JP2016020333A - ベンゾキナゾリン化合物、その製造方法、およびその用途 - Google Patents

ベンゾキナゾリン化合物、その製造方法、およびその用途 Download PDF

Info

Publication number
JP2016020333A
JP2016020333A JP2015110498A JP2015110498A JP2016020333A JP 2016020333 A JP2016020333 A JP 2016020333A JP 2015110498 A JP2015110498 A JP 2015110498A JP 2015110498 A JP2015110498 A JP 2015110498A JP 2016020333 A JP2016020333 A JP 2016020333A
Authority
JP
Japan
Prior art keywords
group
pyrimidyl
carbon atoms
phenyl
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015110498A
Other languages
English (en)
Other versions
JP6515684B2 (ja
Inventor
華奈 藤田
Kana Fujita
華奈 藤田
田中 剛
Tsuyoshi Tanaka
剛 田中
陽子 本間
Yoko Honma
陽子 本間
内田 直樹
Naoki Uchida
直樹 内田
尚志 飯田
Hisashi Iida
尚志 飯田
恵理子 太田
Eriko Ota
恵理子 太田
裕太 森中
Yuta Morinaka
裕太 森中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2015110498A priority Critical patent/JP6515684B2/ja
Publication of JP2016020333A publication Critical patent/JP2016020333A/ja
Application granted granted Critical
Publication of JP6515684B2 publication Critical patent/JP6515684B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】高効率、低電圧駆動、長寿命の有機電界発光素子及びそれを可能にする有機電界発光素子用電子輸送材料の提供。
【解決手段】一般式(1−1)および一般式(1−2)で示されるベンゾキナゾリン化合物。
Figure 2016020333

(Ar11及びAr21は、芳香族炭化水素基;Ar12、Ar13、Ar22およびAr23は、フェニル基、ピリジル基等)
【選択図】なし

Description

本発明は、一般式(1−1)および一般式(1−2)に示される、駆動性および発光特性に優れた高効率有機電界発光素子を提供するためのベンゾキナゾリン化合物、およびその製造方法に関するものである。
有機電界発光素子は、発光材料を含有する発光層を正孔輸送層と電子輸送層で挟み、さらにその外側に陽極と陰極を取付けた構造をしており、発光層に注入された正孔および電子の再結合により生ずる励起子が失活する際の発光現象(蛍光または燐光)を利用する自己発光型素子である。自己発光型であるため視認性に優れており、かつ完全固体素子であるため取り扱い、および製造が容易である。また、薄膜型素子であるため、省スペース、携帯性などの観点から注目されており、ディスプレイや照明等へ応用されている。現在、有機電界発光素子は各用途への商業利用が始まっているが、省エネルギー化に向けた更なる発光効率の向上、駆動電圧の低減、および長寿命化が求められている。
有機電界発光素子を高効率、低電圧駆動、および長寿命とするためには、正孔および電子をそれぞれ効率よく発光層に注入、輸送して再結合させる必要がある。これに関し、有機電界発光素子を構成する各材料、特に電子輸送性材料の改良が求められていた。
特許文献1には、発光寿命が長く、かつ駆動電圧の低い有機EL素子を得ることができる電子輸送層ホスト材料およびそれを用いた素子が開示されている。しかし、この材料を有機電界発光素子に用いるにはドープ材料が必須であり、ドープ材料を含まない単一電子輸送層として用いると、素子が高駆動電圧化する。また素子の発光効率も低く、改善が求められていた。
特許文献2には、発光効率のよい有機電界発光素子を提供するための電子輸送材料が開示されているが、当該文献で開示されたベンゾキナゾリン化合物を用いた有機電界発光素子は、ベンゾキナゾリンの2位の置換基の影響の為、駆動電圧を下げることが難しいという課題があった。
WO2006/104118 WO2013/180376
有機電界発光素子は様々な表示素子に利用されているが、特に大型ディスプレイや照明を実用化するには、より高効率な発光が求められている。本発明の目的は、素子の寿命特性に優れ、なおかつ従来公知の有機電界発光素子用電子輸送性材料に比べて、素子の発光効率に優れる電子輸送性材料を提供することである。
本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、本発明に示すベンゾキナゾリン化合物を電子輸送層として用いた有機電界発光素子が、従来公知の材料を電子輸送層に用いた有機電界発光素子と比べて、駆動電圧が低く、発光効率が向上し、長寿命となることを見出し、本発明を完成するに至った。
すなわち、本発明は下記一般式(1−1)および一般式(1−2)で示されるベンゾキナゾリン化合物(以下、「化合物(1−1)」、「化合物(1−2)」とも称す)、その製造方法、およびその用途に関するものである。
Figure 2016020333
(式中、
Ar11およびAr21は、炭素数6〜12の芳香族炭化水素基(メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基で置換されていてもよい)を表わす。
Ar12、Ar13、Ar22およびAr23は、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、炭素数2〜10のアルキル基、および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい}を表わす。
11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26は、各々独立に、水素原子、メチル基、メトキシ基、フェニル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基を表す。
また、式中の各水素原子は各々独立に重水素原子であってもよい。)
本発明の化合物(1−1)および化合物(1−2)は、良好な電荷注入、および輸送特性を持つことから、蛍光または燐光有機電界発光素子の材料として有用であり、とりわけ電子輸送材、ホスト材料として用いることができる。本発明の化合物(1−1)および化合物(1−2)を含む電子輸送層を有する有機電界発光素子は汎用の電子輸送材料を用いた有機電界発光素子と比べて、低駆動電圧に優れ、発光効率に優れ、長寿命である。
また、本発明の化合物(1−1)および化合物(1−2)のバンドギャップは3.0eV以上であり、パネルを構成する3原色(赤:1.9eV、緑:2.4eV、青:2.8eV)の各色のエネルギーを閉じ込めるのに十分なワイドバンドギャップを有する材料である。よって、単色の表示素子、3原色のカラー表示素子、照明用途などの白色素子など様々な素子への応用が可能である。本発明の化合物(1−1)および化合物(1−2)は三重項エネルギーも高いため、燐光用途への適用も十分可能である。さらに置換基の変更によって溶解性の制御も可能であるため、蒸着素子ばかりでなく塗布素子への応用も可能である。
試験例−1で作製する有機電界発光素子の断面模式図である。
以下、本発明を詳細に説明する。
Ar11およびAr21は、炭素数6〜12の芳香族炭化水素基(メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基で置換されていてもよい)を表わす。
炭素数6〜12の芳香族炭化水素基としては、特に限定するものではないが、例えば、フェニル基、1−ナフチル基、2−ナフチル基、2−ビフェニル基、3−ビフェニル基、または4−ビフェニル基等が挙げられる。
ピリジル基としては、特に限定するものではないが、例えば、2−ピリジル基、3−ピリジル基、4−ピリジル基が挙げられる。
ピリミジル基としては、特に限定するものではないが、例えば、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基が挙げられる。
炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基としては、特に限定するものではないが、例えば、エチル基(−Et)、n−プロピル基(n−Pr)、i−プロピル基(i−Pr)、n−ブチル基(n−Bu)、t−ブチル基(t−Bu)、ペンチル(−Pent)、ヘキシル基(−Hex)、ヘプチル基(−Hept)、オクチル基(−Oct)(以上、炭素数2〜10のアルキル基)、エトキシ基、n−プロピルオキシ基、i−プロピルオキシ基、n−ブチルオキシ基、t−ブチルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基(以上、炭素数2〜10のアルコキシ基)、メトキシメチル基、メトキシエチル基、メトキシプロピル基、メトキシブチル基、メトキシヘキシル基、メトキシヘプチル基、エトキシメチル基、エトキシエチル基、エトキシプロピル基、エトキシブチル基、ペンチルオキシプロピル基(以上、炭素数2〜10のアルキルアルコキシ基)、メチルエステル基、エチルエステル基、n−プロピルエステル基、i−プロピルエステル基、n−ブチルエステル基、t−ブチルエステル基、ペンチルエステル基、ヘキシルエステル基、ヘプチルエステル基(以上、炭素数2〜10のエステル基)、−CHCOOMe、−CHCOOEt、−CHCOO(n−Pr)、−CHCOO(i−Pr)、−CHCOO(n−Bu)、−CHCOO(t−Bu)、−CHCOOHex、−CHCHCHCOOMe、−CHCHCHCOOEt、−CHCHCHCOO(n−Pr)、−CHCHCHCOO(i−Pr)、−CHCHCHCOO(n−Bu)、−CHCHCHCOO(t−Bu)、−Hex−COOMe(以上、炭素数2〜10のエステルアルキル基)等が挙げられる。
Ar11、およびAr21で表される置換基としては、特に限定するものではないが、例えば、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、2,3−ジメチルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、2,6−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2−エチルフェニル基、3−エチルフェニル基、4−エチルフェニル基、2−エチル−3−メチルフェニル基、2−エチル−4−メチルフェニル基、2−エチル−5−メチルフェニル基、2−エチル−6−メチルフェニル基、3−エチル−2−メチルフェニル基、3−エチル−4−メチルフェニル基、3−エチル−5−メチルフェニル基、3−エチル−6−メチルフェニル基、4−エチル−2−メチルフェニル基、4−エチル−3−メチルフェニル基、2−ヘキシルフェニル基、3−ヘキシルフェニル基、4−ヘキシルフェニル基、4−ヘキシル−2−メチルフェニル基、4−ヘキシル−3−エチルフェニル基、4−ヘキシルオキシ−2−プロピルフェニル基、4−ヘキシルオキシ−3−ブチルフェニル基、3−エトキシエチル−5−メチルフェニル基、3−エトキシエチル−6−メチルフェニル基、2−メチルエステルフェニル基、3−メチルエステルフェニル基、4−メチルエステルフェニル基、2−へキシルエステルフェニル基、3−ヘキシルエステルフェニル基、4−ヘキシルエステルフェニル基、2−(2−ピリジル)フェニル基、3−(2−ピリジル)フェニル基、4−(2−ピリジル)フェニル基、3,5−ビ(2−ピリジル)フェニル基、2−(3−ピリジル)フェニル基、3−(3−ピリジル)フェニル基、4−(3−ピリジル)フェニル基、3,5−ビ(3−ピリジル)フェニル基、2−(4−ピリジル)フェニル基、3−(4−ピリジル)フェニル基、4−(4−ピリジル)フェニル基、3,5−ビ(4−ピリジル)フェニル基、2−(2−ピリミジル)フェニル基、3−(2−ピリミジル)フェニル基、4−(2−ピリミジル)フェニル基、2−(4−ピリミジル)フェニル基、3−(4−ピリミジル)フェニル基、4−(4−ピリミジル)フェニル基、2−(5−ピリミジル)フェニル基、3−(5−ピリミジル)フェニル基、4−(5−ピリミジル)フェニル基、2−フルオロフェニル基、3−フルオロフェニル基、4−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、パーフルオロフェニル基、1−ナフチル基、2−ナフチル基、2−メチルナフタレン−1−イル基、3−メチルナフタレン−1−イル基、4−メチルナフタレン−1−イル基、5−メチルナフタレン−1−イル基、6−メチルナフタレン−1−イル基、1−メチルナフタレン−2−イル基、3−メチルナフタレン−2−イル基、4−メチルナフタレン−2−イル基、5−メチルナフタレン−2−イル基、6−メチルナフタレン−2−イル基、2−ヘキシルナフタレン−1−イル基、3−ヘキシルオキシナフタレン−1−イル基、4−メトキシエチルナフタレン−1−イル基、5−ヘキシルエステルナフタレン−1−イル基、6−ペントキシナフタレン−1−イル基、1−メトキシエチルナフタレン−2−イル基、3−ペンチルナフタレン−2−イル基、4−ペントキシナフタレン−2−イル基、5−メトキシエチルナフタレン−2−イル基、6−ブチルナフタレン−2−イル基、3−(2−ピリジル)ナフタレン−1−イル基、4−(2−ピリジル)ナフタレン−1−イル基、3−(3−ピリジル)ナフタレン−1−イル基、4−(3−ピリジル)ナフタレン−1−イル基、3−(4−ピリジル)ナフタレン−1−イル基、4−(4−ピリジル)ナフタレン−1−イル基、4−(2−ピリジル)ナフタレン−2−イル基、6−(2−ピリジル)ナフタレン−2−イル基、7−(2−ピリジル)ナフタレン−2−イル基、4−(3−ピリジル)ナフタレン−2−イル基、6−(3−ピリジル)ナフタレン−2−イル基、7−(3−ピリジル)ナフタレン−2−イル基、4−(4−ピリジル)ナフタレン−2−イル基、6−(4−ピリジル)ナフタレン−2−イル基、7−(4−ピリジル)ナフタレン−2−イル基、3−(2−ピリミジル)ナフタレン−1−イル基、4−(2−ピリミジル)ナフタレン−1−イル基、3−(4−ピリミジル)ナフタレン−1−イル基、4−(4−ピリミジル)ナフタレン−1−イル基、3−(5−ピリミジル)ナフタレン−1−イル基、4−(5−ピリミジル)ナフタレン−1−イル基、4−(2−ピリミジル)ナフタレン−2−イル基、6−(2−ピリミジル)ナフタレン−2−イル基、7−(2−ピリミジル)ナフタレン−2−イル基、4−(4−ピリミジル)ナフタレン−2−イル基、6−(4−ピリミジル)ナフタレン−2−イル基、7−(4−ピリミジル)ナフタレン−2−イル基、4−(5−ピリミジル)ナフタレン−2−イル基、6−(5−ピリミジル)ナフタレン−2−イル基、7−(5−ピリミジル)ナフタレン−2−イル基、2−フルオロナフタレン−1−イル基、3−フルオロナフタレン−1−イル基、4−フルオロナフタレン−1−イル基、5−フルオロナフタレン−1−イル基、6−フルオロナフタレン−1−イル基、1−フルオロナフタレン−2−イル基、3−フルオロナフタレン−2−イル基、4−フルオロナフタレン−2−イル基、5−フルオロナフタレン−2−イル基、6−フルオロナフタレン−2−イル基、パーフルオロナフタレン−1−イル基、パーフルオロナフタレン−2−イル基、3−ビフェニル基、4−ビフェニル基、2−メチルビフェニル−3−イル基、4−メチルビフェニル−3−イル基、5−メチルビフェニル−3−イル基、6−メチルビフェニル−3−イル基、2’−メチルビフェニル−3−イル基、3’−メチルビフェニル−3−イル基、4’−メチルビフェニル−3−イル基、2,6−ジメチルビフェニル−3−イル基、2’,6’−ジメチルビフェニル−3−イル基、2−メチルビフェニル−4−イル基、3−メチルビフェニル−4−イル基、2’−メチルビフェニル−4−イル基、3’−メチルビフェニル−4−イル基、4’−メチルビフェニル−4−イル基、2,6−ジメチルビフェニル−4−イル基、2’,6’−ジメチルビフェニル−4−イル基、2−ヘキシルビフェニル−3−イル基、4−ヘキシルオキシビフェニル−3−イル基、5−エチルエトキシエチルビフェニル−3−イル基、6−ヘキシルエステルビフェニル−3−イル基、2’−ペンチルビフェニル−3−イル基、3’−ペンチルオキシビフェニル−3−イル基、4’−プロピルオキシメチル−3−イル基、2−ブチルビフェニル−4−イル基、3−ブトキシビフェニル−4−イル基、2’−エトキシメチルビフェニル−4−イル基、3’−ブチルエステルビフェニル−4−イル基、4’−ペンチルビフェニル−4−イル基、3’−(2−ピリジル)ビフェニル−3−イル基、3’−(3−ピリジル)ビフェニル−3−イル基、3’−(4−ピリジル)ビフェニル−3−イル基、4’−(2−ピリジル)ビフェニル−3−イル基、4’−(3−ピリジル)ビフェニル−3−イル基、4’−(4−ピリジル)ビフェニル−3−イル基、3’−(2−ピリジル)ビフェニル−4−イル基、3’−(3−ピリジル)ビフェニル−4−イル基、3’−(4−ピリジル)ビフェニル−4−イル基、4’−(2−ピリジル)ビフェニル−4−イル基、4’−(3−ピリジル)ビフェニル−4−イル基、4’−(4−ピリジル)ビフェニル−4−イル基、3’−(2−ピリミジル)ビフェニル−3−イル基、3’−(4−ピリミジル)ビフェニル−3−イル基、3’−(5−ピリミジル)ビフェニル−3−イル基、4’−(2−ピリミジル)ビフェニル−3−イル基、4’−(4−ピリミジル)ビフェニル−3−イル基、4’−(5−ピリミジル)ビフェニル−3−イル基、3’−(2−ピリミジル)ビフェニル−4−イル基、3’−(4−ピリミジル)ビフェニル−4−イル基、3’−(5−ピリミジル)ビフェニル−4−イル基、4’−(2−ピリミジル)ビフェニル−4−イル基、4’−(4−ピリミジル)ビフェニル−4−イル基、4’−(5−ピリミジル)ビフェニル−4−イル基、2−フルオロビフェニル−3−イル基、4−フルオロビフェニル−3−イル基、5−フルオロビフェニル−3−イル基、6−フルオロビフェニル−3−イル基、2’−フルオロビフェニル−3−イル基、3’−フルオロビフェニル−3−イル基、4’−フルオロビフェニル−3−イル基、2,6−ジフルオロビフェニル−3−イル基、2’,6’−ジフルオロビフェニル−3−イル基、2−フルオロビフェニル−4−イル基、3−フルオロビフェニル−4−イル基、2’−フルオロビフェニル−4−イル基、3’−フルオロビフェニル−4−イル基、4’−フルオロビフェニル−4−イル基、2,6−ジフルオロビフェニル−4−イル基、2’,6’−ジフルオロビフェニル−4−イル基等が挙げられる。
Ar11及びAr21については、有機電界発光素子材料として性能が良い点で、炭素数6〜12の芳香族炭化水素基(メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基もしくはアルコキシ基で置換されていてもよい)であることが好ましい。
当該好ましい置換基については、フェニル基、ナフチル基、またはビフェニル基(これらの基は、メチル基、メトキシ基、ピリジル基、ピリミジル基、またはフッ素原子で置換されていてもよい)であることがより好ましい。
さらに、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、1−ナフチル基、2−ナフチル基、3−ビフェニル基、4−ビフェニル基、2,6−ジメチルビフェニル−3−イル基、2,6−ジメチルビフェニル−4−イル基、2’,6’−ジメチルビフェニル−3−イル基、2’,6’−ジメチルビフェニル−4−イル基、3−(2−ピリジル)フェニル基、3−(3−ピリジル)フェニル基、3−(4−ピリジル)フェニル基、4−(2−ピリジル)フェニル基、4−(3−ピリジル)フェニル基、4−(4−ピリジル)フェニル基、3−(2−ピリミジル)フェニル基、または4−(2−ピリミジル)フェニル基であることがより好ましい。
また、これらの置換基のうち、フェニル基、2−メチルフェニル基、3−メチルフェニル基、4−メチルフェニル基、3−ビフェニル基、4−ビフェニル基、1−ナフチル基、または2−ナフチル基であることがより好ましい。
また、Ar11およびAr21については、有機電界発光素子材料として性能が良い点で、フェニル基、ナフチル基、またはビフェニル基(これらの基は、メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基で置換されていてもよいであることが好ましい。これらの具体例については前述のとおりである。
Ar12、Ar13、Ar22およびAr23は、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、炭素数2〜10のアルキル基、および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい}を表わす。
ピリジル基およびピリミジル基としては、Ar11およびAr21で例示した置換基と同じ置換基を例示することができる。
炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基としては、特に限定するものではないが、例えば、4−フェニルピリミジン−2−イル基、5−フェニルピリミジン−2−イル基、2−フェニルピリミジン−4−イル基、6−フェニルピリミジン−4−イル基、2−フェニルピリミジン−5−イル基、4,6−ジフェニルピリミジン−2−イル基、4−ナフチルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基、2−ナフチルピリミジン−4−イル基、6−ナフチルピリミジン−4−イル基、2−ナフチルピリミジン−5−イル基、6−ナフチル−4−フェニルピリミジン−2−イル基、4−アントラシルピリミジン−2−イル基、5−アントラシルピリミジン−2−イル基、2−アントラシルピリミジン−4−イル基、6−アントラシルピリミジン−4−イル基、2−アントラシルピリミジン−5−イル基、4−フェナントリルピリミジン−2−イル基、5−フェナントリルピリミジン−2−イル基、2−フェナントリルピリミジン−4−イル基、6−フェナントリルピリミジン−4−イル基、2−フェナントリルピリミジン−5−イル基、4−ピレニルピリミジン−2−イル基、5−ピレニルピリミジン−2−イル基、2−ピレニルピリミジン−4−イル基、6−ピレニルピリミジン−4−イル基、2−ピレニルピリミジン−5−イル基等が挙げられる。
これらのうち、有機電界発光素子材料として性能が良い点で、フェニル基、ビフェニル基、または6員環のみからなる炭素数10〜18の縮環芳香族炭化水素基で置換されたピリミジル基であることが好ましく、当該置換基としては、特に限定するものではないが、例えば、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、もしくはピレニル基で置換されたピリミジル基がより好ましい。
当該好ましい置換基については、5−フェニルピリミジン−2−イル基、4,6−ジフェニルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基、4,6−ジナフチルピリミジン−2−イル基、5−フェナントリルピリミジン−2−イル基、5−アントラシルピリミジン−2−イル基、5−ピレニルピリミジン−2−イル基がより好ましい。
また、これらの置換基のうち、5−フェニルピリミジン−2−イル基、4,6−ジフェニルピリミジン−2−イル基、4,6−ジナフチルピリミジン−2−イル基がより好ましい。
ベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基としては、特に限定するものではないが、例えば、次の(A1)〜(A186)で表される置換基を例示することができる(*は連結部を表す)。
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
これらのうち、有機電界発光素子材料として性能が良い点で、ベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した(縮環は環4つ以下とする)6員環のみからなる芳香族基であることが好ましく、ベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した(縮環は環4つ以下であり、連結は4つまでとする)6員環のみからなる芳香族基であることがより好ましい。
当該好ましい置換基については、(A1)〜(A19)、(A21)、(A28)、(A30)、(A32)、(A36)、(A38)、(A40)、(A42)〜(A60)、(A63)、(A64)、(A66)〜(A74)、(A76)、(A78)、(A80)、(A82)、(A84)、(A86)〜(A124)、(A129)、(A130)、(A145)〜(A154)、(A156)〜(A179)がより好ましい。
また、これらの置換基のうち、(A1)〜(A19)、(A28)、(A30)、(A32)、(A36)、(A38)、(A40)、(A42)〜(A44)、(A47)、(A49)、(A51)、(A54)〜(A60)、(A63)、(A66)、(A67)、(A72)、(A73)、(A86)〜(A100)、(A103)〜(A118)、(A145)〜(A150)、(A156)〜(A176)がより好ましい。
メチル基、炭素数2〜10のアルキル基、および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有するピリミジル基としては、特に限定するものではないが、例えば、4−メチルピリミジン−2−イル基、5−メチルピリミジン−2−イル基、2−メチルピリミジン−4−イル基、6−メチルピリミジン−4−イル基、2−メチルピリミジン−5−イル基、4,6−ジメチルピリミジン−2−イル基、4−エチルピリミジン−2−イル基、5−エチルピリミジン−2−イル基、2−エチルピリミジン−4−イル基、6−エチルピリミジン−4−イル基、2−エチルピリミジン−5−イル基、4,6−ジエチルピリミジン−2−イル基、4−プロピルピリミジン−2−イル基、5−ブチルピリミジン−2−イル基、2−ペンチルピリミジン−4−イル基、6−ヘキシルピリミジン−4−イル基、2−オクチルピリミジン−5−イル基、4−フェニルピリミジン−2−イル基、5−フェニルピリミジン−2−イル基、2−フェニルピリミジン−4−イル基、6−フェニルピリミジン−4−イル基、2−フェニルピリミジン−5−イル基、4,6−ジフェニルピリミジン−2−イル基、4−ナフチルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基、2−ナフチルピリミジン−4−イル基、6−ナフチルピリミジン−4−イル基、2−ナフチルピリミジン−5−イル基、6−ナフチル−4−フェニルピリミジン−2−イル基、4,6−ジナフチルピリミジン−2−イル基、4−アントラシルピリミジン−2−イル基、5−アントラシルピリミジン−2−イル基、2−アントラシルピリミジン−4−イル基、6−アントラシルピリミジン−4−イル基、2−アントラシルピリミジン−5−イル基、4−フェナントリルピリミジン−2−イル基、5−フェナントリルピリミジン−2−イル基、2−フェナントリルピリミジン−4−イル基、6−フェナントリルピリミジン−4−イル基、2−フェナントリルピリミジン−5−イル基、4−ピレニルピリミジン−2−イル基、5−ピレニルピリミジン−2−イル基、2−ピレニルピリミジン−4−イル基、6−ピレニルピリミジン−4−イル基、2−ピレニルピリミジン−5−イル基、4−メチル−6−フェニルピリミジン−2−イル基等が挙げられる。
これらのうち、有機電界発光素子材料として性能が良い点で、メチル基および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有するピリミジル基であることが好ましく、メチル基、ビフェニル基、フェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有するピリミジル基がより好ましい。
当該好ましい置換基については、5−メチルピリミジン−2−イル基、4,6−ジメチルピリミジン−2−イル基、4−フェニルピリミジン−2−イル基、5−フェニルピリミジン−2−イル基、2−フェニルピリミジン−5−イル基、4,6−ジフェニルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基、6−ナフチル−4−フェニルピリミジン−2−イル基、5−アントラシルピリミジン−2−イル基、5−フェナントリルピリミジン−2−イル基、5−ピレニルピリミジン−2−イル基がより好ましい。
また、これらの置換基のうち、5−メチルピリミジン−2−イル基、4,6−ジメチルピリミジン−2−イル基、4−フェニルピリミジン−2−イル基、5−フェニルピリミジン−2−イル基、2−フェニルピリミジン−5−イル基、4,6−ジフェニルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基がより好ましい。
炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基としては、Ar11およびAr21で例示した置換基と同じ置換基を例示することができる。
Ar12、Ar13、Ar22およびAr23で表される置換基としては、特に限定するものではないが、上述で示した置換基の他に、次の(B1)〜(B137)で表される置換基を例示することができる(*は連結部を表す)。
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Ar12、Ar13、Ar22およびAr23については、化合物の有機電界発光素子材料として性能が良い点で、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}であることが好ましい。
上記の置換基のうち、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜5つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}であることがより好ましい。
これらのうち、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜4つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}であることがより好ましい。
また、Ar12、Ar13、Ar22およびAr23については、化合物の有機電界発光素子材料として性能が良い点で、フェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ナフチリジル基、ベンゾキノリル基、フェナントリジル基、アクリジル基、フェナントロリル基、ビフェニル基、テルフェニル基、ナフチルフェニル基、フェナントリルフェニル基、アントラシルフェニル基、ピレニルフェニル基、ナフチルビフェニル基、フェナントリルビフェニル基、アントラシルビフェニル基、フェニルナフチル基、ビナフチル基、フェナントリルナフチル基、アントラシルナフチル基、フェニルアントラシル基、フェニルフェナントリル基、ピリジルフェニル基、ピリジルビフェニル基、ピリジルナフチル基、ピリジルアントラシル基、ピリジルフェナントリル基、キノリルフェニル基、キノリルビフェニル基、キノリルナフチル基、キノリルアントラシル基、キノリルフェナントリル基、イソキノリルフェニル基、イソキノリルビフェニル基、イソキノリルナフチル基、イソキノリルアントラシル基、イソキノリルフェナントリル基、ナフチリジルフェニル基、ナフチリジルビフェニル基、ベンゾキノリルフェニル基、フェナントリジルフェニル基、アクリジルフェニル基、フェナントロリルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ビフェニルピリジル基、ナフチルピリジル基、フェナントリルピリジル基、アントラシルピリジル基、フェニルキノリル基、ビフェニルキノリル基、フェニルイソキノリル基、ビフェニルイソキノリル基、ビピリジル基、キノリルピリジル基、イソキノリルピリジル基、ピリジルキノリル基、ピリジルイソキノリル基、フェニルビピリジル基、ビピリジルフェニル基、フェニルピリジルフェニル基、フェニルピリジルナフチル基、ジフェニルピリジルフェニル基、ジナフチルピリジルフェニル基、フェニルピリミジル基、ジフェニルピリミジル基、ビフェニルピリミジル基、ナフチルピリミジル基、フェナントリルピリミジル基、またはアントラシルピリミジル基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、炭素数2〜10のアルキル基、および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい}であることが好ましい。
前記の好ましい置換基については、フェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ナフチリジル基、ベンゾキノリル基、フェナントリジル基、アクリジル基、フェナントロリル基、ビフェニル基、テルフェニル基、ナフチルフェニル基、フェナントリルフェニル基、アントラシルフェニル基、ピレニルフェニル基、ナフチルビフェニル基、フェナントリルビフェニル基、アントラシルビフェニル基、フェニルナフチル基、ビナフチル基、フェナントリルナフチル基、アントラシルナフチル基、フェニルアントラシル基、フェニルフェナントリル基、ピリジルフェニル基、ピリジルビフェニル基、ピリジルナフチル基、ピリジルアントラシル基、ピリジルフェナントリル基、キノリルフェニル基、キノリルビフェニル基、キノリルナフチル基、キノリルアントラシル基、キノリルフェナントリル基、イソキノリルフェニル基、イソキノリルビフェニル基、イソキノリルナフチル基、イソキノリルアントラシル基、イソキノリルフェナントリル基、ナフチリジルフェニル基、ナフチリジルビフェニル基、ベンゾキノリルフェニル基、フェナントリジルフェニル基、アクリジルフェニル基、フェナントロリルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ビフェニルピリジル基、ナフチルピリジル基、フェナントリルピリジル基、アントラシルピリジル基、フェニルキノリル基、ビフェニルキノリル基、フェニルイソキノリル基、ビフェニルイソキノリル基、ビピリジル基、キノリルピリジル基、イソキノリルピリジル基、ピリジルキノリル基、ピリジルイソキノリル基、フェニルビピリジル基、ビピリジルフェニル基、フェニルピリジルフェニル基、フェニルピリジルナフチル基、ジフェニルピリジルフェニル基、ジナフチルピリジルフェニル基、フェニルピリミジル基、ジフェニルピリミジル基、ビフェニルピリミジル基、ナフチルピリミジル基、フェナントリルピリミジル基、またはアントラシルピリミジル基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい}であることがより好ましい。
さらに、フェニル基、ナフチル基、アントラシル基、フェナントリル基、ピレニル基、ピリジル基、ピリミジル基、キノリル基、イソキノリル基、ナフチリジル基、ベンゾキノリル基、フェナントリジル基、アクリジル基、フェナントロリル基、ビフェニル基、テルフェニル基、ナフチルフェニル基、フェナントリルフェニル基、アントラシルフェニル基、フェニルナフチル基、フェニルアントラシル基、ピリジルフェニル基、ピリジルビフェニル基、ピリジルナフチル基、キノリルフェニル基、キノリルビフェニル基、イソキノリルフェニル基、イソキノリルビフェニル基、ナフチリジルフェニル基、ナフチリジルビフェニル基、ベンゾキノリルフェニル基、フェナントリジルフェニル基、アクリジルフェニル基、フェナントロリルフェニル基、フェニルピリジル基、ジフェニルピリジル基、ビフェニルピリジル基、ナフチルピリジル基、フェニルキノリル基、フェニルイソキノリル基、ビピリジル基、フェニルビピリジル基、ビピリジルフェニル基、フェニルピリジルフェニル基、ジフェニルピリジルフェニル基、フェニルピリミジル基、ジフェニルピリミジル基、ビフェニルピリミジル基またはナフチルピリミジル基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい}であることがより好ましい。
なお、ベンゼン環および/またはピリジン環が2〜5つ連結および/または縮環した6員環のみからなる芳香族基、およびベンゼン環および/またはピリジン環が2〜4つ連結および/または縮環した6員環のみからなる芳香族基については、特に限定するものではないが、前述のベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基において例示した置換基と同様の置換基を例示することができる。
Ar12、Ar13、Ar22およびAr23の好ましい置換基については、フェニル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基、5−フェニルピリミジン−2−イル基、4,6−ジフェニルピリミジン−2−イル基、5−ナフチルピリミジン−2−イル基、4,6−ジナフチルピリミジン−2−イル基、5−フェナントリルピリミジン−2−イル基、5−アントラシルピリミジン−2−イル基、5−ピレニルピリミジン−2−イル基、または(A1)〜(A19)、(A21)、(A28)、(A30)、(A32)、(A36)、(A38)、(A40)、(A42)〜(A60)、(A63)、(A64)、(A66)〜(A74)、(A76)、(A78)、(A80)、(A82)、(A84)、(A86)〜(A124)、(A129)、(A130)、(A145)〜(A154)、(A156)〜(A179)、(B1)、(B8)、(B10)、(B20)、(B26)〜(B28)、(B30)、(B33)、(B38)、(B52)、(B63)〜(B70)、(B79)〜(B82)、(B84)、(B85)、(B89)、(B93)、(B98)、(B109)、(B110)、(B117)、(B119)〜(B126)、もしくは(B129)〜(B137)で表される置換基がより好ましい。
また、これらの置換基のうち、フェニル基、2−ピリジル基、3−ピリジル基、4−ピリジル基、2−ピリミジル基、4−ピリミジル基、5−ピリミジル基、5−フェニルピリミジン−2−イル基、4,6−ジフェニルピリミジン−2−イル基、4,6−ジナフチルピリミジン−2−イル基、または(A1)〜(A19)、(A28)、(A30)、(A32)、(A36)、(A38)、(A40)、(A42)〜(A44)、(A47)、(A49)、(A51)、(A54)〜(A60)、(A63)、(A66)、(A67)、(A72)、(A73)、(A86)〜(A100)、(A103)〜(A118)、(A145)〜(A150)、(A156)〜(A176)、(B1)、(B26)、(B27)、(B33)、(B38)、(B52)、(B63)〜(B67)、(B79)〜(B81)、(B93)、(B98)、(B117)、(B119)〜(B126)、もしくは(B129)〜(B136)で表される置換基がより好ましい。
11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26は、各々独立に、水素原子、メチル基、メトキシ基、フェニル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基を表す。
11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26で示した、炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基、もしくはエステルアルキル基については、特に限定するものではないが、Ar11及びAr12で例示したものと同じものを例示することができる。
11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26については、化合物の有機電界発光素子材料として性能が良い点で、各々独立に、水素原子、メチル基、メトキシ基、フェニル基、またはフッ素原子であることが好ましく、水素原子、メチル基、メトキシ基、またはフェニル基であることがより好ましく、水素原子であることがより好ましい。
また、一般式(1−1)および一般式(1−2)中の各水素原子は各々独立に重水素原子であってもよい。
一般式(1−1)および一般式(1−2)については、特に限定するものではないが、次の(C1)〜(C508)で例示することができる。
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
Figure 2016020333
次に、本発明の製造方法について説明する。
本発明の化合物(1−1)および化合物(1−2)は、次の反応式
Figure 2016020333
(式(1−1)、(1−2)、(2−1)、(2−2)、(3−1)、(3−2)、(4−3)および(4−2)中、Z11、Z12、Z21およびZ22は、各々独立に脱離基を表し、M11、M12、M21およびM22は、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表し、その他の各記号については、前記と同じ定義である。)で示される方法で製造することができる。
一般式(2−1)で表される化合物を化合物(2−1)と称する。化合物(3−1)、化合物(4−1)、化合物(2−2)、化合物(3−2)、化合物(4−2)も同様である。なお、化合物(3−1)、化合物(4−1)、化合物(3−2)および化合物(4−2)は、例えば特開2008−280330号公報(0061)〜(0076)に開示されている方法を用いて製造することができる。
化合物(3−1)、化合物(4−1)、化合物(3−2)および化合物(4−2)としては、上述の(A1)〜(A186)および(B1)〜(B137)中の*をMに変えた化合物、および次の(D1)〜(D19)を例示できるが、本発明はこれらに限定されるものではない。尚、ここでのMは金属基、ボロン酸基、またはボロン酸エステル基を表す。
Figure 2016020333
以下、「工程1」について具体例を出して説明するが、本発明はこれらに限定されるものではない。
「工程1」は、化合物(1−1)または化合物(1−2)を合成する工程である。
化合物(1−1)は、金属触媒の存在下または金属触媒および塩基の存在下、化合物(2−1)と化合物(3−1)を反応させ、次いで化合物(4−1)を反応させることで、合成される。当該反応には、鈴木−宮浦反応、根岸反応、玉尾−熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
なお、当該「工程1」において、化合物(3−1)と化合物(4−1)については反応順序が逆になっても構わない。また、化合物(3−1)及び化合物(4−1)をワンポットで順次反応させてもよいし、化合物(3−1)を反応さえた段階で一度中間生成物を取り出し、別途化合物(4−1)を反応させることもできる。
化合物(1−2)は、金属触媒の存在下または金属触媒および塩基の存在下、化合物(2−2)と化合物(3−2)を反応させ、次いで化合物(4−2)を反応させることで、合成される。当該反応には、鈴木−宮浦反応、根岸反応、玉尾−熊田反応、スティレ反応等の、一般的なカップリング反応の反応条件を適用することにより、収率よく目的物を得ることができる。
なお、当該「工程1」において、化合物(3−2)と化合物(4−2)については反応順序が逆になっても構わない。また、化合物(3−2)及び化合物(4−2)をワンポットで順次反応させてもよいし、化合物(3−2)を反応さえた段階で一度中間生成物を取り出し、別途化合物(4−2)を反応させることもできる。
化合物(3−1)、化合物(4−1)、化合物(3−2)および化合物(4−2)における、M11、M12、M21およびM22の例としては、特に限定するものではないが、例えば、ZnA、MgA、Sn(A、B(OA等が挙げられる。但し、AおよびAは、各々独立に塩素原子、臭素原子またはヨウ素原子を表し、Aは、炭素数1から4のアルキル基またはフェニル基を表し、Aは水素原子、炭素数1から4のアルキル基またはフェニル基を表し、B(OAの2つのAは同一または異なっていてもよい。又、2つのAは一体となって酸素原子およびホウ素原子を含んで環を形成することもできる。
化合物(3−1)、化合物(4−1)、化合物(3−2)および化合物(4−2)におけるB(OAとしては、特に限定するものではないが、例えば、B(OH)、B(OMe)、B(OPr)、B(OBu)、B(OPh)等が例示できる。又、2つのAが一体となって酸素原子およびホウ素原子を含んで環を形成した場合のB(OAの例としては、次の(E1)から(E6)で示される基が例示でき、収率がよい点で(E2)で示される基が好ましい。
Figure 2016020333
化合物(2−1)および化合物(2−2)におけるZ11、Z12、Z21およびZ22で表される脱離基としては、特に限定するものではないが、例えば、塩素基、臭素基、ヨウ素基、トリフルオロメチルスルホニルオキシ(OTf)基、メタンスルホニルオキシ基、クロロメタンスルホニルオキシ基およびp−トルエンスルホニルオキシ基等を挙げることができる。
「工程1」で用いることのできる金属触媒としては、パラジウム触媒またはニッケル触媒等が挙げられる。
「工程1」で用いることのできるパラジウム触媒としては、特に限定するものではないが、例えば、塩化パラジウム、酢酸パラジウム、トリフルオロ酢酸パラジウム、硝酸パラジウム等の塩を例示することができる。さらに、π−アリルパラジウムクロリドダイマー、パラジウムアセチルアセトナト、トリス(ジベンジリデンアセトン)ジパラジウム、ジクロロビス(トリフェニルホスフィン)パラジウム、テトラキス(トリフェニルホスフィン)パラジウムおよびジクロロ[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム等の錯化合物を例示することができる。中でも、第三級ホスフィンを配位子として有するパラジウム錯体は反応収率がよい点で好ましい。
なお、第三級ホスフィンを配位子として有するパラジウム錯体は、パラジウム塩または錯化合物に第三級ホスフィンを添加し、反応系中で調製することもできる。この際用いることのできる第三級ホスフィンとしては、特に限定するものではないが、例えば、トリフェニルホスフィン、トリメチルホスフィン、トリブチルホスフィン、トリ(tert−ブチル)ホスフィン、トリシクロヘキシルホスフィン、tert−ブチルジフェニルホスフィン、9,9−ジメチル−4,5−ビス(ジフェニルホスフィノ)キサンテン、2−(ジフェニルホスフィノ)−2’−(N,N−ジメチルアミノ)ビフェニル、2−(ジ−tert−ブチルホスフィノ)ビフェニル、2−(ジシクロヘキシルホスフィノ)ビフェニル、ビス(ジフェニルホスフィノ)メタン、1,2−ビス(ジフェニルホスフィノ)エタン、1,3−ビス(ジフェニルホスフィノ)プロパン、1,4−ビス(ジフェニルホスフィノ)ブタン、1,1’−ビス(ジフェニルホスフィノ)フェロセン、トリ(2−フリル)ホスフィン、トリ(o−トリル)ホスフィン、トリス(2,5−キシリル)ホスフィン、(±)−2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル、2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル等が例示できる。入手容易であり、反応収率がよい点で、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニルが好ましい。
第三級ホスフィンとパラジウム塩または錯化合物とのモル比は、1:10から10:1が好ましく、反応収率がよい点で1:2から5:1がさらに好ましい。
また、「工程1」で用いることができるニッケル触媒としては、特に限定するものではないが、例えば、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]ニッケル(II)ジクロリド、[1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、[1,1’−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド、1,2−ビス(ジフェニルホスフィノ)エタン]ニッケル(II)ジクロリド、[1,3−ビス(ジフェニルホスフィノ)プロパン]ニッケル(II)ジクロリド等が挙げられる。
「工程1」で用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、リン酸三カリウム、リン酸ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム等を例示することができ、収率がよい点でリン酸三カリウムが望ましい。塩基と化合物(3)、化合物(4)および化合物(5)とのモル比は、各々1:2から10:1が望ましく、収率がよい点で1:1から3:1がさらに望ましい。
「工程1」は溶媒を用いることもでき、反応の制御の点で溶媒を用いることが好ましい。「工程1」で用いることのできる溶媒としては、特に限定するものではないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノールまたはキシレン等が例示でき、これらを適宜組み合わせて用いてもよい。収率がよい点でジオキサンおよび水の混合溶媒、テトラヒドロフランおよび水の混合溶媒を用いることが望ましい。
「工程1」は、0℃から150℃から適宜選ばれた温度で実施することができ、収率がよい点で80℃から100℃で行うことがさらに望ましい。
化合物(1−1)および化合物(1−2)は、「工程1」の終了後に当業者によって行われる通常の処理(分離操作等)をすることで得られる。さらに必要に応じて、再結晶、カラムクロマトグラフィーまたは昇華等で精製してもよい。
本発明の化合物(2−1)および化合物(2−2)は、次の反応式で示される方法で製造することができる。
Figure 2016020333
(式中、W11、W12、W13、W21、W22およびW23は、ピリミジン環形成反応を実施する際に必要な置換基を表す。それ以外の各記号で表される置換基については前述したものと同じである。)
以下、一般式(5−1)で表される化合物を化合物(5−1)と称する。化合物(5−2)、化合物(6−1)、化合物(6−2)も同様である。
以下、「工程2」について具体例を出して説明するが、本発明はこれらに限定されるものではない。
「工程2」は、化合物(2−1)もしくは化合物(2−2)を得る工程である。
化合物(2−1)は、触媒の存在下、酸の存在下、塩基の存在下、触媒および酸の存在下、または触媒及び塩基の存在下であって、窒素源の存在下または非存在下に、化合物(5−1)と化合物(6−1)を反応させることによって、合成される。
化合物(2−2)は、触媒の存在下、酸の存在下、塩基の存在下、触媒および酸の存在下、または触媒及び塩基の存在下であって、窒素源の存在下または非存在下に、化合物(5−2)と化合物(6−2)を反応させることによって、合成される。
化合物(5−1)、化合物(5−2)、化合物(6−1)および化合物(6−2)におけるW11、W12、W13、W21、W22およびW23で表されるピリミジン環形成反応を実施する際に必要な置換基の例としては、特に限定するものではないが、例えば、ホルミル基、カルボニル基、カルボキシル基、エステル基、アミド基、アミノ基、イミノ基、アミジル基もしくはその塩酸塩、ニトリル基、ハロゲン等が挙げられる。このうち、合成の容易性の点で、アミジル基もしくはその塩酸塩、ホルミル基、ニトリル基、カルボニル基、アミノ基、イミノ基が好ましい。
「工程2」で用いることのできる酸としては、特に限定するものではないが、例えば、塩酸、硫酸、硝酸、リン酸、酢酸、無水酢酸、ギ酸、シュウ酸、塩化アンモニウム、フルオロスルホン酸、ベンゼンスルホン酸、p−トルエンスルホン酸等を例示することができる。
「工程2」で用いることのできる塩基としては、特に限定するものではないが、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸リチウム、炭酸セシウム、リン酸三カリウム、リン酸三ナトリウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ナトリウムメトキシド、カリウムメトキシド、ナトリウムエトキシド、カリウムエトキシド等を例示することができる。
「工程2」で用いることのできる触媒としては、特に限定するものではないが、例えば、ハロゲン、ルイス酸、ルイス塩基、もしくは触媒量の上記の酸、塩基等が挙げられる。前記ハロゲンとしては、ヨウ素、臭素、塩素等が挙げられる。前記ルイス酸、及び前記ルイス塩基としてはインジウム、イッテルビウム、亜鉛、銅、鉄、ハフニウム、アルミニウムなどの金属錯体などが挙げられる。
「工程2」で用いることのできる窒素源としては、特に限定するものではないが、例えば、酢酸アンモニウム、塩化アンモニウム、ギ酸アンモニウム、硫酸アンモニウム、硝酸アンモニウム、炭酸アンモニウム、ヨウ化アンモニウム、フッ化アンモニウム、炭酸水素アンモニウム、リン酸二水素アンモニウム、ベンゼンスルホン酸アンモニウム、またはp−トルエンスルホン酸アンモニウム等が挙げられる。
「工程2」は溶媒を用いることもでき、反応の制御の点で溶媒を用いることが好ましい。「工程2」で用いることのできる溶媒として、特に限定するものではないが、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノールまたはキシレン等が挙げられる。
「工程2」は、0℃から150℃から適宜選ばれた温度で実施することができる。
化合物(2−1)および化合物(2−2)は、「工程2」の終了後に当業者が行う通常の処理(分離操作等)をすることで得られる。必要に応じて、再結晶、カラムクロマトグラフィーまたは昇華等で精製してもよい。
また、本発明の化合物(2−1)および化合物(2−2)は、次の反応式
Figure 2016020333
(式中の各記号で表される置換基は前述したものと同じである。)
で示される方法でも製造することができる。
一般式(7−1)で表される化合物を化合物(7−1)と称する。化合物(7−2)、化合物(8−1)、化合物(8−2)も同様である。
「工程3」は、化合物(8−1)または化合物(8−2)を得る工程である。
化合物(8−1)は、触媒の存在下、酸の存在下、塩基の存在下、触媒および酸の存在下、または触媒および塩基の存在下であって、窒素源の存在下または非存在化に、化合物(5−1)と化合物(7−1)を反応させることによって、合成される。
化合物(8−2)は、触媒の存在下、酸の存在下、塩基の存在下、触媒および酸の存在下、または触媒および塩基の存在下であって、窒素源の存在下または非存在化に、化合物(5−2)と化合物(7−2)を反応させることによって、合成される。
「工程3」における反応条件は工程2と同様である。
「工程3」で得られた化合物(7−1)または化合物(7−2)については、精製することなく、または再結晶、カラムクロマトグラフィーまたは昇華等で精製した後、「工程4」の原料として用いることができる。
以下、「工程4」について具体例を出して説明するが、本発明はこれらに限定されるものではない。
「工程4」は、化合物(2−1)または化合物(2−2)を得る工程である。
化合物(2−1)は、酸化剤の存在下であって、酸の存在下または塩基の存在下に、化合物(8−1)のジヒドロベンゾキナゾリル基を酸化させることによって合成される。
化合物(2−2)は、酸化剤の存在下であって、酸の存在下または塩基の存在下に、化合物(8−2)のジヒドロベンゾキナゾリル基を酸化させることによって合成される。
「工程4」で用いることのできる酸化剤としては、過マンガン酸カリウム、二酸化マンガン、酸化クロム(IV)、ニクロム酸ナトリウム、ニクロム酸カリウム、クロム酸カリウム、クロム酸エステル、過酸化水素、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ)、テトラクロロ−1,4−ベンゾキノン(クロラニル)、テトラクロロ−1,2−ベンゾキノン(o−クロラニル)、またはニトロベンゼン等が挙げられる。
「工程4」で用いることのできる酸または塩基としては、「工程2」で挙げた化合物を用いることができる。
「工程4」は溶媒を用いることもでき、反応の制御の点で溶媒を用いることが好ましい。「工程4」で用いることのできる溶媒としては、特に限定するものではないが、水、ジメチルスルホキシド、ジメチルホルムアミド、テトラヒドロフラン、ジオキサン、トルエン、ベンゼン、ジエチルエーテル、エタノール、メタノールまたはキシレン等が挙げられる。
「工程4」は、0℃から150℃から適宜選ばれた温度で実施することができる。
化合物(2−1)および化合物(2−2)は、「工程4」の終了後に当業者が行う通常の処理(分離操作等)をすることで得られる。さらに必要に応じて、再結晶、カラムクロマトグラフィーまたは昇華等で精製してもよい。
本願の一般式(1−1)または一般式(1−2)で示されるベンゾキナゾリン化合物は、有機電界発光素子用材料として好適に用いられるものである。
さらに、本願の一般式(1−1)または一般式(1−2)で示されるベンゾキナゾリン化合物は、有機電界発光素子用の電子輸送材料又は電子注入材料として好適に用いられるものである。
本発明の一般式(1−1)または一般式(1−2)で示されるベンゾキナゾリン化合物を含有する有機電界発光素子用薄膜の製造方法に特に限定はないが、好ましい例としては真空蒸着法による成膜を挙げることができる。真空蒸着法による成膜は、汎用の真空蒸着装置を用いることにより行うことができる。真空蒸着法で膜を形成する際の真空槽の真空度は、有機電界発光素子作製の製造タクトタイムが短く製造コストが優位である点で、一般的に用いられる拡散ポンプ、ターボ分子ポンプ、クライオポンプ等により到達し得る1×10−2〜1×10−6Pa程度が好ましく、より好ましくは1×10−3〜10−6Paである。蒸着速度は形成する膜の厚さによるが0.005〜10nm/秒が好ましく、より好ましくは0.01〜1nm/秒である。また、溶液塗布法によっても化合物Aから成る有機電界発光素子用薄膜を製造することが出来る。例えば、化合物Aを、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、クロロベンゼン、トルエン、酢酸エチル又はテトラヒドロフラン等の有機溶媒に溶解し、汎用の装置を用いたスピンコート法、インクジェット法、キャスト法又はディップ法等による成膜も可能である。
本発明の効果がえられる有機電界発光素子の典型的な構造としては、基板、陽極、正孔入層、正孔輸送層発光層、電子輸送層、及び陰極を含む。
有機電界発光素子の陽極及び陰極は、電気的な導体を介して電源に接続されている。陽極と陰極との間に電位を加えることにより、有機電界発光素子は作動する。正孔は陽極から有機電界発光素子内に注入され、そして電子は陰極で有機電界発光素子内に注入される。
有機電界発光素子は典型的には基板に被せられ、陽極又は陰極は基板と接触することができる。基板と接触する電極は便宜上、下側電極と呼ばれる。一般的には、下側電極は陽極であるが、本発明の有機電界発光素子においてはそのような形態に限定されるものではない。基板は、意図される発光方向に応じて、光透過性又は不透明であってよい。光透過特性は、基板を通してエレクトロルミネッセンス発光を見るのに望ましい。透明ガラス又はプラスチックがこのような基盤として一般に採用される。基板は、多重の材料層を含む複合構造であってよい。
エレクトロルミネッセンス発光が陽極を通して見られる場合、陽極が当該発光を通すか又は実質的に通すべきである。本発明において使用される一般的な透明アノード(陽極)材料は、インジウム−錫酸化物(ITO)、インジウム−亜鉛酸化物(IZO)、又は酸化錫であるが、しかしその他の金属酸化物、例えばアルミニウム又はインジウム・ドープ型酸化錫、マグネシウム−インジウム酸化物、又はニッケル−タングステン酸化物も役立つ。これらの酸化物に加えて、金属窒化物、例えば窒化ガリウム、金属セレン化物、例えばセレン化亜鉛、又は金属硫化物、例えば硫化亜鉛を陽極として使用することができる。陽極は、プラズマ蒸着されたフルオロカーボンで改質することができる。陰極を通してだけエレクトロルミネッセンス発光が見られる用途の場合、陽極の透過特性は重要ではなく、透明、不透明又は反射性の任意の導電性材料を使用することができる。この用途のための導体の一例としては、金、イリジウム、モリブデン、パラジウム及び白金が挙げられる。
陽極と正孔輸送層との間に正孔注入層が設けることができる。正孔注入材料は、後続の有機層の膜形成特性を改善し、そして正孔輸送層内に正孔を注入するのを容易にするのに役立つことができる。正孔注入層内で使用するのに適した材料の一例としては、ポルフィリン化合物、プラズマ蒸着型フルオロカーボン・ポリマー、及びビフェニル基、カルバゾール基等芳香環を有するアミン、例えばm−MTDATA(4,4’,4’’−トリス[(3−メチルフェニル)フェニルアミノ]トリフェニルアミン)、2T−NATA(4,4’,4’’−トリス[(N−ナフタレン−2−イル)−N−フェニルアミノ]トリフェニルアミン)、トリフェニルアミン、トリトリルアミン、トリルジフェニルアミン、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、N,N,N’N’−テトラキス(4−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミン、MeO−TPD(N,N,N’N’−テトラキス(4−メトキシフェニル)−1,1’−ビフェニル−4,4’−ジアミン)、N,N’−ジフェニル−N,N’−ジナフチル−1,1’−ビフェニル−4,4’−ジアミン、N,N’−ビス(メチルフェニル)−N,N’−ビス(4−ノルマルブチルフェニル)フェナントレン−9,10−ジアミン、又はN,N’−ジフェニル−N,N’−ビス(9−フェニルカルバゾール−3−イル)−1,1’−ビフェニル−4,4’−ジアミン等が挙げられる。
有機電界発光素子の正孔輸送層は、1種以上の正孔輸送化合物、例えば芳香族第三アミンを含有することが好ましい。芳香族第三アミンは、1つ以上の三価窒素原子を含有する化合物であることを意味し、この三価窒素原子は炭素原子だけに結合されており、これらの炭素原子の1つ以上が芳香族環を形成している。具体的には、芳香族第三アミンは、アリールアミン、例えばモノアリールアミン、ジアリールアミン、トリアリールアミン、又は高分子アリールアミンであってよい。
正孔輸送材料としては、1つ以上のアミン基を有する芳香族第三アミンを使用することができる。さらに、高分子正孔輸送材料を使用することができる。例えばポリ(N−ビニルカルバゾール)(PVK)、ポリチオフェン、ポリピロール、又はポリアニリン等を使用することができる。例えば、NPD(N,N’−ビス(ナフタレン−1−イル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン)、α−NPD(N,N’−ジ(1−ナフチル)−N,N’−ジフェニル−1,1’−ビフェニル−4,4’ −ジアミン)、TPBi(1,3,5−トリス(1−フェニル−1H−ベンズイミダゾール−2−イル)ベンゼン)、又はTPD(N,N’−ビス(3−メチルフェニル) −N,N’−ジフェニル−1,1’−ビフェニル−4,4’−ジアミン)等が挙げられる。
正孔注入層と正孔輸送層の間に、電荷発生層としてジピラジノ[2,3−f:2’,3’−h]キノキサリン−2,3,6,7,10,11−ヘキサカルボニトリル(HAT−CN)を含む層を設けてもよい。
有機電界発光素子の発光層は、燐光材料又は蛍光材料を含み、この場合、この領域で電子・正孔対が再結合された結果として発光を生じる。発光層は、低分子及びポリマー双方を含む単一材料から成っていてよいが、しかし、より一般的には、ゲスト化合物でドーピングされたホスト材料から成っており、この場合、発光は主としてドーパントから生じ、そして任意の色を有することができる。
発光層のホスト材料としては、例えば、ビフェニル基、フルオレニル基、トリフェニルシリル基、カルバゾール基、ピレニル基、又はアントラニル基を有する化合物が挙げられる。例えば、DPVBi(4,4’−ビス(2,2−ジフェニルビニル)−1,1’−ビフェニル)、BCzVBi(4,4’−ビス(9−エチル−3−カルバゾビニレン)1,1’−ビフェニル)、TBADN(2−ターシャルブチル−9,10−ジ(2−ナフチル)アントラセン)、ADN(9,10−ジ(2−ナフチル)アントラセン)、CBP(4,4’−ビス(カルバゾール−9−イル)ビフェニル)、CDBP(4,4’−ビス(カルバゾール−9−イル)−2,2’−ジメチルビフェニル)、又は9,10−ビス(ビフェニル)アントラセン等が挙げられる。
発光層内のホスト材料は、下記に定義する電子輸送材料、上記に定義する正孔輸送材料、又は正孔・電子再結合をサポートする別の材料又はこれら材料の組み合わせであってよい。
有用な蛍光ドーパントの一例としては、アントラセン、テトラセン、キサンテン、ペリレン、ルブレン、クマリン、ローダミン及びキナクリドン、ジシアノメチレンピラン化合物、チオピラン化合物、ポリメチン化合物、ピリリウム、又はチアピリリウム化合物、フルオレン誘導体、ペリフランテン誘導体、インデノペリレン誘導体、ビス(アジニル)アミンホウ素化合物、ビス(アジニル)メタン化合物、及びカルボスチリル化合物等が挙げられる。
有用な燐光ドーパントの一例としては、イリジウム、白金、パラジウム又はオスミウムの遷移金属の有機金属錯体が挙げられる。
ドーパントの一例として、Alq(トリス(8−ヒドロキシキノリン)アルミニウム))、DPAVBi(4,4’−ビス[4−(ジ−パラ−トリルアミノ)スチリル] ビフェニル)、ペリレン、Ir(PPy)(トリス(2−フェニルピリジン)イリジウム(III)、又はFlrPic(ビス(3,5−ジフルオロ−2−(2−ピリジル)フェニル−(2−カルボキシピリジル)イリジウム(III)等が挙げられる。
本発明の有機電界発光素子の電子輸送層を形成するのに使用する薄膜形成材料は、本願の一般式(1−1)または一般式(1−2)で示されるベンゾキナゾリン化合物である。なお、当該電子輸送層には、他の電子輸送性材料を含んでいても良く、当該電子輸送性材料としては、アルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体等が挙げられる。望ましいアルカリ金属錯体、アルカリ土類金属錯体、土類金属錯体としては、例えば、8−ヒドロキシキノリナートリチウム(Liq)、ビス(8−ヒドロキシキノリナート)亜鉛、ビス(8−ヒドロキシキノリナート)銅、ビス(8−ヒドロキシキノリナート)マンガン、トリス(8−ヒドロキシキノリナート)アルミニウム、トリス(2−メチル−8−ヒドロキシキノリナート)アルミニウム、トリス(8−ヒドロキシキノリナート)ガリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10−ヒドロキシベンゾ[h]キノリナート)亜鉛、ビス(2−メチル−8−キノリナート)クロロガリウム、ビス(2−メチル−8−キノリナート)(o−クレゾラート)ガリウム、ビス(2−メチル−8−キノリナート)−1−ナフトラートアルミニウム、又はビス(2−メチル−8−キノリナート)−2−ナフトラートガリウム等が挙げられる。
発光層と電子輸送層との間に、キャリアバランスを改善させる目的で、正孔阻止層を設けてもよい。正孔素子層として望ましい化合物は、BCP(2,9−ジメチル−4,7−ジフェニル−1,10−フェナントロリン)、Bphen(4,7−ジフェニル−1,10−フェナントロリン)、BAlq(ビス(2−メチル−8−キノリノラート)−4−(フェニルフェノラート)アルミニウム)、又はビス(10−ヒドロキシベンゾ[h]キノリナート)ベリリウム)等が挙げられる。
本発明の有機電界発光素子においては、電子注入性を向上させ、素子特性(例えば、発光効率、定電圧駆動、又は高耐久性)を向上させる目的で、電子注入層を設けてもよい。
電子注入層として望ましい化合物としては、フルオレノン、アントラキノジメタン、ジフェノキノン、チオピランジオキシド、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、ペリレンテトラカルボン酸、フレオレニリデンメタン、アントラキノジメタン、又はアントロン等が挙げられる。また、上記に記した金属錯体やアルカリ金属酸化物、アルカリ土類酸化物、希土類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ハロゲン化物、希土類ハロゲン化物、SiO、AlO、SiN、SiON、AlON、GeO、LiO、LiON、TiO、TiON、TaO、TaON、TaN、Cなど各種酸化物、窒化物、及び酸化窒化物のような無機化合物(ここで示したxは、正の実数を表す)も使用できる。
発光が陽極を通してのみ見られる場合、本発明において使用される陰極は、ほぼ任意の導電性材料から形成することができる。望ましい陰極材料としては、ナトリウム、ナトリウム−カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
以下、実験例および試験例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
実験例−1(実施例)
Figure 2016020333
α−テトラロン 7.31g(50.0mmol)、ベンズアルデヒド 5.31g(50.0mmol)を酢酸 100mLに加え、そこに濃硫酸 24.5g(250mmol)を加え、14時間撹拌した。ついで、反応混合物に水 200mLを加えた。析出した固体を濾取し、水で洗浄することで目的の2−ベンジリデン−3,4−ジヒドロ−2H−ナフタレン−1−オン(A−1)の薄褐色粉末(収量10.6g、収率91%)を得た。
H−NMR(CDCl)、δ(ppm):2.98(t,J=6.5Hz,2H),3.16(t,J=6.5Hz,2H),7.28(d,J=7.5Hz,1H),7.33−7.49(m,6H),7.52(t,J=7.5Hz,1H),7.90(s,1H),8.16(d,J=7.8Hz,1H).
2−ベンジリデン−3,4−ジヒドロ−2H−ナフタレン−1−オン(A−1) 7.26g(31.0mmol)、3−ブロモ−5−クロロベンズアミジン塩酸塩 2.70g(10.0mmol)をエタノール 10mLに加え、そこに水酸化カリウム 1.12g(20.0mmol)のエタノール溶液 15mLを加え、18時間還流した。室温まで放冷後、水を加え、析出した固体を濾取することで、目的の2−(3−ブロモ−5−クロロフェニル)−4−フェニル−5,6−ジヒドロベンゾ[h]キナゾリン(A−2)の薄黄色粉体(収量3.96g、収率88%)を得た。
H−NMR(CDCl)、δ(ppm):2.94(t,J=7.2Hz,2H),3.13(t,J=7.2Hz,2H),7.30(d,J=6.4Hz,1H),7.45−7.60(m,5H),7.63(s,1H),7.73(d,J=7.7Hz,2H),8.58(d,J=6.8Hz,1H),8.60(s,1H),8.70(s,1H).
2−(3−ブロモ−5−クロロフェニル)−4−フェニル−5,6−ジヒドロベンゾ[h]キナゾリン(A−2) 3.00g(6.7mmol)、2,3−ジクロロ−5,6−ジシアノ−1,4−ベンゾキノン(DDQ) 3.04g(13.4mmol)をo−ジクロロベンゼン 33mLに加え、120℃で3時間加熱撹拌した。室温まで放冷後、析出した固体を濾取し、トルエン、メタノールで洗浄した。得られた固体をトルエンで再結晶することで、目的の2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3)の白色粉体(収量1.22g、収率41%)を得た。
H−NMR(CDCl)、δ(ppm):7.64−7.67(m,3H),7.68(s,1H),7.85−7.88(m,3H),7.91−7.93(m,2H),7.95−7.99(m,1H),8.00(d,J=9.1Hz,1H),8.79(s,1H),8.90(s,1H),9.52−9.55(m,1H).
実験例−2(実施例)
Figure 2016020333
アルゴン気流下、ヨウ化銅 554mg(2.91mmol)、及び1,10−フェナントロリン 577mg(3.20mmol)をDMF 58mLに加え、ベンゾニトリル 3.00g(29.1mmol)、α−テトラロン 4.25g(29.1mmol)、及びナトリウム−t−ブトキシド 16.0g(116mmol)を加え、10時間80℃で撹拌した。室温まで放冷後、水を加えて析出した固体を濾取し、水、およびヘキサンで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の2−(α−アミノベンジリデン)−3,4−ジヒドロ−2H−ナフタレン−1−オン(A’−1)の薄褐色粉末(収量4.46g、収率61%)を得た。
H−NMR(CDCl)、δ(ppm):2.50(t,J=6.6Hz,2H),2.75(t,J=6.6Hz,2H),7.15(d,J=7.2Hz,1H),7.35(td,J=7.6Hz,1.5Hz,1H),7.36(dd,J=7.2Hz,1.5Hz,1H),7.39−7.48(m,5H),8.06(dd,J=7.5Hz,1.7Hz,1H).
アルゴン気流下、2−(α−アミノベンジリデン)−3,4−ジヒドロ−2H−ナフタレン−1−オン(A’−1) 232mg(0.924mmol)、3−ブロモ−5−クロロベンゾニトリル 300mg(1.39mmol)、及びリン酸三カリウム 588mg(2.77mmol)をDMF 3mLに加え、80℃で17時間加熱撹拌した。室温まで放冷後、水を加えて析出した固体を濾取し、水、およびメタノールで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム)で精製し、目的の2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3)の白色粉体(収量103mg、収率25%)を得た。
実験例−3(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 1.20g(2.69mmol)、4−(2−ピリジル)フェニルボロン酸 1.18g(5.92mmol)、酢酸パラジウム 12.1mg(0.0548mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 76.9mg(0.161mmol)をTHF 19mLに加え、さらに3M−炭酸カリウム水溶液 4.0mLを添加し、14時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、水、メタノール、およびヘキサンで洗浄することで、目的の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)の薄褐色粉末(収量1.72g,収率100%)を得た。
H−NMR(CDCl)、δ(ppm):7.29(dd,J=7.1,4.8Hz,2H),7.63−7.69(m,3H),7.80−7.89(m,7H),7.95−8.00(m,7H),8.04(d,J=9.1Hz,1H),8.10(s,1H),8.21(d,J=8.4Hz,4H),8.77(d,J=4.8Hz,2H),9.17(s,2H),9.60−9.62(m,1H).
実験例−4(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 1.11g(2.5mmol)、1−ピレンボロン酸 738mg(3.0mmol)、及びビス(トリフェニルホスフィノ)パラジウム(II)ジクロリド 35.1mg(0.050mmol)をTHF 25mLに加え、さらに3M−炭酸カリウム水溶液 2.0mLを添加し、13時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をo−キシレン 25mLで再結晶することで目的の2−[3−クロロ−5−(1−ピレニル)フェニル]−4−フェニルベンゾ[h]キナゾリン(B−1)の灰色粉末(収量1.12g、収率79%)を得た。
H−NMR(CDCl)、δ(ppm):7.61−7.64(m,3H),7.77−7.83(m,3H),7.85(d,J=9.1Hz,1H),7.92−7.94(m,2H),7.96(d,J=8.3Hz,1H),8.02(d,J=9.1Hz,1H),8.07(t,J=7.6Hz,1H),8.10(d,J=9.5Hz,1H),8.14(d,J=7.8Hz,1H),8.17(s,2H),8.21−8.29(m,3H),8.32(d,J=7.8Hz,1H),8.97−9.01(m,2H),9.50(d,J=7.6Hz,1H).
アルゴン気流下、2−[3−クロロ−5−(1−ピレニル)フェニル]−4−フェニルベンゾ[h]キナゾリン(B−1) 1.10g(1.94mmol)、4−(2−ピリジル)フェニルボロン酸 425mg(2.13mmol)、酢酸パラジウム 8.7mg(0.039mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 55.8mg(0.117mmol)をTHF 19mLに加え、さらに3M−炭酸カリウム水溶液 1.4mLを添加し、6時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエンで再結晶することで、目的の4−フェニル−2−[5−(1−ピレニル)−4’−(2−ピリジル)ビフェニル−3−イル]ベンゾ[h]キナゾリン(B−2)の薄褐色粉末(収量1.19g,収率90%)を得た。
H−NMR(CDCl)、δ(ppm):7.26−7.29(m,1H),7.54−7.64(m,4H),7.78−7.85(m,3H),7.94−7.96(m,3H),8.03(d,J=9.2Hz,2H),8.06−8.23(m,9H),8.26(d,J=7.5Hz,1H),8,31−8.39(m,4H),8.91(d,J=4.6Hz,1H),9.15(s,1H),9.29(s,1H),9.53−9.56(m,1H).
実験例−5(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 5.0g(11.2mmol)、9−フェナントレンボロン酸 2.62g(11.8mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム 259mg(0.224mmol)をTHF 110mLに加え、さらに3M−炭酸カリウム水溶液 7.48mLを添加し、22時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 70mLで再結晶することで目的の2−[3−クロロ−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−1)の灰色粉末(収量5.26g、収率86%)を得た。
H−NMR(CDCl)、δ(ppm):7.56−7.62(m,4H),7.64−7.74(m,4H),7.75−7.83(m,4H),7.89−8.00(m,6H),8.77(d,J=8.4Hz,1H),8.82(d,J=8.0Hz,1H),8.89(t,J=1.2Hz,1H),8.94(t,J=1.6Hz,1H),9.48(dd,J=7.6Hz,1.6Hz,1H).
アルゴン気流下、2−[3−クロロ−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−1) 1.00g(1.84mmol)、5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2−フェニルピリジン 569mg(2.02mmol)、酢酸パラジウム 8.3mg(0.037mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 52.6mg(0.110mmol)をTHF 35mLに加え、さらに3M−炭酸カリウム水溶液 1.2mLを添加し、16時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 200mLで再結晶することで、目的の2−[3−(9−フェナントリル)−5−(6−フェニルピリジン−3−イル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−2)の白色粉末(収量872mg,収率72%)を得た。
H−NMR(CDCl)、δ(ppm):7.45(t,J=7.3Hz,1H),7.52(t,J=8.0Hz,2H),7.57−7.63(m,4H),7.67(t,J=7.3Hz,1H),7.72(t,J=7.7Hz,2H),7.78−7.84(m,3H),7.88−8.02(m,8H),8.09(t,J=8.7Hz,3H),8,20(dd,J=7.7Hz,2.3Hz,1H),8.79(d,J=8.0Hz,1H),8.84(d,J=8.0Hz,1H),9.05(t,J=1.6Hz,1H),9.23(d,J=1.9Hz,1H),9.26(t,J=1.5Hz,1H),9.52(dd,J=7.3Hz,2.3Hz,1H).
実験例−6(実施例)
Figure 2016020333
アルゴン気流下、2−[3−クロロ−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−1) 1.00g(1.84mmol)、4−ビフェニルボロン酸 401mg(2.03mmol)、酢酸パラジウム 8.4mg(0.037mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 35.7mg(0.074mmol)をTHF 37mLに加え、さらに3M−炭酸カリウム水溶液 1.2mLを添加し、38時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 200mLで2回再結晶することで、目的の2−[5−(9−フェナントリル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(C−3)の白色粉末(収量673mg,収率55%)を得た。
H−NMR(CDCl)、δ(ppm):7.37(t,J=7.3Hz,1H),7.47(t,J=7.6Hz,2H),7.56−7.63(m,4H),7.64−7.83(m,10H),7.92−8.02(m,9H),8.09(d,J=8.2Hz,1H),8.79(d,J=8.2Hz,1H),8.84(d,J=8.5Hz,1H),9.00(t,J=1.5Hz,1H),9.23(t,J=1.8Hz,1H),9.53(dd,J=6.4Hz,1.7Hz,1H).
実験例−7(実施例)
Figure 2016020333
アルゴン気流下、2−[3−クロロ−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−1) 820mg(1.51mmol)、3−ピリジンボロン酸 223mg(1.81mmol)、酢酸パラジウム 6.8mg(0.030mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 43.1mg(0.091mmol)をTHF 30mLに加え、さらに3M−炭酸カリウム水溶液 1.0mLを添加し、38時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 15mLで再結晶することで、目的の2−[3−(9−フェナントリル)−5−(3−ピリジル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−4)の白色粉末(収量689mg,収率78%)を得た。
H−NMR(CDCl)、δ(ppm):7.44(dd,J=7.9Hz,4.8Hz,1H),7.56−7.62(m,4H),7.65(t,J=7.1Hz,1H),7.69−7.74(m,2H),7.75−7.83(m,3H),7.90−7.94(m,5H),7.97(t,J=7.7Hz,1H),8.00(d,J=9.0Hz,1H),8.04(d,J=8.2Hz,1H),8.13(dt,J=8.2Hz,1.8Hz,1H),8.65(dd,J=4.8Hz,1.8Hz,1H),8.78(d,J=8.1Hz,1H),8.83(d,J=8.4Hz,1H),9.05(t,J=1.6Hz,1H),9.12(d,J=1.6Hz,1H),9.18(t,J=1.6Hz,1H),9.50(dd,J=7.1Hz,2.4Hz,1H).
実験例−8(実施例)
Figure 2016020333
アルゴン気流下、2−[3−クロロ−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−1) 1.50g(2.76mmol)、ビス(ビナコラト)ジボロン 912mg(3.59mmol)、ビス(ジベンジリデンアセトン)パラジウム 51mg(0.055mmol)、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 53mg(0.110mmol)、及び酢酸カリウム 542mg(5.52mmol)をTHF 50mLに加え、20時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄することで目的の2−[3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(D−1)の灰色粉末(収量1.28g、収率73%)を得た。
H−NMR(CDCl)、δ(ppm):1.14(s,12H),7.52−7.61(m,4H),7.64(t,J=7.6Hz,1H),7.67−7.72(m,2H),7.73−7.81(m,3H),7.84(s,1H),7.90−7.99(m,6H),8.13(t,J=1.5Hz,1H),8.76(d,J=8.3Hz,1H),8.81(d,J=8.0Hz,1H),9.08(t,J=1.8Hz,1H),9.29(t,J=1.5Hz,1H),9.52(dd,J=6.8Hz,2.0Hz,1H).
アルゴン気流下、2−[3−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(D−1) 1.00g(1.58mmol)、3−ブロモー2,6−ジメチルピリジン 323mg(1.73mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム 36.5mg(0.035mmol)をTHF 32mLに加え、さらに3M−炭酸カリウム水溶液 1.1mLを添加し、40時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をヘキサン:クロロホルム=9:1の混合溶媒 50mLで洗浄することで、目的の2−[3−(2,6−ジメチルピリジン−3−イル)−5−(9−フェナントリル)フェニル]−4−フェニルベンゾ[h]キナゾリン(D−2)の白色粉末(収量809mg,収率84%)を得た。
H−NMR(CDCl)、δ(ppm):2.62(s,3H),2.70(s,3H),7.13(d,J=7.7Hz,1H),7.56−7.60(m,4H),7.63−7.77(m,6H),7.77−7.82(m,2H),7.89−7.93(m4H),7.96(d,J=7.7Hz,1H),8.00(d,J=9.3Hz,1H),8.06(d,J=8.4Hz,1H),8.77(d,J=8.0Hz,1H),8.83(d,J=8.0Hz,1H),8.89(t,J=1.9Hz,1H),9.00(t,J=1.9Hz,1H),9.47(d,J=7.7Hz,1H).
実験例−9(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 8.44g(18.9mmol)、フェニルボロン酸 2.42g(19.9mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム 97.1mg(0.379mmol)をTHF 189mLに加え、さらに3M−炭酸カリウム水溶液 12.6mLを添加し、24時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 100mLで再結晶することで目的の2−(5−クロロビフェニル−3−イル)−4−フェニルベンゾ[h]キナゾリン(E−1)の灰色粉末(収量7.54g、収率90%)を得た。
H−NMR(CDCl)、δ(ppm):7.43(t,J=7.5Hz,1H),7.54(t,J=7.5Hz,2H),7.59−7.66(m,3H),7.72−7.76(m,3H),7.81−7.85(m,3H),7.90−7.96(m,3H),7.99(d,J=9.0Hz,1H),8.80(t,J=1.9Hz,1H),8.95(t,J=1.5Hz,1H),9.54(d,J=9.0Hz,1H).
アルゴン気流下、2−[5−クロロビフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(E−1) 7.54g(17.0mmol)、4−(4,6−ジフェニルピリジン−2−イル)フェニルボロン酸 6.58g(18.7mmol)、酢酸パラジウム 76.0mg(0.340mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 324mg(0.681mmol)をTHF 340mLに加え、さらに3M−炭酸カリウム水溶液 11.3mLを添加し、24時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 100mLで2回再結晶することで、目的の4−フェニル−2−[4−(4,6−ジフェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]−ベンゾ[h]キナゾリン(E−2)の白色粉末(収量11.6g,収率96%)を得た。
H−NMR(CDCl)、δ(ppm):7.44−7.50(m,2H),7.51−7.59(m,7H),7.61−7.67(m,3H),7.79−7.87(m,7H),7.93−8.02(m,8H),8.05(t,J=1.8Hz,1H),8.26(dd,J=8.3Hz,1.4Hz,2H),8,39(d,J=8.4Hz,2H),9.09(t,J=1.6Hz,1H),9.15(t,J=1.6Hz,1H),9.60(dd,J=7.0Hz,2.4Hz,1H).
実験例−10(実施例)
Figure 2016020333
アルゴン気流下、2−[5−クロロビフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(E−1) 3.66g(8.26mmol)、ビス(ビナコラト)ジボロン 2.73g(10.7mmol)、ビス(ジベンジリデンアセトン)パラジウム 151mg(0.165mmol)、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 158mg(0.331mmol)、及び酢酸カリウム 1.62g(16.5mmol)をTHF 165mLに加え、17時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 100mLおよびメタノール 100mLの混合溶媒で再結晶することで、目的の2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ビフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(F−1)の灰色粉末(収量3.87g、収率88%)を得た。
H−NMR(CDCl)、δ(ppm):1.40(s,12H),7.38(t,J=7.3Hz,1H),7.49(t,J=7.6Hz,2H),7.56−7.64(m,3H),7.77−7.85(m,5H),7.89−7.92(m,3H),7.95(d,J=8.9Hz,1H),8.18(t,J=1.3Hz,1H),9.14−9.16(m,2H),9.58(dd,J=7.0Hz,2.2Hz,1H).
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ビフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(F−1) 1.00g(1.87mmol)、2−(4−クロロフェニル)−5−フェニルピリジン 547mg(2.06mmol)、酢酸パラジウム 8.4mg(0.037mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 35.7mg(0.075mmol)をTHF 37mLに加え、さらに3M−炭酸カリウム水溶液 1.3mLを添加し、24時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 200mLで再結晶することで、目的の4−フェニル−2−[4−(5−フェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(F−2)の白色粉末(収量953mg,収率80%)を得た。
H−NMR(CDCl)、δ(ppm):7.42−7.46(m,2H),7.50−7.57(m,4H),7.61−7.69(m,5H),7.82−7.87(m,5H),7.92(d,J=8.3Hz,1H),7.94−8.04(m,8H),8.23(d,J=8.3Hz,2H),8,99(d,J=2.3Hz,1H),9.08(t,J=1.7Hz,1H),9.14(t,J=1.8Hz,1H),9.58(dd,J=7.4Hz,2.9Hz,1H).
実験例−11(実施例)
Figure 2016020333
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ビフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(F−1) 1.00g(1.87mmol)、2−(4−クロロフェニル)−6−フェニルピリジン 547mg(2.06mmol)、酢酸パラジウム 8.4mg(0.037mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 35.7mg(0.075mmol)をTHF 37mLに加え、さらに3M−炭酸カリウム水溶液 1.3mLを添加し、24時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた粗生成物をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:1)で精製し、目的の4−フェニル−2−[4−(6−フェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(F−3)の白色粉末(収量943mg,収率79%)を得た。
H−NMR(CDCl)、δ(ppm):7.43−7.47(m,2H),7.54(dt,J=8.3Hz,4H),7.61−7.67(m,3H),7.73(d,J=7.5Hz,1H),7.79−7.89(m,7H),7.94−8.04(m,7H),8.20(d,J=7.2Hz,2H),8,33(d,J=7.9Hz,2H),9.08(t,J=1.5Hz,1H),9.14(t,J=1.5Hz,1H),9.59(dd,J=5.9Hz,2.3Hz,1H).
実験例−12(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 10.0g(22.4mmol)、4−ビフェニルボロン酸 5.33g(26.9mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム 518mg(0.449mmol)をTHF 449mLに加え、さらに3M−炭酸カリウム水溶液 15.0mLを添加し、32時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 800mLで2回再結晶することで目的の2−[5−クロロ−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(G−1)の灰色粉末(収量9.72g、収率83%)を得た。
H−NMR(CDCl)、δ(ppm):7.39(t,J=7.3Hz,1H),7.49(t,J=7.8Hz,2H),7.63(d,J=6.8Hz,3H),7.68(d,J=7.0Hz,2H),7.75−7.78(m,3H),7.82−7.86(m,5H),7.87−7.92(m,3H),8.00(d,J=9.1Hz,1H),8.82(t,J=1.8Hz,1H),9.0(t,J=1.6Hz,1H),9.55(d,J=9.4Hz,1H).
アルゴン気流下、2−[5−クロロ−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(G−1) 894mg(1.72mmol)、5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−2−フェニルピリジン 508mg(1.81mmol)、酢酸パラジウム 8.7mg(0.038mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 36.8mg(0.078mmol)をTHF 34mLに加え、さらに3M−炭酸カリウム水溶液 1.3mLを添加し、48時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 50mLで再結晶することで、目的の4−フェニル−2−[5−(6−フェニルピリジン−3−イル)−1,1’:4’,1’’−テルフェニル−3−イル]ベンゾ[h]キナゾリン(G−2)の白色粉末(収量820mg,収率75%)を得た。
H−NMR(CDCl)、δ(ppm):7.40(t,J=7.2Hz,1H),7.44−7.56(m,5H),7.61−7.68(m,3H),7.71(d,J=7.1Hz,2H),7.79(d,J=8.7Hz,2H),7.82−7.87(m,3H),7.91−7.98(m,6H),8,02(d,J=9.0Hz,1H),8.05(t,J=1.5Hz,1H),8.11(d,J=6.8Hz,2H),8.21(dd,J=8.3Hz,2.3Hz,1H),9.14(t,J=1.5Hz,1H),8.17(t,J=1.5Hz,1H),9.21(d,J=1.9Hz,1H),9.59(dd,J=6.8Hz,2.6Hz,1H).
実験例−13(実施例)
Figure 2016020333
アルゴン気流下、2−[5−クロロ−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(G−1) 5.50g(10.6mmol)、ビス(ビナコラト)ジボロン 3.50g(13.8mmol)、ビス(ジベンジリデンアセトン)パラジウム 194mg(0.212mmol)、2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 202mg(0.424mmol)、及び酢酸カリウム 2.08g(21.2mmol)をTHF 212mLに加え、46時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 150mLで再結晶することで、目的の2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(H−1)の灰色粉末(収量5.63g、収率87%)を得た。
H−NMR(CDCl)、δ(ppm):7.38(t,J=7.4Hz,1H),7.47(t,J=7.9Hz,2H),7.60−7.67(m,3H),7.69(d,J=7.1Hz,2H),7.74(d,J=8.5Hz,2H),8.80−8.86(m,3H),7.90(d,J=8.5Hz,2H),7.94(d,J=8.0Hz,3H),7.98(d,J=9.0Hz,1H),8.25(d,J=2.0Hz,1H),9.19(t,J=1.7Hz,1H),9.22(t,J=1.7Hz,1H),9.61(d,J=7.1Hz,1H).
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(H−1) 1.00g(1.64mmol)、4−(4−クロロフェニル)イソキノリン 432mg(1.80mmol)、酢酸パラジウム 7.4mg(0.033mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 31.3mg(0.066mmol)をTHF 33mLに加え、さらに3M−炭酸カリウム水溶液 1.1mLを添加し、19時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 100mLで再結晶することで、目的の4−フェニル−2−[4−(4−イソキノリル)−1,1’:3’,1’’:4’’,1’’’−クアテルフェニル−5’−イル]ベンゾ[h]キナゾリン(H−2)の白色粉末(収量793mg,収率70%)を得た。
H−NMR(CDCl)、δ(ppm):7.39(t,J=7.4Hz,1H),7.50(t,J=7.8Hz,2H),7.60−7.76(m,9H),7.79(d,J=8.6Hz,2H),7.83−7.89(m,3H),7.95−7.98(m,5H),8.00−8.03(m,3H),8,08(t,J=6.8Hz,2H),8.11(t,J=1.8Hz,1H),8.61(s,1H),9.16(dd,J=1.7Hz,0.86Hz,2H),9.30(s,1H),9.61(dd,J=6.4Hz,2.6Hz,1H).
実験例−14(実施例)
Figure 2016020333
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(H−1) 1.00g(1.64mmol)、8−(4−クロロフェニル)キノリン 432mg(1.80mmol)、酢酸パラジウム 7.4mg(0.033mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 31.3mg(0.066mmol)をTHF 33mLに加え、さらに3M−炭酸カリウム水溶液 1.1mLを添加し、19時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 100mLで再結晶することで、目的の4−フェニル−2−[4−(8−キノリル)−1,1’:3’,1’’:4’’,1’’’−クアテルフェニル−5’−イル]ベンゾ[h]キナゾリン(H−3)の白色粉末(収量770mg,収率68%)を得た。
H−NMR(CDCl)、δ(ppm):7.39(t,J=7.3Hz,1H),7.45−7.53(m,3H),7.63−7.73(m,6H),7.80(td,J=8.6Hz,2.9Hz,2H),7.85−7.92(m,7H),7.93−8.00(m,7H),8.02(dd,J=8.8Hz,2.9Hz,1H),8,11(dt,J=2.8Hz,1.8Hz,1H),8.25(dt,J=8.7Hz,2.5Hz,1H),9.04(dt,J=4.2Hz,9.2Hz,J=2.3Hz,1H),9.13(dt,J=2.8Hz,1.8Hz,1H),9.19(dt,J=2.8Hz,1.6Hz,1H),9.63(dt,J=7.0Hz,2.1Hz,1H).
実験例−15(実施例)
Figure 2016020333
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(H−1) 1.00g(1.64mmol)、2−クロロ−5−フェニルピリジン 342mg(1.80mmol)、酢酸パラジウム 7.4mg(0.033mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 31.3mg(0.066mmol)をTHF 33mLに加え、さらに3M−炭酸カリウム水溶液 1.1mLを添加し、48時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 30mLで再結晶することで、目的の4−フェニル−2−[5−(5−フェニルピリジン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]ベンゾ[h]キナゾリン(H−4)の白色粉末(収量476mg,収率45%)を得た。
H−NMR(CDCl)、δ(ppm):7.40(t,J=7.4Hz,1H),7.45(t,J=7.3Hz,1H),7.52(td,J=8.1Hz,4H),7.62−7.68(m,3H),7.70−7.73(m,4H),7.78−7.80(d,J=8.4Hz,2H),7.82−7.87(m,3H),7.96−7.99(m,5H),8.01(d,J=9.3Hz,1H),8.05−8.13(m,2H),8.58(t,J=1.9Hz,1H),9.05(d,J=2.4Hz,1H),9.21(t,J=1.3Hz,1H),9.44(t,J=1.4Hz,1H),9.62(dd,J=6.8Hz,2.5Hz,1H).
実験例−16(実施例)
Figure 2016020333
アルゴン気流下、2−[5−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]−4−フェニルベンゾ[h]キナゾリン(H−1) 1.00g(1.64mmol)、2−ブロモ−6−フェニルピリジン 552mg(1.97mmol)、及びテトラキス(トリフェニルホスフィン)パラジウム 38.0mg(0.033mmol)をTHF 33mLに加え、さらに3M−炭酸カリウム水溶液 1.1mLを添加し、37時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 450mLで再結晶することで、目的の4−フェニル−2−[5−(6−フェニルピリジン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]ベンゾ[h]キナゾリン(H−5)の白色粉末(収量906mg,収率87%)を得た。
H−NMR(CDCl)、δ(ppm):7.39(tt,J=7.3Hz,1.2Hz,1H),7.45−7.52(m,3H),7.55(t,J=7.2Hz,2H),7.62−7.68(m,3H),7.71(dd,J=8.3Hz,1.5Hz,2H),7.79−7.87(m,6H),7.93(t,J=7.5Hz,1H),7.96−8.00(m,6H),8.03(d,J=9.2Hz,1H),8.28(dd,J=8.6Hz,1.5Hz,2H),8.66(t,1.8Hz,1H),9.19(t,J=1.8Hz,1H),9.61(t,J=1.8Hz,1H),9.64(dd,J=7.2Hz,2.3Hz,1H).
実験例−17(実施例)
Figure 2016020333
アルゴン気流下、2−(3−ブロモ−5−クロロフェニル)−4−フェニルベンゾ[h]キナゾリン(A−3) 5.0g(11.2mmol)、4−ビフェニルボロン酸 4.89g(24.7mmol)、酢酸パラジウム 50.4mg(0.224mmol)、及び2−ジシクロヘキシルホスフィノ−2’,4’,6’−トリイソプロピルビフェニル 214mg(0.449mmol)をTHF 200mLに加え、さらに3M−炭酸カリウム水溶液 15.0mLを添加し、72時間加熱還流した。室温まで放冷後、水を加えて析出した固体を濾取し、次いで、水、メタノール、およびヘキサンで洗浄した。得られた固体をトルエン 800mLで2回再結晶することで、目的の2−(1,1’:4’,1’’:3’’,1’’’:4’’’,1’’’’−キンクフェニル−5’’−イル)−4−フェニルベンゾ[h]キナゾリン(H−6)の白色粉末(収量6.23g,収率87%)を得た。
H−NMR(CDCl)、δ(ppm):7.38(t,J=7.3Hz,2H),7.50(t,J=7.3Hz,3H),7.60−7.65(m,4H),7.67−7.69(t,J=8.6Hz,3H),7.74−7.79(m,4H),7.82−7.86(m,6H),7.92−8.02(m,6H),8.81(t,J=1.8Hz,1H),9.00(t,J=1.5Hz,1H),9.11(d,J=1.8Hz,1H),9.55(dd,J=5.9Hz,2.9Hz,1H).
試験例−1(実施例)
有機電界発光素子の作製および評価を以下の様にして行った。基板には、2mm幅の酸化インジウム−スズ(ITO)膜がストライプ状にパターンされたITO透明電極付きガラス基板を用いた。この基板をイソプロピルアルコールで洗浄した後、酸素プラズマ洗浄にて表面処理を行った。洗浄後の基板に、真空蒸着法で各層の真空蒸着を行い、断面図を図1に示すような、発光面積4mmの有機電界発光素子を作製した。
まず、真空蒸着槽内に前記ガラス基板を導入し、1.0×10−4Paまで減圧した。その後、図1の1で示す前記ガラス基板上に有機化合物層として、正孔注入層2、正孔輸送層3、発光層4および電子輸送層5を順次成膜し、その後陰極層6を成膜した。
正孔注入層2としては、昇華精製したHILを65nmの膜厚で真空蒸着した。
正孔輸送層3としては、HATとHTLをそれぞれ5nm、10nmの膜厚で真空蒸着した。
発光層4としては、EML−1とEML−2を954:46(質量%)の割合で25nmの膜厚で真空蒸着した。
電子輸送層5としては、本発明の実験例−3で得られた4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)を30nmの膜厚で真空蒸着した。
最後に、ITOストライプと直交するようにメタルマスクを配し、陰極層6を成膜した。陰極層6としては、Liqと銀マグネシウム、銀をそれぞれ0.5nm、80nmと20nmの膜厚で真空蒸着し、三層構造とした。
なお、各有機材料は抵抗加熱方式により成膜し、加熱した化合物を0.6〜3.0nm/秒の成膜速度で真空蒸着した。
それぞれの膜厚は、触針式膜厚測定計(DEKTAK)で測定した。さらに、この素子を酸素および水分濃度1ppm以下の窒素雰囲気グローブボックス内で封止した。封止は、ガラス製の封止キャップと前記成膜基板エポキシ型紫外線硬化樹脂(ナガセケムテックス社製)を用いた。使用する化合物の構造式と略称を以下に示す。
Figure 2016020333
作製した有機電界発光素子に直流電流を印加し、TOPCON社製のLUMINANCE METER(BM−9)の輝度計を用いて発光特性を評価した。発光特性として、電流密度10mA/cmを流した時の電圧(V)、輝度(cd/m)、電流効率(cd/A)、電力効率(lm/W)を測定した。
試験例−2(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−4で得られた4−フェニル−2−[5−(1−ピレニル)−4’−(2−ピリジル)ビフェニル−3−イル]ベンゾ[h]キナゾリン(B−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−3(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−5で得られた2−[3−(9−フェナントリル)−5−(6−フェニルピリジン−3−イル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−4(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−7で得られた2−[3−(9−フェナントリル)−5−(3−ピリジル)フェニル]−4−フェニルベンゾ[h]キナゾリン(C−4)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−5(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−9で得られた4−フェニル−2−[4−(4,6−ジフェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]−ベンゾ[h]キナゾリン(E−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−6(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−10で得られた4−フェニル−2−[4−(5−フェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(F−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−7(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−11で得られた4−フェニル−2−[4−(6−フェニルピリジン−2−イル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(F−3)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−8(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−12で得られた4−フェニル−2−[5−(6−フェニルピリジン−3−イル)−1,1’:4’,1’’−テルフェニル−3−イル]ベンゾ[h]キナゾリン(G−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−9(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−13で得られた4−フェニル−2−[4−(4−イソキノリル)−1,1’:3’,1’’:4’’,1’’’−クアテルフェニル−5’−イル]ベンゾ[h]キナゾリン(H−2)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−10(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−14で得られた4−フェニル−2−[4−(8−キノリル)−1,1’:3’,1’’:4’’,1’’’−クアテルフェニル−5’−イル]ベンゾ[h]キナゾリン(H−3)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−11(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−15で得られた4−フェニル−2−[5−(5−フェニルピリジン−2−イル)−1,1’:4’,1’’−テルフェニル−3−イル]ベンゾ[h]キナゾリン(H−4)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
試験例−12(実施例)
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、実験例−17で得られた2−(1,1’:4’,1’’:3’’,1’’’:4’’’,1’’’’−キンクフェニル−5’’−イル)−4−フェニルベンゾ[h]キナゾリン(H−6)を用いた以外は、試験例−1と同様にして有機電界発光素子を作製し、試験例−1と同様に評価した。
参考例−1
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、特許番号WO2008/129912に記載の2,4−ジフェニル−6−[4,4’’−ジ(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]−1,3,5−トリアジン(下記式で表される)を真空蒸着した有機電界発光素子を、試験例−1と同様に作製、測定した。
Figure 2016020333
比較例−1
試験例−1の電子輸送層5の4−フェニル−2−[4,4’’−ビス(2−ピリジル)−1,1’:3’,1’’−テルフェニル−5’−イル]ベンゾ[h]キナゾリン(A−4)に変えて、特許番号WO2006/104118に記載の2,4−ジフェニルベンゾキナゾリン(下記式で表される)を真空蒸着した有機電界発光素子を、試験例−1と同様に作製、測定した。
Figure 2016020333
試験例−1から12、参考例−1、及び比較例−1の測定結果を下表にまとめた。
Figure 2016020333
本発明の化合物(1−1)または化合物(1−2)を含んでなる薄膜は、高い薄膜安定性、耐熱性、電子輸送性、正孔ブロック能力、酸化還元耐性、耐水性、耐酸素性、電子注入性などを示すため、有機電界発光素子の材料として、とりわけ電子輸送性材料として好適に用いることが出来る。また、本発明の化合物(1−1)および化合物(1−2)は広いエネルギーギャップおよび三重項エネルギーを有しており、蛍光または燐光有機電界発光材料と組合せて用いることが出来る。また、本発明の化合物(1−1)および化合物(1−2)は、その特性から、電子輸送層以外に、発光ホスト層などにも使用可能である。また、電子輸送層として他の化合物と混合もしくは積層しても使用できる。さらに、本化合物は溶解性が高く、蒸着以外にも塗布素子への使用も可能である。これらの素子は上記の効果から消費電力の低減によるバッテリーの消耗抑制、長寿命化による製品寿命の向上、駆動回路への負担低減など大きな効果が見込まれる。
1.ITO透明電極付きガラス基板
2.正孔注入層
3.正孔輸送層
4.発光層
5.電子輸送層
6.陰極層

Claims (16)

  1. 一般式(1−1)または一般式(1−2)で示されるベンゾキナゾリン化合物。
    Figure 2016020333
    (式中、
    Ar11およびAr21は、炭素数6〜12の芳香族炭化水素基(メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基で置換されていてもよい)を表わす。
    Ar12、Ar13、Ar22およびAr23は、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、フッ素原子、ピリミジル基(当該ピリミジル基は、メチル基、炭素数2〜10のアルキル基、および炭素数6〜18の芳香族炭化水素基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキルで置換されていてもよい)を表わす。
    11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26は、各々独立に、水素原子、メチル基、メトキシ基、フェニル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基を表す。
    また、式中の各水素原子は各々独立に重水素原子であってもよい。)
  2. Ar12、Ar13、Ar22およびAr23が、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜6つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}である請求項1に記載のベンゾキナゾリン化合物。
  3. Ar12、Ar13、Ar22およびAr23が、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜5つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}であるである請求項1又は2に記載のベンゾキナゾリン化合物。
  4. Ar12、Ar13、Ar22およびAr23が、各々独立に、フェニル基、ピリジル基、ピリミジル基、炭素数6〜18の芳香族炭化水素基で置換されたピリミジル基、またはベンゼン環および/またはピリジン環が2〜4つ連結および/または縮環した6員環のみからなる芳香族基{これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基、炭素数2〜10のアルコキシ基、フッ素原子、またはピリミジル基(当該ピリミジル基は、メチル基、フェニル基、ビフェニル基、ナフチル基、アントラシル基、フェナントリル基、およびピレニル基からなる群より選ばれる置換基を少なくとも一つ有していてもよい)で置換されていてもよい}である請求項1〜3のいずれか一項に記載のベンゾキナゾリン化合物。
  5. Ar11およびAr21が炭素数6〜12の芳香族炭化水素基(これらの基は、メチル基、メトキシ基、炭素数2〜10のアルキル基もしくはアルコキシ基、ピリジル基、ピリミジル基、またはフッ素原子で置換されていてもよい)である請求項1〜4のいずれか一項に記載のベンゾキナゾリン化合物。
  6. Ar11およびAr21がフェニル基、ナフチル基、またはビフェニル基(これらの基は、メチル基、メトキシ基、ピリジル基、ピリミジル基、フッ素原子、または炭素数2〜10のアルキル基、アルコキシ基、アルコキシアルキル基、エステル基もしくはエステルアルキル基で置換されていてもよい)である請求項1〜4のいずれか一項に記載の2,4−置換ベンゾキナゾリン化合物。
  7. Ar11およびAr21がフェニル基、ナフチル基、またはビフェニル基である請求項1〜4のいずれか一項に記載のベンゾキナゾリン化合物。
  8. Ar11およびAr21がフェニル基である請求項1〜4のいずれか一項に記載のベンゾキナゾリン化合物。
  9. 11、R12、R13、R14、R15、R16、R21、R22、R23、R24、R25、およびR26が、水素原子である請求項1〜8のいずれか一項に記載のベンゾキナゾリン化合物。
  10. 金属触媒の存在下、または金属触媒および塩基の存在下、一般式(2−1)で表される化合物と一般式(3−1)で表される化合物と一般式(4−1)で表される化合物を1段階または2段階でカップリング反応させる、または一般式(2−2)で示される化合物と一般式(3−2)で表される化合物と一般式(4−2)で表される化合物を1段階または2段階でカップリング反応させることを特徴とする、請求項1に記載のベンゾキナゾリン化合物の製造方法。
    Figure 2016020333
    (式(1−1)、(1−2)、(2−1)、(2−2)、(3−1)、(3−2)、(4−3)および(4−2)中の各記号について、請求項1に定義されたものはそれと同じであり、Z11、Z12、Z21およびZ22は、各々独立に脱離基を表し、M11、M12、M21およびM22は、各々独立に金属基、ボロン酸基、またはボロン酸エステル基を表す。)
  11. 一般式(2−1)または一般式(2−2)で示されるベンゾキナゾリン化合物。
    Figure 2016020333
    (式(2−1)および式(2−2)中の各記号について、請求項1および請求項10に定義されたものはそれと同じである。)
  12. 触媒の存在下、酸の存在下、塩基の存在下、触媒および酸の存在下、または触媒及び塩基の存在下であって、窒素源の存在下または非存在下に、一般式(5−1)で表される化合物と一般式(6−1)で表される化合物を環化反応させる、または一般式(5−2)で表される化合物と一般式(6−2)で表される化合物を環化反応させることを特徴とする、請求項11に記載の一般式(2−1)または一般式(2−2)で表されるベンゾキナゾリン化合物の製造方法。
    Figure 2016020333
    (式(2−1)、(2−2)、(5−1)、(5−2)、(6−1)、(6−2)中、W11、W12、W13、W21、W22およびW23は、ピリミジン環形成反応を実施する際に必要な置換基を表す。それ以外の各記号については請求項1および10に定義されたものはそれと同じである。)
  13. 一般式(8−1)もしくは一般式(8−2)で表される化合物を、酸化剤の存在下であって、酸の存在下もしくは非存在下、または塩基の存在下もしくは非存在下に、ジヒドロベンゾキナゾリル基を酸化させることを特徴とする、請求項11に記載の一般式(2−1)または一般式(2−2)で表されるベンゾキナゾリン化合物の製造方法。
    Figure 2016020333
    (式(2−1)、(2−2)、(5−1)、(5−2)中の各記号について、請求項1、および10に定義されたものはそれと同じである。)
  14. 請求項1〜9に記載のベンゾキナゾリン化合物を含む有機電界発光素子用材料。
  15. 請求項1〜9に記載のベンゾキナゾリン化合物を含む発光層ホスト材料、電子注入材料または電子輸送材料。
  16. 請求項1〜9に記載のベンゾキナゾリン化合物を含む電子注入材料または電子輸送材料。
JP2015110498A 2014-05-29 2015-05-29 ベンゾキナゾリン化合物、その製造方法、およびその用途 Active JP6515684B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110498A JP6515684B2 (ja) 2014-05-29 2015-05-29 ベンゾキナゾリン化合物、その製造方法、およびその用途

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2014111639 2014-05-29
JP2014111639 2014-05-29
JP2014124117 2014-06-17
JP2014124117 2014-06-17
JP2015110498A JP6515684B2 (ja) 2014-05-29 2015-05-29 ベンゾキナゾリン化合物、その製造方法、およびその用途

Publications (2)

Publication Number Publication Date
JP2016020333A true JP2016020333A (ja) 2016-02-04
JP6515684B2 JP6515684B2 (ja) 2019-05-22

Family

ID=55265447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110498A Active JP6515684B2 (ja) 2014-05-29 2015-05-29 ベンゾキナゾリン化合物、その製造方法、およびその用途

Country Status (1)

Country Link
JP (1) JP6515684B2 (ja)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045662A (ja) * 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2006510732A (ja) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド エレクトロルミネセントデバイス
WO2006104118A1 (ja) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011063584A (ja) * 2009-08-21 2011-03-31 Tosoh Corp トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
JP2011084553A (ja) * 2009-09-15 2011-04-28 Tosoh Corp ピリミジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
US20110275643A1 (en) * 2010-05-06 2011-11-10 National Health Research Institutes Aroylquinoline compounds
CN102675297A (zh) * 2012-04-17 2012-09-19 武汉人福医药集团股份有限公司 拉帕替尼的制备方法
KR20120117693A (ko) * 2011-04-15 2012-10-24 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
CN102898417A (zh) * 2011-07-29 2013-01-30 山东轩竹医药科技有限公司 苯并六元含氮杂环衍生物
WO2013069762A1 (ja) * 2011-11-11 2013-05-16 東ソー株式会社 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子
WO2013180376A1 (en) * 2012-05-30 2013-12-05 Alpha Chem Co., Ltd. New electron transport material and organic electroluminescent device using the same
WO2014178532A1 (ko) * 2013-04-29 2014-11-06 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015011924A1 (ja) * 2013-07-23 2015-01-29 出光興産株式会社 新規化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR20150122343A (ko) * 2014-04-23 2015-11-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045662A (ja) * 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2006510732A (ja) * 2002-10-30 2006-03-30 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド エレクトロルミネセントデバイス
WO2006104118A1 (ja) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2011063584A (ja) * 2009-08-21 2011-03-31 Tosoh Corp トリアジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
JP2011084553A (ja) * 2009-09-15 2011-04-28 Tosoh Corp ピリミジン誘導体、その製造方法、及びそれを構成成分とする有機電界発光素子
US20110275643A1 (en) * 2010-05-06 2011-11-10 National Health Research Institutes Aroylquinoline compounds
KR20120117693A (ko) * 2011-04-15 2012-10-24 에스에프씨 주식회사 신규한 화합물 및 이를 포함하는 유기전계발광소자
CN102898417A (zh) * 2011-07-29 2013-01-30 山东轩竹医药科技有限公司 苯并六元含氮杂环衍生物
WO2013069762A1 (ja) * 2011-11-11 2013-05-16 東ソー株式会社 含窒素縮環芳香族基を有する環状アジン化合物とその製造方法、及びそれを構成成分とする有機電界発光素子
CN102675297A (zh) * 2012-04-17 2012-09-19 武汉人福医药集团股份有限公司 拉帕替尼的制备方法
WO2013180376A1 (en) * 2012-05-30 2013-12-05 Alpha Chem Co., Ltd. New electron transport material and organic electroluminescent device using the same
WO2014178532A1 (ko) * 2013-04-29 2014-11-06 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015011924A1 (ja) * 2013-07-23 2015-01-29 出光興産株式会社 新規化合物及びそれを用いた有機エレクトロルミネッセンス素子
KR20150122343A (ko) * 2014-04-23 2015-11-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Also Published As

Publication number Publication date
JP6515684B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
JP6822508B2 (ja) ベンゾチエノピリミジン化合物、その製造方法、及びそれを含有する有機電界発光素子
JP6421474B2 (ja) 環状アジン化合物、その製造方法、及びそれを用いた有機電界発光素子
CN105340100B (zh) 有机电致发光元件用杂环化合物及其用途
TWI676623B (zh) 嘧啶衍生物及有機電致發光元件
JP6326251B2 (ja) 発光材料及びそれを用いた有機el素子
JPWO2008023628A1 (ja) ピリジル基で置換されたトリアジン環構造を有する化合物および有機エレクトロルミネッセンス素子
JPWO2008114690A1 (ja) 置換されたビピリジル基とピリドインドール環構造がフェニレン基を介して連結した化合物および有機エレクトロルミネッセンス素子
CN106573912A (zh) 三嗪化合物、其制造方法、及其用途
CN104603122A (zh) 具有茚并9,10-二氢吖啶环结构的化合物以及有机电致发光器件
KR20140125061A (ko) 유기발광 화합물 및 이를 포함하는 유기전계발광소자
WO2014104235A1 (ja) 1,2,4-トリス置換ベンゼン化合物とその製造方法、および有機電界発光素子
WO2014024446A1 (ja) トリフェニレン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR20180097955A (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JPWO2009107651A1 (ja) 置換されたビピリジル化合物および有機エレクトロルミネッセンス素子
JP5955228B2 (ja) 置換されたビピリジル基とピリドインドール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP7231108B2 (ja) 有機el素子用材料、有機el素子、表示装置および照明装置
JP6387726B2 (ja) N−トリアジルフェナジン化合物、その製造方法、およびその用途
JP6672774B2 (ja) 新規カルバゾール化合物及びその用途
JP6862767B2 (ja) トリアジン化合物、その製造方法、製造中間体、及び用途
WO2015182769A1 (ja) キナゾリン及びベンゾキナゾリン化合物、その製法及び用途
TWI546295B (zh) 具有經取代之鄰聯三苯結構之化合物及有機電激發光元件
JP6507855B2 (ja) キナゾリン化合物、その製造方法、およびその用途
JP6515684B2 (ja) ベンゾキナゾリン化合物、その製造方法、およびその用途
JP5499227B1 (ja) トリフェニルシリルピリジル基とカルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP6374184B2 (ja) トリアジン(triazine)誘導体及びこれを用いた有機発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190401

R151 Written notification of patent or utility model registration

Ref document number: 6515684

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151