 2 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with a phenyl group or a pyridyl group; or a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group, two R 1 in B (OR 1 ) 2 may be the same or different, and two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group, and n represents an integer of 0 to 3.
  • Z 1 represents a chlorine atom or a bromine atom.
  • Step 5" the compound represented by the general formula (12) (hereinafter referred to as the compound (12)) is represented by the general formula in the presence of a base and a palladium catalyst, or in the presence of a base, a palladium catalyst, and an alkali metal salt.
  • compound (1) is produced by reacting with compound (13) (hereinafter referred to as compound (13)).
  • Examples of the palladium catalyst that can be used in “Step 5" include the same parapalladium salts, divalent palladium complexes, zerovalent palladium complexes, and palladium complexes having phosphine as a ligand exemplified in "Step 1". can do.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield.
  • a palladium complex having triphenylphosphine as a ligand is particularly preferable because it is easily available and yield is good.
  • the amount of the palladium catalyst used in “Step 5” is not particularly limited as long as it is a so-called catalyst amount, but the molar ratio of the palladium catalyst to the compound (12) is 1:50 to 1: 10 is preferred.
  • a palladium complex having a tertiary phosphine as a ligand can also be prepared in a reaction system by adding a tertiary phosphine to a palladium salt, a divalent palladium complex or a zerovalent palladium complex.
  • a tertiary phosphine the tertiary phosphine exemplified in “Step 1” can be exemplified.
  • triphenylphosphine or 2-dicyclohexylphosphino-2 ′, 4 ′, 6′-triisopropylbiphenyl is preferable because it is easily available.
  • the molar ratio of the tertiary phosphine and the palladium salt or complex compound used in “Step 5” is not particularly limited, but is preferably 1:10 to 10: 1, and 1: 2 to 5: 1 in terms of good yield. Is more preferable.
  • the alkali metal salt that can be used in “Step 5” is not particularly limited, and examples thereof include lithium fluoride, lithium chloride, lithium bromide, lithium iodide, sodium fluoride, sodium chloride, and sodium bromide.
  • Lithium chloride or potassium chloride is desirable in terms of good yield.
  • the molar ratio of the alkali metal salt to the compound (12) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • Step 5 must be carried out in the presence of a base.
  • Bases that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and potassium carbonate is desirable in terms of a good yield.
  • the molar ratio of the base and the compound (12) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the molar ratio of the compound (13) and the compound (12) used in “Step 5” is not particularly limited, but is preferably 1: 1 to 5: 1, and 1: 1 to 3: 1 in terms of good yield. Further preferred.
  • the reaction of “Step 5” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, xylene, and the like. Also good. It is desirable to use tetrahydrofuran in terms of a good yield.
  • the cyclic azine compound of the present invention can be obtained by performing a normal treatment after completion of “Step 5”. If necessary, it may be purified by recrystallization, column chromatography or sublimation.
  • the compound (12) which is a raw material of “Step 5” for producing the cyclic azine compound of the present invention can be produced by a method comprising Step 6 shown in the following reaction formula.
  • Y represents C—H or a nitrogen atom.
  • Ar 1 represents an aromatic hydrocarbon group having 6 to 18 carbon atoms which may be substituted with an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • R 1 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms or a phenyl group, two R 1 in B (OR 1 ) 2 may be the same or different, and two R 1 are It is also possible to form a ring containing oxygen atoms and boron atoms.
  • Ar 3 represents a nitrogen-containing fused aromatic group having 9 to 15 carbon atoms.
  • X represents a phenylene group, and n represents an integer of 0 to 3.
  • Z 1 represents a chlorine atom or a bromine atom.
  • Step 6 is a step of producing compound (12) used in “step 5” by reacting compound (10) with compound (9) in the presence of a base and a palladium catalyst.
  • Examples of the palladium catalyst that can be used in “Step 6" include the same parapalladium salts, divalent palladium complexes, zero-valent palladium complexes, and palladium complexes having phosphine as a ligand exemplified in "Step 1". can do.
  • a palladium complex having a tertiary phosphine as a ligand is preferable in terms of a good yield.
  • a palladium complex having triphenylphosphine as a ligand is particularly preferable because it is easily available and yield is good.
  • the amount of the palladium catalyst used in “Step 6” is not particularly limited as long as it is a so-called catalyst amount. However, the molar ratio of the palladium catalyst to the compound (10) is 1:50 to 1: 10 is preferred.
  • the palladium complex having tertiary phosphine as a ligand can also be prepared in a reaction system by adding tertiary phosphine to a palladium salt, divalent palladium complex or zerovalent palladium complex.
  • tertiary phosphine the tertiary phosphine exemplified in “Step 1” can be exemplified.
  • triphenylphosphine or 2-dicyclohexylphosphino-2 ', 4', 6'-triisopropylbiphenyl is preferable because it is easily available.
  • the molar ratio of the tertiary phosphine and the palladium salt or complex compound used in “Step 6” is not particularly limited, but is preferably 1:10 to 10: 1, and 1: 2 to 5: 1 in terms of a good yield. Is more preferable.
  • Step 6 must be performed in the presence of a base.
  • Bases that can be used include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, lithium carbonate, cesium carbonate, potassium acetate, sodium acetate, potassium phosphate, sodium phosphate, sodium fluoride, potassium fluoride, Cesium fluoride and the like can be exemplified, and potassium carbonate is desirable in terms of a good yield.
  • the molar ratio of the base and the compound (12) is not particularly limited, but is preferably 1: 2 to 10: 1, and more preferably 1: 1 to 3: 1 in terms of a good yield.
  • the molar ratio of compound (10) to compound (9) used in “Step 6” is not particularly limited, but is preferably 1: 1 to 5: 1, and 1: 1 to 3: 1 is preferable in terms of a good yield. Further preferred.
  • the reaction of “Step 6” can be carried out in a solvent.
  • the solvent that can be used include water, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran, 1,4-dioxane, toluene, benzene, diethyl ether, ethanol, methanol, xylene, and the like. Also good. It is desirable to use tetrahydrofuran in terms of a good yield.
  • the compound (12) obtained in this step may be isolated after the reaction, but may be subjected to “Step 5” without isolation.
  • film formation by vacuum vapor deposition is possible.
  • Film formation by the vacuum evaporation method can be performed by using a general-purpose vacuum evaporation apparatus.
  • the vacuum degree of the vacuum chamber when forming a film by the vacuum evaporation method is reached by a diffusion pump, a turbo molecular pump, a cryopump, etc. that are generally used in consideration of the manufacturing tact time and manufacturing cost of manufacturing the organic electroluminescence device. It is preferably about 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 ⁇ 5 Pa.
  • the deposition rate is preferably 0.005 to 1.0 nm / sec depending on the thickness of the film to be formed.
  • the cyclic azine compound of the present invention can be formed by a spin coating method, an ink jet method, a casting method, a dip method or the like using a general-purpose apparatus.
  • the obtained red solid was pulverized in an argon stream and added to a 28% aqueous ammonia solution cooled to 0 ° C. The resulting suspension was stirred for an additional hour at room temperature. The precipitated solid was filtered off and washed successively with water and then with methanol. The solid was dried and extracted using a Soxhlet extractor (extraction solvent: chloroform). The extract was allowed to cool, and the precipitated solid was filtered off and dried to give a white powder of 2,4-di (3-biphenylyl) -6- (3,5-dibromophenyl) -1,3,5-triazine ( Yield 2.80 g, 33% yield).
  • Example-3 4-Bromo-1,10-phenanthroline (110 mg), 2- [3,5-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl under an argon stream ] -4,6-diphenyl-1,3,5-triazine (100 mg), sodium carbonate (75.5 mg) and tetrakis (triphenylphosphine) palladium (16.4 mg) in toluene (5 mL), ethanol (1 mL) and Suspended in water (0.35 mL) and stirred at 100 ° C. for 20 hours.
  • Example-4 The same procedure as in Example 3 was performed except that potassium carbonate (98.4 mg) was used instead of sodium carbonate (75.5 mg) and the reaction time was 44 hours, and the target 2- [3,5-bis ( A crude product containing 1,10-phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained.
  • the yield estimated from 1 HNMR was 33%.
  • Example-5 The same operation as in Example 3 was carried out except that lithium carbonate (52.6 mg) was used instead of sodium carbonate (75.5 mg) and the reaction time was 44 hours, and the target 2- [3,5-bis ( A crude product containing 1,10-phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained.
  • the yield estimated from 1 HNMR was 13%.
  • Example-6 The same procedure as in Example 3 was performed except that cesium carbonate (232 mg) was used instead of sodium carbonate (75.5 mg) and the reaction time was 44 hours, and the target 2- [3,5-bis (1, 10-Phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained.
  • the yield estimated from 1 HNMR was 50%.
  • Example-7 The same procedure as in Example 3 was conducted, except that potassium fluoride (41.4 mg) was used instead of sodium carbonate (75.5 mg) and the reaction time was 44 hours, and the target 2- [3,5-bis A crude product containing (1,10-phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained. When the yield was estimated from 1 HNMR, it was 21%.
  • Example-8 The same procedure as in Example 3 was carried out except that tripotassium phosphate (151 mg) was used instead of sodium carbonate (75.5 mg) and the reaction time was 44 hours, and the desired 2- [3,5-bis ( A white powder (64 mg, 54%) of 1,10-phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained.
  • Example-9 4-Bromo-1,10-phenanthroline (110 mg), 2- [3,5-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) phenyl under an argon stream ] -4,6-diphenyl-1,3,5-triazine (100 mg), palladium acetate (3.2 mg), tri (tert-butyl) phosphine tetrafluoroborate (8.3 mg), tripotassium phosphate (151 mg) was suspended in toluene (5 mL), ethanol (1 mL) and water (0.35 mL), and stirred at 100 ° C. for 46 hours.
  • Example-10 The same procedure as in Example 9 was carried out except that cesium carbonate (232 mg) was used instead of tripotassium phosphate (151 mg) to obtain the desired 2- [3,5-bis (1,10-phenanthroline-4- Yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained.
  • the yield estimated from 1 HNMR was 9%.
  • Example-11 The same procedure as in Example 9 was performed, except that 1,1′-bis (diphenylphosphino) ferrocene (7.9 mg) was used instead of tri (tert-butyl) phosphine tetrafluoroborate. A crude product containing 2- [3,5-bis (1,10-phenanthroline-4-yl) phenyl] -4,6-diphenyl-1,3,5-triazine was obtained. The yield estimated from 1 HNMR was 17%.
  • a white solid phenyl 359 mg, yield 76%) of phenyl] -4,6-di (4-tert-butyl) -1,3,5-triazine was obtained.
  • a white solid yield 1.37 g, yield 91%) of -yl) phenyl] -1,3,5-triazine was obtained.
  • Test example-1 As the substrate, a glass substrate with an ITO transparent electrode in which an indium tin oxide (ITO) film having a width of 2 mm was patterned in a stripe shape was used. The substrate was cleaned with isopropyl alcohol and then surface treated by ozone ultraviolet cleaning. Each layer was vacuum-deposited on the cleaned substrate by a vacuum deposition method, and an organic electroluminescence device having a light-emitting area of 4 mm 2 having a multilayer structure as shown in FIG.
  • ITO indium tin oxide
  • the glass substrate was introduced into a vacuum evaporation tank, and the pressure was reduced to 1.0 ⁇ 10 ⁇ 4 Pa. Thereafter, a hole injection layer 2, a hole transport layer 3, a light emitting layer 4, a hole blocking layer 5, and an electron transport layer 6 are sequentially formed as an organic compound layer on the glass substrate indicated by 1 in FIG. Thereafter, a cathode layer 7 was formed.
  • hole injection layer 2 sublimation-purified phthalocyanine copper (II) was vacuum-deposited with a thickness of 10 nm.
  • hole transport layer 3 N, N′-di (naphthylene-1-yl) -N, N′-diphenylbenzidine (NPD) was vacuum-deposited with a film thickness of 30 nm.
  • NPD N′-diphenylbenzidine
  • hole blocking layer 5 bis (2-methyl-8-quinolinolato)-(1,1′-biphenyl-4-olate) aluminum (BAlq) was vacuum-deposited with a thickness of 5 nm.
  • Each organic material was formed into a film by a resistance heating method, and the heated compound was vacuum-deposited at a film formation rate of 0.3 to 0.5 nm / second. Finally, a metal mask was disposed so as to be orthogonal to the ITO stripe, and the cathode layer 7 was formed.
  • the cathode layer 7 was made into a two-layer structure by vacuum-depositing lithium fluoride and aluminum with thicknesses of 1.0 nm and 100 nm, respectively. Each film thickness was measured with a stylus type film thickness meter (DEKTAK).
  • this element was sealed in a nitrogen atmosphere glove box having an oxygen and moisture concentration of 1 ppm or less. Sealing was performed using a glass sealing cap and the above-described film-forming substrate epoxy type ultraviolet curable resin (manufactured by Nagase ChemteX Corporation).
  • a direct current was applied to the produced organic electroluminescent device, and the light emission characteristics were evaluated using a luminance meter of LUMINANCE METER (BM-9) manufactured by TOPCON.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • the measured values of the manufactured element were a voltage of 6.4 V, a luminance of 1545 cd / m 2 , a current efficiency of 29.5 cd / A, and a power efficiency of 14.5 lm / W.
  • the luminance half time of this element when the initial luminance was driven at 4000 cd / m 2 was 272 hours.
  • Test example-2 instead of the electron transport layer 6 of Test Example 1, 2- [3,5-bis (1,10-phenanthrolin-2-yl) phenyl] -4,6-diphenyl synthesized in Example 1 of the present invention
  • An organic electroluminescent element obtained by vacuum-depositing -1,3,5-triazine with a film thickness of 45 nm was prepared in the same manner as in Test Example-1.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • Test Example-3 A hole injection layer 2, a hole transport layer 3, a light emitting layer 4 and an electron transport layer 6 were sequentially formed as an organic compound layer on the glass substrate indicated by 1 in FIG. .
  • Sublimation-purified phthalocyanine copper (II) is 25 nm as the hole injection layer 2
  • N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (NPD) is 45 nm as the hole transport layer 3.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • Test Example-4 instead of the electron transport layer 6 of Test Example 3, 2- [4- (isoquinolin-1-yl) -5- (9-phenanthryl) biphenyl-3-yl] obtained in Example-20 of the present invention]
  • An organic electroluminescent device in which -4,6-diphenyl-1,3,5-triazine was vacuum-deposited with a thickness of 20 nm was produced in the same manner as in Test Example-3.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • Test example-5 A hole injection layer 2, a hole transport layer 3, a light emitting layer 4 and an electron transport layer 6 were sequentially formed as an organic compound layer on the glass substrate indicated by 1 in FIG. 1, and then a cathode layer 7 was formed. .
  • Sublimation-purified phthalocyanine copper (II) is 25 nm as the hole injection layer 2
  • N, N′-di (1-naphthyl) -N, N′-diphenylbenzidine (NPD) is 45 nm as the hole transport layer 3.
  • the light emitting layer 4 95: 5% by mass of 3-tert-butyl-9,10-di (naphthyl-2-yl) anthracene (TBADN) and 1,6-bis (N-biphenyl-N-phenyl) pyrene was used. Vacuum deposition was performed at a thickness of 40 nm.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • the measured values of the fabricated element were a voltage of 7.4 V, a luminance of 1516 cd / m 2 , a current efficiency of 30.3 cd / A, and a power efficiency of 12.9 lm / W.
  • the luminance half time of this device when driven at an initial luminance of 4000 cd / m 2 was 244 hours.
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • V voltage
  • cd / m 2 luminance
  • cd / A current efficiency
  • lm / W power efficiency
  • the cyclic azine compound of the present invention exhibits good charge injection and transport properties as a material for an organic electroluminescent device. Therefore, the cyclic azine compound of the present invention is useful as a material for an organic electroluminescent device, and can be used particularly as an electron transporting material.
  • An organic electroluminescent device using the cyclic azine compound of the present invention as a constituent component has a long life and a low driving voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

 一般式(1)(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1-4のアルキル基又はフェニル基で置換されていてもよい炭素数6-18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6-18の芳香族炭化水素基;又は炭素数9-15の含窒素縮環芳香族基を表す。Arは、炭素数9-15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)で示される環状アジン化合物。この化合物は有機電界発光素子の構成成分として有用である。

Description

含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子
 本発明は、含窒素縮環芳香族基を有する環状アジン化合物とその製造方法に関する。
 本発明の環状アジン化合物は、良好な電荷輸送特性を持ち又安定な薄膜を形成することから、蛍光又は燐光有機電界発光素子の構成成分として有用である。本発明は、さらに、この環状アジン化合物を有機電界発光素子の有機化合物層の少なくとも一層に用いた、駆動性及び発光性に優れた高効率有機電界発光素子に関する。
 有機電界発光素子は、発光材料を含有する発光層を、正孔輸送層と電子輸送層で挟み、さらに、このサンドイッチ構造の両外側に陽極と陰極を取付けてなる構成を有する。有機電界発光素子は、発光層に注入された正孔及び電子の再結合により生ずる励起子が失活する際の光の放出(蛍光又は燐光)を利用する素子であって、ディスプレー等へ応用されている。
 本発明の環状アジン化合物は、1,3,5-トリアジン化合物とピリミジン化合物の両者を包含する。この1,3,5-トリアジン化合物は新規であり、トリアジン環2位のフェニル基上に、直接あるいはフェニレン基を介して含窒素縮環芳香族基を有することを特徴とする。また、ピリミジン化合物は新規であり、ピリミジン環2位のフェニル基上に、直接あるいはフェニレン基を介して含窒素縮環芳香族基を有することを特徴とする。
 特許文献1には、1,3,5-トリアジン誘導体を構成成分として含む有機電界発光素子の例が開示されている。この1,3,5-トリアジン誘導体は、含窒素縮環芳香族基をもたない化合物であって、本発明の1,3,5-トリアジン誘導体とは異なる。
 特許文献2には、1,3,5-トリアジン誘導体が記載され、その誘導体には、1,3,5-トリアジン環と含窒素芳香族基を含有する化合物も含まれるが、その化合物の具体的な実施例は記載されていない。
 有機電界発光素子の構成成分として有用な1,3,5-トリアジン誘導体の例として、2つのフェナントロレニル基を持つトリアジン誘導体(例えば、特許文献3参照)及び2つのイソキノリニル基を持つトリアジン誘導体(例えば、特許文献4参照)が知られているが、これらのトリアジン誘導体では、2つの含窒素縮環芳香族基はトリアジン環2位のフェニル基上に、アリーレン基を介して対称的に配置されており、それらの化学構造は、本発明の1,3,5-トリアジン化合物とは異なる。
特開2004-022334号公報 特開2007-137829号公報 特開2010-090034号公報 特開2010-106018号公報
 一般に、有機電界発光素子に用いる電子輸送材料は、正孔輸送材料と比して耐久性に劣り、この電子輸送材料を有する素子の寿命は短い。長寿命の素子を与える、優れた耐久性を有した材料は少ない。さらに、耐久性を持ちながら、低消費出力につながる素子の低電圧駆動を可能にする材料は、従来の化合物の中には見出すことができず、新たな材料が望まれている。
 本発明者らは、上記の課題を解決すべく鋭意検討を重ねた結果、トリアジン環2位のフェニル基上に、炭素数9~15の含窒素縮環芳香族基が直接あるいはフェニレン基を介して結合した構造を有する環状アジン化合物が高いガラス転移温度(Tg)を持ち、真空蒸着により安定なアモルファス膜を形成し得ることを見出した。さらに、前述した環状アジン化合物を電子輸送層として用いた有機電界発光素子を作成したところ、寿命が長く、しかも、汎用の有機電界発光素子に比べて消費電力が低減された素子を与えることを見出した。本発明は、これらの知見に基づいて、完成された。
 すなわち、本発明は、一般式(1)

Figure JPOXMLDOC01-appb-I000013
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)で示される環状アジン化合物に関する。
 さらに、本発明は、一般式(2)
Figure JPOXMLDOC01-appb-I000014
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)で示される化合物と、一般式(3)
Figure JPOXMLDOC01-appb-I000015
(式中、Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは脱離基を表す。)で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1)
Figure JPOXMLDOC01-appb-I000016
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)で示される環状アジン化合物の製造方法に関する。
 さらに、本発明は、一般式(8)

Figure JPOXMLDOC01-appb-I000017
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Zは脱離基を表す。)
で示される化合物と、一般式(9)
Figure JPOXMLDOC01-appb-I000018

(式中、Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1)
Figure JPOXMLDOC01-appb-I000019
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
で示される環状アジン化合物の製造方法に関する。
 また、本発明は、一般式(12)
Figure JPOXMLDOC01-appb-I000020
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは脱離基を表す。)
で示される化合物と、一般式(13)
Figure JPOXMLDOC01-appb-I000021
(式中、Ar2’はフェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1’)
Figure JPOXMLDOC01-appb-I000022
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Ar2’は、フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
で示される環状アジン化合物の製造方法に関する。
 さらに、本発明は、一般式(1)

Figure JPOXMLDOC01-appb-I000023
(式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)で示される環状アジン化合物を構成成分とする有機電界発光素子に関する。
 本発明の環状アジン化合物は、高いTgを有し安定なアモルファス薄膜を形成することができる。また、有機電界発光素子の材料として、良好な電荷注入及び輸送特性を示す。
 したがって、本発明の環状アジン化合物は、有機電界発光素子の材料として有用であり、とりわけ電子輸送材等として用いることができる。本発明の環状アジン化合物を構成成分として用いてなる有機電界発光素子は、寿命が長く、また、駆動電圧が低いという特長を有する。
試験例-1で作製する有機電界発光素子の断面図である。
 1.ITO透明電極付きガラス基板
 2.正孔注入層
 3.正孔輸送層
 4.発光層
 5.正孔阻止層
 6.電子輸送層
 7.陰極層
 以下、本発明を詳細に説明する。
 本願発明の環状アジン化合物を表わす一般式(1)において、Arで表される炭素数6~18の芳香族炭化水素基としては、フェニル基、ナフチル基、アントラニル基、ペリレニル基又はトリフェニレニル基等を挙げることができ、これらは炭素数1から4のアルキル基又はフェニル基で置換されていてもよい。置換基としてのアルキル基は直鎖、分岐又は環状のいずれでもよく、さらにハロゲン原子等で一個以上置換されていてもよい。また、置換基としてのフェニル基もハロゲン原子等で一個以上置換されていてもよい。
 以下、Arの具体的な例を挙げるが、本発明はこれらに限定されるものではない。
 未置換または炭素数1から4のアルキル基又はフェニル基で置換されたフェニル基の例としては、フェニル基のほか、p-トリル基、m-トリル基、o-トリル基、4-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、2-トリフルオロメチルフェニル基、2,4-ジメチルフェニル基、3,5-ジメチルフェニル基、2,6-ジメチルフェニル基、メシチル基、2-エチルフェニル基、3-エチルフェニル基、4-エチルフェニル基、2,4-ジエチルフェニル基、3,5-ジエチルフェニル基、2-プロピルフェニル基、3-プロピルフェニル基、4-プロピルフェニル基、2,4-ジプロピルフェニル基、3,5-ジプロピルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、4-イソプロピルフェニル基、2,4-ジイソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2-ブチルフェニル基、3-ブチルフェニル基、4-ブチルフェニル基、2,4-ジブチルフェニル基、3,5-ジブチルフェニル基、2-tert-ブチルフェニル基、3-tert-ブチルフェニル基、4-tert-ブチルフェニル基、2,4-ジ-tert-ブチルフェニル基、3,5-ジ-tert-ブチルフェニル基等の置換フェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基のほか、2-メチルビフェニル-4-イル基、3-メチルビフェニル-4-イル基、2’-メチルビフェニル-4-イル基、4’-メチルビフェニル-4-イル基、2,2’-ジメチルビフェニル-4-イル基、2’,4’,6’-トリメチルビフェニル-4-イル基、6-メチルビフェニル-3-イル基、5-メチルビフェニル-3-イル基、2’-メチルビフェニル-3-イル基、4’-メチルビフェニル-3-イル基、6,2’-ジメチルビフェニル-3-イル基、2’,4’,6’-トリメチルビフェニル-3-イル基、5-メチルビフェニル-2-イル基、6-メチルビフェニル-2-イル基、2’-メチルビフェニル-2-イル基、4’-メチルビフェニル-2-イル基、6,2’-ジメチルビフェニル-2-イル基、2’,4’,6’-トリメチルビフェニル-2-イル基、2-トリフルオロメチルビフェニル-4-イル基、3-トリフルオロメチルビフェニル-4-イル基、2’-トリフルオロメチルビフェニル-4-イル基、4’-トリフルオロメチルビフェニル-4-イル基、6-トリフルオロメチルビフェニル-3-イル基、5-トリフルオロメチルビフェニル-3-イル基、2’-トリフルオロメチルビフェニル-3-イル基、4’-トリフルオロメチルビフェニル-3-イル基、5-トリフルオロメチルビフェニル-2-イル基、6-トリフルオロメチルビフェニル-2-イル基、2’-トリフルオロメチルビフェニル-2-イル基、4’-トリフルオロメチルビフェニル-2-イル基、3-エチルビフェニル-4-イル基、4’-エチルビフェニル-4-イル基、2’,4’,6’-トリエチルビフェニル-4-イル基、6-エチルビフェニル-3-イル基、4’-エチルビフェニル-3-イル基、5-エチルビフェニル-2-イル基、4’-エチルビフェニル-2-イル基、2’,4’,6’-トリエチルビフェニル-2-イル基、3-プロピルビフェニル-4-イル基、4’-プロピルビフェニル-4-イル基、2’,4’,6’-トリプロピルビフェニル-4-イル基、6-プロピルビフェニル-3-イル基、4’-プロピルビフェニル-3-イル基、5-プロピルビフェニル-2-イル基、4’-プロピルビフェニル-2-イル基、2’,4’,6’-トリプロピルビフェニル-2-イル基、3-イソプロピルビフェニル-4-イル基、4’-イソプロピルビフェニル-4-イル基、2’,4’,6’-トリイソプロピルビフェニル-4-イル基、6-イソプロピルビフェニル-3-イル基、4’-イソプロピルビフェニル-3-イル基、5-イソプロピルビフェニル-2-イル基、4’-イソプロピルビフェニル-2-イル基、2’,4’,6’-トリイソプロピルビフェニル-2-イル基、3-ブチルビフェニル-4-イル基、4’-ブチルビフェニル-4-イル基、2’,4’,6’-トリブチルビフェニル-4-イル基、6-ブチルビフェニル-3-イル基、4’-ブチルビフェニル-3-イル基、5-ブチルビフェニル-2-イル基、4’-ブチルビフェニル-2-イル基、2’,4’,6’-トリブチルビフェニル-2-イル基、3-tert-ブチルビフェニル-4-イル基、4’-tert-ブチルビフェニル-4-イル基、2’,4’,6’-トリ-tert-ブチルビフェニル-4-イル基、6-tert-ブチルビフェニル-3-イル基、4’-tert-ブチルビフェニル-3-イル基、5-tert-ブチルビフェニル-2-イル基、4’-tert-ブチルビフェニル-2-イル基、2’,4’,6’-トリ-tert-ブチルビフェニル-2-イル基等の置換ビフェニリル基、1,1’:4’,1”-ターフェニル-3-イル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-3-イル基、1,1’:3’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基、1,1’:2’,1”-ターフェニル-3-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4’-イル基等のターフェニリル基等が挙げられる。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、フェニル基、p-トリル基、m-トリル基、o-トリル基、2,6-ジメチルフェニル基、4-tert-ブチルフェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基が好ましい。合成が容易な点でフェニル基、p-トリル基、4-tert-ブチルフェニル基、4-ビフェニリル基、3-ビフェニリル基がさらに好ましい。
 未置換または、炭素数1から4のアルキル基又はフェニル基で置換されたナフチル基の例としては、1-ナフチル基、2-ナフチル基のほか、4-メチルナフタレン-1-イル基、4-トリフルオロメチルナフタレン-1-イル基、4-エチルナフタレン-1-イル基、4-プロピルナフタレン-1-イル基、4-ブチルナフタレン-1-イル基、4-tert-ブチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、5-トリフルオロメチルナフタレン-1-イル基、5-エチルナフタレン-1-イル基、5-プロピルナフタレン-1-イル基、5-ブチルナフタレン-1-イル基、5-tert-ブチルナフタレン-1-イル基、6-メチルナフタレン-2-イル基、6-トリフルオロメチルナフタレン-2-イル基、6-エチルナフタレン-2-イル基、6-プロピルナフタレン-2-イル基、6-ブチルナフタレン-2-イル基、6-tert-ブチルナフタレン-2-イル基、7-メチルナフタレン-2-イル基、7-トリフルオロメチルナフタレン-2-イル基、7-エチルナフタレン-2-イル基、7-プロピルナフタレン-2-イル基、7-ブチルナフタレン-2-イル基、7-tert-ブチルナフタレン-2-イル基、2-フェニルナフタレン-1-イル基、3-フェニルナフタレン-1-イル基、4-フェニルナフタレン-1-イル基、5-フェニルナフタレン-1-イル基、6-フェニルナフタレン-1-イル基、7-フェニルナフタレン-1-イル基、8-フェニルナフタレン-1-イル基、1-フェニルナフタレン-2-イル基、2,4-ジフェニルナフタレン-1-イル基、4,6-ジフェニルナフタレン-1-イル基、5,7-ジフェニルナフタレン-1-イル基、1,3-ジフェニルナフタレン-2-イル基、4,7-ジフェニルナフタレン-2-イル基、5,8-ジフェニルナフタレン-2-イル基、5,6,7,8-テトラフェニルナフタレン-1-イル基、5,6,7,8-テトラフェニルナフタレン-2-イル基等が挙げられる。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、1-ナフチル基、4-メチルナフタレン-1-イル基、4-tert-ブチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、5-tert-ブチルナフタレン-1-イル基、4-フェニルナフタレン-1-イル基、2-ナフチル基、6-メチルナフタレン-2-イル基、6-tert-ブチルナフタレン-2-イル基、7-メチルナフタレン-2-イル基又は7-tert-ブチルナフタレン-2-イル基が好ましい。合成が容易な点で2-ナフチル基がさらに好ましい。
 未置換または、炭素数1から4のアルキル基又はフェニル基で置換されたアントラニル基、未置換または、炭素数1から4のアルキル基又はフェニル基で置換されたペリレニル基、及び、未置換または、炭素数1から4のアルキル基又はフェニル基で置換されたトリフェニレニル基の例としては、1-アントラニル基、2-アントラニル基、9-アントラニル基、1-ペリレニル基、2-ペリレニル基および1-トリフェニレニル基等を挙げることができる。
 本願発明の環状アジン化合物を表わす一般式(1)において、Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。
 Arで表される炭素数6~18の芳香族炭化水素基の例としては、フェニル基、ビフェニリル基、ナフチル基、アントラニル基、フェナントレニル基、ペリレニル基、トリフェニレニル基、およびピレニル基等を挙げることができ、これらはフェニル基又はピリジル基で置換されていてもよい。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、フェニル基、ビフェニリル基、又はフェナントレニル基が好ましく、これらはフェニル基又はピリジル基で置換されていてもよい。
 未置換またはフェニル基又はピリジル基で置換されたフェニル基、及び、未置換またはフェニル基又はピリジル基で置換されたビフェニリル基の例としては、フェニル基のほか、2-(2-ピリジル)フェニル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、2-(3-ピリジル)フェニル基、3-(3-ピリジル)フェニル基、4-(3-ピリジル)フェニル基、2-(4-ピリジル)フェニル基、3-(4-ピリジル)フェニル基、4-(4-ピリジル)フェニル基、2,4-ビス(2-ピリジル)フェニル基、2,6-ビス(2-ピリジル)フェニル基、3,4-ビス(2-ピリジル)フェニル基、2,4,6-トリス(2-ピリジル)フェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、1,1’:4’,1”-ターフェニル-3-イル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-3-イル基、1,1’:3’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基、1,1’:2’,1”-ターフェニル-3-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4’-イル基、2’-(2-ピリジル)ビフェニル-4-イル基、3’-(2-ピリジル)ビフェニル-4-イル基、4’-(2-ピリジル)ビフェニル-4-イル基、2’-(3-ピリジル)ビフェニル-4-イル基、3’-(3-ピリジル)ビフェニル-4-イル基、4’-(3-ピリジル)ビフェニル-4-イル基、2’-(4-ピリジル)ビフェニル-4-イル基、3’-(4-ピリジル)ビフェニル-4-イル基、4’-(4-ピリジル)ビフェニル-4-イル基、2’-(2-ピリジル)ビフェニル-3-イル基、3’-(2-ピリジル)ビフェニル-3-イル基、4’-(2-ピリジル)ビフェニル-3-イル基、2’-(3-ピリジル)ビフェニル-3-イル基、3’-(3-ピリジル)ビフェニル-3-イル基、4’-(3-ピリジル)ビフェニル-3-イル基、2’-(4-ピリジル)ビフェニル-3-イル基、3’-(4-ピリジル)ビフェニル-3-イル基、4’-(4-ピリジル)ビフェニル-3-イル基、2’-(2-ピリジル)ビフェニル-2-イル基、3’-(2-ピリジル)ビフェニル-2-イル基、4’-(2-ピリジル)ビフェニル-2-イル基、2’-(3-ピリジル)ビフェニル-2-イル基、3’-(3-ピリジル)ビフェニル-2-イル基、4’-(3-ピリジル)ビフェニル-2-イル基、2’-(4-ピリジル)ビフェニル-2-イル基、3’-(4-ピリジル)ビフェニル-2-イル基、4’-(4-ピリジル)ビフェニル-2-イル基、5-(4-ピリジル)ビフェニル-3-イル基、3’,5’-ビス(2-ピリジル)ビフェニル-3-イル基等を例示することができる。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、フェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基、3’-(2-ピリジル)ビフェニル-3-イル基、3’-(3-ピリジル)ビフェニル-3-イル基、4’-(2-ピリジル)ビフェニル-4-イル基、4’-(3-ピリジル)ビフェニル-4-イル基が好ましい。合成が容易な点でフェニル基、4-ビフェニリル基、3-ビフェニリル基、4-(2-ピリジル)フェニル基、4’-(3-ピリジル)ビフェニル-4-イル基がさらに好ましい。
 未置換またはフェニル基又はピリジル基で置換されたナフチル基、未置換またはフェニル基又はピリジル基で置換されたアントラニル基、未置換またはフェニル基又はピリジル基で置換されたペリレニル基、未置換またはフェニル基又はピリジル基で置換されたフェナントレニル基、未置換またはフェニル基又はピリジル基で置換されたトリフェニレニル基、及び、未置換またはフェニル基又はピリジル基で置換されたピレニル基の例としては、1-ナフチル基、2-ナフチル基、1-アントラニル基、2-アントラニル基、9-アントラニル基、1-フェナントレニル基、2-フェナントレニル基、3-フェナントレニル基、9-フェナントレニル基、1-ペリレニル基、2-ペリレニル基又は1-トリフェニレニル基のほか、6-フェニルナフタレン-2-イル基、8-(2-ピリジル)ナフタレン-2-イル基、10-フェニルアントラセン-9-イル基、10-(2-ピリジル)アントラセン-9-イル基、1-ピレニル基、2-ピレニル基等を例示することができる。
 有機電界発光素子用材料としての性能がよい点で、2-ナフチル基、9-アントラニル基、9-フェナントレニル基、8-(2-ピリジル)ナフタレン-2-イル基、10-(2-ピリジル)アントラセン-9-イル基が好ましい。合成が容易な点で9-アントラニル基、9-フェナントレニル基がさらに好ましい。
 Arで表される炭素数9~15の含窒素縮環芳香族基の例としては、キノリニル基、イソキノリニル基、フェナントロリニル基、ナフチリジニル基、キノキサニル基、フェナントリジニル基、アクリジニル基等を例示することができる。より具体的には、2-キノリニル基、8-キノリニル基、1-イソキノリニル基、3-イソキノリニル基、4-イソキノリニル基、5-イソキノリニル基、6-イソキノリニル基、7-イソキノリニル基、8-イソキノリニル基、2-ナフチリジニル基、2-キノキサニル基、6-フェナントリジニル基、9-アクリジニル基、2-フェナントロリニル基、3-フェナントロリニル基、4-フェナントロリニル基、5-フェナントロリニル基等を例示することができる。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、イソキノリニル基、フェナントロリニル基、キノリニル基が好ましく、1-イソキノリニル基、3-イソキノリニル基、4-イソキノリニル基、5-イソキノリニル基、6-イソキノリニル基、7-イソキノリニル基、8-イソキノリニル基、2-フェナントロリニル基、3-フェナントロリニル基、4-フェナントロリニル基、5-フェナントロリニル基、2-キノリニル基、3-キノリニル基、4-キノリニル基、5-キノリニル基、6-キノリニル基、7-キノリニル基、8-キノリニル基がさらに好ましい。合成が容易な点で1-イソキノリニル基、2-フェナントロリニル基、5-フェナントロリニル基、2-キノリニル基が特に好ましい。
 一般式(1)において、Arは、炭素数9~15の含窒素縮環芳香族基を表す。炭素数9~15の含窒素縮環芳香族基としては、Arで例示した炭素数9~15の含窒素縮環芳香族基と同様のものを例示することができる。
 これらのうち、有機電界発光素子用材料としての性能がよい点で、イソキノリニル基、フェナントロリニル基、キノリニル基が好ましい。1-イソキノリニル基、3-イソキノリニル基、4-イソキノリニル基、5-イソキノリニル基、6-イソキノリニル基、7-イソキノリニル基、8-イソキノリニル基、2-フェナントロリニル基、3-フェナントロリニル基、4-フェナントロリニル基、5-フェナントロリニル基、2-キノリニル基、3-キノリニル基、4-キノリニル基、5-キノリニル基、6-キノリニル基、7-キノリニル基、8-キノリニル基がさらに好ましく、合成が容易な点で1-イソキノリニル基、2-フェナントロリニル基、5-フェナントロリニル基、2-キノリニル基が特に好ましい。
 一般式(1)において、nは0~3の整数を表す。有機電界発光素子用材料としての性能がよい点で、nは0~2が好ましく、0~1であることがより好ましい。
 なお、nが0の場合は、ArとArは同一であることが好ましい。
 次に、本発明の製造方法について説明する。
 本発明の環状アジン化合物は、次の反応式で示される工程1を含む方法により製造することができる。
Figure JPOXMLDOC01-appb-I000024
 上記一般式(2)、(3)及び(1)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは脱離基を表す。
 一般式(2)で示される化合物(以下、化合物(2)という)におけるB(ORとしては、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等が例示できる。又、2つのRが一体となって酸素原子及びホウ素原子を含んで環を形成した場合のB(ORの例としては、次の(I)から(VI)で示される基が例示できる。収率がよい点で(II)で示される基が好ましい。
Figure JPOXMLDOC01-appb-I000025
 一般式(3)で示される化合物(以下、化合物(3)という)におけるZで表される脱離基としては、特に限定するものではないが、例えば、塩素原子、臭素原子又はヨウ素原子があげられる。これらのうち、収率がよい点で、臭素原子が好ましい。
 化合物(3)は、例えば、Jounal of Organic Chemistry,2007年,72号,2318-2328頁、又はOrg.Biomol.Chem.,2008年,6号,1320-1322頁、又は特開2008-280330号〔0061〕~〔0076〕に開示されている方法を用いて製造することができる。
 「工程1」は、化合物(2)を、塩基及びパラジウム触媒、場合によっては塩基、パラジウム触媒、及びアルカリ金属塩の存在下に化合物(3)と反応させ、本発明の環状アジン化合物を製造する方法である。工程1は、一般的な鈴木-宮浦反応の反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程1」で用いることのできるパラジウム触媒としては、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等のパラジウム塩を例示することができる。さらに、π-アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト等の2価パラジウム錯体、ビス(ジベンジリデンアセトン)パラジウム、トリス(ジベンジリデンアセトン)ジパラジウム等の0価パラジウム錯体、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウム及びジクロロ(1,1’-ビス(ジフェニルホスフィノ)フェロセン)パラジウム等のホスフィンを配位子として有するパラジウム錯体を例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましく、入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体がさらに好ましい。
 「工程1」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(2)とのモル比は、1:5~1:200が好ましい。
 なお、これらの第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィン又はその塩を添加し、反応系中で調製することもできる。
 第三級ホスフィンとしては、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert-ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert-ブチルジフェニルホスフィン、9,9-ジメチル-4,5-ビス(ジフェニルホスフィノ)キサンテン、2-(ジフェニルホスフィノ)-2’-(N,N-ジメチルアミノ)ビフェニル、2-(ジ-tert-ブチルホスフィノ)ビフェニル、2-(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2-ビス(ジフェニルホスフィノ)エタン、1,3-ビス(ジフェニルホスフィノ)プロパン、1,4-ビス(ジフェニルホスフィノ)ブタン、1,1’-ビス(ジフェニルホスフィノ)フェロセン、トリ(2-フリル)ホスフィン、トリ(o-トリル)ホスフィン、トリス(2,5-キシリル)ホスフィン、(±)-2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル等を例示することができる。
 入手容易である点でトリフェニルホスフィン、1,1’-ビス(ジフェニルホスフィノ)フェロセン又はトリ(tert-ブチル)ホスフィンが好ましい。収率がよい点で、トリフェニルホスフィンがさらに好ましい。
 第三級ホスフィンとパラジウム塩又は錯化合物とのモル比は、1:10~10:1が好ましく、収率がよい点で1:2~3:1がさらに好ましい。
 「工程1」の反応は、塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム等を例示することができ、収率がよい点で炭酸ナトリウム、炭酸セシウム、リン酸カリウムが好ましい。塩基と化合物(2)とのモル比に特に制限はないが、1:2~100:1が好ましく、収率がよい点で1:1~10:1がさらに好ましい。
 「工程1」の反応は、アルカリ金属塩の存在下に実施することもできる。用いることのできるアルカリ金属塩としては、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等を例示することができ、収率がよく、安価である点でリチウム又はカリウム塩が好ましく、収率がよい点で塩化リチウム又は塩化カリウムがさらに好ましい。アルカリ金属塩と化合物(2)とのモル比に特に制限はないが、1:2~100:1が好ましく、収率がよい点で1:1~10:1がさらに好ましい。
 「工程1」で用いる化合物(3)と化合物(2)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で2:1~3:1がさらに好ましい。
 「工程1」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示できる。これらを適宜組み合わせた混合溶媒であってもよい。収率がよい点でトルエン、エタノール及び水の混合溶媒を用いることが望ましい。
 本発明の環状アジン化合物は、「工程1」の終了後に通常の処理を行うことで得ることができる。必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
 本発明の環状アジン化合物を製造する「工程1」の原料である化合物(2)は、例えば、後記の参考例-6~8に示したように、次の反応式で示した工程2を含む方法により製造することができる。
Figure JPOXMLDOC01-appb-I000026
 上記一般式(5)、(6)、(7)及び(2)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Zは脱離基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。
 一般式(5)で示される化合物(以下、化合物(5)という)のZで表される脱離基としては、特に限定するものではないが、例えば、塩素原子、臭素原子又はヨウ素原子があげられる。このうち、収率がよい点で、臭素原子が好ましい。
 「工程2」は、化合物(5)を塩基及びパラジウム触媒の存在下に、一般式(6)で示される化合物(以下、ボラン化合物(6))又は一般式(7)で示される化合物(以下、ジボロン化合物(7))と反応させることにより、「工程1」で用いる化合物(2)を製造する工程である。「工程2」では、例えば、The Journal of Organic Chemistry,60巻,7508-7510,1995年又はJournal of Organic Chemistry,65巻,164-168,2000年に開示されている反応条件を適用することにより、収率よく目的物を得ることができる。
 「工程2」で用いることのできるパラジウム触媒としては、「工程1」で例示したパラパラジウム塩、2価パラジウム錯体、0価パラジウム錯体又はホスフィンを配位子として有するパラジウム錯体と同様のものを例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましい。入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 「工程2」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(5)とのモル比は、1:50~1:10が好ましい。
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィンを添加し、反応系中で調製することもできる。
 第三級ホスフィンとしては、「工程1」で例示した第三級ホスフィンを例示することができる。中でも入手容易である点で、トリフェニルホスフィンが好ましい。
 「工程2」で用いる第三級ホスフィンとパラジウム塩又は錯化合物とのモル比に特に制限はないが、1:10~10:1が好ましく、収率がよい点で1:2~5:1がさらに好ましい。
 「工程2」は、塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で酢酸カリウムが望ましい。塩基と化合物(5)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程2」で用いるボラン化合物(6)又はジボロン化合物(7)と化合物(5)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で2:1~3:1がさらに好ましい。
 「工程2」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示できる。これらは適宜組み合わせて混合溶媒として用いてもよい。収率がよい点でテトラヒドロフランを用いることが望ましい。
 本工程で得られた化合物(2)は、反応後単離してもよいが、単離せずに「工程1」に供してもよい。
 また、本発明の環状アジン化合物は、次の反応式で示される工程3を含む方法によっても製造することができる。
Figure JPOXMLDOC01-appb-I000027
 上記一般式(8)、(9)および(1)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは、塩素原子又は臭素原子を表す。
 「工程3」は、一般式(8)で示される化合物(以下、化合物(8))を、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下に一般式(9)で示される化合物(以下、化合物(9))と反応させることにより、化合物(1)を製造する工程である。
 「工程3」で用いることのできるパラジウム触媒としては、「工程1」で例示したパラパラジウム塩、2価パラジウム錯体、0価パラジウム錯体又はホスフィンを配位子として有するパラジウム錯体と同様のものを例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましく、入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 「工程3」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(8)とのモル比は、1:50~1:10が好ましい。
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィンを添加し、反応系中で調製することもできる。第三級ホスフィンとしては、「工程1」で例示した第三級ホスフィンを例示することができる。中でも入手容易である点で、トリフェニルホスフィンが好ましい。「工程3」で用いる第三級ホスフィンとパラジウム塩又は錯化合物とのモル比に特に制限はないが、1:10~10:1が好ましく、収率がよい点で1:2~5:1がさらに好ましい。
 「工程3」は塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で炭酸カリウムが望ましい。塩基と化合物(8)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程3」で用いることのできるアルカリ金属塩としては、特に限定するものではないが、例えば、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等を例示することができ、収率がよい点で塩化リチウム又は塩化カリウムが望ましい。アルカリ金属塩と化合物(8)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程3」で用いる化合物(9)と化合物(8)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程3」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示できる。これらを適宜組み合わせて混合溶媒として用いてもよい。収率がよい点でテトラヒドロフランを用いることが望ましい。
 本発明の環状アジン化合物は、「工程3」の終了後に通常の処理を行うことで得ることができる。必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
  本発明の環状アジン化合物を製造する「工程3」において原料として用いられる化合物(8)のうち、Arが、水素以外の基、すなわち、フェニル基またはピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基または炭素数9~15の含窒素縮環芳香族基(これらの基を「Ar2’」で表す)である化合物(以下、化合物(8’)という)は、次の反応式で示した工程4を含む方法により製造することができる。

  
Figure JPOXMLDOC01-appb-I000028
 上記一般式(10)、(11)および(8’)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Ar2’はフェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Xはフェニレン基を表し、nは0~3の整数を表す。ZとZは、塩素原子又は臭素原子を表す。
 「工程4」は、一般式(10)で示される化合物(以下、化合物(10)という)を、塩基及びパラジウム触媒の存在下に一般式(11)で示される化合物(以下、化合物(11))と反応させることにより、「工程3」で用いる化合物(8)を製造する工程である。
 「工程4」で用いることのできるパラジウム触媒としては、「工程1」で例示したパラパラジウム塩、2価パラジウム錯体、0価パラジウム錯体又はホスフィンを配位子として有するパラジウム錯体と同様のものを例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましい。入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 「工程4」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(10)とのモル比は、1:50~1:10が好ましい。
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィンを添加し、反応系中で調製することもできる。第三級ホスフィンとしては、「工程1」で例示した第三級ホスフィンを例示することができる。中でも入手容易である点で、トリフェニルホスフィン又は2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。
 「工程4」で用いる第三級ホスフィンとパラジウム塩又は錯化合物とのモル比に特に制限はないが、1:10~10:1が好ましく、収率がよい点で1:2~5:1がさらに好ましい。
 「工程4」は塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で炭酸カリウムが望ましい。塩基と化合物(10)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程4」で用いる一般式(11)で示される化合物(以下、化合物(11)という)と化合物(8)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程4」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示できる。これらを適宜組み合わせて混合溶媒として用いてもよい。収率がよい点でトルエン又はエタノールを用いることが望ましい。
 本工程で得られた化合物(10)は、反応後単離してもよいが、単離せずに「工程3」に供してもよい。
 また、本発明の環状アジン化合物は、次の反応式で示される工程5からなる方法によっても製造することができる。
Figure JPOXMLDOC01-appb-I000029
 上記一般式(12)、(13)および(1’)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arはフェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは、塩素原子又は臭素原子を表す。
 「工程5」は、一般式(12)で示される化合物(以下、化合物(12)という)を、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下に一般式(13)で示される化合物(以下、化合物(13)という)と反応させることにより、化合物(1)を製造する工程である。
 「工程5」で用いることのできるパラジウム触媒としては、「工程1」で例示したパラパラジウム塩、2価パラジウム錯体、0価パラジウム錯体又はホスフィンを配位子として有するパラジウム錯体と同様のものを例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましい。入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 「工程5」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(12)とのモル比は、1:50~1:10が好ましい。
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィンを添加し、反応系中で調製することもできる。第三級ホスフィンとしては、「工程1」で例示した第三級ホスフィンを例示することができる。中でも入手容易である点で、トリフェニルホスフィンまたは2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。
 「工程5」で用いる第三級ホスフィンとパラジウム塩又は錯化合物とのモル比に特に制限はないが、1:10~10:1が好ましく、収率がよい点で1:2~5:1がさらに好ましい。
 「工程5」で用いることのできるアルカリ金属塩としては、特に限定するものではないが、例えば、フッ化リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、フッ化ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、フッ化カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、フッ化ルビジウム、塩化ルビジウム、臭化ルビジウム、ヨウ化ルビジウム、フッ化セシウム、塩化セシウム、臭化セシウム、ヨウ化セシウム等を例示することができ、収率がよい点で塩化リチウム又は塩化カリウムが望ましい。アルカリ金属塩と化合物(12)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程5」は塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で炭酸カリウムが望ましい。塩基と化合物(12)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程5」で用いる化合物(13)と化合物(12)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程5」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示でき、これらを適宜組み合わせて混合溶媒として用いてもよい。収率がよい点でテトラヒドロフランを用いることが望ましい。
 本発明の環状アジン化合物は、「工程5」の終了後に通常の処理を行うことで得ることができる。必要に応じて、再結晶、カラムクロマトグラフィー又は昇華等で精製してもよい。
 本発明の環状アジン化合物を製造する「工程5」の原料である化合物(12)は、次の反応式で示した工程6からなる方法により製造することができる。
Figure JPOXMLDOC01-appb-I000030
 上記一般式(10)、(9)および(12)において、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは、塩素原子又は臭素原子を表す。)
 「工程6」は、化合物(10)を、塩基及びパラジウム触媒の存在下に化合物(9)と反応させることにより、「工程5」で用いる化合物(12)を製造する工程である。
 「工程6」で用いることのできるパラジウム触媒としては、「工程1」で例示したパラパラジウム塩、2価パラジウム錯体、0価パラジウム錯体又はホスフィンを配位子として有するパラジウム錯体と同様のものを例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は収率がよい点で好ましい。入手容易であり、収率がよい点で、トリフェニルホスフィンを配位子として有するパラジウム錯体が特に好ましい。
 「工程6」で用いるパラジウム触媒の量は、いわゆる触媒量であれば特に制限はないが、収率がよい点で、パラジウム触媒と化合物(10)とのモル比は、1:50~1:10が好ましい。
 なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩、2価パラジウム錯体又は0価パラジウム錯体に第三級ホスフィンを添加し、反応系中で調製することもできる。第三級ホスフィンとしては、「工程1」で例示した第三級ホスフィンを例示することができる。中でも入手容易である点で、トリフェニルホスフィン又は2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニルが好ましい。「工程6」で用いる第三級ホスフィンとパラジウム塩又は錯化合物とのモル比に特に制限はないが、1:10~10:1が好ましく、収率がよい点で1:2~5:1がさらに好ましい。
 「工程6」は塩基の存在下に実施することが必須である。用いることのできる塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、酢酸カリウム、酢酸ナトリウム、リン酸カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点で炭酸カリウムが望ましい。塩基と化合物(12)とのモル比に特に制限はないが、1:2~10:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程6」で用いる化合物(10)と化合物(9)とのモル比に特に制限はないが、1:1~5:1が好ましく、収率がよい点で1:1~3:1がさらに好ましい。
 「工程6」の反応は溶媒中で実施することができる。用いることのできる溶媒として、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、1,4-ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノール又はキシレン等が例示でき、これらを適宜組み合わせて混合溶媒として用いてもよい。収率がよい点でテトラヒドロフランを用いることが望ましい。
 本工程で得られた化合物(12)は、反応後単離してもよいが、単離せずに「工程5」に供してもよい。
 本発明の環状アジン化合物を構成成分として含む有機電界発光素子の製造方法に特に限定はないが、真空蒸着法による成膜が可能である。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムや製造コストを考慮すると、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10-2~1×10-5Pa程度が好ましい。蒸着速度は、形成する膜の厚さによるが0.005~1.0nm/秒が好ましい。
 また、本発明の環状アジン化合物は、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法又はディップ法等による成膜も可能である。
 以下、実施例及び試験例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
 参考例-1

Figure JPOXMLDOC01-appb-I000031
 3,5-ジブロモ安息香酸クロリド(5.97g)及びベンゾニトリル(4.12g)をクロロホルム(50mL)に溶解し、0℃に冷却した後、5塩化アンチモン(5.98g)を滴下した。混合物を室温で10分間攪拌後、22時間還流した。反応混合物を室温まで冷却後、クロロホルムを減圧下留去し、黄色固体を得た。
 得られた黄色固体を0℃に冷却した28%アンモニア水溶液(300mL)に加えると白色固体が生成した。室温で1時間攪拌し、ろ過後、得られた白色固体を水、メタノールで洗浄した。得られた白色固体をシリカゲルカラムクロマトグラフィーで精製し、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量6.32g,収率68%)を得た。
  H-NMR(CDCl):δ7.56-7.61(m,4H),7.61-7.67(m,2H),7.90(t,J=1.8Hz,1H),8.72-8.78(m,4H),8.82(d,J=1.8Hz,2H).
  13C-NMR(CDCl):δ123.4,128.8,129.1,130.6,133.0,135.7,137.6,139.8,169.3,172.0.
 参考例-2
Figure JPOXMLDOC01-appb-I000032
 アルゴン気流下、還流管及びメカニカル撹拌機を取り付けた500mL三口反応容器に、3,5-ジブロモ安息香酸クロリド(29.8g)及びp-トリルニトリル(23.4g)を取り、クロロベンゼン(200mL)を加え、溶解した。得られた溶液を0℃に冷却し、5塩化アンチモン(29.9g)を滴下した。混合物を室温で1時間、さらに100℃で2時間還流した。得られた濃赤色の懸濁液を-20℃に冷却し、28%アンモニア水溶液(135mL)を加えた。この乳白色懸濁液を室温で30分間撹拌した後、油浴を用いてゆっくり140℃まで加熱し、溶媒を留去した。クロロベンゼン(100mL)を加え、130℃で加熱後ろ過し、不溶物を除いた。ろ液を放冷後、メタノール(100mL)を加えた。析出した固体をろ別し、メタノール(30mL×2)で洗浄した後、乾燥することで、目的の2-(3,5-ジブロモフェニル)-4,6-ジ(p-トリル)-1,3,5-トリアジンの白色粉末(収量21.2g、収率43%)を得た。高速液体クロマトグラフィー(HPLC)より、2-(3,5-ジブロモフェニル)-4,6-ジ(p-トリル)-1,3,5-トリアジンの含有率は95.2%であった。
 また、上記加熱ろ過においてろ別した不溶物に対しクロロベンゼン(100mL×2)を用いて同様の操作を行うことで、2-(3,5-ジブロモフェニル)-4,6-ジ(p-トリル)-1,3,5-トリアジンの白色粉末(収量12.9g、収率26%)を得た。HPLCより、2-(3,5-ジブロモフェニル)-4,6-ジ(p-トリル)-1,3,5-トリアジンの含有率は98.5%であった。
  H-NMR(CDCl):δ2.51(s,6H),7.39(d,J=8.1Hz,4H),7.90(t,J=1.7Hz,1H),8.63(d,J=8.1Hz,4H),8.80(d,J=1.7Hz,2H).
  13C-NMR(CDCl):δ22.5(CH×2),123.3(quart.×2),129,1(CH×4),129.5(CH×4),130.6(CH×2),133.1(quart.×2),137.4(CH),140.0(quart.),143.6(quart.×2),169.0(quart.),171.8(quart.×2).
 参考例-3
       
Figure JPOXMLDOC01-appb-I000033
 3,5-ジブロモ安息香酸クロリド(2.98g)及び4-tert-ブチルベンゾニトリル(3.18g)をクロロホルム(30mL)に溶解し、5塩化アンチモン(2.99g)を0℃で滴下した。混合物を室温で10分間攪拌後、17時間還流した。反応混合物を室温まで冷却後、クロロホルムを減圧下留去した。得られた固体を28%アンモニア水溶液(200mL)に0℃で加えると白色沈殿が生成した。これを室温で1時間攪拌し、ろ過後、得られた白色沈殿を水、次いでメタノールで洗浄した。得られた白色沈殿をシリカゲルカラムクロマトグラフィーで精製し、2,4-ビス(4-tert-ブチルフェニル)-6-(3,5-ジブロモフェニル)-1,3,5-トリアジンの白色固体(収量4.46g,収率77%)を得た。
  H-NMR(CDCl):δ1.41(s,18H),7.61(d,J=8.5Hz,4H),7.88(t,J=1.8Hz,1H),8.65(d,J=8.5Hz,4H),8.80(d,J=1.8Hz,2H).
  13C-NMR(CDCl):δ31.2,35.1,123.3,125.7,128.9,130.5,133.1,137.4,140.0,156.5,169.0,171.8.
 参考例-4

Figure JPOXMLDOC01-appb-I000034
 3,5-ジブロモ安息香酸クロリド(4.10g)と3-ビフェニルカルボニトリル(5.00g)をクロロホルム(100mL)にアルゴン気流下で溶解した。得られた溶液を0℃に冷却し、5塩化アンチモン(4.20g)を滴下した。混合物を室温で1時間攪拌後、12時間還流した。反応混合物を室温まで冷却後、減圧下で低沸点成分を除去し、赤色固体を得た。
 得られた赤色固体をアルゴン気流中で粉砕し、0℃に冷却した28%アンモニア水溶液に加えた。得られた懸濁液を室温でさらに1時間攪拌した。析出した固体をろ別し、水、次いでメタノールで順次洗浄した。固体を乾燥後、ソックスレー抽出機(抽出溶媒:クロロホルム)を用いて抽出した。抽出液を放冷後、析出した固体をろ別、乾燥して2,4-ジ(3-ビフェニリル)-6-(3,5-ジブロモフェニル)-1,3,5-トリアジンの白色粉末(収量2.80g,収率33%)を得た。
  H-NMR(CDCl):δ7.46(brt,J=7.4Hz,2H),7.52-7.58(m,4H),7,67(dd,J=7.8Hz,7.7Hz,2H),7.76(brd,J=7.7Hz,4H),7.86(d,J=7.7Hz,2H),7.90(brd,1H),8.72(d,J=7.8Hz,2H),8.81(d,J=1.8Hz,2H),8.95(s,2H).
  13C-NMR(CDCl):δ123.4,127.4,127.7,127.8,128.1,130.7,131.7,136.2,137.7,139.7,140.7,141.9,169.4,172.0.
 参考例-5
Figure JPOXMLDOC01-appb-I000035
 3-ブロモ安息香酸クロリド(1.9g)と4-ビフェニルカルボニトリル(3.10g)をクロロベンゼン(50mL)にアルゴン気流化で溶解した。得られた溶液を0℃に冷却し、5塩化アンチモン(2.59g)を滴下した。混合物を室温で1時間撹拌後、100℃で2時間撹拌した。室温まで冷却後、-20℃まで冷却し28%アンモニア水溶液を加えたところ白色沈殿が生じ室温で一晩撹拌した。析出した固体をろ別し、メタノールで洗浄した。固体を乾燥後、ソックスレー抽出(抽出溶媒:クロロホルム)を行ったところ目的の2,4-ジ(4-ビフェニリル)-6-(3-ブロモフェニル)-1,3,5-トリアジンの白色粉末(収量2.00g,収率43%)を得た。
  H-NMR(CDCl):δ7.42(t,J=7.4Hz,2H),7.47(t,J=7.9Hz,1H),7.51(t,J=7.2Hz,4H),7.72(d,J=7.0Hz,4H),7.75(d,J=7.9Hz,1H),7.82(d,J=8.5Hz,4H),8.74(d,J=7.9Hz,1H),8.85(d,J=8.5Hz,4H),8.93(t,J=1.8Hz,1H).
 参考例-6

Figure JPOXMLDOC01-appb-I000036
 アルゴン気流下、2,4-ビス(4-tert-ブチルフェニル)-6-(3,5-ジブロモフェニル)-1,3,5-トリアジン(195mg)、ビスピナコラートジボロン(188mg)、酢酸カリウム(159mg)、ビス(トリフェニルホスフィン)パラジウムジクロリド(9.5mg)をテトラヒドロフラン(10mL)に懸濁し、38時間還流した。反応混合物を室温まで冷却後、減圧下で低沸分を除去し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒/クロロホルム)で精製し、ヘキサンで洗浄後、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ビス(4-tert-ブチルフェニル)-1,3,5-トリアジンの黄色固体(収量170mg,収率75%)を得た。
  H-NMR(CDCl):δ1.43(s,18H),1.44(s,24H),7.64(d,J=8.6Hz,4H),8.52(t,J=1.2Hz,1H),8.74(d,J=8.6Hz,4H),9.23(d,J=1.2Hz,2H).
 参考例-7
Figure JPOXMLDOC01-appb-I000037
 アルゴン気流下、2,4-ジ(3-ビフェニリル)-6-(3,5-ジブロモフェニル)-1,3,5-トリアジン(10.0g)、ビスピナコレートジボロン(9・02g)、酢酸カリウム(7.00g)、ビス(トリフェニルホスフィン)パラジウムジクロリド(453mg)をテトラヒドロフラン(226mL)に懸濁し、18時間加熱還流をした。放冷後、低沸分を減圧留去し、残渣に水を加え、固体をろ別した。得られた固体を減圧乾燥した後、シリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)にて精製したところ、目的の2,4-ジ(3-ビフェニリル)-6-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンの白色粉末(収量10.6g,収率92%)を得た。
  H-NMR(CDCl):δ1.41(s,24H),7.42(t,J=7.4Hz,2H),7.52(t,J=7.6Hz,4H),7.68(t,J=7.8Hz,2H),7.80(d,J=7.0Hz,4H),7.87(d,J=8.4Hz,2H),8.52(t,J=1.2Hz,1H),8.81(d,J=7.9Hz,2H),9.09(t,J=1.6Hz,2H),9.29(d,J=1.3Hz,2H).
 参考例-8
Figure JPOXMLDOC01-appb-I000038
 アルゴン気流下、2,4-ジ(4-ビフェニリル)-6-(3-ブロモフェニル)-1,3,5-トリアジン(2.16g)、ビスピナコレートジボロン(1.12g)、酢酸カリウム(864mg)、ビス(トリフェニルホスフィン)パラジウムジクロリド(70mg)をテトラヒドロフラン(56mL)に懸濁し、18時間加熱還流をした。放冷後、低沸分を減圧留去し、残渣に水:メタノールの混合溶媒(50:50)を加え、固体をろ別した。得られた固体を減圧乾燥した後、シリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム=1:3)、つづいてヘキサン洗浄により精製したところ、目的の2,4-ジ(4-ビフェニリル)-6-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジンの乳白色粉末(収量1.85g,収率79%)を得た。
  H-NMR(CDCl):δ1.43(s,12H),7.42(t,J=7.3Hz,2H),7.51(t,J=7.5Hz,4H),7.61(t,J=7.6Hz,1H),7.73(d,J=7.0Hz,4H),7.83(d,J=8.5Hz,4H),8.07(d,J=7.3Hz,1H),8.89(d,J=8.5Hz,4H),8.90(d,J=6.0Hz,1H),9.17(s,1H).
 実施例-1
Figure JPOXMLDOC01-appb-I000039
 アルゴン気流下、2-クロロ-1,10-フェナントロリン(4.26g)、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(4.67g)、塩化リチウム(1.06g)及びテトラキス(トリフェニルホスフィン)パラジウム(767mg)をトルエン(200mL)及びエタノール(50mL)の混合溶媒に懸濁し、2.0M-炭酸ナトリウム水溶液(33.2mL)を加え、100℃で94時間撹拌した。放冷後、低沸分を減圧留去し、残渣をアルミナカラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム=1:2~0:1)で精製した後、ジクロロメタン及びメタノールの混合溶媒から再結晶することで、目的の2-[3,5-ビス(1,10-フェナントロリン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン白色粉末(収量4.76g,収率86%)を得た。
  H-NMR(CDCl):δ7.64-7.66(m,6H),7.69(dd,J=4.3,8.0Hz,2H),7.85(d,J=8.8Hz,2H),7.91(d,J=8.8Hz,2H),8.31(dd,J=1.7,8.0Hz,2H),8.48(d,J=8.4Hz,2H),8.53(d,J=8.4Hz,2H),8.93-8.95(m,4H),9.29(dd,J=1.7,4.3Hz,2H),9.64(t,J=1.7Hz,1H),9.83(d,J=1.7Hz,1H)
 実施例-2
Figure JPOXMLDOC01-appb-I000040
 アルゴン気流下、4-ブロモ-1,10-フェナントロリン(1.42g)、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(1.29g)、塩化カリウム(515mg)、及びテトラキス(トリフェニルホスフィン)パラジウム(266mg)をトルエン(52mL)及びエタノール(13mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(9.2mL)を加えた後、100℃で94時間撹拌した。反応混合物を放冷後、低沸分を減圧留去した。得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム=1:1~0:1)で精製し、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色粉末(955mg,62%)を得た。
  H-NMR(CDCl):δ7.52-7.63(m,6H),7.70(dd,J=4.4,8.0Hz,2H),7.83(d,J=4.5Hz,1H),7.85(d,J=9.2Hz,1H),7.97(t,J=1.7Hz,1H),8.09(d,J=1.7Hz,1H),8.29(dd,J=8.1,1.7Hz,2H),8.75-8.77(m,4H),9.11(d,J=1.7Hz,2H),9.27(dd,J=4.4,1.8Hz,2H),9.35(d,J=4.5Hz,2H).
 実施例-3
 アルゴン気流下、4-ブロモ-1,10-フェナントロリン(110mg)、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(100mg)、炭酸ナトリウム(75.5mg)及びテトラキス(トリフェニルホスフィン)パラジウム(16.4mg)をトルエン(5mL)、エタノール(1mL)及び水(0.35mL)に懸濁し、100℃で20時間撹拌した。反応混合物を放冷後、低沸分を減圧留去し、残渣に水を加え固体をろ別した。得られた固体をメタノールで洗浄し、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、38%であった。
 実施例-4
 炭酸ナトリウム(75.5mg)に変え炭酸カリウム(98.4mg)を用い、反応時間を44時間とした以外は実施例-3と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、33%であった。
 実施例-5
 炭酸ナトリウム(75.5mg)に変え炭酸リチウム(52.6mg)を用い、反応時間を44時間とした以外は実施例-3と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、13%であった。
 実施例-6
 炭酸ナトリウム(75.5mg)に変え炭酸セシウム(232mg)を用い、反応時間を44時間とした以外は実施例-3と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、50%であった。
 実施例-7
 炭酸ナトリウム(75.5mg)に変えフッ化カリウム(41.4mg)を用い、反応時間を44時間とした以外は実施例-3と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、21%であった。
 実施例-8
 炭酸ナトリウム(75.5mg)に変えリン酸三カリウム(151mg)を用い、反応時間を44時間とした以外は実施例-3と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンの白色粉末(64mg,54%)を得た。
 実施例-9
 アルゴン気流下、4-ブロモ-1,10-フェナントロリン(110mg)、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(100mg)、酢酸パラジウム(3.2mg)、トリ(tert-ブチル)ホスフィン・テトラフルオロホウ酸塩(8.3mg)、リン酸三カリウム(151mg)をトルエン(5mL)及びエタノール(1mL)及び水(0.35mL)に懸濁し、100℃で46時間撹拌した。反応混合物を放冷後、低沸分を減圧留去し、残渣に水を加え固体をろ別した。この固体をメタノールで洗浄し、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、13%であった。
 実施例-10
 リン酸三カリウム(151mg)に変え、炭酸セシウム(232mg)を用いた以外は実施例-9と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、9%であった。
 実施例-11
 トリ(tert-ブチル)ホスフィン・テトラフルオロホウ酸塩に変え、1,1’-ビス(ジフェニルホスフィノ)フェロセン(7.9mg)を用いた以外は実施例-9と同様の操作を行い、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを含む粗生成物を得た。HNMRから収率を見積もったところ、17%であった。
 実施例-12
Figure JPOXMLDOC01-appb-I000041
 アルゴン気流下、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ジ(4-tert-ブチル)-1,3,5-トリアジン(400mg)、2-クロロ-1,10-フェナントロリン(363mg)及びテトラキス(トリフェニルホスフィン)パラジウム(63mg)をトルエン(15mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(7.5mL)を加え、22.5時間還流した。放冷後、析出した固体をろ別し、水、続いてメタノールで洗浄した。得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒メタノール:クロロホルム=1:100~1:50)で精製し、目的の2-[3,5-ビス(1,10-フェナントロリン-2-イル)フェニル]-4,6-ジ(4-tert-ブチル)-1,3,5-トリアジンの白色固体(収量359mg,収率76%)を得た。
  H-NMR(CDCl):δ2.44(s,6H),7.35(d,J=8.0Hz,4H),7.62(dd,J=8.0,4.1Hz,2H),7.78(d,J=8.8Hz,2H),7.84(d,J=8.8Hz,2H),8.24(dd,J=8.0,1.7Hz,2H),8.40(d,J=8.3Hz,2H),8.45(d,J=8.3Hz,2H),8.74(d,J=8.0Hz,4H),9.22(dd,J=4.1,1.6Hz,2H),9.57(t,J=1.7Hz,1H),9.73(d,J=1.7Hz,2H).
 実施例-13
Figure JPOXMLDOC01-appb-I000042
 アルゴン気流下、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ビス(4-tert-ブチルフェニル)-1,3,5-トリアジン(168mg)、2-クロロ-1,10-フェナントロリン(129mg)、塩化リチウム(32mg)及びテトラキス(トリフェニルホスフィン)パラジウム(23mg)をトルエン(6.0mL)及びエタノール(1.5mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(1.0mL)を加えて100℃で88時間撹拌した。放冷後、低沸分を減圧留去し、残渣に水を加えた後、粗生成物をろ別した。粗生成物を減圧乾固し、ジクロロメタン及びヘキサンの混合溶媒から再結晶することで、目的の2-[3,5-ビス(1,10-フェナントロリン-2-イル)フェニル]-4,6-ビス(4-tert-ブチルフェニル)-1,3,5-トリアジンの黄色固体(収量179mg,収率92%)を得た。
  H-NMR(CDCl):δ1.43(s,18H),7.64(d,J=8.6Hz,4H),7.68(dd,J=8.0,4.3Hz,2H),7.84(d,J=8.8Hz,2H),7.91(d,J=8.8Hz,2H),8.30(dd,J=8.0,1.7Hz,2H),8.46(d,J=8.4Hz,2H),8.49(d,J=8.3Hz,2H),8.82(d,J=8.6Hz,4H),9.28(dd,J=4.3,1.7Hz,2H),9.56(t,J=1.8Hz,1H),9.76(d,J=1.8Hz,2H).
 実施例-14

Figure JPOXMLDOC01-appb-I000043
 アルゴン気流下、2-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-4,6-ビス(4-tert-ブチルフェニル)-1,3,5-トリアジン(168mg)、4-ブロモ-1,10-フェナントロリン(155mg)、塩化リチウム(32mg)及びテトラキス(トリフェニルホスフィン)パラジウム(23mg)をトルエン(6.0mL)及びエタノール(1.5mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(1.0mL)を加えて100℃で88時間撹拌した。放冷後、低沸分を減圧留去し、残渣に水を加えた後、粗生成物をろ別した。粗生成物を減圧乾固し、ジクロロメタン及びヘキサンの混合溶媒から再結晶することで、目的の2-[3,5-ビス(1,10-フェナントロリン-4-イル)フェニル]-4,6-ビス(4-tert-ブチルフェニル)-1,3,5-トリアジンの色固体(収量169mg,収率87%)を得た。
  H-NMR(CDCl):δ1.37(s,18H),7.41(d,J=8.5Hz,4H),7.70(dd,J=8.0,4.3Hz,2H),7.82(d,J=4.5Hz,2H),7.85(d,J=9.3Hz,2H),7.96(s,1H),8.09(d,J=9.0Hz,2H),8.29(d,J=8.2Hz,2H),8.66(d,J=8.5Hz,4H),9.10(d,J=1.4Hz,2H),9.27(dd,J=4.3,1.6Hz,2H),9.34(d,J=4.6Hz,2H).
 実施例-15
Figure JPOXMLDOC01-appb-I000044
 アルゴン気流下、2-クロロ-1,10-フェナントロリン(1.13g)、2,4-ジ(3-ビフェニリル)-6-[3,5-ビス(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,3,5-トリアジン(1.57g)、塩化リチウム(280mg)及びテトラキス(トリフェニルホスフィン)パラジウム(203mg)をトルエン(60mL)及びエタノール(15mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(8.8mL)を加え、100℃で65時間撹拌した。放冷後、低沸分を減圧留去し、残渣をアルミナカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製することで、目的の2,4-ジ(3-ビフェニリル)-6-[3,5-ビス(1,10-フェナントロリン-2-イル)フェニル]-1,3,5-トリアジンの白色粉末(収量1.22g,収率68%)を得た。
  H-NMR(CDCl):δ7.38-7.44(m,6H),7.64(dd,J=4.3,8.0Hz,2H),7.71(t,J=7.7Hz,2H),7.78-7.81(m,4H),7.85(d,J=8.8Hz,2H),7.87(d,J=8.3Hz,2H),7.90(d,J=8.8Hz,2H),8.30(dd,J=1.7,8.1Hz,2H),8.45(d,J=8.4Hz,2H),8.50(d,J=8.4Hz,2H),8.92(d,J=7.8Hz,2H),9.15-9.16(m,4H),9.51(t,J=1.8Hz,1H),9.86(d,J=1.7Hz,2H).
 実施例-16
Figure JPOXMLDOC01-appb-I000045
 アルゴン気流下、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.20g)、2-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)-1,10-フェナントロリン(1.30g)、炭酸セシウム(1.11g)、酢酸パラジウム(14mg)及びトリフェニルホスフィン(32mg)をテトラヒドロフラン(140mL)に懸濁し、19時間還流した。室温まで冷却後、減圧下で低沸点成分を除去した後、メタノールを加え、析出した固体をろ別した。得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 メタノール:クロロホルム=1:100~1:77)で精製し、目的の4,6-ジフェニル-2-[3-(1,10-フェナントロリン-2-イル)フェニル]-1,3,5-トリアジンの白色固体(収量1.37g、収率91%)を得た。
  H-NMR(CDCl):δ7.60-7.76(m,8H),7.83(d,J=8.8Hz,1H),7.88(d,J=8.8Hz,1H),7.96-7.80(m,1H),7.98(d,J=8.4Hz,2H),8.24(d,J=8.4Hz,1H),8.31(dd,J=8.1,1.7Hz,1H),8.38(d,J=8.4Hz,1H),8.57(d,J=8.4Hz,2H),8.81-8.89(m,5H)9.15(t,J=1.6Hz,1H),9.32(dd,J=4.3,1.7Hz,1H).
  13C-NMR(CDCl3):δ120.9(CH),123.3(CH),126.1(CH),126.8(CH),128.1(quart.),128.1(CH×2),128.2(CH),128.5(CH),128.9(CH×2),129.1(CH×4),129.4(CH×4),129.5(quart.×2),129.6(CH),131.3(CH),133.0(CH×2),136.4(quart.),136.6(CH),137.3(CH),137.3(quart.),139.3(quart.),141.6(quart.),142.1(quart.),146.7(quart.),146.9(quart.),150.9(CH),157.4(quart.),172.0(quart.),172.1(quart.×2).
 実施例-17
Figure JPOXMLDOC01-appb-I000046
 アルゴン気流下、2-クロロ-1,10-フェナントロリン(700mg)、2,4-ジ(4-ビフェニリル)-6-[3-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル]フェニル)-1,3,5-トリアジン(1.60g)、塩化リチウム(346mg)及びテトラキス(トリフェニルホスフィン)パラジウム(126mg)をトルエン(64mL)及びエタノール(16mL)に懸濁し、2.0M-炭酸ナトリウム水溶液(5.4mL)を加え、100℃で65時間撹拌した。放冷後、低沸分を減圧留去し、得られた粗生成物をアルミナカラムクロマトグラフィー(展開溶媒 ヘキサン:クロロホルム=1:2~1:3)で精製し、ジクロロメタン及びメタノールの混合溶媒から再結晶することで、目的の2,4-ジ(4-ビフェニリル)-6-[3-(1,10-フェナントロリン-2-イル)フェニル]-1,3,5-トリアジンの白色粉末(収量1.58g,収率91%)を得た。
  H-NMR(CDCl):δ7.43(t,J=7.3Hz,2H),7.52(t,J=7.3Hz,4H),7.68(dd,J=4.3,8.0Hz,1H),7.74(d,J=7.1Hz,4H),7.80-7.86(m,6H),7.89(d,J=8.8Hz,1H),8.30(dd,J=1.7,8.0Hz,1H),8.37(d,J=8.4Hz,1H),8.45(d,J=8.4Hz,1H),8.84(d,J=8.0Hz,1H),8.91-8.95(m,5H),9.29(dd,J=1.7,4.3Hz,1H),9.58(t,J=1.7Hz,1H).
 実施例-18
Figure JPOXMLDOC01-appb-I000047
 アルゴン気流下、2-(3-ブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.20g)、2-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]-1,10-フェナントロリン(1.30g)、炭酸セシウム(1.11g)、酢酸パラジウム(14mg)及びトリフェニルホスフィン(32mg)をテトラヒドロフラン(140mL)に懸濁し、19時間還流した。室温まで冷却後、減圧下で低沸点成分を除去した後、メタノールを加え、析出した固体をろ別した。得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 メタノール:クロロホルム=1:100~1:77)で精製し、目的の2-[4’-(1,10-フェナントロリン-2-イル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量1.37g、収率79%)を得た。
  H-NMR(CDCl):δ7.60-7.76(m,8H),7.83(d,J=8.8Hz,1H),7.88(d,J=8.8Hz,1H),7.96-7.80(m,1H),7.98(d,J=8.4Hz,2H),8.24(d,J=8.4Hz,1H),8.31(dd,J=8.1,1.7Hz,1H),8.38(d,J=8.4Hz,1H),8.57(d,J=8.4Hz,2H),8.81-8.89(m,5H)9.15(t,J=1.6Hz,1H),9.32(dd,J=4.3,1.7Hz,1H).
  13C-NMR(CDCl3):δ120.9(CH),123.3(CH),126.1(CH),126.8(CH),128.1(quart.),128.1(CH×2),128.2(CH),128.5(CH),128.9(CH×2),129.1(CH×4),129.4(CH×4),129.5(quart.×2),129.6(CH),131.3(CH),133.0(CH×2),136.4(quart.),136.6(CH),137.3(CH),137.3(quart.),139.3(quart.),141.6(quart.),142.1(quart.),146.7(quart.),146.9(quart.),150.9(CH),157.4(quart.),172.0(quart.),172.1(quart.×2).
 実施例-19
Figure JPOXMLDOC01-appb-I000048
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(1.00g,2.19mmol)、フェニルボロン酸(290mg,2.91mmol)、テトラキス(トリフェニルホスフィン)パラジウム(130mg,0.107mmol)をトルエン(50mL)及びエタノール(50mL)の混合溶液に懸濁し、60℃に昇温した。これに1.0M-炭酸カリウム水溶液(3.5mL,3.53mmol)をゆっくりと滴下した後、5時間撹拌した。放冷後、反応混合物に1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン(1.09g,3.29mmol)を加え、80℃に昇温し16時間撹拌した。室温まで冷却後、固体をろ別した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の2-[4-(イソキノリン-1-イル)-1,1’;3’,1”-ターフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジンの黄色結晶(収量682mg,収率54%)を得た。なお、融点は280℃、ガラス転移点は108.1℃であった。
  H-NMR(CDCl):δ.7.45(t,J=7.3Hz,1H),7.52-7.62(m,9H),7.66(d,J=5.5Hz,1H),7.71(t,J=7.5Hz,1H),7.80-7.97(m,7H),8.10(s,1H),8.25(d,J=8.5Hz,1H),8.66(d,J=5.7Hz,1H),8.79(d,J=8.2Hz,4H),8.97(s,1H),9.08(s,1H).
 実施例-20
Figure JPOXMLDOC01-appb-I000049
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.00g,4.28mmol)、9-フェナントレンボロン酸(1.14g,5.14mmol)、テトラキス(トリフェニルホスフィン)パラジウム(250mg,0.214mmol)をトルエン(88mL)及びエタノール(88mL)の混合溶液に懸濁し、60℃に加熱した。これに1.0M-炭酸カリウム水溶液(3.5mL,3.53mmol)をゆっくりと滴下した後、5時間撹拌した。放冷後、反応混合物に1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン(1.09g,3.29mmol)を加え、80℃に昇温して16時間撹拌した。室温まで冷却後、固体をろ別した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の2-[4-(イソキノリン-1-イル)-5-(9-フェナントリル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色結晶(収量1.41g,収率48%)を得た。なお、融点は272℃、ガラス転移点は138.8℃であった。
  H-NMR(CDCl):δ.7.53-7.62(m,8H),7.64-7.75(m,5H),7.86-7.92(m,4H),7.96-8.02(m,3H),8.05(d,J=8.5Hz,1H),8.10(t,J=1.8Hz,1H),8.23(d,J=8.5Hz,1H),8.65(d,J=5.7Hz,1H),8.76-8.80(m,5H),8.84(d,J=8.3Hz,1H),8.95(s,1H),9.20(s,1H).
 実施例-21
Figure JPOXMLDOC01-appb-I000050
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(2.89g,6.19mmol)、4’-(2-ピリジル)-3-ビフェニルボロン酸(1.87g,6.80mmol)、テトラキス(トリフェニルホスフィン)パラジウム(357mg,0.309mmol)をトルエン(100mL)及びエタノール(35mL)の混合溶液に懸濁し、60℃に加熱した。これに1.0M-炭酸カリウム水溶液(9.3mL,9.28mmol)をゆっくりと滴下した後、5時間撹拌した。放冷後,1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン(4.10g、12.4mmol)を加えた後に80℃に昇温して16時間撹拌した。室温まで冷却後,固体をろ別した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の2-[4-(イソキノリン-1-イル)-4’’’-(2-ピリジル)-1,1’;3’,1’’;3’’,1’’’-クアテルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色固体(収量2.07g,収率45%)を得た。なお、融点は282℃、ガラス転移点は129.2℃であった。
  H-NMR(CDCl):δ.7.56-7.64(m,8H),7.65-7.70(m,3H),7.72-7.82(m,4H),7.84(d,J=8.5Hz,2H),7.88-7.93(m,3H),7.99(d,J=8.4Hz,2H),8.07(s,1H),8.13(d,J=8.5Hz,2H),8.18(s,1H),8.25(d,J=8.5Hz,1H),8.65(d,J=5.7Hz,1H),8.71(d,J=4.8Hz,1H),9.03(d,J=8.0Hz,4H),9.04(s,1H),9.10(s,1H).
 実施例-22
Figure JPOXMLDOC01-appb-I000051
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジ(p-トリル)-1,3,5-トリアジン(102mg,0.202mmol)、フェニルボロン酸(27.1mg,0.222mmol)、テトラキス(トリフェニルホスフィン)パラジウム(27mg,10μmol)をトルエン(4mL)及びエタノール(4mL)の混合溶液に懸濁し、60℃に加熱した。これに1.0M-炭酸カリウム水溶液(300μL,0.300mmol)をゆっくりと滴下した後、1時間撹拌した。放冷後、1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン(101mg,0.303mmol)を加えた後に80℃に昇温して3時間撹拌した。室温まで冷却後,固体をろ別した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の2-[4-(イソキノリン-1-イル)-1,1’;3’,1”-ターフェニル-5’-イル]-4,6-ジ(p-トリル)-1,3,5-トリアジンの白色固体(収量50mg,収率40%)を得た。
  H-NMR(CDCl):δ.2.48(s,6H),7.45(t,J=7.3Hz,1H),7.52-7.62(m,6H),7.66(d,J=5.5Hz,1H),7.71(t,J=7.5Hz,1H),7.82(d,J=7.2Hz,2H),7.86-7.93(m,4H),7.96(d,J=8.3Hz,2H),8.11(s,1H),8.03(t,J=1.8Hz,1H),8.24(d,J=8.3Hz,1H),8.66(d,J=8.4Hz,4H),8.88(s,1H),9.04(s,1H).
 実施例-23
Figure JPOXMLDOC01-appb-I000052
 アルゴン気流下、2,4-ビス(3-ビフェニリル)-6-(3,5-ジブロモフェニル)-1,3,5-トリアジン(101mg,0.161mmol)、フェニルボロン酸(22mg,0.178mmol)、テトラキス(トリフェニルホスフィン)パラジウム(9.3mg,8.07μmol)をトルエン(4.0mL)及びエタノール(4mL)の混合溶液に懸濁し、60℃に加熱した。これに1.0M-炭酸カリウム水溶液(300μL,0.300mmol)をゆっくりと滴下した後、1時間撹拌した。放冷後,1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン-2-イル)フェニル]イソキノリン(80mg、0.242mmol)を加えた後に80℃に昇温して3時間撹拌した。室温まで冷却後,固体をろ別した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の4,6-ビス(3-ビフェニリル)-2-[4-(イソキノリン-1-イル)-1,1’;3’,1”-ターフェニル-5’-イル]-1,3,5-トリアジンの白色固体(収量39mg,収率32%)を得た。
  H-NMR(CDCl):δ.7.41(dd,J=1.8,7.2Hz,2H),7.46-7.61(m,8H),7.62-7.71(m,5H),7.72-7.75(m,3H),7.75-7.77(m,2H),7.82-7.90(m,6H),7.92(d,J=8.3Hz,1H),7.98(d,J=8.3Hz,1H),8.50(d,J=8.5Hz,1H),8.65(dd,J=5.7,8.7Hz,1H),8.41(d,J=8.0Hz,4H),9.03(s,1H),9.05(s,1H).
 実施例-24
Figure JPOXMLDOC01-appb-I000053
  
 アルゴン気流下、2-(3,5-ジブロモフェニル)-4,6-ジフェニル-1,3,5-トリアジン(0.500g,1.07mmol)、4-ビフェニルボロン酸(233mg,1.17mmol)、テトラキス(トリフェニルホスフィン)パラジウム(61.8mg,0.0537mmol)をトルエン(20mL)及びエタノール(6mL)の混合溶液に懸濁し、40℃に昇温した。これに1M-KCO水溶液(1.6mL,1.61mmol)をゆっくりと滴下した後、18時間撹拌した。放冷後、反応混合物に1-[4-(4,4,5,5-テトラメチル-1,3,2-ジオキサボラン-2-イル)フェニル]イソキノリン(0.530g,1.61mmol)を加え、80℃に昇温し6時間撹拌した。室温まで冷却後、固体をろ過した。ろ液を濃縮し、得られた粗生成物をシリカゲルクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的物の2-[4-(イソキノリン-1-イル)-1,1’;3’,1’’;4’’,1’’’-クアテルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジンの白色結晶(収量430mg,収率60%)を得た。なお、融点は270℃、ガラス転移点は113℃であった。
  H-NMR(CDCl):δ.7.38(t,J=7.4Hz,1H),7.49(t,J=7.8Hz,2H),7.56-7.65(m,7H),7.66-7.76(m,4H),7.79(d,J=8.5Hz,2H),7.88-7.94(m,5H),7.99(d,J=8.5Hz,2H),8.17(s,1H),8.25(d,J=8.5Hz,1H),8.66(d,J=5.6Hz,1H),8.82(d,J=8.2Hz,4H),9.05(s,1H),9.07(s,1H).
 実施例-25
Figure JPOXMLDOC01-appb-I000054
 アルゴン気流下、2-[5-(アントラセン-9-イル)-3-クロロフェニル]-4,6-ジフェニルピリミジン(517mg,0.996mmol)、4-(キノリン-2-イル)フェニルボロン酸(299mg,1.20mmol)、酢酸パラジウム(4.5mg,20μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(29.6mg,60μmol)をトルエン(4.5mL)及びn-ブタノール(0.5mL)の混合溶液に懸濁し、95℃に加熱した。これに3.0M-KCO水溶液(800μL,2.40mmol)をゆっくりと滴下した後、2時間撹拌した。放冷後、水を加え、析出した固体をろ別し目的物の2-[5-(アントラセン-9-イル)-4’-(キノリン-2-イル)ビフェニル-3-イル]-4,6-ジフェニルピリミジンの白色固体(収量645mg,収率94%)を得た。
  H-NMR(CDCl):δ.7.41(d,J=6.5Hz,1H),7.43(d,J=6.5Hz,1H),7.51-7.58(m,9H),7.77(t,J=7.7Hz,1H),7.86(d,J=8.0Hz,1H),7.90(d,J=8.9Hz,2H),7.97(s,1H),7.98(d,J=8.6Hz,1H),8.03(d,J=8.5Hz,2H),8.11(s,1H),8.14(d,J=8.5Hz,2H),8.22(d,J=8.6Hz,1H),8.26-8.32(m,5H),8.35(d,J=8.5Hz,2H),8.61(s,1H),8.84(s,1H),9.23(s,1H).
 実施例-26
Figure JPOXMLDOC01-appb-I000055
 アルゴン気流下、2-[5-(イソキノリン-1-イル)-3-クロロフェニル]-4,6-ジフェニルピリミジン(470mg,1.00mmol)、9-アントラセンボロン酸(289mg,1.30mmol)、酢酸パラジウム(4.5mg,20μmol)、2-ジシクロヘキシルホスフィノ-2’,4’,6’-トリイソプロピルビフェニル(29.6mg,60μmol)をTHF(5.0mL)の混合溶液に懸濁し、95℃に加熱した。これに3.0M-KCO水溶液(900μL,2.60mmol)をゆっくりと滴下した後、18時間撹拌した。放冷後、水を加え、析出した固体をろ別した。この固体をカラムクロマトグラフィー(展開溶媒クロロホルム、ヘキサン)で単離し、目的物の2-[5-(アントラセン-9-イル)-3-(イソキノリン-1-イル)フェニル]-4,6-ジフェニルピリミジンの白色固体(収量549mg,収率90%)を得た。
  H-NMR(CDCl):δ.7.42(d,J=6.5Hz,1H),7.44(d,J=6.5Hz,1H),7.49-7.54(m,8H),7.60(t,J=7.7Hz,1H),7.72(d,J=7.0Hz,1H),7.74(d,J=6.8Hz,1H),7.93-7.95(m,2H),7.97(d,J=8.8Hz,2H),8.09(s,1H),8.11(d,J=8.4Hz,2H),8.26-8.29(m,4H),8.37(d,J=8.5Hz,1H),8.59(s,1H),8.73(d,J=5.7Hz,1H),8.99(s,1H),9.30(s,1H).
 試験例-1
 基板として、2mm幅の酸化インジウム-スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、オゾン紫外線洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図1に示すような多層構造を有する発光面積4mm有機電界発光素子を作製した。
 まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10-4Paまで減圧した。その後、図1の1で示す前記ガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4及び正孔阻止層5、電子輸送層6を順次成膜し、その後陰極層7を成膜した。
 正孔注入層2としては、昇華精製したフタロシアニン銅(II)を10nmの膜厚で真空蒸着した。正孔輸送層3としては、N,N’-ジ(ナフチレン-1-イル)-N,N’-ジフェニルベンジジン(NPD)を30nmの膜厚で真空蒸着した。発光層4としては、4,4’-ビス(カルバゾール-9-イル)ビフェニル(CBP)とトリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy))を94:6(質量%)の割合で30nmの膜厚で真空蒸着した。正孔阻止層5としては、ビス(2-メチル-8-キノリノラト)-(1,1’-ビフェニル-4-オレート)アルミニウム(BAlq)を5nmの膜厚で真空蒸着した。電子輸送層6としては、本発明の実施例-16で合成した4,6-ジフェニル-2-[3-(1,10-フェナントロリン-2-イル)フェニル]-1,3,5-トリアジンを45nmの膜厚で真空蒸着した。
 なお、各有機材料は抵抗加熱方式により成膜し、加熱した化合物を0.3~0.5nm/秒の成膜速度で真空蒸着した。
 最後に、ITOストライプと直交するようにメタルマスクを配し、陰極層7を成膜した。陰極層7は、フッ化リチウムとアルミニウムをそれぞれ1.0nmと100nmの膜厚で真空蒸着し、2層構造とした。それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。
 さらに、この素子を酸素及び水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。
 作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM-9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度5mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定し、連続点灯時の輝度半減時間を測定した。
 作製した素子の測定値は、電圧6.4V、輝度1545cd/m、電流効率29.5cd/A、電力効率14.5lm/Wであった。また、初期輝度を4000cd/mで駆動したときのこの素子の輝度半減時間は、272時間であった。
 試験例-2
 試験例-1の電子輸送層6に代えて、本発明の実施例-1で合成した2-[3,5-ビス(1,10-フェナントロリン-2-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジンを45nmの膜厚で真空蒸着した有機電界発光素子を、試験例-1と同様に作製した。
 発光特性として、電流密度5mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定し、連続点灯時の輝度半減時間を測定した。
 作製した素子の測定値は、電圧6.2V、輝度1364cd/m、電流効率30.3cd/A、電力効率15.3lm/Wであった。また、初期輝度を4000cd/mで駆動したときのこの素子の輝度半減時間は、253時間であった。
 試験例-3
 図1の1で示す前記ガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4及び電子輸送層6を順次成膜し、その後陰極層7を成膜した。
 正孔注入層2として、昇華精製したフタロシアニン銅(II)を25nm、正孔輸送層3として、N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(NPD)を45nm、発光層4として、3-tert-ブチル-9,10-ジ(ナフチル-2-イル)アントラセン(TBADN)と4,4’-ビス[4-(ジ-p-トリルアミノ)フェニルエテン-1-イル]ビフェニル(DPAVBi)を93:7質量%の割合で40nmの膜厚で真空蒸着した。電子輸送層6としては、実施例-19で得られた2-[4-(イソキノリン-1-イル)-1,1’;3’,1”-ターフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジンを20nmにした以外は、試験例-1と同様の方法で有機電界発光素子を作製した。
 発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。作成した素子の測定値は、電圧5.1V、輝度1879cd/m、電流効率9.4cd/A、電力効率5.8lm/Wであった。
 試験例-4
 試験例-3の電子輸送層6に代えて、本発明の実施例-20で得られた2-[4-(イソキノリン-1-イル)-5-(9-フェナントリル)ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジンを20nmの膜厚で真空蒸着した有機電界発光素子を、試験例-3と同様に作製した。
 発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。作製した素子の測定値は、電圧5.6V、輝度2030cd/m、電流効率10.2cd/A、電力効率5.7lm/Wであった。
 試験例-5
図1の1で示す前記ガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4及び電子輸送層6を順次成膜し、その後陰極層7を成膜した。正孔注入層2として、昇華精製したフタロシアニン銅(II)を25nm、正孔輸送層3として、N,N’-ジ(1-ナフチル)-N,N’-ジフェニルベンジジン(NPD)を45nm、発光層4として、3-tert-ブチル-9,10-ジ(ナフチル-2-イル)アントラセン(TBADN)と1,6-ビス(N-ビフェニル-N-フェニル)ピレンを95:5質量%の割合で40nmの膜厚で真空蒸着した。電子輸送層6としては、実施例-24で得られた2-[4-(イソキノリン-1-イル)-1,1’;3’,1’’;4’’,1’’’-クアテルフェニル-5’-イル]-4,6-ジフェニル-1,3,5-トリアジンを20nmにした以外は、試験例-1と同様の方法で有機電界発光素子を作製した。
 発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。作製した素子の測定値は、電圧5.8V、輝度1386cd/m、電流効率6.9cd/A、電力効率3.8lm/Wであった。
 比較試験例-1
 試験例-1の電子輸送層6に代えて、既存材料のトリス(8-キノリノラト)アルミニウム(III)(Alq)を45nmの膜厚で真空蒸着した有機電界発光素子を、試験例1と同様に作製した。
 発光特性として、電流密度5mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定し、連続点灯時の輝度半減時間を測定した。作製した素子の測定値は、電圧7.4V、輝度1516cd/m、電流効率30.3cd/A、電力効率12.9lm/Wであった。また、初期輝度を4000cd/mで駆動したときのこの素子の輝度半減時間は、244時間であった。
 比較試験例-2
 試験例-3の電子輸送層6に代えて、既存材料のトリス(8-キノリノラト)アルミニウム(III)(Alq)を20nmの膜厚で真空蒸着した有機電界発光素子を、試験例3と同様に作製した。
 発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。作製した素子の測定値は、電圧6.2V、輝度1957cd/m、電流効率9.8cd/A、電力効率5.0lm/Wであった。
 比較試験例-3
 試験例-5の電子輸送層6に代えて、2,4-ジフェニル-6-[4,4’’ -ジ-(2-ピリジル) -[1,1’:3,1’’] -テルフェニル-5’-イル-1,3,5-トリアジンを20nmの膜厚で真空蒸着した有機電界発光素子を、試験例3と同様に作製した。
 発光特性として、電流密度20mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。作製した素子の測定値は、電圧6.4V、輝度1279cd/m、電流効率6.4cd/A、電力効率3.1lm/Wであった。
 本発明の環状アジン化合物は、有機電界発光素子の材料として、良好な電荷注入及び輸送特性を示す。したがって、本発明の環状アジン化合物は、有機電界発光素子の材料として有用であり、とりわけ電子輸送材等として用いることができる。
 本発明の環状アジン化合物を構成成分として用いてなる有機電界発光素子は、寿命が長く、また、駆動電圧が低いという特長を有する。

Claims (15)

  1.  一般式(1)

    Figure JPOXMLDOC01-appb-I000001

     (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)で示される環状アジン化合物。
  2.  Arが、キノリニル基、イソキノリニル基、フェナントロリニル基、ナフチリジニル基、キノキサニル基、フェナントリジニル基、又はアクリジニル基である請求項1に記載の環状アジン化合物。
  3.  Arが、フェナントロリニル基、イソキノリニル基又はキノリニル基である請求項1又は請求項2に記載の環状アジン化合物。
  4.  Arが、水素原子、フェニル基又はピリジル基で置換されていてもよいフェニル基、フェニル基又はピリジル基で置換されていてもよいビフェニリル基、フェニル基又はピリジル基で置換されていてもよいナフチル基、フェニル基又はピリジル基で置換されていてもよいアントラニル基、フェニル基又はピリジル基で置換されていてもよいペリレニル基、フェニル基又はピリジル基で置換されていてもよいフェナントレニル基、フェニル基又はピリジル基で置換されていてもよいトリフェニレニル基、フェニル基又はピリジル基で置換されていてもよいピレニル基、キノリニル基、イソキノリニル基、フェナントロリニル基、ナフチリジニル基、キノキサニル基、フェナントリジニル基、又はアクリジニル基である請求項1乃至請求項3のいずれか一項に記載の環状アジン化合物。
  5.  Arが、水素原子、フェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、3-(2-ピリジル)フェニル基、4-(2-ピリジル)フェニル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基、3’-(2-ピリジル)ビフェニル-3-イル基、3’-(3-ピリジル)ビフェニル-3-イル基、4’-(2-ピリジル)ビフェニル-4-イル基、4’-(3-ピリジル)ビフェニル-4-イル基、2-ナフチル基、9-アントラニル基、9-フェナントレニル基、8-(2-ピリジル)ナフタレン-2-イル基、10-(2-ピリジル)アントラセン-9-イル基、フェナントロリニル基、イソキノリニル基、又はキノリニル基である請求項1乃至請求項4のいずれか一項に記載の環状アジン化合物。
  6.  Arが、フェニル基、p-トリル基、m-トリル基、o-トリル基、2,6-ジメチルフェニル基、4-tert-ブチルフェニル基、4-ビフェニリル基、3-ビフェニリル基、2-ビフェニリル基、1,1’:4’,1”-ターフェニル-4-イル基、1,1’:2’,1”-ターフェニル-4-イル基、1,1’:3’,1”-ターフェニル-5’-イル基、1-ナフチル基、4-メチルナフタレン-1-イル基、4-tert-ブチルナフタレン-1-イル基、5-メチルナフタレン-1-イル基、5-tert-ブチルナフタレン-1-イル基、4-フェニルナフタレン-1-イル基、2-ナフチル基、6-メチルナフタレン-2-イル基、6-tert-ブチルナフタレン-2-イル基、7-メチルナフタレン-2-イル基、又は7-tert-ブチルナフタレン-2-イル基である請求項1乃至請求項5のいずれか一項に記載の環状アジン化合物。
  7.  Arが、フェニル基、p-トリル基、4-tert-ブチルフェニル基、4-ビフェニリル基、3-ビフェニリル基、又は2-ナフチル基である請求項1乃至請求項6のいずれか一項に記載の環状アジン化合物。
  8.  nが0、1又は2である請求項1乃至請求項7のいずれか一項に記載の環状アジン化合物。
  9.  Yが窒素原子である請求項1乃至請求項8のいずれか一項に記載の環状アジン化合物。
  10.  YがC-Hである請求項1乃至請求項8のいずれか一項に記載の環状アジン化合物。
  11.  一般式(2)
    Figure JPOXMLDOC01-appb-I000002

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは、水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(OR中の2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)
    で示される化合物と、一般式(3)
     
    Figure JPOXMLDOC01-appb-I000003

    (式中、Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは脱離基を表す。)
    で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1)
    Figure JPOXMLDOC01-appb-I000004

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
    で示される環状アジン化合物の製造方法。
  12.  一般式(8)
    Figure JPOXMLDOC01-appb-I000005

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Zは、塩素原子又は臭素原子を表す。)
    で示される化合物と、一般式(9)
    Figure JPOXMLDOC01-appb-I000006

    (式中、Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1)
    Figure JPOXMLDOC01-appb-I000007

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
    で示される環状アジン化合物の製造方法。
  13.  一般式(12)
    Figure JPOXMLDOC01-appb-I000008

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。Zは、塩素原子又は臭素原子を表す。)
    で示される化合物と、一般式(13)
    Figure JPOXMLDOC01-appb-I000009

    (式中、Ar2’はフェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表す。Rは水素原子、炭素数1~3のアルキル基又はフェニル基を表し、B(ORの2つのRは同一又は異なっていてもよく、又、2つのRは一体となって酸素原子及びホウ素原子を含んで環を形成することもできる。)で示される化合物とを、塩基及びパラジウム触媒の存在下、又は塩基、パラジウム触媒、及びアルカリ金属塩の存在下にカップリング反応させることを特徴とする、一般式(1’)

    Figure JPOXMLDOC01-appb-I000010

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Ar2’はフェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
    で示される環状アジン化合物の製造方法。
  14.  一般式(1)
    Figure JPOXMLDOC01-appb-I000011

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
    で示される環状アジン化合物を構成成分として含むことを特徴とする有機電界発光素子。
  15.  一般式(1)
    Figure JPOXMLDOC01-appb-I000012

    (式中、YはC-H、又は窒素原子を表す。Arは、炭素数1から4のアルキル基又はフェニル基で置換されていてもよい炭素数6~18の芳香族炭化水素基を表す。Arは水素原子;フェニル基又はピリジル基で置換されていてもよい炭素数6~18の芳香族炭化水素基;又は炭素数9~15の含窒素縮環芳香族基を表す。Arは、炭素数9~15の含窒素縮環芳香族基を表す。Xはフェニレン基を表し、nは0~3の整数を表す。)
    で示される環状アジン化合物を構成成分として含む電子輸送層を有する請求項14に記載の有機電界発光素子。
PCT/JP2012/079092 2011-11-11 2012-11-09 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子 WO2013069762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/357,396 US9252368B2 (en) 2011-11-11 2012-11-09 Cyclic azine compound having nitrogen-containing condensed aromatic group, method for producing same, and organic electroluminescent device comprising same as constituent component
CN201280066833.7A CN104039773B (zh) 2011-11-11 2012-11-09 具有含氮缩环芳香基的环状吖嗪化合物及其制造方法、以及以该环状吖嗪化合物为构成成分的有机电致发光元件
KR1020147015612A KR102003090B1 (ko) 2011-11-11 2012-11-09 질소함유 축환 방향족기를 가진 환상 아진 화합물과 그 제조 방법, 그리고 그것을 구성 성분으로 하는 유기 전계발광소자
EP12847767.6A EP2778160B1 (en) 2011-11-11 2012-11-09 Cyclic azine compound having nitrogen-containing fused aromatic group, method for producing same, and organic electroluminescent element using same as constituent component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011248080 2011-11-11
JP2011-248080 2011-11-11
JP2012-241811 2012-11-01
JP2012241811 2012-11-01

Publications (1)

Publication Number Publication Date
WO2013069762A1 true WO2013069762A1 (ja) 2013-05-16

Family

ID=48290130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079092 WO2013069762A1 (ja) 2011-11-11 2012-11-09 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子

Country Status (7)

Country Link
US (1) US9252368B2 (ja)
EP (1) EP2778160B1 (ja)
JP (1) JP6034146B2 (ja)
KR (1) KR102003090B1 (ja)
CN (1) CN104039773B (ja)
TW (1) TWI609862B (ja)
WO (1) WO2013069762A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008866A1 (ja) * 2013-07-19 2015-01-22 東ソー株式会社 トリアジン化合物及びそれを含有する有機電界発光素子
JP2015034159A (ja) * 2013-07-09 2015-02-19 東ソー株式会社 アダマンチル基を有する環状アジン化合物、その製造方法、及びそれを構成成分とする有機電界発光素子
JP2015038062A (ja) * 2013-07-19 2015-02-26 東ソー株式会社 トリフェニレニル基を有するトリアジン化合物及びそれを含有する有機電界発光素子
JP2015044792A (ja) * 2013-07-30 2015-03-12 東ソー株式会社 アザナフチル基及びフェナントリル基を有するトリアジン化合物及びそれを含有する有機電界発光素子
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
KR20150124000A (ko) * 2014-04-25 2015-11-05 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015182769A1 (ja) * 2014-05-29 2015-12-03 東ソー株式会社 キナゾリン及びベンゾキナゾリン化合物、その製法及び用途
WO2016002921A1 (ja) * 2014-07-03 2016-01-07 東ソー株式会社 環状アジン化合物、その製造方法、及びその用途
JP2016020333A (ja) * 2014-05-29 2016-02-04 東ソー株式会社 ベンゾキナゾリン化合物、その製造方法、およびその用途
JP2016020332A (ja) * 2014-06-18 2016-02-04 東ソー株式会社 キナゾリン化合物、その製造方法、およびその用途
JP2016121120A (ja) * 2014-02-21 2016-07-07 東ソー株式会社 トリアジン化合物及びその製造方法
KR101770463B1 (ko) * 2014-05-15 2017-08-23 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
US10461258B2 (en) 2015-12-24 2019-10-29 Idemitsu Kosan Co., Ltd. Compound
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100709A (ko) 2010-01-15 2012-09-12 이데미쓰 고산 가부시키가이샤 유기 전계 발광 소자
WO2014129048A1 (ja) 2013-02-22 2014-08-28 出光興産株式会社 アントラセン誘導体、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、および電子機器
TWI642662B (zh) * 2013-04-18 2018-12-01 日商東楚股份有限公司 Heterocyclic compound for organic electric field light-emitting element and use thereof
KR101867661B1 (ko) * 2015-01-21 2018-06-15 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101652323B1 (ko) 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101652325B1 (ko) 2015-04-27 2016-08-31 (주)더블유에스 포스포릴기가 결합된 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
KR101674134B1 (ko) 2015-04-27 2016-11-08 (주)더블유에스 트리아진 유도체 및 이를 포함한 유기 전계발광 소자
CN111205234A (zh) * 2015-09-30 2020-05-29 北京鼎材科技有限公司 一种喹喔啉基团的稠环芳烃衍生物及其应用
KR102656918B1 (ko) * 2015-12-03 2024-04-16 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
JP2019521995A (ja) 2016-06-22 2019-08-08 出光興産株式会社 有機発光ダイオード用の特定位置が置換されたベンゾフロ−又はベンゾチエノキノリン
KR101914652B1 (ko) 2016-06-30 2018-11-02 엘지디스플레이 주식회사 유기 화합물과 이를 포함하는 유기발광다이오드 및 유기발광표시장치
CN108264490B (zh) * 2016-12-30 2021-06-01 湖北尚赛光电材料有限公司 1,3,5-三嗪衍生物及其制备方法和应用
KR102536248B1 (ko) 2017-06-21 2023-05-25 삼성디스플레이 주식회사 헤테로시클릭 화합물 및 이를 포함한 유기 발광 소자
KR102415376B1 (ko) 2017-08-04 2022-07-01 삼성디스플레이 주식회사 축합환 화합물 및 이를 포함한 유기 발광 소자
KR102414108B1 (ko) 2017-08-08 2022-06-29 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자
JP7192211B2 (ja) * 2018-01-22 2022-12-20 東ソー株式会社 共役ピリジル基を有するトリアジン化合物
EP3527557A1 (en) * 2018-02-16 2019-08-21 Novaled GmbH N-heteroarylene compounds
WO2019182400A1 (ko) * 2018-03-22 2019-09-26 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20210110441A (ko) 2020-02-28 2021-09-08 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 화합물
KR20210127291A (ko) * 2020-04-13 2021-10-22 삼성디스플레이 주식회사 헤테로고리 화합물 및 이를 포함한 유기 발광 소자

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022334A (ja) 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005085387A1 (ja) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
JP2007137829A (ja) 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd 新規なトリアジン誘導体およびそれを含む有機エレクトロルミネッセンス素子
JP2008280330A (ja) 2007-04-12 2008-11-20 Tosoh Corp フェニル基置換1,3,5−トリアジン化合物、その製造方法、およびこれを構成成分とする有機電界発光素子
JP2009021336A (ja) * 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009031855A1 (en) * 2007-09-05 2009-03-12 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device including the same
JP2010090034A (ja) 2008-10-03 2010-04-22 Tosoh Corp 1,3,5−トリアジン化合物、その製造方法、及びこれを構成成分とする有機電界発光素子
JP2010106018A (ja) 2008-10-03 2010-05-13 Tosoh Corp 1,3,5−トリアジン誘導体、その製造方法、及びこれを構成成分とする有機電界発光素子
WO2010076986A2 (ko) * 2008-12-30 2010-07-08 제일모직 주식회사 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
WO2011013783A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 有機電界発光素子
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011021689A1 (ja) * 2009-08-21 2011-02-24 東ソー株式会社 環状アジン誘導体とそれらの製造方法、ならびにそれらを構成成分とする有機電界発光素子
WO2011099718A1 (en) * 2010-02-11 2011-08-18 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3968933B2 (ja) 1998-12-25 2007-08-29 コニカミノルタホールディングス株式会社 エレクトロルミネッセンス素子
US7871713B2 (en) 1998-12-25 2011-01-18 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
US6656608B1 (en) 1998-12-25 2003-12-02 Konica Corporation Electroluminescent material, electroluminescent element and color conversion filter
JP5135657B2 (ja) 2001-08-01 2013-02-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
JP4646494B2 (ja) 2002-04-11 2011-03-09 出光興産株式会社 新規含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4036041B2 (ja) 2002-06-24 2008-01-23 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
KR101027635B1 (ko) 2002-10-30 2011-04-07 시바 홀딩 인크 전계 발광 디바이스
MXPA05004423A (es) 2002-10-30 2005-07-26 Ciba Sc Holding Ag Nuevos polimeros para el uso en dispositivos opticos.
KR101064077B1 (ko) 2003-01-10 2011-09-08 이데미쓰 고산 가부시키가이샤 질소-함유 헤테로환 유도체 및 이를 이용한 유기 전기발광소자
KR20070030759A (ko) * 2004-03-08 2007-03-16 이데미쓰 고산 가부시키가이샤 유기 전기 발광 소자용 재료 및 이를 이용한 유기 전기발광 소자
BRPI0510482A (pt) 2004-04-29 2007-11-06 Ciba Sc Holding Ag dispositivo eletroluminescente
US7994316B2 (en) 2005-08-26 2011-08-09 Tosoh Corporation 1,3,5-triazine derivative, production method thereof and organic electroluminescence device comprising this as a composing component
KR20080080306A (ko) 2005-12-15 2008-09-03 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기전기발광 소자
TWI475011B (zh) 2008-12-01 2015-03-01 Tosoh Corp 1,3,5-三氮雜苯衍生物及其製造方法、和以其為構成成分之有機電致發光元件
JP5812583B2 (ja) * 2009-08-21 2015-11-17 東ソー株式会社 トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
KR101387738B1 (ko) 2009-12-29 2014-04-22 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
DE102010033548A1 (de) * 2010-08-05 2012-02-09 Merck Patent Gmbh Materialien für elektronische Vorrichtungen
EP2705550B1 (de) * 2011-05-05 2017-07-05 Merck Patent GmbH Verbindungen für elektronische vorrichtungen
KR101934135B1 (ko) * 2011-06-03 2019-04-05 메르크 파텐트 게엠베하 유기 전계발광 디바이스
KR102021099B1 (ko) * 2011-11-10 2019-09-16 유디씨 아일랜드 리미티드 전자장치 응용을 위한 4h-이미다조[1,2-a]이미다졸

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004022334A (ja) 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子及び表示装置
WO2005076669A1 (ja) * 2004-02-09 2005-08-18 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2005085387A1 (ja) * 2004-03-08 2005-09-15 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
JP2007137829A (ja) 2005-11-18 2007-06-07 Chemiprokasei Kaisha Ltd 新規なトリアジン誘導体およびそれを含む有機エレクトロルミネッセンス素子
JP2008280330A (ja) 2007-04-12 2008-11-20 Tosoh Corp フェニル基置換1,3,5−トリアジン化合物、その製造方法、およびこれを構成成分とする有機電界発光素子
JP2009021336A (ja) * 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009031855A1 (en) * 2007-09-05 2009-03-12 Cheil Industries Inc. Material for organic photoelectric device, and organic photoelectric device including the same
JP2010090034A (ja) 2008-10-03 2010-04-22 Tosoh Corp 1,3,5−トリアジン化合物、その製造方法、及びこれを構成成分とする有機電界発光素子
JP2010106018A (ja) 2008-10-03 2010-05-13 Tosoh Corp 1,3,5−トリアジン誘導体、その製造方法、及びこれを構成成分とする有機電界発光素子
WO2010076986A2 (ko) * 2008-12-30 2010-07-08 제일모직 주식회사 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2011013843A1 (en) * 2009-07-31 2011-02-03 Fujifilm Corporation Organic electroluminescence device
WO2011013783A1 (ja) * 2009-07-31 2011-02-03 富士フイルム株式会社 有機電界発光素子
WO2011019156A1 (en) * 2009-08-10 2011-02-17 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011021689A1 (ja) * 2009-08-21 2011-02-24 東ソー株式会社 環状アジン誘導体とそれらの製造方法、ならびにそれらを構成成分とする有機電界発光素子
WO2011099718A1 (en) * 2010-02-11 2011-08-18 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF ORGANIC CHEMISTRY, 2007, pages 2318 - 2328
ORG. BIOMOL. CHEM., 2008, pages 1320 - 1322
See also references of EP2778160A4
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 60, 1995, pages 7508 - 7510
THE JOURNAL OF ORGANIC CHEMISTRY, vol. 65, 2000, pages 164 - 168

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015034159A (ja) * 2013-07-09 2015-02-19 東ソー株式会社 アダマンチル基を有する環状アジン化合物、その製造方法、及びそれを構成成分とする有機電界発光素子
JP2015038062A (ja) * 2013-07-19 2015-02-26 東ソー株式会社 トリフェニレニル基を有するトリアジン化合物及びそれを含有する有機電界発光素子
WO2015008866A1 (ja) * 2013-07-19 2015-01-22 東ソー株式会社 トリアジン化合物及びそれを含有する有機電界発光素子
JP2015044792A (ja) * 2013-07-30 2015-03-12 東ソー株式会社 アザナフチル基及びフェナントリル基を有するトリアジン化合物及びそれを含有する有機電界発光素子
JP2016121120A (ja) * 2014-02-21 2016-07-07 東ソー株式会社 トリアジン化合物及びその製造方法
WO2015156102A1 (ja) * 2014-04-07 2015-10-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
JP2015199681A (ja) * 2014-04-07 2015-11-12 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含む有機電界発光素子用材料
KR20150124000A (ko) * 2014-04-25 2015-11-05 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102195540B1 (ko) * 2014-04-25 2020-12-29 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101770463B1 (ko) * 2014-05-15 2017-08-23 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2015182769A1 (ja) * 2014-05-29 2015-12-03 東ソー株式会社 キナゾリン及びベンゾキナゾリン化合物、その製法及び用途
JP2016020333A (ja) * 2014-05-29 2016-02-04 東ソー株式会社 ベンゾキナゾリン化合物、その製造方法、およびその用途
JP2016020332A (ja) * 2014-06-18 2016-02-04 東ソー株式会社 キナゾリン化合物、その製造方法、およびその用途
WO2016002921A1 (ja) * 2014-07-03 2016-01-07 東ソー株式会社 環状アジン化合物、その製造方法、及びその用途
JP2016027040A (ja) * 2014-07-03 2016-02-18 東ソー株式会社 環状アジン化合物、その製造方法、及びその用途
US10461258B2 (en) 2015-12-24 2019-10-29 Idemitsu Kosan Co., Ltd. Compound
US11189800B2 (en) 2017-07-10 2021-11-30 Lg Chem, Ltd. Heterocyclic compound and organic light emitting device comprising the same

Also Published As

Publication number Publication date
JP6034146B2 (ja) 2016-11-30
EP2778160A1 (en) 2014-09-17
US9252368B2 (en) 2016-02-02
TWI609862B (zh) 2018-01-01
TW201339149A (zh) 2013-10-01
KR102003090B1 (ko) 2019-10-01
EP2778160A4 (en) 2015-11-18
US20140330013A1 (en) 2014-11-06
EP2778160B1 (en) 2018-01-10
CN104039773B (zh) 2016-08-24
JP2014111548A (ja) 2014-06-19
CN104039773A (zh) 2014-09-10
KR20140091049A (ko) 2014-07-18

Similar Documents

Publication Publication Date Title
JP6034146B2 (ja) 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP5761907B2 (ja) 1,3,5−トリアジン誘導体とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP5748948B2 (ja) 1,3,5−トリアジン誘導体、その製造方法、及びこれを構成成分とする有機電界発光素子
JP5812583B2 (ja) トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
EP2818462B1 (en) Cyclic azine derivatives, processes for producing these, and organic electrolumiscent element containing these as component
JP5312824B2 (ja) フェニル基置換1,3,5−トリアジン化合物、その製造方法、およびこれを構成成分とする有機電界発光素子
JP5898950B2 (ja) 1,3,5−トリアジン化合物とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP6492432B2 (ja) アダマンチル基を有する環状アジン化合物、その製造方法、及びそれを構成成分とする有機電界発光素子
WO2013191177A1 (ja) 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
JP6443107B2 (ja) トリアジン化合物及びその製造方法
JP5529496B2 (ja) 1,3,5−トリアジン誘導体とその製造方法及びそれを含有する有機電界発光素子
JP5660777B2 (ja) 環状アジン誘導体とその製造方法、及びそれらを構成成分とする有機電界発光素子
JP6007491B2 (ja) 1,2,4,5−置換フェニル誘導体とその製造方法、及び有機電界発光素子
JP2020094034A (ja) トリアジン化合物、有機電界発光素子用材料、及び有機電界発光素子
WO2021079915A1 (ja) ピリジル基を有するトリアジン化合物およびピリジン化合物
WO2020111225A1 (ja) トリアジン化合物、有機電界発光素子用材料、及び有機電界発光素子
JP2021102601A (ja) ピリジン化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847767

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357396

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012847767

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147015612

Country of ref document: KR

Kind code of ref document: A