WO2016122150A2 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2016122150A2
WO2016122150A2 PCT/KR2016/000533 KR2016000533W WO2016122150A2 WO 2016122150 A2 WO2016122150 A2 WO 2016122150A2 KR 2016000533 W KR2016000533 W KR 2016000533W WO 2016122150 A2 WO2016122150 A2 WO 2016122150A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
compound
sub
organic
Prior art date
Application number
PCT/KR2016/000533
Other languages
English (en)
French (fr)
Other versions
WO2016122150A3 (ko
Inventor
오대환
김대성
이윤석
조혜민
정연석
최연희
김석현
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Publication of WO2016122150A2 publication Critical patent/WO2016122150A2/ko
Publication of WO2016122150A3 publication Critical patent/WO2016122150A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic electric element using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • Materials used as the organic material layer in the organic electric element may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like according to their functions.
  • Efficiency, lifespan, and driving voltage are related to each other, and as efficiency increases, the driving voltage decreases relatively, and as the driving voltage decreases, crystallization of organic materials due to Joule heating generated during driving decreases.
  • the lifespan tends to increase.
  • simply improving the organic material layer does not maximize the efficiency. This is because long life and high efficiency can be simultaneously achieved when an optimal combination of energy level and T 1 value between each organic material layer and intrinsic properties (mobility, interfacial properties, etc.) of the material is achieved.
  • a light emitting auxiliary layer must exist between the hole transport layer and the light emitting layer, and different light emission auxiliary according to each light emitting layer (R, G, B) is required. It is time to develop the floor.
  • electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to generate excitons by recombination.
  • the material used for the hole transporting layer because the have a low HOMO value mostly has a low T 1 value, whereby the exciton (exciton) produced in the light emitting layer is the store over the hole transport layer result in a charge imbalance (charge unbalance emission layer ) To emit light in the hole transport layer or at the hole transport layer interface, resulting in reduced color purity, reduced efficiency, and a lower lifetime.
  • the light emitting auxiliary layer has a hole mobility (in the range of blue device driving voltage of a full device) and a high T 1 (electron block) to have a suitable driving voltage to solve the problems of the hole transport layer.
  • a material with a wide band gap a material with a wide band gap.
  • this cannot be achieved simply by the structural properties of the core of the light emitting auxiliary layer material, but only when the properties of the core and the sub-substituent of the material are combined. Therefore, in order to improve the efficiency and lifetime of the organic electric device, the development of a light emitting auxiliary layer material having a high T 1 value and a wide band gap is urgently required.
  • materials forming the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc., are stable and efficient. Supported by the material should be preceded, but development of a stable and efficient organic material layer for an organic electric device has not been made yet. Therefore, the development of new materials continues to be required, and in particular, the development of materials for the light emitting auxiliary layer and the hole transport layer is urgently required.
  • the present invention has been proposed to solve the above problems, and provides a compound having an efficient electron blocking ability and a hole transporting capacity, and at the same time using the compound, high luminous efficiency, low driving voltage, high heat resistance of the device It is an object of the present invention to provide a compound capable of improving color purity and lifetime, an organic electric element using the same, and an electronic device thereof.
  • the present invention provides a compound represented by the following formula.
  • the present invention provides an organic electronic device using the compound represented by the above formula and an electronic device thereof.
  • Compound according to an embodiment of the present invention by using the compound of the present invention by limiting the type and location of the linking group to increase the charge balance in the light emitting layer with a deep HOMO energy level, high T1 value, etc.
  • the luminous efficiency, heat resistance, color purity and lifetime of the device can be improved.
  • FIG. 1 is an exemplary view of an organic electroluminescent device according to the present invention.
  • first, second, A, B, (a), and (b) can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be “connected”, “coupled” or “connected”.
  • a component such as a layer, film, region, plate, etc.
  • it is not only when the other component is “on top of” but also another component in between. It is to be understood that this may also include cases.
  • a component is said to be “directly above” another part, it should be understood to mean that there is no other part in the middle.
  • halo or halogen as used herein is fluorine (F), bromine (Br), chlorine (Cl) or iodine (I) unless otherwise indicated.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, unless otherwise indicated, and is a straight chain alkyl group, branched chain alkyl group, cycloalkyl (alicyclic) group, alkyl-substituted cyclo Radicals of saturated aliphatic functional groups, including alkyl groups, cycloalkyl-substituted alkyl groups.
  • alkenyl group or “alkynyl group”, unless stated otherwise, has a double or triple bond of 2 to 60 carbon atoms, and includes a straight or branched chain group, and is not limited thereto. It is not.
  • cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
  • alkoxyl group means an alkyl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 1 to 60, and is limited herein. It is not.
  • aryloxyl group or “aryloxy group” means an aryl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 6 to 60, but is not limited thereto.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R 'and R “are all hydrogen in the following structures, unless otherwise stated, and" Substituted fluorenyl group “or” substituted fluorenylene group “means that at least one of the substituents R, R ', and R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a carbon It includes the case of forming a compound by spying together.
  • aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
  • the aryl group or arylene group includes monocyclic, ring aggregate, conjugated ring system, spiro compound and the like.
  • heterocyclic group includes not only aromatic rings, such as “heteroaryl groups” or “heteroarylene groups,” but also non-aromatic rings, and each carbon number includes one or more heteroatoms unless otherwise specified. It means a ring of 2 to 60, but is not limited thereto.
  • heteroatom refers to N, O, S, P or Si unless otherwise indicated, and heterocyclic groups are monocyclic, ring aggregates, conjugated multiple ring systems, spies, including heteroatoms. Means a compound or the like.
  • Heterocyclic groups may also include rings comprising SO 2 in place of the carbon forming the ring.
  • a “heterocyclic group” includes the following compounds.
  • ring includes monocyclic and polycyclic rings, includes hydrocarbon rings as well as heterocycles including at least one heteroatom, and includes aromatic and nonaromatic rings.
  • polycyclic includes ring assemblies, fused multiple ring systems and spiro compounds, such as biphenyl, terphenyl, and the like, including aromatics as well as nonaromatics, hydrocarbons
  • the ring as well includes heterocycles comprising at least one heteroatom.
  • ring assemblies means that two or more ring systems (single or conjugated ring systems) are directly connected to each other through a single bond or a double bond and directly between such rings. It means that the number of linkages is one less than the total number of ring systems in this compound. Ring aggregates may have the same or different ring systems directly connected to each other via a single bond or a double bond.
  • conjugated multiple ring systems refers to a covalently fused ring form of at least two atoms, including a ring system in which two or more hydrocarbons are fused together and at least one heteroatom. And heterocyclic systems having at least one conjugated form. These conjugated several ring systems can be aromatic rings, heteroaromatic rings, aliphatic rings or combinations of these rings.
  • spiro compound has a "spiro union", and a spiro linkage means a linkage formed by two rings sharing one atom only.
  • spiro atoms the atoms shared by the two rings are called spiro atoms, and according to the number of spiro atoms in a compound, these are respectively referred to as 'monospiro-', 'diespyro-', and 'trispyro-' It is called a compound.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxycarbonyl group means a carbonyl group substituted with an alkoxy group
  • an alkenyl group substituted with an arylcarbonyl group is used herein.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • substituted in the term “substituted or unsubstituted” refers to deuterium, halogen, amino groups, nitrile groups, nitro groups, C 1 -C 20 alkyl groups, C 1 -C 20 alkoxy group, C 1 -C 20 alkylamine group, C 1 -C 20 alkylthiophene group, C 6 -C 20 arylthiophene group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl, C 3 -C 20 cycloalkyl group, C 6 -C 20 aryl group, of a C 6 -C 20 aryl group substituted with a heavy hydrogen, C 8 -C 20 aryl alkenyl group, a silane group, a boron Substituted by at least one substituent selected from the group consisting of a group, a germanium group, and a C 2 -C 20
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, when a is an integer of 1, one substituent R 1 is bonded to any one of carbons forming the benzene ring, and a is an integer of 2 or 3 are each bonded as follows, where R 1 may be the same or different from each other, and when a is an integer from 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the indication of hydrogen bonded to the carbon forming the benzene ring Is omitted.
  • FIG. 1 is an exemplary view of an organic electric device according to an embodiment of the present invention.
  • an organic electric device 100 may include a first electrode 120, a second electrode 180, and a first electrode 110 formed on a substrate 110.
  • An organic material layer including the compound according to the present invention is provided between the two electrodes 180.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic layer may include a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170 on the first electrode 120 in sequence.
  • at least one of these layers may be omitted, or may further include a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 151, a buffer layer 141, etc., and the electron transport layer 160 may serve as a hole blocking layer. You might be able to
  • the organic electronic device further includes a protective layer or a light efficiency improving layer formed on one surface of the at least one surface of the first electrode and the second electrode opposite to the organic material layer. can do.
  • Compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 130, a hole transport layer 140, an electron transport layer 160, an electron injection layer 170, a host or a dopant of the light emitting layer 150 or It can be used as a material of the light efficiency improving layer.
  • the compound of the present invention may be used as the light emitting layer 150, the hole transport layer 140 and / or the light emitting auxiliary layer 151.
  • a light emitting auxiliary layer is formed between the hole transport layer and the light emitting layer, and in each light emitting layer (R, G, B), Accordingly, it is time to develop different light emitting auxiliary layers. Meanwhile, in the case of the light emitting auxiliary layer, it is difficult to infer the characteristics of the organic material layer used even if a similar core is used, since the correlation between the hole transport layer and the light emitting layer (host) must be understood.
  • the hole transport layer and / or the light emitting auxiliary layer are formed using the compound represented by Formula 1 to optimize the energy level and T 1 value between the organic material layers, the intrinsic properties (mobility, interfacial properties, etc.) of the organic materials, and the like. Therefore, the life and efficiency of the organic electric element can be improved at the same time.
  • the organic electroluminescent device may be manufactured using various deposition methods. It may be manufactured using a deposition method such as PVD or CVD.
  • the anode 120 is formed by depositing a metal or conductive metal oxide or an alloy thereof on a substrate, and the hole injection layer 130 thereon.
  • an organic material layer including a hole transport layer 140, a light emitting layer 150, an electron transport layer 160 and an electron injection layer 170, and then depositing a material that can be used as the cathode 180 thereon have.
  • an auxiliary light emitting layer 151 may be further formed between the hole transport layer 140 and the light emitting layer 150.
  • the organic material layer is a solution or solvent process (e.g., spin coating process, nozzle printing process, inkjet printing process, slot coating process, dip coating process, roll-to-roll process, doctor blading) using various polymer materials. It can be produced in fewer layers by methods such as ding process, screen printing process, or thermal transfer method. Since the organic material layer according to the present invention may be formed in various ways, the scope of the present invention is not limited by the forming method.
  • the organic electric element according to an embodiment of the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • WOLED White Organic Light Emitting Device
  • Various structures for white organic light emitting devices mainly used as backlight devices have been proposed and patented. Representatively, a side-by-side method in which R (Red), G (Green), and B (Blue) light emitting parts are mutually planarized, and a stacking method in which R, G, and B light emitting layers are stacked up and down. And a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom. May also be applied to these WOLEDs.
  • CCM color conversion material
  • the organic electroluminescent device may be one of an organic electroluminescent device, an organic solar cell, an organic photosensitive member, an organic transistor, a monochromatic or white illumination device.
  • Another embodiment of the present invention may include a display device including the organic electric element of the present invention described above, and an electronic device including a control unit for controlling the display device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
  • X may be S, O or C (R a ) (R b ). That is, the linking group connecting the carbazole and the amine group may be a dibenzothiophenylene group, a dibenzofuranylene group, a fluorenylene group, or the like.
  • R a and R b are each independently a C 6 -C 24 aryl group; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; And a C 1 -C 20 alkoxy group, wherein R a and R b may be bonded to each other with the carbon (C) to which they are attached to form a spiro compound.
  • the R a and R b is heavy hydrogen, a halogen, a silane group, a siloxane group, a boron group, a germanium group, a cyano group, a nitro group, C 1 -C 20 coming of the alkylthio, alkoxy of C 1 -C 20 A group, a C 1 -C 20 alkyl group, a C 2 -C 20 alkenyl group, a C 2 -C 20 alkynyl group, a C 6 -C 20 aryl group, a C 6 -C 20 aryl group substituted with deuterium, C 2 -C 20 heterocyclic group, C 3 -C 20 cycloalkyl group, C 7 -C 20 aryl containing at least one heteroatom selected from the group consisting of a fluorenyl group, O, NS, Si and P It may be further substituted with one or more substituents selected from the group consisting of an alkyl group,
  • Ar 1 to Ar 3 are each independently a C 6 -C 60 aryl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; Fluorenyl group; And a fused ring group of an aromatic ring of C 6 -C 60 and an aliphatic ring of C 3 -C 60 .
  • At least one of Ar 1 to Ar 3 may be represented by the following Formula 1a.
  • Y may be S, O, C (R c ) (R d ) or N (R e ). That is, Formula 1a may be a dibenzothiophenyl group, dibenzofuranyl group, fluorenyl group, carbazolyl group, or the like.
  • R c to R e are each independently of the C 6 -C 24 aryl group; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; And a C 1 -C 20 alkoxy group, wherein R c and R d may be bonded to each other with the carbon (C) to which they are attached to form a spiro compound.
  • R c to R e are each independently of deuterium, halogen, silane group, siloxane group, boron group, germanium group, cyano group, nitro group, C 1 -C 20 alkylthio group, C 1 -C 20 alkoxy group, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 20 substituted with a C 6 aryl group, a heavy hydrogen of -C 20 of the C 2 -C 20 heterocyclic group, C 3 -C 20 cycloalkyl group, C 7 -C containing at least one heteroatom selected from the group consisting of an aryl group, a fluorenyl group, O, NS, Si and P And an arylalkyl group of 20 and one or more substituents selected from the group consisting of C 8 -C 20 arylalkenyl groups.
  • R 5 and R 6 are independently of each other deuterium; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxy group of C 1 -C 30 ; And an aryloxy group of C 6 -C 30 It can be selected from the group consisting of.
  • R 5 and R 6 may be bonded to each other adjacent to each other to form at least one ring, wherein R 5 and R 6 which do not form a ring may be the same as defined above.
  • q is selected from an integer of 0 to 4, and when q is an integer of 2 or more, a plurality of R 5 may be the same or different from each other, r is selected from an integer of 0 to 3, and r is 2 In the case of the above integers, a plurality of R 6 may be the same as or different from each other.
  • L is a single bond; C 6 -C 60 arylene group; C 2 -C 60 divalent heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; Fluorenylene groups; And a divalent fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 .
  • Ar 1 is an alkyl group of C 1 -C 6 , more preferably may be an ethyl group.
  • Ar 1 is an aryl group of C 6 -C 25 , more preferably an aryl group of C 6 -C 18 , and more preferably C 6 , C 10 , C 12 , C 14 , It may be an aryl group of C 18 .
  • it may be a phenyl group, naphthyl group, biphenyl group, terphenyl group, phenanthrenyl group or the like unsubstituted or substituted with deuterium, methyl, ethylene or pyridyl.
  • Ar 1 is a fluorenyl group, more preferably 9,9-dimethyl-9H-fluorenyl group, 9,9-diphenyl-9H-fluorenyl group, or the like.
  • Ar 1 may be a C 3 -C 16 heterocyclic group, more preferably C 12 , C 13 heterocyclic group.
  • it may be a dibenzothiophenyl group, a dibenzofuranyl group, a phenanthridinyl group, or the like.
  • Ar 2 and Ar 3 are independently of each other an C 6 -C 25 aryl group, more preferably a C 6 -C 18 aryl group, more preferably C 6 , C 10 , C 12 , C 14 , C 16 , C 18 may be an aryl group.
  • deuterium, methyl, substituted or unsubstituted with phenyl, naphthyl, pyridyl isoquinolyl or dibenzothiophenyl substituted or unsubstituted phenyl group, phenyl substituted or unsubstituted naphthyl group, pyridyl It may be a substituted biphenyl group, a terphenyl group unsubstituted or substituted with methyl or benzothiophene, a phenanthrenyl group, a pyrenyl group and the like.
  • Ar 2 and Ar 3 are independently of each other a fluorenyl group, more preferably 9,9-dimethyl-9H-fluorenyl group, 9,9-diphenyl-9H-fluorenyl group, And a spirobifluorenyl group.
  • Ar 2 and Ar 3 may be each independently a heterocyclic group of C 3 -C 16 , more preferably a heterocyclic group of C 9 , C 12 .
  • it may be a quinolyl group, a dibenzothiophenyl group unsubstituted or substituted with phenyl, a dibenzofuranyl group, a carbazolyl group substituted with phenyl, and the like.
  • Ar 1 to Ar 3 is independently of each other deuterium, halogen, silane group, siloxane group, boron group, germanium group, cyano group, nitro group, C 1 -C 20 alkylthio group, C 1 -C 20 alkoxy group, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 20 substituted with a C 6 aryl group, a heavy hydrogen of -C 20 of the C 2 -C 20 heterocyclic group, C 3 -C 20 cycloalkyl group, C 7 -C containing at least one heteroatom selected from the group consisting of an aryl group, a fluorenyl group, O, NS, Si and P And an arylalkyl group of 20 and one or more substituents selected from the group consisting of C 8 -C 20 arylalkenyl groups.
  • R 1 to R 4 are each independently of deuterium; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxy group of C 1 -C 30 ; And an aryloxy group of C 6 -C 30 It can be selected from the group consisting of.
  • R 1 to R 4 may be bonded to each other adjacent to each other to form at least one ring, wherein R 1 to R 4 which do not form a ring may be the same as defined above.
  • m and o are each independently selected from integers of 0 to 4, and when each of them is an integer of 2 or more, a plurality of R 1 and R 3 may be the same or different from each other, n is 0 to 3 And n is an integer of 2 or more, and a plurality of R 2 may be the same as or different from each other, p is selected from an integer of 0 to 2, and when p is 2, a plurality of R 4 are the same or different from each other. can do.
  • R 1 may be an aryl group of C 6 -C 18 , a heterocyclic group of C 3 -C 12 , and the like, and more preferably, an aryl group of C 6 , a heterocyclic group of C 5 , and specifically It may be a phenyl group, a pyridyl group and the like.
  • adjacent R 1 may be bonded to each other to form one or two benzene rings to form naphthalene, phenanthrene, etc. together with the benzene rings to which they are bonded.
  • adjacent R 2 may be bonded to each other to form one benzene ring, and together with the benzene ring to which they are bonded, naphthalene or the like may be formed.
  • R 3 may be an aryl group of C 6 -C 18 , and more preferably, may be an aryl group of C 6 , and specifically, may be a phenyl group or the like.
  • adjacent R 3 may be bonded to each other to form one or two benzene rings to form naphthalene, phenanthrene, etc. together with the benzene rings to which they are bonded.
  • R 1 to R 4 are independently of each other deuterium, halogen, silane group, siloxane group, boron group, germanium group, cyano group, nitro group, C 1 -C 20 alkylthio group, C 1 -C 20 alkoxy group, C 1 -C 20 alkyl, C 2 -C 20 alkenyl, C 2 -C 20 alkynyl, C 6 -C 20 substituted with a C 6 aryl group, a heavy hydrogen of -C 20 of the C 2 -C 20 heterocyclic group, C 3 -C 20 cycloalkyl group, C 7 -C containing at least one heteroatom selected from the group consisting of an aryl group, a fluorenyl group, O, NS, Si and P And an arylalkyl group of 20 and one or more substituents selected from the group consisting of C 8 -C 20 arylalkenyl groups.
  • Formulas 2 and 3 show a case in which carbazole and an amine group are formed by bonding according to the bonding position of the linking group.
  • the compound represented by Formula 1 may be one of the following compounds.
  • the present invention provides a compound for an organic electric device represented by Chemical Formula 1.
  • the present invention provides an organic electric device containing the compound represented by the formula (1).
  • the organic electric device may include a first electrode, a second electrode, and an organic material layer positioned between the first electrode and the second electrode, and the organic material layer may include a compound represented by Chemical Formula 1, and Chemical Formula 1
  • the compound represented by may be contained in at least one layer of a hole injection layer, a hole transport layer, a light emitting auxiliary layer and a light emitting layer of the organic material layer. That is, the compound represented by Formula 1 may be used as a material of a hole injection layer, a hole transport layer, a light emitting auxiliary layer or a light emitting layer. Preferably, the compound represented by Formula 1 may be used as a material of the hole transport layer or the light emitting auxiliary layer.
  • an organic electric device including the compound represented by Chemical Formula 2 or Chemical Formula 3 is provided in the organic material layer.
  • an organic electric device including at least one of the compounds P-1 to P-148 is provided in an organic material layer.
  • the compound contained in the organic material layer may be one kind alone or a mixture of two or more kinds represented by Chemical Formula 1.
  • the compound P-1 may be used alone or in a mixture of the compound P-1 and the compound P-2 in the light emitting auxiliary layer of the organic material layer.
  • the organic layer may be formed by a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, or a roll-to-roll process.
  • the light efficiency improving layer may include a compound represented by Chemical Formula 1.
  • the present invention provides an electronic device including a display device including an organic electric element including an organic material layer containing a compound according to the present invention, and a control unit for controlling the display device.
  • the organic electroluminescent element may be one of an organic electroluminescent element, an organic solar cell, an organic photoconductor, an organic transistor, and a single color or white light emitting element.
  • Compound represented by Formula 1 according to the present invention (Final Products) is prepared by reacting Sub 1 and Sub 2 as shown in Scheme 1, but is not limited thereto.
  • Sub 1 of Scheme 1 may be synthesized by the reaction paths of Scheme 2 and Scheme 3, but is not limited thereto.
  • Hal is I or Br
  • Sub 1-I-1 (66.39 g, 238.7 mmol) was dissolved in o- dichlorobenzene (1194 ml) in a round bottom flask, followed by addition of triphenylphosphine (156.54 g, 596.8 mmol) and stirred at 200 ° C. After the reaction was completed, o -dichlorobenzene was removed by distillation and extracted with CH 2 Cl 2 and water. The organic layer was dried over MgSO 4 , concentrated and the resulting compound was silicagel column and recrystallized to give 35.25 g (yield: 60%) of the product.
  • naphthalen-1-ylboronic acid (30.00 g, 174.4 mmol), 2,4-dibromo-1-nitrobenzene (58.8 g, 209.3 mmol), Pd (PPh 3 ) 4 (10.08 g, 8.7 mmol), NaOH ( 20.93 g, 523.3 mmol), THF (640 ml), water (320 ml) were added and 44.65 g (yield: 78%) of the product was obtained using the Sub 1-I-1 synthesis method.
  • Triphenylphosphine (89.22 g, 340.2 mmol) and o- dichlorobenzene (680 ml) were added to Sub 1-I-14 (44.65 g, 136.1 mmol), and the product was 29.42 g (yield) using the Sub 1-II-1 synthesis method. : 73%).
  • the compound belonging to Sub 1 may be, but is not limited to, the following compounds.
  • Table 1 shows their FD-MS values.
  • Sub 2 of Scheme 1 may be synthesized by the reaction pathways of Schemes 10 to 13, but is not limited thereto.
  • the M 1-I-1 (293.97 g, 1003.5 mmol) was dissolved in THF (3000 ml) in a round bottom flask, followed by (2- (methylthio) phenyl) boronic acid (140.50 g, 836.2 mmol), Pd (PPh 3 ) 4 (48.31 g, 41.8 mmol), NaOH (100.35 g, 2508.6 mmol), water (1500 ml) were added and stirred at 80 ° C.
  • phenylboronic acid (62.43 g, 512 mmol) was dissolved in THF (1800 ml) in a round bottom flask, followed by 2-bromo-4-nitrophenol (133.94 g, 614.4 mmol), Pd (PPh 3 ) 4 (29.58 g, 25.6 mmol), NaOH (61.44 g, 1536 mmol), water (900 ml) were added and stirred at 80 ° C.
  • the M 1-II'-6 (59.07 g, 202.2 mmol) was dissolved in ethanol (1000 ml), and then Sn (48.02 g, 404.5 mmol) and HCl (200 ml) were added and stirred at 120 ° C. Upon completion of the reaction, the mixture was neutralized with 0.2 N NaOH aqueous solution to pH 8-9, and extracted with ether and brine. The organic layer was dried over MgSO 4 and concentrated to give 50.89 g (yield: 96%) of product.
  • the M 1-II "-8 (41.45 g, 135.4 mmol) was dissolved in THF (680ml) in a round bottom flask, methylmagnesium chloride 3.0M in THF (180.5ml, 541.6 mmol) was slowly added dropwise, followed by stirring at room temperature. After the reaction was completed, the mixture was extracted with diethyl ether and water, the organic layer was dried over MgSO 4 and concentrated to give the product M 1-III "-8.
  • the M 1-III "-8 was dissolved in acetic acid solution (500ml), HCl (10ml) was added thereto, and the mixture was refluxed. After completion of the reaction, water was added and the resulting solid was filtered and washed with water and methanol after filtration under reduced pressure. 33.55 g (yield: 86% over two steps) of the product were obtained as a white powder.
  • compounds belonging to M 1 may be, but are not limited to, the following compounds, and Table 2 below shows their FD-MS values.
  • the compounds belonging to Sub 2 may be the following compounds, but are not limited thereto, and Table 3 below shows their FD-MS values.
  • reaction of Sub 1 and Sub 2-> Final Products in Scheme 1 starting materials in Scheme 3-> Sub 1-I and starting materials-> Sub 1-I 'reaction, M 1-I-> M 1 in Scheme 11 -II reaction, starting material in Scheme 12-> M 1-I 'reaction, M 1-I "-> M 1-II” reaction in Scheme 13 are all based on Suzuki cross-coupling reaction, and Sub 1 in Scheme 2
  • the reaction of II-> Sub 1-III is based on the Ullmann reaction
  • the reaction of Sub 1-III-> Sub 1-I in Scheme 2 is based on the Miyaura boration reaction.
  • Sub 1-I-> Sub 1-II reaction Sub 1-I '-> Sub 1-II reaction in Scheme 3 is based on PPh 3 -mediated reductive cyclization reaction, and M 1-> Sub 2 in Scheme 10 -I reaction, Sub 2-I-> Sub 2 reaction is based on the Buchwald-Hartwig cross coupling reaction, starting material-> M 1-I reaction in Scheme 11 is based on the Acylation of Nitrogen Nucleophiles reaction. Subsequently, the M 1-II-> M 1-III reaction in Scheme 11 is based on the Oxidation reaction, and the M 1-III-> M 1-IV reaction in Scheme 11 is based on the Thioalkylation reaction, and M 1-- in Scheme 11 The IV-> M 1 reaction is based on the Hydrogenolysis reaction.
  • the M 1-I '-> M 1-II' reaction in Scheme 12 is based on the CuI-Mediated Sequential Iodination / Cycloetherification of o -Arylphenols reaction, and the M 1-II '-> M 1 reaction in Scheme 12 is Reduction. Reaction based on the starting material-> M 1-I "reaction in Scheme 13. Finally, in reaction 13 the M 1-II"-> M 1-III "reaction is based on Grignard reaction, The reaction M 1-III "-> M 1 in Scheme 13 is based on the Cyclic Dehydration reaction. The reactions will proceed even if substituents not specifically specified in these are attached.
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a hole transport layer material.
  • vacuum 4,4 ', 4 "-Tris [2-naphthyl (phenyl) amino] triphenylamine (hereinafter abbreviated as" 2-TNATA ") on an ITO layer (anode) formed on an organic substrate was vacuumed to a thickness of 60 nm.
  • the compound P-1 of the present invention on the hole injection layer by vacuum deposition to a thickness of 60 nm to form a hole transport layer, 4,4 '-N on the hole transport layer , N'-dicarbazole-biphenyl (hereinafter abbreviated as "CBP") as host material and tris (2-phenylpyridine) -iridium (hereinafter abbreviated as "Ir (ppy) 3 ”) as dopant material Doped at a weight ratio of 90:10 to form a light emitting layer by vacuum deposition at a thickness of 30 nm, and then ((1,1'-bisphenyl) -4-oleito) bis (2-methyl-8-quinoline) on the light emitting layer.
  • CBP N'-dicarbazole-biphenyl
  • Ir (ppy) 3 tris (2-phenylpyridine) -iridium
  • Alq 3 Oleito aluminum
  • Alq 3 tris (8-quinolinol) aluminum
  • the electron transport layer was formed by vacuum deposition to a thickness of 40 nm, and then an electron injection layer was formed by depositing an alkali metal halide, LiF, to a thickness of 0.2 nm, followed by depositing Al to a thickness of 150 nm to form a cathode.
  • An organic electroluminescent device was manufactured.
  • Example I-1 In the same manner as in Example I-1, except that at least one of the compounds P-2 to P-148 of the present invention was used as the hole transport layer material instead of the compound P-1 of the present invention as shown in Table 5 below. An organic electroluminescent device was produced.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 1 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 2 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 3 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 4 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 5 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 6 was used instead of Compound P-1 of the present invention as a hole transport layer material.
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples I-1 to I-67 and Comparative Examples I-1 to I-6 of the present invention.
  • the electroluminescence (EL) characteristics were measured at 650, and the T95 lifetime was measured using a life-time measurement device manufactured by McScience Inc. at 5000 cd / m 2 reference luminance. The measurement results are shown in Table 5 below.
  • the coupling position of the linking group connecting the carbazole and the amine group (-N (Ar 2 ) (Ar 3 )) is that the carbazole binds to any one of positions 1 to 4 of the linking group, and the amine group 5 to 8 of the linking group.
  • the carbazole and the amine group each bind to any one of positions 1 to 4 of the linking group than the compound which binds to any one of the position, the deeper HOMO energy level and the higher T1 value are shown.
  • the compound of the present invention was shown to have improved results in luminous efficiency and lifetime compared to Comparative Compounds 2 to 6.
  • Example II-1 Green Organic Light Emitting Diode (light emitting auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer is formed by vacuum depositing 2-TNATA with a thickness of 60 nm on the ITO layer (anode) formed on the glass substrate, and then N, N'-Bis (1-naphthalenyl) -N on the hole injection layer.
  • NPB N'-bis-phenyl- (1,1'-biphenyl) -4,4'-diamine
  • the compound P-1 of the present invention was vacuum-deposited on the hole transport layer to a thickness of 20 nm to form a light emitting auxiliary layer, and then, on the light emitting auxiliary layer, CBP was used as a host material, and Ir (ppy) 3 was plated.
  • the light emitting layer was formed by doping at a weight ratio of 90:10 by using a sorbent material and vacuum depositing to a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF which is an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • Example II-1 The same method as in Example II-1 except that at least one of the compounds P-2 to P-148 of the present invention was used as shown in Table 6 instead of the compound P-1 of the present invention as the light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that the emission auxiliary layer was not formed.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 2 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 3 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 4 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 5 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example II-1, except that Comparative Compound 6 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices of Examples II-1 to II-65 and Comparative Examples II-1 to II-6 of the present invention.
  • the electroluminescence (EL) characteristics were measured at 650, and the T95 lifetime was measured using a life-time measurement device manufactured by McScience Inc. at 5000 cd / m 2 reference luminance. The measurement results are shown in Table 6 below.
  • Example III-1 Red Organic Light Emitting Diode (light emitting auxiliary layer)
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer is formed by vacuum depositing 2-TNATA with a thickness of 60 nm on an ITO layer (anode) formed on a glass substrate, and then a hole transport layer is formed by vacuum depositing NPB with a thickness of 60 nm on the hole injection layer. It was.
  • the compound P-1 of the present invention was vacuum-deposited to a thickness of 20 nm on the hole transport layer to form a light emitting auxiliary layer, and then CBP as a host material on the light emitting auxiliary layer, bis- (1-phenylisoquinolyl) iridium (III) acetylacetonate (hereinafter, abbreviated as "(piq) 2 Ir (acac)”) was used as a dopant material and doped at 95: 5 weight ratio to form a light emitting layer by vacuum deposition to a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF which is an alkali metal halide
  • LiF was deposited to a thickness of 0.2 nm to form an electron injection layer
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • Example III-1 The same method as in Example III-1, except that at least one of the compounds P-2 to P-148 of the present invention was used as shown in Table 7 instead of the compound P-1 of the present invention as the light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that the light emitting auxiliary layer was not formed.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 2 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 3 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 4 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 5 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except that Comparative Compound 6 was used instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material.
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples III-1 to III-92, Comparative Examples III-1 and Comparative Examples III-6 of the present invention. Electroluminescence (EL) characteristics were measured at 650, and T95 life was measured using a life-time measuring instrument manufactured by McScience Inc. at 2500 cd / m 2 reference luminance. The measurement results are shown in Table 7 below.
  • the organic electroluminescent device using the compound of the present invention as a material of the light emitting auxiliary layer is Comparative Examples II-1 to Comparative Examples II-6 and Comparative Examples III-1 to Comparative Examples Compared with the organic electroluminescent device of III-6, the luminous efficiency is improved and the life is significantly improved.
  • a device in which a compound of the present invention in which a carbazole and an amine group (—N (Ar 2 ) (Ar 3 )) are bonded to positions 1 to 4 of fluorene, respectively, as a linking group is used. It can be seen that the luminous efficiency and lifespan are improved compared to the device using the comparative compound in the light emitting auxiliary layer, and among these, only the aryl group is bonded to the substituent (Ar 2 or Ar 3 ) bonded to the nitrogen (N) of the amine group.
  • compound P-77 having fluorene as a linking group and all of the amine groups are all aryl groups has fluorene as the linking layer, and has one side of the amine group as the luminescent auxiliary layer.
  • Compound P-78 substituted with a dibenzothiophene and an aryl group on the other side was used as the light emitting auxiliary layer, and the light emitting efficiency and lifespan increased by about 120%.
  • a device in which the compound of the present invention having a carbazole and an amine group bonded to positions 1 to 4 of a heterocyclic compound, such as dibenzothiophene or dibenzofuran, respectively, in the light emitting auxiliary layer is a fluorene-containing linkage. It can be seen that the luminous efficiency and lifespan are remarkably improved compared to the device using the compound of the invention or the comparative compound in the light emitting auxiliary layer.
  • compounds containing heterocycles at the above structural positions are used as the light emitting auxiliary layer material, and excitons generated in the light emitting layer due to higher T1 values are transferred to the hole transport layer. It is judged to improve the luminous efficiency and lifetime as a result.
  • the evaluation results of the above-described device fabrication described device characteristics in which the compound of the present invention is applied to only one of the hole transport layer and the light emitting auxiliary layer, but the compound of the present invention may be used by applying both the hole transport layer and the light emitting auxiliary layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Abstract

본 발명은 화학식 1로 표시되는 화합물을 제공한다. 또한, 제 1전극, 제 2전극 및 상기 제 1전극과 상기 제 2전극 사이의 유기물층을 포함하는 유기전기소자를 제공하며, 상기 유기물층은 화학식 1로 표시되는 화합물을 포함한다. 유기전기소자의 유기물층에 화학식 1로 표시되는 화합물이 포함되면, 구동전압이 감소되고, 발광효율, 색순도 및 수명이 향상될 수 있다.

Description

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
현재 휴대용 디스플레이 시장은 대면적 디스플레이로 그 크기가 증가하고 있는 추세이며, 이로 인해 기존 휴대용 디스플레이에서 요구하던 소비전력보다 더 큰 소비전력이 요구되고 있다. 따라서, 배터리라는 제한적인 전력 공급원을 가지고 있는 휴대용 디스플레이 입장에서는 소비전력이 중요한 요소가 되었고, 효율과 수명 문제 또한 반드시 해결해야 하는 중요한 요소이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 늘어나는 경향을 나타낸다. 하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
또한, 최근 유기 전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 반드시 정공수송층과 발광층 사이에 발광보조층이 존재하여야 하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광 보조층의 개발이 필요한 시점이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 재조합(recombination)에 의해 엑시톤(exciton)이 생성된다.
하지만 정공수송층에 사용되는 물질의 경우 낮은 HOMO 값을 가져야하기 때문에 대부분 낮은 T1 값을 가지며, 이로 인해 발광층에서 생성된 엑시톤(exciton)이 정공수송층으로 넘어가게 되어 결과적으로 발광층 내 전하 불균형(charge unbalance)을 초래하여 정공수송층 내 또는 정공수송층 계면에서 발광하여 색순도 저하, 효율 감소 및 저 수명 현상을 나타낸다.
또한 낮은 구동전압을 만들기 위해 정공이동도(hole mobility)가 빠른 물질을 사용할 경우 이로 인해 효율이 감소하는 경향을 나타낸다. 이는 일반적인 유기전기발광소자에서 정공이동도(hole mobility)가 전자 이동도(electron mobility) 보다 빠르기 때문에 발광층 내에 전하 불균형(charge unbalance)을 초래하여 효율 감소 및 저 수명으로 나타나는 것이다.
따라서 발광보조층은 상기 정공수송층의 문제점 등을 해결할 수 있는 적당한 구동전압을 갖기 위한 정공이동도(hole mobility: 풀디바이스(full device)의 블루소자 구동전압 범위 내)와 높은 T1(electron block) 값, 넓은 밴드 갭(wide band gap)을 갖은 물질이어야 한다. 하지만 이는 단순히 발광보조층 물질의 코어에 대한 구조적 특성으로 이루어질 수는 없으며, 물질의 코어 및 서브(Sub)-치환기의 특성이 조합을 이루어졌을 때 가능하다. 따라서 유기전기소자의 효율과 수명을 향상시키기 위해, 높은 T1 값 및 넓은 밴드 갭을 가지는 발광보조층 재료에 대한 개발이 절실히 요구되고 있다.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있으며, 특히 발광보조층과 정공수송층의 재료에 대한 개발이 절실히 요구되고 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 제안된 것으로, 효율적인 전자저지능력 및 정공수송능력을 갖는 화합물을 제공함과 동시에, 이러한 화합물을 이용하여 소자의 높은 발광효율, 낮은 구동전압, 고내열성, 색순도 및 수명을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다.
Figure PCTKR2016000533-appb-I000001
다른 측면에서, 본 발명은 상기 화학식으로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명의 일 실시예에 따른 화합물은 연결기의 종류 및 결합위치를 한정하여 본 발명 화합물을 이용함으로써 깊은 HOMO 에너지 레벨과 높은 T1 값 등으로 발광층 내에 전하균형을 증가시키고 효과적인 전자저지능력을 수행함으로써 소자의 구동전압을 낮출 수 있을 뿐만 아니라, 소자의 발광효율, 내열성, 색순도 및 수명을 향상시킬 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
[부호의 설명]
100: 유기전기소자 110: 기판
120: 제 1전극 130: 정공주입층
140: 정공수송층 141: 버퍼층
150: 발광층 151: 발광보조층
160: 전자수송층 170: 전자주입층
180: 제 2전극
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 층, 막, 영역, 판 등의 구성 요소가 다른 구성 요소 "위에" 또는 "상에" 있다고 하는 경우, 이는 다른 구성 요소 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 구성 요소가 있는 경우도 포함할 수 있다고 이해되어야 할 것이다. 반대로, 어떤 구성 요소가 다른 부분 "바로 위에" 있다고 하는 경우에는 중간에 또 다른 부분이 없는 것을 뜻한다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다.
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "알켄일기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.
Figure PCTKR2016000533-appb-I000002
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 포함한다.
본 발명에 사용된 용어 "헤테로고리기"는 "헤테로아릴기" 또는 "헤테로아릴렌기"와 같은 방향족 고리뿐만 아니라 비방향족 고리도 포함하며, 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 고리를 의미하나 여기에 제한되는 것은 아니다. 본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타내며, 헤테로고리기는 헤테로원자를 포함하는 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 의미한다.
또한 "헤테로고리기"는, 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2016000533-appb-I000003
본 발명에서 사용된 용어 "고리"는 단일환 및 다환을 포함하며, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함하고, 방향족 및 비방향족 고리를 포함한다.
본 발명에서 사용된 용어 "다환"은 바이페닐, 터페닐 등과 같은 고리 집합체(ring assemblies), 접합된(fused) 여러 고리계 및 스파이로 화합물을 포함하며, 방향족뿐만 아니라 비방향족도 포함하고, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함한다.
본 발명에서 사용된 용어 "고리 집합체(ring assemblies)"는 둘 또는 그 이상의 고리계(단일고리 또는 접합된 고리계)가 단일결합이나 또는 이중결합을 통해서 서로 직접 연결되어 있고 이와 같은 고리 사이의 직접 연결의 수가 이 화합물에 들어 있는 고리계의 총 수보다 1개가 적은 것을 의미한다. 고리 집합체는 동일 또는 상이한 고리계가 단일결합이나 이중결합을 통해 서로 직접 연결될 수 있다.
본 발명에서 사용된 용어 "접합된 여러 고리계"는 적어도 두개의 원자의 공유하는 접합된(fused) 고리 형태를 의미하며, 둘 이상의 탄화수소류의 고리계가 접합된 형태 및 적어도 하나의 헤테로원자를 포함하는 헤테로고리계가 적어도 하나 접합된 형태 등을 포함한다. 이러한 접합된 여러 고리계는 방향족고리, 헤테로방향족고리, 지방족 고리 또는 이들 고리의 조합일 수 있다.
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트리스파이로-' 화합물이라 한다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕시카르보닐기의 경우 알콕시기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1-C20의 알킬기, C1-C20의 알콕시기, C1-C20의 알킬아민기, C1-C20의 알킬티오펜기, C6-C20의 아릴티오펜기, C2-C20의 알켄일기, C2-C20의 알킨일기, C3-C20의 시클로알킬기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, C8-C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2016000533-appb-I000004
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2016000533-appb-I000005
도 1은 본 발명의 일 실시예에 따른 유기전기소자에 대한 예시도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(110)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 이들 층 중 적어도 하나가 생략되거나, 정공저지층, 전자저지층, 발광보조층(151), 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
또한, 미도시하였지만, 본 발명의 일 실시예에 따른 유기전기소자는 제 1전극과 제 2전극 중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다.
상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(130), 정공수송층(140), 전자수송층(160), 전자주입층(170), 발광층(150)의 호스트 또는 도펀트 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 예컨대, 본 발명의 화합물은 발광층(150), 정공수송층(140) 및/또는 발광보조층(151)으로 사용될 수 있을 것이다.
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합에 대한 연구가 필요하며, 특히 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
이미 설명한 것과 같이, 일반적으로 유기전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 정공수송층과 발광층 사이에 발광보조층이 형성하는 것이 바람직하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요한 시점이다. 한편, 발광보조층의 경우 정공수송층 및 발광층(호스트)과의 상호관계를 파악해야하므로 유사한 코어를 사용하더라도 사용되는 유기물층이 달라지면 그 특징을 유추하기는 매우 어려울 것이다.
따라서, 본 발명에서는 화학식 1로 표시되는 화합물을 사용하여 정공수송층 및/또는 발광보조층을 형성함으로써 각 유기물층 간의 에너지 레벨 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 다양한 증착법(deposition)을 이용하여 제조될 수 있을 것이다. PVD나 CVD 등의 증착 방법을 사용하여 제조될 수 있는데, 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 또한, 정공수송층(140)과 발광층(150) 사이에 발광보조층(151)을 추가로 형성할 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명의 일 실시예에 따른 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일 측면에 따른 화합물은 하기 화학식 1로 표시된다.
<화학식 1>
Figure PCTKR2016000533-appb-I000006
상기 화학식에 기재된 각 기호는 아래와 같이 정의될 수 있다.
상기 화학식 1에서, X는 S, O 또는 C(Ra)(Rb)일 수 있다. 즉, 카바졸과 아민기를 연결하는 연결기로 디벤조티오펜일렌기, 디벤조퓨란일렌기, 플루오렌일렌기 등일 수 있다.
상기 Ra 및 Rb는 서로 독립적으로 C6-C24의 아릴기; C1-C20의 알킬기; C2-C20의 알켄일기; 및 C1-C20의 알콕시기;로 이루어진 군에서 선택될 수 있으며, 이때 Ra 및 Rb는 이들이 결합된 탄소(C)와 함께 서로 결합하여 스파이로 화합물을 형성할 수 있다.
바람직하게는, 상기 Ra 및 Rb는 중수소, 할로겐, 실란기, 실록산기, 붕소기, 게르마늄기, 시아노기, 니트로기, C1-C20의 알킬싸이오기, C1-C20의 알콕시기, C1-C20의 알킬기, C2-C20의 알켄일기, C2-C20의 알킨일기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, 플루오렌일기, O, N S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기, C3-C20의 시클로알킬기, C7-C20의 아릴알킬기, 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다. 또한, Ra 및 Rb가 서로 결합하여 스파이로 화합물을 형성하는 경우에도 상기 치환기들로 더 치환될 수 있다.
상기 화학식 1에서, Ar1 내지 Ar3은 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; 및 C6-C60의 방향족고리와 C3-C60의 지방족고리의 융합고리기;로 이루어진 군에서 선택될 수 있다.
바람직하게는, 상기 Ar1 내지 Ar3은 중 적어도 하나는 하기 화학식 1a로 표시될 수 있다.
<화학식 1a>
Figure PCTKR2016000533-appb-I000007
상기 화학식 1a에서, Y는 S, O, C(Rc)(Rd) 또는 N(Re)일 수 있다. 즉, 상기 화학식 1a는 디벤조티오펜일기, 디벤조퓨란일기, 플루오렌일기, 카바졸일기 등일 수 있다.
상기 Rc 내지 Re는 서로 독립적으로 C6-C24의 아릴기; C1-C20의 알킬기; C2-C20의 알켄일기; 및 C1-C20의 알콕시기;로 이루어진 군에서 선택될 수 있으며, 이때 Rc 및 Rd는 이들이 결합된 탄소(C)와 함께 서로 결합하여 스파이로 화합물을 형성할 수 있다.
바람직하게는, 상기 Rc 내지 Re는 서로 독립적으로 중수소, 할로겐, 실란기, 실록산기, 붕소기, 게르마늄기, 시아노기, 니트로기, C1-C20의 알킬싸이오기, C1-C20의 알콕시기, C1-C20의 알킬기, C2-C20의 알켄일기, C2-C20의 알킨일기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, 플루오렌일기, O, N S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기, C3-C20의 시클로알킬기, C7-C20의 아릴알킬기, 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다. Rc 및 Rd가 결합하여 형성한 스파이로 화합물 역시 상기 치환기들로 더 치환될 수 있다.
상기 화학식 1a에서, R5 및 R6은 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕시기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택될 수 있다. 또한, R5 및 R6은 각각 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 R5 및 R6은 상기 정의된 것과 동일할 수 있다.
상기 화학식 1a에서, q는 0 내지 4의 정수 중에서 선택되며, q가 2 이상의 정수인 경우 복수의 R5는 각각 서로 동일하거나 상이할 수 있으며, r은 0 내지 3의 정수 중에서 선택되며, r이 2 이상의 정수인 경우 복수의 R6은 각각 서로 동일하거나 상이할 수 있다.
상기 화학식 1a에서, L은 단일결합; C6-C60의 아릴렌기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 2가 헤테로고리기; 플루오렌일렌기; 및 C3-C60의 지방족고리와 C6-C60의 방향족고리의 2가 융합고리기;로 이루어진 군에서 선택될 수 있다.
바람직하게는, 상기 Ar1은 C1-C6의 알킬기이며, 더욱 바람직하게는 에틸기일 수 있다.
또한, 바람직하게는, 상기 Ar1은 C6-C25의 아릴기이고, 더욱 바람직하게는 C6-C18의 아릴기이며, 더욱 바람직하게는 C6, C10, C12, C14, C18의 아릴기일 수 있다. 예컨대, 중수소, 메틸, 에틸렌, 또는 피리딜로 치환 또는 비치환된 페닐기, 나프틸기, 비페닐기, 터페닐기, 페난트렌일기 등일 수 있다.
또한, 바람직하게는, 상기 Ar1은 플루오렌일기이며, 더욱 바람직하게는 9,9-디메틸-9H-플루오렌일기, 9,9-디페닐-9H-플루오렌일기 등일 수 있다.
또한, 바람직하게는, 상기 Ar1은 C3-C16의 헤테로고리기, 더욱 바람직하게는 C12, C13의 헤테로고리기일 수 있다. 예컨대, 디벤조티오펜일기, 디벤조퓨란일기, 페난트리딘일기 등일 수 있다.
바람직하게는, 상기 Ar2 및 Ar3은 서로 독립적으로 C6-C25의 아릴기이고, 더욱 바람직하게는 C6-C18의 아릴기이며, 더욱 바람직하게는 C6, C10, C12, C14, C16, C18의 아릴기일 수 있다. 예컨대, 중수소, 메틸, 중수소로 치환된 페닐, 나프틸, 피리딜, 이소퀴놀릴 또는 디벤조티오펜일로 치환 또는 비치환된 페닐기, 페닐로 치환 또는 비치환된 나프틸기, 피리딜로 치환 또는 비치환된 비페닐기, 메틸 또는 벤조티오펜으로 치환 또는 비치환된 터페닐기, 페난트렌일기, 피렌일기 등일 수 있다.
또한, 바람직하게는, 상기 Ar2 및 Ar3은 서로 독립적으로 플루오렌일기이며, 더욱 바람직하게는 9,9-디메틸-9H-플루오렌일기, 9,9-디페닐-9H-플루오렌일기, 스파이로바이플루오렌일기 등일 수 있다.
또한, 바람직하게는, 상기 Ar2 및 Ar3은 서로 독립적으로 C3-C16의 헤테로고리기, 더욱 바람직하게는 C9, C12의 헤테로고리기일 수 있다. 예컨대, 퀴놀릴기, 페닐로 치환 또는 비치환된 디벤조티오펜일기, 디벤조퓨란일기, 페닐로 치환된 카바졸릴기 등일 수 있다.
바람직하게는, 상기 Ar1 내지 Ar3은 서로 독립적으로 중수소, 할로겐, 실란기, 실록산기, 붕소기, 게르마늄기, 시아노기, 니트로기, C1-C20의 알킬싸이오기, C1-C20의 알콕시기, C1-C20의 알킬기, C2-C20의 알켄일기, C2-C20의 알킨일기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, 플루오렌일기, O, N S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기, C3-C20의 시클로알킬기, C7-C20의 아릴알킬기, 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
상기 화학식 1에서, R1 내지 R4는 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 니트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕시기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택될 수 있다. 또한, R1 내지 R4는 각각 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 R1 내지 R4는 상기에서 정의된 것과 동일할 수 있다.
상기 화학식 1에서, m 및 o는 서로 독립적으로 0 내지 4의 정수 중에서 선택되며, 이들 각각이 2 이상의 정수인 경우 복수의 R1 및 R3은 각각 서로 동일하거나 상이할 수 있으며, n은 0 내지 3의 정수 중에서 선택되며, n이 2 이상의 정수인 경우 복수의 R2는 서로 동일하거나 상이할 수 있으며, p는 0 내지 2의 정수 중에서 선택되며, p가 2 인 경우 복수의 R4는 서로 동일하거나 상이할 수 있다.
바람직하게는, 상기 R1은 C6-C18의 아릴기, C3-C12의 헤테로고리기 등일 수 있고, 또한 바람직하게는 C6의 아릴기, C5의 헤테로고리기일 수 있고, 구체적으로 페닐기, 피리딜기 등일 수 있다.
또한, 바람직하게는 이웃한 R1끼리 서로 결합하여 1개 또는 2개의 벤젠링을 형성하여 이들이 결합된 벤젠링과 함께 나프탈렌, 페난트렌 등을 형성할 수 있다.
또한, 바람직하게는 이웃한 R2끼리 서로 결합하여 1개의 벤젠링을 형성하여 이들이 결합된 벤젠링과 함께 나프탈렌 등을 형성할 수 있다.
바람직하게는, 상기 R3은 C6-C18의 아릴기 등일 수 있고, 또한 바람직하게는 C6의 아릴기일 수 있고, 구체적으로 페닐기 등일 수 있다.
또한, 바람직하게는 이웃한 R3끼리 서로 결합하여 1개 또는 2개의 벤젠링을 형성하여 이들이 결합된 벤젠링과 함께 나프탈렌, 페난트렌 등을 형성할 수 있다.
바람직하게는, 상기 R1 내지 R4는 서로 독립적으로 중수소, 할로겐, 실란기, 실록산기, 붕소기, 게르마늄기, 시아노기, 니트로기, C1-C20의 알킬싸이오기, C1-C20의 알콕시기, C1-C20의 알킬기, C2-C20의 알켄일기, C2-C20의 알킨일기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, 플루오렌일기, O, N S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기, C3-C20의 시클로알킬기, C7-C20의 아릴알킬기, 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
구체적으로, 하기 화학식 2 및 화학식 3은 화학식 1에서 카바졸과 아민기가 연결기의 결합위치에 따라 결합하여 형성된 경우를 나타낸 것이다.
<화학식 2> <화학식 3>
Figure PCTKR2016000533-appb-I000008
Figure PCTKR2016000533-appb-I000009
상기 화학식 2 및 화학식 3에서, X, Ar1 내지 Ar3, R1 내지 R4, m, n, o 및 p는 상기 화학식 1에서 정의된 것과 동일하다.
보다 구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화합물 중 하나일 수 있다.
Figure PCTKR2016000533-appb-I000010
Figure PCTKR2016000533-appb-I000011
Figure PCTKR2016000533-appb-I000012
Figure PCTKR2016000533-appb-I000013
Figure PCTKR2016000533-appb-I000014
Figure PCTKR2016000533-appb-I000015
Figure PCTKR2016000533-appb-I000016
Figure PCTKR2016000533-appb-I000017
다른 실시예로서, 본 발명은 상기 화학식 1로 표시되는 유기전기소자용 화합물을 제공한다.
또 다른 실시예에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 함유하는 유기전기소자를 제공한다.
이때, 유기전기소자는 제 1전극, 제 2전극, 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층을 포함할 수 있으며, 유기물층은 화학식 1로 표시되는 화합물을 포함할 수 있으며, 화학식 1로 표시되는 화합물은 유기물층의 정공주입층, 정공수송층, 발광보조층 및 발광층 중 적어도 하나의 층에 함유될 수 있다. 즉, 화학식 1로 표시되는 화합물은 정공주입층, 정공수송층, 발광보조층 또는 발광층의 재료로 사용될 수 있다. 바람직하게는, 화학식 1로 표시되는 화합물은 상기 정공수송층 또는 발광보조층의 재료로 사용될 수 있다.
바람직하게는, 유기물층에 상기 화학식 2 또는 화학식 3으로 표시되는 화합물을 포함하는 유기전기소자를 제공한다.
바람직하게는, 유기물층에 상기 화합물 P-1 내지 P-148 중 적어도 하나를 포함하는 유기전기소자를 제공한다.
바람직하게는, 상기 유기물층에 함유된 화합물은 상기 화학식 1로 표시되는 1종 단독 또는 2종 이상의 혼합물일 수 있다. 예컨대, 유기물층 중 발광보조층에 화합물 P-1이 단독으로 사용될 수도 있고, 화합물 P-1과 화합물 P-2가 혼합된 혼합물로 사용될 수도 있다.
한편, 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성될 수 있다.
본 발명의 다른 실시예로, 상기 제 1전극의 일측면 중 상기 유기물층과 반대되는 일측 또는 상기 제 2전극의 일측면 중 상기 유기물층과 반대되는 일측 중 적어도 하나에 형성되는 광효율 개선층을 더 포함하는 유기전기소자를 제공한다. 바람직하게는, 상기 광효율 개선층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
본 발명의 또 다른 실시예에서, 본 발명은 본 발명에 따른 화합물이 함유된 유기물층을 포함하는 유기전기소자를 포함하는 디스플레이장치 및 상기 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 제공한다. 이때 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 하나일 수 있다.
이하에서, 본 발명에 따른 화학식 1로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
합성예
본 발명에 따른 화학식 1로 표시되는 화합물(Final Products)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 제조하나 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2016000533-appb-I000018
(X, Ar1 내지 Ar3, R1 내지 R4, m, n, o 및 p는 상기 화학식 1에서 정의된 것과 동일하다.)
I. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2 및 반응식 3의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 2>
Figure PCTKR2016000533-appb-I000019
<반응식 3> Hal은 I 또는 Br
Figure PCTKR2016000533-appb-I000020
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub 1-1 합성예
<반응식 4>
Figure PCTKR2016000533-appb-I000021
(1) Sub 1-I-1 합성
출발물질인 phenylboronic acid (38.3 g, 314.1 mmol)를 둥근바닥플라스크에 THF (1152ml)로 녹인 후에, 4-bromo-2-iodo-1-nitrobenzene (123.6 g, 376.9 mmol), Pd(PPh3)4 (18.15 g, 15.7 mmol), NaOH (37.69 g, 942.3 mmol), 물 (576ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 66.39 g (수율: 76%)를 얻었다.
(2) Sub 1-II-1 합성
상기 Sub 1-I-1 (66.39 g, 238.7 mmol)를 둥근바닥플라스크에 o-dichlorobenzene (1194ml)으로 녹인 후에, triphenylphosphine (156.54 g, 596.8 mmol)을 첨가하고 200℃에서 교반하였다. 반응이 완료되면 증류를 통해 o-dichlorobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 35.25 g (수율: 60%)를 얻었다.
(3) Sub 1-III-1 합성
상기 Sub 1-II-1 (35.25 g, 143.2 mmol)을 둥근바닥플라스크에 nitrobenzene (1790ml)으로 녹인 후, iodobenzene (43.83 g, 214.9 mmol), Na2SO4 (20.35 g, 143.2 mmol), K2CO3 (19.80 g, 143.2 mmol), Cu (2.73 g, 43.0 mmol)를 첨가하고 200℃에서 교반하였다. 반응이 완료되면 증류를 통해 nitrobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 33.69 g (수율: 73%)를 얻었다.
(4) Sub 1-1 합성
상기 Sub 1-III-1 (33.69 g, 104.6 mmol)를 둥근바닥플라스크에 DMF (520ml)로 녹인 후에, Bis(pinacolato)diboron (29.21 g, 115.0 mmol), Pd(dppf)Cl2 (2.56 g, 3.1 mmol), KOAc (30.79 g, 313.7 mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 25.48 g (수율: 66%)를 얻었다.
2. Sub 1-14 합성예
<반응식 5>
Figure PCTKR2016000533-appb-I000022
(1) Sub 1-I-14 합성
출발물질인 naphthalen-1-ylboronic acid (30.00 g, 174.4 mmol)에 2,4-dibromo-1-nitrobenzene (58.8 g, 209.3 mmol), Pd(PPh3)4 (10.08 g, 8.7 mmol), NaOH (20.93 g, 523.3 mmol), THF (640ml), 물 (320ml)을 첨가하고, 상기 Sub 1-I-1 합성법을 사용하여 생성물 44.65 g (수율: 78%)를 얻었다.
(2) Sub 1-II-14 합성
상기 Sub 1-I-14 (44.65 g, 136.1 mmol)에 triphenylphosphine (89.22 g, 340.2 mmol), o-dichlorobenzene (680ml)을 첨가하고, 상기 Sub 1-II-1 합성법을 사용하여 생성물 29.42 g (수율: 73%)를 얻었다.
(3) Sub 1-III-14 합성
상기 Sub 1-II-14 (29.42 g, 99.3 mmol)에 1-iodobenzene (30.40 g, 149.0 mmol), Na2SO4 (14.11 g, 99.3 mmol), K2CO3 (13.73 g, 99.3 mmol), Cu (1.89 g, 29.8 mmol), nitrobenzene (1240ml)을 첨가하고, 상기 Sub 1-III-1 합성법을 사용하여 생성물 28.84 g (수율: 78%)를 얻었다.
(4) Sub 1-14 합성
상기 Sub 1-III-14 (28.84 g, 77.5 mmol)에 Bis(pinacolato)diboron (21.64 g, 85.2 mmol), Pd(dppf)Cl2 (1.90 g, 2.3 mmol), KOAc (22.81 g, 232.4 mmol), DMF (390ml)를 첨가하고, 상기 Sub 1-1 합성법을 사용하여 생성물 24.04 g (수율: 74%)를 얻었다.
3. Sub 1-18 합성예
<반응식 6>
Figure PCTKR2016000533-appb-I000023
(1) Sub 1-I-18 합성
출발물질인 phenylboronic acid (100.00 g, 820.1 mmol)에 4-bromo-1-iodo-2-nitrobenzene (322.71 g, 984.2 mmol), Pd(PPh3)4 (47.39 g, 41 mmol), NaOH (98.42 g, 2460.4 mmol), THF (3000ml), 물 (1500ml)을 첨가하고, 상기 Sub 1-I-1 합성법을 사용하여 생성물 180.18 g (수율: 79%)를 얻었다.
(2) Sub 1-II-18 합성
상기 Sub 1-I-18 (180.18 g, 647.9 mmol)에 triphenylphosphine (424.84 g, 1619.7 mmol), o-dichlorobenzene (3200ml)을 첨가하고, 상기 Sub 1-II-1 합성법을 사용하여 생성물 100.45 g (수율: 63%)를 얻었다.
(3) Sub 1-III-18 합성
상기 Sub 1-II-18 (24.96 g, 101.4 mmol)에 1-iodobenzene (31.04 g, 152.1 mmol), Na2SO4 (14.41 g, 101.4 mmol), K2CO3 (14.02 g, 101.4 mmol), Cu (1.93 g, 30.4 mmol), nitrobenzene (1270ml)을 첨가하고, 상기 Sub 1-III-1 합성법을 사용하여 생성물 24.84 g (수율: 76%)를 얻었다.
(4) Sub 1-18 합성
상기 Sub 1-III-18 (24.84 g, 77.1 mmol)에 Bis(pinacolato)diboron (21.54 g, 84.8 mmol), Pd(dppf)Cl2 (1.89 g, 2.3 mmol), KOAc (22.7 g, 231.3 mmol), DMF (385ml)를 첨가하고, 상기 Sub 1-1 합성법을 사용하여 생성물 19.93 g (수율: 70%)를 얻었다.
4. Sub 1-23 합성예
<반응식 7>
Figure PCTKR2016000533-appb-I000024
(1) Sub 1-III-23 합성
상기 Sub 1-II-18 (21.6 g, 87.8 mmol)에 3-iodo-1,1'-biphenyl (36.88 g, 131.7 mmol), Na2SO4 (12.47 g, 87.8 mmol), K2CO3 (12.13 g, 87.8 mmol), Cu (1.67 g, 26.3 mmol), nitrobenzene (1100ml)을 첨가하고, 상기 Sub 1-III-1 합성법을 사용하여 생성물 25.87 g (수율: 74%)를 얻었다.
(2) Sub 1-23 합성
상기 Sub 1-III-23 (25.87 g, 65.0 mmol)에 Bis(pinacolato)diboron (18.14 g, 71.4 mmol), Pd(dppf)Cl2 (1.59 g, 1.9 mmol), KOAc (19.12 g, 194.9 mmol), DMF (325ml)를 첨가하고, 상기 Sub 1-1 합성법을 사용하여 생성물 22.27 g (수율: 77%)를 얻었다.
5. Sub 1-28 합성예
<반응식 8>
Figure PCTKR2016000533-appb-I000025
(1) Sub 1-III-28 합성
상기 Sub 1-II-18 (20.77 g, 84.4 mmol)에 5'-bromo-1,1':3',1"-terphenyl (45.09 g, 126.6 mmol), Na2SO4 (11.99 g, 84.4 mmol), K2CO3 (11.66 g, 84.4 mmol), Cu (1.61 g, 25.3 mmol), nitrobenzene (1055ml)을 첨가하고, 상기 Sub 1-III-1 합성법을 사용하여 생성물 32.03 g (수율: 80%)를 얻었다.
(2) Sub 1-28 합성
상기 Sub 1-III-28 (32.03 g, 67.5 mmol)에 Bis(pinacolato)diboron (18.86 g, 74.3 mmol), Pd(dppf)Cl2 (1.65 g, 2 mmol), KOAc (19.88 g, 202.6 mmol), DMF (340ml)를 첨가하고, 상기 Sub 1-1 합성법을 사용하여 생성물 26.05 g (수율: 74%)를 얻었다.
6. Sub 1-30 합성예
<반응식 9>
Figure PCTKR2016000533-appb-I000026
(1) Sub 1-I'-30 합성
출발물질인 (1-nitronaphthalen-2-yl)boronic acid (44.16 g, 203.5 mmol)를 둥근바닥플라스크에 THF (750ml)로 녹인 후에, 1,4-dibromobenzene (57.61 g, 244.2 mmol), Pd(PPh3)4 (11.76 g, 10.2 mmol), NaOH (24.42 g, 610.5 mmol), 물 (375ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 50.76 g (수율: 76%)를 얻었다.
(2) Sub 1-II-30 합성
상기 Sub 1-I'-30 (50.76 g, 154.7 mmol)를 둥근바닥플라스크에 o-dichlorobenzene (770ml)으로 녹인 후에, triphenylphosphine (101.43 g, 386.7 mmol)을 첨가하고 200℃에서 교반하였다. 반응이 완료되면 증류를 통해 o-dichlorobenzene을 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 30.69 g (수율: 67%)를 얻었다.
(3) Sub 1-III-30 합성
상기 Sub 1-II-30 (30.69 g, 103.6 mmol)에 1-iodobenzene (31.71 g, 155.4 mmol), Na2SO4 (14.72 g, 103.6 mmol), K2CO3 (14.32 g, 103.6 mmol), Cu (1.98 g, 31.1 mmol), nitrobenzene (1295ml)을 상기 Sub 1-III-1 합성법을 사용하여 생성물 28.93 g (수율: 75%)를 얻었다.
(4) Sub 1-30 합성
상기 Sub 1-III-30 (28.93 g, 77.7 mmol)에 Bis(pinacolato)diboron (21.71 g, 85.5 mmol), Pd(dppf)Cl2 (1.90 g, 2.3 mmol), KOAc (22.88 g, 233.1 mmol), DMF (389ml)를 첨가하고, 상기 Sub 1-1 합성법을 사용하여 생성물 23.14 g (수율: 71%)를 얻었다.
한편, Sub 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나 이에 한정되는 것은 아니며, 하기 표 1은 이들의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2016000533-appb-I000027
Figure PCTKR2016000533-appb-I000028
[표 1]
Figure PCTKR2016000533-appb-I000029
II. Sub 2의 합성
상기 반응식 1의 Sub 2는 하기 반응식 10 내지 반응식 13의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 10>
Figure PCTKR2016000533-appb-I000030
<반응식 11> X가 S인 경우 (Hal은 I 또는 Br)
Figure PCTKR2016000533-appb-I000031
<반응식 12> X가 O인 경우
Figure PCTKR2016000533-appb-I000032
<반응식 13> X가 CRaRb인 경우
Figure PCTKR2016000533-appb-I000033
Sub 2에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub 2-9 합성예
<반응식 14>
Figure PCTKR2016000533-appb-I000034
(1) M 1-I-1 합성
출발물질인 3,5-dibromoaniline (125.35 g, 499.6 mmol)을 둥근바닥플라스크에 CH2Cl2 (2498ml)로 녹인 후에, acetic anhydride (56.10 g, 549.5 mmol)와 K2CO3 (82.85 g, 599.5 mmol)을 넣고 상온에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축하여 생성물 140.50 g (수율: 96%)를 얻었다.
(2) M 1-II-1 합성
상기 M 1-I-1 (293.97 g, 1003.5 mmol)를 둥근바닥플라스크에 THF (3000ml)로 녹인 후에, (2-(methylthio)phenyl)boronic acid (140.50 g, 836.2 mmol), Pd(PPh3)4 (48.31 g, 41.8 mmol), NaOH (100.35 g, 2508.6 mmol), 물 (1500ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 205.26 g (수율: 73%)를 얻었다.
(3) M 1-III-1 합성
상기 M 1-II-1 (205.26 g, 610.4 mmol), H2O2 (51.90 g, 1526.1 mmol), acetic acid (3052ml)를 둥근바닥플라스크에 넣고 상온에서 교반하였다. 반응이 완료되면 acetic acid를 제거 하고 물을 넣어 고체를 얻은 후, 고체를 CH2Cl2에 녹여 silicagel column하고 농축하여 생성물 210.73 g (수율: 98%)를 얻었다.
(4) M 1-IV-1 및 M 1-2 합성
상기 M 1-III-1 (210.73 g, 598.2 mmol)을 둥근바닥플라스크에 과량의 H2SO4 (1200ml)를 넣어 녹인 후에, 40℃에서 3일간 교반하였다. 반응이 완료되면 0.2N NaOH수용액으로 pH 8~9로 중화하였다. 감압필터하여 물을 제거하고, 얻어진 고체를 다시 CH2Cl2로 세척하고 녹지 않은 고체를 건조하여 생성물 M 1-2 53.25 g (수율: 32%)를 얻었다. CH2Cl2로 세척된 여액은 농축한 후 silicagel column 및 재결정하여 생성물 M 1-IV-1 86.20 g (수율: 45%)를 얻었다.
(5) M 1-1 합성
상기 M 1-IV-1 (86.20 g, 269.2 mmol), KOH (37.76 g, 673.0 mmol), DMSO (1350ml)를 둥근바닥플라스크에 넣고 180℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축하여 생성물 53.17 g (수율: 71%)를 얻었다.
(6) Sub 2-I-9 합성
상기 M 1-1 (53.17 g, 191.1 mmol)을 둥근바닥플라스크에 toluene (1900ml)으로 녹인 후에, 4-bromo-1,1'-biphenyl (44.56 g, 191.1 mmol), Pd2(dba)3 (5.25 g, 5.7 mmol), 50% P(t-Bu)3 (7.5ml, 15.3 mmol), NaOt-Bu (55.11 g, 573.4 mmol)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 73.21 g (수율: 89%)를 얻었다.
(7) Sub 2-9 합성
상기 Sub 2-I-9 (26.33 g, 61.2 mmol)을 둥근바닥플라스크에 toluene (610ml)으로 녹인 후에, 2-bromodibenzo[b,d]furan (15.12 g, 61.2 mmol), Pd2(dba)3 (1.68 g, 1.8 mmol), 50% P(t-Bu)3 (2.4ml, 4.9 mmol), NaOt-Bu (17.64 g, 183.5 mmol)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 31.39 g (수율: 86%)를 얻었다.
2. Sub 2-13 합성예
<반응식 15>
Figure PCTKR2016000533-appb-I000035
상기 Sub 2-I-9 (27.59 g, 64.1 mmol)에 4-bromo-1,1'-biphenyl (14.94 g, 64.1 mmol), Pd2(dba)3 (1.76 g, 1.9 mmol), 50% P(t-Bu)3 (2.5ml, 5.1 mmol), NaOt-Bu (18.48 g, 192.3 mmol), toluene (640ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 32.87 g (수율: 88%)를 얻었다.
3. Sub 2-33 합성예
<반응식 16>
Figure PCTKR2016000533-appb-I000036
(1) Sub 2-I-33 합성
상기 M 1-2 (32.29 g, 116.1 mmol)에 2-bromodibenzo[b,d]thiophene (30.55 g, 116.1 mmol), Pd2(dba)3 (3.19 g, 3.5 mmol), 50% P(t-Bu)3 (4.5ml, 9.3 mmol), NaOt-Bu (33.47 g, 348.2 mmol), toluene (1160ml)을 첨가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 44.36 g (수율: 83%)를 얻었다.
(2) Sub 2-33 합성
상기 Sub 2-I-33 (20.00 g, 43.4 mmol)에 4-bromo-1,1'-biphenyl (10.13 g, 43.4 mmol), Pd2(dba)3 (1.19 g, 1.3 mmol), 50% P(t-Bu)3 (1.7ml, 3.5 mmol), NaOt-Bu (12.52 g, 130.3 mmol), toluene (430ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 24.75 g (수율: 93%)를 얻었다.
4. Sub 2-43 합성예
<반응식 17>
Figure PCTKR2016000533-appb-I000037
상기 Sub 2-I-33 (21.03 g, 45.7 mmol)에 2-bromo-9,9-diphenyl-9H-fluorene (18.15 g, 45.7 mmol), Pd2(dba)3 (1.25 g, 1.4 mmol), 50% P(t-Bu)3 (1.8ml, 3.7 mmol), NaOt-Bu (13.17 g, 137 mmol), toluene (460ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 31.93 g (수율: 90%)를 얻었다.
5. Sub 2-54 합성예
<반응식 18>
Figure PCTKR2016000533-appb-I000038
(1) Sub 2-I-54 합성
M 1-5 (23.14 g, 88.3 mmol)에 2-bromonaphthalene (18.28 g, 88.3 mmol), Pd2(dba)3 (2.43 g, 2.6 mmol), 50% P(t-Bu)3 (3.4ml, 7.1 mmol), NaOt-Bu (25.46 g, 264.9 mmol), toluene (880ml)을 첨가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 28.45 g (수율: 83%)를 얻었다.
(2) Sub 2-54 합성
상기 Sub 2-I-54 (28.45 g, 73.3 mmol)에 bromobenzene (11.51 g, 73.3 mmol), Pd2(dba)3 (2.01 g, 2.2 mmol), 50% P(t-Bu)3 (2.9ml, 5.9 mmol), NaOt-Bu (21.13 g, 219.8 mmol), toluene (730ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 30.96 g (수율: 91%)를 얻었다.
6. Sub 2-59 합성예
<반응식 19>
Figure PCTKR2016000533-appb-I000039
(1) Sub 2-I-59 합성
M 1-5 (20 g, 76.3 mmol)에 3-(4-bromophenyl)isoquinoline (21.68 g, 76.3 mmol), Pd2(dba)3 (2.1 g, 2.3 mmol), 50% P(t-Bu)3 (3ml, 6.1 mmol), NaOt-Bu (22 g, 228.9 mmol), toluene (760ml)을 첨가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 29.12 g (수율: 82%)를 얻었다.
(2) Sub 2-59 합성
상기 Sub 2-I-59 (29.12 g, 62.6 mmol)에 4-bromo-1,1'-biphenyl (14.59 g, 62.6 mmol), Pd2(dba)3 (1.72 g, 1.9 mmol), 50% P(t-Bu)3 (2.4ml, 5 mmol), NaOt-Bu (18.04 g, 187.7 mmol), toluene (630ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 33.23 g (수율: 86%)를 얻었다.
7. Sub 2-89 합성예
<반응식 20>
Figure PCTKR2016000533-appb-I000040
(1) M 1-I'-6 합성
출발물질인 phenylboronic acid (62.43 g, 512 mmol)를 둥근바닥플라스크에 THF (1800ml)로 녹인 후에, 2-bromo-4-nitrophenol (133.94 g, 614.4 mmol), Pd(PPh3)4 (29.58 g, 25.6 mmol), NaOH (61.44 g, 1536 mmol), 물(900ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 87.05 g (수율: 79%)를 얻었다.
(2) M 1-II'-6 합성
상기 M 1-I'-6 (87.05 g, 404.5 mmol)를 둥근바닥플라스크에 DMSO (800ml)로 녹인 후에, CuBr (87.04 g, 606.8 mmol), pivalic acid (46.5ml, 404.5 mmol)를 첨가하고 140℃에서 교반하였다. 반응이 완료되면 EtOAc (2000ml)를 넣고 반응물을 식힌 다음 NH4OH와 brine으로 씻어주고 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 59.07 g (수율: 50%)를 얻었다.
(3) M 1-6 합성
상기 M 1-II'-6 (59.07 g, 202.2 mmol)를 ethanol (1000ml)에 녹인 후, Sn (48.02 g, 404.5 mmol), HCl (200ml)을 첨가하고 120℃에서 교반하였다. 반응이 완료되면 0.2N NaOH 수용액으로 pH 8~9로 중화한 후 ether와 brine으로 추출하였다. 유기층을 MgSO4로 건조하고 농축하여 생성물 50.89 g (수율: 96%)를 얻었다.
(4) Sub 2-I-89 합성
상기 M 1-6 (50.89 g, 194.2 mmol)에 4-bromo-1,1'-biphenyl (45.26 g, 194.2 mmol), Pd2(dba)3 (5.33 g, 5.8 mmol), 50% P(t-Bu)3 (7.6ml, 15.5 mmol), NaOt-Bu (55.98 g, 582.5 mmol), toluene (1900ml)을 참가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 67.57 g (수율: 84%)를 얻었다.
(5) Sub 2-89 합성
상기 Sub 2-I-89 (26.56 g, 64.1 mmol)에 2-bromo-8-phenyldibenzo[b,d]thiophene (21.75 g, 64.1 mmol), Pd2(dba)3 (1.76 g, 1.9 mmol), 50% P(t-Bu)3 (2.5ml, 5.1 mmol), NaOt-Bu (18.48 g, 192.3 mmol), toluene (640ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 37.09 g (수율: 86%)를 얻었다.
8. Sub 2-94 합성예
<반응식 21>
Figure PCTKR2016000533-appb-I000041
상기 Sub 2-I-89 (24.61 g, 59.4 mmol)에 2-(4-bromophenyl)naphthalene (16.82 g, 59.4 mmol), Pd2(dba)3 (1.63 g, 1.8 mmol), 50% P(t-Bu)3 (2.3ml, 4.8 mmol), NaOt-Bu (17.13 g, 178.2 mmol), toluene (590ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 32.23 g (수율: 88%)를 얻었다.
9. Sub 2-102 합성예
<반응식 22>
Figure PCTKR2016000533-appb-I000042
(1) M 1-I"-8 합성
출발물질인 methyl 2-amino-4-bromo-6-hydroxybenzoate (43.93 g, 178.5 mmol)을 둥근바닥플라스크에 CH2Cl2 (890ml)로 녹인 후에, triethylamine (37.6ml, 267.8 mmol)을 넣었다. 반응물의 온도를 -78℃로 낮추고 trifluoromethanesulfonic anhydride (33ml, 196.4 mmol)를 천천히 적가시킨 후, 상온으로 서서히 온도를 올려 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 다시 diethyl ether로 용해시키고 silicagel filter하여 어두운 색을 제거한 뒤 농축하여 진공 건조 시켰다. 무색의 오일로서 생성물 64.81 g (수율: 96%)를 얻었다.
(2) M 1-II"-8 합성
상기 M 1-I"-8 (64.81 g, 171.4 mmol)을 둥근바닥플라스크에 THF (630ml)로 녹인 후에, phenylboronic acid (25.08 g, 205.7 mmol), Pd(PPh3)4 (9.9 g, 8.6 mmol), NaOH (20.57 g, 514.2 mmol), 물 (315ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 무색의 오일로서 생성물 41.45 g (수율: 79%)를 얻었다.
(3) M 1-8 합성
상기 M 1-II"-8 (41.45 g, 135.4 mmol)을 둥근바닥플라스크에 THF(680ml)로 녹인 후에, methylmagnesium chloride 3.0M in THF (180.5ml, 541.6 mmol)을 천천히 적가시킨 후, 상온에서 교반하였다. 반응이 완료되면 diethyl ether와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성물 M 1-III"-8를 얻었다. 이 M 1-III"-8를 acetic acid 용액 (500ml)에 녹이고 HCl (10ml)를 첨가한 뒤 환류시켰다. 반응이 완료되면 물을 넣고 교반 후 생성된 고체를 감압여과 후 물과 메탄올로 세척하여 백색 분말로서 생성물 33.55 g (수율: 86% over two steps)를 얻었다.
(4) Sub 2-I-102 합성
상기 M 1-8 (33.55 g, 116.4 mmol), 4-bromodibenzo[b,d]furan (28.77 g, 116.4 mmol), Pd2(dba)3 (3.2 g, 3.5 mmol), 50% P(t-Bu)3 (4.5ml, 9.3 mmol), NaOt-Bu (33.57 g, 349.3 mmol), toluene (1160ml)을 첨가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 43.38 g (수율: 82%)를 얻었다.
(5) Sub 2-102 합성
상기 Sub 2-I-102 (43.38 g, 95.5 mmol), bromobenzene (14.99 g, 95.5 mmol), Pd2(dba)3 (2.62 g, 2.9 mmol), 50% P(t-Bu)3 (3.7ml, 7.6 mmol), NaOt-Bu (27.53 g, 286.4 mmol), toluene (950ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 40.52 g (수율: 80%)를 얻었다.
10. Sub 2-117 합성예
<반응식 23>
Figure PCTKR2016000533-appb-I000043
(1) M 1-I"-9 합성
출발물질인 methyl 4-amino-2-bromo-6-hydroxybenzoate (42.11 g, 171.1 mmol)에 triethylamine (36.1ml, 256.7 mmol), trifluoromethanesulfonic anhydride (31.6ml, 188.3 mmol), CH2Cl2 (850ml)을 첨가하고, 상기 M 1-I"-8 합성법을 사용하여 생성물 60.18 g (수율: 93%)를 얻었다.
(2) M 1-II"-9 합성
상기 M 1-I"-9 (60.18 g, 159.2 mmol)에 phenylboronic acid (23.29 g, 191 mmol), Pd(PPh3)4 (9.2 g, 8 mmol), NaOH (19.1 g, 477.5 mmol), THF (580ml), 물 (290ml)을 첨가하고, 상기 M 1-II"-8 합성법을 사용하여 생성물 38.98 g (수율: 80%)를 얻었다.
(3) M 1-9 합성
상기 M 1-II"-9 (38.98 g, 127.3 mmol)에 methylmagnesium chloride 3.0M in THF (169.8ml, 509.3 mmol), THF (630ml)을 사용하여 생성물 M 1-III"-9를 얻은 후, acetic acid 용액 (500ml), HCl (10ml)를 첨가하여 상기 M 1-8 합성법으로 생성물 30.45 g (수율: 83% over two steps)를 얻었다.
(4) Sub 2-I-117 합성
상기 M 1-9 (30.45 g, 105.7 mmol)에 4-bromo-1,1'-biphenyl (24.63 g, 105.7 mmol), Pd2(dba)3 (2.9 g, 3.2 mmol), 50% P(t-Bu)3 (4.1ml, 8.5 mmol), NaOt-Bu (30.47 g, 317 mmol), toluene (1050ml)을 첨가하고, 상기 Sub 2-I-9 합성법을 사용하여 생성물 39.55 g (수율: 85%)를 얻었다.
(5) Sub 2-117 합성
상기 Sub 2-I-117 (39.55 g, 89.8 mmol)에 1-(4-bromophenyl)naphthalene (25.43 g, 89.8 mmol), Pd2(dba)3 (2.47 g, 2.7 mmol), 50% P(t-Bu)3 (3.5ml, 7.2 mmol), NaOt-Bu (25.9 g, 269.4 mmol), toluene (900ml)을 첨가하고, 상기 Sub 2-9 합성법을 사용하여 생성물 48.48 g (수율: 84%)를 얻었다.
한편, M 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나 이에 한정되는 것은 아니며, 하기 표 2는 이들의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2016000533-appb-I000044
[표 2]
Figure PCTKR2016000533-appb-I000045
중간체 화합물 M 1-5는 American Chemicals 사의 2-bromodibenzo[b,d]furan-4-amine (CAS : 186821-98-7)을 사용함.
한편, Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나 이에 한정되는 것은 아니며, 하기 표 3은 이들의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2016000533-appb-I000046
Figure PCTKR2016000533-appb-I000047
Figure PCTKR2016000533-appb-I000048
Figure PCTKR2016000533-appb-I000049
[표 3]
Figure PCTKR2016000533-appb-I000050
Figure PCTKR2016000533-appb-I000051
III. 최종생성물(Final Product) 합성
Sub 1 (1 당량)을 둥근바닥플라스크에 THF으로 녹인 후에, Sub 2 (1.2 당량), Pd(PPh3)4 (0.05 당량), NaOH (3 당량), 물을 첨가하고 70℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하여 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 최종생성물(final product)를 얻었다.
1. P-2 합성예
<반응식 24>
Figure PCTKR2016000533-appb-I000052
상기 Sub 1-1 (6.90 g, 18.7 mmol)를 둥근바닥플라스크에 넣고 THF (69ml)로 녹인 후에, Sub 2-13 (13.06 g, 22.4 mmol), Pd(PPh3)4 (1.08 g, 0.9 mmol), NaOH (2.24 g, 56.1 mmol), 물 (34ml)을 첨가하고 70℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 10.30 g (수율: 74%)를 얻었다.
2. P-32 합성예
<반응식 25>
Figure PCTKR2016000533-appb-I000053
상기 Sub 1-14 (10 g, 23.8 mmol)에 Sub 2-54 (13.29 g, 28.6 mmol), Pd(PPh3)4 (1.38 g, 1.2 mmol), NaOH (2.86 g, 71.5 mmol), THF (87ml), 물 (44ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 11.30 g (수율: 70%)를 얻었다.
3. P-62 합성예
<반응식 26>
Figure PCTKR2016000533-appb-I000054
상기 Sub 1-28 (8.60 g, 16.5 mmol)에 Sub 2-9 (11.81 g, 19.8 mmol), Pd(PPh3)4 (0.95 g, 0.8 mmol), NaOH (1.98 g, 49.5 mmol), THF (60ml), 물 (30ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 10.82 g (수율: 72%)를 얻었다.
4. P-68 합성예
<반응식 27>
Figure PCTKR2016000533-appb-I000055
상기 Sub 1-23 (8.70 g, 19.5 mmol)에 Sub 2-59 (14.48 g, 23.4 mmol), Pd(PPh3)4 (1.13 g, 1.0 mmol), NaOH (2.34 g, 58.6 mmol), THF (72ml), 물 (36ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 12.54 g (수율: 75%)를 얻었다.
5. P-86 합성예
<반응식 28>
Figure PCTKR2016000533-appb-I000056
상기 Sub 1-28 (10.00 g, 19.2 mmol)에 Sub 2-102 (12.21 g, 23.0 mmol), Pd(PPh3)4 (1.11 g, 1.0 mmol), NaOH (2.30 g, 57.5 mmol), THF (70ml), 물 (35ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 11.99 g (수율: 74%)를 얻었다.
6. P-94 합성예
<반응식 29>
Figure PCTKR2016000533-appb-I000057
상기 Sub 1-1 (7.30 g, 19.8 mmol)에 Sub 2-43 (18.43 g, 23.7 mmol), Pd(PPh3)4 (1.14 g, 1.0 mmol), NaOH (2.37 g, 59.3 mmol), THF (72ml), 물 (36ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 13.18 g (수율: 71%)를 얻었다.
7. P-104 합성예
<반응식 30>
Figure PCTKR2016000533-appb-I000058
상기 Sub 1-1 (7.50 g, 20.3 mmol)에 Sub 2-89 (16.39 g, 24.4 mmol), Pd(PPh3)4 (1.17 g, 1.0 mmol), NaOH (2.44 g, 60.9 mmol), THF (74ml), 물 (37ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 13.23 g (수율: 78%)를 얻었다.
8. P-115 합성예
<반응식 31>
Figure PCTKR2016000533-appb-I000059
상기 Sub 1-30 (8.30 g, 19.8 mmol)에 Sub 2-117 (15.26 g, 23.8 mmol), Pd(PPh3)4 (1.14 g, 1.0 mmol), NaOH (2.38 g, 59.4 mmol), THF (73ml), 물 (36ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 12.36 g (수율: 73%)를 얻었다.
9. P-126 합성예
<반응식 32>
Figure PCTKR2016000533-appb-I000060
상기 Sub 1-18 (7.90 g, 21.4 mmol)에 Sub 2-33 (15.73 g, 25.7 mmol), Pd(PPh3)4 (1.24 g, 1.1 mmol), NaOH (2.57 g, 64.2 mmol), THF (78ml), 물 (39ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 12.93 g (수율: 78%)를 얻었다.
10. P-132 합성예
<반응식 33>
Figure PCTKR2016000533-appb-I000061
상기 Sub 1-23 (7.30 g, 16.4 mmol)에 Sub 2-94 (12.13 g, 19.7 mmol), Pd(PPh3)4 (0.95 g, 0.8 mmol), NaOH (1.97 g, 49.2 mmol), THF (60ml), 물 (30ml)을 첨가하고, 상기 P-2 합성법을 사용하여 생성물 11.07 g (수율: 79%)를 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P-1 내지 P-148의 FD-MS 값은 하기 표 4와 같다.
[표 4]
Figure PCTKR2016000533-appb-I000062
Figure PCTKR2016000533-appb-I000063
Figure PCTKR2016000533-appb-I000064
상기 합성예에서는 화학식 1로 표시되는 본 발명의 화합물에 대한 예시적 합성예를 설명하였지만, 이들은 모두 Suzuki cross-coupling 반응, Ullmann 반응, Miyaura boration 반응, PPh3-mediated reductive cyclization 반응 (J. Org. Chem. 2005, 70, 5014.), Buchwald-Hartwig cross coupling 반응, Acylation of Nitrogen Nucleophiles 반응, Oxidation 반응, Thioalkylation 반응, Hydrogenolysis 반응, CuI-Mediated Sequential Iodination/Cycloetherification of o-Arylphenols 반응 (Org. Lett. 2012, 14, 5362.), Reduction 반응, Triflatation 반응, Grignard 반응, Cyclic Dehydration 반응 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1에 정의된 다른 치환기(X, Ar1 내지 Ar3, R1 내지 R4, m, n, o 및 p 등의 치환기)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
예컨대, 반응식 1에서 Sub 1과 Sub 2 -> Final Products 반응, 반응식 3에서 출발물질 -> Sub 1-I 및 출발물질 -> Sub 1-I'반응, 반응식 11에서 M 1-I -> M 1-II 반응, 반응식 12에서 출발물질 -> M 1-I'반응, 반응식 13에서 M 1-I" -> M 1-II" 반응은 모두 Suzuki cross-coupling 반응에 기초한 것이고, 반응식 2에서 Sub 1-II -> Sub 1-III 반응은 Ullmann 반응에 기초한 것이며, 반응식 2에서 Sub 1-III -> Sub 1-I 반응은 Miyaura boration 반응에 기초한 것이다. 이어서, 반응식 3에서 Sub 1-I -> Sub 1-II 반응, Sub 1-I'-> Sub 1-II 반응은 PPh3-mediated reductive cyclization 반응에 기초한 것이고, 반응식 10에서 M 1 -> Sub 2-I 반응, Sub 2-I -> Sub 2 반응은 Buchwald-Hartwig cross coupling 반응에 기초한 것이며, 반응식 11에서 출발물질 -> M 1-I 반응은 Acylation of Nitrogen Nucleophiles 반응에 기초한 것이다. 이어서, 반응식 11에서 M 1-II -> M 1-III 반응은 Oxidation 반응에 기초한 것이고, 반응식 11에서 M 1-III -> M 1-IV 반응은 Thioalkylation 반응에 기초한 것이며, 반응식 11에서 M 1-IV -> M 1 반응은 Hydrogenolysis 반응에 기초한 것이다. 이어서, 반응식 12에서 M 1-I'-> M 1-II' 반응은 CuI-Mediated Sequential Iodination/Cycloetherification of o-Arylphenols 반응에 기초한 것이고, 반응식 12에서 M 1-II'-> M 1 반응은 Reduction 반응에 기초한 것이며, 반응식 13에서 출발물질 -> M 1-I" 반응은 Triflatation 반응에 기초한 것이다. 마지막으로 반응식 13에서 M 1-II" -> M 1-III" 반응은 Grignard 반응에 기초한 것이고, 반응식 13에서 M 1-III" -> M 1 반응은 Cyclic Dehydration 반응에 기초한 것이다. 이들에 구체적으로 명시되지 않은 치환기가 결합되더라도 상기 반응들은 진행할 것이다.
유기전기소자의 제조평가
[실시예 I-1] 그린유기전기발광소자 (정공수송층)
본 발명의 화합물을 정공수송층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 4,4',4"-Tris[2-naphthyl(phenyl)amino]triphenylamine (이하, "2-TNATA"로 약기함)을 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 본 발명의 화합물 P-1을 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 4,4'-N,N'-dicarbazole-biphenyl (이하, "CBP"로 약기함)을 호스트 물질로, tris(2-phenylpyridine)-iridium (이하, "Ir(ppy)3"으로 약기함)을 도판트 물질로 사용하여 90:10 중량비로 도핑하여 30 nm 두께로 진공증착하여 발광층을 형성하였다. 이어서 상기 발광층 상에 ((1,1'-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄 (이하, "BAlq"로 약기함)을 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄 (이하, "Alq3"로 약기함)을 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 I-2] 내지 [실시예 I-67] 그린유기전기발광소자 (정공수송층)
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 표 5에 기재된 바와 같이 본 발명의 화합물 P-2 내지 P-148 중 적어도 하나를 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 I-1]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 1을 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 1>
Figure PCTKR2016000533-appb-I000065
[비교예 I-2]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 2를 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 2>
Figure PCTKR2016000533-appb-I000066
[비교예 I-3]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 3을 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 3>
Figure PCTKR2016000533-appb-I000067
[비교예 I-4]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 4를 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 4>
Figure PCTKR2016000533-appb-I000068
[비교예 I-5]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 5를 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 5>
Figure PCTKR2016000533-appb-I000069
[비교예 I-6]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 비교화합물 6을 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 6>
Figure PCTKR2016000533-appb-I000070
본 발명의 실시예 I-1 내지 실시예 I-67 및 비교예 I-1 내지 비교예 I-6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 5와 같다.
[표 5]
Figure PCTKR2016000533-appb-I000071
Figure PCTKR2016000533-appb-I000072
Figure PCTKR2016000533-appb-I000073
상기 표 5의 결과로부터 알 수 있듯이, 본 발명의 화합물을 정공수송층 재료로 사용한 유기전기발광소자의 경우 비교화합물 1 내지 비교화합물 6을 정공수송층 재료로 사용한 유기전기발광소자보다 발광효율이 향상되었을 뿐만 아니라 수명 등이 현저히 개선되었다.
이와 같은 결과는 특히, 본 발명의 화합물과 비교화합물 2 내지 비교화합물 6의 비교를 통해 동일한 연결기일지라도 연결기의 결합위치에 따라 결과가 상이하게 나타나는 것을 보여준다.
카바졸과 아민기(-N(Ar2)(Ar3))를 연결해주는 연결기의 결합위치가 카바졸은 연결기의 1번 내지 4번 위치 중 어느 한 곳에 결합하고 아민기는 연결기의 5번 내지 8번 위치 중 어느 한 곳에 결합하는 화합물보다 카바졸과 아민기 모두 연결기의 1번 내지 4번 위치 중 어느 한 곳에 각각 결합하는 화합물일 경우가, 보다 깊은 HOMO 에너지 레벨과 높은 T1 값을 보였고, 이는 본 발명의 화합물이 비교화합물 2 내지 비교화합물 6에 비해 발광효율 및 수명에서 개선된 결과로 나타났다.
본 발명의 화합물과 같이 카바졸과 아민기가 모두 연결기의 1번 내지 4번 위치 중 어느 한 곳에 각각 결합하는 경우는 연결기의 결합위치를 통해 카바졸과 아민기 사이를 입체적으로 꺾인 형태로 만들어 컨쥬게이션 길이(conjugation length)가 짧아지고, 이로 인해 밴드 갭(band gap)이 넓어져 높은 T1 값을 가지게 된다. 따라서 본 발명의 화합물은 높은 T1 값으로 전자를 저지(blocking)하는 능력을 항상시킴과 동시에 깊은 HOMO 에너지 레벨로 인해 정공이 발광층으로 원활하게 수송되어 결과적으로 엑시톤이 발광층 내에 더욱 쉽게 생성되면서 효율이 향상되는 것으로 판단된다. 또한 높은 열적 안정성을 갖게 되어 이로 인해 수명이 늘어나는 것을 확인할 수 있다.
앞에서 설명한 특성인 깊은 HOMO 에너지 레벨, 높은 T1 값, 높은 열적 안정성 등을 종합해보면 카바졸과 아민기(-N(Ar2)(Ar3)) 사이에 있는 연결기의 결합위치에 따라 밴드 갭, 전기적 특성, 계면 특성 등이 크게 변화될 수 있다는 것을 보여주며 이는 소자의 성능향상에 주요 인자로 작용한다는 것을 확인할 수 있다. 또한 정공수송층의 경우에는 발광층(호스트)과의 상호관계를 파악해야 하는바, 유사한 코어를 사용하더라도 본 발명의 화합물이 사용된 정공수송층에서 나타내는 특징을 유추하는 것은 통상의 기술자라 하더라도 매우 어려울 것이다.
[실시예 II-1] 그린유기전기발광소자 (발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저 유리 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 N,N'-Bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (이하, "NPB"로 약기함)를 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 P-1을 20 nm의 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트 물질로, Ir(ppy)3을 도판트 물질로 사용하여 90:10 중량비로 도핑하여 30 nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3를 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 II-2] 내지 [실시예 II-65] 그린유기전기발광소자 (발광보조층)
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 표 6에 기재된 바와 같이 본 발명의 화합물 P-2 내지 P-148 중 적어도 하나를 사용한 점을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-1]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-2]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 2를 사용한 점을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-3]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 3을 사용한 점을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-4]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 4를 사용한 것을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-5]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 5를 사용한 것을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 II-6]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 6을 사용한 것을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 II-1 내지 실시예 II-65 및 비교예 II-1 내지 비교예 II-6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 6과 같다.
[표 6]
Figure PCTKR2016000533-appb-I000074
Figure PCTKR2016000533-appb-I000075
Figure PCTKR2016000533-appb-I000076
[실시예 III-1] 레드유기전기발광소자 (발광보조층)
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저 유리 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPB를 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 P-1을 20 nm의 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트 물질로, bis-(1-phenylisoquinolyl)iridium(Ⅲ)acetylacetonate (이하, "(piq)2Ir(acac)"로 약기함)을 도판트 물질로 사용하여 95:5 중량비로 도핑하여 30 nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3를 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 III-2] 내지 [실시예 III-92] 레드유기전기발광소자 (발광보조층)
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 표 7에 기재된 바와 같이 본 발명의 화합물 P-2 내지 P-148 중 적어도 하나를 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-1]
발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-2]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 2를 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-3]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 3을 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-4]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 4를 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-5]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 5를 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 III-6]
발광보조층 물질로 본 발명의 화합물 P-1 대신 상기 비교화합물 6을 사용한 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 III-1 내지 실시예 III-92, 비교예 III-1 및 비교예 III-6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 2500cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 그 측정 결과는 하기 표 7과 같다.
[표 7]
Figure PCTKR2016000533-appb-I000077
Figure PCTKR2016000533-appb-I000078
Figure PCTKR2016000533-appb-I000079
상기 표 6 및 표 7의 결과로부터 알 수 있듯이, 본 발명의 화합물을 발광보조층의 재료로 사용한 유기전기발광소자는 비교예 II-1 내지 비교예 II-6 및 비교예 III-1 내지 비교예 III-6의 유기전기발광소자에 비해 발광효율이 향상되고 수명이 현저히 개선되었다.
이와 같은 결과는 발광보조층을 형성하지 않은 소자보다 비교화합물 2 내지 비교화합물 6 및 본 발명의 화합물을 발광보조층으로 사용한 소자가 발광효율 및 수명이 향상된 것을 확인할 수 있으며, 그 중에서도 본 발명의 화합물이 발광효율과 수명 면에서 월등히 높은 결과를 나타내는 것을 확인 할 수 있다. 이는 카바졸과 아민기(-N(Ar2)(Ar3))를 연결해주는 연결기의 결합위치가 정공수송층 뿐만 아니라 발광보조층(녹색 인광, 적색 인광)에서도 소자의 성능향상에 주요인자로 작용하여 전하 균형(charge balance)을 증가시키고 효과적인 전자 저지(blocking) 역할을 수행하기 때문인 것으로 판단된다.
본 발명의 화합물 중에서 카바졸과 아민기(-N(Ar2)(Ar3))가 연결기인 플루오렌의 1번 내지 4번 위치에 각각 결합된 본 발명의 화합물을 발광보조층에 사용한 소자가 비교화합물을 발광보조층에 사용한 소자보다 발광효율과 수명이 개선된 것을 알 수 있으며, 그 중에서도 아민기의 질소(N)에 결합되는 치환기(Ar2 또는 Ar3)에 아릴기만 결합된 본 발명의 화합물을 발광보조층에 사용한 소자보다 아민기의 질소(N)에 결합되는 치환기(Ar2 또는 Ar3) 중 적어도 하나가 헤테로고리인 본 발명의 화합물을 발광보조층에 사용한 소자의 발광효율과 수명이 더 개선된 것을 확인할 수 있다.
구체적으로, 적색인광 유기전기발광소자에서 플루오렌을 연결기로 가지면서 아민기의 치환기가 모두 아릴기인 화합물 P-77을 발광보조층으로 사용했을 때보다 플루오렌을 연결기로 가지면서 아민기의 한쪽에 디벤조티오펜이 치환되고 다른 한쪽에 아릴기가 치환된 화합물 P-78을 발광보조층으로 사용했을 경우가 발광효율과 수명에서 모두 120% 정도 증가하는 것을 확인할 수 있다.
또한, 디벤조티오펜 또는 디벤조퓨란과 같은 헤테로고리 화합물의 1번 내지 4번 위치에 카바졸과 아민기가 각각 결합된 본 발명의 화합물을 발광보조층에 사용한 소자가 플루오렌을 연결기로 사용한 본 발명의 화합물이나 비교화합물을 발광보조층에 사용한 소자보다 발광효율과 수명이 현저히 개선된 것을 확인할 수 있다.
본 발명의 화합물 중에서도 상기와 같은 구조적 위치(연결기 또는 아민기)에 헤테로고리를 포함하는 화합물의 경우는 발광보조층 재료로 사용되어 보다 높은 T1값으로 인해 발광층에서 생성되는 여기자가 정공수송층으로 넘어오는 것을 방지하여 결과적으로 발광효율 및 수명을 향상시키는 것으로 판단된다.
아울러, 전술한 소자 제작의 평가 결과에서는 본 발명의 화합물을 정공수송층 및 발광보조층 중 한 층에만 적용한 소자 특성을 설명하였으나, 본 발명의 화합물을 정공수송층과 발광보조층 모두 적용하여 사용될 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 한다.

Claims (9)

  1. 하기 화학식 1로 표시되는 화합물:
    <화학식 1>
    Figure PCTKR2016000533-appb-I000080
    상기 화학식 1에서,
    X는 S, O 또는 C(Ra)(Rb)이며;
    상기 Ra 및 Rb는 서로 독립적으로 C6-C24의 아릴기; C1-C20의 알킬기; C2-C20의 알켄일기; 및 C1-C20의 알콕시기;로 이루어진 군에서 선택되며, 이때 Ra 및 Rb는 이들이 결합된 탄소(C)와 함께 서로 결합하여 스파이로 화합물을 형성할 수 있으며,
    Ar1 내지 Ar3은 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; 및 C6-C60의 방향족고리와 C3-C60의 지방족고리의 융합고리기;로 이루어진 군에서 선택되며,
    R1 내지 R4는 서로 독립적으로 i) 중수소; 삼중수소; 할로겐; 시아노기; 니트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕시기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되거나, 또는 ii) 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 R1 내지 R4는 상기 i)에서 정의된 것과 동일하며,
    m 및 o는 서로 독립적으로 0 내지 4의 정수 중에서 선택되며, 이들 각각이 2 이상의 정수인 경우 R1 및 R3은 각각 서로 동일하거나 상이하며,
    n은 0 내지 3의 정수 중에서 선택되며, n이 2 이상의 정수인 경우 R2는 서로 동일하거나 상이하며,
    p는 0 내지 2의 정수 중에서 선택되며, p가 2 인 경우 R4는 서로 동일하거나 상이하며,
    여기서, 상기 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 및 아릴옥시기 각각은 중수소, 할로겐, 실란기, 실록산기, 붕소기, 게르마늄기, 시아노기, 니트로기, C1-C20의 알킬싸이오기, C1-C20의 알콕시기, C1-C20의 알킬기, C2-C20의 알켄일기, C2-C20의 알킨일기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, 플루오렌일기, O, N S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기, C3-C20의 시클로알킬기, C7-C20의 아릴알킬기, 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
  2. 제 1항에 있어서,
    하기 화학식 중 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 2> <화학식 3>
    Figure PCTKR2016000533-appb-I000081
    Figure PCTKR2016000533-appb-I000082
    상기 화학식 2 및 화학식 3에서, X, Ar1 내지 Ar3, R1 내지 R4, m, n, o 및 p는 제 1항에서 정의된 것과 동일하다.
  3. 제 1항에 있어서,
    상기 Ar1 내지 Ar3 중 적어도 하나가 하기 화학식 1a로 표시되는 것을 특징으로 하는 화합물:
    <화학식 1a>
    Figure PCTKR2016000533-appb-I000083
    상기 화학식에서,
    Y는 S, O, C(Rc)(Rd) 또는 N(Re)이며;
    상기 Rc 내지 Re는 서로 독립적으로 C6-C24의 아릴기; C1-C20의 알킬기; C2-C20의 알켄일기; 및 C1-C20의 알콕시기;로 이루어진 군에서 선택되며, 이때 Rc 및 Rd는 이들이 결합된 탄소(C)와 함께 서로 결합하여 스파이로 화합물을 형성할 수 있으며,
    R5 및 R6은 서로 독립적으로 i) 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕시기; 및 C6-C30의 아릴옥시기;로 이루어진 군에서 선택되거나, 또는 ii) 이웃한 기끼리 서로 결합하여 적어도 하나의 고리를 형성할 수 있으며, 이때 고리를 형성하지 않은 R5 및 R6은 상기 i)에서 정의된 것과 동일하며,
    q는 0 내지 4의 정수 중에서 선택되며, q가 2 이상의 정수인 경우 R5는 각각 서로 동일하거나 상이하며,
    r은 0 내지 3의 정수 중에서 선택되며, r이 2 이상의 정수인 경우 R6은 각각 서로 동일하거나 상이하며,
    L은 단일결합; C6-C60의 아릴렌기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 2가 헤테로고리기; 플루오렌일렌기; 및 C3-C60의 지방족고리와 C6-C60의 방향족고리의 2가 융합고리기;로 이루어진 군에서 선택된다.
  4. 제 1항에 있어서,
    하기 화합물 중 하나인 것을 특징으로 하는 화합물:
    Figure PCTKR2016000533-appb-I000084
    Figure PCTKR2016000533-appb-I000085
    Figure PCTKR2016000533-appb-I000086
    Figure PCTKR2016000533-appb-I000087
    Figure PCTKR2016000533-appb-I000088
    Figure PCTKR2016000533-appb-I000089
    Figure PCTKR2016000533-appb-I000090
    Figure PCTKR2016000533-appb-I000091
    .
  5. 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 위치하는 유기물층;을 포함하는 유기전기소자에 있어서, 상기 유기물층은 제 1항의 화합물을 함유하는 것을 특징으로 하는 유기전기소자.
  6. 제 5항에 있어서,
    상기 유기물층의 정공주입층, 정공수송층, 발광보조층 및 발광층 중 적어도 하나의 층에 상기 화합물이 함유되며, 상기 화합물은 1종 단독 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 유기전기소자.
  7. 제 5항에 있어서,
    상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성되는 것을 특징으로 하는 유기전기소자.
  8. 제 5항의 유기전기소자를 포함하는 디스플레이장치; 및
    상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  9. 제 8항에 있어서,
    상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 하나인 것을 특징으로 하는 전자장치.
PCT/KR2016/000533 2015-01-29 2016-01-19 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2016122150A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150014379A KR101535606B1 (ko) 2015-01-29 2015-01-29 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR10-2015-0014379 2015-01-29

Publications (2)

Publication Number Publication Date
WO2016122150A2 true WO2016122150A2 (ko) 2016-08-04
WO2016122150A3 WO2016122150A3 (ko) 2016-10-06

Family

ID=53792457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000533 WO2016122150A2 (ko) 2015-01-29 2016-01-19 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (2)

Country Link
KR (1) KR101535606B1 (ko)
WO (1) WO2016122150A2 (ko)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018128A4 (en) * 2014-07-11 2016-12-28 Idemitsu Kosan Co COMPOUND, MATERIAL OF AN ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
US20180145265A1 (en) 2015-06-16 2018-05-24 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
CN108623545A (zh) * 2017-03-21 2018-10-09 北京绿人科技有限责任公司 一种有机化合物及其应用和一种有机电致发光器件
CN109134349A (zh) * 2018-09-05 2019-01-04 大连九信精细化工有限公司 一种制备芴并咔唑的方法
WO2019102292A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 ジベンゾ[c,g]カルバゾール誘導体、発光素子、発光装置、電子機器および照明装置
CN109879794A (zh) * 2017-12-04 2019-06-14 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109988134A (zh) * 2017-12-29 2019-07-09 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
US10790449B2 (en) 2015-06-16 2020-09-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
CN113135881A (zh) * 2020-01-17 2021-07-20 江苏三月光电科技有限公司 一种含二苯并呋喃的三芳胺类有机化合物及其应用
JP2022545596A (ja) * 2019-09-27 2022-10-28 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
CN116041334A (zh) * 2023-03-29 2023-05-02 吉林奥来德光电材料股份有限公司 一种蓝光发光辅助材料及其制备方法和有机电致发光器件
EP4083035A4 (en) * 2019-12-27 2024-03-06 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND, ORGANIC LIGHT-EMITTING DIODE COMPRISING SAME, AND COMPOSITION FOR ORGANIC LAYER OF ORGANIC LIGHT-EMITTING DIODE
TWI850600B (zh) 2020-12-21 2024-08-01 南韓商Lt素材股份有限公司 雜環化合物以及包括其之有機發光元件

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102359879B1 (ko) 2015-06-25 2022-02-10 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017099471A1 (ko) * 2015-12-08 2017-06-15 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102076884B1 (ko) * 2015-12-08 2020-02-13 주식회사 엘지화학 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102504581B1 (ko) 2016-02-23 2023-03-02 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10961230B2 (en) * 2016-03-03 2021-03-30 Merck Patent Gmbh Materials for organic electroluminescent devices
WO2017196081A1 (en) * 2016-05-11 2017-11-16 Sk Chemicals Co., Ltd. Compound for organic electroluminescent device and organic electroluminescent device comprising the same
KR102279196B1 (ko) * 2016-12-02 2021-07-19 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기발광소자
US11261176B2 (en) 2017-01-26 2022-03-01 Lg Chem, Ltd. Amine-based compound and organic light emitting device using the same
KR102530183B1 (ko) * 2017-10-23 2023-05-10 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN110343093A (zh) * 2018-04-02 2019-10-18 北京鼎材科技有限公司 二苯并咔唑化合物和有机电致发光器件
CN110669040A (zh) * 2019-09-26 2020-01-10 上海天马有机发光显示技术有限公司 化合物、显示面板和显示装置
KR20210079553A (ko) * 2019-12-20 2021-06-30 엘티소재주식회사 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR102564917B1 (ko) * 2020-12-21 2023-08-09 엘티소재주식회사 헤테로 고리 화합물, 이를 포함하는 유기전계발광소자, 및 유기물층용 조성물

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194042A (ja) * 2008-02-13 2009-08-27 Toyo Ink Mfg Co Ltd カルバゾリル基を含有する有機エレクトロルミネッセンス素子用電荷輸送材料およびその用途
KR20120122812A (ko) * 2011-04-29 2012-11-07 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
DE202013012401U1 (de) * 2012-07-23 2016-10-12 Merck Patent Gmbh Verbindungen und Organische Elektronische Vorrichtungen
JP6286033B2 (ja) * 2013-06-20 2018-02-28 ユニバーサル ディスプレイ コーポレイション 発光領域に正孔輸送性ホストを有する燐光有機発光デバイス

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3018128A4 (en) * 2014-07-11 2016-12-28 Idemitsu Kosan Co COMPOUND, MATERIAL OF AN ORGANIC ELECTROLUMINESCENT ELEMENT, ORGANIC ELECTROLUMINESCENT ELEMENT AND ELECTRONIC DEVICE
US10944057B2 (en) 2014-07-11 2021-03-09 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence devices, organic electroluminescence device, and electronic equipment
US10854822B2 (en) 2014-07-11 2020-12-01 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device
US10516112B2 (en) 2014-07-11 2019-12-24 Idemitsu Kosan Co., Ltd. Compound, organic electroluminescent element material, organic electroluminescent element, and electronic device
US10170707B2 (en) 2015-06-16 2019-01-01 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US10790449B2 (en) 2015-06-16 2020-09-29 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
US20180145265A1 (en) 2015-06-16 2018-05-24 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device
CN108623545A (zh) * 2017-03-21 2018-10-09 北京绿人科技有限责任公司 一种有机化合物及其应用和一种有机电致发光器件
WO2019102292A1 (ja) * 2017-11-24 2019-05-31 株式会社半導体エネルギー研究所 ジベンゾ[c,g]カルバゾール誘導体、発光素子、発光装置、電子機器および照明装置
CN111372917B (zh) * 2017-11-24 2024-06-04 株式会社半导体能源研究所 二苯并[c,g]咔唑衍生物、发光元件、发光装置、电子设备及照明装置
US11641777B2 (en) 2017-11-24 2023-05-02 Semiconductor Energy Laboratory Co., Ltd. Dibenzo[c,g]carbazole derivative, light-emitting device, light-emitting apparatus, electronic device, and lighting device
JP7242547B2 (ja) 2017-11-24 2023-03-20 株式会社半導体エネルギー研究所 ジベンゾ[c,g]カルバゾール誘導体、発光素子用材料、発光素子、電子機器、発光装置、及び照明装置
CN111372917A (zh) * 2017-11-24 2020-07-03 株式会社半导体能源研究所 二苯并[c,g]咔唑衍生物、发光元件、发光装置、电子设备及照明装置
JPWO2019102292A1 (ja) * 2017-11-24 2020-12-17 株式会社半導体エネルギー研究所 ジベンゾ[c,g]カルバゾール誘導体、発光素子、発光装置、電子機器および照明装置
CN109879794A (zh) * 2017-12-04 2019-06-14 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109988134A (zh) * 2017-12-29 2019-07-09 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109988134B (zh) * 2017-12-29 2024-04-02 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109134349A (zh) * 2018-09-05 2019-01-04 大连九信精细化工有限公司 一种制备芴并咔唑的方法
JP2022545596A (ja) * 2019-09-27 2022-10-28 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
JP7298947B2 (ja) 2019-09-27 2023-06-27 エルティー・マテリアルズ・カンパニー・リミテッド ヘテロ環化合物およびこれを含む有機発光素子
EP4083035A4 (en) * 2019-12-27 2024-03-06 LT Materials Co., Ltd. HETEROCYCLIC COMPOUND, ORGANIC LIGHT-EMITTING DIODE COMPRISING SAME, AND COMPOSITION FOR ORGANIC LAYER OF ORGANIC LIGHT-EMITTING DIODE
CN113135881A (zh) * 2020-01-17 2021-07-20 江苏三月光电科技有限公司 一种含二苯并呋喃的三芳胺类有机化合物及其应用
CN113135881B (zh) * 2020-01-17 2023-04-07 江苏三月科技股份有限公司 一种含二苯并呋喃的三芳胺类有机化合物及其应用
TWI850600B (zh) 2020-12-21 2024-08-01 南韓商Lt素材股份有限公司 雜環化合物以及包括其之有機發光元件
CN116041334A (zh) * 2023-03-29 2023-05-02 吉林奥来德光电材料股份有限公司 一种蓝光发光辅助材料及其制备方法和有机电致发光器件

Also Published As

Publication number Publication date
KR101535606B1 (ko) 2015-07-09
WO2016122150A3 (ko) 2016-10-06

Similar Documents

Publication Publication Date Title
WO2016122150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016167491A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020231197A1 (ko) 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2020116816A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016200070A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015194791A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015182872A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016148425A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003225A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016190600A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017095075A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016175533A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017043835A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020116822A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015130069A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003202A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2017010726A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2015115756A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014088284A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017119654A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021112403A1 (ko) 유기화합물을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2017030307A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014129764A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743628

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743628

Country of ref document: EP

Kind code of ref document: A2