WO2016148425A2 - 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2016148425A2
WO2016148425A2 PCT/KR2016/002300 KR2016002300W WO2016148425A2 WO 2016148425 A2 WO2016148425 A2 WO 2016148425A2 KR 2016002300 W KR2016002300 W KR 2016002300W WO 2016148425 A2 WO2016148425 A2 WO 2016148425A2
Authority
WO
WIPO (PCT)
Prior art keywords
group
mmol
formula
ring
sub
Prior art date
Application number
PCT/KR2016/002300
Other languages
English (en)
French (fr)
Other versions
WO2016148425A3 (ko
Inventor
변윤선
박정철
윤진호
최승원
김효진
최연희
이규민
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to CN201680015947.7A priority Critical patent/CN107406402B/zh
Priority to US15/558,805 priority patent/US10392359B2/en
Publication of WO2016148425A2 publication Critical patent/WO2016148425A2/ko
Publication of WO2016148425A3 publication Critical patent/WO2016148425A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • An organic electric element using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic layer is often made of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer.
  • Materials used as the organic material layer in the organic electric element may be classified into light emitting materials and charge transport materials such as hole injection materials, hole transport materials, electron transport materials, electron injection materials and the like according to their functions.
  • Efficiency, lifespan, and driving voltage are related to each other, and as efficiency increases, the driving voltage decreases relatively, and as the driving voltage decreases, crystallization of organic materials due to Joule heating generated during driving decreases.
  • the lifespan tends to increase.
  • simply improving the organic material layer does not maximize the efficiency. This is because a long life and high efficiency can be achieved at the same time when an optimal combination of energy level, T1 value, and intrinsic properties (mobility, interfacial properties, etc.) of each organic material layer is achieved.
  • a light emitting auxiliary layer (multiple hole transport layer) must exist between the hole transport layer and the light emitting layer, and different light emission according to each light emitting layer It is time to develop the auxiliary layer.
  • electrons are transferred from the electron transport layer to the light emitting layer, and holes are transferred from the hole transport layer to the light emitting layer to form recombination in the light emitting layer to form excitons.
  • positive polaron accumulates at the interface between the light emitting layer and the hole transport layer, resulting in interfacial deterioration, thereby reducing lifetime and efficiency.
  • surplus polaron in the light emitting layer attacks weak bonding of the light emitting material, and thus the light emitting material is deformed, resulting in a decrease in lifespan and efficiency and a decrease in color purity. have.
  • the light emitting auxiliary layer should exist between the hole transporting layer and the light emitting layer, and should be a material having a suitable HOMO value between the light emitting layer and the hole transporting layer in order to prevent the positive polaron from accumulating at the light emitting layer interface. In order to increase the balance, it must be a material having hole mobility within a suitable driving voltage range (in a ble element driving voltage range of a full device).
  • materials forming the organic material layer in the device such as a hole injection material, a hole transport material, a light emitting material, an electron transport material, an electron injection material, a light emitting auxiliary layer material, etc., are stable and efficient. Supported by materials must be preceded, and development of materials for the light emitting auxiliary layer and the hole transport layer is urgently required.
  • the present invention has been proposed to solve the above problems, and provides a compound having an efficient electron blocking ability and a hole transporting capacity, and at the same time using the compound, high luminous efficiency, low driving voltage, high heat resistance of the device It is an object of the present invention to provide a compound capable of improving color purity and lifespan, an organic electric element using the same, and an electronic device thereof.
  • the present invention provides a compound represented by the following formula.
  • the following formula represents a compound in which a core (dibenzofuran or dibenzothiophene) and two amine groups are bonded to a linking group, and at least one of R 1 to R 3 in Formula 1 below is Formula 2.
  • the present invention provides an organic electronic device using the compound represented by Formula 1 and an electronic device thereof.
  • the present invention by using a specific compound which defines the type of the linking group connected to the core, the type, the position and the number of the amine group bonded to the linking group as a material of the organic electric device, to achieve charge balance in the light emitting layer Due to the easy HOMO energy level and high T1 value, the luminous efficiency, heat resistance, color purity, lifespan, etc. of the organic electric element can be improved and the driving voltage can be lowered.
  • FIG. 1 is an exemplary view of an organic electroluminescent device according to the present invention.
  • first, second, A, B, (a), and (b) can be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. If a component is described as being “connected”, “coupled” or “connected” to another component, that component may be directly connected to or connected to that other component, but there may be another configuration between each component. It is to be understood that the elements may be “connected”, “coupled” or “connected”.
  • a component such as a layer, film, region, plate, etc.
  • it is not only when the other component is “on top of” but also another component in between. It is to be understood that this may also include cases.
  • a component is said to be “directly above” another part, it should be understood to mean that there is no other part in the middle.
  • halo or halogen as used herein is fluorine (F), bromine (Br), chlorine (Cl) or iodine (I) unless otherwise indicated.
  • alkyl or “alkyl group” has a single bond of 1 to 60 carbon atoms, unless otherwise indicated, and is a straight chain alkyl group, branched chain alkyl group, cycloalkyl (alicyclic) group, alkyl-substituted cyclo Radicals of saturated aliphatic functional groups, including alkyl groups, cycloalkyl-substituted alkyl groups.
  • alkenyl group or “alkynyl group”, unless stated otherwise, has a double or triple bond of 2 to 60 carbon atoms, and includes a straight or branched chain group, and is not limited thereto. It is not.
  • cycloalkyl refers to alkyl forming a ring having 3 to 60 carbon atoms, without being limited thereto.
  • alkoxyl group means an alkyl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 1 to 60, and is limited herein. It is not.
  • aryloxyl group or “aryloxy group” means an aryl group to which an oxygen radical is attached, and unless otherwise specified, has a carbon number of 6 to 60, but is not limited thereto.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R 'and R “are all hydrogen in the following structures, unless otherwise stated, and" Substituted fluorenyl group “or” substituted fluorenylene group “means that at least one of the substituents R, R ', and R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a carbon It includes the case of forming a compound by spying together.
  • aryl group and “arylene group” have a carbon number of 6 to 60 unless otherwise stated, but is not limited thereto.
  • the aryl group or arylene group includes monocyclic, ring aggregate, conjugated ring system, spiro compound and the like.
  • heterocyclic group includes not only aromatic rings, such as “heteroaryl groups” or “heteroarylene groups,” but also non-aromatic rings, and each carbon number includes one or more heteroatoms unless otherwise specified. It means a ring of 2 to 60, but is not limited thereto.
  • heteroatom refers to N, O, S, P or Si unless otherwise indicated, and heterocyclic groups are monocyclic, ring aggregates, conjugated multiple ring systems, spies, including heteroatoms. Means a compound or the like.
  • Heterocyclic groups may also include rings comprising SO 2 in place of the carbon forming the ring.
  • a “heterocyclic group” includes the following compounds.
  • ring includes monocyclic and polycyclic rings, includes hydrocarbon rings as well as heterocycles including at least one heteroatom, and includes aromatic and nonaromatic rings.
  • polycyclic includes ring assemblies, fused multiple ring systems and spiro compounds, such as biphenyl, terphenyl, and the like, including aromatics as well as nonaromatics, hydrocarbons
  • the ring as well includes heterocycles comprising at least one heteroatom.
  • ring assemblies means that two or more ring systems (single or conjugated ring systems) are directly connected to each other through a single bond or a double bond and directly between such rings. It means that the number of linkages is one less than the total number of ring systems in this compound. Ring aggregates may have the same or different ring systems directly connected to each other via a single bond or a double bond.
  • conjugated multiple ring systems refers to a covalently fused ring form of at least two atoms, including a ring system in which two or more hydrocarbons are fused together and at least one heteroatom. And heterocyclic systems having at least one conjugated form. These conjugated several ring systems can be aromatic rings, heteroaromatic rings, aliphatic rings or combinations of these rings.
  • spiro compound has a "spiro union", and a spiro linkage means a linkage formed by two rings sharing one atom only.
  • atoms shared by the two rings are called spiro atoms, and according to the number of spiro atoms in a compound, they are respectively referred to as 'monospyro-', 'diespyro-' and 'trispyro-' It is called a compound.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxycarbonyl group means a carbonyl group substituted with an alkoxy group
  • an alkenyl group substituted with an arylcarbonyl group is used herein.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • substituted in the term “substituted or unsubstituted” refers to deuterium, halogen, amino groups, nitrile groups, nitro groups, C 1 -C 20 alkyl groups, C 1 -C 20 alkoxy group, C 1 -C 20 alkylamine group, C 1 -C 20 alkylthiophene group, C 6 -C 20 arylthiophene group, C 2 -C 20 alkenyl group, C 2 -C 20 alkynyl, C 3 -C 20 cycloalkyl group, C 6 -C 20 aryl group, of a C 6 -C 20 aryl group substituted with a heavy hydrogen, C 8 -C 20 aryl alkenyl group, a silane group, a boron Substituted by at least one substituent selected from the group consisting of a group, a germanium group, and a C 2 -C 20
  • the group name corresponding to the aryl group, arylene group, heterocyclic group, etc. exemplified in each symbol and examples of the substituents in this specification may describe 'the name of the group reflecting the singer', but is described as 'the parent compound name'. You may.
  • the monovalent ⁇ group '' is phenanthryl (group)
  • the divalent group is described by distinguishing a singer such as phenanthryl (group).
  • pyrimidine it is described as 'pyrimidine' irrespective of the valence, or in the case of monovalent pyrimidinyl (group), in the case of divalent pyrimidinylene (group) or the like, Name ”.
  • the substituent R 1 when a is an integer of 0, the substituent R 1 is absent, when a is an integer of 1, one substituent R 1 is bonded to any one of carbons forming the benzene ring, and a is an integer of 2 or 3 are each bonded as follows, where R 1 may be the same or different from each other, and when a is an integer from 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while the indication of hydrogen bonded to the carbon forming the benzene ring Is omitted.
  • FIG. 1 is an exemplary view of an organic electric device according to an embodiment of the present invention.
  • an organic electric device 100 may include a first electrode 120, a second electrode 180, and a first electrode 120 formed on a substrate 110.
  • An organic material layer including the compound according to the present invention is provided between the two electrodes 180.
  • the first electrode 120 may be an anode (anode)
  • the second electrode 180 may be a cathode (cathode)
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic layer may include a hole injection layer 130, a hole transport layer 140, a light emitting layer 150, an electron transport layer 160, and an electron injection layer 170 on the first electrode 120 in sequence.
  • at least one of these layers may be omitted, or may further include a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 151, an electron transport auxiliary layer, a buffer layer 141, and the like. It may also serve as a hole blocking layer.
  • the organic electronic device further includes a protective layer or a light efficiency improving layer formed on one surface of the at least one surface of the first electrode and the second electrode opposite to the organic material layer. can do.
  • Compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 130, a hole transport layer 140, a light emitting auxiliary layer 151, an electron transport auxiliary layer, an electron transport layer 160, an electron injection layer ( 170), or may be used as a material such as a light efficiency improving layer, or a host or dopant material of the light emitting layer 150.
  • the compound of the present invention may be used as the light emitting layer 150, hole transport layer 140 and / or light emitting auxiliary layer 151 material, preferably the hole transport layer 140 and / or light emitting auxiliary layer 151 material Can be used as
  • band gaps, electrical characteristics, and interface characteristics may vary depending on which substituents are bonded at which positions, and thus, selection of cores and combinations of sub-substituents bonded thereto may be performed.
  • long life and high efficiency can be simultaneously achieved when an optimal combination of energy level and T 1 value and intrinsic properties (mobility, interfacial properties, etc.) between organic layers is achieved.
  • a light emitting auxiliary layer is formed between the hole transport layer and the light emitting layer, and in each light emitting layer (R, G, B), Therefore, it is necessary to develop different light emitting auxiliary layers.
  • the light emitting auxiliary layer it is difficult to infer the characteristics of the organic material layer used even if a similar core is used, since the correlation between the hole transport layer and the light emitting layer (host) must be understood.
  • the hole transport layer and / or the light emitting auxiliary layer are formed using the compound represented by Formula 1 to optimize the energy level and T 1 value between the organic material layers, the intrinsic properties (mobility, interfacial properties, etc.) of the organic materials, and the like. Therefore, the life and efficiency of the organic electric element can be improved at the same time.
  • the organic electroluminescent device may be manufactured using various deposition methods. It may be manufactured using a deposition method such as PVD or CVD.
  • the anode 120 is formed by depositing a metal or conductive metal oxide or an alloy thereof on a substrate, and the hole injection layer 130 thereon.
  • the organic material layer including a hole transport layer 140, a light emitting layer 150, an electron transport layer 160 and an electron injection layer 170 By forming an organic material layer including a hole transport layer 140, a light emitting layer 150, an electron transport layer 160 and an electron injection layer 170, and then depositing a material that can be used as the cathode 180 thereon have.
  • the light emitting auxiliary layer 151 may be further formed between the hole transport layer 140 and the light emitting layer 150
  • an electron transport auxiliary layer may be further formed between the light emitting layer 150 and the electron transport layer 160.
  • the organic material layer is a solution or solvent process (e.g., spin coating process, nozzle printing process, inkjet printing process, slot coating process, dip coating process, roll-to-roll process, doctor blading) using various polymer materials. It can be produced in fewer layers by methods such as ding process, screen printing process, or thermal transfer method. Since the organic material layer according to the present invention may be formed in various ways, the scope of the present invention is not limited by the forming method.
  • the organic electric element according to an embodiment of the present invention may be a top emission type, a bottom emission type or a double-sided emission type according to the material used.
  • WOLED White Organic Light Emitting Device
  • Various structures for white organic light emitting devices mainly used as backlight devices have been proposed and patented. Representatively, a side-by-side method in which R (Red), G (Green), and B (Blue) light emitting parts are mutually planarized, and a stacking method in which R, G, and B light emitting layers are stacked up and down. And a color conversion material (CCM) method using photo-luminescence of an inorganic phosphor by using electroluminescence by a blue (B) organic light emitting layer and light therefrom. May also be applied to these WOLEDs.
  • CCM color conversion material
  • the organic electroluminescent device may be one of an organic electroluminescent device, an organic solar cell, an organic photosensitive member, an organic transistor, a monochromatic or white illumination device.
  • Another embodiment of the present invention may include a display device including the organic electric element of the present invention described above, and an electronic device including a control unit for controlling the display device.
  • the electronic device may be a current or future wired or wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote controller, a navigation device, a game machine, various TVs, and various computers.
  • X is O or S.
  • R 1 to R 3 are each independently hydrogen; heavy hydrogen; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; C 6 -C 30 aryloxy group; And it may be selected from the group consisting of formula (2).
  • at least one of R 1 to R 3 is represented by Formula 2.
  • R 1 to R 3 is an aryl group, it may be preferably an aryl group of C 6 -C 30 , more preferably may be an aryl group of C 6 -C 12 , if it is an alkyl group preferably C 1 -C It may be an alkyl group of 10 , more preferably an alkyl group of C 1 -C 4 , in the case of an alkoxyl group, preferably an alkoxyl group of C 1 -C 10 , more preferably an alkoxyl group of C 1 -C 4 have.
  • R 1 to R 3 may illustratively be hydrogen, phenyl, phenylpyrimidine, methoxy, ethoxy, cyano, methyl and the like.
  • R 4 to R 7 are each independently hydrogen; heavy hydrogen; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; And C 6 -C 30 It may be selected from the group consisting of an aryloxy group, R 4 to R 7 may be optionally bonded to each other adjacent groups to form a ring. However, the dibenzofuryl group and the dibenzothienyl group are excluded from R 4 to R 7 .
  • R 4 to R 7 is an aryl group, preferably an aryl group of C 6 -C 30 , more preferably an aryl group of C 6 -C 18 , and in the case of a heterocyclic group, preferably C 2 -C 30 Heterocyclic group, more preferably a C 2 -C 9 heterocyclic group, in the case of an alkyl group, preferably an alkyl group such as C 1 -C 10 , more preferably an alkyl group of C 1 -C 4 R 4 to R 7 may be, for example, hydrogen, deuterium, tert-butyl, phenyl, naphthyl, terphenyl, phenanthryl, quinolyl, isoquinolyl, and the like.
  • R 4 and R 5 , R 5 and R 6, and R 6 and R 7 may be bonded to each other This means that they can form a ring with the benzene ring to which they are bonded.
  • at least one pair of neighboring groups may form a ring independently of each other, for example, R 4 and R 5 may form a ring, and the remaining R 5 to R 7 may not form a ring.
  • the ring formed by bonding of R 4 and R 5 , R 5 and R 6, or R 6 and R 7 to each other is usually a 5 to 8 membered ring, preferably a 5 or 6 membered ring, more preferably a 6 membered ring.
  • the ring formed may be an aromatic ring or an aliphatic ring, and in the case of an aromatic ring, may be an aromatic hydrocarbon ring or an aromatic heterocycle, but preferably an aromatic hydrocarbon ring.
  • adjacent groups may be linked to alkylene or alkenylene to form an alicyclic ring, a monocyclic ring or a polycyclic aromatic ring.
  • the ring formed by combining R 4 and R 5 , R 5 and R 6, or R 6 and R 7 with each other may be a benzene ring, and together with the benzene ring to which they are bonded, they form naphthalene, phenanthrene, or the like. can do.
  • L 1 to L 5 are each independently a single bond; C 6 -C 60 arylene group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; Fluorenylene groups; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; And it may be selected from the group consisting of C 1 -C 60 aliphatic hydrocarbon group, each of them (except single bond) is deuterium; halogen; Silane group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; Import alkylthio of C 1 -C 20; An alkoxyl group of C 1 -C 20 ; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; Aryl group of C 6 -C 20
  • L 1 to L 5 is an arylene group, preferably an arylene group of C 6 -C 30 , more preferably an arylene group of C 6 -C 12 , for example, phenylene, naphthylene, biphenylene And the like.
  • L 1 to L 5 is a heterocyclic group, preferably a C 2 -C 30 heterocyclic group, more preferably a C 2 -C 12 heterocyclic group, for example pyridine, benzothiophene, benzo Furan, dibenzothiophene, dibenzofuran, and the like, and when L 1 to L 5 are fluorenylene groups, 9,9-dimethyl- 9H -fluorenylene.
  • Ar 1 to Ar 4 are each independently a C 6 -C 60 aryl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; Fluorenyl group; A fused ring group of an aromatic ring of C 6 -C 60 and an aliphatic ring of C 3 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; And it may be selected from the group consisting of C 6 -C 30 aryloxy group.
  • Ar 1 to Ar 4 is an aryl group, preferably an aryl group of C 6 -C 30 , more preferably an aryl group of C 6 -C 18 , for example phenyl, biphenyl, terphenyl, naphthyl , Pyrenyl, phenanthryl, triphenylenyl and the like.
  • Ar 1 to Ar 4 are fluorenyl groups, 9,9-dimethyl-9H-fluorenyl, 9,9-diphenyl-9H-fluorenyl, 9,9'-spirobifluorenyl, Spirobenzofluorene-7,9'-fluorenyl and the like.
  • Ar 1 to Ar 4 is a heterocyclic group, it may be preferably a heterocyclic group of C 2 -C 30 , more preferably a heterocyclic group of C 2 -C 12 , for example pyridine, isoquinoline, benzoquinoline , Carbazole, benzocarbazole, benzothiophene, dibenzothiophene, benzonaphthothiophene, dibenzofuran, trimethylsilane, triphenylsilane, and the like.
  • Ar 1 to Ar 4 When Ar 1 to Ar 4 is an alkyl group, it may be preferably an alkyl group of C 1 -C 10 , more preferably an alkyl group of C 1 -C 4 , and may be, for example, methyl or the like.
  • Ar 1 to Ar 4 When Ar 1 to Ar 4 is an alkenyl group, it may be preferably an alkenyl group of C 1 -C 10 , more preferably an alkenyl group of C 1 -C 4 , and for example, may be ethenyl, propenyl or the like. .
  • Ar 1 to Ar 4 is an alkoxyl group, it may be preferably an alkoxyl group of C 1 -C 10 , more preferably an alkoxyl group of C 1 -C 4 , for example methoxyl, butoxyl, tert- Butoxyl and the like.
  • each symbol in Formula 1 is an aryl group, fluorenyl group, heterocyclic group, fused ring group, alkyl group, alkenyl group, alkynyl group, alkoxy group, or aryloxy group, each of these are deuterium; halogen; A silane group unsubstituted or substituted with a C 1 -C 20 alkyl group or C 6 -C 20 aryl group; Siloxane groups; Boron group; Germanium group; Cyano group; Nitro group; Import alkylthio of C 1 -C 20; An alkoxyl group of C 1 -C 20 ; An alkyl group of C 1 -C 20 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; Aryl group of C 6 -C 20 ; C 6 -C 20 aryl group substituted with deuterium; Fluorenyl group; C 2 -C 20 heterocyclic group including at
  • R 1 to R 3 of Chemical Formula 1 is a compound represented by Chemical Formula 2, a kind of amine group substituted with a linking group connected to a core (benzofuran or benzothiophene) having hole characteristics, and a bonding position
  • a kind of amine group substituted with a linking group connected to a core (benzofuran or benzothiophene) having hole characteristics, and a bonding position
  • Formula 1 when R 1 , R 2 or R 3 is Formula 2, Formula 1 may be represented by one of the following Formula 3 to Formula 5.
  • R 4 to R 7 may combine with each other to form a ring. At least one pair of neighboring groups may combine with each other to form an aromatic ring, particularly a benzene ring. It can be represented by one of the following. Specifically, Chemical Formula 6 is adjacent to R 4 and R 5 in Chemical Formula 1, Chemical Formula 7 is adjacent to R 5 and R 6 , Chemical Formula 8 is adjacent to R 6 and R 7 , and Chemical Formula 9 is adjacent to R 4 . When R 5 and adjacent R 6 and R 7 are bonded to each other to form a benzene ring, when adjacent groups form a benzene ring, they may form naphthalene or phenanthrene together with the benzene ring to which they are bonded.
  • R 1 to R 7 are the same as those defined in Chemical Formula 1, and R 8 to R 10 are each independently of deuterium; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; And it may be selected from the group consisting of C 6 -C 30 aryloxy group.
  • m, n and o are each independently an integer of 0 to 4, and when each of them is an integer of 2 or more, R 8 to R 10 may be the same or different from each other.
  • R 8 to R 10 may be the same or different from each other.
  • m is 3, a plurality of R 8 may be the same or different from each other.
  • Chemical Formula 2 may be represented by one of the following Chemical Formulas 10 to 14.
  • Ar 2 to Ar 4 , L 1 to L 5 are the same as defined in Formula 2, Y 1 to Y 4 are independently of each other S, O, C (R a ) (R b ) Or N (R c ), wherein R a to R c are each independently of the C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; And C 6 -C 30 It can be selected from the group consisting of an aryloxy group, optionally R a and R b
  • R 11 to R 18 are each independently of deuterium; Tritium; halogen; Cyano group; Nitro group; C 6 -C 60 aryl group; Fluorenyl group; C 2 -C 60 heterocyclic group including at least one heteroatom selected from the group consisting of O, N, S, Si and P; A fused ring group of an aliphatic ring of C 3 -C 60 and an aromatic ring of C 6 -C 60 ; An alkyl group of C 1 -C 50 ; Alkenyl groups of C 2 -C 20 ; An alkynyl group of C 2 -C 20 ; An alkoxyl group of C 1 -C 30 ; C 6 -C 30 aryloxy group; And combinations thereof may be selected from the group.
  • R 11 to R 18 may optionally be adjacent to each other at least one of R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , and R 18 may be bonded to each other. At least one ring may be formed, for example, R 11 and R 12 may form a ring and the remaining R 13 to R 18 may not form a ring.
  • the ring formed by combining R 13 , R 14 , R 15 , R 16 , R 17 or R 18 with each other is usually a 5-8 membered ring, but is preferably a 5 or 6 membered ring, more preferably 6 It is torus.
  • the ring formed may be an aromatic ring or an aliphatic ring, and in the case of an aromatic ring, may be an aromatic hydrocarbon ring or an aromatic heterocycle, but preferably an aromatic hydrocarbon ring.
  • adjacent groups may be linked to alkylene or alkenylene to form an alicyclic ring, a monocyclic ring or a polycyclic aromatic ring.
  • the ring formed by combining R 13 , R 14 , R 15 , R 16 , R 17 , or R 18 with each other may be a benzene ring, and together with the benzene ring to which they are attached, they form naphthalene or the like. can do.
  • p, r, t and v are each independently an integer from 0 to 3, when each of them is an integer of 2 or more, R 11 , R 13 , R 15 and R 17 are each the same or different from each other, q , s, u and w are each independently an integer from 0 to 4, and when each of them is an integer of 2 or more, R 12 , R 14 , R 16 and R 18 may be the same or different from each other.
  • the compound represented by Formula 1 may be one of the following compounds.
  • the present invention is a first electrode; Second electrode; And an organic material layer formed between the first electrode and the second electrode, wherein the organic material layer includes a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer.
  • the organic material layer includes a hole injection layer, a hole transport layer, a light emitting auxiliary layer, a light emitting layer, an electron transport auxiliary layer, an electron transport layer, and an electron injection layer.
  • At least one of the layers, and the organic layer may include at least one of the compounds. That is, the organic material layer may be formed of one compound alone or a mixture of two or more compounds represented by Chemical Formula 1.
  • R 1 to R 7 , Ar 1 to Ar 4 , L 1 to L 5 are the same as defined in Chemical Formula 1 and Chemical Formula 2, and A, B, and Z are each independently selected from R 1 to R 3 . A, B and Z may be different from each other.
  • Sub 1 of Scheme 1 may be synthesized by the reaction route of Schemes 2 to 5 below, but is not limited thereto.
  • Sub 1-I-8 (14.46 g, 54.95 mmol) was dissolved in THF (190 ml) in a round bottom flask, and then 1,3-bis (4,4,5,5-tetramethyl-1,3,2-dioxaborolan -2-yl) benzene (19.95 g, 60.44 mmol), Pd (PPh 3 ) 4 (2.10 g, 1.81 mmol), NaOH (7.25 g, 181.33 mmol), water (95 ml) were added and stirred at 80 ° C.
  • the compound belonging to Sub 1 may be the following compound, but is not limited thereto.
  • Table 1 shows FD-MS values of compounds belonging to Sub 1.
  • Sub 2 of Scheme 1 may be synthesized by the reaction route of Scheme 15, but is not limited thereto.
  • the starting material diphenylamine (25.74 g, 152.11 mmol) was dissolved in toluene (880 ml) in a round bottom flask, followed by 1,3,5-tribromobenzene (62.25 g, 197.74 mmol), Pd 2 (dba) 3 (4.18 g, 4.56 mmol), PPh 3 (3.19 g, 12.17 mmol), NaO t -Bu (58.48 g, 608.44 mmol) were added and stirred at 80 ° C.
  • N-phenylphenanthren-9-amine 32.67 g, 121.30 mmol
  • 1,3,5-tribromobenzene 49.64 g, 157.69 mmol
  • Pd 2 (dba) 3 3.33 g, 3.64 mmol
  • PPh 3 2.55 g, 9.70 mmol
  • NaO t -Bu 46.63 g, 485.19 mmol
  • toluene 700 ml
  • N-phenyldibenzo [b, d] thiophen-2-amine (66.57 g, 241.75 mmol), 1,3,5-tribromobenzene (98.93 g, 314.27 mmol), Pd 2 (dba) 3 (6.64 g, 7.25 mmol), PPh 3 (5.07 g, 19.34 mmol), NaO t -Bu (92.94 g, 966.99 mmol), toluene (1390 ml) were obtained using the above Sub 2-I-1 synthesis (61.56 g (yield: 50%)).
  • N-phenyl- [1,1'-biphenyl] -4-amine 22.81 g, 92.98 mmol
  • Sub 2-I-24 61.56 g, 120.87 mmol
  • Pd 2 (dba) 3 (2.55 g, 2.79 mmol
  • PPh 3 (1.95 g, 7.44 mmol
  • NaO t -Bu 35.75 g, 371.92 mmol
  • toluene 540 ml
  • N-phenyl- [1,1'-biphenyl] -4-amine 14.28 g, 58.21 mmol
  • Sub 2-I-36 39.29 g, 75.67 mmol
  • Pd 2 (dba) 3 (1.60 g, 1.75 mmol
  • PPh 3 (1.22 g, 4.66 mmol
  • NaO t -Bu 22.38 g, 232.84 mmol
  • toluene 340 ml
  • N- (naphthalen-2-yl) naphthalen-1-amine (15.28 g, 56.73 mmol), Sub 2-I-47 (37.11 g, 73.75 mmol), Pd 2 (dba) 3 (1.56 g, 1.70 mmol), PPh 3 (1.19 g, 4.54 mmol), NaO t -Bu (21.81 g, 226.93 mmol) and toluene (330 ml) were obtained using the Sub 2-1 synthesis method to yield 20.01 g (yield: 51%) of the product.
  • N, 7-diphenyldibenzo [b, d] furan-3-amine (16.92 g, 50.45 mmol), Sub 2-I-1 (26.44 g, 65.58 mmol), Pd 2 (dba) 3 (1.39 g, 1.51 mmol) , PPh 3 (1.06 g, 4.04 mmol), NaO t -Bu (19.39 g, 201.79 mmol) and toluene (290 ml) were obtained using the Sub 2-1 synthesis to obtain 17.58 g (yield: 53%) of the product.
  • the compound belonging to Sub 2 may be the following compound, but is not limited thereto.
  • Table 2 shows FD-MS values of compounds belonging to Sub 2.
  • Sub 1-1 (6.83 g, 23.23 mmol) was dissolved in THF (80 ml) in a round bottom flask, then Sub 2-1 (11.42 g, 23.23 mmol) and Pd (PPh 3 ) 4 (0.81 g, 0.70 mmol) , NaOH (2.79 g, 69.69 mmol), water (40 ml) were added and stirred at 80 ° C. After the reaction was completed, the mixture was extracted with CH 2 Cl 2 and water, the organic layer was dried over MgSO 4 and concentrated, and the resulting compound was purified by silicagel column and recrystallized to give the product 10.08 g (yield: 75%).
  • the reaction of Sub 1 and Sub 2-> Final Products in Scheme 1 and the Sub 1-I-> Sub 1 reaction in Scheme 3 is based on the Suzuki cross-coupling reaction
  • the Sub 1-I-> Sub 1 reaction in Scheme 2 Is based on the Miyaura boration reaction
  • the starting material-> Sub 1-I reaction in Scheme 4 is based on the intramolecular acid-induced cyclization reaction.
  • the starting material-> Sub 1-I reaction in Scheme 5 is based on the Pd (II) -catalyzed oxidative cyclization reaction
  • the starting material-> Sub 2-I reaction and Sub 2-I-> Sub 2 reaction in Scheme 18 Is based on the Buchwald-Hartwig cross coupling reaction. The reactions will proceed even if substituents not specifically specified in these are attached.
  • Example I-1 Green Organic Light Emitting Diode ( Hole transport layer )
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a hole transport layer material.
  • vacuum 4,4 ', 4''-Tris [2-naphthyl (phenyl) amino] triphenylamine hereinafter abbreviated as "2-TNATA"
  • ITO layer anode
  • compound P-1 of the present invention was vacuum deposited to a thickness of 60 nm on the hole injection layer to form a hole transport layer.
  • CBP 4,4'-N, N'-dicarbazole-biphenyl
  • Ir (ppy) 3 tris (2-phenylpyridine) -iridium
  • BAlq (1,1'-bisphenyl) -4-oleito) bis (2-methyl-8-quinolineoleito) aluminum
  • BAlq 3 tris (8-quinolinol) aluminum
  • LiF which is an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • Example I-2 to [ Example I-58] Green Organic Light Emitting Diode ( Hole transport layer )
  • An organic electroluminescent device was manufactured according to the same method as Example I-1 except for using the compounds P-2 to P-96 of the present invention shown in Table 4 below instead of the compound P-1 of the present invention as a hole transport layer material. It was.
  • An organic electroluminescent device was manufactured in the same manner as in Example I-1, except that Comparative Compound 1 to Compound 5 shown in Table 4 were used instead of the compound P-1 of the present invention as a hole transport layer material. .
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples I-1 to I-58 and Comparative Examples I-1 to I-5 of the present invention.
  • the electroluminescence (EL) characteristics were measured at 650, and the T95 life was measured using a lifespan measuring instrument manufactured by McScience Inc. at 5000 cd / m 2 reference luminance. The measurement results are shown in Table 4 below.
  • Comparative Compounds 2 to 5 which have a structure in which one amine group is bonded to a dibenzofuran or dibenzothiophene core with a linking group (including direct bonds) than Comparative Compound 1, which is generally used as a hole transporting layer, are NPB.
  • the compound of the present invention having a structure in which two amine groups are bonded to a dibenzofuran or dibenzothiophene core by a linking group has a higher luminous efficiency and higher than Comparative Compounds 1 to 5. Lifespan.
  • one amine group is attached to the hetero ring core as a linking group (including a direct bond) during device deposition.
  • the packing density is higher than that of Comparative Compounds 2 to 5, which are bonded structures, resulting in less Joule heating generated due to overvoltage, which is considered to have thermal stability. This prevents excess electrons from passing from the light emitting layer to the hole transport layer, resulting in increased color purity and reduced thermal damage due to light emission at the hole transport layer interface.
  • Example II-1 Green Organic Light Emitting Diode ( Luminous auxiliary layer )
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer is formed by vacuum depositing 2-TNATA with a thickness of 60 nm on the ITO layer (anode) formed on the glass substrate, and then N, N'-Bis (1-naphthalenyl) -N on the hole injection layer.
  • NPB N'-bis-phenyl- (1,1'-biphenyl) -4,4'-diamine
  • the compound P-1 of the present invention was vacuum-deposited on the hole transport layer to a thickness of 20 nm to form a light emitting auxiliary layer, and then, on the light emitting auxiliary layer, CBP was used as a host material, and Ir (ppy) 3 was plated. It was used as a material and doped at a weight ratio of 90:10 to form a light emitting layer by vacuum deposition to a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF which is an alkali metal halide
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • Example II-2 to [ Example II-62] Green Organic Light Emitting Diode ( Luminous auxiliary layer )
  • An organic electroluminescent device was manufactured according to the same method as Example II-1 except for using the compounds P-2 to P-96 of the present invention shown in Table 5 below instead of the compound P-1 of the present invention as a light-emitting auxiliary layer material. Produced.
  • Comparative Example II-1 was manufactured in the same manner as in Example II-1 except that no light emitting auxiliary layer was formed, and Comparative Examples II-2 to II-6 were light emitting auxiliary layer materials.
  • Example II-1 except that Comparative Compound 4, Comparative Compound 5, Comparative Compound 6, Comparative Compound 7, and Comparative Compound 8 shown in Table 5 were used instead of Compound P-1 of the present invention. In the same manner as in the organic electroluminescent device was manufactured.
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices of Examples II-1 to II-62 and Comparative Examples II-1 to II-6 of the present invention.
  • the electroluminescence (EL) characteristics were measured at 650, and the T95 lifetime was measured using a lifespan measuring instrument manufactured by McScience Inc. at a luminance of 5000 cd / m 2 , and the measurement results are shown in Table 5 below.
  • Example III-1 Red organic electroluminescent device ( Luminous auxiliary layer )
  • An organic electroluminescent device was manufactured according to a conventional method using the compound of the present invention as a light emitting auxiliary layer material.
  • a hole injection layer is formed by vacuum depositing 2-TNATA with a thickness of 60 nm on an ITO layer (anode) formed on a glass substrate, and then a hole transport layer is formed by vacuum depositing NPB with a thickness of 60 nm on the hole injection layer. It was.
  • the compound P-1 of the present invention was vacuum-deposited to a thickness of 20 nm on the hole transport layer to form a light emitting auxiliary layer, and then CBP as a host material on the light emitting auxiliary layer, bis- (1-phenylisoquinolyl) Iridium (III) acetylacetonate (hereinafter abbreviated as "(piq) 2 Ir (acac)”) was used as a dopant material and doped at a weight ratio of 95: 5 to form a light emitting layer by vacuum deposition to a thickness of 30 nm.
  • a hole blocking layer was formed by vacuum depositing BAlq to a thickness of 10 nm on the light emitting layer, and an electron transport layer was formed by vacuum depositing Alq 3 to a thickness of 40 nm on the hole blocking layer.
  • LiF which is an alkali metal halide
  • LiF was deposited to a thickness of 0.2 nm to form an electron injection layer
  • Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic electroluminescent device.
  • Example III-2 to [ Example III-48] Red organic electroluminescent device ( Luminous auxiliary layer )
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1, except for using the compounds P-2 to P-96 of the present invention shown in Table 6 as a light emitting auxiliary layer material. Produced.
  • Comparative Example III-1 was manufactured in the same manner as in Example III-1 except that the light emitting auxiliary layer was not formed, and Comparative Examples III-2 to Comparative Examples III-6 were Except for using the Comparative Compound 4, Comparative Compound 5, Comparative Compound 6, Comparative Compound 7, Comparative Compound 8 shown in Table 6 instead of Compound P-1 of the present invention as a light-emitting auxiliary layer material
  • An organic electroluminescent device was manufactured in the same manner as in Example III-1.
  • PR- Photoresearch Co., Ltd. was fabricated by applying a forward bias DC voltage to the organic electroluminescent devices prepared in Examples III-1 to III-48, Comparative Examples III-1 and Comparative Examples III-6 of the present invention.
  • the electroluminescence (EL) characteristics were measured at 650, and the T95 life was measured using a lifespan measuring instrument manufactured by McScience Inc. at 2500 cd / m 2 reference luminance. The measurement results are shown in Table 6 below.
  • the organic electroluminescent device using the compound of the present invention as a material of the light emitting auxiliary layer has a luminous efficiency compared to the organic electroluminescent devices of Comparative Examples II-1 to III-5. This has been improved and the service life has been significantly improved.
  • the compound of the present invention used as the light emitting auxiliary layer material has a deep HOMO energy level and smoothly transports holes to the light emitting layer, thereby preventing the accumulation of positive polaron at the light emitting layer interface, thereby reducing interfacial degradation and at the same time in the light emitting layer. It can be seen that the charge balance is increased, thereby improving luminous efficiency and lifespan.
  • the band gap, electrical properties, and interfacial properties can be greatly changed depending on the number of amine groups substituted in the heterocyclic core and the linkage. It can be seen that this is a major factor in improving device performance.
  • the evaluation results of the above-described device fabrication described device characteristics in which the compound of the present invention is applied to only one of the hole transport layer and the light emitting auxiliary layer, but the compound of the present invention may be used by applying both the hole transport layer and the light emitting auxiliary layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 화학식 1로 표시되는 화합물을 제공한다. 또한, 제 1전극, 제 2전극 및 상기 제 1전극과 상기 제 2전극 사이의 유기물층을 포함하는 유기전기소자를 제공하며, 상기 유기물층은 화학식 1로 표시되는 화합물을 포함한다. 유기전기소자의 유기물층에 화학식 1로 표시되는 화합물이 포함되면, 구동전압이 감소되고, 발광효율, 색순도 및 수명 등이 향상될 수 있다.

Description

유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광재료와 전하수송 재료, 예컨대 정공주입 재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
현재 휴대용 디스플레이 시장은 대면적 디스플레이로 그 크기가 증가하고 있는 추세이며, 이로 인해 기존 휴대용 디스플레이에서 요구하던 소비전력보다 더 큰 소비전력이 요구되고 있다. 따라서, 배터리라는 제한적인 전력 공급원을 가지고 있는 휴대용 디스플레이 입장에서는 소비전력이 중요한 요소가 되었고, 효율과 수명 문제 또한 반드시 해결해야 하는 중요한 요소이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생되는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 늘어나는 경향을 나타낸다. 하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
또한 최근 유기전기발광소자에 있어서 정공 수송층에서의 발광문제 및 구동전압 문제를 해결하기 위해서 정공 수송층과 발광층 사이에 발광보조층(다층의 정공수송층)이 존재하여야 하며, 각각의 발광층에 따른 서로 다른 발광 보조층의 개발이 필요한 시점이다.
일반적으로 전자수송층에서 발광층으로 전자(electron)가 전달되고 정공(hole)이 정공수송층에서 발광층으로 전달되어 발광층 내에서 재조합(recombination)이 이루어져 엑시톤(exciton)을 형성하게 된다. 하지만 낮은 구동전압을 만들기 위해 정공 이동도(hole mobility)가 빠른 물질을 사용할 경우 양성 폴라론(Polaron)이 발광층과 정공수송층 계면에 쌓이게 되며, 이로 인해 계면열화가 발생하여, 수명 및 효율을 감소시키며, 또한 발광층 내 전하균형(Charge Balance)이 맞지 않아 발광층 내 잉여 폴라론(Polaron)이 발광물질의 약한 결합(bonding)을 공격하여 발광물질이 변형되므로 수명 및 효율 감소, 색순도 저하 등의 현상을 나타내고 있다.
따라서 발광보조층은 상기 정공수송층과 발광층 사이에 존재하여 양성 폴라론(Polaron)이 발광층 계면에 쌓이는 것을 방지하기 위해 발광층과 정공수송층 사이의 알맞은 HOMO 값을 갖는 물질이어야 하며, 발광층 내 전하균형(Charge Balance)을 증가시키기 위해, 적당한 구동전압 범위 내(full device의 ble 소자 구동전압 범위 내) 정공 이동도(hole mobility)를 갖는 물질이어야 한다.
하지만 이는 단순히 발광 보조층 물질의 코어에 대한 구조적 특성으로 이루어질 수 없으며, 발광 보조층 물질의 코어 및 sub-치환기의 특성 그리고 발광보조층과 정공수송층, 발광보조층과 발광층 간의 알맞은 조합이 이루어졌을 때 고효율 및 고수명의 소자가 구현될 수 있는 것이다.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하며 특히 발광보조층과 정공수송층의 재료에 대한 개발이 절실히 요구되고 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 제안된 것으로, 효율적인 전자저지능력 및 정공수송능력을 갖는 화합물을 제공함과 동시에, 이러한 화합물을 이용하여 소자의 높은 발광효율, 낮은 구동전압, 고내열성, 색순도 및 수명 등을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 그 전자장치를 제공하는 것을 목적으로 한다.
일 측면에서, 본 발명은 하기 화학식으로 표시되는 화합물을 제공한다. 하기 화학식은 코어(디벤조퓨란 또는 디벤조티오펜)와 2개의 아민기가 연결기로 결합된 화합물을 나타내며, 하기 화학식 1의 R1 내지 R3 중 적어도 하나는 하기 화학식 2이다.
<화학식 1> <화학식 2>
Figure PCTKR2016002300-appb-I000001
다른 측면에서, 본 발명은 상기 화학식 1로 표시되는 화합물을 이용한 유기전기소자 및 그 전자장치를 제공한다.
본 발명에 따르면, 코어에 연결되는 연결기의 종류와, 연결기에 결합되는 아민기의 종류, 결합위치 및 개수 등을 한정한 특정 화합물을 유기전기소자의 재료로 이용함으로써, 발광층 내에 전하균형을 이루기에 용이한 호모(HOMO) 에너지 레벨과 높은 T1 값 등으로 인해, 유기전기소자의 발광효율, 내열성, 색순도, 수명 등을 향상시킬 수 있고 구동전압을 낮출 수 있다.
도 1은 본 발명에 따른 유기전기발광소자의 예시도이다.
[부호의 설명]
100: 유기전기소자 110: 기판
120: 제 1전극 130: 정공주입층
140: 정공수송층 141: 버퍼층
150: 발광층 151: 발광보조층
160: 전자수송층 170: 전자주입층
180: 제 2전극
이하, 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명한다.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
또한, 층, 막, 영역, 판 등의 구성 요소가 다른 구성 요소 "위에" 또는 "상에" 있다고 하는 경우, 이는 다른 구성 요소 "바로 위에" 있는 경우뿐만 아니라 그 중간에 또 다른 구성 요소가 있는 경우도 포함할 수 있다고 이해되어야 할 것이다. 반대로, 어떤 구성 요소가 다른 부분 "바로 위에" 있다고 하는 경우에는 중간에 또 다른 부분이 없는 것을 뜻한다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다.
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "할로알킬기" 또는 "할로겐알킬기"는 다른 설명이 없는 한 할로겐으로 치환된 알킬기를 의미한다.
본 발명에 사용된 용어 "알켄일기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.
Figure PCTKR2016002300-appb-I000002
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 포함한다.
본 발명에 사용된 용어 "헤테로고리기"는 "헤테로아릴기" 또는 "헤테로아릴렌기"와 같은 방향족 고리뿐만 아니라 비방향족 고리도 포함하며, 다른 설명이 없는 한 각각 하나 이상의 헤테로원자를 포함하는 탄소수 2 내지 60의 고리를 의미하나 여기에 제한되는 것은 아니다. 본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타내며, 헤테로고리기는 헤테로원자를 포함하는 단일고리형, 고리집합체, 접합된 여러 고리계, 스파이로 화합물 등을 의미한다.
또한 "헤테로고리기"는, 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2016002300-appb-I000003
본 발명에서 사용된 용어 "고리"는 단일환 및 다환을 포함하며, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함하고, 방향족 및 비방향족 고리를 포함한다.
본 발명에서 사용된 용어 "다환"은 바이페닐, 터페닐 등과 같은 고리 집합체(ring assemblies), 접합된(fused) 여러 고리계 및 스파이로 화합물을 포함하며, 방향족뿐만 아니라 비방향족도 포함하고, 탄화수소고리는 물론 적어도 하나의 헤테로원자를 포함하는 헤테로고리를 포함한다.
본 발명에서 사용된 용어 "고리 집합체(ring assemblies)"는 둘 또는 그 이상의 고리계(단일고리 또는 접합된 고리계)가 단일결합이나 또는 이중결합을 통해서 서로 직접 연결되어 있고 이와 같은 고리 사이의 직접 연결의 수가 이 화합물에 들어 있는 고리계의 총 수보다 1개가 적은 것을 의미한다. 고리 집합체는 동일 또는 상이한 고리계가 단일결합이나 이중결합을 통해 서로 직접 연결될 수 있다.
본 발명에서 사용된 용어 "접합된 여러 고리계"는 적어도 두개의 원자의 공유하는 접합된(fused) 고리 형태를 의미하며, 둘 이상의 탄화수소류의 고리계가 접합된 형태 및 적어도 하나의 헤테로원자를 포함하는 헤테로고리계가 적어도 하나 접합된 형태 등을 포함한다. 이러한 접합된 여러 고리계는 방향족고리, 헤테로방향족고리, 지방족 고리 또는 이들 고리의 조합일 수 있다.
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕시카르보닐기의 경우 알콕시기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1-C20의 알킬기, C1-C20의 알콕시기, C1-C20의 알킬아민기, C1-C20의 알킬티오펜기, C6-C20의 아릴티오펜기, C2-C20의 알켄일기, C2-C20의 알킨일기, C3-C20의 시클로알킬기, C6-C20의 아릴기, 중수소로 치환된 C6-C20의 아릴기, C8-C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
본 명세서에서 각 기호 및 그 치환기의 예로 예시되는 아릴기, 아릴렌기, 헤테로고리기 등에 해당하는 '기 이름'은 '가수를 반영한 기의 이름'을 기재할 수도 있지만, '모체화합물 명칭'으로 기재할 수도 있다. 예컨대, 아릴기의 일종인 '페난트렌'의 경우, 1가의 '기'는 '페난트릴(기)'로 2가의 기는 '페난트릴렌(기)' 등과 같이 가수를 구분하여 기의 이름을 기재할 수도 있지만, 가수와 상관없이 모체 화합물 명칭인 '페난트렌'으로 기재할 수도 있다. 유사하게, 피리미딘의 경우에도, 가수와 상관없이 '피리미딘'으로 기재하거나, 1가인 경우에는 피리미딘일(기), 2가의 경우에는 피리미딘일렌(기) 등과 같이 해당 가수의 '기의 이름'으로 기재할 수도 있다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2016002300-appb-I000004
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2016002300-appb-I000005
도 1은 본 발명의 일 실시예에 따른 유기전기소자에 대한 예시도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 유기전기소자(100)는 기판(110) 상에 형성된 제 1전극(120), 제 2전극(180) 및 제 1전극(120)과 제 2전극(180) 사이에 본 발명에 따른 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(120)은 애노드(양극)이고, 제 2전극(180)은 캐소드(음극)일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(120) 상에 순차적으로 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함할 수 있다. 이때, 이들 층 중 적어도 하나가 생략되거나, 정공저지층, 전자저지층, 발광보조층(151), 전자수송보조층, 버퍼층(141) 등을 더 포함할 수도 있고, 전자수송층(160) 등이 정공저지층의 역할을 할 수도 있을 것이다.
또한, 미도시하였지만, 본 발명의 일 실시예에 따른 유기전기소자는 제 1전극과 제 2전극 중 적어도 일면 중 상기 유기물층과 반대되는 일면에 형성된 보호층 또는 광효율 개선층(Capping layer)을 더 포함할 수 있다.
상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(130), 정공수송층(140), 발광보조층(151), 전자수송보조층, 전자수송층(160), 전자주입층(170), 광효율개선층 등의 재료로 사용되거나, 발광층(150)의 호스트 또는 도펀트 재료로 사용될 수 있을 것이다. 예컨대, 본 발명의 화합물은 발광층(150), 정공수송층(140) 및/또는 발광보조층(151) 재료로 사용될 수 있으며, 바람직하게는 정공수송층(140) 및/또는 발광보조층(151) 재료로 사용될 수 있다.
한편, 동일한 모핵일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합에 대한 연구가 필요하며, 특히 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
이미 설명한 것과 같이, 일반적으로 유기전기 발광소자에 있어 정공수송층에서의 발광 문제를 해결하기 위해서는 정공수송층과 발광층 사이에 발광보조층이 형성하는 것이 바람직하며, 각각의 발광층(R, G, B)에 따른 서로 다른 발광보조층의 개발이 필요하다.
한편, 발광보조층의 경우 정공수송층 및 발광층(호스트)과의 상호관계를 파악해야하므로 유사한 코어를 사용하더라도 사용되는 유기물층이 달라지면 그 특징을 유추하기는 매우 어려울 것이다.
따라서, 본 발명에서는 화학식 1로 표시되는 화합물을 사용하여 정공수송층 및/또는 발광보조층을 형성함으로써 각 유기물층 간의 에너지 레벨 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등을 최적화하여 유기전기소자의 수명 및 효율을 동시에 향상시킬 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 다양한 증착법(deposition)을 이용하여 제조될 수 있을 것이다. PVD나 CVD 등의 증착 방법을 사용하여 제조될 수 있는데, 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극(120)을 형성하고, 그 위에 정공주입층(130), 정공수송층(140), 발광층(150), 전자수송층(160) 및 전자주입층(170)을 포함하는 유기물층을 형성한 후, 그 위에 음극(180)으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 또한, 정공수송층(140)과 발광층(150) 사이에 발광보조층(151)을, 발광층(150)과 전자수송층(160) 사이에 전자수송보조층을 추가로 더 형성할 수 있다.
또한, 유기물층은 다양한 고분자 소재를 사용하여 증착법이 아닌 용액 공정 또는 솔벤트 프로세스(solvent process), 예컨대 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정, 롤투롤 공정, 닥터 블레이딩 공정, 스크린 프린팅 공정, 또는 열 전사법 등의 방법에 의하여 더 적은 수의 층으로 제조할 수 있다. 본 발명에 따른 유기물층은 다양한 방법으로 형성될 수 있으므로, 그 형성방법에 의해 본 발명의 권리범위가 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 유기전기소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
WOLED(White Organic Light Emitting Device)는 고해상도 실현이 용이하고 공정성이 우수한 한편, 기존의 LCD의 칼라필터 기술을 이용하여 제조될 수 있는 이점이 있다. 주로 백라이트 장치로 사용되는 백색 유기발광소자에 대한 다양한 구조들이 제안되고 특허화되고 있다. 대표적으로, R(Red), G(Green), B(Blue) 발광부들을 상호평면적으로 병렬배치(side-by-side) 방식, R, G, B 발광층이 상하로 적층되는 적층(stacking) 방식이 있고, 청색(B) 유기발광층에 의한 전계발광과 이로부터의 광을 이용하여 무기형광체의 자발광(photo-luminescence)을 이용하는 색변환물질(color conversion material, CCM) 방식 등이 있는데, 본 발명은 이러한 WOLED에도 적용될 수 있을 것이다.
또한, 본 발명의 일 실시예에 따른 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 단색 또는 백색 조명용 소자 중 하나일 수 있다.
본 발명의 다른 실시예는 상술한 본 발명의 유기전기소자를 포함하는 디스플레이장치와, 이 디스플레이장치를 제어하는 제어부를 포함하는 전자장치를 포함할 수 있다. 이때, 전자장치는 현재 또는 장래의 유무선 통신단말일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자장치를 포함한다.
이하, 본 발명의 일 측면에 따른 화합물에 대하여 설명한다.
본 발명의 일 측면에 따른 화합물은 하기 화학식 1로 표시된다.
<화학식 1> <화학식 2>
Figure PCTKR2016002300-appb-I000006
상기 화학식 1 및 2에서 각 기호는 아래와 같이 정의된다.
화학식 1에서, X는 O 또는 S이다.
R1 내지 R3는 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴옥시기; 및 화학식 2로 이루어진 군에서 선택될 수 있다. 단, R1 내지 R3 중 적어도 하나는 상기 화학식 2이다.
R1 내지 R3가 아릴기인 경우에는 바람직하게는 C6-C30의 아릴기일 수 있고, 더욱 바람직하게는 C6-C12의 아릴기일 수 있으며, 알킬기인 경우에는 바람직하게는 C1-C10의 알킬기, 더욱 바람직하게는 C1-C4의 알킬기일 수 있고, 알콕실기인 경우에는 바람직하게는 C1-C10의 알콕실기, 더욱 바람직하게는 C1-C4의 알콕실기일 수 있다. R1 내지 R3는 예시적으로 수소, 페닐, 페닐피리미딘, 메톡시, 에톡시, 시아노, 메틸 등일 수 있다.
R4 내지 R7은 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택될 수 있으며, R4 내지 R7는 선택적으로 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있다. 단, R4 내지 R7에서 다이벤조퓨릴기 및 다이벤조싸이엔일기는 제외된다.
R4 내지 R7가 아릴기인 경우에는 바람직하게는 C6-C30의 아릴기, 더욱 바람직하게는 C6-C18의 아릴기일 수 있고, 헤테로고리기인 경우에는 바람직하게는 C2-C30의 헤테로고리기, 더욱 바람직하게는 C2-C9의 헤테로고리기일 수 있고, 알킬기인 경우에는 바람직하게는 C1-C10 등의 알킬기, 보다 바람직하게는 C1-C4의 알킬기일 수 있으며, R4 내지 R7는 예시적으로 수소, 중수소, tert-부틸, 페닐, 나프틸, 터페닐, 페난트릴, 퀴놀릴, 이소퀴놀릴 등일 수 있다.
'R4 내지 R7이 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있다'는 것은, R4와 R5끼리, R5와 R6끼리 및 R6과 R7끼리 중 적어도 한쌍이 서로 결합하여 이들이 결합된 벤젠환과 함께 고리를 형성할 수 있는 것을 의미한다. 이때, 각 이웃한 기끼리 중 적어도 한쌍의 기끼리 서로 독립적으로 고리를 형성할 수 있으므로, 예컨대 R4와 R5끼리는 고리를 형성하고 나머지 R5 내지 R7은 고리를 형성하지 않을 수 있다.
R4와 R5끼리, R5와 R6끼리 또는 R6과 R7끼리 서로 결합하여 형성되는 고리는 통상 5 내지 8원환이지만, 바람직하게는 5 또는 6원환, 보다 바람직하게는 6원환이다. 이때, 형성된 고리는 방향족환 또는 지방족환일 수 있고, 방향족환인 경우 방향족 탄화수소환 또는 방향족 복소환일 수 있도 있지만, 바람직하게는 방향족 탄화수소환이다. 또한, 이웃한 기끼리 알킬렌 또는 알케닐렌으로 연결되어 지환족 고리, 단일환 또는 다환의 방향족 고리를 형성할 수도 있다. 바람직하게는, R4와 R5끼리, R5와 R6끼리 또는 R6과 R7끼리 서로 결합하여 형성되는 고리는 벤젠환일 수 있으며, 이들이 결합된 벤젠링과 함께 나프탈렌, 페난트렌 등을 형성할 수 있다.
상기 화학식 2에서, L1 내지 L5는 서로 독립적으로 단일결합; C6-C60의 아릴렌기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일렌기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 C1-C60의 지방족 탄화수소기로 이루어진 군에서 선택될 수 있고, 이들 각각(단일결합 제외)은 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다.
L1 내지 L5가 아릴렌기인 경우 바람직하게는 C6-C30의 아릴렌기, 보다 바람직하게는 C6-C12의 아릴렌기일 수 있고, 예시적으로 페닐렌, 나프틸렌, 바이페닐렌 등일 수 있다. L1 내지 L5가 헤테로고리기인 경우, 바람직하게는 C2-C30의 헤테로고리기, 더욱 바람직하게는 C2-C12의 헤테로고리기일 수 있고, 예시적으로 피리딘, 벤조싸이오펜, 벤조퓨란, 다이벤조싸이오펜, 다이벤조퓨란 등일 수 있으며, L1 내지 L5가 플루오렌일렌기인 경우, 9,9-다이메틸-9H-플루오렌일렌일 수 있다.
Ar1 내지 Ar4는 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; C6-C60의 방향족 고리와 C3-C60의 지방족 고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택될 수 있다.
Ar1 내지 Ar4가 아릴기인 경우, 바람직하게는 C6-C30의 아릴기, 더욱 바람직하게는 C6-C18의 아릴기일 수 있고, 예시적으로 페닐, 바이페닐, 터페닐, 나프틸, 파이렌일, 페난트릴, 트리페닐렌일 등일 수 있다. Ar1 내지 Ar4가 플루오렌일기인 경우, 9,9-다이메틸-9H-플루오렌일, 9,9-다이페닐-9H-플루오렌일, 9,9'-스파이로바이플루오렌일, 스파이로벤조플루오렌-7,9'-플루오렌일 등일 수 있다. Ar1 내지 Ar4가 헤테로고리기인 경우, 바람직하게는 C2-C30의 헤테로고리기, 더욱 바람직하게는 C2-C12의 헤테로고리기일 수 있고, 예시적으로 피리딘, 이소퀴놀린, 벤조퀴놀린, 카바졸, 벤조카바졸, 벤조싸이오펜, 다이벤조싸이오펜, 벤조나프토싸이오펜, 다이벤조퓨란, 트리메틸실레인, 트리페닐실레인 등일 수 있다. Ar1 내지 Ar4가 알킬기인 경우, 바람직하게는 C1-C10의 알킬기, 더욱 바람직하게는 C1-C4의 알킬기일 수 있고, 예시적으로 메틸 등일 수 있다. Ar1 내지 Ar4가 알켄일기인 경우, 바람직하게는 C1-C10의 알켄일기, 더욱 바람직하게는 C1-C4의 알켄일기일 수 있고, 예시적으로 에텐일, 프로펜일 등일 수 있다. Ar1 내지 Ar4가 알콕실기인 경우, 바람직하게는 C1-C10의 알콕실기, 더욱 바람직하게는 C1-C4의 알콕실기일 수 있고, 예시적으로 메톡실, 부톡실, tert-부톡실 등일 수 있다.
상기 화학식 1에서 각 기호가 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 또는 아릴옥시기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있고, 이들 각 치환기는 더 치환될 수도 있는데, 예컨대 알킬기로 치환된 아릴기인 경우, 치환기인 알킬기는 알켄일아릴알콕실기(예:
Figure PCTKR2016002300-appb-I000007
)로 더 치환될 수 있다.
상기 화학식 1의 R1 내지 R3 중 적어도 하나가 상기 화학식 2로 표현되는 화합물인 경우, 정공특성을 가지는 코어(벤조퓨란 또는 벤조티오펜)와 연결되는 연결기에 치환되는 아민기의 종류, 결합위치 및 개수에 따라 에너지 준위(HOMO, LUMO), T1 값, 열적 안정성, 정공 이동도의 차이가 발생한다.
상기 화학식 1에서, R1, R2 또는 R3 가 화학식 2인 경우 상기 화학식 1은 하기 화학식 3 내지 화학식 5 중 하나로 표시될 수 있다.
<화학식 3> <화학식 4>
Figure PCTKR2016002300-appb-I000008
<화학식 5>
Figure PCTKR2016002300-appb-I000009
상기 화학식 3 내지 화학식 5에서, X, R1 내지 R7, Ar1 내지 Ar4, 및 L1 내지 L5 는 화학식 1 및 화학식 2에서 정의된 것과 같다.
화학식 1에서, R4 내지 R7은 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있는데, 적어도 한쌍의 이웃한 기끼리 서로 결합하여 방향족 고리, 특히 벤젠링을 형성할 경우 하기 화학식 6 내지 화학식 9 중 하나로 표시될 수 있다. 구체적으로 하기 화학식 6은 화학식 1에서 이웃한 R4와 R5끼리, 화학식 7은 이웃한 R5와 R6끼리, 화학식 8은 이웃한 R6과 R7끼리, 화학식 9는 이웃한 R4와 R5끼리 및 이웃한 R6과 R7끼리 서로 결합하여 벤젠링을 형성한 경우이며, 이웃한 기끼리 벤젠링을 형성할 경우 이들이 결합된 벤젠링과 함께 나프탈렌 또는 페난트렌을 형성할 수 있다.
<화학식 6> <화학식 7>
Figure PCTKR2016002300-appb-I000010
<화학식 8> <화학식 9>
Figure PCTKR2016002300-appb-I000011
상기 화학식 6 내지 화학식 9에서, X, R1 내지 R7은 화학식 1에서 정의된 것과 동일하며, R8 내지 R10은 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택될 수 있다. 또한, 상기 화학식에서, m, n 및 o는 서로 독립적으로 0 내지 4의 정수이며, 이들 각각이 2 이상의 정수인 경우 R8 내지 R10은 각각 서로 동일하거나 상이할 수 있다. 예컨대, m이 3인 경우 복수의 R8은 서로 동일하거나 상이할 수 있다.
바람직하게는, 상기 화학식 2는 하기 화학식 10 내지 14 중 하나로 표시될 수 있다.
<화학식 10> <화학식 11>
Figure PCTKR2016002300-appb-I000012
<화학식 12> <화학식 13>
Figure PCTKR2016002300-appb-I000013
<화학식 14>
Figure PCTKR2016002300-appb-I000014
상기 화학식 10 내지 화학식 14에서, Ar2 내지 Ar4, L1 내지 L5는 화학식 2에서 정의된 것과 동일하며, Y1 내지 Y4는 서로 독립적으로 S, O, C(Ra)(Rb) 또는 N(Rc)이고, 이때 Ra 내지 Rc는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택될 수 있고, 선택적으로 Ra 및 Rb는 서로 결합하여 이들이 결합된 탄소와 함께 스파이로 화합물을 형성할 수 있는데, 예시적으로 9,9'-스파이로바이플루오렌을 형성할 수 있다.
또한, 상기 화학식에서, R11 내지 R18은 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴옥시기; 및 이들의 조합으로 이루어진 군에서 선택될 수 있다. 또는, R11 내지 R18은 선택적으로 이웃한 R11끼리, R12끼리, R13끼리, R14끼리, R15끼리, R16끼리, R17끼리 및 R18끼리 중 적어도 한쌍이 서로 결합하여 적어도 하나의 고리를 형성할 수 있는데, 예컨대 R11과 R12끼리는 고리를 형성하고 나머지 R13 내지 R18은 고리를 형성하지 않을 수 있다.
R13끼리, R14끼리, R15끼리, R16끼리, R17끼리 또는 R18끼리 서로 결합하여 형성되는 고리는 통상 5 내지 8원환이지만, 바람직하게는 5 또는 6원환, 보다 바람직하게는 6원환이다. 이때, 형성된 고리는 방향족환 또는 지방족환일 수 있고, 방향족환인 경우 방향족 탄화수소환 또는 방향족 복소환일 수 있도 있지만, 바람직하게는 방향족 탄화수소환이다. 또한, 이웃한 기끼리 알킬렌 또는 알케닐렌으로 연결되어 지환족 고리, 단일환 또는 다환의 방향족 고리를 형성할 수도 있다. 바람직하게는, R13끼리, R14끼리, R15끼리, R16끼리, R17끼리 또는 R18끼리 서로 결합하여 형성하는 고리는 벤젠환일 수 있으며, 이들이 결합된 벤젠링과 함께 나프탈렌 등을 형성할 수 있다.
상기 화학식에서, p, r, t 및 v는 서로 독립적으로 0 내지 3의 정수이며, 이들 각각이 2 이상의 정수인 경우, R11, R13, R15 및 R17은 각각 서로 동일하거나 상이하며, q, s, u 및 w는 서로 독립적으로 0 내지 4의 정수이며, 이들 각각이 2 이상의 정수인 경우, R12, R14, R16 및 R18은 각각 서로 동일하거나 상이할 수 있다.
구체적으로, 화학식 1로 표시되는 화합물은 하기 화합물 중 하나일 수 있다.
Figure PCTKR2016002300-appb-I000015
Figure PCTKR2016002300-appb-I000016
Figure PCTKR2016002300-appb-I000017
Figure PCTKR2016002300-appb-I000018
Figure PCTKR2016002300-appb-I000019
Figure PCTKR2016002300-appb-I000020
Figure PCTKR2016002300-appb-I000021
본 발명의 다른 측면에서, 본발명은 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 형성된 유기물층;을 포함하는 유기전기소자를 제공하며, 이때 상기 유기물층 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나이며, 이러한 유기물층에는 상기 화합물 중 적어도 하나가 포함될 수 있다. 즉, 유기물층은 상기 화학식 1로 표시되는 화합물 1종 단독 화합물 또는 2종 이상의 혼합물로 형성될 수 있다.
이하에서, 본 발명에 따른 화학식 1로 표시되는 화합물의 합성예 및 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명이 하기의 실시예로 한정되는 것은 아니다.
합성예
본 발명에 따른 화학식 1로 표시되는 화합물(final products)은 하기 반응식 1과 같이 Sub 1과 Sub 2를 반응시켜 합성되나, 이에 한정되는 것은 아니다.
<반응식 1>
Figure PCTKR2016002300-appb-I000022
X, R1 내지 R7, Ar1 내지 Ar4, L1 내지 L5 는 상기 화학식 1 및 화학식 2에서 정의된 것과 동일하며, A, B, Z는 서로 독립적으로 상기 R1 내지 R3 중에서 선택되는 하나이고, A와 B와 Z는 각각 서로 상이할 수 있다.
I. Sub 1의 합성
상기 반응식 1의 Sub 1은 하기 반응식 2 내지 반응식 5의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 2> L1이 단일결합인 경우
Figure PCTKR2016002300-appb-I000023
<반응식 3> L1이 단일결합이 아닌 경우
Figure PCTKR2016002300-appb-I000024
<반응식 4> X가 S인 경우
Figure PCTKR2016002300-appb-I000025
<반응식 5> X가 O인 경우
Figure PCTKR2016002300-appb-I000026
Sub 1에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub 1-1 합성예
<반응식 6>
Figure PCTKR2016002300-appb-I000027
(1) Sub 1-I-1 합성
출발물질인 3-bromo-[1,1'-biphenyl]-2-ol (32.42 g, 130.15 mmol)를 둥근바닥플라스크에 Pd(OAc)2 (2.92 g, 13.01 mmol), 3-nitropyridine (1.62 g, 13.01 mmol)과 함께 넣고 C6F6 (195ml), DMI (130ml)로 녹인 후, tert-butyl peroxybenzoate (50.56 g, 260.30 mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 15.76 g (수율: 49%)를 얻었다.
(2) Sub 1-1 합성
상기 Sub 1-I-1 (15.76 g, 63.78 mmol)를 둥근바닥플라스크에 DMF (320ml)로 녹인 후에, Bis(pinacolato)diboron (17.82 g, 70.16 mmol), Pd(dppf)Cl2 (1.56 g, 1.91 mmol), KOAc (18.78 g, 191.35 mmol)를 첨가하고 90℃에서 교반하였다. 반응이 완료되면 증류를 통해 DMF를 제거하고 CH2Cl2와 물로 추출하였다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 를 생성물 15.38 g (수율: 82%)를 얻었다.
2. Sub 1-8 합성예
<반응식 7>
Figure PCTKR2016002300-appb-I000028
(1) Sub 1-I-8 합성
출발물질인 3-bromo-2-(methylsulfinyl)-1,1'-biphenyl (20.03 g, 67.85 mmol)를 둥근바닥플라스크에 triflic acid (90ml, 1017.82 mmol)와 함께 넣고 상온에서 24시간 동안 교반한 뒤, pyridine 수용액 (1190ml, pyridine : H2O = 1 : 5)을 천천히 적가하고 30분 동안 환류 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 14.46 g (수율: 81%)를 얻었다.
(2) Sub 1-8 합성
상기 Sub 1-I-8 (14.46 g, 54.95 mmol)를 둥근바닥플라스크에 THF (190ml)로 녹인 후에, 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (19.95 g, 60.44 mmol), Pd(PPh3)4 (2.10 g, 1.81 mmol), NaOH (7.25 g, 181.33 mmol), 물 (95ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 13.37 g (수율: 63%)을 얻었다.
3. Sub 1- 10합성예
<반응식 8>
Figure PCTKR2016002300-appb-I000029
(1) Sub 1-I-10 합성
출발물질인 4-bromo-2-(methylsulfinyl)-1,1'-biphenyl (46.25 g, 156.68 mmol)에 triflic acid (208ml, 2350.18 mmol), pyridine 수용액 (2745ml, pyridine : H2O = 1 : 5)을 상기 Sub 1-I-8 합성법을 사용하여 생성물 35.87 g (수율: 87%)를 얻었다.
(2) Sub 1-10 합성
상기 Sub 1-I-10 (15.91 g, 60.46 mmol)에 Bis(pinacolato)diboron (16.89 g, 66.51 mmol), Pd(dppf)Cl2 (1.48 g, 1.81 mmol), KOAc (17.80 g, 181.38 mmol), DMF (300ml)를 상기 Sub 1-1 합성법을 사용하여 생성물 15.94 g (수율: 85%)를 얻었다.
4. Sub 1-12 합성예
<반응식 9>
Figure PCTKR2016002300-appb-I000030
상기 Sub 1-I-10 (19.28 g, 73.27 mmol)에 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (26.60 g, 80.59 mmol), Pd(PPh3)4 (2.79 g, 2.42 mmol), NaOH (9.67 g, 241.78 mmol), THF (260ml), 물 (130ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 15.57 g (수율: 55%)을 얻었다.
5. Sub 1-13 합성예
<반응식 10>
Figure PCTKR2016002300-appb-I000031
Tractus-Chemistry 사에서 구입한 1-bromodibenzo[b,d]furan (Sub 1-I-13, CAS No. 50548-45-3) (22.76 g, 92.11 mmol)에 Bis(pinacolato)diboron (25.73 g, 101.32 mmol), Pd(dppf)Cl2 (2.26 g, 2.76 mmol), KOAc (27.12 g, 276.34 mmol), DMF (460ml)를 상기 Sub 1-1 합성법을 사용하여 생성물 18.97 g (수율: 70%)를 얻었다.
6. Sub 1-24 합성예
<반응식 11>
Figure PCTKR2016002300-appb-I000032
(1) Sub 1-I-24 합성
출발물질인 2-bromo-6-(naphthalen-1-yl)phenol (65.75 g, 219.78 mmol)에 Pd(OAc)2 (4.93 g, 21.98 mmol), 3-nitropyridine (2.73 g, 21.98 mmol), tert-butyl peroxybenzoate (85.38 g, 439.56 mmol), C6F6 (330ml), DMI (220ml)를 상기 Sub 1-I-1 합성법을 사용하여 생성물 29.39 g (수율: 45%)를 얻었다.
(2) Sub 1-24 합성
상기 Sub 1-I-24 (29.39 g, 98.91 mmol)에 3,3'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,1'-biphenyl (44.19 g, 108.80 mmol), Pd(PPh3)4 (3.77 g, 3.26 mmol), NaOH (13.06 g, 326.39 mmol), THF (340ml), 물 (170ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 24.55 g (수율: 50%)을 얻었다.
7. Sub 1-35 합성예
<반응식 12>
Figure PCTKR2016002300-appb-I000033
(1) Sub 1-I-35 합성
출발물질인 1-(4-bromophenyl)-2-(methylsulfinyl)naphthalene (34.59 g, 100.19 mmol)에 triflic acid (133ml, 1502.82 mmol), pyridine 수용액 (1755ml, pyridine : H2O = 1 : 5)을 상기 Sub 1-I-8 합성법을 사용하여 생성물 26.67 g (수율: 85%)를 얻었다.
(2) Sub 1-35 합성
상기 Sub 1-I-35 (26.67 g, 85.15 mmol)에 2,2'-(9,9-dimethyl-9H-fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (41.79 g, 93.67 mmol), Pd(PPh3)4 (3.25 g, 2.81 mmol), NaOH (11.24 g, 281.00 mmol), THF (300ml), 물 (150ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 28.23 g (수율: 60%)을 얻었다.
8. Sub 1-39 합성예
<반응식 13>
Figure PCTKR2016002300-appb-I000034
(1) Sub 1-I-39 합성
출발물질인 10-(4-bromophenyl)phenanthren-9-ol (62.94 g, 180.23 mmol)에 Pd(OAc)2 (4.05 g, 18.02 mmol), 3-nitropyridine (2.24 g, 18.02 mmol), tert-butyl peroxybenzoate (70.01 g, 360.46 mmol), C6F6 (270ml), DMI (180ml)를 상기 Sub 1-I-1 합성법을 사용하여 생성물 26.28 g (수율: 42%)를 얻었다.
(2) Sub 1-39 합성
상기 Sub 1-I-39 (26.28 g, 75.69 mmol)에 3,7-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)dibenzo[b,d]thiophene (36.32 g, 83.26 mmol), Pd(PPh3)4 (2.89 g, 2.50 mmol), NaOH (9.99 g, 249.78 mmol), THF (260ml), 물 (130ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 24.87 g (수율: 57%)을 얻었다.
9. Sub 1-47 합성예
<반응식 14>
Figure PCTKR2016002300-appb-I000035
(1) Sub 1-I-47 합성
출발물질인 9-(2-bromo-6-(methylsulfinyl)phenyl)phenanthrene (87.09 g, 220.31 mmol)에 triflic acid (292ml, 3304.62 mmol), pyridine 수용액 (3860ml, pyridine : H2O = 1 : 5)을 상기 Sub 1-I-8 합성법을 사용하여 생성물 54.42 g (수율: 68%)를 얻었다.
(2) Sub 1-47 합성
상기 합성에서 얻어진 Sub 1-I-47 (27.36 g, 75.32 mmol)에 Bis(pinacolato)diboron (21.04 g, 82.85 mmol), Pd(dppf)Cl2 (1.85 g, 2.26 mmol), KOAc (22.17 g, 225.95 mmol), DMF (380ml)를 상기 Sub 1-1 합성법을 사용하여 생성물 24.72 g (수율: 80%)를 얻었다.
10. Sub 1-49 합성예
<반응식 15>
Figure PCTKR2016002300-appb-I000036
상기 합성에서 얻어진 Sub 1-I-47 (24.19 g, 66.59 mmol)에 1,3-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (24.17 g, 73.25 mmol), Pd(PPh3)4 (2.54 g, 2.20 mmol), NaOH (8.79 g, 219.75 mmol), THF (230ml), 물 (115ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 19.43 g (수율: 60%)을 얻었다.
11. Sub 1-52 합성예
<반응식 16>
Figure PCTKR2016002300-appb-I000037
(1) Sub 1-I-52 합성
출발물질인 3-bromo-2-(methylsulfinyl)-1,1':4',1''-terphenyl (25.00 g, 67.33 mmol)에 triflic acid (89ml, 1009.99 mmol), pyridine 수용액 (1180ml, pyridine : H2O = 1 : 5)을 상기 Sub 1-I-8 합성법을 사용하여 생성물 12.34 g (수율: 54%)를 얻었다.
(2) Sub 1-52 합성
상기 합성에서 얻어진 Sub 1-I-52 (12.34 g, 36.37 mmol)에 Bis(pinacolato)diboron (10.16 g, 40.01 mmol), Pd(dppf)Cl2 (0.89 g, 1.09 mmol), KOAc (10.71 g, 109.12 mmol), DMF (180ml)를 상기 Sub 1-1 합성법을 사용하여 생성물 11.94 g (수율: 85%)를 얻었다.
12. Sub 1-58 합성예
<반응식 17>
Figure PCTKR2016002300-appb-I000038
(1) Sub 1-I-58 합성
출발물질인 5-bromo-2'-hydroxy-[1,1'-biphenyl]-2-carbonitrile (49.25 g, 179.67 mmol)에 Pd(OAc)2 (4.03 g, 17.97 mmol), 3-nitropyridine (2.23 g, 17.97 mmol), tert-butyl peroxybenzoate (69.80 g, 359.34 mmol), C6F6 (270ml), DMI (180ml)를 상기 Sub 1-I-1 합성법을 사용하여 생성물 19.07 g (수율: 39%)를 얻었다.
(2) Sub 1-58 합성
상기 합성에서 얻어진 Sub 1-I-58 (19.07 g, 70.08 mmol)에 1,4-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzene (25.44 g, 77.09 mmol), Pd(PPh3)4 (2.67 g, 2.31 mmol), NaOH (9.25 g, 231.28 mmol), THF (240ml), 물 (120ml)을 첨가하고 상기 Sub 1-8 합성법을 사용하여 생성물 14.96 g (수율: 54%)을 얻었다.
한편, Sub 1에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 표 1은 Sub 1에 속하는 화합물의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2016002300-appb-I000039
Figure PCTKR2016002300-appb-I000040
[표 1]
Figure PCTKR2016002300-appb-I000041
II. Sub 2의 합성
상기 반응식 1의 Sub 2는 하기 반응식 15의 반응경로에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 18>
Figure PCTKR2016002300-appb-I000042
Sub 2에 속하는 구체적 화합물의 합성예는 다음과 같다.
1. Sub 2-1 합성예
<반응식 19>
Figure PCTKR2016002300-appb-I000043
(1) Sub 2-I-1 합성
출발물질인 diphenylamine (25.74 g, 152.11 mmol)을 둥근바닥플라스크에 toluene (880ml)으로 녹인 후에, 1,3,5-tribromobenzene (62.25 g, 197.74 mmol), Pd2(dba)3 (4.18 g, 4.56 mmol), PPh3 (3.19 g, 12.17 mmol), NaOt-Bu (58.48 g, 608.44 mmol)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 27.59 g (수율: 45%)를 얻었다.
(2) Sub 2-1 합성
diphenylamine (8.91 g, 52.65 mmol)을 둥근바닥플라스크에 toluene (300ml)으로 녹인 후에, Sub 2-I-1 (27.59 g, 68.45 mmol), Pd2(dba)3 (1.45 g, 1.58 mmol), PPh3 (1.10 g, 4.21 mmol), NaOt-Bu (20.24 g, 210.61 mmol)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 12.16 g (수율: 47%)를 얻었다.
2. Sub 2-6 합성예
<반응식 20>
Figure PCTKR2016002300-appb-I000044
(1) Sub 2-I-6 합성
출발물질인 4-(naphthalen-1-yl)-N-phenylaniline (35.43 g, 119.95 mmol), 1,3,5-tribromobenzene (49.09 g, 155.93 mmol), Pd2(dba)3 (3.30 g, 3.60 mmol), PPh3 (2.52 g, 9.60 mmol), NaOt-Bu (46.11 g, 479.79 mmol), toluene (690ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 34.92 g (수율: 55%)를 얻었다.
(2) Sub 2-6 합성
4-(naphthalen-1-yl)-N-phenylaniline (14.99 g, 50.75 mmol), Sub 2-I-6 (34.92 g, 65.97 mmol), Pd2(dba)3 (1.39 g, 1.52 mmol), PPh3 (1.06 g, 4.06 mmol), NaOt-Bu (19.51 g, 202.99 mmol), toluene (290ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 18.12 g (수율: 48%)를 얻었다.
2. Sub 2-12 합성예
<반응식 21>
Figure PCTKR2016002300-appb-I000045
(1) Sub2 -I-12 합성
출발물질인 N-phenyl-9,9'-spirobi[fluoren]-2-amine (38.57 g, 94.65 mmol), 1,3,5-tribromobenzene (38.73 g, 123.04 mmol), Pd2(dba)3 (2.60 g, 2.84 mmol), PPh3 (1.99 g, 7.57 mmol), NaOt-Bu (36.39 g, 378.59 mmol), toluene (540ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 29.14 g (수율: 48%)를 얻었다.
(2) Sub 2-12 합성
N-phenyl-[1,1'-biphenyl]-2',3',4',5',6'-d5-4-amine (8.75 g, 34.95 mmol), Sub 2-I-12 (29.14 g, 45.44 mmol), Pd2(dba)3 (0.96 g, 1.05 mmol), PPh3 (0.73 g, 2.80 mmol), NaOt-Bu (13.44 g, 139.80 mmol), toluene (200ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 15.59 g (수율: 55%)를 얻었다.
3. Sub 2-20 합성예
<반응식 22>
Figure PCTKR2016002300-appb-I000046
(1) Sub 2-I-20 합성
출발물질인 N-phenylphenanthren-9-amine (32.67 g, 121.30 mmol), 1,3,5-tribromobenzene (49.64 g, 157.69 mmol), Pd2(dba)3 (3.33 g, 3.64 mmol), PPh3 (2.55 g, 9.70 mmol), NaOt-Bu (46.63 g, 485.19 mmol), toluene (700ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 28.69 g (수율: 47%)를 얻었다.
(2) Sub 2-20 합성
diphenylamine (7.42 g, 43.85 mmol), Sub 2-I-20 (28.69 g, 57.00 mmol), Pd2(dba)3 (1.20 g, 1.32 mmol), PPh3 (0.92 g, 3.51 mmol), NaOt-Bu (16.86 g, 175.39 mmol), toluene (250ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 12.97 g (수율: 50%)를 얻었다.
4. Sub 2-24 합성예
<반응식 23>
Figure PCTKR2016002300-appb-I000047
(1) Sub 2-I-24 합성
출발물질인 N-phenyldibenzo[b,d]thiophen-2-amine (66.57 g, 241.75 mmol), 1,3,5-tribromobenzene (98.93 g, 314.27 mmol), Pd2(dba)3 (6.64 g, 7.25 mmol), PPh3 (5.07 g, 19.34 mmol), NaOt-Bu (92.94 g, 966.99 mmol), toluene (1390ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 61.56 g (수율: 50%)를 얻었다.
(2) Sub 2-24 합성
N-phenyl-[1,1'-biphenyl]-4-amine (22.81 g, 92.98 mmol), Sub 2-I-24 (61.56 g, 120.87 mmol), Pd2(dba)3 (2.55 g, 2.79 mmol), PPh3 (1.95 g, 7.44 mmol), NaOt-Bu (35.75 g, 371.92 mmol), toluene (540ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 36.33 g (수율: 58%)를 얻었다.
5. Sub 2-36 합성예
<반응식 24>
Figure PCTKR2016002300-appb-I000048
(1) Sub2 -I-36 합성
출발물질인 9,9-dimethyl-N-phenyl-9H-fluoren-2-amine (44.07 g, 154.43 mmol), 1,3,5-tribromobenzene (63.20 g, 200.75 mmol), Pd2(dba)3 (4.24 g, 4.63 mmol), PPh3 (3.24 g, 12.35 mmol), NaOt-Bu (59.37 g, 617.70 mmol), toluene (890ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 39.29 g (수율: 49%)를 얻었다.
(2) Sub 2-36 합성
N-phenyl-[1,1'-biphenyl]-4-amine (14.28 g, 58.21 mmol), Sub 2-I-36 (39.29 g, 75.67 mmol), Pd2(dba)3 (1.60 g, 1.75 mmol), PPh3 (1.22 g, 4.66 mmol), NaOt-Bu (22.38 g, 232.84 mmol), toluene (340ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 21.09 g (수율: 53%)를 얻었다.
6. Sub 2-47 합성예
<반응식 25>
Figure PCTKR2016002300-appb-I000049
(1) Sub2 -I-47 합성
출발물질인 N-(naphthalen-2-yl)naphthalen-1-amine (41.38 g, 153.63 mmol), 1,3,5-tribromobenzene (62.87 g, 199.73 mmol), Pd2(dba)3 (4.22 g, 4.61 mmol), PPh3 (3.22 g, 12.29 mmol), NaOt-Bu (59.06 g, 614.54 mmol), toluene (880ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 37.11 g (수율: 48%)를 얻었다.
(2) Sub 2-47 합성
N-(naphthalen-2-yl)naphthalen-1-amine (15.28 g, 56.73 mmol), Sub 2-I-47 (37.11 g, 73.75 mmol), Pd2(dba)3 (1.56 g, 1.70 mmol), PPh3 (1.19 g, 4.54 mmol), NaOt-Bu (21.81 g, 226.93 mmol), toluene (330ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 20.01 g (수율: 51%)를 얻었다.
7. Sub 2-51 합성예
<반응식 26>
Figure PCTKR2016002300-appb-I000050
(1) Sub 2-I-51 합성
출발물질인 di(naphthalen-1-yl)amine (40.03 g, 148.62 mmol), 1,3,5-tribromobenzene (60.82 g, 193.21 mmol), Pd2(dba)3 (4.08 g, 4.46 mmol), PPh3 (3.12 g, 11.89 mmol), NaOt-Bu (57.14 g, 594.49 mmol), toluene (860ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 36.65 g (수율: 49%)를 얻었다.
(2) Sub 2-51 합성
di(naphthalen-2-yl)amine (15.09 g, 56.03 mmol), Sub 2-I-51 (36.65 g, 72.83 mmol), Pd2(dba)3 (1.54 g, 1.68 mmol), PPh3 (1.18 g, 4.48 mmol), NaOt-Bu (21.54 g, 224.10 mmol), toluene (320ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 20.54 g (수율: 53%)를 얻었다.
8. Sub 2-63 합성예
<반응식 27>
Figure PCTKR2016002300-appb-I000051
(1) Sub 2-I-63 합성
출발물질인 9,9-dimethyl-N-phenyl-9H-fluoren-4-amine (42.99 g, 150.64 mmol), 1,3,5-tribromobenzene (61.65 g, 195.83 mmol), Pd2(dba)3 (4.14 g, 4.52 mmol), PPh3 (3.16 g, 12.05 mmol), NaOt-Bu (57.91 g, 602.57 mmol), toluene (870ml)을 상기 Sub 2-I-1 합성법을 사용하여 생성물 35.98 g (수율: 46%)를 얻었다.
( 2)Sub 2-63 합성
9,9-dimethyl-N-phenyl-9H-fluoren-4-amine (15.21 g, 53.30 mmol), Sub 2-I-63 (35.98 g, 69.29 mmol), Pd2(dba)3 (1.46 g, 1.60 mmol), PPh3 (1.12 g, 4.26 mmol), NaOt-Bu (20.49 g, 213.19 mmol), toluene (310ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 18.52 g (수율: 48%)를 얻었다.
10. Sub 2-77 합성예
<반응식 28>
Figure PCTKR2016002300-appb-I000052
N,9-diphenyl-9H-carbazol-2-amine (18.63 g, 55.71 mmol), Sub 2-I-24 (36.88 g, 72.42 mmol), Pd2(dba)3 (1.53 g, 1.67 mmol), PPh3 (1.17 g, 4.46 mmol), NaOt-Bu (21.42 g, 222.84 mmol), toluene (320ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 22.95 g (수율: 54%)를 얻었다.
11. Sub 2-91 합성예
<반응식 29>
Figure PCTKR2016002300-appb-I000053
bis(3,5-dimethylphenyl)amine (11.88 g, 52.72 mmol), Sub 2-I-51 (34.49 g, 68.54 mmol), Pd2(dba)3 (1.45 g, 1.58 mmol), PPh3 (1.11 g, 4.22 mmol), NaOt-Bu (20.27 g, 210.89 mmol), toluene (300ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 15.71 g (수율: 46%)를 얻었다.
12. Sub 2-104 합성예
<반응식 30>
Figure PCTKR2016002300-appb-I000054
N,7-diphenyldibenzo[b,d]furan-3-amine (16.92 g, 50.45 mmol), Sub 2-I-1 (26.44 g, 65.58 mmol), Pd2(dba)3 (1.39 g, 1.51 mmol), PPh3 (1.06 g, 4.04 mmol), NaOt-Bu (19.39 g, 201.79 mmol), toluene (290ml)을 상기 Sub 2-1 합성법을 사용하여 생성물 17.58 g (수율: 53%)를 얻었다.
한편, Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나, 이에 한정되는 것은 아니며, 표 2는 Sub 2에 속하는 화합물의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2016002300-appb-I000055
Figure PCTKR2016002300-appb-I000056
Figure PCTKR2016002300-appb-I000057
Figure PCTKR2016002300-appb-I000058
[표 2]
Figure PCTKR2016002300-appb-I000059
Figure PCTKR2016002300-appb-I000060
III. Product 합성
Sub 1 (1 당량)을 둥근바닥플라스크에 THF로 녹인 후에, Sub 2 (1 당량), Pd(PPh3)4 (0.03 당량), NaOH (3 당량), H2O을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 최종 생성물 (final product)를 얻었다.
1. P-1 합성예
<반응식 31>
Figure PCTKR2016002300-appb-I000061
상기 Sub 1-1 (6.83 g, 23.23 mmol)를 둥근바닥플라스크에 THF (80ml)로 녹인 후에, Sub 2-1 (11.42 g, 23.23 mmol), Pd(PPh3)4 (0.81 g, 0.70 mmol), NaOH (2.79 g, 69.69 mmol), 물 (40ml)을 첨가하고 80℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 10.08 g (수율: 75%)을 얻었다.
2. P-12 합성예
<반응식 32>
Figure PCTKR2016002300-appb-I000062
상기 Sub 1-8 (6.40 g, 16.56 mmol)에 Sub 2-12 (13.43 g, 16.56 mmol), Pd(PPh3)4 (0.57 g, 0.50 mmol), NaOH (1.99 g, 46.69 mmol), THF (60ml), 물 (30ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 10.66 g (수율: 65%)을 얻었다.
3. P-20 합성예
<반응식 33>
Figure PCTKR2016002300-appb-I000063
상기 Sub 1-12 (7.09 g, 18.34 mmol)에 Sub 2-20 (10.85 g, 18.34 mmol), Pd(PPh3)4 (0.64 g, 0.55 mmol), NaOH (2.20 g, 55.03 mmol), THF (60ml), 물 (30ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 11.32 g (수율: 80%)을 얻었다.
4. P-24 합성예
<반응식 34>
Figure PCTKR2016002300-appb-I000064
상기 Sub 1-13 (8.64 g, 29.36 mmol)에 Sub 2-24 (19.78 g, 29.36 mmol), Pd(PPh3)4 (1.02 g, 0.88 mmol), NaOH (3.52 g, 88.08 mmol), THF (100ml), 물 (50ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 14.08 g (수율: 63%)을 얻었다.
5. P-36 합성예
<반응식 35>
Figure PCTKR2016002300-appb-I000065
상기 Sub 1-24 (12.42 g, 25.02 mmol)에 Sub 2-36 (17.10 g, 25.02 mmol), Pd(PPh3)4 (0.87 g, 0.75 mmol), NaOH (3.00 g, 75.05 mmol), THF (80ml), 물 (40ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 12.17 g (수율: 50%)을 얻었다.
6. P-47 합성예
<반응식 36>
Figure PCTKR2016002300-appb-I000066
상기 Sub 1-35 (12.90 g, 23.35 mmol)에 Sub 2-47 (16.15 g, 23.35 mmol), Pd(PPh3)4 (0.81 g, 0.70 mmol), NaOH (2.80 g, 70.04 mmol), THF (80ml), 물 (40ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 11.87 g (수율: 49%)을 얻었다.
7. P-51 합성예
<반응식 37>
Figure PCTKR2016002300-appb-I000067
상기 Sub 1-39 (11.77 g, 20.41 mmol)에 Sub 2-51 (14.12 g, 20.41 mmol), Pd(PPh3)4 (0.71 g, 0.61 mmol), NaOH (2.45 g, 61.25 mmol), THF (70ml), 물 (35ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 9.75 g (수율: 45%)을 얻었다.
8. P-63 합성예
<반응식 38>
Figure PCTKR2016002300-appb-I000068
상기 Sub 1-49 (9.33 g, 19.18 mmol)에 Sub 2-63 (13.88 g, 19.18 mmol), Pd(PPh3)4 (0.66 g, 0.58 mmol), NaOH (2.30 g, 57.54 mmol), THF (60ml), 물 (30ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 13.09 g (수율: 68%)을 얻었다.
9. P-76 합성예
<반응식 39>
Figure PCTKR2016002300-appb-I000069
상기 Sub 1-10 (7.05 g, 22.73 mmol)에 Sub 2-24 (15.31 g, 22.73 mmol), Pd(PPh3)4 (0.79 g, 0.68 mmol), NaOH (2.73 g, 68.18 mmol), THF (80ml), 물 (40ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 12.71 g (수율: 72%)을 얻었다.
10. P-81 합성예
<반응식 40>
Figure PCTKR2016002300-appb-I000070
상기 합성에서 얻어진 Sub 1-10 (8.40 g, 27.08 mmol)에 Sub 2-77 (20.65 g, 27.08 mmol), Pd(PPh3)4 (0.94 g, 0.81 mmol), NaOH (3.25 g, 81.23 mmol), THF (90ml), 물 (45ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 16.42 g (수율: 70%)을 얻었다.
11. P-100 합성예
<반응식 41>
Figure PCTKR2016002300-appb-I000071
상기 합성에서 얻어진 Sub 1-52 (8.18 g, 21.17 mmol)에 Sub 2-91 (13.71 g, 21.17 mmol), Pd(PPh3)4 (0.73 g, 0.64 mmol), NaOH (2.54 g, 63.52 mmol), THF (70ml), 물 (35ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 11.38 g (수율: 65%)을 얻었다.
12. P-102 합성예
<반응식 42>
Figure PCTKR2016002300-appb-I000072
상기 합성에서 얻어진 Sub 1-58 (8.50 g, 21.50 mmol)에 Sub 2-6 (15.99 g, 21.50 mmol), Pd(PPh3)4 (0.75 g, 0.65 mmol), NaOH (2.58 g, 64.51 mmol), THF (70ml), 물 (35ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 11.63 g (수율: 58%)을 얻었다.
13. P-121 합성예
<반응식 43>
Figure PCTKR2016002300-appb-I000073
상기 합성에서 얻어진 Sub 1-47 (10.00 g, 24.37 mmol)에 Sub 2-104 (16.03 g, 24.37 mmol), Pd(PPh3)4 (0.84 g, 0.73 mmol), NaOH (2.92 g, 73.11 mmol), THF (80ml), 물 (40ml)을 첨가하고 상기 P-1 합성법을 사용하여 생성물 13.64 g (수율: 65%)을 얻었다.
한편, 상기와 같은 합성예에 따라 제조된 본 발명의 화합물 P-1 내지 P-96의 FD-MS 값은 하기 표 3과 같다.
[표 3]
Figure PCTKR2016002300-appb-I000074
Figure PCTKR2016002300-appb-I000075
한편, 상기에서는 화학식 1로 표시되는 본 발명의 예시적 합성예를 설명하였지만, 이들은 모두 Suzuki cross-coupling 반응, Miyaura boration 반응, Intramolecular acid-induced cyclization 반응 (J. mater. Chem . 1999, 9, 2095.), Pd(II)-catalyzed oxidative cyclization 반응 (Org . Lett . 2011, 13, 5504) 및 Buchwald-Hartwig cross coupling 반응 등에 기초한 것으로 구체적 합성예에 명시된 치환기 이외에 화학식 1에 정의된 다른 치환기(X, R1 내지 R7, Ar1 내지 Ar4, L1 내지 L5 등의 치환기)가 결합되더라도 상기 반응이 진행된다는 것을 당업자라면 쉽게 이해할 수 있을 것이다.
예컨데, 반응식 1에서 Sub 1과 Sub 2 -> Final Products 반응 및 반응식 3에서 Sub 1-I -> Sub 1 반응은 Suzuki cross-coupling 반응에 기초한 것이고, 반응식 2에서 Sub 1-I -> Sub 1 반응은 Miyaura boration 반응에 기초한 것이며, 반응식 4에서 출발물질 -> Sub 1-I 반응은 Intramolecular acid-induced cyclization 반응에 기초한 것이다. 이어서, 반응식 5에서 출발물질 -> Sub 1-I 반응은 Pd(II)-catalyzed oxidative cyclization 반응에 기초한 것이고, 반응식 18에서 출발물질 -> Sub 2-I 반응 및 Sub 2-I -> Sub 2 반응은 Buchwald-Hartwig cross coupling 반응에 기초한 것이다. 이들에 구체적으로 명시되지 않은 치환기가 결합되더라도 상기 반응들은 진행할 것이다.
유기전기소자의 제조평가
[ 실시예 I-1] 그린유기전기발광소자 ( 정공수송층 )
본 발명의 화합물을 정공수송층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저, 유기 기판에 형성된 ITO층(양극) 상에 4,4',4''-Tris[2-naphthyl(phenyl)amino]triphenylamine (이하 “2-TNATA”로 약기함)을 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 본 발명의 화합물 P-1을 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 4,4'-N,N'-dicarbazole-biphenyl (이하, “CBP”로 약기함)을 호스트 물질로, tris(2-phenylpyridine)-iridium (이하, “Ir(ppy)3”으로 약기함)을 도판트 물질로 사용하여 90:10 중량비로 도핑험으로써 30nm 두께로 진공증착하여 발광층을 형성하였다. 이어서 상기 발광층 상에 (1,1’-비스페닐)-4-올레이토)비스(2-메틸-8-퀴놀린올레이토)알루미늄 (이하 “BAlq”로 약기함)을 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄 (이하 “Alq3”로 약기함)을 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 I-2] 내지 [ 실시예 I-58] 그린유기전기발광소자 ( 정공수송층 )
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 표 4에 기재된 본 발명의 화합물 P-2 내지 P-96를 사용한 점을 제외하고는 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[ 비교예 I-1] 내지 [ 비교예 I-5]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 표 4에 기재된 하기 비교화합물 1 내지 비교화합물 5를 각각 사용한 점을 제외하고는 상기 실시예 I-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 1> <비교화합물 2> <비교화합물 3>
Figure PCTKR2016002300-appb-I000076
<비교화합물 4> <비교화합물 5>
Figure PCTKR2016002300-appb-I000077
본 발명의 실시예 I-1 내지 실시예 I-58 및 비교예 I-1 내지 비교예 I-5에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였으며, 그 측정 결과는 하기 표 4와 같다.
[표 4]
Figure PCTKR2016002300-appb-I000078
Figure PCTKR2016002300-appb-I000079
상기 표 4의 결과로부터, 본 발명의 화합물을 정공수송층의 재료로 사용한 유기전기발광소자는 발광효율과 수명이 향상된다는 것을 확인할 수 있다.
특히, 일반적으로 널리 정공수송층으로 사용하는 NPB인 비교화합물 1 보다 다이벤조퓨란 또는 다이벤조티오펜 코어에 1개의 아민기가 연결기(직접결합 포함)로 결합되어 있는 구조인 비교화합물 2 내지 비교화합물 5가 발광효율 면에서 더 높은 결과를 나타내었고, 다이벤조퓨란 또는 다이벤조티오펜 코어에 2개의 아민기가 연결기로 결합되어 있는 구조인 본 발명의 화합물이 비교화합물 1 내지 비교화합물 5 보다 높은 발광효율 및 높은 수명을 나타내었다.
헤테로 고리(다이벤조퓨란 또는 다이벤조티오펜) 코어에 2개의 아민기가 연결기로 결합되어 있는 구조인 본 발명의 화합물의 경우, 소자 증착 시 헤테로 고리 코어에 1개의 아민기가 연결기(직접결합 포함)로 결합되어 있는 구조인 비교화합물 2 내지 비교화합물 5 보다는 패킹밀도(Packing density)가 높으며, 이로 인해 과전압으로 발생되는 주울열(Joule heating)이 적게 일어나 열적 안정성을 갖는다고 판단되며, 비교적 높은 T1 값으로 인해 과잉의 전자가 발광층에서 정공수송층으로 넘어오는 것을 막아 결과적으로 색순도 증가 및 정공수송층 계면에서의 발광으로 인한 열적 데미지를 감소시켜 수명이 늘어나는 것을 확인할 수 있다.
또한 정공수송층의 경우에는 발광층(호스트)과의 상호관계를 파악해야 하는바, 유사한 코어를 사용하더라도 본 발명에 따른 화합물이 사용된 정공수송층에서 나타내는 특징을 유추하는 것은 통상의 기술자라 하더라도 매우 어려울 것이다.
[ 실시예 II-1] 그린유기전기발광소자 ( 발광보조층 )
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저 유리 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 N,N'-Bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (이하 “NPB”로 약기함)를 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 P-1을 20 nm의 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트 물질로, Ir(ppy)3을 도판트 물질로 사용하고 90:10 중량비로 도핑하여 30 nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3를 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 II-2] 내지 [ 실시예 II-62] 그린유기전기발광소자 ( 발광보조층 )
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 표 5에 기재된 본 발명의 화합물 P-2 내지 P-96을 사용한 점을 제외하고는 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[ 비교예 II-1] 내지 [ 비교예 II-6]
비교예 II-1은 발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였고, 비교예 II-2 내지 II-6은 발광보조층 물질로 본 발명의 화합물 P-1 대신 각각 하기 표 5에 기재된 상기 비교화합물 4, 상기 비교화합물 5, 하기 비교화합물 6, 하기 비교화합물 7, 비교화합물 8을 사용한 점을 제외하고 상기 실시예 II-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
<비교화합물 6> <비교화합물 7>
Figure PCTKR2016002300-appb-I000080
<비교화합물 8>
Figure PCTKR2016002300-appb-I000081
본 발명의 실시예 II-1 내지 실시예 II-62 및 비교예 II-1 내지 비교예 II-6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였으며, 그 측정 결과는 하기 표 5와 같다.
[표 5]
Figure PCTKR2016002300-appb-I000082
Figure PCTKR2016002300-appb-I000083
[ 실시예 III-1] 레드유기전기발광소자 ( 발광보조층 )
본 발명의 화합물을 발광보조층 물질로 사용하여 통상적인 방법에 따라 유기전기발광소자를 제작하였다. 먼저 유리 기판에 형성된 ITO층(양극) 상에 2-TNATA를 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 NPB를 60 nm 두께로 진공증착하여 정공수송층을 형성하였다. 이어서, 상기 정공수송층 상에 본 발명의 화합물 P-1을 20 nm의 두께로 진공증착하여 발광보조층을 형성한 후, 상기 발광보조층 상에 CBP를 호스트 물질로, bis-(1-phenylisoquinolyl)iridium(Ⅲ)acetylacetonate (이하 "(piq)2Ir(acac)"로 약기함)을 도판트 물질로 사용하고 95:5 중량비로 도핑하여 30 nm 두께로 진공증착하여 발광층을 형성하였다. 이어서, 상기 발광층 상에 BAlq를 10 nm 두께로 진공증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 Alq3를 40 nm 두께로 진공증착하여 전자수송층을 형성하였다. 이후, 할로젠화 알칼리 금속인 LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[ 실시예 III-2] 내지 [ 실시예 III-48] 레드유기전기발광소자 ( 발광보조층 )
발광보조층 물질로 본 발명의 화합물 P-1 대신 하기 표 6에 기재된 본 발명의 화합물 P-2 내지 P-96을 사용한 점을 제외하고는 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[ 비교예 III-1] 내지 [ 비교예 III-6]
비교예 III-1은 발광보조층을 형성하지 않은 점을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였고, 비교예 III-2 내지 비교예 III-6은 발광보조층 물질로 본 발명의 화합물 P-1 대신 각각 하기 표 6에 기재된 상기 비교화합물 4, 상기 비교화합물 5, 상기 비교화합물 6, 상기 비교화합물 7, 비교화합물 8을 사용한 것을 제외하고는 상기 실시예 III-1과 동일한 방법으로 유기전기발광소자를 제작하였다.
본 발명의 실시예 III-1 내지 실시예 III-48, 비교예 III-1 및 비교예 III-6에 의해 제조된 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 2500cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였으며, 그 측정 결과는 하기 표 6과 같다.
[표 6]
Figure PCTKR2016002300-appb-I000084
Figure PCTKR2016002300-appb-I000085
상기 표 5 및 표 6의 결과로부터 알 수 있듯이, 본 발명의 화합물을 발광보조층의 재료로 사용한 유기전기발광소자는 비교예 II-1 내지 비교예 III-5의 유기전기발광소자에 비해 발광효율이 향상되고 수명이 현저히 개선되었다.
이와 같은 결과는 발광보조층을 형성하지 않은 소자보다 비교화합물 4 내지 비교화합물 8 및 본 발명의 화합물을 발광보조층으로 사용한 소자가 발광효율 및 수명이 향상된 것을 확인할 수 있으며, 그 중에서도 본 발명의 화합물이 발광효율과 수명 면에서 월등히 높은 결과를 나타내는 것을 확인할 수 있다. 이는 헤테로 고리 (다이벤조퓨란 또는 다이벤조티오펜) 코어와 2개의 아민기가 연결기로 결합되어 있는 구조가 정공수송층 뿐만 아니라 발광보조층(녹색 인광, 적색 인광)에서도 소자의 성능향상에 주요인자로 작용하여 전하 균형(charge balance)을 이루고 효과적인 전자 저지(blocking) 역할을 수행하기 때문인 것으로 판단된다.
발광보조층 재료로 사용한 본 발명의 화합물은 깊은 HOMO 에너지 레벨을 가지면서 정공이 발광층으로 원활하게 수송되고 결과적으로 양성 폴라론(Polaron)이 발광층 계면에 쌓이게 되는 것을 방지하여 계면열화를 줄이는 동시에 발광층 내 전하균형(Charge Balance)을 증가시키게 되어 이로인해 발광효율과 수명이 향상되는 것을 확인할 수 있다.
앞에서 설명한 특성인 높은 열적 안정성, 높은 T1 값, 깊은 HOMO 에너지 레벨 등을 종합해보면 헤테로 고리 코어 및 연결기에 치환되는 아민기의 도입 개수에 따라 밴드 갭, 전기적 특성, 계면 특성 등이 크게 변화될 수 있다는 것을 보여주며 이는 소자의 성능향상에 주요 인자로 작용한다는 것을 확인할 수 있다.
아울러, 전술한 소자 제작의 평가 결과에서는 본 발명의 화합물을 정공수송층 및 발광보조층 중 한 층에만 적용한 소자 특성을 설명하였으나, 본 발명의 화합물을 정공수송층과 발광보조층 모두 적용하여 사용될 수 있다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위내에 있는 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 한다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2015년 3월 16일 한국에 출원한 특허출원번호 제10-2015-0036231호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.
아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:
    <화학식 1> <화학식 2>
    Figure PCTKR2016002300-appb-I000086
    상기 화학식 1에서,
    X는 O 또는 S이며,
    R1 내지 R3는 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; C6-C30의 아릴옥시기; 및 화학식 2로 이루어진 군에서 선택되고, 단 R1 내지 R3 중 적어도 하나는 화학식 2이며,
    R4 내지 R7은 서로 독립적으로 수소; 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택되고, R4 내지 R7는 선택적으로 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있으며, 단 R4 내지 R7 에서 다이벤조퓨릴기 및 다이벤조싸이엔일기는 제외되며,
    상기 화학식 2에서,
    Ar1 내지 Ar4는 서로 독립적으로 C6-C60의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일기; C6-C60의 방향족 고리와 C3-C60의 지방족 고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택되고,
    L1 내지 L5는 서로 독립적으로 단일결합; C6-C60의 아릴렌기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; 플루오렌일렌기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; 및 C1-C60의 지방족 탄화수소기로 이루어진 군에서 선택되며, 이들 각각은(단일 결합 제외) 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있으며,
    상기 R1 내지 R3, 및 Ar1 내지 Ar4가 아릴기, 플루오렌일기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 아릴옥시기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기; C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 이들 각 치환기가 인접한 경우 이들은 서로 결합하여 고리를 형성할 수 있고,
    상기 R4 내지 R7가 아릴기, 헤테로고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 또는 아릴옥시기인 경우, 이들 각각은 중수소; 할로겐; C1-C20의 알킬기 또는 C6-C20의 아릴기로 치환 또는 비치환된 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1-C20의 알킬싸이오기; C1-C20의 알콕실기; C1-C20의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C6-C20의 아릴기; 중수소로 치환된 C6-C20의 아릴기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C20의 헤테로고리기(단, 다이벤조퓨릴기 및 다이벤조싸이엔일기는 제외함); C3-C20의 시클로알킬기; C7-C20의 아릴알킬기; 및 C8-C20의 아릴알켄일기로 이루어진 군에서 선택된 하나 이상의 치환기로 더 치환될 수 있다
  2. 제 1항에 있어서,
    상기 화학식 1은 하기 화학식 3 내지 화학식 5 중 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 3> <화학식 4>
    Figure PCTKR2016002300-appb-I000087
    <화학식 5>
    Figure PCTKR2016002300-appb-I000088
    상기 화학식 3 내지 화학식 5에서, X, R1 내지 R7, Ar1 내지 Ar4, 및 L1 내지 L5 는 제 1항에서 정의된 것과 동일하다.
  3. 제 1항에 있어서,
    상기 화학식 1의 R4와 R5, R5와 R6, 및 R6와 R7 중 적어도 한쌍이 서로 결합하여 고리를 형성하는 경우, 상기 화학식 1은 하기 화학식 6 내지 화학식 9 중 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 6> <화학식 7>
    Figure PCTKR2016002300-appb-I000089
    <화학식 8> <화학식 9>
    Figure PCTKR2016002300-appb-I000090
    상기 화학식 6 내지 화학식 9에서,
    X, R1 내지 R7은 제 1항에서 정의된 것과 동일하며,
    R8 내지 R10은 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택될 수 있으며, m, n 및 o는 서로 독립적으로 0 내지 4의 정수이며, 이들 각각이 2 이상의 정수인 경우 R8 내지 R10은 각각 서로 동일하거나 상이하다.
  4. 제 1항에 있어서,
    상기 화학식 2는 하기 화학식 10 내지 화학식 14 중 하나로 표시되는 것을 특징으로 하는 화합물:
    <화학식 10> <화학식 11>
    Figure PCTKR2016002300-appb-I000091
    <화학식 12> <화학식 13>
    Figure PCTKR2016002300-appb-I000092
    <화학식 14>
    Figure PCTKR2016002300-appb-I000093
    상기 화학식 10 내지 화학식 14에서,
    Ar2 내지 Ar4, L1 내지 L5는 제 1항에서 정의된 것과 동일하며,
    Y1 내지 Y4는 서로 독립적으로 S, O, C(Ra)(Rb) 또는 N(Rc)이며, 여기서 Ra 내지 Rc는 서로 독립적으로 C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택되며, 선택적으로 Ra 및 Rb는 서로 결합하여 이들이 결합된 탄소와 함께 스파이로 화합물을 형성할 수 있고,
    R11 내지 R18은 서로 독립적으로 중수소; 삼중수소; 할로겐; 시아노기; 나이트로기; C6-C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2-C60의 헤테로고리기; C3-C60의 지방족고리와 C6-C60의 방향족고리의 융합고리기; C1-C50의 알킬기; C2-C20의 알켄일기; C2-C20의 알킨일기; C1-C30의 알콕실기; 및 C6-C30의 아릴옥시기로 이루어진 군에서 선택되고, 복수의 R11 내지 R18이 존재할 경우 서로 독립적으로 이웃한 R11끼리, R12끼리, R13끼리, R14끼리, R15끼리, R16끼리, R17끼리 및 R18끼리 중 적어도 한쌍이 결합하여 고리를 형성할 수 있으며,
    p, r, t 및 v는 서로 독립적으로 0 내지 3의 정수이며, 이들 각각이 2 이상의 정수인 경우, R11, R13, R15 및 R17은 각각 서로 동일하거나 상이하며,
    q, s, u 및 w는 서로 독립적으로 0 내지 4의 정수이며, 이들 각각이 2 이상의 정수인 경우, R12, R14, R16 및 R18은 각각 서로 동일하거나 상이하다.
  5. 제 1항에 있어서
    상기 화학식 1은 하기 화합물 중 하나인 것을 특징으로 하는 화합물:
    Figure PCTKR2016002300-appb-I000094
    Figure PCTKR2016002300-appb-I000095
    Figure PCTKR2016002300-appb-I000096
    Figure PCTKR2016002300-appb-I000097
    Figure PCTKR2016002300-appb-I000098
    Figure PCTKR2016002300-appb-I000099
    Figure PCTKR2016002300-appb-I000100
    .
  6. 제 1전극; 제 2전극; 및 상기 제 1전극과 제 2전극 사이에 형성된 유기물층;을 포함하는 유기전기소자에 있어서,
    상기 유기물층은 제 1항의 화합물을 포함하는 것을 특징으로 하는 유기전기소자.
  7. 제 6항에 있어서,
    상기 화합물은 상기 유기물층의 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나의 층에 포함되며, 상기 화합물은 1종 단독 화합물 또는 2종 이상의 혼합물인 것을 특징으로 하는 유기전기소자.
  8. 제 6항에 있어서,
    상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 또는 롤투롤 공정에 의해 형성되는 것을 특징으로 하는 유기전기소자.
  9. 제 6항의 유기전기소자를 포함하는 디스플레이장치; 및
    상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자장치.
  10. 제 9항에 있어서,
    상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 하나인 것을 특징으로 하는 전자장치.
PCT/KR2016/002300 2015-03-16 2016-03-08 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2016148425A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680015947.7A CN107406402B (zh) 2015-03-16 2016-03-08 有机电气元件用化合物、利用其的有机电气元件及其电子装置
US15/558,805 US10392359B2 (en) 2015-03-16 2016-03-08 Compound for organic electric element, organic electric element comprising the same and electronic device thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0036231 2015-03-16
KR1020150036231A KR101822477B1 (ko) 2015-03-16 2015-03-16 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Publications (2)

Publication Number Publication Date
WO2016148425A2 true WO2016148425A2 (ko) 2016-09-22
WO2016148425A3 WO2016148425A3 (ko) 2016-11-10

Family

ID=56920198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002300 WO2016148425A2 (ko) 2015-03-16 2016-03-08 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (4)

Country Link
US (1) US10392359B2 (ko)
KR (1) KR101822477B1 (ko)
CN (1) CN107406402B (ko)
WO (1) WO2016148425A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218722A (zh) * 2016-12-14 2018-06-29 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
JP2018118933A (ja) * 2017-01-26 2018-08-02 株式会社リコー エレクトロクロミック化合物、エレクトロクロミック組成物およびエレクトロクロミック素子
CN109192871A (zh) * 2018-08-15 2019-01-11 长春海谱润斯科技有限公司 一种有机电致发光器件
JP2022515619A (ja) * 2018-12-27 2022-02-21 エルティー・マテリアルズ・カンパニー・リミテッド 多環化合物およびこれを含む有機発光素子
WO2022009999A3 (ja) * 2020-11-05 2022-03-10 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109970723A (zh) * 2013-08-29 2019-07-05 株式会社半导体能源研究所 杂环化合物、发光元件、发光装置、电子设备以及照明装置
KR102357590B1 (ko) * 2015-04-13 2022-02-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102516585B1 (ko) * 2017-06-22 2023-03-31 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102359848B1 (ko) * 2017-08-18 2022-02-09 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190114636A (ko) * 2018-03-30 2019-10-10 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기 발광 소자
KR20190127272A (ko) * 2018-05-04 2019-11-13 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102665318B1 (ko) * 2018-10-23 2024-05-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP2022053547A (ja) * 2018-12-03 2022-04-06 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
CN111978297A (zh) * 2019-05-24 2020-11-24 北京大学深圳研究生院 一种有机电致发光材料及其制备方法与应用
CN110746391A (zh) * 2019-10-28 2020-02-04 上海天马有机发光显示技术有限公司 一种化合物、有机电致发光器件及显示装置
CN111410640B (zh) * 2020-04-10 2021-02-02 长春海谱润斯科技股份有限公司 一种联苯四胺化合物和有机电致发光器件
US11690292B2 (en) 2020-10-26 2023-06-27 Duk San Neolux Co., Ltd. Organic electronic element comprising a compound for organic electronic element and an electronic device thereof
US20230225206A1 (en) 2020-10-26 2023-07-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11785847B2 (en) 2020-10-26 2023-10-10 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11696501B2 (en) 2020-10-26 2023-07-04 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11527727B2 (en) 2020-10-26 2022-12-13 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11963445B2 (en) 2020-10-26 2024-04-16 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11925116B2 (en) 2020-10-26 2024-03-05 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11063226B1 (en) * 2020-10-26 2021-07-13 Duk San Neolux Co., Ltd. Organic electronic element comprising compound for organic electronic element and an electronic device thereof
US11800800B1 (en) 2020-10-26 2023-10-24 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11985894B2 (en) 2020-10-26 2024-05-14 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US12102004B2 (en) 2020-10-26 2024-09-24 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US11991929B2 (en) 2020-10-26 2024-05-21 Duk San Neolux Co., Ltd. Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
KR102708255B1 (ko) * 2020-11-18 2024-09-24 엘티소재주식회사 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110117549A (ko) * 2010-04-21 2011-10-27 덕산하이메탈(주) 다이벤조사이오펜과 아릴아민 유도체를 가지는 화합물 및 이를 이용한 유기전기소자, 그 단말
KR101470340B1 (ko) 2011-03-03 2014-12-09 덕산하이메탈(주) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
KR20140035737A (ko) * 2012-09-14 2014-03-24 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101627746B1 (ko) 2013-05-27 2016-06-07 제일모직 주식회사 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20140145428A (ko) * 2013-06-13 2014-12-23 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR102231935B1 (ko) * 2013-08-05 2021-03-25 덕산네오룩스 주식회사 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
KR20150033082A (ko) 2013-09-23 2015-04-01 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
KR20150072768A (ko) 2013-12-20 2015-06-30 에스케이케미칼주식회사 유기전계발광소자용 화합물 및 이를 포함하는 유기전계발광소자
KR102357467B1 (ko) * 2014-07-22 2022-02-04 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR102329807B1 (ko) * 2014-11-05 2021-11-22 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160054870A (ko) 2014-11-07 2016-05-17 (주)피엔에이치테크 유기발광 화합물 및 이를 포함하는 유기전계발광소자

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108218722A (zh) * 2016-12-14 2018-06-29 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN108218722B (zh) * 2016-12-14 2023-10-27 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
JP2018118933A (ja) * 2017-01-26 2018-08-02 株式会社リコー エレクトロクロミック化合物、エレクトロクロミック組成物およびエレクトロクロミック素子
US10975296B2 (en) 2017-01-26 2021-04-13 Ricoh Company, Ltd. Electrochromic compound, electrochromic composition, and electrochromic element
CN109192871A (zh) * 2018-08-15 2019-01-11 长春海谱润斯科技有限公司 一种有机电致发光器件
CN109192871B (zh) * 2018-08-15 2020-06-12 长春海谱润斯科技有限公司 一种有机电致发光器件
JP2022515619A (ja) * 2018-12-27 2022-02-21 エルティー・マテリアルズ・カンパニー・リミテッド 多環化合物およびこれを含む有機発光素子
JP7329266B2 (ja) 2018-12-27 2023-08-18 エルティー・マテリアルズ・カンパニー・リミテッド 多環化合物およびこれを含む有機発光素子
WO2022009999A3 (ja) * 2020-11-05 2022-03-10 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
US11795155B2 (en) 2020-11-05 2023-10-24 Idemitsu Kosan Co., Ltd. Compound having naphthobenzofuranyl structure, material for organic electroluminescence device, organic electroluminescence device, and electronic instrument
US12012389B2 (en) 2020-11-05 2024-06-18 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic device

Also Published As

Publication number Publication date
CN107406402A (zh) 2017-11-28
US20180072695A1 (en) 2018-03-15
CN107406402B (zh) 2021-03-23
KR20160111279A (ko) 2016-09-26
WO2016148425A3 (ko) 2016-11-10
KR101822477B1 (ko) 2018-01-26
US10392359B2 (en) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2016148425A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016167491A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015194791A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016190600A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016122150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003225A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016200070A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015182872A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017043835A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015041428A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2016140497A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016175533A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015115756A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015178585A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2020130392A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017030307A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016032150A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016003202A2 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017052099A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018016786A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2014178532A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2017119654A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2022191466A1 (ko) 유기전기 소자용 화합물을 이용한 유기전기소자 및 그 전자 장치
WO2020085797A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2016153198A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765181

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15558805

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765181

Country of ref document: EP

Kind code of ref document: A2