WO2014178532A1 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents
유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDFInfo
- Publication number
- WO2014178532A1 WO2014178532A1 PCT/KR2014/002168 KR2014002168W WO2014178532A1 WO 2014178532 A1 WO2014178532 A1 WO 2014178532A1 KR 2014002168 W KR2014002168 W KR 2014002168W WO 2014178532 A1 WO2014178532 A1 WO 2014178532A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- organic
- compound
- formula
- aryl
- Prior art date
Links
- 0 Cc1cc(C)cc(I*)c1 Chemical compound Cc1cc(C)cc(I*)c1 0.000 description 3
- NYLNSXIDJCMESM-UHFFFAOYSA-N CC1(C)c(cc(cc2)N(c(cc3)ccc3-c3ccccc3)c(cc3)cc4c3[s]c3c4cccc3)c2-c2ccc(Cc3cc4c(cccc5)c5c(cccc5)c5c4c4c3cccc4)cc12 Chemical compound CC1(C)c(cc(cc2)N(c(cc3)ccc3-c3ccccc3)c(cc3)cc4c3[s]c3c4cccc3)c2-c2ccc(Cc3cc4c(cccc5)c5c(cccc5)c5c4c4c3cccc4)cc12 NYLNSXIDJCMESM-UHFFFAOYSA-N 0.000 description 1
- SPUAOEORJGKVJL-UHFFFAOYSA-N c(cc1)cc(c2c(cccc3)c3c(cccc3)c3c22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1N(c1c(cccc2)c2ccc1)c1cccc2ccccc12 Chemical compound c(cc1)cc(c2c(cccc3)c3c(cccc3)c3c22)c1[n]2-c(cc1)ccc1-c(cc1)ccc1N(c1c(cccc2)c2ccc1)c1cccc2ccccc12 SPUAOEORJGKVJL-UHFFFAOYSA-N 0.000 description 1
- JGYGWTSZHJNRLE-UHFFFAOYSA-N c(cc1)cc(c2c3c(cccc4)c4c4c2cccc4)c1[n]3-c(cc1)ccc1-c(cc1)ccc1N(c(cc1)cc2c1[s]c1c2cccc1)c1c(cccc2)c2ccc1 Chemical compound c(cc1)cc(c2c3c(cccc4)c4c4c2cccc4)c1[n]3-c(cc1)ccc1-c(cc1)ccc1N(c(cc1)cc2c1[s]c1c2cccc1)c1c(cccc2)c2ccc1 JGYGWTSZHJNRLE-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D401/00—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
- C07D401/02—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
- C07D401/04—Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/30—Devices specially adapted for multicolour light emission
- H10K59/32—Stacked devices having two or more layers, each emitting at different wavelengths
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/653—Aromatic compounds comprising a hetero atom comprising only oxygen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/654—Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/655—Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/649—Aromatic compounds comprising a hetero atom
- H10K85/657—Polycyclic condensed heteroaromatic hydrocarbons
- H10K85/6572—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1044—Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1059—Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
- organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
- An organic electroluminescent device using an organic light emitting phenomenon usually has a structure including an anode, a cathode and an organic material layer therebetween.
- the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic electroluminescent device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
- the material used as the organic material layer in the organic electroluminescent device may be classified into a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material and the like according to a function.
- Efficiency, lifespan, and driving voltage are related to each other, and as the efficiency increases, the driving voltage is relatively decreased, and as the result, the crystallization of organic materials due to Joule heating generated during driving decreases as the driving voltage decreases. It shows a tendency to increase the life. However, simply improving the organic material layer does not maximize the efficiency. This is because a long life and high efficiency can be achieved at the same time when an optimal combination of energy level and T1 value and intrinsic properties (mobility, interfacial properties, etc.) of each organic material layer is achieved. to be.
- electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
- the OLED device is mainly formed by a deposition method, which requires development of a material that can withstand a long time during deposition, that is, a material having strong heat resistance.
- a material forming the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc.
- a hole injection material such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc.
- Supported by an efficient material should be preceded, but development of a stable and efficient organic material layer for an organic electroluminescent device has not been made yet. Therefore, the development of new materials continues to be required, and in particular, the development of material combinations such as a hole transport layer and an electron transport layer is urgently required.
- the top device structure has a large optical energy loss due to the surface plasmon polariton (SPP) because the formed light is reflected by the anode, which is a reflecting film, and comes out toward the cathode.
- SPP surface plasmon polariton
- one of the important methods for improving the shape and efficiency of the EL spectrum is to use a capping layer on the top cathode.
- electron emission is mainly performed by four metals of Al, Pt, Ag, Au, and surface plasmon is generated on the surface of metal electrode.
- SPP light energy loss due to Ag
- the capping layer when the capping layer is used, SPP is generated at the interface between the MgAg electrode and the high refractive organic material.
- the polarized light of TE transverse electric
- the transverse magnetic polarized light traveling along the cathode and the capping layer causes wavelength amplification by surface plasma resonance, thereby increasing the intensity of the peak. As a result, high efficiency and effective color purity control are possible.
- the present invention is an organic electroluminescent device having high electron mobility and high temperature stability, developing a compound having more efficient hole blocking ability, and having high efficiency, high lifetime and high color purity by combining with a hole transport material. And an electronic device thereof.
- the present invention provides a compound represented by the following formula (1).
- the present invention provides an organic electronic device using the compound represented by Formula 1 and an electronic device thereof.
- the present invention provides an organic electronic device and an electronic device including the electron transport layer containing the compound represented by Formula 1 and the hole transport layer containing the compound represented by Formula 2 below.
- FIG. 1 is an exemplary view of an organic electroluminescent device according to the present invention.
- halo or halogen as used herein include fluorine, chlorine, bromine, and iodine unless otherwise stated.
- alkyl or “alkyl group” has a carbon number of 1 to 60 unless otherwise specified, but is not limited thereto.
- alkenyl or “alkynyl” has a double bond or a triple bond having 2 to 60 carbon atoms, respectively, unless otherwise specified, but is not limited thereto.
- cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
- alkoxy group used in the present invention has a carbon number of 1 to 60 unless otherwise stated, it is not limited thereto.
- aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
- an aryl group or an arylene group means a monocyclic or polycyclic aromatic, and includes an aromatic ring formed by neighboring substituents participating in a bond or a reaction.
- the aryl group may be a phenyl group, a biphenyl group, a fluorene group, a spirofluorene group, a spirobifluorene group.
- heteroalkyl means an alkyl including one or more heteroatoms unless otherwise indicated.
- heteroaryl group or “heteroarylene group” means an aryl group or arylene group having 2 to 60 carbon atoms, each containing one or more heteroatoms, unless otherwise specified.
- adjacent groups may be formed by bonding.
- heterocycloalkyl include one or more heteroatoms, unless otherwise indicated, have 2 to 60 carbon atoms, include not only monocycles but also polycycles, Adjacent groups may be formed in combination.
- heterocyclic group may mean an alicyclic and / or aromatic including a heteroatom.
- heteroatom refers to N, O, S, P, and Si unless otherwise indicated.
- aliphatic as used herein means an aliphatic hydrocarbon having 1 to 60 carbon atoms
- aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
- saturated or unsaturated ring as used herein means a saturated or unsaturated aliphatic ring or an aromatic ring or heterocyclic ring having 6 to 60 carbon atoms.
- heterocompounds or heteroradicals other than the aforementioned heterocompounds include, but are not limited to, one or more heteroatoms.
- substituted in the term “substituted or unsubstituted” as used in the present invention is deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxy groups, C 1 to C 20 alkylamine groups, C 1 to C 20 alkylthiophene groups, C 6 to C 20 arylthiophene groups, C 2 to C 20 alkenyl groups, C 2 to C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, of a C 6 ⁇ C 20 substituted by deuterium aryl group, a C 8 ⁇ arylalkenyl group, a silane group, a boron of C 20 of Group, germanium group, and C 2 ⁇ C 20 It is meant to be substituted with one or more substituents selected from the group consisting of,
- FIG. 1 is an exemplary view of an organic electric device according to an embodiment of the present invention.
- the organic electric device 100 includes a first electrode 120, a second electrode 180, a first electrode 110, and a second electrode 180 formed on a substrate 110.
- the first electrode 120 may be an anode (anode)
- the second electrode 180 may be a cathode (cathode)
- the first electrode may be a cathode and the second electrode may be an anode.
- the organic layer may include a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170 on the first electrode 120 in sequence. At this time, the remaining layers except for the light emitting layer 150 may not be formed.
- the hole blocking layer, the electron blocking layer, the light emitting auxiliary layer 151, the buffer layer 141 may be further included, and the electron transport layer 160 may serve as the hole blocking layer.
- a light efficiency improving layer 190 may be provided on at least one of the lower portion of the first electrode 120 and the upper portion of the second electrode 180. That is, although not shown, the organic electric device according to the present invention may further include a light efficiency improvement layer that is a protective layer on one surface of the first electrode and the second electrode opposite to the organic material layer.
- the compound according to the present invention may be used as a material of the hole injection layer 130, the hole transport layer 140, the electron transport layer 160, the electron injection layer 170, the host or dopant or the light efficiency improving layer of the light emitting layer 150.
- the compound of the present invention may be used in the hole transport layer 140, the electron transport layer 160 and / or the light efficiency improving layer 190.
- the organic level By forming an electron transport layer, a hole transport layer, a light efficiency improvement layer, etc. using the compound according to the present invention, the organic level by optimizing the energy level and T1 value of each organic material layer, the intrinsic properties (mobility, interfacial properties, etc.) of the organic layer The lifetime and efficiency of the device can be improved at the same time.
- the organic electroluminescent device may be manufactured using a PVD method.
- the anode 120 is formed by depositing a metal or a conductive metal oxide or an alloy thereof on a substrate, and the hole injection layer 130, the hole transport layer 140, the light emitting layer 150, and the electron transport layer are formed thereon.
- the organic material layer including the 160 and the electron injection layer 170 it can be prepared by depositing a material that can be used as the cathode 180 thereon.
- the organic material layer using a variety of polymer materials is less by a solution process or solvent process, such as spin coating, dip coating, doctor blading, screen printing, inkjet printing or thermal transfer method, rather than deposition It can be prepared in a number of layers. Since the organic material layer according to the present invention may be formed in various ways, the scope of the present invention is not limited by the forming method.
- the organic electric element according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
- WOLED White Organic Light Emitting Device
- R Red
- G Green
- B Blue
- a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom.
- the organic electroluminescent device according to the present invention may be one of an organic electroluminescent device, an organic solar cell, an organic photoconductor, an organic transistor, a monochromatic or white illumination device.
- Another embodiment of the present invention may include a display device including the organic electric element of the present invention described above, and an electronic device including a control unit for controlling the display device.
- the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
- Compound according to an aspect of the present invention may be represented by the following formula (1).
- the compound represented by Chemical Formula 1 may be included in the organic material layer of the organic electric device, and more specifically, may be a material forming the electron transport layer.
- X 1 to X 4 is N (nitrogen), C (carbon) or CR ', one of X 1 and X 2 and one of X 3 and X 4 is necessarily N (nitrogen).
- X 1 to X 4 is C (carbon)
- the phenyl of Formula 1 is bonded to X 1 to X 4 which is C (carbon).
- X 1 is C and X 2 is N
- the trivalent phenyl of Formula 1 binds to X 1 .
- X 3 is C and X 4 is N
- the trivalent phenyl of Formula 1 binds to X 3 .
- both X 1 and X 4 are carbon, they are all bonded to the trivalent phenyl of Formula 1 as in the following Compound 1-1, and when both X 2 and X 3 are carbon, the following Compound 1-8 And all of them are directly bonded with the trivalent phenyl of formula (1).
- R' is hydrogen; heavy hydrogen; halogen; C 6 ⁇ C 60 Aryl group; Fluorenyl groups; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 -C 30 alkoxyl group; C 6 -C 30 aryloxy group; And -L'-N (R 11 ) (R 12 ); can be selected from the group consisting of.
- L ' may be a C 6 ⁇ C 60 arylene group or fluorenylene group, each of which is a nitro group; Cyano group; Halogen group; C 1 ⁇ C 20 Alkyl group; C 6 -C 20 aryl group; C 2 ⁇ C 20 heterocyclic group; C 1 ⁇ C 20 Alkoxy group; And an amino group; may be substituted with one or more substituents selected from the group consisting of.
- R 11 and R 12 are each independently a C 6 ⁇ C 60 aryl group; Fluorenyl groups; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; And a C 2 -C 60 heterocyclic group including at least one heteroatom of O, N, S, Si, and P.
- R 1 and R 2 of Formula 1 are each independently deuterium; halogen; C 6 ⁇ C 60 Aryl group; Fluorenyl groups; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 -C 30 alkoxyl group; C 6 -C 30 aryloxy group; And -L'-N (R 11 ) (R 12 ); can be selected from the group consisting of.
- L ' may be a C 6 ⁇ C 60 arylene group or fluorenylene group, each of which is a nitro group; Cyano group; Halogen group; C 1 ⁇ C 20 Alkyl group; C 6 -C 20 aryl group; C 2 ⁇ C 20 heterocyclic group; C 1 ⁇ C 20 Alkoxy group; And an amino group; may be substituted with one or more substituents selected from the group consisting of.
- R 11 and R 12 are each independently a C 6 ⁇ C 60 aryl group; Fluorenyl groups; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; And a C 2 -C 60 heterocyclic group including at least one heteroatom of O, N, S, Si, and P.
- n is an integer of 0 to 2
- m is an integer of 0 to 4
- R 1 is absent
- phenyl of Formula 1 is bonded to carbon of a ring containing X 1 and X 2 (or a ring containing X 3 and X 4 ).
- R 2 is absent
- hydrogen or trivalent phenyl of Formula 1 is bonded to carbon of the benzene ring.
- R 1 is n is at any bond in the ring containing the R 1 and, X 3 and X 4 are bonded to the ring containing the X 1 and X 2; 1 is different from each other can do. That is, it can be defined independently of each other R 1, R 2 coupled to the ring containing the X 1 and R 1, R 2 and X 3 is X 2 bonded to the ring containing the X and 4.
- Exemplary compounds when n and m are both 0 and X 1 and X 4 are —CR ′, wherein R ′ is hydrogen, may include the following compounds 1-2 or 1-3.
- L 1 may be defined to be the same as L '. That is, L 1 may be a C 6 ⁇ C 60 arylene group or fluorenylene group, each of which is a nitro group; Cyano group; Halogen group; C 1 ⁇ C 20 Alkyl group; C 6 -C 20 aryl group; C 2 ⁇ C 20 heterocyclic group; C 1 ⁇ C 20 Alkoxy group; And an amino group; may be substituted with one or more substituents selected from the group consisting of.
- HAr is a C 2 ⁇ C 30 heterocyclic group containing at least one hetero atom of O, N, S, Si and P.
- L 1 may be selected from the group consisting of the following groups.
- the HAr may be one of the following H1 ⁇ H21.
- R 3 is independently of each other, hydrogen; heavy hydrogen; halogen; Silane group; Boron group; Germanium group; Cyano group; Nitro group; C 1 ⁇ C 20 of the import alkylthio; C 1 -C 20 alkoxyl group; C 1 ⁇ C 20 Alkyl group (alkyl); Alkenyl of C 2 to C 20 ; C 2 ⁇ C 20 Alkynyl (alkynyl); C 6 -C 20 aryl group; C 6 ⁇ C 20 aryl group substituted with deuterium; Fluorenyl groups; C 2 ⁇ C 20 heterocyclic group; C 3 -C 20 cycloalkyl group; C 7 -C 20 arylalkyl group; And C 8 ⁇ C 20 An aryl alkenyl group; may be selected from the group consisting of.
- an aryl group, fluorenyl group, heterocyclic group, aryloxy group, alkyl group, alkenyl group, fused ring group and alkoxyl group are each deuterium; halogen; Silane group; Boron group; Germanium group; Cyano group; Nitro group; C 1 ⁇ C 20 of the import alkylthio; C 1 -C 20 alkoxyl group; C 1 ⁇ C 20 Alkyl group (alkyl); Alkenyl of C 2 to C 20 ; C 2 ⁇ C 20 Alkynyl (alkynyl); C 6 -C 20 aryl group; C 6 ⁇ C 20 aryl group substituted with deuterium; Fluorenyl groups; C 2 ⁇ C 20 heterocyclic group; C 3 -C 20 cycloalkyl group; C 7 -C 20 arylalkyl group; And C 8 ⁇ C 20 It may be substituted with one or more substituents selected from the group consisting of; aryl
- the carbon number may be 6 to 60, preferably 6 to 30 carbon atoms, more preferably an aryl group having 6 to 20 carbon atoms.
- heterocyclic group has 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms, more preferably a hetero ring having 2 to 20 carbon atoms,
- the carbon number may be 6 to 60, preferably 6 to 40 carbon atoms, more preferably an arylene group having 6 to 30 carbon atoms,
- the carbon number is 1 to 50, preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably an alkyl group having 1 to 10 carbon atoms.
- Formula 1 may be one of the following compounds.
- the present invention may be an organic electric device including an organic material layer containing a compound represented by the following formula (2).
- Formula 2 may be a compound to form a hole transport layer of the organic material layer.
- Ar 1 or And Ar 2 to Ar 4 are each independently an aryl group of C 6 to C 60 ; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N and S; Fluorenyl groups; And C 6 ⁇ C 30
- An aryloxy group may be selected from the group consisting of.
- R 4 and R 5 are each independently, i) deuterium; halogen; C 6 ⁇ C 60 Aryl group; Fluorenyl groups; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; Fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 -C 30 alkoxyl group; C 6 -C 30 aryloxy group; And -LN (R 6 ) (R 7 ); or ii) adjacent groups combine with each other to form at least one ring, or iii) R 4 and R 5 combine with each other to form a ring.
- L is a single bond; C 6 ⁇ C 60 arylene group; C 2 ⁇ C 60 heteroarylene group containing at least one heteroatom of O, N and S; And a fluorenylene group; each of which is a nitro group; Cyano group; Halogen group; C 1 ⁇ C 20 Alkyl group; C 6 -C 20 aryl group; C 2 ⁇ C 20 heterocyclic group; C 1 ⁇ C 20 Alkoxy group; And an amino group; may be substituted with one or more substituents selected from the group consisting of.
- R 6 and R 7 are each independently a C 2 ⁇ C 60 heterocyclic group containing a heteroatom of at least one of O, N, S, Si and P; C 6 ⁇ C 60 Aryl group; C 2 ⁇ C 20 Alkenyl group; C 1 ⁇ C 50 Alkyl group; And fluorenyl group; may be selected from the group consisting of.
- the ring formed may be a saturated or unsaturated ring. That is, it may be a single or polycyclic aromatic, alicyclic, heterocyclic group, a fused ring group of aromatic and alicyclic.
- o and p are each an integer of 0 to 4, when o or p is 2 or more, a plurality of R 4 And R 5 may be the same or different from one another.
- R 4 when o or p is 0, since R 4 is absent, hydrogen is bonded to the carbon forming the benzene ring.
- L 2 is a single bond; C 6 ⁇ C 60 arylene group; C 2 ⁇ C 60 heteroarylene group containing at least one heteroatom of O, N and S; And a fluorenylene group; each of which may be selected from a nitro group; Cyano group; Halogen group; C 1 ⁇ C 20 Alkyl group; C 6 -C 20 aryl group; C 2 ⁇ C 20 heterocyclic group; C 1 ⁇ C 20 Alkoxy group; And an amino group; may be substituted with one or more substituents selected from the group consisting of.
- an aryl group, fluorenyl group, heterocyclic group, aryloxy group, alkyl group, alkenyl group, fused ring group and alkoxyl group are each deuterium; halogen; Silane group; Boron group; Germanium group; Cyano group; Nitro group; C 1 ⁇ C 20 of the import alkylthio; C 1 -C 20 alkoxyl group; C 1 ⁇ C 20 Alkyl group (alkyl); Alkenyl of C 2 to C 20 ; C 2 ⁇ C 20 Alkynyl (alkynyl); C 6 -C 20 aryl group; C 6 ⁇ C 20 aryl group substituted with deuterium; Fluorenyl groups; C 2 ⁇ C 20 heterocyclic group; C 3 -C 20 cycloalkyl group; C 7 -C 20 arylalkyl group; And C 8 ⁇ C 20 It may be substituted with one or more substituents selected from the group consisting of; aryl
- the carbon number may be 6 to 60, preferably 6 to 40 carbon atoms, more preferably an aryl group having 6 to 30 carbon atoms.
- heterocyclic group has 2 to 60 carbon atoms, preferably 2 to 30 carbon atoms, more preferably a hetero ring having 2 to 20 carbon atoms,
- the carbon number may be 6 to 60, preferably 6 to 30 carbon atoms, more preferably an arylene group having 6 to 20 carbon atoms,
- the carbon number is 1 to 50, preferably 1 to 30 carbon atoms, more preferably 1 to 20 carbon atoms, and particularly preferably an alkyl group having 1 to 10 carbon atoms.
- Ar 2 to Ar 4 may be independently selected from the group consisting of the following groups.
- Ar 1 in Formula 2 may be one of Formulas 3 to 11.
- Formula 2 may be one of the following compounds.
- the compounds represented by Formula 1 and Formula 2 may be one of the specific compounds shown above, but is not limited thereto.
- the compounds according to the present invention may be prepared by reacting Sub 1 and Sub 2 as in Scheme 1 below.
- Sub 1 of Scheme 1 may be synthesized by the reaction route of Scheme 2 below.
- Sub 2 of Scheme 1 may be synthesized by the reaction path of Scheme 7 below.
- the starting material 4- (4-bromophenyl) -2-phenylquinazoline (46.61 g, 129 mmol) was dissolved in DMF in a round bottom flask, followed by Bis (pinacolato) diboron (36.04 g, 141.9 mmol), Pd (dppf) Cl 2 ( 3.16 g, 3.9 mmol), KOAc (37.99 g, 387.1 mmol) was added and stirred at 90 ° C. After the reaction was completed, DMF was removed by distillation and extracted with CH 2 Cl 2 and water. The organic layer was dried over MgSO 4 , concentrated, and the resulting compound was purified by silicagel column and recrystallized to give 42.67 g (yield: 81%) of the product.
- Sub 3 may be synthesized by Scheme 39 or Scheme 40 of Example 4 disclosed in Applicant's Patent Registration No. 10-1251451 (registered date of April 5, 2013).
- Sub 4 may be synthesized by Scheme 55 of Example 4 disclosed in Applicant's Patent Registration No. 10-1251451 (Registration date of April 5, 2013).
- Sub 5 may be synthesized by Scheme 16 of Example 2 in the applicant's registered patent No. 10-1251451 (registered date of April 5, 2013).
- the starting material in Scheme 2-> Sub 1 the product synthesis scheme of the formula (1) (Scheme 11 to Scheme 14), etc. are based on the Suzuki cross-coupling reaction
- the starting material in Scheme 7-> Sub 2 reaction is Miyaura It is based on the boration reaction
- the product synthesis scheme of Chemical Formula 2 (Scheme 20 to Scheme 25) is based on the Buchwald-Hartwig cross coupling reaction, and the reactions will proceed even if the substituents are not specified.
- An organic electroluminescent device was manufactured according to a conventional method using one of the compounds of the present invention obtained through synthesis as a material of the hole transport layer.
- Compound 2-1 of the present invention was vacuum deposited to a thickness of 20 nm on the hole injection layer to form a hole transport layer, followed by 4,4'-N, N 'as a host material on the hole transport layer.
- CBP dicarbazole-biphenyl
- Ir (ppy) 3 tris (2-phenylpyridine) -iridium
- BAlq (1,1'-bisphenyl) -4-oleito) bis (2-methyl-8-quinolineoleito) aluminum
- Alq 3 tris (8-quinolinol) aluminum
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 1 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 2 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 3 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 4 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 5 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 6 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 7 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Comparative Compound 8 was used instead of Compound 2-1 of the present invention as a hole transport layer material.
- the electroluminescence (EL) characteristics of the organic electroluminescent devices of Examples 1 to 76 and Comparative Examples 1 to 8 thus prepared were subjected to forward bias DC voltages, and the electroluminescence (EL) characteristics were measured by PR-650 of photoresearch. , T90 life was measured using a life science equipment manufactured by McScience Inc. at a luminance of 300 cd / m 2. The measurement results are shown in Table 5 below.
- the organic electroluminescent device using the compounds of the present invention represented by the formula (2) is used as a hole transport layer material of Comparative Examples 1 to 8 of the derivatives of NPB type widely used conventionally It showed relatively lower driving voltage and higher lifetime than the compound.
- the compound represented by Ar 1 represented by Formula 2b showed a relatively low driving voltage, and in the case of compound 3-5, the driving voltage was lowest.
- Compound 3-5 was used in the hole transport layer and the compound of Formula 1 was used as the electron transport layer to manufacture the organic electroluminescent device as follows.
- An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention obtained through synthesis as a material of a hole transport layer and an electron transport layer.
- 2-TNATA is vacuum-deposited on an ITO layer (anode) formed on an organic substrate to form a hole injection layer having a thickness of 60 nm, followed by vacuum compound 3-5 of the present invention as a hole transport compound at 20 nm thickness on the hole injection layer. It was deposited to form a hole transport layer.
- a light emitting layer was deposited to a thickness of 30 nm by doping CBP as a host material and Ir (ppy) 3 as a dopant material in a 90:10 weight ratio on the hole transport layer.
- BAlq was vacuum-deposited on the light emitting layer to a thickness of 10 nm to form a holdoff layer, and an electron transport layer was formed on the holdoff layer to compound 40 of the present invention with a thickness of 40 nm.
- LiF an alkali metal halide
- LiF an alkali metal halide
- An organic electroluminescent device was manufactured in the same manner as in Example 77, except that Compound 1-1 of the present invention was used instead of Compound 1-1 of the present invention, as one of the compounds 1-2 to 1-80 of the present invention. It was.
- An organic electroluminescent device was manufactured in the same manner as in Example 77, except that Comparative Compound 9 was used instead of Compound 1-1 of the present invention as an electron transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 77, except that Comparative Compound 10 was used instead of Compound 1-1 of the present invention as an electron transport layer material.
- An organic electroluminescent device was manufactured in the same manner as in Example 77, except that Comparative Compound 11 was used instead of Compound 1-1 of the present invention as an electron transport layer material.
- the device to which the compounds of Comparative Examples 9 to 11 are applied to the electron transport layer is generally more than the device to which the compound of the present invention (one of 1-1 to 1-80) is applied to the electron transport layer. High driving voltage, low efficiency and low life.
- Comparative Compound 11 used in Comparative Example 11 is a type having a core having a bicyclic heteroaromatic ring containing N on both sides of the phenyl similarly to the compound of the present invention. Different results are shown depending on the number and location.
- Comparative Example 11 using a comparative compound that is a core in which quinoxaline type is bonded to both phenyl (meta position), a higher driving voltage, lower efficiency, and lower lifetime than Comparative Example 10 are shown.
- the comparative compound used in Comparative Example 11 had a significantly lower LUMO value than that of Comparative Example 10 using a comparative compound which is a core having a quinoline type bonded to both a compound of the present invention and phenyl at a meta position. This is because the ability is relatively poor.
- the compound of the present invention When the compound of the present invention is applied to an organic electroluminescent device, it shows excellent device characteristics compared to Comparative Example 10, which has a band gap, electrical properties, and interfacial properties depending on which substituents are bonded at which positions even in the same core. This is because the back can be greatly changed.
- a fast electron mobility such as the compound of the present invention through such a change in properties, it is possible to achieve a charge balance between the hole and the electron (charge balance) to be formed within the light emitting layer relatively efficiently.
- 2-TNATA is vacuum-deposited on an ITO layer (anode) formed on an organic substrate to form a hole injection layer having a thickness of 60 nm.
- the compound 2-13 of the present invention is vacuum-deposited on the hole injection layer to a thickness of 20 nm, and a hole transport layer. Formed.
- a light emitting layer was deposited to a thickness of 30 nm by doping CBP as a host material and Ir (ppy) 3 as a dopant material in a 90:10 weight ratio on the hole transport layer.
- BAlq was vacuum-deposited on the light emitting layer to form a hole blocking layer
- Compound 1-36 was vacuum-deposited to a thickness of 40 nm as an electron transport compound on the holding layer to form an electron transporting layer.
- LiF an alkali metal halide
- Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
- Examples 157 to 174 in which the compound of the present invention is further applied to the electron transport layer than Examples 1 to 76 are significantly improved in terms of luminous efficiency.
- a manufacturing example of an organic electroluminescent device comprising a compound of the present invention as a capping layer formed on a Mg: Ag cathode of a device including a pair of electrodes of an anode and a cathode and a compound of the present invention as an electron transport layer Explain.
- the present invention as a hole transport compound on the hole injection layer Chemical 3-5 of was vacuum deposited to a thickness of 40nm to form a hole transport layer.
- a light emitting layer was deposited to a thickness of 30 nm by doping CBP as a host material and Ir (ppy) 3 as a dopant material in a 90:10 weight ratio on the hole transport layer.
- BAlq was vacuum-deposited on the light emitting layer to a thickness of 10 nm to form a hole blocking layer
- compound 1-36 of the present invention was vacuum-deposited to a thickness of 40 nm on the holding layer as an electron transport compound to form an electron transport layer.
- LiF an alkali metal halide
- Al is deposited to a thickness of 0.2 nm to form an electron injection layer
- deposition of Al is deposited to a thickness of 150 nm to form a cathode
- deposition of compound 2-24 of the present invention was 60 nm thickness.
- An organic electroluminescent device was manufactured by forming a capping layer.
- An organic electroluminescent device was manufactured in the same manner as in Example 175, except that one of Compounds 2-25 and 4-23 of the present invention shown in Table 8 was used instead of Compound 2-24 of the present invention. Prepared.
- An organic electroluminescent device was manufactured in the same manner as in Example 175, except that the light efficiency improving layer was not formed.
- An organic electroluminescent device was manufactured in the same manner as in Example 175, except that Alq 3 was used instead of the compound 2-24 of the present invention as a material for improving the light efficiency.
- the compound of the present invention (one of Formulas 2-1 to 8-14) is included as a capping layer, and the compound of the present invention is represented as an electron transport layer.
- the organic electroluminescent device including 1 to 1-80 may significantly improve high color purity and luminous efficiency.
- the light efficiency improving layer is Alq It can be seen that the efficiency is remarkably improved when using the compound of the present invention (one of Formulas 2-1 to 8-14) than when 3 .
- SPPs surface plasmon polaritons
- TE transverse electric
- TM transverse magnetic
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 화합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.
Description
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기 발광소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기전기 발광소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기 발광소자에서 유기물층으로 사용되는 재료는 기능에 따라, 정공주입 재료, 정공수송 재료, 발광재료, 전자수송 재료, 전자주입재료 등으로 분류될 수 있다.
유기전기 발광소자에 있어 가장 문제시되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야 하는 상황이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동 시 발생하는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다. 하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위(energy level) 및 T1 값, 물질의 고유특성(이동도(mobility), 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.
하지만 정공이 전자보다 빠르게 이동되어 발광층 내에서 생성된 엑시톤이 전자수송층으로 넘어가게 되어 결과적으로 발광층 내 전하불균형(charge unbalance)을 초래하여 전자수송층 계면에서 발광하게 된다. 전자수송층 계면에서 발광될 경우, 유기전기 발광소자의 색순도 및 효율이 저하되는 문제점이 발생되고 있으며, 특히 유기전기 발광소자 제작 시 고온 안정성이 떨어져 유기전기 발광소자의 수명이 짧아지는 문제점이 발생하게 된다. 따라서 고온안정성을 가지며 전자이동도가 빠르고 효과적인 정공 저지 능력(hole blocking ability)을 갖는 전자수송 물질의 개발이 필요한 시점이다.
한편, 유기전기소자의 수명단축 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투 확산되는 것을 지연시키면서, 소자 구동 시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공주입층 재료에 대한 개발이 필요하다. 정공수송층 재료의 낮은 유리전이 온도는 소자 구동 시, 박막 표면의 균일도를 저하시키는 특성이 있는바, 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자는 주로 증착 방법에 의해 형성되는데, 증착 시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요한 실정이다.
즉, 유기전기 발광소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기 발광소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있으며, 특히 정공수송층, 전자수송층 등의 재료 조합에 대한 개발이 절실히 요구되고 있다.
최근에는 각 재료의 성능 변화를 주어 소자 특성을 향상시키는 연구뿐만 아니라, 공진 구조의 탑(Top) 소자에서는 애노드(anode)와 캐소드(cathode) 사이에 최적화된 광학 두께에 의한 색순도 향상 및 효율 증대기술이 소자 성능을 향상시키는데 중요한 요소 중의 하나이다. 비공진 구조의 바텀(bottom) 소자구조와 비교해보면 탑(Top) 소자구조는 형성된 빛이 반사막인 애노드에 반사되어 캐소드 쪽으로 빛이 나오므로 SPP(surface plasmon polariton)에 의한 광학 에너지 손실이 크다.
따라서, EL 스페트럼(spectral)의 모양과 효율향상을 위한 중요한 방법 중의 하나는 탑 캐소드(top cathode)에 캐핑(capping)층을 사용하는 방법이 있다. 일반적으로 SPP는 전자방출은 Al, Pt, Ag, Au의 4개 금속이 주로 사용되며 금속전극 표면에서 표면 플라즈몬이 발생한다. 예를 들어 음극을 Ag로 사용할 경우 음극의 Ag로 인해 방출되는 빛이 SPP에 의해 퀀칭(Quenching)(Ag로 인한 빛에너지 손실)되어 효율이 감소된다.
반면 캐핑(capping)층을 사용할 경우에는 MgAg 전극과 고굴절의 유기재료 경계면에서 SPP가 발생하며 그 중 TE(transverse electric) 편광된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 CPL면에서 소멸되며, 음극과 캐핑(capping)층을 따라 이동하는 TM(transverse magnetic) 편광된 빛은 표면 플라즈마 공진(surface plasma resonance)에 의해 파장의 증폭현상이 일어나며 이로 인해 피크(peak)의 세기(intensity)가 증가하여 결국 높은 효율과 효과적인 색순도 조절이 가능하게 된다.
본 발명은 높은 전자 이동도와 높은 고온 안정성을 가지며, 보다 효율적인 정공 저지 능력(hole blocking ability)을 갖는 화합물의 개발 및 정공수송 물질과의 조합으로 높은 효율과 높은 수명 및 높은 색순도를 갖는 유기전기 발광소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
<화학식 1>
다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
또 다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 화합물이 함유된 전자수송층과 하기 화학식 2로 표시되는 화합물이 함유된 정공수송층을 포함하는 유기전기소자 및 그 전자장치를 제공한다.
<화학식 2>
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압, 고내열성을 달성할 수 있고, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
한편, 본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소, 염소, 브롬, 및 요오드를 포함한다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알케닐" 또는 "알키닐"은 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕시기"는 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다.
본 발명에서 아릴기 또는 아릴렌기는 단일환 또는 다환의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 링을 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기, 스파이로바이플루오렌기일 수 있다.
본 명세서에서 사용된 용어 "헤테로알킬"은 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. 본 발명에 사용된 용어 "헤테로아릴기" 또는 "헤테로아릴렌기"는 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 아릴기 또는 아릴렌기를 의미하며, 여기에 제한되는 것은 아니며, 단일환뿐만 아니라 다환을 포함하며, 이웃한 기가 결합하여 형성될 수도 있다.
본 발명에 사용된 용어 "헤테로시클로알킬", "헤테로고리기"는 다른 설명이 없는 한 하나 또는 그 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일환뿐만 아니라 다환을 포함하며, 이웃한 기가 결합하여 형성될 수도 있다. 또한, "헤테로고리기"는 헤테로원자를 포함하는 지환족 및/또는 방향족을 의미할 수 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 및 Si를 나타낸다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "포화 또는 불포화 고리"는 포화 또는 불포화 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 헤테로고리를 의미한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕시기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알케닐기, C2~C20의 알키닐기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알케닐기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
도 1은 본 발명에 일 실시예에 따른 유기전기소자에 대한 예시도이다.
도 1을 참조하면, 본 발명에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(110)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 발광층(150)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(151), 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
그리고 상기 제 1전극(120)의 하부 또는 제 2전극(180)의 상부 중 적어도 하나에는 광효율 개선층(Capping layer)(190)을 구비할 수 있다. 즉, 미도시하였지만, 본 발명에 따른 유기전기소자는 제 1전극과 제 2전극의 적어도 일면 중 상기 유기물층과 반대되는 일면에 보호층인 광효율개선층을 더 포함할 수 있을 것이다.
본 발명에 따른 화합물은 정공주입층(130), 정공수송층(140), 전자수송층(160), 전자주입층(170), 발광층(150)의 호스트 또는 도펀트 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는, 본 발명의 화합물은 정공수송층(140), 전자수송층(160) 및/또는 광효율 개선층(190)에 사용될 수 있을 것이다.
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
본 발명에 따른 화합물을 사용하여 전자수송층, 정공수송층, 광효율개선층 등을 형성함으로써 각 유기물층 간의 에너지 레벨(level) 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀 코팅, 딥 코팅, 닥터 블레이딩, 스크린 프린팅, 잉크젯 프린팅 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R,G,B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명에 따른 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일 측면에 따른 화합물은 하기 화학식 1로 표시될 수 있을 것이다. 이때, 하기 화학식 1로 표시되는 화합물은 유기전기소자의 유기물층에 포함될 수 있으며, 보다 구체적으로 전자수송층을 형성하는 물질일 수 있을 것이다.
<화학식 1>
상기 화학식 1에서, X1 내지 X4는 N(질소), C(탄소) 또는 CR'이되, X1과 X2 중 하나와 X3와 X4 중 하나는 반드시 N(질소)이다.
또한, X1 내지 X4가 C(탄소)인 경우 상기 화학식 1의 페닐은 C(탄소)인 X1 내지 X4에 결합된다. 예컨대, X1이 C이고, X2가 N인 경우, 화학식 1의 3가 페닐은 X1과 결합한다. 마찬가지로, X3가 C이고, X4가 N인 경우에도 화학식 1의 3가 페닐은 X3와 결합한다.
예시적으로, X1과 X4가 모두 탄소인 경우 하기 화합물 1-1과 같이 이들은 모두 상기 화학식 1의 3가의 페닐과 결합되며, X2와 X3가 모두 탄소인 경우에는 하기 화합물 1-8과 같이 이들 모두가 화학식 1의 3가의 페닐과 직접 결합된다.
한편, X1 내지 X4가 CR'인 경우, R' 은 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R11)(R12);로 이루어진 군에서 선택될 수 있다. 여기서, L' 은 C6~C60의 아릴렌기 또는 플루오렌일렌기일 수 있고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다. 또한, R11 및 R12는 서로 독립적으로, C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택될 수 있다.
상기 화학식 1의 R1, R2 각각은 독립적으로, 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R11)(R12);로 이루어진 군에서 선택될 수 있다. 여기서, L' 은 C6~C60의 아릴렌기 또는 플루오렌일렌기일 수 있고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다. 또한, R11 및 R12는 서로 독립적으로, C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택될 수 있다.
한편, 상기 화학식 1에서, n은 0 내지 2의 정수이고, m은 0 내지 4의 정수이며, n이 2인 경우 복수의 R1 은 서로 같거나 상이하고 m이 2 이상인 경우 복수의 R2 는 서로 같거나 상이할 수 있다. 또한, n이 0인 경우 R1이 부존재하게 되므로, X1과 X2가 포함된 고리(또는 X3와 X4가 포함된 고리)의 탄소에 수소 또는 화학식 1의 3가 페닐이 결합하게 된다. 마찬가지로, m이 0인 경우 R2는 부존재하게 되므로, 벤젠링의 탄소에 수소 또는 화학식 1의 3가 페닐이 결합하게 된다.
화학식 1에서 R1을 동일하게 표시하였지만, n이 1인 경우라도 X1 및 X2가 포함된 환에 결합되는 R1과, X3 및 X4가 포함된 환에 결합되는 R1은 서로 상이할 수 있다. 즉, X1과 X2가 포함된 환에 결합되는 R1, R2와 X3와 X4가 포함된 환에 결합되는 R1, R2는 서로 독립적으로 정의될 수 있다.
n과 m이 모두 0이면서, X1과 X4가 -CR'(여기서, R'은 수소임)인 경우의 예시적 화합물로 하기 화합물 1-2 또는 1-3을 들 수 있을 것이다.
상기 화학식 1에서, L1은 L'과 동일하게 정의될 수 있다. 즉, L1은 C6~C60의 아릴렌기 또는 플루오렌일렌기일 수 있고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다.
상기 화학식 1에서, HAr은 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C30의 헤테로고리기이다.
그리고, 상기 L1은 하기 그룹으로 이루어진 군에서 선택될 수 있다.
또한, 상기 HAr은 하기 H1~H21 중 하나일 수 있다.
상기 H1 내지 H21에서, R3는 서로 독립적으로, 수소; 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택될 수 있다.
상기 화학식 1에서 아릴기, 플루오렌일기, 헤테로고리기, 아릴옥시기, 알킬기, 알켄일기, 융합고리기 및 알콕실기 각각은 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다.
상기 화학식 1에서 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~30, 보다 바람직하게는 탄소수 6~20의 아릴기일 수 있으며,
상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20의 헤테로고리일 수 있으며,
상기 아릴렌기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~40, 보다 바람직하게는 탄소수 6~30의 아릴렌기일 수 있고,
상기 알킬기인 경우 탄소수는 1~50, 바람직하게는 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 특히 바람직하게는 탄소수 1~10의 알킬기일 수 있다.
구체적으로, 상기 화학식 1은 하기 화합물 중 하나일 수 있다.
다른 측면에서, 본 발명은 하기 화학식 2로 표시되는 화합물을 함유하는 유기물층을 포함하는 유기전기소자일 수 있다. 이때, 하기 화학식 2는 유기물층 중 정공수송층을 형성하는 화합물일 수 있을 것이다.
<화학식 2>
상기 화학식 2에서, Ar1은 또는 이고, Ar2 내지 Ar4는 서로 독립적으로, C6~C60의 아릴기; O, N 및 S 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 플루오렌일기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택될 수 있다.
또한, 상기 화학식 2에서, R4 및 R5는 각각 독립적으로, i) 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L-N(R6)(R7);로 이루어진 군에서 선택되거나, ii) 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성하거나, iii) R4와 R5가 서로 결합하여 고리를 형성할 수 있을 것이다. ii)와 iii)의 경우, 고리를 형성하지 않는 기는 i)에서 정의된 것과 같다. 여기서, L은 단일결합; C6~C60의 아릴렌기; O, N 및 S 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로아릴렌기; 및 플루오렌일렌기;로 이루어진 군에서 선택되고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다. 또한, R6 및 R7은 서로 독립적으로 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C6~C60의 아릴기; C2~C20의 알켄일기; C1~C50의 알킬기; 및 플루오렌일기;로 이루어진 군에서 선택될 수 있다.
한편, ii)와 iii)의 경우, 형성되는 고리는 포화 또는 불포화 고리일 수 있다. 즉, 단일 또는 다환의 방향족, 지환족, 헤테로고리기, 방향족과 지환족의 융합고리기 등일 수 있다.
상기 화학식 2에서, o 및 p 는 각각 0 내지 4의 정수이고, o 또는 p가 2 이상인 경우 복수의 R4
및 R5 는 서로 같거나 상이할 수 있다. 여기서, o 또는 p가 0인 경우 R4가 부존재하므로, 벤젠링을 형성하는 탄소에는 수소가 결합된다.
상기 화학식 2에서, L2 는 단일결합; C6~C60의 아릴렌기; O, N 및 S 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로아릴렌기; 및 플루오렌일렌기;로 이루어진 군에서 선택될 수 있고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있다.
상기 화학식 2에서 아릴기, 플루오렌일기, 헤테로고리기, 아릴옥시기, 알킬기, 알켄일기, 융합고리기 및 알콕실기 각각은 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다.
상기 화학식 2에서 상기 아릴기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~40, 보다 바람직하게는 탄소수 6~30의 아릴기일 수 있으며,
상기 헤테로고리기인 경우 탄소수는 2~60, 바람직하게는 탄소수 2~30, 보다 바람직하게는 탄소수 2~20의 헤테로고리일 수 있으며,
상기 아릴렌기인 경우 탄소수는 6~60, 바람직하게는 탄소수 6~30, 보다 바람직하게는 탄소수 6~20의 아릴렌기일 수 있고,
상기 알킬기인 경우 탄소수는 1~50, 바람직하게는 탄소수 1~30, 보다 바람직하게는 탄소수 1~20, 특히 바람직하게는 탄소수 1~10의 알킬기일 수 있다.
상기 화학식 2에서, Ar2 내지 Ar4는 서로 독립적으로, 하기 그룹으로 이루어진 군에서 선택될 수 있을 것이다.
또한, 상기 화학식 2에서 Ar1은 하기 화학식 3 내지 화학식 11 중 하나일 수 있을 것이다.
상기 화학식 3 내지 화학식 11에서, Ar4, R4, L2 및 o는 화학식 2에서 정의된 것과 같다.
구체적으로, 화학식 2는 하기 화합물 중 하나일 수 있다.
한편, 상기 화학식 1 및 화학식 2로 표시되는 화합물들은 상기에서 제시된 구체적 화합물들 중 하나일 수 있으나 이에 제한되지 않는다.
이하, 본 발명에 따른 화학식 1 및 화학식 2로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명한다. 하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
합성예
Ⅰ. 화학식 1의 합성
예시적으로 본 발명에 따른 화합물(Final Products: product 1-1~1-80)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 제조될 수 있다.
<반응식 1> (X1, X2, X3, X4= C, CR', N)
1.
Sub
1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성될 수 있다.
<반응식 2>
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.
(1)
Sub
1-4
합성예
<반응식 3>
출발물질인 1,3-dibromo-5-chlorobenzene (12.19g, 45.1mmol)을 둥근바닥플라스크에 Toluene으로 녹인 후에, isoquinolin-5-ylboronic acid (15.6g, 90.2mmol), Pd(PPh3)4 (2.61g, 2.3mmol), K2CO3 (24.93g, 180.4mmol), 물을 첨가하고 95℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 14.23g (수율: 86%)를 얻었다.
(2)
Sub
1-8
합성예
<반응식 4>
출발물질인 1,3-dibromo-5-chlorobenzene (17.93g, 66.3mmol)에 quinolin-2-ylboronic acid (22.94g, 132.6mmol), Pd(PPh3)4 (3.83g, 3.3mmol), K2CO3 (36.67g, 265.3mmol), Toluene, 물을 상기 Sub 1-4 합성법을 사용하여 생성물 18.98g (수율: 78%)를 얻었다.
(3)
Sub
1-10
합성예
<반응식 5>
출발물질인 1,3-dibromo-5-chlorobenzene (15.58g, 57.6mmol)에 quinolin-4-ylboronic acid (19.94g, 115.3mmol), Pd(PPh3)4 (3.33g, 2.9mmol), K2CO3 (31.86g, 230.5mmol), Toluene, 물을 상기 Sub 1-4 합성법을 사용하여 생성물 16.91g (수율: 80%)를 얻었다.
(4)
Sub
1-16
합성예
<반응식 6>
출발물질인 1,3-dibromo-5-chlorobenzene (8.71g, 32.2mmol)에 (4-phenylquinolin-8-yl)boronic acid (16.05g, 64.4mmol), Pd(PPh3)4 (1.86g, 1.6mmol), K2CO3 (17.81g, 128.9mmol), Toluene, 물을 상기 Sub 1-4 합성법을 사용하여 생성물 13.88g (수율: 83%)를 얻었다.
한편, Sub 1의 예시는 아래와 같으나, 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 1과 같다.
[표 1]
2.
Sub
2의 합성
상기 반응식 1의 Sub 2는 하기 반응식 7의 반응경로에 의해 합성될 수 있다.
<반응식 7>
Sub 2에 속하는 구체적 화합물의 합성예는 다음과 같다.
(1)
Sub
2-17
합성예
<반응식 8>
출발물질인 4-(4-bromophenyl)-2-phenylquinazoline (46.61g, 129mmol)를 둥근바닥플라스크에 DMF로 녹인 후에, Bis(pinacolato)diboron (36.04g, 141.9mmol), Pd(dppf)Cl2 (3.16g, 3.9mmol), KOAc (37.99g, 387.1mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 42.67g (수율: 81%)를 얻었다.
(2)
Sub
2-27
합성예
<반응식 9>
출발물질인 2-(4-bromophenyl)-4-phenylbenzo[h]quinazoline (24.73g, 60.1mmol)에 Bis(pinacolato)diboron (16.8g, 66.1mmol), Pd(dppf)Cl2 (1.47g, 1.8mmol), KOAc (17.7g, 180.4mmol), DMF를 상기 Sub 2-17 합성법을 사용하여 생성물 20.67g (수율: 75%)를 얻었다.
(3)
Sub
2-42
합성예
<반응식 10>
출발물질인 4-([1,1'-biphenyl]-4-yl)-2-(4-bromophenyl)quinazoline (27.94g, 63.9mmol)에 Bis(pinacolato)diboron (17.85g, 70.3mmol), Pd(dppf)Cl2 (1.57g, 1.9mmol), KOAc (18.81g, 191.7mmol), DMF를 상기 Sub 2-17 합성법을 사용하여 생성물 24.45g (수율: 79%)를 얻었다.
한편, Sub 2의 예시는 아래와 같으나, 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 2와 같다.
[표 2]
3. 화학식 1의 최종생성물(Final
Product)
합성
Sub 1 (1당량)을 둥근바닥플라스크에 THF로 녹인 후에, Sub 2 (1.1당량), Pd(PPh3)4 (0.03당량), K2CO3 (2당량)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 chlwhdtodtjdanf(Final product)을 얻었다.
(1)
Product
1-26
합성예
<반응식 11>
상기 합성에서 얻어진 Sub 1-10 (9.86g, 26.9mmol)를 둥근바닥플라스크에 THF로 녹인 후에, Sub 2-27 (13.55g, 29.6mmol), Pd(PPh3)4 (0.93g, 0.8mmol), K2CO3 (7.43g, 53.8mmol), 물을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 11.94g (수율: 67%)를 얻었다.
(2) P
roduct
1-40
합성예
<반응식 12>
상기 합성에서 얻어진 Sub 1-8 (8.07g, 22mmol)에 Sub 2-17 (9.88g, 24.2mmol), Pd(PPh3)4 (0.76g, 0.7mmol), K2CO3 (6.08g, 44mmol), THF, 물을 상기 Product 1-26 합성법을 사용하여 생성물 9.97g (수율: 74%)를 얻었다.
(3)
Product
1-48
합성예
<반응식 13>
상기 합성에서 얻어진 Sub 1-16 (10.49g, 20.2mmol)에 Sub 2-17 (9.08g, 22.2mmol), Pd(PPh3)4 (0.7g, 0.6mmol), K2CO3 (5.59g, 40.4mmol), THF, 물을 상기 Product 1-26 합성법을 사용하여 생성물 11.13g (수율: 72%)를 얻었다.
(4)
Product
1-52
합성예
<반응식 14>
상기 합성에서 얻어진 Sub 1-4 (8.72g, 23.8mmol)에 Sub 2-42 (12.67g, 26.1mmol), Pd(PPh3)4 (0.82g, 0.7mmol), K2CO3 (6.57g, 47.5mmol), THF, 물을 상기 Product 1-26 합성법을 사용하여 생성물 12.28g (수율: 75%)를 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 화합물 1-1~1-80의 FD-MS 값은 하기 표 3과 같다.
[표 3]
Ⅱ. 화학식 2의 화합물 합성
본 발명에 따른 화합물(final products: 2-1~8-18)은 하기 반응식 15와 같이 Sub 3 또는 Sub 4 중 하나와 Sub 5를 반응시켜 제조된다.
<반응식 15>
1.
Sub
3의 합성
Sub 3은 본 출원인의 등록특허 제10-1251451호(2013.04.05일자 등록공고)에 개시된 실시예 4의 반응식 39 또는 반응식 40에 의해 합성할 수 있을 것이다.
<반응식 16>
<반응식 17>
2.
Sub
4의 합성
Sub 4는 본 출원인의 등록특허 제10-1251451호(2013.04.05일자 등록공고)에 개시된 실시예 4의 반응식 55에 의해 합성할 수 있다.
<반응식 18>
3.
Sub
5의 합성
Sub 5는 본 출원인의 등록특허 제10-1251451호(2013.04.05일자 등록공고)에 실시예 2의 반응식 16에 의해 합성할 수 있다.
<반응식 19>
4. 화학식 2의 최종생성물(Final
Products
) 합성
Sub 5 (1당량)를 둥근바닥플라스크에 톨루엔(toluene)으로 녹인 후에, Sub 3 or Sub 4 (1.2당량), Pd2(dba)3 (0.03당량), P(t-Bu)3 (0.08당량), NaOt-Bu (3당량)을 첨가하고 100℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 실리카겔칼럼(silicagel column) 및 재결정하여 최종생성물(Final products)를 얻었다.
(1)
Product
2-24
합성예
<반응식 20>
출발물질인 Sub 5-1 (7.26g, 22.6mmol)을 둥근바닥플라스크에 toluene으로 녹인 후에, Sub 3-1 (11.88g, 27.1mmol), Pd2(dba)3 (0.62g, 0.7mmol), 50% P(t-Bu)3 (0.9ml, 1.8mmol), NaOt-Bu (6.51g, 67.8mmol)을 첨가하고 100℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 11.19g (수율: 73%)를 얻었다.
(2)
Product
3-1
합성예
<반응식 21>
출발물질인 Sub 5-1 (8.09g, 25.2mmol)에 Sub 4-1 (12.03g, 30.2mmol), Pd2(dba)3 (0.69g, 0.8mmol), 50% P(t-Bu)3 (1ml, 2mmol), NaOt-Bu (7.26g, 75.5mmol), toluene을 상기 Product 2-24 합성법을 사용하여 생성물 12.86g (수율: 80%)를 얻었다.
(3)
Product
3-14
합성예
<반응식 22>
출발물질인 Sub 5-2 (7.74g, 18.9mmol)에 Sub 4-2 (10.76g, 22.7mmol), Pd2(dba)3 (0.52g, 0.6mmol), 50% P(t-Bu)3 (0.7ml, 1.5mmol), NaOt-Bu (5.45g, 56.7mmol), toluene을 상기 Product 2-24 합성법을 사용하여 생성물 11.38g (수율: 75%)를 얻었다.
(4)
Product
3-17
합성예
<반응식 23>
출발물질인 Sub 5-3 (7.58g, 15.6mmol)에 Sub 4-3 (8.89g, 18.7mmol), Pd2(dba)3 (0.43g, 0.5mmol), 50% P(t-Bu)3 (0.6ml, 1.2mmol), NaOt-Bu (4.5g, 46.8mmol), toluene을 상기 Product 2-24 합성법을 사용하여 생성물 10.02g (수율: 73%)를 얻었다.
(5)
Product
4-23
합성예
<반응식 24>
출발물질인 Sub 5-1 (9.73g, 30.3mmol)에 Sub 3-2 (17.74g, 36.3mmol), Pd2(dba)3 (0.83g, 0.9mmol), 50% P(t-Bu)3 (1.2ml, 2.4mmol), NaOt-Bu (8.74g, 90.9mmol), toluene을 상기 Product 2-24 합성법을 사용하여 생성물 15.68g (수율: 71%)를 얻었다.
(6)
Product
5-10
합성예
<반응식 25>
출발물질인 Sub 5-3 (9.98g, 20.6mmol)에 Sub 3-3 (11.06g, 24.7mmol), Pd2(dba)3 (0.57g, 0.6mmol), 50% P(t-Bu)3 (0.8ml, 1.6mmol), NaOt-Bu (5.93g, 61.7mmol), toluene을 상기 Product 2-24 합성법을 사용하여 생성물 13.5g (수율: 77%)를 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 화합물 2-1~8-18의 FD-MS 값은 하기 표 4와 같다.
[표 4]
한편, 상기에서는 화학식 1 또는 화학식 2로 표시되는 본 발명의 예시적 합성예를 설명하였지만, 이들은 모두 Suzuki cross-coupling 반응, Miyaura boration 반응 및 Buchwald-Hartwig cross coupling 반응 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 다른 치환기(X1 내지 X4, HAr, L1, L2, Ar1~Ar4, R1~R7 등의 치환기)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
예컨대, 반응식 2에서 출발물질 -> Sub 1, 화학식 (1)의 Product 합성 반응식(반응식 11 내지 반응식 14) 등은 Suzuki cross-coupling 반응에 기초한 것이고, 반응식 7에서 출발물질 -> Sub 2 반응은 Miyaura boration 반응에 기초한 것이며, 화학식 2의 Product 합성 반응식(반응식 20 내지 반응식 25)은 Buchwald-Hartwig cross coupling 반응에 기초한 것으로, 이들에 구체적으로 명시되지 않은 치환기가 결합되더라도 상기 반응들이 진행할 것이다.
유기전기소자의 제조평가
[실시
예
1] 정공수송층(
HTL
)
합성을 통해 얻은 본 발명의 화합물 중 하나를 정공수송층의 물질로 사용하여 통상적인 방법에 따라 유기전기 발광소자를 제조하였다. 먼저, 유기 기판에 형성된 ITO층 (양극)위에 4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine (이하, "2-TNATA"로 약기함)를 진공증착하여 60nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 본 발명의 화합물 2-1을 20nm 두께로 진공증착하여 정공수송층을 형성하였다. 다음으로, 정공수송층 위에 호스트 물질로 4,4'-N,N'-dicarbazole-biphenyl (이하, "CBP"로 약기함)를, 도판트 물질로 tris(2-phenylpyridine)-iridium (이하, "Ir(ppy)3"로 약기함)을 90:10 중량비로 도핑하여 30nm 두께로 발광층을 증착하였다. 이어서 상기 발광층 상에 (1,1'-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄 (이하, "BAlq"로 약기함)을 10nm 두께로 진공증착하여 홀저지층을 형성하고, 상기 홀저지층 상에 트리스(8-퀴놀리놀)알루미늄 (이하, "Alq3"로 약기함)을 40nm 두께로 전자수송층을 성막하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 2] 내지 [실시예 76] 정공수송층(HTL)
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 표 5에 기재된 본 발명의 화합물 2-4 내지 2-26, 3-1 내지 3-30, 4-7 내지 4-25, 5-3 내지 5-17, 6-3 내지 6-14, 7-1 내지 7-19 및 8-1 내지 80-18 중 하나를 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
[
비교예
1]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 1을 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 1>
[비교예 2]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 2를 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 2>
[비교예 3]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 3을 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 3>
[비교예 4]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 4를 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 4>
[비교예 5]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 5를 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 5>
[비교예 6]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 6을 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 6>
[비교예 7]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 7을 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 7>
[비교예 8]
정공수송층 물질로 본 발명의 화합물 2-1 대신 하기 비교화합물 8을 사용한 점을 제외하고는 상기 실시예 1과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 8>
이와 같이 제조된 실시예 1 내지 실시예 76 및 비교예 1 내지 비교예 8의 유기전기발광소자에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 300cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T90 수명을 측정하였다. 그 측정 결과는 하기 표 5와 같다.
[표 5]
상기 표 5의 결과로부터 알 수 있듯이, 화학식 2로 표시되는 본 발명의 화합물들을 이용한 유기전기발광소자는 정공수송층 재료로 사용되어 기존부터 널리 사용된 NPB 타입의 유도체인 비교예 1 내지 비교예 8의 화합물보다 비교적 낮은 구동전압과 높은 수명을 나타내었다. 특히, 화학식 2의 화합물 중에서도 Ar1이 화학식 2b로 표시되는 화합물이 비교적 낮은 구동전압을 나타내었으며, 화합물 3-5의 경우 구동전압이 가장 낮게 측정되었다.
이에 구동전압의 하강뿐만 아니라 발광효율 및 수명에서도 월등히 높은 결과를 얻고자 화합물 3-5를 정공수송층에 사용하고, 화학식 1의 화합물을 전자수송층으로 사용하여 하기와 같은 유기전기발광소자를 제작하였다.
[
실시예
77]
정공수송층
및 전자수송층(
HTL
,
ETL
)
합성을 통해 얻은 본 발명의 화합물을 정공수송층 및 전자수송층의 물질로 사용하여 통상적인 방법에 따라 유기전기 발광소자를 제조하였다. 먼저, 유기 기판에 형성된 ITO층 (양극)위에 2-TNATA를 진공증착하여 60nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 본 발명의 화합물 3-5를 20nm 두께로 진공증착하여 정공수송층을 형성하였다. 다음으로, 정공수송층 위에 호스트 물질로 CBP를, 도판트 물질로 Ir(ppy)3를 90:10 중량비로 도핑하여 30nm 두께로 발광층을 증착하였다. 이어서 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 홀저지층을 형성하고, 상기 홀저지층 상에 본 발명 화합물 1-1을 40nm 두께로 전자수송층을 성막하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 78] 내지 [실시예 156] 정공수송층 및 전자수송층(HTL, ETL)
전자수송층 물질로 본 발명의 화합물 1-1 대신 하기 표 6에 기재된 본 발명의 화합물 1-2 내지 1-80 중 하나를 사용한 점을 제외하고는 상기 실시예 77과 동일하게 유기전기발광소자를 제조하였다.
[비교예 9]
전자수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 9를 사용한 점을 제외하고는 상기 실시예 77과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 9>
[비교예 10]
전자수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 10을 사용한 점을 제외하고는 상기 실시예 77과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 10>
[비교예 11]
전자수송층 물질로 본 발명의 화합물 1-1 대신 하기 비교화합물 11을 사용한 점을 제외하고는 상기 실시예 77과 동일하게 유기전기발광소자를 제조하였다.
<비교화합물 11>
이와 같이 제조된 실시예 77 내지 실시예 156 및 비교예 9 내지 비교예 11의 유기전기발광소자에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 300cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T90 수명을 측정하였다. 그 측정 결과는 하기 표 6과 같다.
[표 6]
상기 표 6의 결과로부터 알 수 있듯이, 비교예 9 내지 비교예 11의 화합물들을 전자수송층에 적용한 소자는 일반적으로 본 발명의 화합물(1-1~1-80 중 하나)을 전자수송층에 적용한 소자보다 높은 구동전압과 낮은 효율, 낮은 수명을 나타낸다.
특히, 비교예 11에서 사용한 비교 화합물 11은 본 발명의 화합물과 유사하게 페닐 양쪽(meta 위치)에 N을 포함하고 있는 바이시클릭(bicyclic) 헤테로 방향족 고리가 결합된 코어를 가지는 유형이지만, N의 개수 및 위치에 따라 상이한 결과를 나타내고 있다.
예를 들어, 페닐 양쪽(meta 위치)에 퀴녹살린(quinoxaline) 타입이 결합된 코어인 비교 화합물을 사용한 비교예 11의 경우, 상기 비교예 10보다 높은 구동전압과 낮은 효율 및 낮은 수명을 나타낸다. 이는 비교예 11에서 사용한 비교화합물의 경우 본 발명의 화합물 및 페닐 양쪽에 메타(meta) 위치로 퀴놀린(quinoline) 타입이 결합된 코어인 비교화합물을 사용한 비교예 10보다 상당히 낮은 LUMO 값을 가져 전자수송능력이 상대적으로 떨어지기 때문인 것으로 판단된다.
본 발명의 화합물을 유기전기소자에 적용할 경우 비교예 10에 비해 우수한 소자특성을 보이는데, 이는 동일한 코어라고 해도 어느 위치에서 어느 치환기를 결합시키냐에 따라 밴드 갭(band gap), 전기적 특성 및 계면 특성 등이 크게 변화될 수 있기 때문이다. 이러한 특성 변화를 통해 본 발명의 화합물과 같이 빠른 전자이동도를 갖는 경우, 정공과 전자가 전하균형(charge balance)을 이루어 발광층 내부에서 발광이 비교적 효율적으로 형성되는 것을 가능하게 한다.
[
실시예
157]
정공수송층
및
전자수송층
(
HTL
, ETL)
먼저, 유기 기판에 형성된 ITO층 (양극)위에 2-TNATA를 진공증착하여 60nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 본 발명의 화합물 2-13을 20nm 두께로 진공증착하여 정공수송층을 형성하였다. 다음으로, 정공수송층 위에 호스트 물질로 CBP를, 도판트 물질로 Ir(ppy)3를 90:10 중량비로 도핑하여 30nm 두께로 발광층을 증착하였다. 이어서 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 홀저지층을 형성하고, 상기 홀저지층 상에 전자수송 화합물로서 화합물 1-36을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 158] 내지 [실시예 174] 정공수송층 및 전자수송층(HTL, ETL)
정공수송층 물질로 본 발명의 화합물 2-13 대신 하기 표 7에 기재된 본 발명의 화합물 2-14, 2-15, 2-24, 2-25, 3-1, 3-4, 3-6, 3-11 내지 3-13, 3-15 내지 3-17, 4-10 내지 4-12 및 4-23 중 하나를 사용한 점을 제외하고는 상기 실시예 157과 동일하게 유기전기발광소자를 제조하였다.
이와 같이 제조된 실시예 157 내지 실시예 174의 유기전기발광소자에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 300cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T90 수명을 측정하였다. 그 측정 결과는 하기 표 7과 같다.
[표 7]
상기 표 7의 결과로부터 알 수 있듯이, 상기 실시예 1 내지 실시예 76보다 본 발명의 화합물을 전자수송층에 더 적용한 실시예 157 내지 실시예 174가 발광 효율면에서 현저히 개선된 것을 확인할 수 있다.
이는 실시예 1 내지 실시예 76처럼 전자수송층으로 Alq3를 사용할 경우, 정공과 전자의 이동 속도에서 현저한 차이가 나는데 반해, 실시예 157 내지 실시예 174와 같이 Alq3보다 전자이동도가 빠른 본 발명의 화합물 1-36을 전자수송층으로 도입함으로써, 정공과 전자의 밀도가 발광층 내에서 균형을 이루어 효율적인 재결합을 통한 최적의 발광효율을 구현하기 때문이다.
[
실시예
175]
광효율
개선층
양극과 음극의 한 쌍의 전극을 포함하는 소자의 Mg:Ag 음극 상에 형성되는 capping 층으로 본 발명의 화합물을 포함하고 전자수송층으로 본 발명의 화합물을 포함하는 유기전기발광소자에 대한 제조예를 설명한다.
10mm x 10mm x 1mm의 유리 기판상에 Ag를 포함하는 반사막 ITO기판으로 준비하고 그 위에 2-TNATA를 진공증착하여 60nm 두께의 정공주입층을 형성한 후, 정공주입층 위에 정공수송 화합물로서 본 발명의 화학물 3-5를 40nm 두께로 진공증착하여 정공수송층을 형성하였다. 다음으로, 정공수송층 위에 호스트 물질로 CBP를, 도판트 물질로 Ir(ppy)3를 90:10 중량비로 도핑하여 30nm 두께로 발광층을 증착하였다. 이어서 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 홀저지층을 형성하고, 상기 홀저지층 상에 전자수송 화합물로서 본 발명의 화합물 1-36을 40nm 두께로 진공증착하여 전자수송층을 성막하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성한 후 본 발명의 화합물 2-24를 60nm 두께로 증착하여 광효율 개선층(capping layer)을 성막시켜 유기전기발광소자를 제조하였다.
[실시예 176] 내지 [실시예 177]광효율 개선층
광효율 개선층 물질로 본 발명의 화합물 2-24 대신 하기 표 8에 기재된 본 발명의 화합물 2-25 및 4-23 중 하나를 사용한 점을 제외하고는 상기 실시예 175와 동일하게 유기전기발광소자를 제조하였다.
[
비교예
12]
광효율 개선층을 형성하지 않은 점을 제외하고는 상기 실시예 175와 동일하게 유기전기발광소자를 제조하였다.
[
비교예
13]
광효율 개선층 물질로 본 발명의 화합물 2-24 대신 Alq3를 사용한 점을 제외하고는 상기 실시예 175와 동일하게 유기전기발광소자를 제조하였다.
이와 같이 제조된 실시예 175 내지 실시예 177, 비교예 12 및 비교예 13의 유기전기발광소자에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 300cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T90 수명을 측정하였다. 그 측정 결과는 하기 표 8과 같다.
[표 8]
상기 표 8의 결과로부터 알 수 있듯이, 광효율 개선층(capping layer)으로 본 발명의 화합물(화학식 2-1~8-14 중 하나)을 포함하고, 전자수송층으로는 본 발명의 화합물(화학식 1-1~1-80)을 포함하는 유기전기발광소자는 높은 색순도 및 발광효율을 현저히 개선시킬 수 있다.
또한, 광효율 개선층(capping layer)이 있는 소자와 없는 소자의 결과를 비교해 보면 광효율 개선층(capping layer)으로 색순도 및 효율을 상승시킬 수 있음을 확인할 수 있으며, 광효율 개선층(capping layer)이 Alq3일 때 보다 본 발명의 화합물(화학식 2-1~8-14 중 하나)을 사용하였을 때에 효율이 현저히 개선됨을 알 수 있다.
이는 광효율 개선층(capping layer)을 사용할 경우에는 Mg:Ag 전극과 고굴절의 유기재료 경계면에서 SPPs(surface plasmon polaritons)가 발생하며 그 중 TE(transverse electric) 편광된 빛은 소산파(evanescent wave)에 의해 수직 방향으로 CPL면에서 소멸되며, 음극과 광효율 개선층을 따라 이동하는 TM(transverse magnetic) 편광된 빛은 표면 플라즈마 공진(surface plasma resonance)에 의해 파장의 증폭현상이 일어나며 이로 인해 피크(peak)의 세기(intensity)가 증가하여 결국 높은 효율과 효과적인 색순도 조절이 가능하기 때문이다.
이상의 설명은 본 발명의 예시적으로 설명한 것에 불과한 것으로, 본 발명의 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
[부호의 설명]
100: 유기전기소자 110: 기판
120: 제 1전극 130: 정공주입층
140: 정공수송층 141: 버퍼층
150: 발광층 151: 발광보조층
160: 전자수송층 170: 전자주입층
180: 제 2전극
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 4월 29일 한국에 출원한 특허출원번호 제 10-2013-0047327 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.
Claims (15)
- 하기 화학식 1로 표시되는 화합물.<화학식 1>[상기 화학식 1에서, X1 내지 X4는 N, C 또는 CR'이며, 단, X1과 X2 중 하나와 X3와 X4 중 하나는 N이며, R'은 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R11)(R12);로 이루어진 군에서 선택되며,R1 및 R2 각각은 독립적으로, 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L'-N(R11)(R12);로 이루어진 군에서 선택되며,R11 및 R12는 서로 독립적으로, C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택되며, n은 0 내지 2의 정수이고, m은 0 내지 4의 정수이며,L' 및 L1은 C6~C60의 아릴렌기 또는 플루오렌일렌기이고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있고,HAr은 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C30의 헤테로고리기이며,상기 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알콕시기 및 아릴옥시기 각각은 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다]
- 제 1항에 있어서,HAr은 하기 H1 내지 H21로 이루어진 그룹에서 선택되는 것을 특징으로 하는 화합물.(상기 H1 내지 H21에서, R3 각각은 독립적으로, 수소; 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된다)
- 제 1전극, 제 2전극, 상기 제 1전극과 상기 제 2전극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서,상기 유기물층은 제 1항의 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
- 제 6항에 있어서,상기 제 1전극의 일면과 상기 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성된 광효율 개선층을 더 포함하는 것을 특징으로 하는 유기전기소자.
- 제 6항에 있어서,상기 유기물층은 전자수송층 및 정공수송층을 포함하며,상기 전자수송층은 상기 화합물을 함유하고, 상기 정공수송층은 하기 화학식 2로 표시되는 화합물을 함유하는 것을 특징으로 하는 유기전기소자.<화학식 2>Ar2 내지 Ar4는 서로 독립적으로, C6~C60의 아릴기; O, N 및 S 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 플루오렌일기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고,R4 및 R5 각각은 독립적으로, i) 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; C6~C30의 아릴옥시기; 및 -L-N(R6)(R7);로 이루어진 군에서 선택되거나, ii) 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성하거나, iii) R4와 R5가 서로 결합하여 고리를 형성하며, o 및 p 는 각각 0 내지 4의 정수이고,R6 및 R7은 서로 독립적으로 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C6~C60의 아릴기; C2~C20의 알켄일기; C1~C50의 알킬기; 및 플루오렌일기;로 이루어진 군에서 선택되며,L2 및 L은 단일결합; C6~C60의 아릴렌기; O, N 및 S 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로아릴렌기; 및 플루오렌일렌기;로 이루어진 군에서 선택되고, 이들 각각은 니트로기; 시아노기; 할로겐기; C1~C20의 알킬기; C6~C20의 아릴기; C2~C20의 헤테로고리기; C1~C20의 알콕시기; 및 아미노기;로 이루어진 군에서 선택되는 하나 이상의 치환기로 치환될 수 있으며,상기 아릴기, 플루오렌일기, 헤테로고리기, 아릴옥시기, 알킬기, 알켄일기, 융합고리기 및 알콕실기 각각은 중수소; 할로겐; 실란기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기(alkyl); C2~C20의 알켄일기(alkenyl); C2~C20의 알카인일기(alkynyl); C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 치환될 수 있다]
- 제 8항에 있어서,상기 제 1전극의 일면과 상기 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성된 광효율 개선층을 더 포함하며,상기 광효율 개선층은 상기 화학식 2로 표시되는 화합물을 포함하되, 상기 화학식 2에서 Ar1은 상기 화학식 2a인 것을 특징으로 하는 유기전기소자.
- 제 6항에 있어서,상기 유기물층은 스핀코팅공정, 노즐 프린팅공정, 잉크젯 프린팅공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성되는 것을 특징으로 하는 유기전기소자.
- 제 6항의 유기전기소자를 포함하는 디스플레이장치; 및상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
- 제 14항에 있어서,상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020130047327A KR101516965B1 (ko) | 2013-04-29 | 2013-04-29 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
KR10-2013-0047327 | 2013-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014178532A1 true WO2014178532A1 (ko) | 2014-11-06 |
Family
ID=51843620
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002168 WO2014178532A1 (ko) | 2013-04-29 | 2014-03-14 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101516965B1 (ko) |
WO (1) | WO2014178532A1 (ko) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016020332A (ja) * | 2014-06-18 | 2016-02-04 | 東ソー株式会社 | キナゾリン化合物、その製造方法、およびその用途 |
JP2016020333A (ja) * | 2014-05-29 | 2016-02-04 | 東ソー株式会社 | ベンゾキナゾリン化合物、その製造方法、およびその用途 |
US20170047529A1 (en) * | 2014-05-22 | 2017-02-16 | Samsung Sdi Co., Ltd. | Organic compound, composition, organic optoelectric device, and display device |
CN107540668A (zh) * | 2016-06-24 | 2018-01-05 | 株式会社半导体能源研究所 | 有机化合物、发光元件、发光装置、电子设备以及照明装置 |
US10355222B2 (en) | 2015-02-06 | 2019-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN111100146A (zh) * | 2019-12-30 | 2020-05-05 | 陕西莱特光电材料股份有限公司 | 一种有机化合物和应用以及使用其的有机电致发光器件 |
WO2022173022A1 (ja) * | 2021-02-15 | 2022-08-18 | 保土谷化学工業株式会社 | 化合物および該化合物を用いた有機エレクトロルミネッセンス素子 |
US11518769B2 (en) | 2017-07-20 | 2022-12-06 | Lg Chem, Ltd. | Heterocyclic compounds and organic light emitting device using the same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102030354B1 (ko) * | 2014-05-13 | 2019-10-10 | 에스에프씨주식회사 | 방향족 아민기를 포함하는 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자 |
KR102358579B1 (ko) * | 2014-05-23 | 2022-02-07 | 덕산네오룩스 주식회사 | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
KR102217267B1 (ko) * | 2014-11-20 | 2021-02-17 | 주식회사 엘지화학 | 정공수송물질 |
JP6690931B2 (ja) * | 2014-12-26 | 2020-04-28 | 株式会社半導体エネルギー研究所 | 発光素子、有機化合物、発光装置、電子機器、および照明装置 |
KR102190108B1 (ko) * | 2014-12-31 | 2020-12-11 | 에스에프씨주식회사 | 고효율과 장수명을 갖는 유기 발광 소자 |
KR102201104B1 (ko) * | 2015-01-13 | 2021-01-11 | 에스에프씨주식회사 | 고효율과 장수명을 갖는 유기 발광 소자 |
KR102429882B1 (ko) * | 2015-03-25 | 2022-08-05 | 엘지디스플레이 주식회사 | 유기전계발광소자 |
US10741768B2 (en) | 2015-08-06 | 2020-08-11 | Sfc Co., Ltd. | Organic light-emitting diode with high efficiency |
KR20170075114A (ko) | 2015-12-22 | 2017-07-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102384293B1 (ko) | 2015-12-22 | 2022-04-08 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR20170075122A (ko) | 2015-12-22 | 2017-07-03 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
KR102579752B1 (ko) | 2015-12-22 | 2023-09-19 | 삼성디스플레이 주식회사 | 유기 발광 소자 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040005261A (ko) * | 2002-07-09 | 2004-01-16 | 박수영 | 여기상태 분자내 양성자이동 특성을 보이는 새로운 퀴놀린계 화합물 |
KR20130006572A (ko) * | 2011-07-08 | 2013-01-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 복소환 화합물, 발광 소자, 발광 장치, 전자 기기 및 조명 장치 |
KR20130022420A (ko) * | 2013-01-28 | 2013-03-06 | 주식회사 두산 | 유기 화합물 및 이를 이용한 유기 전계 발광 소자 |
KR20130032280A (ko) * | 2011-09-22 | 2013-04-01 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 카르바졸 화합물, 발광 소자용 재료, 유기 반도체 재료 |
-
2013
- 2013-04-29 KR KR1020130047327A patent/KR101516965B1/ko active IP Right Grant
-
2014
- 2014-03-14 WO PCT/KR2014/002168 patent/WO2014178532A1/ko active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20040005261A (ko) * | 2002-07-09 | 2004-01-16 | 박수영 | 여기상태 분자내 양성자이동 특성을 보이는 새로운 퀴놀린계 화합물 |
KR20130006572A (ko) * | 2011-07-08 | 2013-01-17 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 복소환 화합물, 발광 소자, 발광 장치, 전자 기기 및 조명 장치 |
KR20130032280A (ko) * | 2011-09-22 | 2013-04-01 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | 카르바졸 화합물, 발광 소자용 재료, 유기 반도체 재료 |
KR20130022420A (ko) * | 2013-01-28 | 2013-03-06 | 주식회사 두산 | 유기 화합물 및 이를 이용한 유기 전계 발광 소자 |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170047529A1 (en) * | 2014-05-22 | 2017-02-16 | Samsung Sdi Co., Ltd. | Organic compound, composition, organic optoelectric device, and display device |
US10446764B2 (en) * | 2014-05-22 | 2019-10-15 | Samsung Sdi Co., Ltd. | Organic compound, composition, organic optoelectric device, and display device |
JP2016020333A (ja) * | 2014-05-29 | 2016-02-04 | 東ソー株式会社 | ベンゾキナゾリン化合物、その製造方法、およびその用途 |
JP2016020332A (ja) * | 2014-06-18 | 2016-02-04 | 東ソー株式会社 | キナゾリン化合物、その製造方法、およびその用途 |
US10355222B2 (en) | 2015-02-06 | 2019-07-16 | Universal Display Corporation | Organic electroluminescent materials and devices |
CN107540668A (zh) * | 2016-06-24 | 2018-01-05 | 株式会社半导体能源研究所 | 有机化合物、发光元件、发光装置、电子设备以及照明装置 |
JP2018002710A (ja) * | 2016-06-24 | 2018-01-11 | 株式会社半導体エネルギー研究所 | 有機化合物、発光素子、発光装置、電子機器、および照明装置 |
US11107995B2 (en) | 2016-06-24 | 2021-08-31 | Semiconductor Energy Laboratory Co., Ltd. | Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device |
JP7039188B2 (ja) | 2016-06-24 | 2022-03-22 | 株式会社半導体エネルギー研究所 | 燐光発光層用ホスト材料、有機化合物、発光素子、発光装置、電子機器および照明装置 |
US11518769B2 (en) | 2017-07-20 | 2022-12-06 | Lg Chem, Ltd. | Heterocyclic compounds and organic light emitting device using the same |
US11840538B2 (en) | 2017-07-20 | 2023-12-12 | Lg Chem, Ltd. | Heterocyclic compounds and organic light emitting device using the same |
US11578076B2 (en) | 2017-07-20 | 2023-02-14 | Lg Chem, Ltd. | Heterocyclic compound and organic light emitting device using the same |
CN111100146B (zh) * | 2019-12-30 | 2021-01-22 | 陕西莱特光电材料股份有限公司 | 一种有机化合物和应用以及使用其的有机电致发光器件 |
US11450818B2 (en) | 2019-12-30 | 2022-09-20 | Shaanxi Lighte Optoelectronics Material Co., Ltd. | Organic compound, use thereof and organic electroluminescent device using same |
CN111100146A (zh) * | 2019-12-30 | 2020-05-05 | 陕西莱特光电材料股份有限公司 | 一种有机化合物和应用以及使用其的有机电致发光器件 |
WO2022173022A1 (ja) * | 2021-02-15 | 2022-08-18 | 保土谷化学工業株式会社 | 化合物および該化合物を用いた有機エレクトロルミネッセンス素子 |
Also Published As
Publication number | Publication date |
---|---|
KR101516965B1 (ko) | 2015-05-04 |
KR20140128653A (ko) | 2014-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020231197A1 (ko) | 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치 | |
WO2014178532A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2014104585A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015182872A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2016003225A2 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2016190600A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2016140497A2 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015194791A2 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015178585A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2014088284A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2017043835A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2014129764A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015041416A1 (ko) | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 | |
WO2014010910A1 (ko) | 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2016032150A2 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2014061960A1 (ko) | 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2018016786A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015115756A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2015056965A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2022191466A1 (ko) | 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치 | |
WO2016129861A1 (ko) | 유기전기소자용 신규 화합물, 이를 이용한 유기전기소자 및 그 전자장치 | |
WO2020085797A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2017052099A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2021206305A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 | |
WO2017119654A1 (ko) | 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14791878 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14791878 Country of ref document: EP Kind code of ref document: A1 |