WO2014088284A1 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2014088284A1
WO2014088284A1 PCT/KR2013/011088 KR2013011088W WO2014088284A1 WO 2014088284 A1 WO2014088284 A1 WO 2014088284A1 KR 2013011088 W KR2013011088 W KR 2013011088W WO 2014088284 A1 WO2014088284 A1 WO 2014088284A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sub
mmol
synthesis
compound
Prior art date
Application number
PCT/KR2013/011088
Other languages
English (en)
French (fr)
Inventor
이범성
최연희
김대성
문성윤
박정철
소기호
윤진호
오대환
여승원
Original Assignee
덕산하이메탈(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51126961&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014088284(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 덕산하이메탈(주) filed Critical 덕산하이메탈(주)
Priority to JP2015546381A priority Critical patent/JP6104403B2/ja
Priority to EP13861127.2A priority patent/EP2930168B8/en
Priority to CN201380063343.6A priority patent/CN105051011B/zh
Priority to US14/650,078 priority patent/US10249825B2/en
Publication of WO2014088284A1 publication Critical patent/WO2014088284A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic electric element using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • the material used as the organic material layer in the organic electric element may be classified into a light emitting material and a charge transport material such as a hole injection material, a hole transport material, an electron transport material, an electron injection material and the like according to a function.
  • Efficiency, lifespan, and driving voltage are related to each other, and as efficiency increases, the driving voltage decreases relatively, and as the driving voltage decreases, crystallization of organic materials due to Joule heating generated during driving decreases. It shows a tendency to increase the life.
  • a light emitting auxiliary layer must exist between the hole transport layer and the light emitting layer, and different light emission auxiliary according to each light emitting layer (R, G, B) is required. It is time to develop the floor.
  • electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
  • the material used in the hole transport layer has a low TMO value because it has to have a low HOMO value, which causes the exciton generated in the light emitting layer to pass to the hole transport layer, resulting in charge unbalance in the light emitting layer. This causes light emission in the hole transport layer or at the hole transport layer interface, resulting in a decrease in color purity, efficiency and lifespan of the organic electronic device.
  • the driving voltage can be reduced by using a material having a high hole mobility, but the hole mobility is faster than the electron mobility, resulting in charge unbalance in the light emitting layer.
  • the color purity and efficiency of the electric device is lowered and the lifespan is shortened.
  • the OLED device is mainly formed by a deposition method, which requires development of a material that can withstand a long time during deposition, that is, a material having strong heat resistance.
  • the materials constituting the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc. Supported by the material should be preceded, but development of a stable and efficient organic material layer for an organic electric device has not been made yet. Therefore, the development of new materials continues to be required, and in particular, the development of materials for the light emitting auxiliary layer and the hole transport layer is urgently required.
  • the present invention uses a non-linear linking group (a structure broken upon bonding with an amine group) to a carbazole core, which is widely used as an OLED hole transport material, and is also a bulky substituent to nitrogen (N) of carbazole.
  • a non-linear linking group a structure broken upon bonding with an amine group
  • N nitrogen
  • An object of the present invention is to provide an organic electric device using the same and an electronic device thereof.
  • the present invention provides a compound represented by the following formula.
  • the present invention provides an organic electronic device using the compound represented by the above formula and an electronic device thereof.
  • FIG. 1 is an exemplary view of an organic electroluminescent device according to the present invention.
  • halo or halogen as used herein is fluorine (F), bromine (Br), chlorine (Cl) or iodine (I) unless otherwise indicated.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, unless otherwise indicated, and is a straight chain alkyl group, branched chain alkyl group, cycloalkyl (alicyclic) group, alkyl-substituted cyclo Radicals of saturated aliphatic functional groups, including alkyl groups, cycloalkyl-substituted alkyl groups.
  • heteroalkyl group means that at least one of the carbon atoms constituting the alkyl group has been replaced with a heteroatom.
  • alkenyl group or “alkynyl group”, unless stated otherwise, has a double or triple bond of 2 to 60 carbon atoms, and includes a straight or branched chain group, and is not limited thereto. It is not.
  • cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
  • alkoxyl group means an alkyl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 1 to 60, and is limited herein. It is not.
  • alkenoxyl group means an alkenyl group to which an oxygen radical is attached, and unless otherwise stated, it is 2 to 60 It has carbon number of, It is not limited to this.
  • aryloxyl group or “aryloxy group” means an aryl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 6 to 60, but is not limited thereto.
  • aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
  • an aryl group or an arylene group means an aromatic of a single ring or multiple rings, and includes an aromatic ring formed by neighboring substituents participating in a bond or a reaction.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, a spirofluorene group.
  • aryl or "ar” means a radical substituted with an aryl group.
  • an arylalkyl group is an alkyl group substituted with an aryl group
  • an arylalkenyl group is an alkenyl group substituted with an aryl group
  • the radical substituted with an aryl group has the carbon number described herein.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heteroalkyl means an alkyl including one or more heteroatoms unless otherwise indicated.
  • heteroaryl group or “heteroarylene group” means an aryl group or arylene group having 2 to 60 carbon atoms, each containing one or more heteroatoms, unless otherwise specified. It may include at least one of a single ring and multiple rings, and may be formed by combining adjacent functional groups.
  • heterocyclic group includes one or more heteroatoms, unless otherwise indicated, and has from 2 to 60 carbon atoms, and includes at least one of single and multiple rings, heteroaliphatic rings and hetero Aromatic rings. Adjacent functional groups may be formed in combination.
  • heteroatom refers to N, O, S, P or Si unless otherwise stated.
  • Heterocyclic groups may also include rings comprising SO 2 in place of the carbon forming the ring.
  • a “heterocyclic group” includes the following compounds.
  • aliphatic as used herein means an aliphatic hydrocarbon having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring consisting of an aliphatic ring having 3 to 60 carbon atoms or an aromatic ring having 6 to 60 carbon atoms or a hetero ring having 2 to 60 carbon atoms or a combination thereof. Saturated or unsaturated rings.
  • heterocompounds or heteroradicals other than the aforementioned heterocompounds include, but are not limited to, one or more heteroatoms.
  • carbonyl used in the present invention is represented by -COR ', wherein R' is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 30 carbon atoms, and 3 to 30 carbon atoms. Cycloalkyl group, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, or a combination thereof.
  • ether as used herein is represented by -RO-R ', wherein R or R' are each independently of each other hydrogen, an alkyl group having 1 to 20 carbon atoms, It is an aryl group, a C3-C30 cycloalkyl group, a C2-C20 alkenyl group, a C2-C20 alkynyl group, or a combination thereof.
  • substituted in the term “substituted or unsubstituted” as used in the present invention is deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, of a C 6 ⁇ C 20 substituted by deuterium aryl group, a C 8 ⁇ C 20 aryl alkenyl group, a silane group, a boron Group, germanium group, and C 2 ⁇ C 20 It is meant to be substituted with one or more substituents selected from the group consist
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, when a is an integer of 1, one substituent R 1 is bonded to any one of carbons forming the benzene ring, and a is an integer of 2 or 3 are each bonded as follows, where R 1 may be the same or different from each other, and when a is an integer from 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the indication of hydrogen bonded to the carbon forming the benzene ring Is omitted.
  • FIG. 1 is an exemplary view of an organic electric device according to an embodiment of the present invention.
  • the organic electric device 100 includes a first electrode 120, a second electrode 180, a first electrode 110, and a second electrode 180 formed on a substrate 110.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic layer may include a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170 on the first electrode 120 in sequence. At this time, the remaining layers except for the light emitting layer 150 may not be formed.
  • the hole blocking layer, the electron blocking layer, the light emitting auxiliary layer 151, the buffer layer 141 may be further included, and the electron transport layer 160 may serve as the hole blocking layer.
  • the organic electric device according to the present invention may further include a protective layer or a light efficiency improving layer (Capping layer) formed on one surface of the at least one surface of the first electrode and the second electrode opposite to the organic material layer.
  • a protective layer or a light efficiency improving layer Capping layer
  • the compound according to the present invention applied to the organic material layer of the hole injection layer 130, the hole transport layer 140, the electron transport layer 160, the electron injection layer 170, the host of the dopant or light efficiency improvement layer of the light emitting layer 150 It may be used as a material.
  • the compound of the present invention may be used as the light emitting layer 150, hole transport layer 140 and / or light emitting auxiliary layer 151.
  • the hole transport layer in the organic electroluminescent device it is preferable to form a light emitting auxiliary layer between the hole transport layer and the light emitting layer, and according to each of the light emitting layers R, G, and B, It is time to develop different emission auxiliary layers. Meanwhile, in the case of the light emitting auxiliary layer, it is difficult to infer the characteristics of the organic material layer used even if a similar core is used, since the correlation between the hole transport layer and the light emitting layer (host) must be understood.
  • a light emitting layer or an auxiliary light emitting layer using a compound represented by the formula (1) by optimizing the energy level (level) and T1 value between each organic material layer, the intrinsic properties (mobility, interface characteristics, etc.) of the organic material
  • the life and efficiency of the electric device can be improved at the same time.
  • the organic electroluminescent device may be manufactured using a PVD method.
  • the anode 120 is formed by depositing a metal or a conductive metal oxide or an alloy thereof on a substrate, and the hole injection layer 130, the hole transport layer 140, the light emitting layer 150, and the electron transport layer are formed thereon.
  • the organic material layer including the 160 and the electron injection layer 170 it can be prepared by depositing a material that can be used as the cathode 180 thereon.
  • the organic material layer is a solution or solvent process (e.g., spin coating process, nozzle printing process, inkjet printing process, slot coating process, dip coating process, roll-to-roll process, doctor blading) using various polymer materials. It can be produced in fewer layers by methods such as ding process, screen printing process, or thermal transfer method. Since the organic material layer according to the present invention may be formed in various ways, the scope of the present invention is not limited by the forming method.
  • the organic electric element according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • WOLED White Organic Light Emitting Device
  • Various structures for white organic light emitting devices mainly used as backlight devices have been proposed and patented. Representatively, a side-by-side method in which R (Red), G (Green), and B (Blue) light emitting parts are mutually planarized, and a stacking method in which R, G, and B light emitting layers are stacked up and down. And a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom. May also be applied to these WOLEDs.
  • CCM color conversion material
  • the organic electroluminescent device according to the present invention may be one of an organic electroluminescent device (OLED), an organic solar cell, an organic photoconductor (OPC), an organic transistor (organic TFT), a monochromatic or white illumination device.
  • OLED organic electroluminescent device
  • OPC organic photoconductor
  • organic TFT organic transistor
  • Another embodiment of the present invention may include a display device including the organic electric element of the present invention described above, and an electronic device including a control unit for controlling the display device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
  • the compound according to one aspect of the present invention is represented by the following formula (1).
  • n is an integer of 1 to 3
  • R 1 and R 2 are independently of each other hydrogen; heavy hydrogen; Tritium; halogen; C 6 ⁇ C 60 Aryl group; Fluorenyl groups; C 2 -C 60 heterocyclic group containing at least one hetero atom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; -L 2 -N (Ar 2 ) (Ar 3 ); C 1 -C 30 alkoxyl group; And C 6 ⁇ C 30 An aryloxyl group; It is selected from the group consisting of.
  • R 1 and R 2 may be independently of each other hydrogen, phenyl, naphthyl and the like.
  • Ar 1 is a fluorenyl group; C 6 ⁇ C 60 Aryl group; C 2 ⁇ C 20 Alkenyl group; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; -L 2 -N (Ar 2 ) (Ar 3 ); And a C 6 ⁇ C 60 aromatic ring and C 3 ⁇ C 60 Alicyclic ring fused ring group; it is selected from the group consisting of.
  • Ar 1 is ethyl, phenyl, biphenyl, naphthyl, terphenyl, 9,9-dimethyl-9H-fluorene, 9,9-diphenyl-9H-fluorene, 9,9-spiro- Bifluorene, pyridine, isoquinoline, dibenzothiophene, dibenzofuran and the like.
  • L 1 and L 2 are each independently a single bond; C 6 ⁇ C 60 arylene group; Fluorenylene groups; A C 2 to C 60 divalent heterocyclic group including at least one hetero atom of O, N, S, Si, and P; Divalent fused ring group of an aromatic ring of C 3 ⁇ C 60 of aliphatic rings and C 6 ⁇ C 60; And divalent aliphatic hydrocarbon group; It is selected from the group consisting of.
  • L 1 and L 2 are independently of each other a single bond, phenyl, biphenyl, naphthyl, 9,9-dimethyl-9H-fluorene, 9,9-diphenyl-9H-fluorene, dibenzoti Offen, dibenzofuran and the like.
  • Ar 2 And Ar 3 are independent of each other, C 6 ⁇ C 60 Aryl group; Fluorenyl groups; C containing at least one hetero atom of O, N, S, Si, and P 2 ⁇ C 60 Heterocyclic group of; C One ⁇ C 50 An alkyl group; C 6 ⁇ C 60 Of aromatic rings and C 3 ⁇ C 60 Fused ring of aliphatic ring of; And C 2 ⁇ C 20 Alkenyl group; is selected from the group consisting of.
  • Ar 2 And Ar 3 are independently of each other phenyl, biphenyl, terphenyl, naphthyl, phenanthrene, 9,9-dimethyl-9H-fluorene, 9,9-diphenyl-9H-fluorene, 9,9-spiro-diflu Orene, dibenzothiophene, dibenzofuran, fluorophenyl, propenyl-phenyl, pyridine, isoquinoline, quinoline, methylphenyl, phenyl substituted with deuterium, benzothiophene, thiophene, indole, benzoquinoline and the like.
  • aryl group, heterocyclic group, fluorenyl group, alkyl group, alkenyl group, fused ring group, alkoxyl group, aryloxyl group, arylene group, fluorenylene group, aliphatic hydrocarbon group are each deuterium; halogen; Silane group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; -L'-N (R ') (R "), wherein L' is a single bond; C 6 ⁇ C 60 arylene group; fluorenylene group; at least one hetero of O, N, S, Si and P C 2 ⁇ C 60 heterocyclic group containing an atom, C 3 ⁇ C 60 alicyclic ring and C 6 ⁇ C 60 Aromatic ring fused ring group; and divalent C 1 ⁇ C 60 aliphatic hydrocarbon group; It is selected from the group, wherein R 'and R "are independently of each other C 6 ⁇ C 60 An aryl group
  • L 1 is selected from the following group.
  • Ar 2 and Ar 3 are independently selected from the following group.
  • Q 1 is C (R a ) or N
  • Q 2 is C (R b ) (R c ), N (R d ), S or O
  • k is an integer from 1 to 4
  • R a and R e are i), independently of each other, hydrogen; heavy hydrogen; C 6 ⁇ C 60 Aryl group; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 ⁇ C 30 Alkoxy group; And fluorenyl group; or ii) a plurality of R e may combine with neighboring groups to form an aromatic ring together with carbon bonded thereto.
  • R b to R d is i) independently of each other C 6 ⁇ C 60 An aryl group; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 ⁇ C 30 Alkoxyl group; or ii) R b and R c may be bonded to each other to form a Spiro compound with fluorene to which they are bonded.
  • Chemical Formula 1 may be represented by the following Chemical Formula 2 or Chemical Formula 3.
  • Ar 2 , Ar 3 , R 1 , R 2 , m and n may be defined as defined in Formula 1.
  • X is C (R f ) (R g ), S or O, wherein R f and R g is i) independently of each other C 6 ⁇ C 60 An aryl group; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; And C 1 ⁇ C 30 alkoxyl group; or ii) R f and R g may be bonded to each other to form a Spiro compound together with fluorene to which they are bonded.
  • o is an integer of 1 to 4
  • p is an integer of 1 to 3
  • q and r are integers of 1 to 5 independently of each other.
  • R 3 to R 6 are i) hydrogen independently of each other; heavy hydrogen; Tritium; halogen; C 6 ⁇ C 60 Aryl group; C 2 -C 60 heterocyclic group containing at least one hetero atom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 -C 30 alkoxyl group; And it may be selected from the group consisting of C 6 ⁇ C 30 aryloxyl group, or ii) neighboring groups may be bonded to each other to form an aromatic ring with the carbon bonded to them.
  • Chemical Formula 1 may be represented by the following Chemical Formula 4 or Chemical Formula 5.
  • Ar 1 to Ar 3 , R 1 , R 2 , m and n may be defined as defined in Formula 1.
  • Q 3 is C (R h ) (R i ), N (R j ), S or O, wherein R h to R j are i) independently of each other C 6 ⁇ C 60 aryl group ; C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; C 1 ⁇ C 50 Alkyl group; C 2 ⁇ C 20 Alkenyl group; C 1 ⁇ C 30 Alkoxyl group; or ii) R h and R i may be bonded to each other to form a Spiro compound with fluorene to which they are bonded.
  • Chemical Formulas 1 to 5 may be one of the following compounds.
  • the present invention provides a compound for an organic electric device represented by Chemical Formula 1.
  • the present invention provides an organic electric device containing the compound represented by the formula (1).
  • the organic electric element includes a first electrode; Second electrode; And an organic material layer disposed between the first electrode and the second electrode.
  • the organic material layer may include a compound represented by Chemical Formula 1, and Chemical Formula 1 may include a hole injection layer, a hole transport layer, and an emission auxiliary layer of the organic material layer. Or it may be contained in at least one layer of the light emitting layer. That is, the compound represented by Formula 1 may be used as a material of a hole injection layer, a hole transport layer, a light emitting auxiliary layer or a light emitting layer.
  • an organic electroluminescent device comprising one of the compounds represented by Formula 2 to Formula 5 in the organic material layer
  • the present invention is an organic electroluminescent device comprising a compound represented by the respective formula in the organic material layer To provide.
  • the present invention provides a light efficiency improving layer formed on at least one side of the one side of the first electrode opposite to the organic material layer or one side of the second electrode opposite to the organic material layer. It provides an organic electric element further comprising.
  • Compound represented by Formula 1 according to the present invention (Final Product) is prepared by reacting Sub 1 and Sub 2 as shown in Scheme 1, but is not limited thereto.
  • Sub 1 of Scheme 1 may be synthesized by the reaction route of Scheme 2, but is not limited thereto.
  • phenylboronic acid (448.56g, 3678.8mmol) was dissolved in THF in a round bottom flask, 4-bromo-1-iodo-2-nitrobenzene (1809.43g, 5518.2mmol), Pd (PPh 3 ) 4 (212.56g , 183.9 mmol), K 2 CO 3 (1525.35 g, 11036.5 mmol), water were added and stirred at 80 ° C. After the reaction was completed, the mixture was extracted with CH 2 Cl 2 and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting compound was purified by silicagel column and recrystallized to give the product 705.93g (yield: 69%).
  • Sub 1-II-B1 (30.72g, 124.8mmol) obtained in the above synthesis of 4-iodo-1,1'-biphenyl (52.45g, 187.2mmol), Na 2 SO 4 (17.73g, 124.8mmol), K 2 CO 3 (17.25 g, 124.8 mmol), Cu (2.38 g, 37.4 mmol) and nitrobenzene were obtained using the Sub 1-III-B1 synthesis method to obtain 36.29 g (yield: 73%) of the product.
  • Sub 1-III-B2 (36.29g, 91.1mmol) obtained in the above synthesis to Bis (pinacolato) diboron (25.45g, 100.2mmol), Pd (dppf) Cl 2 (2.23g, 2.7mmol), KOAc (26.83 g, 273.3 mmol) and DMF were used to obtain the product 33.68 g (yield: 83%) using the Sub 1-IV-B1 synthesis method.
  • Sub 1-IV-B2 (33.68 g, 75.6 mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (26.76 g, 113.4 mmol), Pd (PPh 3 ) 4 (4.37 g, 3.8 mmol), and K 2 CO 3 ( 31.36 g, 226.9 mmol), THF, and water were used to give the product 26.91 g (yield: 75%) using the Sub 1-V-B1 synthesis method.
  • Sub 1-VI-B1 (7.65g, 17.2mmol) obtained in the above synthesis of 2-bromo-6-iodonaphthalene (8.58g, 25.8mmol), Pd (PPh 3 ) 4 (0.99g, 0.9mmol), K 2 CO 3 (7.12 g, 51.5 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to give 6.85 g (yield: 76%) of the product.
  • Sub 1-II-B1 (59.34g, 241.1mmol) obtained in the above synthesis to 5'-bromo-1,1 ': 3', 1 ''-terphenyl (111.83g, 361.7mmol), Na 2 SO 4 (34.25 g, 241.1 mmol), K 2 CO 3 (33.33 g, 241.1 mmol), Cu (4.6 g, 72.3 mmol) and nitrobenzene were obtained using 75.49 g (yield: 66%) of the product using the Sub 1-III-B1 synthesis method. Got it.
  • Sub 1-III-B23 (75.49g, 159.1mmol) obtained in the above synthesis to Bis (pinacolato) diboron (44.45g, 175mmol), Pd (dppf) Cl 2 (3.9g, 4.8mmol), KOAc (46.85 g, 477.4 mmol) and DMF were obtained using 64.72 g (yield: 78%) of the product using the Sub 1-IV-B1 synthesis method.
  • Sub 1-IV-B23 (64.72 g, 124.1 mmol) obtained in the above synthesis was converted into 1,3-dibromobenzene (43.92 g, 186.2 mmol), Pd (PPh 3 ) 4 (7.17 g, 6.2 mmol), and K 2 CO 3 ( 51.46 g, 372.3 mmol), THF, and water were used to obtain 49.19 g (yield: 72%) of the product using the Sub 1-V-B1 synthesis method.
  • Sub 1-VI-B23 (12.61 g, 21.1 mmol) obtained in the above synthesis was prepared with 1-bromo-4-iodobenzene (8.95 g, 31.7 mmol), Pd (PPh 3 ) 4 (1.22 g, 1.1 mmol), K 2 CO 3 (8.75 g, 63.3 mmol), THF, and water were used to obtain 8.46 g (yield: 64%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-II-B1 (41.89g, 170.2mmol) obtained in the above synthesis 3-bromo-9,9-dimethyl-9 H- fluorene (69.75g, 255.3mmol), Na 2 SO 4 (24.18g, 170.2mmol) ), K 2 CO 3 (23.53 g, 170.2 mmol), Cu (3.25 g, 51.1 mmol) and nitrobenzene were obtained using the Sub 1-III-B1 synthesis method to obtain 55.96 g (yield: 75%) of the product.
  • Sub 1-III-B26 (55.96g, 127.7mmol) obtained in the above synthesis to Bis (pinacolato) diboron (35.66g, 140.4mmol), Pd (dppf) Cl 2 (3.13g, 3.8mmol), KOAc (37.58 g, 383 mmol) and DMF were obtained using the Sub 1-IV-B1 synthesis method to yield 52.05 g (yield: 84%) of the product.
  • Sub 1-IV-B26 (52.05 g, 107.2 mmol) obtained in the above synthesis was prepared with 1,3-dibromobenzene (37.94 g, 160.8 mmol), Pd (PPh 3 ) 4 (6.2 g, 5.4 mmol), and K 2 CO 3 ( 44.46 g, 321.7 mmol), THF, and water were used to obtain the product 39.72 g (yield: 72%) using the Sub 1-V-B1 synthesis method.
  • Sub 1-V-B26 (39.72g, 77.2mmol) obtained in the above synthesis to Bis (pinacolato) diboron (21.57g, 84.9mmol), Pd (dppf) Cl 2 (1.89g, 2.3mmol), KOAc (22.73 g, 231.6 mmol) and DMF were obtained using the Sub 1-VI-B1 synthesis method to obtain 36.85 g (yield: 85%) of product.
  • Sub 1-II-B1 (72.54g, 294.8mmol) obtained in the above synthesis of 2-bromo-9,9-diphenyl-9 H- fluorene (175.67g, 442.1mmol), Na 2 SO 4 (41.87g, 294.8mmol) ), K 2 CO 3 (40.74 g, 294.8 mmol), Cu (5.62 g, 88.4 mmol), and nitrobenzene were obtained using the Sub 1-III-B1 synthesis method to obtain 97.82 g (yield: 59%) of the product.
  • Sub 1-IV-B32 (83.74g, 137.4mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (48.61g, 206.1mmol), Pd (PPh 3 ) 4 (7.94g, 6.9mmol), K 2 CO 3 ( 56.96 g, 412.1 mmol), THF, and water were obtained using the Sub 1-V-B1 synthesis method to give 64.04 g (yield: 73%) of product.
  • Sub 1-VI-B32 (17.43 g, 25.4 mmol) obtained in the above synthesis was prepared with 1-bromo-4-iodobenzene (10.79 g, 38.1 mmol), Pd (PPh 3 ) 4 (1.47 g, 1.3 mmol), K 2 CO 3 (10.54 g, 76.3 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to obtain 11.08 g (yield: 61%) of the product.
  • Sub 1-IV-B33 (79.15 g, 129.8 mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (45.95 g, 194.8 mmol), Pd (PPh 3 ) 4 (7.5 g, 6.5 mmol), and K 2 CO 3 ( 53.84 g, 389.5 mmol), THF, and water were used to obtain the product 58.87 g (yield: 71%) using the Sub 1-V-B1 synthesis method.
  • Sub 1-VI-B33 (14.61 g, 21.3 mmol) obtained in the above synthesis was subjected to 1-bromo-4-iodobenzene (9.04 g, 32 mmol), Pd (PPh 3 ) 4 (1.23 g, 1.1 mmol), K 2 CO 3 (8.83 g, 63.9 mmol), THF, and water were used to obtain 9.75 g (yield: 64%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-II-B1 (53.61g, 217.8mmol) obtained in the above synthesis of 2-bromodibenzo [ b , d ] thiophene (85.99g, 326.8mmol), Na 2 SO 4 (30.94g, 217.8mmol), K 2 CO 3 (30.11 g, 217.8 mmol), Cu (4.15 g, 65.4 mmol) and nitrobenzene were obtained using the Sub 1-III-B1 synthesis method to obtain 66.25 g (yield: 71%) of the product.
  • Sub 1-III-B40 (66.25g, 154.7mmol) obtained in the above synthesis to Bis (pinacolato) diboron (43.2g, 170.1mmol), Pd (dppf) Cl 2 (3.79g, 4.6mmol), KOAc (45.54 g, 464 mmol) and DMF were obtained using 58.82 g (yield: 80%) of the product using the Sub 1-IV-B1 synthesis method.
  • Sub 1-IV-B40 (58.82 g, 123.7 mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (43.78 g, 185.6 mmol), Pd (PPh 3 ) 4 (7.15 g, 6.2 mmol), and K 2 CO 3 ( 51.3 g, 371.2 mmol), THF, and water were used to obtain the product 47.43 g (yield: 76%) using the Sub 1-V-B1 synthesis method.
  • Sub 1-II-B1 (50.34g, 204.6mmol) obtained in the above synthesis 3-bromodibenzo [ b , d ] furan (75.81g, 306.8mmol), Na 2 SO 4 (29.05g, 204.6mmol), K 2 CO 3 (28.27 g, 204.6 mmol), Cu (3.9 g, 61.4 mmol) and nitrobenzene were obtained using the Sub 1-III-B1 synthesis method to give 64.94 g (yield: 77%) of the product.
  • Sub 1-IV-B43 (62.22g, 135.5mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (47.93g, 203.2mmol), Pd (PPh 3 ) 4 (7.83g, 6.8mmol), K 2 CO 3 ( 56.16 g, 406.4 mmol), THF, and water were used to obtain 46.97 g (yield: 71%) of the product using the Sub 1-V-B1 synthesis method.
  • Sub 1-VI-B43 (11.05g, 20.6mmol) obtained in the above synthesis was subjected to 1-bromo-4-iodobenzene (8.76g, 31mmol), Pd (PPh 3 ) 4 (1.19g, 1mmol), K 2 CO 3 ( 8.56 g, 61.9 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to obtain 9.2 g (yield: 79%) of the product.
  • Sub 1-VI-B23 (12.68g, 21.2mmol) obtained in the above synthesis was subjected to 1-bromo-3-iodobenzene (9g, 31.8mmol), Pd (PPh 3 ) 4 (1.23g, 1.1mmol), K 2 CO 3 (8.8 g, 63.7 mmol), THF, and water were used to obtain 8.24 g (yield: 62%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-VI-B32 (16.92g, 24.7mmol) obtained in the above synthesis was subjected to 1-bromo-3-iodobenzene (10.47g, 37mmol), Pd (PPh 3 ) 4 (1.43g, 1.2mmol), K 2 CO 3 (10.23 g, 74 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to obtain 10.05 g (yield: 57%) of the product.
  • Sub 1-VI-B33 (16.64 g, 24.3 mmol) obtained in the above synthesis was subjected to 1-bromo-3-iodobenzene (10.3 g, 36.4 mmol), Pd (PPh 3 ) 4 (1.4 g, 1.2 mmol), K 2 CO 3 (10.06 g, 72.8 mmol), THF, and water were used to obtain 10.41 g (yield: 60%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-III-B64 (41.89g, 65.6mmol) obtained in the above synthesis to Bis (pinacolato) diboron (18.32g, 72.2mmol), Pd (dppf) Cl 2 (1.61g, 2mmol), KOAc (19.31 g, 196.8 mmol) and DMF were obtained using the Sub 1-IV-B1 synthesis method to obtain 36.88 g (yield: 82%) of product.
  • Sub 1-IV-B64 (36.88g, 53.8mmol) obtained in the above synthesis was obtained with 1,3-dibromobenzene (19.03g, 80.7mmol), Pd (PPh 3 ) 4 (3.11g, 2.7mmol), K 2 CO 3 ( 22.3 g, 161.4 mmol), THF, and water were used to obtain the product 24.99 g (yield: 65%) using the Sub 1-V-B1 synthesis method.
  • Sub 1-VI-B40 (14.29g, 25.9mmol) obtained in the above synthesis was subjected to 1-bromo-3-iodobenzene (11g, 38.9mmol), Pd (PPh 3 ) 4 (1.5g, 1.3mmol), K 2 CO 3 (10.74 g, 77.7 mmol), THF, and water were used to obtain 11.88 g (yield: 79%) of the product using the Sub 1-B1 synthesis.
  • Sub 1-VI-B43 (14.17 g, 26.5 mmol) obtained in the above synthesis was prepared using 1-bromo-3-iodobenzene (11.23 g, 39.7 mmol), Pd (PPh 3 ) 4 (1.53 g, 1.3 mmol), and K 2 CO. 3 (10.97 g, 79.4 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to obtain 10.61 g (yield: 71%) of the product.
  • Sub 1-VI-B23 (16.14 g, 27 mmol) obtained in the above synthesis was prepared with 1-bromo-2-iodobenzene (11.46 g, 40.5 mmol), Pd (PPh 3 ) 4 (1.56 g, 1.4 mmol), and K 2 CO 3 (11.2 g, 81 mmol), THF, and water were used to obtain 8.97 g (yield: 53%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-VI-B32 (17.39 g, 25.4 mmol) obtained in the above synthesis was prepared with 1-bromo-2-iodobenzene (10.76 g, 38 mmol), Pd (PPh 3 ) 4 (1.47 g, 1.3 mmol), K 2 CO 3 (10.52 g, 76.1 mmol), THF, and water were obtained using the Sub 1-B1 synthesis method to obtain 10.15 g (yield: 56%) of the product.
  • Sub 1-VI-B33 (15.63 g, 22.8 mmol) obtained in the above synthesis was subjected to 1-bromo-2-iodobenzene (9.67 g, 34.2 mmol), Pd (PPh 3 ) 4 (1.32 g, 1.1 mmol), K 2 CO 3 (9.45 g, 68.4 mmol), THF, and water were used to obtain 9.78 g (yield: 60%) of the product using the Sub 1-B1 synthesis method.
  • Sub 1-VI-B43 (13.96 g, 26.1 mmol) obtained in the above synthesis was prepared using 1-bromo-2-iodobenzene (11.06 g, 39.1 mmol), Pd (PPh 3 ) 4 (1.51 g, 1.3 mmol), and K 2 CO. 3 (10.81 g, 78.2 mmol), THF, and water were used to obtain 9.12 g (yield: 62%) of the product using the Sub 1-B1 synthesis method.
  • Sub 2 of Scheme 1 may be synthesized by the reaction route of Scheme 27 below. It is not limited to this.
  • the starting material 4-bromoisoquinoline (9.83g, 47.2mmol), aniline (8.8g, 94.5mmol), Pd 2 (dba) 3 (1.3g, 1.4mmol), 50% P ( t -Bu) 3 (1.8ml, 3.8 mmol), NaO t -Bu (13.62 g, 141.7 mmol) and toluene were obtained using the Sub 2-6 synthesis method to obtain 6.24 g (yield: 60%) of the product.
  • Sub 2-6 (6.39 g, 15.6 mmol) obtained in the above synthesis was dissolved in toluene in a round bottom flask, and then Sub 1-B2 (10.31 g, 18.7 mmol), Pd 2 (dba) 3 (0.43 g, 0.5 mmol) , 50% P ( t- Bu) 3 (0.6 ml, 1.2 mmol), NaO t -Bu (4.5 g, 46.8 mmol) was added and stirred at 100 ° C.
  • Sub 2-7 (5.18g, 10.7mmol) obtained in the above synthesis Sub 1-B1 (6.07g, 12.8mmol), Pd 2 (dba) 3 (0.29g, 0.3mmol), 50% P ( t -Bu) 3 (0.4 ml, 0.9 mmol), NaO t -Bu (3.08 g, 32 mmol), toluene were obtained using the Product B17 synthesis method to yield 7.22 g (yield: 77%) of the product.
  • Sub 2-68 (3.91g, 10.8mmol) obtained in the above synthesis Sub 1-B23 (8.13g, 13mmol), Pd 2 (dba) 3 (0.3g, 0.3mmol), 50% P ( t -Bu) 3 (0.4 ml, 0.9 mmol), NaO t -Bu (3.12 g, 32.4 mmol) and toluene were obtained using the Product B17 synthesis method to yield 6.18 g (yield: 63%) of the product.
  • Sub 2-82 (2.76g, 12.5mmol) obtained in the above synthesis Sub 1-B32 (10.75g, 15mmol), Pd 2 (dba) 3 (0.34g, 0.4mmol), 50% P ( t -Bu) 3 (0.5 ml, 1 mmol), NaO t -Bu (3.61 g, 37.6 mmol) and toluene were obtained using the Product B17 synthesis method to give 6.21 g (yield: 58%) of the product.
  • Sub 2-72 (4.32g, 10.5mmol) obtained in the above synthesis Sub 1-B54 (7.93g, 12.7mmol), Pd 2 (dba) 3 (0.29g, 0.3mmol), 50% P ( t -Bu) 3 (0.4 ml, 0.8 mmol), NaO t -Bu (3.04 g, 31.6 mmol) and toluene were obtained using the Product B17 synthesis method to obtain 6.35 g (yield: 63%) of the product.
  • Sub 2-7 (5.18g, 10.7mmol) obtained in the above synthesis to Sub 1-C1 (5.1g, 12.8mmol), Pd 2 (dba) 3 (0.29g, 0.3mmol), 50% P ( t -Bu) 3 (0.4 ml, 0.9 mmol), NaO t -Bu (3.08 g, 32 mmol) and toluene were obtained using the Product B17 synthesis method to obtain 6.34 g (yield: 74%) of the product.
  • reactions from the starting materials-> Sub 1-I, Sub 1-IV-> Sub 1-V, Sub 1-VI-> Sub 1, etc. in Scheme 2 are all based on the Suzuki cross-coupling reaction.
  • the Sub 1-II-> Sub 1-III reaction is based on the Ullmann reaction, and in Scheme 2, Sub 1-III-> Sub 1-IV, Sub 1-V-> Sub 1-VI, etc. are based on the Miyaura boration reaction.
  • Starting material in Scheme 27-> Sub 2 Product Synthesis Scheme (Scheme 40-67) is based on the Buchwald-Hartwig cross coupling reaction, the reactions will proceed even if the substituents are not specified specifically.
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a hole transport layer material.
  • 2-TNATA Tris [2-naphthyl (phenyl) amino] triphenylamine
  • dopant at a ratio of 90:10 by weight to 30 nm thick with -biphenyl (abbreviated as "CBP") as a host and tris (2-phenylpyridine) -iridium (abbreviated as “Ir (ppy) 3 ”) as a dopant.
  • CBP -biphenyl
  • Ir (ppy) 3 tris (2-phenylpyridine) -iridium
  • BAlq (1,1'-bisphenyl) -4-oleito) bis (2-methyl-8-quinolineoleito) aluminum
  • Alq 3 8-quinolinol aluminum
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Compound B6 to C40 of the present invention shown in Table 4 were used instead of the compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 1 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 2 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 3 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 4 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 5 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 6 was used instead of Compound B1 of the present invention as a hole transport layer material.
  • Electroluminescence with a PR-650 of Photoresearch by applying a forward bias DC voltage to the organic electroluminescent devices prepared by Examples I-1 to I-300 and Comparative Examples 1 to 6 of the present invention (EL) characteristics were measured, and the T95 life was measured using a life-time measuring instrument manufactured by McScience Inc. at a luminance of 5000 cd / m 2, and the measurement results are shown in Table 4 below.
  • the organic electroluminescent device using the compound of the present invention as a material of the hole transport layer has a relatively higher driving voltage than the organic electroluminescent device using comparative compounds 1 to 6 as the material of the hole transport layer. It is low, and not only the luminous efficiency was improved, but also the lifespan was remarkably improved.
  • Meta-clamped (non-linear) connectors have shorter conjugation lengths than para (linear) connectors, resulting in wider band gaps. , The higher T1 value is.
  • the meta-typed (non-linear type) connector improves the ability to block electrons at high T1 values, and at the same time, holes are smoothly transported to the light emitting layer due to the deep HOMO energy level, resulting in excitons emitting layer. It is believed that the efficiency is improved while being more easily generated within. In addition, it has a high thermal stability it can be seen that this extends the life.
  • the compound of the present invention in which the position of the linking group directly connected to the carbazole backbone is substituted in number 2 shows a shorter conjugation length than the compounds in which the compound of the number is substituted in number 3 and the amount of the compound in comparison to the number of compounds. As described above in terms of life, more improved results are shown.
  • the band gap, electrical characteristics, and interface characteristics are different depending on the bonding position of the linking group between carbazole and amine (-NAr 2 Ar 3 ). It can be seen that it can be changed greatly, which is a major factor in improving the performance of the device.
  • Example II-1 Blue organic electroluminescent device (light emitting auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer is formed by vacuum depositing 2-TNATA with a thickness of 60 nm on an ITO layer (anode) formed on an organic substrate, and then N, N'-Bis (1-naphthalenyl) -N on the hole injection layer.
  • NPB N'-bis-phenyl- (1,1'-biphenyl) -4,4'-diamine
  • compound B6 of the present invention was vacuum-deposited on the hole transport layer to a thickness of 20 nm to form a light emitting auxiliary layer, and then 9,10-Di (2-naphthyl) anthracene (hereinafter referred to as “ADN”) on the light emitting auxiliary layer.
  • ADN 9,10-Di (2-naphthyl) anthracene
  • BD-052X manufactured by Idemitsu kosan
  • doped at a 93: 7 weight ratio to form a light emitting layer by vacuum deposition at a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1 except for using Compounds B7 to B386 of the present invention shown in Table 5 below instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 2 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 4 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 5 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 6 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 7 was used instead of Compound B6 of the present invention as a light emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that the light emitting auxiliary layer was not formed.
  • Electroluminescence is performed by PR-650 of photoresearch by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples II-1 to II-86 and Comparative Examples 7 to 12 of the present invention. (EL) characteristics were measured, and the T95 life was measured using the life-time measurement equipment manufactured by McScience Inc. at a luminance of 500 cd / m 2, and the measurement results are shown in Table 5 below.
  • Example III-1 Green Organic Light Emitting Diode (light emitting auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer was formed by vacuum depositing 2-TNATA with a thickness of 60 nm on an ITO layer (anode) formed on an organic substrate, and then a hole transport layer was formed by vacuum depositing NPB with a thickness of 60 nm on the hole injection layer.
  • the compound B6 of the present invention was vacuum-deposited on the hole transport layer to form a light emitting auxiliary layer by vacuum deposition at a thickness of 20 nm, and then 90:10 with CBP as a host and Ir (ppy) 3 as a dopant on the light emitting auxiliary layer.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Compound B7 to C16 of the present invention shown in Table 6 were used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 2 was used instead of Compound B6 of the present invention as a light emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 3 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 4 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 5 was used instead of Compound B6 of the present invention as a light emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 6 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 7 was used instead of Compound B6 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that the light emitting auxiliary layer was not formed.
  • Electroluminescence is performed by PR-650 of photoresearch by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples III-1 to III-136 and Comparative Examples 13 to 19 of the present invention.
  • (EL) characteristics were measured, and the T95 life was measured using a life-time measuring instrument manufactured by McScience Inc. at a luminance of 5000 cd / m 2, and the measurement results are shown in Table 6 below.
  • Example IV-1 Red Organic Light Emitting Diode (light emitting auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer was formed by vacuum depositing 2-TNATA with a thickness of 60 nm on an ITO layer (anode) formed on an organic substrate, and then a hole transport layer was formed by vacuum depositing NPB with a thickness of 60 nm on the hole injection layer.
  • the compound B1 of the present invention was vacuum-deposited to a thickness of 20 nm on the hole transport layer to form a light emitting auxiliary layer, and then, CBP was used as a host on the light emitting auxiliary layer, and bis- (1-phenylisoquinolyl) iridium (III) acetylacetonate (Hereinafter abbreviated as " (piq) 2 Ir (acac) ") as a dopant, and then doped at a weight ratio of 95: 5 to form a light emitting layer by vacuum deposition to a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • An organic electroluminescent device was manufactured according to the same method as Example IV-1 except for using the compounds B6 to B386 of the present invention shown in Table 7 instead of the compound B1 of the present invention.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that Comparative Compound 2 was used instead of Compound B1 of the present invention as a light emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that Comparative Compound 4 was used instead of Compound B1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that Comparative Compound 5 was used instead of Compound B1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that Comparative Compound 6 was used instead of Compound B1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that Comparative Compound 7 was used instead of Compound B1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example IV-1, except that the light emitting auxiliary layer was not formed.
  • Electroluminescence with a PR-650 of Photoresearch by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples IV-1 to IV-135 and Comparative Examples 20 to 25 of the present invention (EL) characteristics were measured, and the T95 life was measured using a life-time measuring instrument manufactured by McScience Inc. at a luminance of 2500 cd / m 2, and the measurement results are shown in Table 7 below.
  • the organic electroluminescent device using the compound of the present invention as a material for the light emitting auxiliary layer has improved luminous efficiency and lifetime compared to the organic electroluminescent device of Comparative Examples 7 to 25. This has been significantly improved.
  • Comparative Compound 7 in which the linking group is a non-linear structure similar to the compound of the present invention and the main substituent group is a heterocyclic group instead of the amine group (-NAr 2 Ar 3 ) also shows low efficiency and low lifetime. This is because when the heterocyclic group is introduced instead of the amine group (-NAr 2 Ar 3 ), the T1 value is low. Therefore, the light emission is performed at the interface between the light emitting layer and the light emitting auxiliary layer instead of emitting light inside the light emitting layer. Judging.
  • Another characteristic of the compounds of the present invention is that the smaller the bonding angle between the linking group L 1 and the amine (-NAr 2 Ar 3 ), the wider the bandgap and the higher the T1 value. It can be seen that the compound bound to the ortho position shows a higher luminous efficiency than the compound. In addition, since the compound bonded at the ortho position has a relatively low deposition temperature, not only can the luminous efficiency be improved, but the process time can be shortened and thermal damage can be reduced to improve the life.
  • the compound of the present invention used as the light emitting auxiliary layer forms a structurally twisted structure when introducing a bulky substituent to the nitrogen (N) of the carbazole, while packing density between materials in the light emitting auxiliary layer ( By lowering the packing density and adjusting the hole mobility, it is easy to achieve a charge balance in the light emitting layer, and as a result, it can be seen that the light emission efficiency is high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 화합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.

Description

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
유기 전기 발광소자에 있어 가장 문제시되는 것은 수명과 효율인데, 디스플레이가 대면적화되면서 이러한 효율이나 수명 문제는 반드시 해결해야되는 상황이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 높아지는 경향을 나타낸다.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
또한, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 반드시 정공수송층과 발광층 사이에 발광보조층이 존재하여야 하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광 보조층의 개발이 필요한 시점이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.
하지만 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야 하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층으로 넘어가게 되어 결과적으로 발광층 내 전하 불균형(charge unbalance)을 초래하여 정공수송층 내 또는 정공수송층 계면에서 발광하게 되어 유기전기소자의 색순도 저하, 효율 및 수명 감소 현상이 나타나게 된다.
또한, 정공 이동도(hole mobility)가 빠른 물질을 사용하여 구동전압을 낮출 수 있으나 정공 이동도(hole mobility)가 전자 이동도(electron mobility) 보다 빨라 발광층 내 전하 불균형(charge unbalance)을 초래하여 유기전기소자의 색순도 및 효율이 저하되고 수명이 짧아지는 문제점이 발생하게 된다.
따라서 높은 T1 값을 가지며, 정공 수송층 HOMO 에너지 준위와 발광층의 HOMO 에너지 준위 사이의 HOMO 준위를 갖는 발광보조층이 개발이 절실히 요구된다.
한편, 유기전기소자의 수명단축 원인 중 하나인 양극전극(ITO)으로부터 금속 산화물이 유기층으로 침투확산되는 것을 지연시키면서, 소자 구동시 발생되는 주울열(Joule heating)에 대해서도 안정된 특성, 즉 높은 유리 전이 온도를 갖는 정공 주입층 재료에 대한 개발이 필요하다. 정공수송층 재료의 낮은 유리전이 온도는 소자 구동시, 박막 표면의 균일도를 저하시키는 특성이 있는바, 이는 소자수명에 큰 영향을 미치는 것으로 보고되고 있다. 또한, OLED 소자는 주로 증착 방법에 의해 형성되는데, 증착시 오랫동안 견딜 수 있는 재료, 즉 내열특성이 강한 재료 개발이 필요한 실정이다.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있으며, 특히 발광보조층과 정공수송층의 재료에 대한 개발이 절실히 요구되고 있다.
본 발명은 OLED 정공수송 물질로 널리 사용되고 있는 카바졸 코어에 비선형(non-linear)의 연결기(아민기와 결합시 꺾인 구조)를 사용하고, 또한 카바졸의 질소(N)에 벌키(bulky)한 치환기를 도입하여, 높은 T1값과 넓은 밴드 갭(wide band gab)을 가지며 전하 균형(charge balance)이 우수하여, 소자의 높은 발광효율, 낮은 구동전압, 고내열성, 색순도 및 수명을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다.
Figure PCTKR2013011088-appb-I000001
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압, 고내열성을 달성할 수 있고, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a),(b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다.
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "헤테로알킬기"는 알킬기를 구성하는 탄소 원자 중 하나 이상이 헤테로원자로 대체된 것을 의미한다.
본 발명에 사용된 용어 "알켄일기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알켄옥실기", "알켄옥시기", "알켄일옥실기", 또는 "알켄일옥시기"는 산소 라디칼이 부착된 알켄일기를 의미하며, 다른 설명이 없는 한 2 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 명세서에서 사용된 용어 "헤테로알킬"은 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하는 알킬을 의미한다. 본 발명에 사용된 용어 "헤테로아릴기" 또는 "헤테로아릴렌기"는 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 아릴기 또는 아릴렌기를 의미하며, 여기에 제한되는 것은 아니며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 이웃한 작용기기가 결합하여 형성될 수도 있다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는, 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2013011088-appb-I000002
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "카르보닐"이란 -COR'로 표시되는 것이며, 여기서 R'은 수소, 탄소수 1 내지 20 의 알킬기, 탄소수 6 내지 30 의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "에테르"란 -R-O-R'로 표시되는 것이며, 여기서 R 또는 R'은 각각 서로 독립적으로 수소, 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 30의 아릴기, 탄소수 3 내지 30의 사이클로알킬기, 탄소수 2 내지 20의 알켄일기, 탄소수 2 내지 20의 알킨일기, 또는 이들의 조합인 것이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2013011088-appb-I000003
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2013011088-appb-I000004
도 1은 본 발명에 일 실시예에 따른 유기전기소자에 대한 예시도이다.
도 1을 참조하면, 본 발명에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(110)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 발광층(150)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(151), 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
또한, 미도시하였지만, 본 발명에 따른 유기전기소자는 제 1전극과 제 2전극 중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다.
상기 유기물층에 적용되는 본 발명에 따른 화합물은 정공주입층(130), 정공수송층(140), 전자수송층(160), 전자주입층(170), 발광층(150)의 호스트 또는 도펀트 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는, 본 발명의 화합물은 발광층(150), 정공수송층(140) 및/또는 발광보조층(151)으로 사용될 수 있을 것이다.
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
이미 설명한 것과 같이, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 정공수송층과 발광층 사이에 발광보조층이 형성하는 것이 바람직하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광 보조층의 개발이 필요한 시점이다. 한편, 발광보조층의 경우 정공수송층 및 발광층(호스트)과의 상호관계를 파악해야하므로 유사한 코어를 사용하더라도 사용되는 유기물층이 달라지면 그 특징을 유추하기는 매우 어려울 것이다.
따라서, 본 발명에서는 화학식 1로 표시되는 화합물을 사용하여 발광층 또는 발광보조층을 형성함으로써 각 유기물층 간의 에너지 레벨(level) 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명에 따른 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일측면에 따른 화합물은 하기 화학식 1로 표시된다.
<화학식 1>
Figure PCTKR2013011088-appb-I000005
상기 화학식 1에서, m은 1 내지 4의 정수이며, n은 1 내지 3의 정수이며,
상기 화학식 1에서, R1 및 R2는 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; -L2-N(Ar2)(Ar3); C1~C30의 알콕실기; 및 C6~C30의 아릴옥실기;로 이루어진 군에서 선택된다. 예컨데, R1 및 R2는 서로 독립적으로 수소, 페닐, 나프틸 등일 수 있다.
상기 화학식 1에서, Ar1은 플루오렌일기; C6~C60의 아릴기; C2~C20의 알켄일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; -L2-N(Ar2)(Ar3); 및 C6~C60의 방향족 고리와 C3~C60의 지방족 고리의 융합고리기;로 이루어진 군에서 선택된다. 예시적으로, Ar1은 에틸, 페닐, 비페닐, 나프틸, 터페닐, 9,9-디메틸-9H-플루오렌, 9,9-디페닐-9H-플루오렌, 9,9-스파이로-비플루오렌, 피리딘, 이소퀴놀린, 디벤조티오펜, 디벤조퓨란 등일 수 있다.
상기 화학식 1에서, L1 및 L2은 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 2가 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 2가 융합고리기; 및 2가의 지방족 탄화수소기;로 이루어진 군에서 선택된다. 예시적으로, L1 및 L2은 서로 독립적으로 단일결합, 페닐, 비페닐, 나프틸, 9,9-디메틸-9H-플루오렌, 9,9-디페닐-9H-플루오렌, 디벤조티오펜, 디벤조퓨란 등일 수 있다.
상기 화학식 1에서, Ar2 및 Ar3는 서로 독립적으로, C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C6~C60의 방향족 고리와 C3~C60의 지방족 고리의 융합고리기; 및 C2~C20의 알켄일기;로 이루어진 군에서 선택된다. 예시적으로, Ar2 및 Ar3는 서로 독립적으로 페닐, 비페닐, 터페닐, 나프틸, 페난트렌, 9,9-디메틸-9H-플루오렌, 9,9-디페닐-9H-플루오렌, 9,9-스파이로-디플루오렌, 디벤조티오펜, 디벤조퓨란, 플루오로페닐, 프로페닐-페닐, 피리딘, 이소퀴놀린, 퀴놀린, 메틸페닐, 중수소로 치환된 페닐, 벤조티오펜, 티오펜, 인돌, 벤조퀴놀린 등일 수 있다.
여기서 상기 아릴기, 헤테로고리기, 플루오렌일기, 알킬기, 알켄일기, 융합고리기, 알콕실기, 아릴옥실기, 아릴렌기, 플루오렌일렌기, 지방족 탄화수소기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; -L'-N(R')(R")(여기서 상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의방향족고리의 융합고리기; 및 2가의 C1~C60 지방족 탄화수소기;로 이루어진 군에서 선택되며, 상기 R'및 R"는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기 및 C2~C20의 알켄일기;로 이루어진 군에서 선택됨); C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
상기 화학식 1에서, 상기 L1은 하기 군에서 선택된다.
Figure PCTKR2013011088-appb-I000006
상기 화학식 1에서, 상기 Ar2와 Ar3은 서로 독립적으로 하기 군에서 선택된다.
Figure PCTKR2013011088-appb-I000007
상기 군에서, Q1는 C(Ra) 또는 N이며, Q2는 C(Rb)(Rc), N(Rd), S 또는 O이고, k는 1 내지 4의 정수이며, 상기 Ra 및 Re는 i) 서로 독립적으로, 수소; 중수소; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕시기; 및 플루오렌일기;로 이루어진 군에서 선택되거나, 또는 ii) 복수의 Re는 이웃하는 기끼리 각각 결합하여 이들과 결합한 탄소와 함께 방향족고리를 형성할 수 있다.
또한 상기 Rb 내지 Rd는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rb와 Rc는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성할 수 있다.
구체적으로, 상기 화학식 1은 하기 화학식 2 또는 화학식 3으로 표시될 수 있다.
Figure PCTKR2013011088-appb-I000008
상기 화학식 2 및 화학식 3에서, Ar2, Ar3, R1, R2, m 및 n은 상기 화학식 1에서 정의된 것과 같이 정의될 수 있다.
상기 화학식 2에서, 상기 X는 C(Rf)(Rg), S 또는 O이며, 상기 Rf 및 Rg는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; 및 C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rf와 Rg는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성할 수 있다.
상기 화학식 2 및 화학식 3에서, 상기 o는 1 내지 4의 정수이며, 상기 p는 1 내지 3의 정수이며, 상기 q 및 r은 서로 독립적으로 1 내지 5의 정수이다.
상기 화학식 2 및 화학식 3에서, 상기 R3 내지 R6은 i) 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥실기로 이루어진 군에서 선택되거나, 또는 ii) 이웃하는 기끼리 서로 결합하여 이들과 결합한 탄소와 함께 방향족고리를 형성할 수 있다.
구체적으로, 상기 화학식 1은 하기 화학식 4 또는 화학식 5로 표시될 수 있다.
Figure PCTKR2013011088-appb-I000009
상기 화학식 4 및 5에서, Ar1 내지 Ar3, R1, R2, m 및 n은 상기 화학식 1에서 정의된 것과 같이 정의될 수 있다.
상기 화학식 5에서, 상기 Q3은 C(Rh)(Ri), N(Rj), S 또는 O이며, 상기 Rh 내지 Rj는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rh와 Ri는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성할 수 있다.
더욱 구체적으로, 상기 화학식 1 내지 화학식 5는 하기 화합물 중 하나일 수 있다.
Figure PCTKR2013011088-appb-I000010
Figure PCTKR2013011088-appb-I000011
Figure PCTKR2013011088-appb-I000012
Figure PCTKR2013011088-appb-I000013
Figure PCTKR2013011088-appb-I000014
Figure PCTKR2013011088-appb-I000015
Figure PCTKR2013011088-appb-I000016
Figure PCTKR2013011088-appb-I000017
Figure PCTKR2013011088-appb-I000018
Figure PCTKR2013011088-appb-I000019
Figure PCTKR2013011088-appb-I000020
Figure PCTKR2013011088-appb-I000021
다른 실시예로서, 본 발명은 상기 화학식 1로 표시되는 유기전기소자용 화합물을 제공한다.
또 다른 실시예에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 함유하는 유기전기소자를 제공한다.
이때, 유기전기소자는 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층;을 포함할 수 있으며, 유기물층은 화학식 1로 표시되는 화합물을 포함할 수 있으며, 화학식 1은 유기물층의 정공주입층, 정공수송층, 발광보조층 또는 발광층 중 적어도 하나의 층에 함유될 수 있을 것이다. 즉, 화학식 1로 표시되는 화합물은 정공주입층, 정공수송층, 발광보조층 또는 발광층의 재료로 사용될 수 있다. 구체적으로, 유기물층에 상기 화학식 2 내지 화학식 5로 표시되는 화합물 중 하나를 포함하는 유기전기소자를 제공하며, 보다 구체적으로, 본 발명은 상기 유기물층에 상기 개별 화학식으로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
본 발명의 또 다른 실시예에서, 본 발명은 상기 제 1전극의 일측면 중 상기 유기물층과 반대되는 일측 또는 상기 제 2전극의 일측면 중 상기 유기물층과 반대되는 일측 중 적어도 하나에 형성되는 광효율 개선층을 더 포함하는 유기전기소자를 제공한다.
이하에서, 본 발명에 따른 화학식 1로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
합성예
본 발명에 따른 화학식 1로 표시되는 화합물(Final Product)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 제조되며, 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2013011088-appb-I000022
(Ar1 내지 Ar3, L1, R1, R2, m 및 n은 상기 화학식 1에서 정의된 것과 동일하며, L1이 단일결합일 경우 Br은 연결기인 페닐기에 직접 결합된다.)
I. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 2>
Figure PCTKR2013011088-appb-I000023
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다
1. Sub 1-B1의 합성
<반응식 3>
Figure PCTKR2013011088-appb-I000024
(1) Sub 1-I-B1 합성
출발물질인 phenylboronic acid (448.56g, 3678.8mmol)를 둥근바닥플라스크에 THF로 녹인 후에, 4-bromo-1-iodo-2-nitrobenzene (1809.43g, 5518.2mmol), Pd(PPh3)4 (212.56g, 183.9mmol), K2CO3 (1525.35g, 11036.5mmol), 물을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 705.93g (수율: 69%)를 얻었다.
(2) Sub 1-II-B1 합성
상기 합성에서 얻어진 Sub 1-I-B1 (705.93g, 2538.4mmol)을 둥근바닥플라스크에 o-dichlorobenzene으로 녹인 후에, triphenylphosphine (1664.49g, 6346mmol)을 첨가하고 200℃에서 교반하였다. 반응이 완료되면 증류를 통해 o-dichlorobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 449.78g (수율: 72%)를 얻었다.
(3) Sub 1-III-B1 합성
상기 합성에서 얻어진 Sub 1-II-B1 (37.19g, 151.1mmol)을 둥근바닥플라스크에 nitrobenzene으로 녹인 후, iodobenzene (46.24g, 226.7mmol), Na2SO4 (21.46g, 151.1mmol), K2CO3 (20.89g, 151.1mmol), Cu (2.88g, 45.3mmol)를 첨가하고 200℃에서 교반하였다. 반응이 완료되면 증류를 통해 nitrobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 38.47g (수율: 79%)를 얻었다.
(4) Sub 1-IV-B1 합성
상기 합성에서 얻어진 Sub 1-III-B1 (38.47g, 119.4mmol)을 둥근바닥플라스크에 DMF로 녹인 후에, Bis(pinacolato)diboron (33.35g, 131.3mmol), Pd(dppf)Cl2 (2.93g, 3.6mmol), KOAc (35.15g, 358.2mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 37.48g (수율: 85%)를 얻었다.
(5) Sub 1-V-B1(Sub 1-C1) 합성
상기 합성에서 얻어진 Sub 1-IV-B1 (37.48g, 101.5mmol)을 둥근바닥플라스크에 THF로 녹인 후에, 1,3-dibromobenzene (35.92g, 152.3mmol), Pd(PPh3)4 (5.86g, 5.1mmol), K2CO3 (42.09g, 304.5mmol), 물을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 30.32g (수율: 75%)를 얻었다.
(6) Sub 1-VI-B1 합성
상기 합성에서 얻어진 Sub 1-V-B1 (30.32g, 76.1mmol)을 둥근바닥플라스크에 DMF로 녹인 후에, Bis(pinacolato)diboron (21.26g, 83.7mmol), Pd(dppf)Cl2 (1.87g, 2.3mmol), KOAc (22.41g, 228.4mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 28.48g (수율: 84%)를 얻었다.
(7) Sub 1-B1 합성
상기 합성에서 얻어진 Sub 1-VI-B1 (7.16g, 16.1mmol)를 둥근바닥플라스크에 THF로 녹인 후에, 1-bromo-4-iodobenzene (6.82g, 24.1mmol), Pd(PPh3)4 (0.93g, 0.8mmol), K2CO3 (6.67g, 48.2mmol), 물을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 6.33g (수율: 83%)를 얻었다.
2. Sub 1-B2의 합성
<반응식 4>
Figure PCTKR2013011088-appb-I000025
(1) Sub 1-III-B2 합성
상기 합성에서 얻어진 Sub 1-II-B1 (30.72g, 124.8mmol)에 4-iodo-1,1'-biphenyl (52.45g, 187.2mmol), Na2SO4 (17.73g, 124.8mmol), K2CO3 (17.25g, 124.8mmol), Cu (2.38g, 37.4mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 36.29g (수율: 73%)를 얻었다.
(2) Sub 1-IV-B2 합성
상기 합성에서 얻어진 Sub 1-III-B2 (36.29g, 91.1mmol)에 Bis(pinacolato)diboron (25.45g, 100.2mmol), Pd(dppf)Cl2 (2.23g, 2.7mmol), KOAc (26.83g, 273.3mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 33.68g (수율: 83%)를 얻었다.
(3) Sub 1-V-B2(Sub 1-C2) 합성
상기 합성에서 얻어진 Sub 1-IV-B2 (33.68g, 75.6mmol)에 1,3-dibromobenzene (26.76g, 113.4mmol), Pd(PPh3)4 (4.37g, 3.8mmol), K2CO3 (31.36g, 226.9mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 26.91g (수율: 75%)를 얻었다.
(4) Sub 1-VI-B2 합성
상기 합성에서 얻어진 Sub 1-V-B2 (26.91g, 56.7mmol)에 Bis(pinacolato)diboron (15.85g, 62.4mmol), Pd(dppf)Cl2 (1.39g, 1.7mmol), KOAc (16.7g, 170.2mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 24.55g (수율: 83%)를 얻었다.
(5) Sub 1-B2 합성
상기 합성에서 얻어진 Sub 1-VI-B2 (12.93g, 24.8mmol)에 1-bromo-4-iodobenzene (10.52g, 37.2mmol), Pd(PPh3)4 (1.43g, 1.2mmol), K2CO3 (10.28g, 74.4mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.78g (수율: 79%)를 얻었다.
3. Sub 1-B14의 합성
<반응식 5>
Figure PCTKR2013011088-appb-I000026
상기 합성에서 얻어진 Sub 1-VI-B1 (7.65g, 17.2mmol)에 2-bromo-6-iodonaphthalene (8.58g, 25.8mmol), Pd(PPh3)4 (0.99g, 0.9mmol), K2CO3 (7.12g, 51.5mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 6.85g (수율: 76%)를 얻었다.
4. Sub 1-B23의 합성
<반응식 6>
Figure PCTKR2013011088-appb-I000027
(1) Sub 1-III-B23 합성
상기 합성에서 얻어진 Sub 1-II-B1 (59.34g, 241.1mmol)에 5'-bromo-1,1':3',1''-terphenyl (111.83g, 361.7mmol), Na2SO4 (34.25g, 241.1mmol), K2CO3 (33.33g, 241.1mmol), Cu (4.6g, 72.3mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 75.49g (수율: 66%)를 얻었다.
(2) Sub 1-IV-B23 합성
상기 합성에서 얻어진 Sub 1-III-B23 (75.49g, 159.1mmol)에 Bis(pinacolato)diboron (44.45g, 175mmol), Pd(dppf)Cl2 (3.9g, 4.8mmol), KOAc (46.85g, 477.4mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 64.72g (수율: 78%)를 얻었다.
(3) Sub 1-V-B23 합성
상기 합성에서 얻어진 Sub 1-IV-B23 (64.72g, 124.1mmol)에 1,3-dibromobenzene (43.92g, 186.2mmol), Pd(PPh3)4 (7.17g, 6.2mmol), K2CO3 (51.46g, 372.3mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 49.19g (수율: 72%)를 얻었다.
(4) Sub 1-VI-B23 합성
상기 합성에서 얻어진 Sub 1-V-B23 (49.19g, 89.4mmol)에 Bis(pinacolato)diboron (24.96g, 98.3mmol), Pd(dppf)Cl2 (2.19g, 2.7mmol), KOAc (26.31g, 268.1mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 42.72g (수율: 80%)를 얻었다.
(5) Sub 1-B23 합성
상기 합성에서 얻어진 Sub 1-VI-B23 (12.61g, 21.1mmol)에 1-bromo-4-iodobenzene (8.95g, 31.7mmol), Pd(PPh3)4 (1.22g, 1.1mmol), K2CO3 (8.75g, 63.3mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 8.46g (수율: 64%)를 얻었다.
5. Sub 1-B26의 합성
<반응식 7>
Figure PCTKR2013011088-appb-I000028
(1) Sub 1-III-B26 합성
상기 합성에서 얻어진 Sub 1-II-B1 (41.89g, 170.2mmol)에 3-bromo-9,9-dimethyl-9H-fluorene (69.75g, 255.3mmol), Na2SO4 (24.18g, 170.2mmol), K2CO3 (23.53g, 170.2mmol), Cu (3.25g, 51.1mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 55.96g (수율: 75%)를 얻었다.
(2) Sub 1-IV-B26 합성
상기 합성에서 얻어진 Sub 1-III-B26 (55.96g, 127.7mmol)에 Bis(pinacolato)diboron (35.66g, 140.4mmol), Pd(dppf)Cl2 (3.13g, 3.8mmol), KOAc (37.58g, 383mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 52.05g (수율: 84%)를 얻었다.
(3) Sub 1-V-B26(Sub 1-C8) 합성
상기 합성에서 얻어진 Sub 1-IV-B26 (52.05g, 107.2mmol)에 1,3-dibromobenzene (37.94g, 160.8mmol), Pd(PPh3)4 (6.2g, 5.4mmol), K2CO3 (44.46g, 321.7mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 39.72g (수율: 72%)를 얻었다.
(4) Sub 1-VI-B26 합성
상기 합성에서 얻어진 Sub 1-V-B26 (39.72g, 77.2mmol)에 Bis(pinacolato)diboron (21.57g, 84.9mmol), Pd(dppf)Cl2 (1.89g, 2.3mmol), KOAc (22.73g, 231.6mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 36.85g (수율: 85%)를 얻었다.
(5) Sub 1-B26 합성
상기 합성에서 얻어진 Sub 1-VI-B26 (9.87g, 17.6mmol)에 1-bromo-4-iodobenzene (7.46g, 26.4mmol), Pd(PPh3)4 (1.02g, 0.9mmol), K2CO3 (7.29g, 52.7mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 8.41g (수율: 81%)를 얻었다.
6. Sub 1-B32의 합성
<반응식 8>
Figure PCTKR2013011088-appb-I000029
(1) Sub 1-III-B32 합성
상기 합성에서 얻어진 Sub 1-II-B1 (72.54g, 294.8mmol)에 2-bromo-9,9-diphenyl-9H-fluorene (175.67g, 442.1mmol), Na2SO4 (41.87g, 294.8mmol), K2CO3 (40.74g, 294.8mmol), Cu (5.62g, 88.4mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 97.82g (수율: 59%)를 얻었다.
(2) Sub 1-IV-B32 합성
상기 합성에서 얻어진 Sub 1-III-B32 (97.82g, 173.9mmol)에 Bis(pinacolato)diboron (48.58g, 191.3mmol), Pd(dppf)Cl2 (4.26g, 5.2mmol), KOAc (51.2g, 521.7mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 83.74g (수율: 79%)를 얻었다.
(3) Sub 1-V-B32(Sub 1-C12) 합성
상기 합성에서 얻어진 Sub 1-IV-B32 (83.74g, 137.4mmol)에 1,3-dibromobenzene (48.61g, 206.1mmol), Pd(PPh3)4 (7.94g, 6.9mmol), K2CO3 (56.96g, 412.1mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 64.04g (수율: 73%)를 얻었다.
(4) Sub 1-VI-B32 합성
상기 합성에서 얻어진 Sub 1-V-B32 (64.04g, 100.3mmol)에 Bis(pinacolato)diboron (28.01g, 110.3mmol), Pd(dppf)Cl2 (2.46g, 3mmol), KOAc (29.53g, 300.9mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 52.26g (수율: 76%)를 얻었다.
(5) Sub 1-B32 합성
상기 합성에서 얻어진 Sub 1-VI-B32 (17.43g, 25.4mmol)에 1-bromo-4-iodobenzene (10.79g, 38.1mmol), Pd(PPh3)4 (1.47g, 1.3mmol), K2CO3 (10.54g, 76.3mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 11.08g (수율: 61%)를 얻었다.
7. Sub 1-B33의 합성
<반응식 9>
Figure PCTKR2013011088-appb-I000030
(1) Sub 1-III-B33 합성
상기 합성에서 얻어진 Sub 1-II-B1 (67.82g, 275.6mmol)에 3-bromo-9,9-diphenyl-9H-fluorene (164.24g, 413.4mmol), Na2SO4 (39.14g, 275.6mmol), K2CO3 (38.09g, 275.6mmol), Cu (5.25g, 82.7mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 96.11g (수율: 62%)를 얻었다.
(2) Sub 1-IV-B33 합성
상기 합성에서 얻어진 Sub 1-III-B33 (96.11g, 170.9mmol)에 Bis(pinacolato)diboron (47.73g, 187.9mmol), Pd(dppf)Cl2 (4.19g, 5.1mmol), KOAc (50.31g, 512.6mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 79.15g (수율: 76%)를 얻었다.
(3) Sub 1-V-B33(Sub 1-C13) 합성
상기 합성에서 얻어진 Sub 1-IV-B33 (79.15g, 129.8mmol)에 1,3-dibromobenzene (45.95g, 194.8mmol), Pd(PPh3)4 (7.5g, 6.5mmol), K2CO3 (53.84g, 389.5mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 58.87g (수율: 71%)를 얻었다.
(4) Sub 1-VI-B33 합성
상기 합성에서 얻어진 Sub 1-V-B33 (58.87g, 92.2mmol)에 Bis(pinacolato)diboron (25.75g, 101.4mmol), Pd(dppf)Cl2 (2.26g, 2.8mmol), KOAc (27.14g, 276.6mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 48.67g (수율: 77%)를 얻었다.
(5) Sub 1-B33 합성
상기 합성에서 얻어진 Sub 1-VI-B33 (14.61g, 21.3mmol)에 1-bromo-4-iodobenzene (9.04g, 32mmol), Pd(PPh3)4 (1.23g, 1.1mmol), K2CO3 (8.83g, 63.9mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 9.75g (수율: 64%)를 얻었다.
8. Sub 1-B40의 합성
<반응식 10>
Figure PCTKR2013011088-appb-I000031
(1) Sub 1-III-B40 합성
상기 합성에서 얻어진 Sub 1-II-B1 (53.61g, 217.8mmol)에 2-bromodibenzo[b,d]thiophene (85.99g, 326.8mmol), Na2SO4 (30.94g, 217.8mmol), K2CO3 (30.11g, 217.8mmol), Cu (4.15g, 65.4mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 66.25g (수율: 71%)를 얻었다.
(2) Sub 1-IV-B40 합성
상기 합성에서 얻어진 Sub 1-III-B40 (66.25g, 154.7mmol)에 Bis(pinacolato)diboron (43.2g, 170.1mmol), Pd(dppf)Cl2 (3.79g, 4.6mmol), KOAc (45.54g, 464mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 58.82g (수율: 80%)를 얻었다.
(3) Sub 1-V-B40 합성
상기 합성에서 얻어진 Sub 1-IV-B40 (58.82g, 123.7mmol)에 1,3-dibromobenzene (43.78g, 185.6mmol), Pd(PPh3)4 (7.15g, 6.2mmol), K2CO3 (51.3g, 371.2mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 47.43g (수율: 76%)를 얻었다.
(4) Sub 1-VI-B40 합성
상기 합성에서 얻어진 Sub 1-V-B40 (47.43g, 94mmol)에 Bis(pinacolato)diboron (26.26g, 103.4mmol), Pd(dppf)Cl2 (2.3g, 2.8mmol), KOAc (27.68g, 282.1mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 42.52g (수율: 82%)를 얻었다.
(5) Sub 1-B40 합성
상기 합성에서 얻어진 Sub 1-VI-B40 (9.54g, 17.3mmol)에 1-bromo-4-iodobenzene (7.34g, 25.9mmol), Pd(PPh3)4 (1g, 0.9mmol), K2CO3 (7.17g, 51.9mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 7.73g (수율: 77%)를 얻었다.
9. Sub 1-B43의 합성
<반응식 11>
Figure PCTKR2013011088-appb-I000032
(1) Sub 1-III-B43 합성
상기 합성에서 얻어진 Sub 1-II-B1 (50.34g, 204.6mmol)에 3-bromodibenzo[b,d]furan (75.81g, 306.8mmol), Na2SO4 (29.05g, 204.6mmol), K2CO3 (28.27g, 204.6mmol), Cu (3.9g, 61.4mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 64.94g (수율: 77%)를 얻었다.
(2) Sub 1-IV-B43 합성
상기 합성에서 얻어진 Sub 1-III-B43 (64.94g, 157.5mmol)에 Bis(pinacolato)diboron (44g, 173.3mmol), Pd(dppf)Cl2 (3.86g, 4.7mmol), KOAc (46.38g, 472.5mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 62.22g (수율: 86%)를 얻었다.
(3) Sub 1-V-B43(Sub 1-C19) 합성
상기 합성에서 얻어진 Sub 1-IV-B43 (62.22g, 135.5mmol)에 1,3-dibromobenzene (47.93g, 203.2mmol), Pd(PPh3)4 (7.83g, 6.8mmol), K2CO3 (56.16g, 406.4mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 46.97g (수율: 71%)를 얻었다.
(4) Sub 1-VI-B43 합성
상기 합성에서 얻어진 Sub 1-V-B43 (46.97g, 96.2mmol)에 Bis(pinacolato)diboron (26.87g, 105.8mmol), Pd(dppf)Cl2 (2.36g, 2.9mmol), KOAc (28.32g, 288.5mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 40.68g (수율: 79%)를 얻었다.
(5) Sub 1-B43 합성
상기 합성에서 얻어진 Sub 1-VI-B43 (11.05g, 20.6mmol)에 1-bromo-4-iodobenzene (8.76g, 31mmol), Pd(PPh3)4 (1.19g, 1mmol), K2CO3 (8.56g, 61.9mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 9.2g (수율: 79%)를 얻었다.
10. Sub 1-B48의 합성
<반응식 12>
Figure PCTKR2013011088-appb-I000033
상기 합성에서 얻어진 Sub 1-VI-B2 (9.86g, 18.9mmol)에 1-bromo-3-iodobenzene (8.02g, 28.4mmol), Pd(PPh3)4 (1.09g, 0.9mmol), K2CO3 (7.84g, 56.7mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 7.91g (수율: 76%)를 얻었다.
11. Sub 1-B54의 합성
<반응식 13>
Figure PCTKR2013011088-appb-I000034
상기 합성에서 얻어진 Sub 1-VI-B23 (12.68g, 21.2mmol)에 1-bromo-3-iodobenzene (9g, 31.8mmol), Pd(PPh3)4 (1.23g, 1.1mmol), K2CO3 (8.8g, 63.7mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 8.24g (수율: 62%)를 얻었다.
12. Sub 1-B58의 합성
<반응식 14>
Figure PCTKR2013011088-appb-I000035
상기 합성에서 얻어진 Sub 1-VI-B26 (12.17g, 21.7mmol)에 1-bromo-3-iodobenzene (9.2g, 32.5mmol), Pd(PPh3)4 (1.25g, 1.1mmol), K2CO3 (8.99g, 65mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 9.34g (수율: 73%)를 얻었다.
13. Sub 1-B61의 합성
<반응식 15>
Figure PCTKR2013011088-appb-I000036
상기 합성에서 얻어진 Sub 1-VI-B32 (16.92g, 24.7mmol)에 1-bromo-3-iodobenzene (10.47g, 37mmol), Pd(PPh3)4 (1.43g, 1.2mmol), K2CO3 (10.23g, 74mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.05g (수율: 57%)를 얻었다.
14. Sub 1-B62의 합성
<반응식 16>
Figure PCTKR2013011088-appb-I000037
상기 합성에서 얻어진 Sub 1-VI-B33 (16.64g, 24.3mmol)에 1-bromo-3-iodobenzene (10.3g, 36.4mmol), Pd(PPh3)4 (1.4g, 1.2mmol), K2CO3 (10.06g, 72.8mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.41g (수율: 60%)를 얻었다.
15. Sub 1-B64의 합성
<반응식 17>
Figure PCTKR2013011088-appb-I000038
(1) Sub 1-III-B64 합성
상기 합성에서 얻어진 Sub 1-II-B1 (30.46g, 123.8mmol)에 4-(4-bromophenyl)-9,9-diphenyl-9H-fluorene (87.89g, 185.7mmol), Na2SO4 (17.58g, 123.8mmol), K2CO3 (17.11g, 123.8mmol), Cu (2.36g, 37.1mmol), nitrobenzene을 상기 Sub 1-III-B1 합성법을 사용하여 생성물 41.89g (수율: 53%)를 얻었다.
(2) Sub 1-IV-B64 합성
상기 합성에서 얻어진 Sub 1-III-B64 (41.89g, 65.6mmol)에 Bis(pinacolato)diboron (18.32g, 72.2mmol), Pd(dppf)Cl2 (1.61g, 2mmol), KOAc (19.31g, 196.8mmol), DMF를 상기 Sub 1-IV-B1 합성법을 사용하여 생성물 36.88g (수율: 82%)를 얻었다.
(3) Sub 1-V-B64 합성
상기 합성에서 얻어진 Sub 1-IV-B64 (36.88g, 53.8mmol)에 1,3-dibromobenzene (19.03g, 80.7mmol), Pd(PPh3)4 (3.11g, 2.7mmol), K2CO3 (22.3g, 161.4mmol), THF, 물을 상기 Sub 1-V-B1 합성법을 사용하여 생성물 24.99g (수율: 65%)를 얻었다.
(4) Sub 1-VI-B64 합성
상기 합성에서 얻어진 Sub 1-V-B64 (24.99g, 35mmol)에 Bis(pinacolato)diboron (9.77g, 38.5mmol), Pd(dppf)Cl2 (0.86g, 1mmol), KOAc (10.29g, 104.9mmol), DMF를 상기 Sub 1-VI-B1 합성법을 사용하여 생성물 21.31g (수율: 80%)를 얻었다.
(5)Sub 1-B64 합성
상기 합성에서 얻어진 Sub 1-VI-B64 (19.88g, 26.1mmol)에 1-bromo-4-iodobenzene (11.07g, 39.1mmol), Pd(PPh3)4 (1.51g, 1.3mmol), K2CO3 (10.82g, 78.3mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.73g (수율: 52%)를 얻었다.
16. Sub 1-B69의 합성
<반응식 18>
Figure PCTKR2013011088-appb-I000039
상기 합성에서 얻어진 Sub 1-VI-B40 (14.29g, 25.9mmol)에 1-bromo-3-iodobenzene (11g, 38.9mmol), Pd(PPh3)4 (1.5g, 1.3mmol), K2CO3 (10.74g, 77.7mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 11.88g (수율: 79%)를 얻었다.
17. Sub 1-B72의 합성
<반응식 19>
Figure PCTKR2013011088-appb-I000040
상기 합성에서 얻어진 Sub 1-VI-B43 (14.17g, 26.5mmol)에 1-bromo-3-iodobenzene (11.23g, 39.7mmol), Pd(PPh3)4 (1.53g, 1.3mmol), K2CO3 (10.97g, 79.4mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.61g (수율: 71%)를 얻었다.
18. Sub 1-B76의 합성
<반응식 20>
Figure PCTKR2013011088-appb-I000041
상기 합성에서 얻어진 Sub 1-VI-B1 (11.32g, 25.4mmol)에 1-bromo-2-iodobenzene (10.79g, 38.1mmol), Pd(PPh3)4 (1.47g, 1.3mmol), K2CO3 (10.54g, 76.3mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 7.11g (수율: 59%)를 얻었다.
19. Sub 1-B84의 합성
<반응식 21>
Figure PCTKR2013011088-appb-I000042
상기 합성에서 얻어진 Sub 1-VI-B23 (16.14g, 27mmol)에 1-bromo-2-iodobenzene (11.46g, 40.5mmol), Pd(PPh3)4 (1.56g, 1.4mmol), K2CO3 (11.2g, 81mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 8.97g (수율: 53%)를 얻었다.
20. Sub 1-B87의 합성
<반응식 22>
Figure PCTKR2013011088-appb-I000043
상기 합성에서 얻어진 Sub 1-VI-B26 (12.67g, 22.6mmol)에 1-bromo-2-iodobenzene (9.57g, 33.8mmol), Pd(PPh3)4 (1.3g, 1.1mmol), K2CO3 (9.36g, 67.7mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 8.13g (수율: 61%)를 얻었다.
21. Sub 1-B90의 합성
<반응식 23>
Figure PCTKR2013011088-appb-I000044
상기 합성에서 얻어진 Sub 1-VI-B32 (17.39g, 25.4mmol)에 1-bromo-2-iodobenzene (10.76g, 38mmol), Pd(PPh3)4 (1.47g, 1.3mmol), K2CO3 (10.52g, 76.1mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.15g (수율: 56%)를 얻었다.
22. Sub 1-B91의 합성
<반응식 24>
Figure PCTKR2013011088-appb-I000045
상기 합성에서 얻어진 Sub 1-VI-B33 (15.63g, 22.8mmol)에 1-bromo-2-iodobenzene (9.67g, 34.2mmol), Pd(PPh3)4 (1.32g, 1.1mmol), K2CO3 (9.45g, 68.4mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 9.78g (수율: 60%)를 얻었다.
23. Sub 1-B99의 합성
<반응식 25>
Figure PCTKR2013011088-appb-I000046
상기 합성에서 얻어진 Sub 1-VI-B40 (17.08g, 31mmol)에 1-bromo-2-iodobenzene (13.14g, 46.5mmol), Pd(PPh3)4 (1.79g, 1.5mmol), K2CO3 (12.84g, 92.9mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 10.25g (수율: 57%)를 얻었다.
24. Sub 1-B102의 합성
<반응식 26>
Figure PCTKR2013011088-appb-I000047
상기 합성에서 얻어진 Sub 1-VI-B43 (13.96g, 26.1mmol)에 1-bromo-2-iodobenzene (11.06g, 39.1mmol), Pd(PPh3)4 (1.51g, 1.3mmol), K2CO3 (10.81g, 78.2mmol), THF, 물을 상기 Sub 1-B1 합성법을 사용하여 생성물 9.12g (수율: 62%)를 얻었다.
한편, Sub 1의 예시는 아래와 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 1과 같다.
Figure PCTKR2013011088-appb-I000048
Figure PCTKR2013011088-appb-I000049
Figure PCTKR2013011088-appb-I000050
Figure PCTKR2013011088-appb-I000051
[표 1]
Figure PCTKR2013011088-appb-I000052
Figure PCTKR2013011088-appb-I000053
Ⅱ. Sub 2의 합성
상기 반응식 1의 Sub 2는 하기 반응식 27의 반응경로에 의해 합성될 수 있으나. 이에 한정되는 것은 아니다.
<반응식 27>
Figure PCTKR2013011088-appb-I000054
Sub 2에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub 2-6의 합성
<반응식 28>
Figure PCTKR2013011088-appb-I000055
출발물질인 2-bromo-9,9-diphenyl-9H-fluorene (35.27g, 88.8mmol)을 둥근바닥플라스크에 toluene으로 녹인 후에, aniline (16.53g, 177.5mmol), Pd2(dba)3 (2.44g, 2.7mmol), 50% P(t-Bu)3 (3.5ml, 7.1mmol), NaOt-Bu (25.6g, 266.3mmol)을 첨가하고 40℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 27.27g (수율: 75%)를 얻었다.
2. Sub 2-7의 합성
<반응식 29>
Figure PCTKR2013011088-appb-I000056
출발물질인 2-bromo-9,9-diphenyl-9H-fluorene (11.89g, 29.9mmol)에 [1,1'-biphenyl]-4-amine (10.13g, 59.9mmol), Pd2(dba)3 (0.82g, 0.9mmol), 50% P(t-Bu)3 (1.2ml, 2.4mmol), NaOt-Bu (8.63g, 89.8mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 11.04g (수율: 76%)를 얻었다.
3. Sub 2-13의 합성
<반응식 30>
Figure PCTKR2013011088-appb-I000057
출발물질인 bromobenzene (11.16g, 71.1mmol)에 aniline (13.24g, 142.2mmol), Pd2(dba)3 (1.95g, 2.1mmol), 50% P(t-Bu)3 (2.8ml, 5.7mmol), NaOt-Bu (20.49g, 213.2mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 9.62g (수율: 80%)를 얻었다.
4. Sub 2-16 의 합성
<반응식 31>
Figure PCTKR2013011088-appb-I000058
출발물질인 bromobenzene (7.61g, 48.5mmol)에 [1,1'-biphenyl]-4-amine (16.4g, 96.9mmol), Pd2(dba)3 (1.33g, 1.5mmol), 50% P(t-Bu)3 (1.9ml, 3.9mmol), NaOt-Bu (13.97g, 145.4mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 9.87g (수율: 83%)를 얻었다.
5. Sub 2-17의 합성
<반응식 32>
Figure PCTKR2013011088-appb-I000059
출발물질인 4-bromo-1,1'-biphenyl (9.74g, 41.8mmol)에 [1,1'-biphenyl]-4-amine (14.14g, 83.6mmol), Pd2(dba)3 (1.15g, 1.3mmol), 50% P(t-Bu)3 (1.6ml, 3.3mmol), NaOt-Bu (12.05g, 125.4mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 1061g (수율: 79%)를 얻었다.
6.Sub 2-39의 합성
<반응식 33>
Figure PCTKR2013011088-appb-I000060
출발물질인 2-bromobenzo[b]thiophene (8.92g, 41.9mmol)에 aniline (7.8g, 83.7mmol), Pd2(dba)3 (1.15g, 1.3mmol), 50% P(t-Bu)3 (1.6ml, 3.3mmol), NaOt-Bu (12.07g, 125.6mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 6.51g (수율: 69%)를 얻었다.
7. Sub 2-67의 합성
<반응식 34>
Figure PCTKR2013011088-appb-I000061
출발물질인 3-bromo-9,9-dimethyl-9H-fluorene (16.33g, 59.8mmol)에 aniline (11.13g, 119.6mmol), Pd2(dba)3 (1.64g, 1.8mmol), 50% P(t-Bu)3 (2.3ml, 4.8mmol), NaOt-Bu (17.24g, 179.3mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 14.33g (수율: 84%)를 얻었다.
8. Sub 2-68의 합성
<반응식 35>
Figure PCTKR2013011088-appb-I000062
출발물질인 3-bromo-9,9-dimethyl-9H-fluorene (8.09g, 29.6mmol)에 [1,1'-biphenyl]-4-amine (10.02g, 59.2mmol), Pd2(dba)3 (0.81g, 0.9mmol), 50% P(t-Bu)3 (1.2ml, 2.4mmol), NaOt-Bu (8.54g, 88.8mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 8.78g (수율: 82%)를 얻었다.
9. Sub 2-72의 합성
<반응식 36>
Figure PCTKR2013011088-appb-I000063
출발물질인 3-bromo-9,9-diphenyl-9H-fluorene (11.67g, 29.4mmol)에 aniline (5.47g, 58.7mmol), Pd2(dba)3 (0.81g, 0.9mmol), 50% P(t-Bu)3 (1.1ml, 2.3mmol), NaOt-Bu (8.47g, 88.1mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 9.02g (수율: 75%)를 얻었다.
10. Sub 2-77의 합성
<반응식 37>
Figure PCTKR2013011088-appb-I000064
출발물질인 3-bromopyridine (10.41g, 65.9mmol)에 aniline (12.27g, 131.8mmol), Pd2(dba)3 (1.81g, 2mmol), 50% P(t-Bu)3 (2.6ml, 5.3mmol), NaOt-Bu (19g, 197.7mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 7.51g (수율: 67%)를 얻었다.
11. Sub 2-78의 합성
<반응식 38>
Figure PCTKR2013011088-appb-I000065
출발물질인 3-(4-bromophenyl)pyridine (10.98g, 46.9mmol)에 aniline (8.74g, 93.8mmol), Pd2(dba)3 (1.29g, 1.4mmol), 50% P(t-Bu)3 (1.8ml, 3.8mmol), NaOt-Bu (13.52g, 140.7mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 7.97g (수율: 69%)를 얻었다.
12. Sub 2-82의 합성
<반응식 39>
Figure PCTKR2013011088-appb-I000066
출발물질인 4-bromoisoquinoline (9.83g, 47.2mmol)에 aniline (8.8g, 94.5mmol), Pd2(dba)3 (1.3g, 1.4mmol), 50% P(t-Bu)3 (1.8ml, 3.8mmol), NaOt-Bu (13.62g, 141.7mmol), toluene을 상기 Sub 2-6 합성법을 사용하여 생성물 6.24g (수율: 60%)를 얻었다.
한편, Sub 2의 예시는 아래와 같으나 이에 한정되는 것은 아니며, 이들의 FD-MS는 하기 표 2와 같다.
Figure PCTKR2013011088-appb-I000067
Figure PCTKR2013011088-appb-I000068
[표 2]
Figure PCTKR2013011088-appb-I000069
Figure PCTKR2013011088-appb-I000070
Ⅲ. 최종생성물 (Final Product)의 합성
Sub 2 (1당량)를 둥근바닥플라스크에 toluene으로 녹인 후에, Sub 1 (1.2당량), Pd2(dba)3 (0.03당량), P(t-Bu)3 (0.08당량), NaOt-Bu (3당량)을 첨가하고 100℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 최종 생성물(Final Product)를 얻었다.
1. Product B17의 합성
<반응식 40>
Figure PCTKR2013011088-appb-I000071
상기 합성에서 얻어진 Sub 2-6 (6.39g, 15.6mmol)을 둥근바닥플라스크에 toluene으로 녹인 후에, Sub 1-B2 (10.31g, 18.7mmol), Pd2(dba)3 (0.43g, 0.5mmol), 50% P(t-Bu)3 (0.6ml, 1.2mmol), NaOt-Bu (4.5g, 46.8mmol)을 첨가하고 100°C에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 9.46g (수율: 69%)를 얻었다.
2. Product B21의 합성
<반응식 41>
Figure PCTKR2013011088-appb-I000072
상기 합성에서 얻어진 Sub 2-7 (5.18g, 10.7mmol)에 Sub 1-B1 (6.07g, 12.8mmol), Pd2(dba)3 (0.29g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.08g, 32mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 7.22g (수율: 77%)를 얻었다.
3. Product B145의 합성
<반응식 42>
Figure PCTKR2013011088-appb-I000073
상기 합성에서 얻어진 Sub 2-7 (4.96g, 10.2mmol)에 Sub 1-B14 (6.43g, 12.3mmol), Pd2(dba)3 (0.28g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.8mmol), NaOt-Bu (2.94g, 30.6mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.83g (수율: 72%)를 얻었다.
4. Product B179의 합성
<반응식 43>
Figure PCTKR2013011088-appb-I000074
상기 합성에서 얻어진 Sub 2-68 (3.91g, 10.8mmol)에 Sub 1-B23 (8.13g, 13mmol), Pd2(dba)3 (0.3g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.12g, 32.4mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.18g (수율: 63%)를 얻었다.
5. Product B187의 합성
<반응식 44>
Figure PCTKR2013011088-appb-I000075
상기 합성에서 얻어진 Sub 2-17 (3.64g, 11.3mmol)에 Sub 1-B26 (8.03g, 13.6mmol), Pd2(dba)3 (0.31g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.27g, 34mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 7.06g (수율: 75%)를 얻었다.
6. Product B200의 합성
<반응식 45>
Figure PCTKR2013011088-appb-I000076
상기 합성에서 얻어진 Sub 2-82 (2.76g, 12.5mmol)에 Sub 1-B32 (10.75g, 15mmol), Pd2(dba)3 (0.34g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1mmol), NaOt-Bu (3.61g, 37.6mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.21g (수율: 58%)를 얻었다.
7. Product B204의 합성
<반응식 46>
Figure PCTKR2013011088-appb-I000077
상기 합성에서 얻어진 Sub 2-67 (3.07g, 10.8mmol)에 Sub 1-B33 (9.23g, 12.9mmol), Pd2(dba)3 (0.3g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.1g, 32.3mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.62g (수율: 67%)를 얻었다.
8. Product B210의 합성
<반응식 47>
Figure PCTKR2013011088-appb-I000078
상기 합성에서 얻어진 Sub 2-6 (4.28g, 10.5mmol)에 Sub 1-B40 (7.28g, 12.5mmol), Pd2(dba)3 (0.29g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.8mmol), NaOt-Bu (3.01g, 31.4mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.75g (수율: 71%)를 얻었다.
9. Product B213의 합성
<반응식 48>
Figure PCTKR2013011088-appb-I000079
상기 합성에서 얻어진 Sub 2-16 (3.15g, 12.8mmol)에 Sub 1-B43 (8.7g, 15.4mmol), Pd2(dba)3 (0.35g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1mmol), NaOt-Bu (3.7g, 38.5mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.93g (수율: 74%)를 얻었다.
10. Product B223의 합성
<반응식 49>
Figure PCTKR2013011088-appb-I000080
상기 합성에서 얻어진 Sub 2-6 (4.47g, 10.9mmol)에 Sub 1-B48 (7.21g, 13.1mmol), Pd2(dba)3 (0.3g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.15g, 32.7mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 7.2g (수율: 75%)를 얻었다.
11. Product B245의 합성
<반응식 50>
Figure PCTKR2013011088-appb-I000081
상기 합성에서 얻어진 Sub 2-72 (4.32g, 10.5mmol)에 Sub 1-B54 (7.93g, 12.7mmol), Pd2(dba)3 (0.29g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.8mmol), NaOt-Bu (3.04g, 31.6mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.35g (수율: 63%)를 얻었다.
12. Product B253의 합성
<반응식 51>
Figure PCTKR2013011088-appb-I000082
상기 합성에서 얻어진 Sub 2-67 (3.56g, 12.5mmol)에 Sub 1-B58 (8.84g, 15mmol), Pd2(dba)3 (0.34g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1mmol), NaOt-Bu (3.6g, 37.4mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 7.44g (수율: 75%)를 얻었다.
13. Product B259의 합성
<반응식 52>
Figure PCTKR2013011088-appb-I000083
상기 합성에서 얻어진 Sub 2-13 (1.88g, 11.1mmol)에 Sub 1-B61 (9.53g, 13.3mmol), Pd2(dba)3 (0.31g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.2g, 33.3mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.96g (수율: 78%)를 얻었다.
14. Product B266의 합성
<반응식 53>
Figure PCTKR2013011088-appb-I000084
상기 합성에서 얻어진 Sub 2-39 (2.56g, 11.4mmol)에 Sub 1-B62 (9.74g, 13.6mmol), Pd2(dba)3 (0.31g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.28g, 34.1mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.54g (수율: 67%)를 얻었다.
15. Product B273의 합성
<반응식 54>
Figure PCTKR2013011088-appb-I000085
상기 합성에서 얻어진 Sub 2-77 (2.83g, 16.6mmol)에 Sub 1-B69 (11.58g, 20mmol), Pd2(dba)3 (0.46g, 0.5mmol), 50% P(t-Bu)3 (0.6ml, 1.3mmol), NaOt-Bu (4.79g, 49.9mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.79g (수율: 61%)를 얻었다.
16. Product B278의 합성
<반응식 55>
Figure PCTKR2013011088-appb-I000086
상기 합성에서 얻어진 Sub 2-78 (3.71g, 15.1mmol)에 Sub 1-B72 (10.2g, 18.1mmol), Pd2(dba)3 (0.41g, 0.5mmol), 50% P(t-Bu)3 (0.6ml, 1.2mmol), NaOt-Bu (4.34g, 45.2mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.93g (수율: 63%)를 얻었다.
17. Product B287의 합성
<반응식 56>
Figure PCTKR2013011088-appb-I000087
상기 합성에서 얻어진 Sub 2-6 (4.97g, 12.1mmol)에 Sub 1-B76 (6.91g, 14.6mmol), Pd2(dba)3 (0.33g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1mmol), NaOt-Bu 3.5g, 36.4mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.33g (수율: 65%)를 얻었다.
18. Product B322의 합성
<반응식 57>
Figure PCTKR2013011088-appb-I000088
상기 합성에서 얻어진 Sub 2-6 (4.72g, 11.5mmol)에 Sub 1-B84 (8.67g, 13.8mmol), Pd2(dba)3 (0.32g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.32g, 34.6mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.61g (수율: 60%)를 얻었다.
19. Product B331의 합성
<반응식 58>
Figure PCTKR2013011088-appb-I000089
상기 합성에서 얻어진 Sub 2-17 (3.59g, 11.2mmol)에 Sub 1-B87 (7.92g, 13.4mmol), Pd2(dba)3 (0.31g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.22g, 33.5mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.31g (수율: 68%)를 얻었다.
20. Product B340의 합성
<반응식 59>
Figure PCTKR2013011088-appb-I000090
상기 합성에서 얻어진 Sub 2-16 (2.82g, 11.5mmol)에 Sub 1-B90 (9.86g, 13.8mmol), Pd2(dba)3 (0.32g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.31g, 34.5mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.37g (수율: 63%)를 얻었다.
21. Product B343의 합성
<반응식 60>
Figure PCTKR2013011088-appb-I000091
상기 합성에서 얻어진 Sub 2-13 (1.86g, 11mmol)에 Sub 1-B91 (9.43g, 13.2mmol), Pd2(dba)3 (0.3g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.17g, 33mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.27g (수율: 71%)를 얻었다.
22. Product B351의 합성
<반응식 61>
Figure PCTKR2013011088-appb-I000092
상기 합성에서 얻어진 Sub 2-13 (2.41g, 14.2mmol)에 Sub 1-B99 (9.92g, 17.1mmol), Pd2(dba)3 (0.39g, 0.4mmol), 50% P(t-Bu)3 (0.6ml, 1.1mmol), NaOt-Bu (4.11g, 42.7mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.48g (수율: 68%)를 얻었다.
23. Product B358의 합성
<반응식 62>
Figure PCTKR2013011088-appb-I000093
상기 합성에서 얻어진 Sub 2-67 (3.78g, 13.2mmol)에 Sub 1-B102 (8.97g, 15.9mmol), Pd2(dba)3 (0.36g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1.1mmol), NaOt-Bu (3.82g, 39.7mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.31g (수율: 62%)를 얻었다.
24. Product B375의 합성
<반응식 63>
Figure PCTKR2013011088-appb-I000094
상기 합성에서 얻어진 Sub 2-67 (3.11g, 10.9mmol)에 Sub 1-B64 (10.34g, 13.1mmol), Pd2(dba)3 (0.3g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.14g, 32.7mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.18g (수율: 57%)를 얻었다.
25. Product C2의 합성
<반응식 64>
Figure PCTKR2013011088-appb-I000095
상기 합성에서 얻어진 Sub 2-3 (6g, 16.6mmol)에 Sub 1-C1 (7.93g, 19.9mmol), Pd2(dba)3 (1.21g, 1.3mmol), 50% P(t-Bu)3 (0.7ml, 1.66mmol), NaOt-Bu (73.03g, 49.8mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 7.54g (수율: 67%)를 얻었다.
26. Product C8의 합성
<반응식 65>
Figure PCTKR2013011088-appb-I000096
상기 합성에서 얻어진 Sub 2-7 (5.18g, 10.7mmol)에 Sub 1-C1 (5.1g, 12.8mmol), Pd2(dba)3 (0.29g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.08g, 32mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.34g (수율: 74%)를 얻었다.
27. Product C21합성예
<반응식 66>
Figure PCTKR2013011088-appb-I000097
상기 합성에서 얻어진 Sub 2-17 (3.59g, 11.2mmol)에 Sub 1-C7 (6.9g, 13.4mmol), Pd2(dba)3 (0.31g, 0.3mmol), 50% P(t-Bu)3 (0.4ml, 0.9mmol), NaOt-Bu (3.22g, 33.5mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6g (수율: 71%)를 얻었다.
28. Product C23의 합성
<반응식 67>
Figure PCTKR2013011088-appb-I000098
상기 합성에서 얻어진 Sub 2-67 (3.56g, 12.5mmol)에 Sub 1-C8 (7.7g, 15mmol), Pd2(dba)3 (0.34g, 0.4mmol), 50% P(t-Bu)3 (0.5ml, 1mmol), NaOt-Bu (3.6g, 37.4mmol), toluene을 상기 Product B17 합성법을 사용하여 생성물 6.82g (수율: 76%)를 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 B1~B386, C1~C40의 FD-MS 값은 하기 표 3과 같다.
[표 3]
Figure PCTKR2013011088-appb-I000099
Figure PCTKR2013011088-appb-I000100
Figure PCTKR2013011088-appb-I000101
Figure PCTKR2013011088-appb-I000102
한편, 상기에서는 화학식 1로 표시되는 본 발명의 예시적 합성예를 설명하였지만, 이들은 모두 Suzuki cross-coupling 반응, Ullmann 반응, Miyaura boration 반응 및 Buchwald-Hartwig cross coupling 반응 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1에 정의된 다른 치환기(R1, R2, L1, Ar1, Ar2, Ar3 등의 치환기)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
예컨대, 반응식 2에서 출발물질 -> Sub 1-I, Sub 1-IV -> Sub 1-V, Sub 1-VI -> Sub 1 로의 반응 등은 모두 Suzuki cross-coupling 반응에 기초한 것이고, 반응식 2에서 Sub 1-II -> Sub 1-III 반응은 Ullmann 반응에 기초한 것이며, 반응식 2에서 Sub 1-III -> Sub 1-IV, Sub 1-V -> Sub 1-VI 등은 Miyaura boration 반응에 기초한 것이며, 반응식 27에서 출발물질 -> Sub 2, Product 합성 반응식(반응식 40 내지 반응식 67)은 Buchwald-Hartwig cross coupling 반응에 기초한 것으로, 이들에 구체적으로 명시되지 않은 치환기가 결합되더라도 상기 반응들이 진행할 것이다.
유기전기소자의 제조평가
[실시예 Ⅰ-1] 그린유기전기발광소자(정공수송층)
본 발명의 화합물을 정공수송층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine (이하 "2-TNATA"로 약기함)을 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 본 발명의 화합물 B1을 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 4,4'-N,N'-dicarbazole-biphenyl (이하 "CBP"로 약기함)을 호스트로, tris(2-phenylpyridine)-iridium (이하 "Ir(ppy)3"으로 약기함)을 도판트로 하여 90:10 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 (1,1’-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄(이하 "BAlq"로 약기함)을 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄 (이하 "Alq3"로 약기함)을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 Ⅰ-2] 내지 [실시예 Ⅰ-300] 그린유기전기발광소자(정공수송층)
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 표 4에 기재된 본 발명의 화합물 B6 내지 C40을 사용한 점을 제외하고는 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 1]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 1을 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 1>
Figure PCTKR2013011088-appb-I000103
[비교예 2]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 2를 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 2>
Figure PCTKR2013011088-appb-I000104
[비교예 3]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 3을 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 3>
Figure PCTKR2013011088-appb-I000105
[비교예 4]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 4를 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 4>
Figure PCTKR2013011088-appb-I000106
[비교예 5]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 5를 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 5>
Figure PCTKR2013011088-appb-I000107
[비교예 6]
정공수송층 물질로 본 발명의 화합물 B1 대신 하기 비교화합물 6을 사용한 것을 제외하고는 상기 실시예 Ⅰ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 6>
Figure PCTKR2013011088-appb-I000108
본 발명의 실시예 Ⅰ-1 내지 실시예 Ⅰ-300, 비교예 1 내지 비교예 6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정결과 5000cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95수명을 측정하였으며, 그 측정 결과는 하기 표 4와 같다.
[표 4]
Figure PCTKR2013011088-appb-I000109
Figure PCTKR2013011088-appb-I000110
Figure PCTKR2013011088-appb-I000111
Figure PCTKR2013011088-appb-I000112
Figure PCTKR2013011088-appb-I000113
Figure PCTKR2013011088-appb-I000114
Figure PCTKR2013011088-appb-I000115
Figure PCTKR2013011088-appb-I000116
상기 표 4의 결과로부터 알 수 있듯이, 본 발명의 화합물을 정공수송층의 재료로 사용한 유기전기발광소자는 비교화합물 1 내지 비교화합물 6을 정공수송층의 재료로 사용한 유기전기발광소자에 비해 비교적 구동전압이 낮고, 발광효율이 향상되었을 뿐만 아니라 수명 등이 현저히 개선되었다.
이와 같은 결과는 특히, 본 발명의 화합물(연결기가 비선형 형태; non-linear type)과 비교화합물(연결기가 선형 형태; linear type)의 비교를 통해 연결기의 결합유형(선형 형태 또는 비선형 형태)에 따라 결과가 상이하게 나타나는 것을 보여준다.
카바졸과 아민(-NAr2Ar3)을 연결해주는 연결기의 위치가 para(선형 형태; linear type)위치인 경우보다 meta(비선형 형태; non-linear type)위치로 왔을 때 깊은 HOMO 에너지 레벨과 높은 T1 값 및 높은 열 안정성을 보였고, 이는 본 발명 화합물이 비교화합물 2 및 비교화합물 3에 비해 구동전압, 효율 및 수명에서 개선된 결과로 나타났다.
meta로 꺽인 유형(비선형 형태; non-linear type)의 연결기는 para 유형(선형 형태; linear type)의 연결기보다 컨쥬게이션 길이(conjugation length)가 짧아지며, 이로 인해 밴드 갭(band gap)이 넓어지고, 높은 T1 값을 가지게 된다.
따라서 meta로 꺽인 유형(비선형 형태; non-linear type)의 연결기는 높은 T1 값으로 전자를 블로킹하는 능력을 향상시킴과 동시에 깊은 HOMO 에너지 레벨로 인해 정공이 발광층으로 원활하게 수송되어 결과적으로 엑시톤이 발광층 내에 더욱 쉽게 생성되면서 효율이 향상되는 것으로 판단된다. 또한 높은 열 안정성을 갖게되어 이로 인해 수명이 늘어나는 것을 확인할 수 있다.
또한 카바졸 백본(backbone)에 직접 연결되는 연결기의 위치가 2번으로 치환된 본 발명 화합물이 3번으로 치환된 비교화합물 4 내지 비교화합물 6에 비해 짧은 컨쥬게이션 길이(conjugation length)를 나타내어 효율과 수명 측면에서 상기 설명한 바와 같이, 좀 더 개선된 결과를 나타낸다.
앞에서 설명한 특성(깊은 HOMO 에너지 레벨, 높은 T1값, 높은 열 안정성)들을 종합해보면 카바졸과 아민(-NAr2Ar3) 사이에 있는 연결기의 결합위치에 따라 밴드 갭 및 전기적 특성, 계면 특성 등이 크게 변화될 수 있다는 것을 보여주며 이는 소자의 성능향상에 주요 인자로 작용한다는 것을 확인할 수 있다.
또한 정공수송층의 경우에는 발광층(호스트)과의 상호관계를 파악해야 하는바, 유사한 코어를 사용하더라도 본 발명에 따른 화합물이 사용된 정공수송층에서 나타내는 특징을 유추하는 것은 통상의 기술자라 하더라도 매우 어려울 것이다.
[실시예 Ⅱ-1] 블루유기전기발광소자(발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 N,N'-Bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (이하 "NPB"로 약기함)을 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 B6을 20nm 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 9,10-Di(2-naphthyl)anthracene (이하 "ADN"이라 약기함)을 호스트로, BD-052X(Idemitsu kosan 제조)을 도판트로 하여 93:7 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 Ⅱ-2] 내지 [실시예 Ⅱ-86] 블루유기전기발광소자(발광보조층)
발광보조층 물질로 본 발명의 화합물 B6 대신 하기 표 5에 기재된 본 발명의 화합물 B7 내지 B386을 사용한 점을 제외하고는 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 7]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 2를 사용한 것을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 8]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 4를 사용한 것을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 9]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 5를 사용한 것을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 10]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 6를 사용한 것을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 11]
발광보조층 물질로 본 발명의 화합물 B6 대신 하기 비교화합물 7를 사용한 것을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 7>
Figure PCTKR2013011088-appb-I000117
[비교예 12]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 Ⅱ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 Ⅱ-1 내지 실시예 Ⅱ-86, 비교예 7 내지 비교예 12에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정결과 500cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95수명을 측정하였으며, 그 측정 결과는 하기 표 5와 같다.
[표 5]
Figure PCTKR2013011088-appb-I000118
Figure PCTKR2013011088-appb-I000119
Figure PCTKR2013011088-appb-I000120
[실시예 Ⅲ-1] 그린유기전기발광소자(발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPB를 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 B6을 20nm 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트로, Ir(ppy)3을 도판트로 하여 90:10 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 Ⅲ-2] 내지 [실시예 Ⅲ-136] 그린유기전기발광소자(발광보조층)
발광보조층 물질로 본 발명의 화합물 B6 대신 하기 표 6에 기재된 본 발명의 화합물 B7 내지 C16을 사용한 점을 제외하고는 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 13]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 2를 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 14]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 3을 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 15]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 4를 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 16]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 5를 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 17]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 6을 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 18]
발광보조층 물질로 본 발명의 화합물 B6 대신 상기 비교화합물 7을 사용한 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 19]
발광보조층을 형성하지 않은 것을 제외하고는 상기 실시예 Ⅲ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 Ⅲ-1 내지 실시예 Ⅲ-136, 비교예 13 내지 비교예 19에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정결과 5000cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95수명을 측정하였으며, 그 측정 결과는 하기 표 6과 같다.
[표 6]
Figure PCTKR2013011088-appb-I000121
Figure PCTKR2013011088-appb-I000122
Figure PCTKR2013011088-appb-I000123
Figure PCTKR2013011088-appb-I000124
[실시예 Ⅳ-1] 레드유기전기발광소자(발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPB를 60nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 B1을 20nm 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트로, bis-(1-phenylisoquinolyl)iridium(Ⅲ)acetylacetonate (이하 "(piq)2Ir(acac)"로 약기함)을 도판트로 하여 95:5 중량비로 도핑하여 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3을 40nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 Ⅳ-2] 내지 [실시예 Ⅳ-135] 레드유기전기발광소자(발광보조층)
발광보조층 물질로 본 발명의 화합물 B1 대신 표 7에 기재된 본 발명의 화합물 B6 내지 B386를 사용한 점을 제외하고는 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 20]
발광보조층 물질로 본 발명의 화합물 B1 대신 상기 비교화합물 2를 사용한 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 21]
발광보조층 물질로 본 발명의 화합물 B1 대신 상기 비교화합물 4를 사용한 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 22]
발광보조층 물질로 본 발명의 화합물 B1 대신 상기 비교화합물 5를 사용한 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 23]
발광보조층 물질로 본 발명의 화합물 B1 대신 상기 비교화합물 6을 사용한 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 24]
발광보조층 물질로 본 발명의 화합물 B1 대신 상기 비교화합물 7을 사용한 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 25]
발광보조층을 형성하지 않은 것을 제외하고는 상기 실시예 Ⅳ-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 Ⅳ-1 내지 실시예 Ⅳ-135, 비교예 20 내지 비교예 25에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정결과 2500cd/㎡ 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95수명을 측정하였으며, 그 측정 결과는 하기 표 7과 같다.
[표 7]
Figure PCTKR2013011088-appb-I000125
Figure PCTKR2013011088-appb-I000126
Figure PCTKR2013011088-appb-I000127
Figure PCTKR2013011088-appb-I000128
상기 표 5 내지 표 7의 결과로부터 알 수 있듯이, 본 발명의 화합물을 발광보조층의 재료로 사용한 유기전기발광소자는 비교예 7 내지 비교예 25의 유기전기발광소자에 비해 발광효율이 향상되고 수명이 현저히 개선되었다.
연결기가 선형(linear) 형태인 비교화합물 2를 발광보조층으로 사용했을 경우에도 비선형(non-linear) 형태의 본 발명 화합물보다 낮은 효율과 낮은 수명을 나타내는 것을 확인할 수 있다. 또한 연결기가 본 발명 화합물과 동일하게 비선형(non-linear) 형태의 구조이며 메인 치환기가 아민기(-NAr2Ar3)가 아닌 헤테로고리기인 비교화합물 7의 경우 역시 낮은 효율 및 낮은 수명을 나타낸다. 이는 아민기(-NAr2Ar3) 대신에 헤테로고리기를 도입한 경우 낮은 T1값을 가지며, 이로 인해 소자구동시 발광층 내부에서 발광이 이루어지는 것이 아니라 발광층과 발광보조층 계면에서 발광이 이루어지기 때문인 것으로 판단된다.
상기 표 4에서 meta 위치로 꺽인 연결기를 카바졸 백본(backbone)에 2번 위치로 치환시키는 것은 정공수송층 뿐만 아니라 발광보조층(청색 형광, 녹색 인광, 적색 인광)에서 소자의 성능향상에 주요 인자로 작용하여 비슷한 경향성을 나타낸다.
이는 카바졸 백본(backbone)에 직접 연결되는 연결기의 위치가 2번으로 치환된 본 발명 화합물이 3번으로 치환된 비교화합물 4 내지 비교화합물 6에 비해 발광효율 및 수명 측면에서 개선된 결과를 나타내는 것으로부터 확인할 수 있다.
본 발명 화합물의 또 다른 특징으로는 연결기 L1이 아민(-NAr2Ar3)과 연결되는 결합각이 작을수록 보다 넓은 밴드갭과 높은 T1 값을 나타내는 것으로, 이러한 결과는 meta 및 para위치로 결합되어 있는 화합물보다 ortho위치로 결합되어 있는 화합물이 더 높은 발광효율을 나타내는 것으로 확인할 수 있다. 또한 ortho위치로 결합되어 있는 화합물은 비교적 낮은 증착 온도를 가지기 때문에 발광효율의 향상 뿐만 아니라 공정시간의 단축과 동시에 열적 손상을 감소시켜 수명을 개선 시키는 효과도 기대할 수 있다.
마지막으로 발광보조층으로 사용한 본 발명 화합물은 카바졸의 질소(N)에 벌키(bulky)한 치환기를 도입 시 구조적으로 좀 더 뒤틀린(twisted) 구조 형태를 만들면서 발광보조층 내 물질 간의 패킹 밀도(packing density)를 낮추고 정공이동도(hole mobility)를 조절하여 발광층 내에 전하 균형(charge balance)을 이루는 것을 용이하게 만들어 결과적으로 높은 발광효율을 나타내는 것을 확인할 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
[부호의 설명]
100: 유기전기소자 110: 기판
120: 제 1전극 130: 정공주입층
140: 정공수송층 141: 버퍼층
150: 발광층 151: 발광보조층
160: 전자수송층 170: 전자주입층
180: 제 2전극
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2012년 12월 06일 한국에 출원한 특허출원번호 제 10-2012-0141364 호 및 2013년 11월 06일 한국에 출원한 특허출원번호 제 10-2013-0133883 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물.
    <화학식 1>
    Figure PCTKR2013011088-appb-I000129
    [상기 화학식 1에서,
    m은 1 내지 4의 정수이며,
    n은 1 내지 3의 정수이며,
    R1 및 R2는 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; -L2-N(Ar2)(Ar3); C1~C30의 알콕실기; 및 C6~C30의 아릴옥실기;로 이루어진 군에서 선택되며,
    Ar1은 플루오렌일기; C6~C60의 아릴기; C2~C20의 알켄일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; -L2-N(Ar2)(Ar3); 및 C6~C60의 방향족 고리와 C3~C60의 지방족 고리의 융합고리기;로 이루어진 군에서 선택되며,
    L1 및 L2은 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 2가 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 2가 융합고리기; 및 2가의 지방족 탄화수소기;로 이루어진 군에서 선택되며,
    Ar2 및 Ar3는 서로 독립적으로, C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C6~C60의 방향족 고리와 C3~C60의 지방족 고리의 융합고리기; 및 C2~C20의 알켄일기;로 이루어진 군에서 선택된다.
    여기서 상기 아릴기, 헤테로고리기, 플루오렌일기, 알킬기, 알켄일기, 융합고리기, 알콕실기, 아릴옥실기, 아릴렌기, 플루오렌일렌기, 지방족 탄화수소기가 하나 이상의 치환기로 더 치환되는 경우에는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; -L'-N(R')(R")(여기서 상기 L'은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의방향족고리의 융합고리기; 및 2가의 C1~C60 지방족 탄화수소기;로 이루어진 군에서 선택되며, 상기 R'및 R"는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; 및 C2~C20의 알켄일기;로 이루어진 군에서 선택됨); C1~C20의 알킬싸이오기; C1~C20의 알콕실기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환된다.]
  2. 제 1항에 있어서,
    상기 L1은 하기 군에서 선택되는 것을 특징으로 하는 화합물.
    Figure PCTKR2013011088-appb-I000130
  3. 제 1항에 있어서,
    상기 Ar2와 Ar3은 서로 독립적으로 하기 군에서 선택되는 것을 특징으로 하는 화합물.
    Figure PCTKR2013011088-appb-I000131
    [상기 화학식에서,
    Q1는 C(Ra) 또는 N이며,
    Q2는 C(Rb)(Rc), N(Rd), S 또는 O이며,
    k는 1 내지 4의 정수이며,
    상기 Ra 및 Re는 i) 서로 독립적으로, 수소; 중수소; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕시기; 및 플루오렌일기;로 이루어진 군에서 선택되거나, 또는 ii) 복수의 Re는 이웃하는 기끼리 각각 결합하여 이들과 결합한 탄소와 함께 방향족고리를 형성하며,
    상기 Rb 내지 Rd는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rb와 Rc는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성한다.]
  4. 제 1항에 있어서,
    하기 화학식 2 또는 화학식 3으로 표시되는 것을 특징으로 하는 화합물.
    Figure PCTKR2013011088-appb-I000132
    [상기 화학식 2 및 화학식 3에서,
    Ar2, Ar3, R1, R2, m 및 n은 제 1항에서 정의된 것과 동일하며,
    X는 C(Rf)(Rg), S 또는 O이며,
    상기 Rf 및 Rg는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; 및 C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rf와 Rg는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성하며,
    o는 1 내지 4의 정수이며,
    p는 1 내지 3의 정수이며,
    q 및 r은 서로 독립적으로 1 내지 5의 정수이며,
    R3 내지 R6은 i) 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로 원자를 포함하는C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기; 및 C6~C30의 아릴옥실기;로 이루어진 군에서 선택되거나, 또는 ii) 이웃하는 기끼리 서로 결합하여 이들과 결합한 탄소와 함께 방향족고리를 형성한다.]
  5. 제 1항에 있어서,
    하기 화학식 4 또는 화학식 5로 표시되는 것을 특징으로 하는 화합물.
    Figure PCTKR2013011088-appb-I000133
    [상기 화학식 4 및 5에서,
    Ar1 내지 Ar3, R1, R2, m 및 n은 제 1항에서 정의된 것과 동일하며,
    Q3은 C(Rh)(Ri), N(Rj), S 또는 O이며,
    상기 Rh 내지 Rj는 i) 서로 독립적으로 C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C1~C30의 알콕실기;로 이루어진 군에서 선택되거나, 또는 ii) Rh와 Ri는 서로 결합하여 이들이 결합된 플루오렌과 함께 스파이로(Spiro) 화합물을 형성한다.]
  6. 제 1 항에 있어서,
    하기 화합물 중 하나인 것을 특징으로 하는 화합물.
    Figure PCTKR2013011088-appb-I000134
    Figure PCTKR2013011088-appb-I000135
    Figure PCTKR2013011088-appb-I000136
    Figure PCTKR2013011088-appb-I000137
    Figure PCTKR2013011088-appb-I000138
    Figure PCTKR2013011088-appb-I000139
    Figure PCTKR2013011088-appb-I000140
    Figure PCTKR2013011088-appb-I000141
    Figure PCTKR2013011088-appb-I000142
    Figure PCTKR2013011088-appb-I000143
    Figure PCTKR2013011088-appb-I000144
    Figure PCTKR2013011088-appb-I000145
  7. 제 1항의 화합물을 포함하는 유기전기소자.
  8. 제 7항에 있어서,
    제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층;을 포함하며, 상기 화합물이 상기 유기물층에 함유되는 것을 특징으로 하는 유기전기소자.
  9. 제 8항에 있어서,
    상기 화합물은 상기 유기물층의 정공주입층, 정공수송층, 발광보조층 또는 발광층 중 적어도 하나의 층에 함유되는 것을 특징으로 하는 유기전기소자.
  10. 제 8 항에 있어서,
    상기 제 1전극과 제 2전극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 것을 특징으로 하는 유기전기소자.
  11. 제 8항에 있어서,
    상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성되는 것을 특징으로 하는 유기전기소자.
  12. 제 7항의 유기전기소자를 포함하는 디스플레이장치; 및
    상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  13. 제 12항에 있어서,
    상기 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자장치.
PCT/KR2013/011088 2012-12-06 2013-12-03 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2014088284A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015546381A JP6104403B2 (ja) 2012-12-06 2013-12-03 有機電子素子用化合物、これを用いた有機電子素子及びその電子装置
EP13861127.2A EP2930168B8 (en) 2012-12-06 2013-12-03 Compound for organic electric element, organic electric element comprising the same, and electronic device thereof
CN201380063343.6A CN105051011B (zh) 2012-12-06 2013-12-03 有机电气元件用化合物、利用其的有机电气元件及其电子装置
US14/650,078 US10249825B2 (en) 2012-12-06 2013-12-03 Compound for organic electric element, organic electric element comprising the same and electronic device thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120141364 2012-12-06
KR10-2012-0141364 2012-12-06
KR1020130133883A KR101462070B1 (ko) 2012-12-06 2013-11-06 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR10-2013-0133883 2013-11-06

Publications (1)

Publication Number Publication Date
WO2014088284A1 true WO2014088284A1 (ko) 2014-06-12

Family

ID=51126961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/011088 WO2014088284A1 (ko) 2012-12-06 2013-12-03 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (6)

Country Link
US (2) US10249825B2 (ko)
EP (1) EP2930168B8 (ko)
JP (2) JP6104403B2 (ko)
KR (3) KR102098093B1 (ko)
CN (1) CN105051011B (ko)
WO (1) WO2014088284A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280134A1 (en) * 2014-03-26 2015-10-01 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
WO2016023608A1 (de) * 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US20170125697A1 (en) * 2015-10-30 2017-05-04 Samsung Display Co., Ltd. Organic light-emitting device
US20170331048A1 (en) * 2016-05-10 2017-11-16 Samsung Display Co., Ltd. Organic light-emitting device
CN107602584A (zh) * 2015-08-28 2018-01-19 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
US10125123B2 (en) * 2016-03-03 2018-11-13 Cornell University Small molecule IRE1-α inhibitors
US10930853B2 (en) 2015-11-26 2021-02-23 Samsung Display Co., Ltd. Organic light-emitting device
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102098093B1 (ko) * 2012-12-06 2020-04-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102273045B1 (ko) * 2014-02-14 2021-07-06 삼성디스플레이 주식회사 유기 발광 소자
KR102336687B1 (ko) * 2014-02-14 2021-12-08 삼성디스플레이 주식회사 유기 발광 소자
KR102322641B1 (ko) * 2014-02-27 2021-11-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR101921680B1 (ko) * 2014-07-24 2019-02-13 덕산네오룩스 주식회사 유기전기소자 및 이를 포함하는 전자 장치
US10797247B2 (en) 2014-07-24 2020-10-06 Duk San Neolux Co., Ltd. Compound for organic electric element, organic electric element comprising the same and electronic device thereof
KR102298015B1 (ko) * 2014-10-07 2021-09-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6674734B2 (ja) * 2014-10-29 2020-04-01 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
KR101905982B1 (ko) 2015-10-26 2018-10-10 주식회사 엘지화학 아민 화합물 및 이를 포함하는 유기 발광 소자
CN107108498B (zh) * 2015-10-26 2020-08-21 株式会社Lg化学 胺化合物和包含其的有机发光元件
KR101614738B1 (ko) * 2015-11-02 2016-04-22 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102504581B1 (ko) 2016-02-23 2023-03-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102627527B1 (ko) * 2016-03-03 2024-01-22 메르크 파텐트 게엠베하 유기 전계 발광 장치용 재료
EP3431476A4 (en) * 2016-03-16 2019-12-11 Duk San Neolux Co., Ltd. COMPOUND FOR ORGANIC ELECTRIC ELEMENT, ORGANIC ELECTRIC ELEMENT USING THE SAME AND RELATED ELECTRONIC DEVICE
US11056541B2 (en) 2016-04-06 2021-07-06 Samsung Display Co., Ltd. Organic light-emitting device
KR102606277B1 (ko) * 2016-04-06 2023-11-27 삼성디스플레이 주식회사 유기 발광 소자
CN106046054A (zh) * 2016-05-19 2016-10-26 南京工业大学 一类具有电子给受体结构的乙烯基聚合物主体材料及其制备和应用方法
KR102018682B1 (ko) * 2016-05-26 2019-09-04 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102552251B1 (ko) 2016-06-17 2023-07-06 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN106242938B (zh) * 2016-07-30 2019-04-23 沈阳大学 一类芴乙烯衍生物及其合成方法
KR102173252B1 (ko) * 2016-11-25 2020-11-03 주식회사 엘지화학 아민계 화합물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR20180090931A (ko) 2017-02-03 2018-08-14 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
JP7118990B2 (ja) * 2017-03-02 2022-08-16 メルク パテント ゲーエムベーハー 電子デバイス用材料
KR102235629B1 (ko) 2017-06-05 2021-04-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10784456B2 (en) * 2017-06-06 2020-09-22 Joled Inc. Organic electroluminescent unit
KR102048920B1 (ko) 2017-08-18 2019-11-27 삼성디스플레이 주식회사 아민계 화합물 및 이를 포함한 유기 발광 소자
KR102460258B1 (ko) * 2017-11-30 2022-10-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
EP3502107B1 (en) * 2017-12-20 2022-01-26 Samsung Display Co., Ltd. 1-aminodibenzofuran-based compound and organic light-emitting device including the same
KR102547688B1 (ko) * 2018-04-24 2023-06-27 삼성디스플레이 주식회사 유기 발광 소자 및 이의 제조 방법
KR102331459B1 (ko) * 2018-11-23 2021-11-26 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자
KR20200069449A (ko) * 2018-12-06 2020-06-17 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20200099249A (ko) * 2019-02-13 2020-08-24 삼성디스플레이 주식회사 유기 발광 소자
KR20210024388A (ko) 2019-08-23 2021-03-05 삼성디스플레이 주식회사 화합물 및 이를 포함하는 유기 발광 소자
WO2021085982A1 (ko) * 2019-11-01 2021-05-06 덕산네오룩스 주식회사 복수의 발광보조층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
US20230225206A1 (en) 2020-10-26 2023-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11963445B2 (en) 2020-10-26 2024-04-16 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11785847B2 (en) 2020-10-26 2023-10-10 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11925116B2 (en) 2020-10-26 2024-03-05 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11063226B1 (en) * 2020-10-26 2021-07-13 Duk San Neolux Co., Ltd. Organic electronic element comprising compound for organic electronic element and an electronic device thereof
US11985894B2 (en) 2020-10-26 2024-05-14 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11991929B2 (en) 2020-10-26 2024-05-21 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11696501B2 (en) 2020-10-26 2023-07-04 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11690292B2 (en) 2020-10-26 2023-06-27 Duk San Neolux Co., Ltd. Organic electronic element comprising a compound for organic electronic element and an electronic device thereof
KR20230151999A (ko) 2021-02-26 2023-11-02 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광소자 및 전자 기기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078362A (ja) * 2006-09-21 2008-04-03 Toray Ind Inc 発光素子材料および発光素子
JP2008195841A (ja) * 2007-02-14 2008-08-28 Toray Ind Inc 発光素子材料および発光素子
KR20100033265A (ko) * 2008-09-19 2010-03-29 주식회사 엘지화학 카바졸 유도체 및 이를 이용한 유기 발광 소자
KR20120100031A (ko) * 2011-03-02 2012-09-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5133259B2 (ja) * 2006-11-24 2013-01-30 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR100994115B1 (ko) 2008-08-18 2010-11-15 삼성모바일디스플레이주식회사 광효율 개선층을 구비한 유기 발광 소자
KR101765511B1 (ko) * 2008-11-17 2017-08-08 에스에프씨 주식회사 카바졸 유도체 및 이를 이용한 유기전계소자
KR101649950B1 (ko) * 2009-06-08 2016-08-23 에스에프씨 주식회사 헤테로아릴아민 유도체 및 이를 이용한 유기전계발광소자
KR101265658B1 (ko) 2009-08-10 2013-05-22 에스에프씨 주식회사 방향족 화합물 및 이를 이용한 유기전계발광소자
WO2011055932A2 (ko) * 2009-11-05 2011-05-12 덕산하이메탈(주) 유기화합물 및 이를 이용한 유기전기소자, 그 단말
KR20110117549A (ko) 2010-04-21 2011-10-27 덕산하이메탈(주) 다이벤조사이오펜과 아릴아민 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101311935B1 (ko) * 2010-04-23 2013-09-26 제일모직주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR101188280B1 (ko) * 2010-06-08 2012-10-05 덕산하이메탈(주) 카바졸과 방향족 아민 유도체를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
CN103250264A (zh) * 2010-12-27 2013-08-14 东丽株式会社 发光元件材料及发光元件
KR101029082B1 (ko) * 2010-12-28 2011-04-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
KR101298483B1 (ko) * 2011-04-01 2013-08-21 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치
KR20130096334A (ko) 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
KR101497135B1 (ko) * 2011-12-29 2015-03-02 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
JP5880092B2 (ja) * 2012-02-01 2016-03-08 三菱化学株式会社 電荷輸送材料、電荷輸送膜用組成物、有機電界発光素子、有機elディスプレイ及び有機el照明
KR102098093B1 (ko) * 2012-12-06 2020-04-08 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008078362A (ja) * 2006-09-21 2008-04-03 Toray Ind Inc 発光素子材料および発光素子
JP2008195841A (ja) * 2007-02-14 2008-08-28 Toray Ind Inc 発光素子材料および発光素子
KR20100033265A (ko) * 2008-09-19 2010-03-29 주식회사 엘지화학 카바졸 유도체 및 이를 이용한 유기 발광 소자
KR20120100031A (ko) * 2011-03-02 2012-09-12 덕산하이메탈(주) 화합물 및 이를 이용한 유기전기소자, 그 전자장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2930168A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150280134A1 (en) * 2014-03-26 2015-10-01 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US10170706B2 (en) * 2014-03-26 2019-01-01 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
WO2016023608A1 (de) * 2014-08-13 2016-02-18 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US9876181B2 (en) 2014-08-13 2018-01-23 Merck Patent Gmbh Materials for organic electroluminescent devices
CN107602584A (zh) * 2015-08-28 2018-01-19 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
CN107602584B (zh) * 2015-08-28 2020-11-03 德山新勒克斯有限公司 有机电气元件用化合物、利用其的有机电气元件及其电子装置
US20170125697A1 (en) * 2015-10-30 2017-05-04 Samsung Display Co., Ltd. Organic light-emitting device
US10930853B2 (en) 2015-11-26 2021-02-23 Samsung Display Co., Ltd. Organic light-emitting device
US11856842B2 (en) 2015-11-26 2023-12-26 Samsung Display Co., Ltd. Organic light-emitting device
US11910707B2 (en) 2015-12-23 2024-02-20 Samsung Display Co., Ltd. Organic light-emitting device
US10125123B2 (en) * 2016-03-03 2018-11-13 Cornell University Small molecule IRE1-α inhibitors
US10988461B2 (en) 2016-03-03 2021-04-27 Cornell University Small molecule IRE1-α inhibitors
US11696499B2 (en) 2016-05-10 2023-07-04 Samsung Display Co., Ltd. Organic light-emitting device
US20200266362A1 (en) * 2016-05-10 2020-08-20 Samsung Display Co., Ltd. Organic light-emitting device
US20170331048A1 (en) * 2016-05-10 2017-11-16 Samsung Display Co., Ltd. Organic light-emitting device

Also Published As

Publication number Publication date
KR20140073406A (ko) 2014-06-16
CN105051011B (zh) 2018-06-05
US20150303379A1 (en) 2015-10-22
KR102078080B1 (ko) 2020-02-18
US20150325795A1 (en) 2015-11-12
EP2930168A1 (en) 2015-10-14
KR102098093B1 (ko) 2020-04-08
JP6104403B2 (ja) 2017-03-29
KR101462070B1 (ko) 2014-11-14
EP2930168A4 (en) 2016-08-10
KR102098093B9 (ko) 2021-07-08
EP2930168B1 (en) 2019-02-27
JP2017081992A (ja) 2017-05-18
JP6340096B2 (ja) 2018-06-06
KR20140073412A (ko) 2014-06-16
JP2016508964A (ja) 2016-03-24
EP2930168B8 (en) 2019-06-12
US10249825B2 (en) 2019-04-02
CN105051011A (zh) 2015-11-11
US10141516B2 (en) 2018-11-27
KR20140073458A (ko) 2014-06-16

Similar Documents

Publication Publication Date Title
WO2014088284A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014088285A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015130069A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015115756A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020116816A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020032424A1 (ko) 이종 화합물의 혼합물을 호스트로 포함하는 유기전기소자 및 그 전자 장치
WO2016122150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015182872A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017095075A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016167491A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017010726A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2017122988A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016175533A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014104585A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015178585A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015194791A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003225A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014178532A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003202A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016200070A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014129764A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016032150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380063343.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861127

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14650078

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015546381

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013861127

Country of ref document: EP