WO2006104118A1 - 有機エレクトロルミネッセンス素子、表示装置及び照明装置 - Google Patents

有機エレクトロルミネッセンス素子、表示装置及び照明装置 Download PDF

Info

Publication number
WO2006104118A1
WO2006104118A1 PCT/JP2006/306212 JP2006306212W WO2006104118A1 WO 2006104118 A1 WO2006104118 A1 WO 2006104118A1 JP 2006306212 W JP2006306212 W JP 2006306212W WO 2006104118 A1 WO2006104118 A1 WO 2006104118A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
ring
general formula
layer
Prior art date
Application number
PCT/JP2006/306212
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Suzuri
Hiroshi Kita
Akira Kawakami
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2007510507A priority Critical patent/JP5266514B2/ja
Publication of WO2006104118A1 publication Critical patent/WO2006104118A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • Organic electoluminescence device display device and lighting device
  • the present invention relates to an organic electoluminescence element, a display device, and a lighting device.
  • ELD electoluminescence display
  • ELD constituent elements include inorganic electoluminescence devices (inorganic EL devices) and organic electroluminescence devices (hereinafter also referred to as organic EL devices).
  • Inorganic electoric luminescence elements have been used as planar light sources, but an alternating high voltage is required to drive the light emitting elements.
  • an organic electoluminescence device (simply referred to as an organic EL device) has a structure in which a light-emitting layer containing a compound that emits light is sandwiched between a cathode and an anode. And excitons (excitons) by injecting holes and recombining them, and emitting light when the excitons are deactivated (fluorescence / phosphorescence). It has excellent performance and can be driven at a low voltage of several volts to several tens of volts, enabling light weight including the drive circuit. Therefore, organic EL devices are expected to be used as thin film displays, lighting, and knocklights.
  • Patent Document 3 discloses an electron transport material containing a fluorene group.
  • the electron transport material is preferably a heterocyclic ring in which two or more aromatic rings are linked, and if it has a linking group, it preferably has a molecular weight of 240 or less. Heterocycles are thought to work as electron transfer sites, but the contribution of electron transfer sites in a unit volume (in the whole molecule) becomes smaller when the molecular weight is large, and metal ions and It seems to be related to the complex formation.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-270172
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-102175
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-2297
  • An object of the present invention is to provide an organic electoluminescence element that can be driven at a low voltage and has a long element lifetime, and a display device and an illumination apparatus using the element. Means for solving the problem
  • an organic electroluminescent device having at least an anode, a cathode, and at least one organic compound layer between the anode and the cathode on a support substrate, at least one of the organic compound layers has the following general structure:
  • An electron transport material-containing layer comprising a charge transport material represented by the formula (1) and containing at least one selected from the group of a metal, a salt of the metal and an electron donating compound Organic-elect luminescence element.
  • X to X represent CR or a nitrogen atom.
  • R is independently hydrogen or
  • One may be bonded to each other to form a ring.
  • R 1 to R 4 each independently represent hydrogen or a substituent, and R 1 to R 4 represent each other
  • 15 18 15 18 may combine to form a ring.
  • an organic electoluminescence device having at least an anode, a cathode, and at least one organic compound layer between the anode and the cathode on a supporting substrate, at least one of the organic compound layers has the following general formula (3 And an electron transport material-containing layer containing at least one selected from the group consisting of a metal, a salt of the metal, and an electron-donating compound.
  • Elect mouth luminescence element In an organic electoluminescence device having at least an anode, a cathode, and at least one organic compound layer between the anode and the cathode on a supporting substrate, at least one of the organic compound layers has the following general formula (3 And an electron transport material-containing layer containing at least one selected from the group consisting of a metal, a salt of the metal, and an electron-donating compound.
  • R 1 and R 2 each independently represent hydrogen or a substituent, and Z may have a substituent.
  • Z is a 6-membered aromatic hydrocarbon ring or aromatic heterocycle.
  • each Q independently represents an optionally substituted pyrimidine, quinazoline, benzoxene. Represents a bainoline residue, and L represents a divalent linking group or a direct bond.
  • Arl is aromatic
  • n represents an integer of 0 or more.
  • R 1 to R 4 each independently represents a hydrogen atom or a substituent
  • 41 45 41 45 may be bonded to each other to form a ring. * Indicates a linking site. )
  • Z is an aromatic hydrocarbon ring which may have a substituent or It represents an atomic group necessary for forming an aromatic heterocycle.
  • the organic electoluminescence device as described in 9 above which is an atomic group necessary for forming an aromatic heterocyclic ring.
  • the charge transport material represented by the general formula (8) or (9) is represented by the following general formula (10) or (11): Organic-elect mouth luminescence element.
  • R 1 to R 4 and R 1 to R 4 each independently represents hydrogen or a substituent.
  • L is a divalent linking group or a direct bond
  • Ar2 represents an aromatic hydrocarbon ring residue or an aromatic heterocyclic residue.
  • n represents an integer of 0 or more.
  • an organic electroluminescent device having at least an anode, a cathode, and at least one organic compound layer between the anode and the cathode on a support substrate
  • at least one of the organic compound layers has the following general structure:
  • An electron transport material-containing layer comprising a charge transport material represented by the formula (14) or (15) and containing at least one selected from the group consisting of a metal, a salt of the metal, and an electron donating compound
  • An organic-electric-luminescence element characterized by that.
  • X to X are each independently a force X to X representing CR or a nitrogen atom.
  • R each independently represents a hydrogen atom or a substituent, but the substituents are bonded together to form a ring.
  • X to X each independently represent C—R or a nitrogen atom.
  • X to X must represent one nitrogen atom, and X to x must have one nitrogen atom.
  • R 1 to R 4 and R 5 each independently represents a hydrogen atom or a substituent.
  • each Q independently represents an optionally substituted naphthyridine or benzonaphthyridine. Represents a residue.
  • L represents a divalent linking group or a direct bond.
  • Ar3 is an aromatic hydrocarbon ring
  • n represents an integer of 0 or more.
  • the charge transport material represented by the general formula (1), (2), (3), (4), (10), (11), (14) or (15) is at least one 15.
  • the metal power selected from the alkali metal, alkaline earth metal, lithium, potassium, sodium, cesium, barium, calcium, strontium
  • alkali metal salt or alkaline earth metal salt is selected from lithium salt, potassium salt, sodium salt, cesium salt, barium salt, calcium salt, strontium salt power.
  • the organic-elect mouth luminescence element of description is selected from lithium salt, potassium salt, sodium salt, cesium salt, barium salt, calcium salt, strontium salt power.
  • a display device comprising the organic electoluminescence element according to any one of 1 to 31.
  • an organic-electric-luminescence element that has a long element lifetime and can be driven at a low voltage, and a display device and a lighting device using the element.
  • FIG. 1 is a schematic view showing an example of a display device having an organic EL element force.
  • FIG. 2 is a schematic diagram of a display unit.
  • FIG. 3 is a schematic diagram of a pixel.
  • FIG. 4 is a schematic diagram of a passive matrix type full-color display device.
  • the organic electoluminescence device of the present invention has a long lifetime and can be driven at a low voltage by adopting the configuration defined in any one of claims 1 to 31. It is possible to provide an organic-electric-luminescence element that is a display device, and a display device or a lighting device using the element.
  • the organic compound-containing layer provided between the anode and the cathode examples include a hole transport layer, an electron blocking layer, and a light emitting layer.
  • the electron transport material-containing layer according to the present invention is interposed between any of the organic compound-containing layers.
  • the electron transport material-containing layer may be integrated with any one of the organic compound-containing layers. For example, an electron transport layer, an electron injection layer, etc. May function as an electron transport material-containing layer.
  • Electron transport material-containing layer >>
  • the electron transport material-containing layer according to the present invention includes a charge transport material represented by the general formula (1), and includes at least one selected from the group consisting of a metal, a salt of the metal, and an electron donating compound. It is characterized by containing.
  • any conventionally known thin film forming method may be applied.
  • a vapor deposition method or a sputtering method can be used.
  • a solution application method such as a spin coating method, a dip coating method, or an ink jet method can be used.
  • the mixed metal, the metal salt or the electron donating compound and the electron transporting material may be dispersed in an inert polymer.
  • the thickness (film thickness) of the electron transport material-containing layer is not particularly limited, but it is Inn! From the viewpoint of forming a uniform film and lowering the drive voltage.
  • the range of ⁇ 200 nm is particularly preferable, and the range of 20 ⁇ m to 80 nm is preferable.
  • the metal contained in the electron transport material-containing layer according to the present invention includes alkali metals (eg, Li ⁇ Na ⁇ K, Rb ⁇ Cs ⁇ Fr), alkaline earth metals (Be ⁇ Mg ⁇ Ca ⁇ Sr ⁇ Ba). Etc.), but lithium, potassium, sodium, cesium, norlium, calcium and strontium are more preferred, and cesium is most preferred.
  • alkali metals eg, Li ⁇ Na ⁇ K, Rb ⁇ Cs ⁇ Fr
  • alkaline earth metals Be ⁇ Mg ⁇ Ca ⁇ Sr ⁇ Ba). Etc.
  • lithium, potassium, sodium, cesium, norlium, calcium and strontium are more preferred, and cesium is most preferred.
  • Metals to be contained in the electron transport material-containing layer according to the present invention and salts of the metals include alkali metals (for example, Li, Na, K, Rb, Cs, Fr, etc.), alkaline earth metals (Be , Mg, Ca, Sr, Ba, etc.) are preferred, but lithium salts, potassium salts, sodium salts, cesium salts, norlium salts, calcium salts, and strontium salts are more preferred.
  • the metal salt is a cesium salt.
  • the metal salt formation according to the present invention is a metal salt, even though it is preferable to use a fluorine ion as a counter ion.
  • CsF cesium fluoride
  • metal salts including CsF include the following salts such as LiF, NaF ⁇ KF, RbF ⁇ CsF ⁇ MgF, CaF, SrF, BaF, LiCl, NaCl, KC1 , RbCl, Cs
  • CsH PO Cs HPO, CsOH, CH SO Cs ⁇ CsHCO, CsBr, Csl, RbH PO
  • These hydrates are compounds having a melting point, decomposition point and boiling point at 300 ° C. or lower, and can be easily heated by resistance heating.
  • 3 3 4 4 Hydrate is a compound having a melting point, decomposition point and boiling point at 600 ° C or below, and can be easily heated by resistance heating and has characteristics such as stability.
  • Hydrates such as VO, CsMnO, CsAlCl, Cs Ti 1, Cs WO, Cs NbF, Rb CrO
  • a 13-diketone complex of cesium or rubidium, or an alkoxide can be preferably used because it can be easily heated by resistance heating with a low boiling point or decomposition point.
  • ⁇ -diketone complexes include, but are not limited to, acetylylacetonate, ethylacetoacetonate, and fluorine-substituted products thereof.
  • alkoxide include methoxide, ethoxide, propoxide, isopropoxide, methoxyethoxide and the like.
  • the metal in the electronic material-containing layer or the metal of the metal is reduced from the viewpoint of reducing the energy barrier during electron injection while maintaining the concentration of the organic material responsible for electron transfer in the vicinity of the cathode and increasing the electron injection efficiency.
  • the concentration of the salt is preferably 0.1% to 99.0% by weight, and more preferably adjusted to the range of 1.0% to 80.0% by weight.
  • the inorganic metal salt according to the present invention may be used in combination with the above alkali metal or alkaline earth metal oxide, etc., for example, Li 0, Na 0, K 0,
  • Rb 0, Cs 0, MgO, CaO and the like can be mentioned.
  • Electron Transport Material Represented by Formula (1) contains the electron transport material represented by the general formula (1).
  • X to X represent CR or a nitrogen atom.
  • R is German
  • hydrogen or a substituent is represented by an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group).
  • an alkyl group for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert butyl group, a pentyl group, a hexyl group, an octyl group.
  • cycloalkyl group eg, cyclopentyl group, cyclohexyl group, etc.
  • -Alkyl group for example, vinyl group, aryl group, etc.
  • alkynyl group for example, etulyl group, propargyl group, etc.
  • aryl group for example, fullyl group, naphthyl group, etc.
  • aromatic heterocyclic group for example, , Furyl group, enyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group, phthaladyl group, etc.
  • heterocyclic group for example, pyrrolidyl group, Imidazolidyl group, morpholyl group
  • alkoxy group for example, methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.
  • cycloalkoxy group for example, cyclopentyloxy group, cyclohexyloxy group
  • aryloxy group eg, phenoxy group, naphthyloxy group, etc.
  • alkylthio group eg, methylthio group, ethylthio group, propylthio group, pentylthio group, hexylthio group, octylthio group, dodecylthio group, etc.
  • cycloalkylthio group for example, cyclopentylthio group, cyclohexylthio group, etc.
  • arylthio group for example, phenylthio group, phenylthio group, arylthi
  • acyloxy group for example, acetyloxy group, ethylcarbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarboxoxy group, phenylcarbonyl group, etc.
  • amide group for example, For example, methyl carbolumino group, ethyl carbolumino group, dimethyl carbolumino group, propyl carbolumino group, pentyl carbolumino group, cyclohexyl carbolumino group, 2-ethyl hexyl carboluamino group, octyl carbolumino group Group, dodecyl carbolumino group, full-carbon polyamino group, naphthylca Rubamino groups, etc.), strong rubamoyl groups (for example, aminocarbonyl group, methylaminocarbol group, dimethylaminocarbol group, propy
  • the ring formed may be of any kind, such as a saturated or unsaturated hydrocarbon ring or a hetero ring. Further, these rings may further have the above substituent.
  • a charge transport material represented by the general formula (2) is more preferable.
  • R to R each independently represents hydrogen or a substituent
  • R may be bonded to each other to form a ring.
  • the substituents R to R are as defined above.
  • charge transport material a charge transport material represented by the general formula (3) is more preferable.
  • R 1 and R 2 each independently represent hydrogen or a substituent, and Z has a substituent.
  • 21 22 1 represents an atomic group necessary for forming a good aromatic hydrocarbon ring or aromatic heterocyclic ring.
  • the substituent represented by 21 22 is the substituent R in the general formula (1).
  • Examples of the aromatic hydrocarbon ring formed by Z include a benzene ring and a naphthalene ring.
  • Examples of the aromatic heterocycle formed by Z include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and a benzimidazole ring.
  • Benzothiazole ring benzoxazole ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, force rubazole ring, force ruporin ring, diaza force rubazole ring (composing carboline ring)
  • One of the carbon atoms of the hydrocarbon ring is further substituted with a nitrogen atom).
  • the aromatic hydrocarbon ring or aromatic heterocycle formed is preferably a 6-membered ring, such as a benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring.
  • Triazine ring, quinoxaline ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, phthalazine ring, naphthyridine ring, force rubazole ring, carboline ring, diazacarbazole ring and the like are preferable. Further, these rings may further have a substituent.
  • a charge transport material represented by the general formula (4) is more preferable.
  • R to R each independently represents hydrogen or a substituent
  • R 1 to R 4 are represented by the general formula (
  • the charge transport material represented by (6) is preferred.
  • each Q independently represents a pyrimidi which may have a substituent.
  • Arl represents an aromatic hydrocarbon ring residue or an aromatic heterocyclic residue.
  • n represents an integer of 0 or more, preferably 6 or less.
  • aromatic hydrocarbon ring or aromatic heterocyclic ring from which the aromatic hydrocarbon ring residue or aromatic heterocyclic residue represented by rl is derived include, for example, a benzene ring, naphthalene ring, furan ring, thiophene ring, and oxazole.
  • Examples of the divalent linking group represented by L include an alkylene group, an arylene group, and a heteroarylene.
  • alkylene group examples include methylene, ethylene, propylene, and the like, which each may have a substituent.
  • arylene group examples include phenylene and naphthylene.
  • heteroarylene group examples include divalent groups in which aromatic heterocyclic forces such as pyridine are also induced, and a structure in which a plurality of these groups are linked, such as a methylenebisphenylene group. It may be a group.
  • Substituents are not limited, such as halogen atoms!
  • charge transport material represented by the general formula (5) or (6) is represented by the Q.
  • the pyrimidine, quinazoline, and benzoquinazoline residues are preferably represented by the general formula (7).
  • R to R each independently represents a hydrogen atom or a substituent
  • R 1 to R 5 may be bonded to each other to form a ring. * Indicates a linking site. put it here
  • R to R are the same as the substituent R in the general formula (1).
  • the charge transport material represented by the general formula (2) the charge transport material represented by the general formula (8) or (9) is more preferable.
  • R to R each independently represent hydrogen or a substituent.
  • R 1 and R 2 may be bonded to each other to form a ring.
  • Z and Z may have a substituent
  • R 1 to R 2 has the same meaning as the substituent R in the general formula (1).
  • Examples of the aromatic heterocycle formed by Z and Z include, for example, a furan ring and thiophene.
  • aromatic hydrocarbon rings or aromatic heterocycles to be formed include benzene ring, naphthalene ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoxaline, which are preferably 6-membered rings.
  • Ring, quinazoline ring, cinnoline ring, quinoline ring, isoquinoline ring, Talazine ring, naphthyridine ring, force rubazole ring, carboline ring, diaza force rubazole ring and the like are preferable.
  • These rings may further have a substituent, and may be! /.
  • charge transport material represented by the general formula (8) or (9) a charge transport material represented by the general formula (10) or (11) is more preferable.
  • R 1 to R 4 and R 5 to R 5 are each independently water.
  • R 1 to R 4 and R 1 to R 4 are those represented by the general formula (1
  • each Q independently represents an optionally substituted pyridazine, cinno
  • L is a divalent linking group
  • Ar2 represents an aromatic hydrocarbon ring residue or an aromatic heterocyclic residue.
  • n represents an integer of 0 or more, preferably 6 or less.
  • aromatic hydrocarbon ring or aromatic heterocyclic ring from which the aromatic hydrocarbon ring residue or aromatic heterocyclic residue represented by Ar2 are derived include, for example, a benzene ring, naphthalene ring, furan ring, thiophene ring, and oxazole ring.
  • Examples of the divalent linking group represented by L include an alkylene group, an arylene group, and a heteroarylene. Groups and the like.
  • the alkylene group may have a substituent, for example, methylene, ethylene, propylene, etc.
  • the arylene group is a group such as phenylene or naphthylene
  • the heteroarylene group is pyridine or the like.
  • Examples thereof include a divalent group derived from an aromatic heterocyclic ring, and a structure in which a plurality of these groups are connected, for example, a group such as a methylenebisphenylene group.
  • Substituents are not limited, such as halogen atoms
  • the group of the metal, the salt of the metal, and the electron donating compound is selected together with the general formula (14) or It may contain the charge transport material represented by (15).
  • X to X are each independently C—R or nitrogen.
  • X to X are independently C—R or a force X to X representing a nitrogen atom.
  • 86 and 87 each independently represent a hydrogen atom or a substituent, but the substituents may be combined to form a ring.
  • the substituents represented by R1 to R4 are the substituent lengths in the general formula (1).
  • the charge transport material represented by the general formula (14) or (15) is preferably represented by the general formula (16) or (17).
  • each Q independently represents an optionally substituted naphthyridine or benzine.
  • L represents a divalent linking group or a direct bond.
  • Ar3 is aromatic
  • n represents an integer of 0 or more, preferably 6 or less.
  • the substituent is synonymous with the substituent R in the general formula (1), and
  • a Examples of the aromatic hydrocarbon ring or aromatic heterocyclic ring from which the aromatic hydrocarbon ring residue or aromatic heterocyclic residue represented by r3 is derived include, for example, a benzene ring, naphthalene ring, furan ring, thiophene ring, and oxazole.
  • Examples of the divalent linking group represented by L include an alkylene group, an arylene group, and a heteroarylene.
  • the alkylene group may have a substituent, for example, methylene, ethylene, propylene, etc.
  • the arylene group is a group such as phenylene or naphthylene
  • the heteroarylene group is pyridine or the like. Examples thereof include a divalent group derived from an aromatic heterocyclic ring, and a structure in which a plurality of these groups are connected, for example, a group such as a methylenebisphenylene group.
  • Substituents are not limited, such as halogen atoms
  • the charge transport material represented by the general formula (1), (2), (3), (4), (10), (11), (14) or (15) is at least It is preferable that a plurality of aromatic rings including one nitrogen heteroaromatic ring are connected to form a ring structure (for example, compound examples N-52 to 56 and N-59 isotropic S). Long life with low driving voltage.
  • the electron transport material represented by the above general formula may be contained alone in the electron transport material-containing layer according to the present invention, or other configurations of the organic EL element of the present invention described later. For example, it may be contained in the electron transport layer.
  • an aromatic amine compound As the electron donating compound according to the present invention, an aromatic amine compound, a thiophene compound, and a fullvalene compound are preferable, and examples thereof include an idon compound.
  • aromatic amine compound examples include the arylamine derivatives described in JP-A-9 59614 (for example, dimethylaline, p-acidin, p-aminodiphenylamine, p-phenylenediamine).
  • thiophene compound examples include those described in JP-A-2002-100416, for example, Adv. Mater. (1997), 9 ⁇ , NO. 7, pages 557, Angew. Chem. (English), (1995), 34 ⁇ , No. 3, 303—307, J. Am. Chem. Soc., 120 ⁇ , NO. 4, (1998 ), 664-672, etc. [This description includes the oligothiophene compounds, but the present invention is not limited thereto.
  • fulvalene compound according to the present invention include, for example, tetrathiafulvalene as described as a donor organic molecule described in JP-A-5-52667. Forces including tetrathiafulvalene compounds such as tetramethyltetrathiafulvalene, tetramethyltetraselenafulvalene, bisethylenedithiotetrathiafulvalene, bistrimethylenedithiotetrathiafulvalene, etc. The present invention is not limited to these.
  • the electron transport material-containing layer according to the present invention may contain the following materials.
  • the following compounds can be used in combination for the electron transporting material-containing layer according to the present invention.
  • Examples of compounds that can be used in combination include triazole derivatives, oxazole derivatives, oxadiazole derivatives, fluorenone derivatives, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carpositimide derivatives, Olenylidenemethane derivatives, distyrylvirazine derivatives, heterocyclic tetracarboxylic anhydrides such as naphthaleneperylene, metal complexes such as phthalocyanine derivatives and 8-quinolinol derivatives, meta-oral phthalocyanines, benzoxazoles, benzothiazoles, etc.
  • Metal complexes Metal complexes, ligand copolymers, thiophene oligomers, polythiophene and other conductive polymers, polythiophene derivatives, polyphenylene derivatives, polyphenylene biylene derivatives, polyfluorene derivatives, etc. It is.
  • the light emitting layer according to the present invention is a layer that emits light by recombination of electrons and holes injected from an electrode, an electron transport layer, or a hole transport layer, and the light emitting portion is within the layer of the light emitting layer. It may be the interface between the light emitting layer and the adjacent layer.
  • the light emitting layer according to the present invention includes a blue light emitting layer having a light emission maximum wavelength in the range of 430 nm to 480 nm, a green light emitting layer in the range of 510 nm to 550 nm, a red light emitting layer in the range of 600 nm to 640 nm, and the like. Those having various emission maximum wavelengths can be used, and are not particularly limited.
  • the number of light emitting layers is a single layer or a plurality of layers, a plurality of layers having the same light emission spectrum and a light emission maximum wavelength may be provided.
  • the light emission of the light emitting layer according to the present invention preferably includes blue phosphorescence based on a phosphorescent material (phosphorescent compound), which will be described later.
  • each light emitting layer is preferably adjusted to a range of 2 nm to 100 nm, more preferably 2 ⁇ ! It is to adjust to the range of ⁇ 20nm.
  • Blue, green and red light emitting layers There is no particular limitation on the relationship of the film thickness.
  • the total film thickness in the case where a plurality of light emitting layers are provided is not particularly limited, but it is possible to prevent film homogeneity, application of unnecessary high voltage during light emission, and light emission with respect to driving current. From the viewpoint of improving color stability, it is preferably adjusted to a range of 2 ⁇ to 5 / ⁇ ⁇ , more preferably 2 nm to 200 nm, and particularly preferably a range of 10 nm to 20 nm.
  • a light emitting dopant or a host compound described later is formed by a known thin film method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method. Can be formed.
  • a plurality of light-emitting compounds may be mixed in each light-emitting layer within a range in which the maximum wavelength is maintained.
  • a blue light emitting compound with a maximum wavelength of 430 nm to 480 nm and a maximum wavelength of 510 ⁇ ! ⁇ 550nm green light-emitting compound may be mixed and used
  • the host compound contained in the light emitting layer of the organic EL device of the present invention is defined as a compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1.
  • the phosphorescence quantum yield is less than 0.01.
  • the mass ratio in the layer is preferably 20% or more.
  • the host compound known host compounds may be used singly or in combination. By using a plurality of types of host compounds, it is possible to adjust the movement of electric charges, and the organic EL device can be made highly efficient. In addition, by using a plurality of phosphorescent compounds used as light emitting dopants, which will be described later, it becomes possible to mix different light emission, thereby obtaining any light emission color. This can be done by adjusting the type of phosphorescent compound and the amount of doping, and can also be applied to lighting and knock lights.
  • Examples of the host compound according to the present invention include compounds represented by the following general formula (I), which are preferably used.
  • the compound is adjacent to the light emitting layer (for example, For example, a hole blocking layer) is also preferably used.
  • An organic EL device produced by using the phosphorescent emitter according to the present invention in a light emitting layer containing a compound represented by the following general formula (I) in the light emitting layer or in an adjacent layer of the light emitting layer has a luminous efficiency. As a result, a high-luminance element can be obtained.
  • Z represents an aromatic heterocyclic ring which may have a substituent, and each Z has a substituent.
  • 1 2 represents an aromatic heterocycle or aromatic hydrocarbon ring that may be substituted, and Z represents a divalent linking group.
  • R represents a hydrogen atom or a substituent.
  • Fen ring Fen ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, benzoimidazole ring, oxadiazole ring, triazole ring, imidazole ring, pyrazole ring, thiazole ring, indole ring, benzimidazole ring, benzothiazole ring, benzoxazole And a ring in which the carbon atom of the hydrocarbon ring constituting the ring, quinoxaline ring, quinazoline ring, phthalazine ring, force rubazole ring, carboline ring or carboline ring is further substituted with a nitrogen atom. Further, the aromatic heterocyclic ring is R described later.
  • the aromatic hydrocarbon ring represented by Z is a benzene ring
  • Biphenyl ring naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring
  • the aromatic hydrocarbon The ring may have a substituent represented by R described later.
  • the substituent represented by R is an alkyl group (for example, methyl
  • cycloalkyl group for example, cyclopentyl group, Cyclohexyl group, etc.
  • alkenyl group eg, butyl group, aryl group, etc.
  • alkyl group eg, ethynyl group, propargyl group, etc.
  • aryl group eg, fullyl group, naphthyl group.
  • aromatic heterocyclic groups for example, furyl group, chael group, pyridyl group, pyridazyl group, pyrimidyl group, birazinyl group, triazinyl group, imidazolyl group, pyrazolyl group, thiazolyl group, quinazolinyl group) Group, phthalazine group, etc.
  • heterocyclic group eg, pyrrolidyl group, imidazolidyl group, morpholyl group, oxazolidyl group, etc.
  • alkoxy group eg, Methoxy group, ethoxy group, propyloxy group, pentyloxy group, hexyloxy group, octyloxy group, dodecyloxy group, etc.
  • cycloalkoxy group for example, cyclopentyloxy group, cyclohexyloxy group, etc.
  • aryloxy group for example, , Phenoxy
  • octylcarbon group 2-ethylhexylcarbol group, dodecylcarpol group, phenolcarol , Nafuchirukarubo - Le Group, pyridylcarbonyl group, etc.
  • acyloxy group for example, acetyloxy group, ethyl carbonyloxy group, butylcarbonyloxy group, octylcarbonyloxy group, dodecylcarbonyloxy group, phenylcarbonyloxy group
  • amide group for example, methyl carbolumino group, ethyl carbolumino group, dimethyl carbolumino group, propyl carbolumino group, pentyl carbolumino group, cyclohexyl carbolumino group, 2-ethyl.
  • the substituent is an alkyl group, a cycloalkyl group, a fluorinated hydrocarbon group, an aryl group, or an aromatic heterocyclic group.
  • the divalent linking group may be a hydrocarbon group such as alkylene, alkene, alkylene, arylene, etc., or may contain a heteroatom, and a thiophene 2,5-diyl group.
  • a divalent linking group derived from a compound having an aromatic heterocyclic ring also called a heteroaromatic compound
  • a compound having an aromatic heterocyclic ring also called a heteroaromatic compound
  • a pyrazine 2, 3 diyl group such as a pyrazine 2, 3 diyl group
  • a chalcogen atom such as oxygen or sulfur. It may be. It may also be a group that joins heteroatoms such as an alkylimino group, a dialkylsilane diyl group or a diarylgermandyl group! /.
  • a mere bond is a bond that directly bonds the linking substituents together.
  • the Z-membered ring of the general formula (I) is preferable. This is because the Z-membered ring of the general formula (I) is preferable. This is because the Z-membered ring of the general formula (I) is preferable.
  • Luminous efficiency can be further increased. Furthermore, the lifetime can be further increased.
  • the Z-membered ring of the general formula (I) is preferable. This
  • the luminous efficiency can be further increased. Furthermore, the lifetime can be further increased.
  • the light emitting host used in the present invention may be a conventionally known low molecular compound or a high molecular compound having a repeating unit, and may be a low molecular compound having a polymerizable group such as a bur group or an epoxy group. Even a compound (evaporation polymerizable light-emitting host) is ⁇ .
  • a compound having a hole transporting ability and an electron transporting ability, which prevents emission of light from being increased in wavelength, and has a high Tg (glass transition temperature) is preferable.
  • Specific examples of known host compounds include the compounds described in the following documents.
  • JP 2001-257076, 2002-308855, 20 01-313179, 2002-319491, 2001-357977, 2002-334786, 2002-8860 No., 2002-334787, 2002-15871, 2002-334788, 2002-43056, 2002-334789, 2002-75645, 2002-338579 Gazette, 2002-105445, 2002-343568, 2002-141173, 2002-352957, 2002-203683, 2002-363227, 2002-231453 Gazette, 2003-3165, 2002-234888, 2003-27048, 2002-255934, 2002-260861, 2002-280183, 2002-299060 Gazette, 2002-302516 No. 2002, No. 2002-305083, No. 2002-305084, No. 2002-308837 and the like.
  • the light emitting dopant contained in the light emitting layer of the organic EL device of the present invention will be described.
  • the light-emitting dopant used in the present invention a fluorescent compound or a phosphorescent material (also referred to as a phosphorescent compound or a phosphorescent compound) can be used.
  • the light-emitting dopant used in the light-emitting layer or light-emitting unit of the organic EL device of the present invention (sometimes simply referred to as a light-emitting material) contains the above host compound. At the same time, it is preferable to contain a phosphorescent emitter.
  • a phosphorescent emitter is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C), and a phosphorescent quantum yield is 25 ° C. A force defined as being a compound of 0.01 or more. The preferred phosphorescence quantum yield is 0.1 or more.
  • the phosphorescence quantum yield can be measured by the method described in the fourth edition of Experimental Chemistry Course 7, Spectroscopy II, page 398 (1992, Maruzen). Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescence emitter according to the present invention achieves the above phosphorescence quantum yield (0.01 or more) in any solvent. If you can.
  • the phosphorescent emitter can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • the phosphorescent emitter is preferably a complex compound containing a metal of Group 8 to Group 10 in the periodic table, and more preferably an iridium compound, an osmium compound, or platinization.
  • Compounds (platinum complex compounds) and rare earth complexes, and most preferred are iridium compounds.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, crocomium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes.
  • fluorescent emitters include coumarin dyes, pyran dyes, cyanine dyes, crocomium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes.
  • examples thereof include dyes, pyrylium dyes, perylene dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • dopants can also be used in the present invention.
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the blocking layer for example, electron blocking layer, hole blocking layer
  • the organic EL element material of the present invention for the hole blocking layer, the electron blocking layer, etc., and particularly preferably for the hole blocking layer.
  • the metal salt may be contained in a state of 100% by mass as a layer constituent component such as a hole blocking layer or an electron blocking layer, or other organic compound (for example, the constituent layer of the organic EL device of the present invention). It may be mixed with the compounds used in the above.
  • the thickness of the blocking layer according to the present invention is preferably 3 ⁇ ! ⁇ lOOnm, more preferably ⁇ to 5 nm to 30 nm.
  • the hole blocking layer has the function of an electron transport layer, which is a material force that has the function of transporting electrons while transporting holes and is extremely small, and blocks holes while transporting electrons. By doing so, the probability of recombination of electrons and holes can be improved.
  • the hole blocking layer for example, Japanese Patent Application Laid-Open Nos. 11-204258 and 11204359, and “The Organic EL Element and the Forefront of Industrialization (November 30, 1998, NTT Corporation) Issue) ”on page 237, etc., the hole blocking (hole blocking) layer, etc. It can be applied as a blocking layer. Moreover, the structure of the electron carrying layer mentioned later can be used as a hole-blocking layer based on this invention as needed.
  • the electron blocking layer has the function of a hole transport layer in a broad sense, and is a material force that has a function of transporting holes and an extremely small capacity of transporting electrons, and transports holes while transporting holes. The probability of recombination of electrons and holes can be improved by blocking the children.
  • the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the compound represented by the general formula (33) for the adjacent layer adjacent to the light emitting layer, that is, the hole blocking layer and the electron blocking layer. It is preferably used for the hole blocking layer.
  • the hole transport layer is a hole transport material having a function of transporting holes.
  • a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either injection or transport of holes and / or a barrier property of electrons, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, violazoline derivatives and pyrazolone derivatives, fluorenedamine derivatives, arylene amine derivatives, amino substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives
  • Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, and conductive polymer oligomers, particularly thiophene oligomers.
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ', N'-tetraphenyl-1,4'-daminophenol; N, N' —Diphenyl N, N '— Bis (3-methylphenol) 1 [1, 1' — Biphenyl] 1, 4, 4 '— Diamine (TPD); 2, 2 Bis (4 di-l-triaminophenol) propane; 1, 1-bis (4 di-l-triaminophenol) cyclohexane; N, N, N ', N' — Tetra-p-tolyl 4 , 4'-diaminobiphenyl; 1, 1 bis (4 di-p-tolylaminophenol) 4 phenol hexane; bis (4-dimethylamino 2-methylphenol) phenyl methane; bis (4-di-p-tolylaminophenol- N) N, N '— Diphenyl N, N' — Di (4-meth
  • a polymer material in which these materials are introduced into a polymer chain or these materials as a polymer main chain can also be used.
  • Inorganic compounds such as P-type-Si and p-type-SiC can also be used as the hole injection material and hole transport material.
  • the hole transport layer is formed by thin-filming the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method. Can be formed. Although there is no restriction
  • the hole transport layer may have a single layer structure that can be one or more of the above materials.
  • a hole transport layer having a high p property doped with impurities can be used. Examples thereof include those described in JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Appl. Phys., 95, 5773 (2004), etc. Can be mentioned
  • the electron transport layer is a material force having a function of transporting electrons, and in a broad sense, an electron injection layer and a hole blocking layer are also included in the electron transport layer.
  • An electron transport layer may be provided as a single layer or multiple layers.
  • an electron transport material also serving as a hole blocking material
  • Any material can be selected from conventionally known compounds as long as it has a function of transmitting electrons injected from the electrode to the light-emitting layer.
  • Examples include fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide oxide derivatives, strength rubodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxaziazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8 quinolinol derivatives such as tris (8 quinolinol) aluminum (Alq), tris (5,7-dichloro-1-8-quinolinol) aluminum, tris (5,7-dibromone) 8quinolinol) aluminum, tris (2-methyl 8-quinolinol) aluminum, tris (5-methyl 8-quinolinol) aluminum, bis (8-quinolinol) zinc (Zn q), etc.
  • Metal complexes in which is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb can also be used as electron transport materials.
  • metal free or metal phthalocyanine, or the terminal of them is an alkyl group or sulfonic acid group Those that are substituted with the above can be preferably used as the electron transporting material.
  • the distyrylvirazine derivative exemplified as the material of the light emitting layer can also be used as an electron transport material, and, like the hole injection layer and the hole transport layer, n-type—Si, n-type—SiC, etc. These inorganic semiconductors can also be used as electron transport materials.
  • the electron transport layer is obtained by thin-filming the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an inkjet method, or an LB method. Can be formed. Although there is no restriction
  • the electron transport layer may be a single layer structure having one or more of the above materials.
  • n-type high electron transport layer doped with impurities can also be used. Examples thereof include JP-A-4 297076, JP-A-10-270172, JP-A 2000-196 140, JP-A 2001-102175, Appl. Phys., 95, 5773 (2004) 3 ⁇ 4. As described in the above.
  • the diffusion prevention layer according to the present invention generally refers to an organic material (for example, an electron transport material, an electron donating material) that constitutes an EL element that causes a decrease in luminous efficiency or a lifetime of the EL element.
  • Organic material for example, an electron transport material, an electron donating material
  • ⁇ Inorganic materials for example, metals, salts of such metals, etc.
  • contaminants in the organic ⁇ inorganic materials diffuse (from adjacent layers) into the light emitting layer, or within the light emitting layer It has the role which prevents the spreading
  • the diffusion preventing layer (including a case where it also serves as another layer) is located between the light emitting layer and the anode or the cathode. Between the hole transport layer and the cathode or cathode buffer layer and the light emitting layer. More preferably, has a position adjacent to one layer of the cathode buffer.
  • the material used for forming the diffusion preventing layer according to the present invention can include a compound (for example, a crown ether compound) used in a conventionally known metal ion trap or the like, or a metal or metal ion.
  • a compound for example, a crown ether compound
  • Compounds can be used.
  • examples of the compounds that can be included are “Supramolecular Science: edited by Naotoshi Nakajima; published by Ishigaku Doujin; published in March 2004” and documents cited as references in the book. The described compounds can be used.
  • the injection layer is provided as necessary, and there are an electron injection layer and a hole injection layer. As described above, the injection layer exists between the anode and the light emitting layer or hole transport layer, and between the cathode and the light emitting layer or electron transport layer. May be present.
  • the injection layer is a layer provided between the electrode and the organic layer in order to lower the drive voltage and improve the luminance of the light emission.
  • the organic EL element and its industry front line June 30, 1998) Chapter 2 “Electrode materials” (pages 123-166) of “Part 2” of “Tees Co., Ltd.”) describes the details of the hole injection layer (anode buffer layer) and the electron injection layer (cathode buffer). One layer).
  • anode buffer layer hole injection layer
  • cathode buffer layer (electron injection layer) The details of the cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-917574, JP-A-10-74586, and the like.
  • Metal buffer layer typified by aluminum or aluminum
  • alkali metal compound buffer layer typified by lithium fluoride
  • alkaline earth metal compound buffer layer typified by magnesium fluoride
  • acid aluminum or the like.
  • the buffer layer (injection layer) preferably has a very thin film thickness, but the film thickness is preferably in the range of 0.1 nm to 100 nm.
  • This injection layer can be formed by thin-filming the above material by a known method such as a vacuum deposition method, a spin coating method, a casting method, an ink jet method, or an LB method.
  • the thickness of the injection layer is not particularly limited, but is usually about 5 nm to 5000 nm.
  • This injection layer may have a single layer structure composed of one or more of the above materials.
  • an electrode material made of a metal, an alloy, an electrically conductive compound or a mixture thereof having a high work function (4 eV or more) is preferably used.
  • electrode materials include metals such as Au, and conductive transparent materials such as Cul, indium tin oxide (ITO), SnO, and ZnO.
  • ITO indium tin oxide
  • SnO indium tin oxide
  • ZnO ZnO.
  • An amorphous material such as ZnO) that can produce a transparent conductive film may be used.
  • these electrode materials can be formed into a thin film by vapor deposition or sputtering, and a pattern with a desired shape can be formed by a single photolithography method. m or more), a pattern may be formed through a mask having a desired shape when the electrode material is deposited or sputtered.
  • the film thickness depends on the material. Usually ⁇ ! ⁇ 1000 nm, preferably 10 nm to 200 nm.
  • the cathode a material having a low work function (4 eV or less) metal (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is used.
  • an electron injecting metal a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy a material having a low work function (4 eV or less) metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy referred to as an electron injecting metal
  • an alloy an electrically conductive compound
  • a mixture thereof a mixture thereof.
  • Specific examples of such electrode materials include sodium, sodium-powered rhodium alloy, magnesium, lithium, magnesium Z copper mixture, magnesium Z silver mixture, magnesium / aluminum mixture, magnesium Z indium mixture, aluminum Z aluminum oxide (Al O) mixture, aluminum, indium, lithium Z aluminum
  • a mixture with a second metal such as magnesium Z silver mixture, magnesium Z aluminum
  • These electrode materials can be produced by forming a thin film by a method such as vapor deposition or sputtering.
  • the sheet resistance as the cathode is preferably several hundred ⁇ or less, and the film thickness is usually selected in the range of 10 nm to 1000 nm, preferably 50 nm to 200 nm.
  • the light emission luminance is improved, which is convenient.
  • the substrate of the organic EL device of the present invention is not particularly limited in the type of glass, plastic, etc., and is not particularly limited as long as it is transparent, but preferably used substrates include, for example, glass, quartz And a light-transmitting resin film. Particularly preferred V, the substrate is a resin film that can give flexibility to the organic EL element.
  • Examples of the resin film include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polyetherimide, polyetheretherketone, polyphenylenesulfide, polyarylate, polyimide, polycarbonate (PC). , Cellulose triacetate (TAC), cellulose acetate propionate (CAP) and the like.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PES polyetherimide
  • polyetheretherketone polyphenylenesulfide
  • PC polycarbonate
  • TAC Cellulose triacetate
  • CAP cellulose acetate propionate
  • an inorganic film or an organic film, or a hybrid film of both of them may be formed, and a water vapor permeability of 0.01 gZm 2 'dayatm or less is used. I prefer to be there.
  • the external extraction efficiency at room temperature of light emission of the organic electoluminescence device of the present invention is preferably 1% or more, more preferably 2% or more.
  • external extraction quantum efficiency (%) number of photons emitted outside the organic EL element Z number of electrons flowing through the organic EL element X 100.
  • a hue improving filter such as a color filter may be used in combination.
  • a roughened film (such as an antiglare film) can be used in combination in order to reduce unevenness in light emission.
  • a roughened film such as an antiglare film
  • a desired electrode material for example, a thin film having a material force for an anode
  • An anode is formed by a method such as vapor deposition or sputtering so as to have a film thickness of ⁇ 200 nm.
  • the deposition conditions may vary due to kinds of materials used, generally baud preparative heating temperature 50 ° C ⁇ 450 ° C, vacuum degree of 10- 6 Pa to: LO- It is desirable to select appropriately within the range of 2 Pa, deposition rate of 0.01 nm to 50 nm / second, substrate temperature—50 ° C to 300 ° C, and film thickness of 0.1 nm to 5 ⁇ m.
  • a thin film having a cathode material force is formed thereon by a method such as vapor deposition or sputtering so as to have a thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm.
  • a desired organic EL device can be obtained.
  • the organic EL device is preferably produced from the hole transport layer to the cathode consistently by a single evacuation, but it does not matter if it is taken out halfway and subjected to different film forming methods. In doing so, it is preferable to perform the work in a dry inert gas atmosphere.
  • the light extraction direction of the light emission of the organic EL device of the present invention is that the light emission is taken out from the side of the support substrate (both the support and the opposite side), even in the so-called bottom emission type, the cathode side force light emission is taken out.
  • the top emission type may be used, but when a TFT (thin film transistor) or the like is installed on the support substrate side like an active type element (also called a composite substrate), the ratio of the light emitting part of the element (light emitting area ratio) To make it as large as possible, the top emission type is preferred, where light emission is extracted from the side where the TFT is not installed, that is, the cathode side.
  • the organic EL element of the present invention emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.6 to 2.1), and about 15% to 20% of the light generated in the light emitting layer. It is generally said that only light can be extracted. This is because light incident on the interface (transparent substrate-air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be taken out of the device, or between the transparent electrode or light emitting layer and the transparent substrate. This is because light is totally reflected between them, and the light is guided through the transparent electrode or the light emitting layer, and as a result, the light escapes in the direction of the element side surface.
  • refractive index higher than that of air
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection at the interface between the transparent substrate and the air (for example, US Pat. No. 4,774,435). Issue description).
  • a method for improving efficiency by providing a substrate with a light condensing property for example, JP-A-63-314795.
  • a method of forming a reflective surface on the side surface of an element for example, Japanese Patent Laid-Open No. 1-2220394.
  • a method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between a substrate and a light emitter for example, Japanese Patent Laid-Open No. 62-172691).
  • a method of introducing a flat layer having a lower refractive index than the substrate between the substrate and the light emitter for example, JP-A-2001-202827.
  • There is a method of forming a diffraction grating between any one of a substrate, a transparent electrode layer and a light emitting layer (including between the substrate and the outside) Japanese Patent Laid-Open No. 11-283751.
  • these methods can be used in combination with the organic electroluminescent device of the present invention, but a flat layer having a lower refractive index than the substrate is provided between the substrate and the light emitter.
  • a method of introducing or a method of forming a diffraction grating between any one of the substrate, the transparent electrode layer and the light emitting layer (including between the substrate and the outside) can be suitably used.
  • the low refractive index layer examples include air-mouthed gel, porous silica, magnesium fluoride, fluorine-based polymer, and the like. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less. Furthermore, it is preferred that it is 1.35 or less.
  • the thickness of the low refractive index medium is preferably at least twice the wavelength in the medium. This is because the effect of the low refractive index layer is diminished if the thickness of the low refractive index medium is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate.
  • the method of introducing a diffraction grating into an interface that causes total reflection or a medium with V deviation is characterized by a high effect of improving light extraction efficiency.
  • This method uses the property that a diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction, such as first-order diffraction or second-order diffraction, and thus from the light-emitting layer.
  • Bragg diffraction such as first-order diffraction or second-order diffraction
  • the introduced diffraction grating preferably has a two-dimensional periodic refractive index. This is because light emitted from the light-emitting layer is randomly generated in all directions, so in a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction, only light traveling in a specific direction can be obtained. It will not be diffracted, and the light extraction efficiency will not increase much!
  • the position where the diffraction grating is introduced may be in any of the layers or in the medium (in the transparent substrate or the transparent electrode), but is preferably in the vicinity of the organic light emitting layer where light is generated. .
  • the period of the diffraction grating is preferably about 1Z2 to about 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, a square, or a eucam lattice.
  • the organic-electric-luminescence element of the present invention can be identified by, for example, providing a structure on a microlens array on the light extraction side of a support substrate (substrate) or combining it with a so-called condensing sheet. By collecting light in the direction, for example, in the front direction with respect to the element light emitting surface, the luminance in a specific direction can be increased.
  • a quadrangular pyramid with a side of 30 ⁇ m and an apex angle of 90 degrees is arranged two-dimensionally on the light extraction side of the substrate.
  • One side is 10 / z m ⁇ : LOO / z m is preferred. If it is smaller than this, the effect of diffraction is generated, and if the color is too large, the thickness becomes thick, which is not preferable.
  • the light condensing sheet for example, an LED backlight of a liquid crystal display device that is put into practical use can be used.
  • a brightness enhancement film (BEF) manufactured by Sumitomo 3EM may be used.
  • the shape of the prism sheet may be, for example, a substrate with stripes with an apex angle of 90 degrees and a pitch of 50 111. The apex angle is rounded, and the pitch is changed randomly. Other shapes may be used.
  • a light diffusing plate 'film may be used in combination with the light collecting sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • the display device of the present invention will be described.
  • the display device of the present invention may be single color or multicolor, but here, the multicolor display device will be described.
  • a shadow mask is provided only when forming a light emitting layer, and a film can be formed on one side by vapor deposition, casting, spin coating, ink jet, printing, etc.
  • the method is not limited, but the vapor deposition method, the ink jet method, and the printing method are preferable.
  • the vapor deposition method patterning using a shadow mask is preferred.
  • the cathode, the electron transport layer, the hole blocking layer, the light emitting layer, the hole transport layer, and the anode in this order by reversing the production order.
  • a DC voltage is applied to the multicolor display device thus obtained, light emission can be observed by applying a voltage of about 2V to 40V with the positive polarity of the anode and the negative polarity of the cathode.
  • a voltage is applied with the opposite polarity, no current flows and no light emission occurs.
  • an AC voltage when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the same state.
  • the AC waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light emitting sources. Display devices and displays can be displayed in full color by using three types of organic EL elements that emit blue, red, and green light.
  • Examples of the display device and display include a television, a personal computer, a mono device, an AV device, a character broadcast display, and an information display in an automobile.
  • the driving method when used as a display device for reproducing moving images which may be used as a display device for reproducing still images or moving images, may be either a simple matrix (passive matrix) method or an active matrix method.
  • Luminescent light sources include household lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, optical storage media light sources, electrophotographic copying machine light sources, optical communication processor light sources, optical sensor Although a light source etc. are mentioned, it is not limited to this.
  • the lighting device of the present invention will be described.
  • the organic EL element having a resonator structure may be used as an organic EL element having a resonator structure in the organic EL element of the present invention.
  • Examples include, but are not limited to, photocopier light sources, optical communication processor light sources, and optical sensor light sources. Further, it may be used for the above-mentioned applications by causing laser oscillation.
  • the organic EL device of the present invention may be used as a kind of lamp such as an illumination or exposure light source, a projection device of a type for projecting an image, a still image or a moving image. It may be used as a type of display device (display) that is directly visible.
  • the driving method may be either a simple matrix (passive matrix) method or an active matrix method. Or a book with different emission colors.
  • FIG. 1 is a schematic diagram showing an example of a display device configured with organic EL element power.
  • FIG. 2 is a schematic diagram of a display such as a mobile phone that displays image information by light emission of an organic EL element.
  • the display 1 also includes a display unit A having a plurality of pixels and a control unit B that performs image scanning of the display unit A based on image information.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of a plurality of pixels based on image information from the outside. Sequentially emit light according to the image data signal, scan the image, and display the image information on the display unit A.
  • FIG. 2 is a schematic diagram of the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines 5 and data lines 6, a plurality of pixels 3 and the like on a substrate.
  • the main members of the display unit A will be described below.
  • the light power emitted from the pixel 3 is taken out in the direction of the white arrow (downward).
  • the scanning lines 5 and the plurality of data lines 6 in the wiring portion are each made of a conductive material, and the scanning lines 5 and the data lines 6 are orthogonal to each other in a grid pattern and are connected to the pixels 3 at the orthogonal positions ( Details are not shown).
  • the pixel 3 receives the image data signal from the data line 6, and emits light according to the received image data.
  • Full color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • FIG. 3 is a schematic diagram of a pixel.
  • the pixel is composed of an organic EL element 10, a switching transistor 11, a driving transistor 12, and a capacitor. Sensor 13 etc.
  • Full-color display can be performed by using organic EL elements of red, green, and blue light emission as organic EL elements 10 in a plurality of pixels and arranging them on the same substrate.
  • an image data signal is also applied to the drain of the switching transistor 11 via the data line 6 in the control unit B force.
  • a scanning signal is applied to the gate of the switching transistor 11 via the control unit B force scanning line 5
  • the driving of the switching transistor 11 is turned on, and the image data signal applied to the drain is transferred to the capacitor 13 and the driving transistor. It is transmitted to the gate of the star 12.
  • the capacitor 13 is charged according to the potential of the image data signal, and the drive of the drive transistor 12 is turned on.
  • the drive transistor 12 has a drain connected to the power supply line 7 and a source connected to the electrode of the organic EL element 10, and the organic EL element is connected from the power supply line 7 according to the potential of the image data signal applied to the gate. Current is supplied to element 10.
  • the driving of the switching transistor 11 is turned off. However, even if the driving of the switching transistor 11 is turned off, the capacitor 13 holds the potential of the charged image data signal, so that the driving of the driving transistor 12 is kept on and the next scanning signal is applied.
  • the organic EL device 10 continues to emit light until it is seen.
  • the driving transistor 12 is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element 10 emits light.
  • the organic EL element 10 emits light by providing a switching transistor 11 and a drive transistor 12 as active elements for each of the plurality of pixels. Element 10 is emitting light. Such a light emitting method is called an active matrix method.
  • the light emission of the organic EL element 10 may be light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount by a binary image data signal. On, even a talent! /.
  • FIG. 4 is a schematic diagram of a display device based on a noisy matrix method.
  • a plurality of scanning lines 5 and a plurality of image data lines 6 are provided in a lattice shape so as to face each other with the pixel 3 interposed therebetween.
  • the pixel 3 connected to the applied scanning line 5 emits light according to the image data signal.
  • the noisy matrix method pixel 3 has no active elements, and manufacturing costs can be reduced.
  • the organic EL material according to the present invention can also be applied to an organic EL element that emits substantially white light as a lighting device.
  • a plurality of luminescent colors are emitted simultaneously by a plurality of luminescent materials to obtain a color mixture.
  • the combination of multiple emission colors may include three emission maximum wavelengths of the three primary colors of blue, green, and blue, or the complementary colors such as blue and yellow, blue green and orange are used 2 It may be one containing two emission maximum wavelengths.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent light emitting materials (light emitting dopants), a light emitting material that emits fluorescent light or phosphorescent light, and Although it is a combination of a dye material that emits light from the light emitting material as excitation light, it is possible to shift it.
  • a method of combining a plurality of light emitting dopants there is a method of combining a plurality of light emitting dopants. preferable.
  • the layer structure of the organic electoluminescence device for obtaining a plurality of emission colors includes a method in which a plurality of emission dopants are present in one emission layer, a plurality of emission layers, and each emission Examples thereof include a method in which dopants having different emission wavelengths are present in the layer, and a method in which minute pixels emitting light of different wavelengths are formed in a matrix.
  • patterning may be performed by a metal mask, an inkjet printing method, or the like, as necessary, during film formation.
  • patterning only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or the entire device layer may be patterned.
  • the light-emitting material used for the light-emitting layer is not particularly limited.
  • the present invention is applied to the present invention so that the wavelength range corresponds to the CF (color filter) characteristics. Select any of the related platinum complexes and known luminescent materials and combine them to make them white.
  • the organic EL element of the present invention covers various kinds of light sources and lighting devices such as home lighting, interior lighting, and exposure light source in addition to the display device and display.
  • a lamp it is also useful for a display device such as a backlight of a liquid crystal display device.
  • ITO substrate 100 mm X 100 mm X I. 1 mm thick ITO (indium tin oxide) filmed on lOOnm substrate ( ⁇ Techno Glass Co., Ltd. ⁇ 45)
  • the transparent support substrate was ultrasonically cleaned with isopropyl alcohol, dried with dry nitrogen gas, and subjected to UV ozone cleaning for 5 minutes.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • CuPc was deposited to a transparent support substrate with a film thickness of 20 nm at a deposition rate of 0.1 nm / second to provide a hole injection layer.
  • NPD was evaporated at 0.1 nm / sec to provide a hole transport layer of 20 nm.
  • the heating boat containing CBP and Ir-1 was energized and heated, and co-evaporated on the hole transport layer at a deposition rate of 0.2 nmZ seconds and 0.012 nmZ seconds, respectively, to form a light emitting layer. 30 nm was provided.
  • the substrate temperature during vapor deposition was room temperature.
  • B—Alq was deposited on the light emitting layer at a deposition rate of 0.1 InmZ seconds to provide an electron transport layer that also served as a hole blocking function with a film thickness of lOnm.
  • metal transport cesium was vapor-deposited at a rate of 0.1 Inm / second and 0.025 nm / second from a charge transport material N-30 and a cesium dispenser manufactured by Saesgetter, and an electron transport layer was formed to a thickness of 50 nm.
  • aluminum lOnm was vapor-deposited to form a cathode, and an organic EL device 1-1 was produced.
  • Example 1 As a result of evaluating the same organic EL elements 2-1 22-22 except that the metal cesium of Example 1 was changed to cesium fluoride, the same effects as those of Example 1 were obtained.
  • ITO indium tin oxide
  • a glass substrate of 100mm X 100mm X I. 1mm as the anode
  • this transparent support substrate with ITO transparent electrode was ultrasonically cleaned with isopropyl alcohol and dried with dry nitrogen gas. UV ozone cleaning was performed for 5 minutes.
  • This transparent support substrate was fixed to a substrate holder of a commercially available vacuum deposition apparatus.
  • the substrate temperature at the time of vapor deposition was room temperature.
  • HB-1 was vapor-deposited on the light emitting layer at a vapor deposition rate of 0.1 InmZ seconds to provide an electron transport layer having a thickness of lOnm that also serves as a hole blocking function.
  • N-3 ( ⁇ 0. In mZ second was deposited as a diffusion prevention layer.
  • charge transport material N-31 and cesium fluoride were added in 0. InmZ seconds, 0.02
  • Evaporation was performed at a rate of 5 nm Z seconds, and an electron transport layer was formed to a thickness of 50 nm.
  • the organic EL device 3-1 In the production of the organic EL device 3-1, there is no diffusion prevention layer! The device is used as a charge transport material for the electron transport layer of the organic EL device 3-2 and further the organic EL device 3-2. An element in which Ru-30 was replaced with B Phen was designated as an organic EL element 3-3. Table 2 shows the results of evaluating the storage stability of organic EL devices 3-1 to 3-3.
  • the charge transport layer of the present invention has better storage stability than the comparative example.
  • the 3-1 device provided with a diffusion prevention layer further improves the storage stability. This is thought to be due to the prevention of diffusion of cesium ions into the electron transport layer and the light emitting layer.
  • Example 3 N-30 was replaced with the charge transport material used in Table 1, and the same effect as Example 3 was confirmed.

Abstract

 本発明は、低電圧駆動が可能であり、且つ、素子寿命の長い有機エレクトロルミネッセンス素子、該素子を用いた表示装置及び照明装置を提供する。

Description

明 細 書
有機エレクト口ルミネッセンス素子、表示装置及び照明装置
技術分野
[0001] 本発明は、有機エレクト口ルミネッセンス素子、表示装置及び照明装置に関する。
背景技術
[0002] 発光型の電子ディスプレイデバイスとして、エレクト口ルミネッセンスディスプレイ(EL D)がある。 ELDの構成要素としては、無機エレクト口ルミネッセンス素子(無機 EL素 子)や有機エレクト口ルミネッセンス素子(以下、有機 EL素子とも 、う)が挙げられる。 無機エレクト口ルミネッセンス素子は平面型光源として使用されてきたが、発光素子を 駆動させるためには交流の高電圧が必要である。
[0003] 一方、有機エレクト口ルミネッセンス素子(単に、有機 EL素子とも 、う)は自己発光( 発光する化合物を含有する発光層を、陰極と陽極で挟んだ構成を有し、発光層に電 子及び正孔を注入して、再結合させることにより励起子 (エキシトン)を生成させ、この エキシトンが失活する際の光の放出(蛍光 ·燐光)を利用して発光する素子)のため、 視認性に優れ、かつ数 V〜数十 Vの低電圧駆動が可能なため駆動回路を含めた軽 量ィ匕が可能である。そこで、有機 EL素子は、薄膜型ディスプレイ、照明、ノ ックライト としての活用が期待されて ヽる。
[0004] 有機 EL素子の中でも、最近、発光の量子効率の高さから注目されているリン光発 光有機 EL素子は、従来の蛍光発光有機 EL素子に比べて、駆動電圧が高ぐ更なる 低消費電力で効率よく高輝度に発光する素子の開発が望まれている。
[0005] 一般に駆動電圧を下げるには膜厚を単に薄くすることで対応が可能となるが、その 場合には電極間での通電に伴う不良が増え、歩留まりがあがらないという問題点があ る。
[0006] これらを解決する手段として、電荷輸送層にドーパントを入れることで、電荷輸送層 の伝導率を上げるという試みがされている(例えば、特許文献 1及び 2参照。 )0ここで は、電荷輸送性有機材料であるフエナント口リン誘導体と金属または金属塩ドーパン トの混合層にお 、て、駆動電圧の低下が認められて 、る。 [0007] しかし、これらの化合物では、連続駆動する際の寿命が短ぐ素子としての保存性 力 くないこと、また、実用的に十分な駆動電圧の低下が得られずより一層の低下が 望まれている。
[0008] また、特許文献 3には、フルオレン基を含有した電子輸送材料が開示されて!ヽる。
しかし我々の検討より、電子輸送材料は芳香族環が二つ以上連結した複素環である ことと、連結基を有する場合には分子量 240以下であることが好ましいことが判明した 。複素環が電子移動サイトとして働くと考えられているが、単位体積中(分子全体のな かで)の電子移動サイトの寄与が、分子量が大きい場合には小さくなつてしまうこと、 また金属イオンとの錯形成とも関係していると思われる。
[0009] 従って、前記アルカリ金属やアルカリ土類金属の金属酸ィ匕物または金属塩を用い ても、実用的に十分な駆動電圧の低下、および素子寿命として十分な長寿命化は達 成されて!/ヽな 、のが現状である。
特許文献 1:特開平 10— 270172号公報
特許文献 2:特開 2001— 102175号公報
特許文献 3:特開 2004 - 2297号公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、低電圧駆動が可能であり、且つ、素子寿命の長い有機エレクト口 ルミネッセンス素子、該素子を用いた表示装置及び照明装置を提供することである。 課題を解決するための手段
[0011] 本発明の上記目的は、下記構成により達成された。
[0012] 1.支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの 有機化合物層を有する有機エレクト口ルミネッセンス素子にぉ 、て、該有機化合物層 の少なくとも一つが、下記一般式(1)で表される電荷輸送材料を含み、且つ、金属、 該金属の塩及び電子供与性化合物の群から選択される少なくとも一つを含有する、 電子輸送材料含有層であることを特徴とする有機エレクト口ルミネッセンス素子。
[0013] [化 1] 一般式 (1 )
\
X 、N
Λ6 < . ノ Χ8
[0014] (式中、 X〜Xは C Rもしくは窒素原子を表す。 Rはそれぞれ独立に水素もしくは
5 8 1 1
置換基を表し、隣接して R
1が存在する場合、 R
1同士がお互いに結合して環を形成し てちよい。 )
2.前記一般式(1)で表される電荷輸送材料が、下記一般式(2)で表されることを 特徴とする前記 1に記載の有機エレクト口ルミネッセンス素子。
[0015] [化 2]
Figure imgf000004_0001
[0016] (式中、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、 R 〜R はお互いに
15 18 15 18 結合して環を形成してもよい。 )
3.支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの 有機化合物層を有する有機エレクト口ルミネッセンス素子にぉ 、て、該有機化合物層 の少なくとも一つが、下記一般式 (3)で表される電荷輸送材料を含み、且つ、金属、 該金属の塩及び電子供与性化合物の群から選択される少なくとも一つを含有する、 電子輸送材料含有層であることを特徴とする有機エレクト口ルミネッセンス素子。
[0017] [化 3] 般式 (3J
Figure imgf000005_0001
[0018] (式中、 R 、R はそれぞれ独立に水素もしくは置換基を表し、 Zは置換基を有しても
21 22 1 よい芳香族炭化水素環または芳香族複素環を形成するに必要な原子団を表す。) 4.前記一般式 (3)において、 Zが、 6員の芳香族炭化水素環または芳香族複素環
1
を形成するに必要な原子団であることを特徴とする前記 3に記載の有機エレクト口ルミ ネッセンス素子。
[0019] 5.前記電荷輸送材料が下記一般式 (4)で表されることを特徴とする前記 3または 4 に記載の有機エレクト口ルミネッセンス素子。
[0020] [化 4]
—般式 (4)
Figure imgf000005_0002
[0021] (式中、 R 〜R
31 36はそれぞれ独立に水素もしくは置換基を表し、お互いに結合して環 を形成してもよい。)
6.前記電荷輸送材料が下記一般式 (5)または (6)で表されることを特徴とする前 記 3〜5のいずれ力 1項記載の有機エレクト口ルミネッセンス素子。
[0022] 一般式(5)
Q -L -Q
1 1 1
一般式 (6)
Arl - (Q )
1 n
〔式中、 Qはそれぞれ独立に置換基を有してもよいピリミジン、キナゾリン、ベンゾキ ナゾリン残基を表し、 Lは二価の連結基もしくは直接結合を表す。また、 Arlは芳香
1
族炭化水素環残基もしくは芳香族複素環残基を表す。ここにおいて nは 0以上の整 数を表す。〕
7.前記一般式(5)および (6)において、 Qが下記一般式(7)で表されることを特徴
1
とする前記 6記載の有機エレクト口ルミネッセンス素子。
[0023] [化 5]
—般式 (7)
Figure imgf000006_0001
[0024] (式中、 R 〜R はそれぞれ独立に水素原子もしくは置換基を表し、 R 〜R はお互
41 45 41 45 いに結合し環を形成してもよい。 *は連結部位を示す。 )
8.前記一般式 (3)、 (4)、 (5)、 (6)または(7)において、前記置換基が分子量 24 0以下であることを特徴とする前記 3〜7のいずれか 1項に記載の有機エレクト口ルミ ネッセンス素子。
[0025] 9.前記一般式(2)で表される電荷輸送材料が、下記一般式 (8)または(9)で表さ れることを特徴とする前記 2記載の有機エレクト口ルミネッセンス素子。
[0026] [化 6] 一般式 (8) —般式 (9)
Figure imgf000006_0002
[0027] (式中、 R 〜R
51 54はそれぞれ独立に水素もしくは置換基を表し、 R 、R
51 52は互いに結 合して環を形成してもよい。 Z、 Zは置換基を有してもよい芳香族炭化水素環または 芳香族複素環を形成するに必要な原子団を表す。 )
10.前記一般式 (8)または(9)において、 Z、 Z力 6員の芳香族炭化水素環もしく
2 3
は芳香族複素環を形成するに必要な原子団であることを特徴とする前記 9記載の有 機エレクト口ルミネッセンス素子。
[0028] 11.前記一般式 (8)または(9)で表される電荷輸送材料が、下記一般式(10)また は(11)で表されることを特徴とする前記 9または 10に記載の有機エレクト口ルミネッ センス素子。
[0029] [化 7] 一般式 (10) 一般式 (11 )
Figure imgf000007_0001
[0030] (式中、 R 〜R 、R 〜R はそれぞれ独立に水素もしくは置換基を表す。)
61 66 71 76
12.前記電荷輸送材料が下記一般式(12)または(13)で表されることを特徴とす る前記 1、 2及び 9〜: L 1のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0031] 一般式(12)
Q -L -Q
2 2 2
一般式 (13)
Ar2- (Q )
2 n
(式中、 Q シン
2はそれぞれ独立に置換基を有してもよいピリダジン、 ノリン、フタラジン
、ベンゾシンノリン、ベンゾフタラジン残基を表す。 Lは二価の連結基もしくは直接結
2
合を表す。 Ar2は芳香族炭化水素環残基もしくは芳香族複素環残基を表す。 nは 0 以上の整数を表す。 )
13.前記一般式(1)、 (2)、 (8)、 (9)、 (10)、 (11)、 (12)または(13)において、 前記置換基が分子量 240以下であることを特徴とする前記 1、 2及び 9〜 12の 、ずれ 力 1項に記載の有機エレクト口ルミネッセンス素子。 [0032] 14.支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの 有機化合物層を有する有機エレクト口ルミネッセンス素子にぉ 、て、該有機化合物層 の少なくとも一つが、下記一般式(14)または(15)で表される電荷輸送材料を含み、 且つ、金属、該金属の塩及び電子供与性化合物の群から選択される少なくとも一つ を含有する、電子輸送材料含有層であることを特徴とする有機エレクト口ルミネッセン ス素子。
[0033] [化 8]
—般
Figure imgf000008_0001
[0034] (式中、 X 〜X はそれぞれ独立に C Rもしくは窒素原子を表す力 X 〜X のう
11 14 87 11 14 ち必ず一つは窒素原子を表し、また X 〜X のうち窒素原子は一つである。 R 〜R
11 14 81 83
、 R はそれぞれ独立に水素原子もしくは置換基を表すが、置換基同士が結合し環を
87
形成してもよい。また、 X 〜X はそれぞれ独立に C—Rもしくは窒素原子を表すが
15 18 87
、 X 〜X のうち必ず一つは窒素原子を表し、また X 〜x のうち窒素原子は一つで
15 18 11 14
ある。 R 〜R 、R はそれぞれ独立に水素原子もしくは置換基を表すが、置換基同
84 86 87
士が結合し環を形成してもよい。 )
15.前記一般式(14)または( 15)で表される電荷輸送材料が下記一般式( 16)ま たは(17)で表されることを特徴とする前記 14に記載の有機エレクト口ルミネッセンス 素子。
[0035] 一般式(16)
Q -L -Q
3 3 3
一般式 (17)
Ar3- (Q )
3 n
(式中、 Qはそれぞれ独立に置換基を有してもよいナフチリジン、ベンゾナフチリジン 残基を表す。 Lは二価の連結基もしくは直接結合を表す。 Ar3は芳香族炭化水素環
3
もしくは芳香族複素環を表す。 nは 0以上の整数を表す。 )
16.前記一般式(14)、 (15)、 (16)または(17)において、前記置換基が分子量 2 40以下であることを特徴とする前記 14または 15に記載の有機エレクト口ルミネッセン ス素子。
[0036] 17.前記一般式(1)、(2)、(3)、(4)、(10)、(11)、(14)または(15)で表される 電荷輸送材料が、少なくとも一つの含窒素へテロ芳香族環を含む複数の芳香族環 が連結し環構造を形成していることを特徴とする前記 1、 2、 11及び 14のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
[0037] 18.前記金属が、アルカリ金属、アルカリ土類金属力 選ばれることを特徴とする前 記 1または 14に記載の有機エレクト口ルミネッセンス素子。
[0038] 19.前記金属の塩が、アルカリ金属塩、アルカリ土類金属塩力 選ばれることを特 徴とする前記 1または 14に記載の有機エレクト口ルミネッセンス素子。
[0039] 20.前記アルカリ金属、アルカリ土類金属カゝら選ばれる金属力 リチウム、カリウム、 ナトリウム、セシウム、バリウム、カルシウム、ストロンチウムであることを特徴とする前記
18に記載の有機エレクト口ルミネッセンス素子。
[0040] 21.前記アルカリ金属、アルカリ土類金属力 選ばれる金属がセシウムであることを 特徴とする前記 18に記載の有機エレクト口ルミネッセンス素子。
[0041] 22.前記アルカリ金属塩、アルカリ土類金属塩が、リチウム塩、カリウム塩、ナトリウ ム塩、セシウム塩、バリウム塩、カルシウム塩、ストロンチウム塩力 選ばれることを特 徴とする前記 19に記載の有機エレクト口ルミネッセンス素子。
[0042] 23.前記アルカリ金属塩、アルカリ土類金属塩の対ァ-オン力 フッ素イオンである ことを特徴とする前記 19または 22に記載の有機エレクト口ルミネッセンス素子。
[0043] 24.前記アルカリ金属塩、アルカリ土類金属塩が、フッ化セシウムであることを特徴 とする前記 23記載の有機エレクト口ルミネッセンス素子。
[0044] 25.前記電子供与性化合物が、芳香族ァミン化合物、チォフェンィ匕合物、フルバレ ン化合物であることを特徴とする前記 1または 14に記載の有機エレクト口ルミネッセン ス素子。 [0045] 26.構成層として拡散防止層を有し、該拡散防止層は、金属または該金属のィォ ンの拡散を防止または抑制することを特徴とする前記 1〜25のいずれか 1項に記載 の有機エレクト口ルミネッセンス素子。
[0046] 27.前記拡散防止層が、前記一般式(1)または(12)で表される電荷輸送材料を 含有することを特徴とする前記 26に記載の有機エレクト口ルミネッセンス素子。
[0047] 28.リン光発光に基づく発光が含まれていることを特徴とする前記 1〜27のいずれ 力 1項に記載の有機エレクト口ルミネッセンス素子。
[0048] 29.少なくとも青色の成分を含んでいることを特徴とする前記 1〜28のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
[0049] 30.発光が、支持基板とは逆の方向から取り出されることを特徴とする前記 1〜29 のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[0050] 31.陽極、有機化合物層の少なくとも 1層及び陰極力 なる群力 選択される少な くとも一つが、蒸着法により製造されることを特徴とする前記 1〜30のいずれ力 1項に 記載の有機エレクト口ルミネッセンス素子。
[0051] 32.前記 1〜31のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を具備 することを特徴とする表示装置。
[0052] 33.前記 1〜31のいずれか 1項に記載の有機エレクト口ルミネッセンス素子を具備 することを特徴とする照明装置。
発明の効果
[0053] 本発明により、素子寿命の長い、低電圧駆動が可能である有機エレクト口ルミネッセ ンス素子、該素子を用いた表示装置及び照明装置を提供することが出来た。
図面の簡単な説明
[0054] [図 1]有機 EL素子力 構成される表示装置の一例を示した模式図である。
[図 2]表示部の模式図である。
[図 3]画素の模式図である。
[図 4]パッシブマトリクス方式フルカラー表示装置の模式図である。
符号の説明
[0055] 1 ディスプレイ 3 画素
5 走査線
6 データ線
7 電源ライン
10 有機 EL素子
11 スイッチングトランジスタ
12 馬区動トランジスタ
13 コンデンサ
A 表示部
B 制御部
発明を実施するための最良の形態
[0056] 本発明の有機エレクト口ルミネッセンス素子においては、請求の範囲第 1項〜第 31 項のいずれか 1項に規定する構成とすることにより、素子寿命が長ぐ且つ、低電圧 駆動が可能である有機エレクト口ルミネッセンス素子、及び該素子を用いた表示装置 あるいは照明装置を提供することを可能とした。
[0057] 以下、本発明に係る各構成要素の詳細について順次説明する。
[0058] 本発明の有機 EL素子の構成層の詳細については、後述するが、陽極と陰極との 間に設けられる有機化合物含有層としては、例えば、正孔輸送層、電子阻止層、発 光層、正孔阻止層、電子輸送層、電子注入層、正孔注入層等が挙げられるが、本発 明に係る電子輸送材料含有層は、前記有機化合物含有層のいずれかの層の間に 設けられていてもよぐまた、該電子輸送材料含有層が、前記有機化合物含有層の いずれかの層と一体になつていてもよぐ例えば、電子輸送層や電子注入層等が、 本発明に係る電子輸送材料含有層として機能してもよ!ヽ。
[0059] 《電子輸送材料含有層》
本発明に係る電子輸送材料含有層は、一般式(1)で表される電荷輸送材料を含 み、且つ、金属、該金属の塩及び電子供与性化合物の群から選択される少なくとも 一つを含有することが特徴である。
[0060] (電子輸送材料含有層の形成方法) 電子輸送材料含有層の形成方法 (成膜方法ともいう)は、従来公知のいかなる薄膜 形成法を適用してもよぐ例えば、蒸着法ゃスパッタ法が使用できる。また、溶液から の塗布で薄膜形成が可能な場合には、スピンコーティング法、ディップコーティング 法、インクジェット等のような、溶液を用いての塗布法が使用できる。この場合、混合さ れる、金属、該金属の塩または電子供与性化合物と、電子輸送性材料は、不活性な ポリマー中に分散して用いてもよ 、。
[0061] (電子輸送材料含有層の膜厚)
電子輸送材料含有層の厚み (膜厚)は、特に限定されないが、均一な膜の形成や 駆動電圧低下の観点から、 Inn!〜 200nmの範囲が好ましぐ特に好ましくは、 20η m〜80nmの範囲に調整することである。
[0062] 《金属、該金属の塩》
本発明に係る電子輸送材料含有層に含有させる金属としては、アルカリ金属 (例え ば、 Liゝ Naゝ K、 Rbゝ Csゝ Fr等)、アルカリ土類金属(Beゝ Mgゝ Caゝ Srゝ Ba等)が好 ましいが、更に好ましくは、リチウム、カリウム、ナトリウム、セシウム、ノ リウム、カルシゥ ム、ストロンチウムであり、最も好ましくは、セシウムである。
[0063] 本発明に係る電子輸送材料含有層に含有させる金属、該金属の塩としては、アル カリ金属(例えば、 Li、 Na、 K、 Rb、 Cs、 Fr等)、アルカリ土類金属(Be、 Mg、 Ca、 Sr 、 Ba等)の金属塩が好ましいが、更に好ましくは、リチウム塩、カリウム塩、ナトリウム塩 、セシウム塩、ノ リウム塩、カルシウム塩、ストロンチウム塩であり、最も好ましく用いら れる金属の塩は、セシウム塩である。
[0064] 更に、上記の金属の塩の好ましい態様を説明すると、金属の塩形成には、種々の 対ァ-オンを用いることが出来るが、本発明に記載の効果 (有機 EL素子の低電圧駆 動、発光寿命の長寿命化)を最も効果的に得る観点力 は、本発明に係る金属の塩 形成には、対ァ-オンとして、フッ素イオンを用いることが好ましぐ中でも金属の塩と して好ましく用いられるのは、 CsF (フッ化セシウム)である。
[0065] また、 CsFも含め、金属の塩の具体例を挙げると、下記に記載の塩、例えば、 LiF、 NaFゝ KF、 RbFゝ CsFゝ MgF、 CaF、 SrF、 BaF、 LiCl、 NaCl、 KC1、 RbCl、 Cs
2 2 2 2
Cl、 MgCl、 CaCl、 SrCl、 BaCl等が挙げられる。 [0066] CsH PO、 Cs HPO、 CsOH、 CH SO Csゝ CsHCO、 CsBr、 Csl、 RbH PO
2 4 2 4 3 3 3 3 3 2 4
、またはこれらの水和物は、 300°C以下に融点、分解点、沸点を持つ化合物であり、 容易に抵抗加熱蒸着できる特徴を有する。
[0067] CsNO、 RbOH、 RbNO、 Csl、 CsCIO、 RbBr、 Rbl、 RbCIO、またはこれらの
3 3 4 4 水和物は、 600°C以下に融点、分解点、沸点を持つ化合物であり、容易に抵抗加熱 蒸着できる上、安定性を兼ね備えている等の特徴を有する。
[0068] CsAlSiO、 CsAl (SiO ) 、 Cs CrO、 Cs Cr O、 (CsF) x (AlF )y、 CsVO、 Cs
4 3 2 2 4 2 2 7 3 3 3
VO、 CsMnO、 CsAlCl、 Cs Ti 1、 Cs WO、 Cs NbF、 Rb CrO等の水和物
4 4 4 2 60 3 2 4 2 7 2 4 は、安定性が高ぐ取り扱いが容易であるという特徴を有する。
[0069] セシウム、ルビジウムの 13ージケトン錯体、アルコキシドは、沸点、もしくは分解点が 低ぐ容易に抵抗加熱蒸着できることから好適に用いることができる。 β—ジケトン錯 体としては、ァセチルァセトネート、ェチルァセトァセトネートやそれらのフッ素置換体 などが挙げられるが、これに限定されない。アルコキシドとしては、メトキシド、エトキシ ド、プロポキシド、イソプロポキシド、メトキシエトキシド等が挙げられる。
[0070] (金属、該金属の塩の含有量 (濃度) )
本発明では、電子注入の際にエネルギー障壁を低下させる一方、陰極近傍での電 子授受を担う有機材料濃度を維持し電子注入効率を上げる観点から、電子材料含 有層における金属または該金属の塩の濃度は、 0. 1質量%〜99. 0質量%であるこ と力 子ましく、 1. 0質量%〜80. 0質量%の範囲に調整されていることが更に好まし い。
[0071] (金属、該金属の塩と電子輸送性材料との質量比)
金属または該金属の塩と、後述する電子輸送性有機材料との質量比は、 0. 1 : 99 . 9〜99 : 1力好ましく、 1 : 99〜80 : 20カ^ょり好まし ヽ0
[0072] (金属酸化物)
本発明に係る無機金属塩は、上記のアルカリ金属またはアルカリ土類金属の金属 酸ィ匕物等と併用してもよぐ前記金属酸化物としては、例えば、 Li 0、 Na 0、 K 0、
2 2 2
Rb 0、 Cs 0、 MgO、 CaO等が挙げられる。
2 2
[0073] 《一般式(1)で表される電子輸送材料》 本発明に係る電子輸送材料含有層は、前記一般式(1)で表される電子輸送材料 を含有する。
一般式(1)において、 X〜Xは C Rもしくは窒素原子を表す。 Rはそれぞれ独
5 8 1 1
立に水素もしくは置換基を表し、また、ここにおいて、置換基とは、アルキル基 (例え ば、メチル基、ェチル基、プロピル基、イソプロピル基、 tert ブチル基、ペンチル基 、へキシル基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル 基等)、シクロアルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァルケ
-ル基 (例えば、ビニル基、ァリル基等)、アルキニル基 (例えば、ェチュル基、プロパ ルギル基等)、ァリール基 (例えば、フ -ル基、ナフチル基等)、芳香族複素環基( 例えば、フリル基、チェニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジ二 ル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、 フタラジュル基等)、複素環基 (例えば、ピロリジル基、イミダゾリジル基、モルホリル基
、ォキサゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピルォキ シ基、ペンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基 等)、シクロアルコキシ基 (例えば、シクロペンチルォキシ基、シクロへキシルォキシ基 等)、ァリールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ 基(例えば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキ シルチオ基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基 (例えば、 シクロペンチルチオ基、シクロへキシルチオ基等)、ァリールチオ基 (例えば、フエ二 ルチオ基、ナフチルチオ基等)、アルコキシカルボ-ル基 (例えば、メチルォキシカル ボ-ル基、ェチルォキシカルボ-ル基、ブチルォキシカルボ-ル基、ォクチルォキシ カルボ-ル基、ドデシルォキシカルボ-ル基等)、ァリールォキシカルボ-ル基(例え ば、フエ-ルォキシカルボ-ル基、ナフチルォキシカルボ-ル基等)、スルファモイル 基(例えば、アミノスルホ -ル基、メチルアミノスルホ -ル基、ジメチルアミノスルホ -ル 基、ブチルアミノスルホ -ル基、へキシルアミノスルホ -ル基、シクロへキシルアミノス ルホ-ル基、ォクチルアミノスルホ -ル基、ドデシルアミノスルホ-ル基、フエ-ルアミ ノスルホ -ル基、ナフチルアミノスルホ -ル基、 2—ピリジルアミノスルホ -ル基等)、ァ シル基(例えば、ァセチル基、ェチルカルボ-ル基、プロピルカルボ-ル基、ペンチ ルカルボ-ル基、シクロへキシルカルボ-ル基、ォクチルカルポ-ル基、 2—ェチル へキシルカルボ-ル基、ドデシルカルポ-ル基、フヱ-ルカルボ-ル基、ナフチルカ ルポ二ル基、ピリジルカルボ-ル基等)、ァシルォキシ基 (例えば、ァセチルォキシ基 、ェチルカルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボ二ルォキ シ基、ドデシルカルボ-ルォキシ基、フエ-ルカルポニルォキシ基等)、アミド基 (例え ば、メチルカルボ-ルァミノ基、ェチルカルボ-ルァミノ基、ジメチルカルボ-ルァミノ 基、プロピルカルボ-ルァミノ基、ペンチルカルボ-ルァミノ基、シクロへキシルカル ボ-ルァミノ基、 2—ェチルへキシルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ 基、ドデシルカルボ-ルァミノ基、フヱ-ルカルポ-ルァミノ基、ナフチルカルボ-ル アミノ基等)、力ルバモイル基 (例えば、ァミノカルボニル基、メチルァミノカルボ-ル 基、ジメチルァミノカルボ-ル基、プロピルアミノカルボ-ル基、ペンチルァミノカルボ -ル基、シクロへキシルァミノカルボ-ル基、ォクチルァミノカルボ-ル基、 2—ェチル へキシルァミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ-ルァミノカルボ-ル 基、ナフチルァミノカルボニル基、 2—ピリジルァミノカルボ-ル基等)、ウレイド基 (例 えば、メチルウレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルゥレイ ド基、ォクチルゥレイド基、ドデシルウレイド基、フエニルウレイド基ナフチルウレイド基 、 2—ピリジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィエル基、ェ チルスルフィ-ル基、ブチルスルフィ-ル基、シクロへキシルスルフィ-ル基、 2—ェ チルへキシルスルフィ-ル基、ドデシルスルフィ-ル基、フヱニルスルフィ-ル基、ナ フチルスルフィ-ル基、 2—ピリジルスルフィエル基等)、アルキルスルホ -ル基(例え ば、メチルスルホ -ル基、ェチルスルホ -ル基、ブチルスルホ -ル基、シクロへキシ ルスルホ-ル基、 2—ェチルへキシルスルホ -ル基、ドデシルスルホ -ル基等)、ァリ 一ルスルホ -ル基(フヱ-ルスルホ-ル基、ナフチルスルホ-ル基、 2—ピリジルスル ホ-ル基等)、アミノ基 (例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、ブチル アミノ基、シクロペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ 二リノ基、ナフチルァミノ基、 2—ピリジルァミノ基等)、ハロゲン原子 (例えば、フッ素 原子、塩素原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリ フルォロメチル基、ペンタフルォロェチル基、ペンタフルォロフエ-ル基等)、シァノ 基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基 (例えば、トリメチルシリル基、トリイ ソプロビルシリル基、トリフエ-ルシリル基、フエ-ルジェチルシリル基等)、等が挙げ られる。
[0075] また、これらの Rが隣接して存在する場合、 R同士が互いに結合して環を形成して
1 1
もよい。形成される環としては、飽和、不飽和の炭化水素環、ヘテロ環等その種類は 問わない。更に、これらの環は、前記置換基を更に有してもよい。
[0076] また、前記一般式(1)で表される電荷輸送材料としては、さらに前記一般式(2)で 表される電荷輸送材料が好まし ヽ。
[0077] 一般式(2)において、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、 R 〜
15 18 15
R はお互いに結合して環を形成してもよい。ここにおいて、置換基 R 〜R は、前記
18 15 18 一般式(1)における置換基 Rと同義である。
1
[0078] また、電荷輸送材料としては、さらに前記一般式(3)で表される電荷輸送材料が好 ましい。
[0079] 式中、 R 、 R はそれぞれ独立に水素もしくは置換基を表し、 Zは置換基を有して
21 22 1 もよい芳香族炭化水素環または芳香族複素環を形成するに必要な原子団を表す。 R 、 R
21 22で表される置換基は、前記一般式(1)における置換基 R
1と同義である。
[0080] Zにより形成される芳香族炭化水素環としては、ベンゼン環、ナフタレン環等があり
1
これらは更に置換基を有して 、てもよ 、。
[0081] Zにより形成される芳香族複素環としては、例えば、フラン環、チォフェン環、ォキ サゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジ ン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール環、イミダゾール環、 ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環
、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キナゾリン環、シンノ リン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、力ルバゾール環、力 ルポリン環、ジァザ力ルバゾール環 (カルボリン環を構成する炭化水素環の炭素原子 の一つが更に窒素原子で置換されて ヽる環を示す)等が挙げられる。
[0082] 形成されるこれらの芳香族炭化水素環または芳香族複素環としては、 6員の環が好 ましぐベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環 、トリアジン環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環 、フタラジン環、ナフチリジン環、力ルバゾール環、カルボリン環、ジァザカルバゾー ル環等が好ましい。また、これらの環は更に置換基を有していてもよい。
[0083] また、前記一般式(3)で表される電荷輸送材料としては、さらに前記一般式 (4)で 表される電荷輸送材料が好まし ヽ。
[0084] 前記一般式 (4)において、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、
31 36
お互いに結合して環を形成してもよい。 R 〜R で表される置換基は、前記一般式(
31 36
1)における置換基 Rと同義である。
1
[0085] また、前記一般式(3)または (4)で表される電荷輸送材料として、一般式(5)または
(6)で表される電荷輸送材料が好ま ヽ。
[0086] 一般式(5)または(6)において、 Qはそれぞれ独立に置換基を有してもよいピリミジ
1
ン、キナゾリン、ベンゾキナゾリン残基を表し、 Lは二価の連結基もしくは直接結合を
1
表す。また、 Arlは芳香族炭化水素環残基もしくは芳香族複素環残基を表す。ここ において nは 0以上、好ましくは 6以下の整数を表す。
[0087] ここにおいて置換基とは、前記一般式(1)における置換基 Rと同義であり、また、 A
1
rlで表される芳香族炭化水素環残基または芳香複素環残基が誘導される芳香族炭 化水素環または芳香複素環としては、例えば、ベンゼン環、ナフタレン環、フラン環、 チォフェン環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、 ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール 環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベ ンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、 キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環 、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カルボリン環を構成する炭 化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げ られる。
[0088] Lで表される二価の連結基としては、アルキレン基、ァリーレン基、ヘテロァリーレン
1
基等が挙げられる。アルキレン基としては、それぞれ置換基を有していてもよい例え ばメチレン、エチレン、プロピレン等が、ァリーレン基としては、フエ-レン、ナフチレン 等の基が、また、ヘテロァリーレン基としては、ピリジン等の芳香族複素環力も誘導さ れる 2価の基等が挙げられ、またこれらの基が複数連結した構造、例えばメチレンビ スフエ-レン基等の基であってもよい。置換基としてはハロゲン原子等、限定されな!
[0089] また、前記一般式(5)または(6)で表される電荷輸送材料として、前記 Qで表され
1 るピリミジン、キナゾリン、ベンゾキナゾリン残基は、一般式(7)で表されることが好まし い。
[0090] 一般式(7)において、 R 〜R はそれぞれ独立に水素原子もしくは置換基を表し、
41 45
R 〜R はお互いに結合し環を形成してもよい。 *は連結部位を示す。ここにおいて
41 45
、 R 〜R で表される置換基としては、前記一般式(1)における置換基 Rと同義であ
41 45 1 る。
[0091] また、前記一般式(2)で表される電荷輸送材料として、さらに前記一般式 (8)また は(9)で表される電荷輸送材料が好ま ヽ。
[0092] 前記一般式 (8)、(9)において、 R 〜R はそれぞれ独立に水素もしくは置換基を
51 54
表し、 R 、 R は互いに結合して環を形成してもよい。 Z、 Zは置換基を有してもよい
51 52 2 3
芳香族炭化水素環または芳香族複素環を形成するに必要な原子団を表す。ここに おいて R 〜R で表される置換基とは、前記一般式(1)置換基 Rと同義である。
51 54 1
[0093] また、 Z、 Zにより形成される芳香族複素環としては、例えば、フラン環、チォフェン
2 3
環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環 、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール環、イミダゾ ール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダ ゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、キナゾリン 環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カノレバゾ ール環、カルボリン環、ジァザ力ルバゾール環 (カルボリン環を構成する炭化水素環 の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。形 成されるこれらの芳香族炭化水素環または芳香族複素環としては、 6員の環が好まし ぐベンゼン環、ナフタレン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、ト リアジン環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フ タラジン環、ナフチリジン環、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環 等が好まし 、。これらの環は更に置換基を有して 、てもよ!/、。
[0094] また、前記一般式 (8)または(9)で表される電荷輸送材料として、さらに前記一般 式(10)または(11)で表される電荷輸送材料が好ま 、。
[0095] 前記一般式(10)または(11)において、 R 〜R 、R 〜R はそれぞれ独立に水
61 66 71 76
素もしくは置換基を表す。 R 〜R 、R 〜R で表される置換基とは、前記一般式(1
61 66 71 76
)における置換基 Rと同義である。
1
[0096] また、前記一般式(1)、(2)、(8)、(9)、(10)、(11)等で表される電荷輸送材料の うち、さらに一般式( 12)または( 13)で表される電荷輸送材料が好ま U、。
[0097] 一般式(12)
Q -L -Q
2 2 2
一般式 (13)
Ar2- (Q )式中、 Qはそれぞれ独立に置換基を有してもよいピリダジン、シンノ
2 n 2
リン、フタラジン、ベンゾシンノリン、ベンゾフタラジン残基を表す。 Lは二価の連結基
2
もしくは直接結合を表す。 Ar2は芳香族炭化水素環残基もしくは芳香族複素環残基 を表す。 nは 0以上、好ましくは 6以下の整数を表す。
[0098] ここにおいて、置換基とは、前記一般式(1)における置換基 Rと同義であり、また、
1
Ar2で表される芳香族炭化水素環残基または芳香複素環残基が誘導される芳香族 炭化水素環または芳香複素環としては、例えば、ベンゼン環、ナフタレン環、フラン 環、チォフェン環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン 環、ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾー ル環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、 ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環 、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン 環、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カルボリン環を構成する 炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙 げられる。
[0099] Lで表される二価の連結基としては、アルキレン基、ァリーレン基、ヘテロァリーレン 基等が挙げられる。アルキレン基としては、それぞれ置換基を有していてもよい例え ばメチレン、エチレン、プロピレン等が、ァリーレン基としては、フエ-レン、ナフチレン 等の基が、また、ヘテロァリーレン基としては、ピリジン等の芳香族複素環から誘導さ れる 2価の基等が挙げられ、またこれらの基が複数連結した構造、例えばメチレンビ スフエ-レン基等の基であってもよい。置換基としてはハロゲン原子等、限定されない
[0100] また、本発明に係る電子輸送材料含有層にお ヽては、金属、該金属の塩及び電子 供与性ィ匕合物の群力 選択される少なくとも一つと共に一般式(14)または(15)で 表される電荷輸送材料を含有してもよ ヽ。
[0101] 一般式(14)または(15)において、 X 〜X はそれぞれ独立に C—Rもしくは窒素
11 14 87 原子を表すが、 X 〜X のうち必ず一つは窒素原子を表す。 R 〜R 、 R はそれぞ
11 14 81 83 87 れ独立に水素原子もしくは置換基を表すが、置換基同士が結合し環を形成してもよ い。
[0102] また、 X 〜X はそれぞれ独立に C—Rもしくは窒素原子を表す力 X 〜X のう
15 18 87 15 18 ち必ず一つは窒素原子を表す。 R R
84〜R
86、 87はそれぞれ独立に水素原子もしくは置 換基を表すが、置換基同士が結合し環を形成してもよい。
[0103] ここにおいて R 〜R で表される置換基とは、前記一般式(1)における置換基尺と
81 87 1 同義である。
[0104] また、一般式(14)または(15)で表される電荷輸送材料は、一般式(16)また(17) で表されることが好ましい。
[0105] 一般式(16)
Q -L -Q
3 3 3
一般式 (17)
Ar3- (Q )式中、 Qはそれぞれ独立に置換基を有してもよいナフチリジン、ベン
3 n 3
ゾナフチリジン残基を表す。 Lは二価の連結基もしくは直接結合を表す。 Ar3は芳香
3
族炭化水素環残基もしくは芳香族複素環残基を表す。 nは 0以上、好ましくは 6以下 の整数を表す。
[0106] ここにおいて置換基とは、前記一般式(1)における置換基 Rと同義であり、また、 A r3で表される芳香族炭化水素環残基または芳香複素環残基が誘導される芳香族炭 化水素環または芳香複素環としては、例えば、ベンゼン環、ナフタレン環、フラン環、 チォフェン環、ォキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、 ピラジン環、トリアジン環、ベンゾイミダゾール環、ォキサジァゾール環、トリァゾール 環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベ ンゾイミダゾール環、ベンゾチアゾール環、ベンゾォキサゾール環、キノキサリン環、 キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環 、力ルバゾール環、カルボリン環、ジァザ力ルバゾール環(カルボリン環を構成する炭 化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げ られる。
[0107] Lで表される二価の連結基としては、アルキレン基、ァリーレン基、ヘテロァリーレン
3
基等が挙げられる。アルキレン基としては、それぞれ置換基を有していてもよい例え ばメチレン、エチレン、プロピレン等が、ァリーレン基としては、フエ-レン、ナフチレン 等の基が、また、ヘテロァリーレン基としては、ピリジン等の芳香族複素環から誘導さ れる 2価の基等が挙げられ、またこれらの基が複数連結した構造、例えばメチレンビ スフエ-レン基等の基であってもよい。置換基としてはハロゲン原子等、限定されない
[0108] また、一般式 (8)、(15)、(19)等において、 nが 4以上の化合物は勿論、 nが 6以上 の化合物も本発明にお 、て、好ましく用いることが出来る。
[0109] また、前記一般式 (1)、(2)、(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、 (
12)、(13)、(14)、 (15)、 (16)または(17)等において、前記置換基 (一般式(1)
1
における換基 Rと同義の基)としては分子量 240以下であることが好ましい。単位体
1
積中(分子全体のなかで)の電子移動サイトと考えられるヘテロ環部分の寄与が小さ くなると電荷輸送材料として好ましくな 、。
[0110] また、前記一般式(1)、(2)、(3)、(4)、(10)、(11)、 (14)または(15)で表される 電荷輸送材料については、少なくとも一つの窒素へテロ芳香族環を含む複数の芳香 族環が連結し環構造を形成している(例えば、化合物例 N— 52〜56、また N— 59等 力 Sある)ことが好ましぐ駆動電圧が低ぐ長寿である。 [0111] また、前記一般式で表される電子輸送材料は、本発明に係る電子輸送材料含有層 に単独で含まれていてもよいし、後述する、本発明の有機 EL素子のその他の構成層 にも含まれていても良ぐ例えば、電子輸送層に含有されていてもよい。
[0112] 以下、前記一般式で表される化合物の具体例を示すが、本発明はこれらに限定さ れな ヽ。
[0113] [化 9]
Figure imgf000022_0001
Figure imgf000022_0002
[0114] [化 10]
N-13 N-14
Figure imgf000023_0001
[0115] [化 11]
Figure imgf000024_0001
[0116] [化 12]
Figure imgf000025_0001
ZTZ90C/900idf/X3d 8Ιΐ爾 900Z OAV
Figure imgf000026_0001
[0118] [化 14] [SO] [6Π0]
Figure imgf000027_0001
ZTZ90C/900Zdf/X3d 93 811爾900 OAV N-57 N-58 N-59
Figure imgf000028_0001
16]
Figure imgf000029_0001
N-74 N-75
Figure imgf000029_0002
17]
Figure imgf000030_0001
9 -N
T/900Z OAV
ZT∑;90e/900Zdr/X3d 62 8111-0
Figure imgf000031_0001
[0123] [化 19]
Figure imgf000032_0001
[0124] [化 20]
Figure imgf000033_0001
[0125] 《電子供与性化合物》
本発明に係る電子供与性ィ匕合物としては、芳香族ァミン化合物、チオフ ンィ匕合物 、フルバレンィ匕合物が好まし 、ィ匕合物としてあげられる。
[0126] ここで、芳香族アミンィ匕合物の具体例としては、特開平 9 59614号公報に記載の ァリールァミン誘導体 (例えば、ジメチルァ-リン、 p ァ-シジン、 p アミノジフエ- ルァミン、 p フエ-レンジァミン、 o フエ-レンジァミン、 2—メチル p フエ-レン ジァミン、 N, N ジメチルー p フエ-レンジァミン、 N, N,一ジメチル一 p フエ-レ ンジァミン、テトラメチルー p—フエ二レンジァミン、デュレンジァミン、 1, 5 ジアミノナ フタレン、 1, 8 ジァミノナフタレン、 2, 3 ジァミノナフタレン、 1, 6 ジアミノビレン 、 1, 8 ジアミノビレン等)ゃ特開 2002— 203684号公報に記載のトリフエ-ルァミン 系化合物(例えば、トリ(4—メチルフエ-ル)ァミン、 N, N ビス(3, 4—ジメチルフエ -ル)ビフエ二ルー 4ーァミン等)が挙げられるが、本発明はこれらに限定されない。
[0127] また、チォフェンィ匕合物の具体例としては、特開 2002— 100416号公報に記載の ィ匕合物、例えば、 Adv. Mater. (1997) , 9卷, NO. 7, 557頁、 Angew. Chem. ( 英語版)、 (1995) , 34卷, No. 3, 303— 307頁、米国ィ匕学会誌 (J. Am. Chem. Soc. ) , 120卷, NO. 4, (1998) , 664— 672頁等【こ記載されて!ヽるオリゴチォフエ ン化合物が挙げられるが、本発明はこれらに限定されない。
[0128] 本発明に係るフルバレン化合物の具体例としては、特開平 5— 52667号公報に記 載のドナー性有機分子として記載されているような、例えば、テトラチアフルバレン、 テトラメチルテトラチアフルバレン、テトラメチルテトラセレナフルバレン、ビスエチレン ジチォテトラチアフルバレン、ビストリメチレンジチォテトラチアフルバレンなどのテトラ チアフルバレンィ匕合物等が挙げられる力 本発明はこれらに限定されない。
[0129] また、本発明に係る電子輸送材料含有層は、下記のような材料を含有して 、てもよ い。
[0130] 《併用してもよい材料》
本発明に係る電子輸送性材料含有層には、上記の電荷輸送材料、金属または金 属塩、電子供与性化合物以外にも、以下のような化合物を併用して用いることが出 来る。
[0131] 併用可能な化合物としては、例えば、トリァゾール誘導体、ォキサゾール誘導体、ォ キサジァゾール誘導体、フルォレノン誘導体、アントラキノジメタン誘導体、アントロン 誘導体、ジフヱ二ルキノン誘導体、チォピランジオキシド誘導体、カルポジイミド誘導 体、フルォレニリデンメタン誘導体、ジスチリルビラジン誘導体、ナフタレンペリレン等 の複素環テトラカルボン酸無水物、フタロシアニン誘導体、 8—キノリノール誘導体等 の金属錯体、メタ口フタロシアニン、ベンゾォキサゾールやべンゾチアゾール等を配 位子とする金属錯体、ァ-リン共重合体、チォフェンオリゴマー、ポリチォフェン等の 導電性高分子、ポリチォフェン誘導体、ポリフエ-レン誘導体、ポリフエ-レンビ-レン 誘導体、ポリフルオレン誘導体等が挙げられる。
[0132] 次に、代表的な有機 EL素子の構成について述べる。
[0133] 《有機 EL素子の構成層》
本発明の有機 EL素子の構成層につ 、て説明する。
[0134] 本発明の有機 EL素子の層構成の好ましい具体例を以下に示すが、本発明はこれ らに限定されない。
(i)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z電子輸送材料含有 層 Z陰極
(ii)陽極 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子輸送材料含有 層 Z陰極
(iii)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子 輸送材料含有層 z陰極
(iv)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子 輸送材料含有層 Z陰極
(V)陽極 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子 輸送材料含有層 Z陰極バッファ一層 Z陰極
(vi)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子輸送材料含有層 Z陰極バッファ一層 Z陰極
(vii)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子輸送材料含有層 Z陰極バッファ一層 Z陰極
(vm)陽極 Z正孔注入層 Z正孔輸送層 Z発光層 Z正孔阻止層 Z拡散防止層 Z電 子輸送材料含有層,陰極
(IX)陽極 Z陽極バッファ一層 Z正孔輸送層 Z電子阻止層 Z拡散防止層 Z発光層 Z正孔阻止層 Z電子輸送層 Z電子輸送材料含有層 Z拡散防止層 Z陰極バッファ 一層 Z陰極
《発光層》
本発明に係る発光層は、電極または電子輸送層、正孔輸送層カゝら注入されてくる 電子及び正孔が再結合して発光する層であり、発光する部分は発光層の層内であつ ても発光層と隣接層との界面であってもよ 、。
[0135] 本発明に係る発光層は、発光極大波長が 430nm〜480nmの範囲にある青色発 光層、 510nm〜550nmの範囲にある緑色発光層、 600nm〜640nmの範囲にある 赤色発光層等、種々の発光極大波長を有するものを用いることができ、特に限定さ れない。
[0136] 発光層の数は単層でも、複数層でもよぐ複数層の場合には、同一の発光スぺタト ルゃ発光極大波長を有する層が複数層あってもよい。また、本発明に係る発光層の 発光が、後述する、燐光発光体 (リン光発光性化合物)に基づく青色リン光発光を含 むことが好ましい。
[0137] 個々の発光層の膜厚としては、 2nm〜100nmの範囲に調整することが好ましぐ 更に好ましくは、 2ηπ!〜 20nmの範囲に調整することである。青、緑、赤の各発光層 の膜厚の関係については、特に制限はない。
[0138] 発光層が複数層設けられる場合の、総膜厚は特に制限はないが、膜の均質性や、 発光時に不必要な高電圧を印加するのを防止し、且つ、駆動電流に対する発光色 の安定性向上の観点から、 2ηπι〜5 /ζ πιの範囲に調整することが好ましぐ更に好ま しくは 2nm〜200nmの範囲に調整され、特に好ましくは、 10nm〜20nmの範囲で ある。
[0139] 発光層の作製には、後述する発光ドーパントやホストイ匕合物を、例えば、真空蒸着 法、スピンコート法、キャスト法、 LB法、インクジェット法等の公知の薄膜ィ匕法により製 膜して形成することができる。
[0140] また、前記の極大波長を維持する範囲において、各発光層には複数の発光性ィ匕 合物を混合してもよい。例えば、青発光層に、極大波長 430nm〜480nmの青発光 性ィ匕合物と、極大波長 510ηπ!〜 550nmの緑発光性ィ匕合物を混合して用いてもよい
[0141] 次に、発光層に含まれるホスト化合物、発光ドーパント (発光ドーパント化合物とも いう)について説明する。
[0142] (ホストイ匕合物)
本発明の有機 EL素子の発光層に含まれるホストイ匕合物とは、室温(25°C)におけ るリン光発光のリン光量子収率が、 0. 1未満の化合物と定義される。好ましくはリン光 量子収率が 0. 01未満である。また、発光層に含有される化合物の中で、その層中 での質量比が 20%以上であることが好まし 、。
[0143] ホストイ匕合物としては、公知のホストイ匕合物を単独で用いてもよぐまたは複数種併 用して用いてもよい。ホストイ匕合物を複数種用いることで、電荷の移動を調整すること が可能であり、有機 EL素子を高効率ィ匕することができる。また、後述する発光ドーパ ントとして用いられるリン光性ィ匕合物等を複数種用いることで、異なる発光を混ぜるこ とが可能となり、これにより任意の発光色を得ることができる。リン光性化合物の種類、 ドープ量を調整することでが可能であり、照明、ノックライトへの応用もできる。
[0144] 本発明に係るホストイ匕合物としては、下記一般式 (I)で表される化合物が好ましく用 いられる化合物の一例として挙げられる。また、前記化合物は発光層の隣接層(例え ば、正孔阻止層等)〖こも好ましく用いられる。
[0145] 下記一般式 (I)で表される化合物を発光層または該発光層の隣接層に含み、本発 明に係る燐光発光体を発光層に用いて作製した有機 EL素子は、発光効率が高くな り、高輝度の素子を得ることができる。
[0146] 《一般式 (I)で表される化合物》
[0147] [化 21] 一般式 (I)
, - C 、C " ヽ
,c -z3- -c, '
[0148] 式中、 Zは置換基を有していてもよい芳香族複素環を表し、 Zは、各々置換基を有
1 2 していてもよい芳香族複素環または芳香族炭化水素環を表し、 Zは 2価の連結基ま
3
たは単なる結合手を表す。 R は水素原子または置換基を表す。
101
[0149] 前記一般式 (I)にお!/、て、 Z、 Zで表される芳香族複素環としては、フラン環、チォ
1 2
フェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾィ ミダゾール環、ォキサジァゾール環、トリァゾール環、イミダゾール環、ピラゾール環、 チアゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾォ キサゾール環、キノキサリン環、キナゾリン環、フタラジン環、力ルバゾール環、カルボ リン環、カルボリン環を構成する炭化水素環の炭素原子が更に窒素原子で置換され ている環等が挙げられる。更に、前記芳香族複素環は、後述する R
101で表される置換 基を有してもよい。
[0150] 前記一般式 (I)にお!/、て、 Zで表される芳香族炭化水素環としては、ベンゼン環、
2
ビフエ-ル環、ナフタレン環、ァズレン環、アントラセン環、フエナントレン環、ピレン環
、タリセン環、ナフタセン環、トリフエ-レン環、 o—テルフエ-ル環、 m—テルフエ-ル 環、 p—テルフエ-ル環、ァセナフテン環、コロネン環、フルオレン環、フルオラントレ ン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環 、ピラントレン環、アンスラアントレン環等が挙げられる。更に、前記芳香族炭化水素 環は、後述する R で表される置換基を有してもよい。
101
一般式 (I)において、 R で表される置換基としては、アルキル基 (例えば、メチル
101
基、ェチル基、プロピル基、イソプロピル基、 tert—ブチル基、ペンチル基、へキシル 基、ォクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シ クロアルキル基 (例えば、シクロペンチル基、シクロへキシル基等)、ァルケ-ル基 (例 えば、ビュル基、ァリル基等)、アルキ-ル基 (例えば、ェチニル基、プロパルギル基 等)、ァリール基 (例えば、フ -ル基、ナフチル基等)、芳香族複素環基 (例えば、フ リル基、チェ-ル基、ピリジル基、ピリダジ -ル基、ピリミジ -ル基、ビラジニル基、トリ アジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジュ ル基等)、複素環基 (例えば、ピロリジル基、イミダゾリジル基、モルホリル基、ォキサ ゾリジル基等)、アルコキシ基 (例えば、メトキシ基、エトキシ基、プロピルォキシ基、ぺ ンチルォキシ基、へキシルォキシ基、ォクチルォキシ基、ドデシルォキシ基等)、シク 口アルコキシ基 (例えば、シクロペンチルォキシ基、シクロへキシルォキシ基等)、ァリ ールォキシ基 (例えば、フエノキシ基、ナフチルォキシ基等)、アルキルチオ基 (例え ば、メチルチオ基、ェチルチオ基、プロピルチオ基、ペンチルチオ基、へキシルチオ 基、ォクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基 (例えば、シクロペン チルチオ基、シクロへキシルチオ基等)、ァリールチオ基 (例えば、フエ二ルチオ基、 ナフチルチオ基等)、アルコキシカルボニル基 (例えば、メチルォキシカルボ-ル基、 ェチルォキシカルボニル基、ブチルォキシカルボニル基、ォクチルォキシカルボニル 基、ドデシルォキシカルボニル基等)、ァリールォキシカルボ-ル基 (例えば、フエ- ルォキシカルボ-ル基、ナフチルォキシカルボ-ル基等)、スルファモイル基(例えば 、アミノスルホ -ル基、メチルアミノスルホ -ル基、ジメチルアミノスルホ -ル基、ブチ ルアミノスルホニル基、へキシルアミノスルホニル基、シクロへキシルアミノスルホニル 基、ォクチルアミノスルホ -ル基、ドデシルアミノスルホ-ル基、フエ-ルアミノスルホ -ル基、ナフチルアミノスルホ -ル基、 2—ピリジルアミノスルホ -ル基等)、ァシル基( 例えば、ァセチル基、ェチルカルボ-ル基、プロピルカルボ-ル基、ペンチルカルボ ニル基、シクロへキシルカルボ-ル基、ォクチルカルポ-ル基、 2—ェチルへキシル カルボ-ル基、ドデシルカルポ-ル基、フエ-ルカルポ-ル基、ナフチルカルボ-ル 基、ピリジルカルボ-ル基等)、ァシルォキシ基 (例えば、ァセチルォキシ基、ェチル カルボニルォキシ基、ブチルカルボニルォキシ基、ォクチルカルボニルォキシ基、ド デシルカルボニルォキシ基、フエ-ルカルポニルォキシ基等)、アミド基 (例えば、メチ ルカルボ-ルァミノ基、ェチルカルボ-ルァミノ基、ジメチルカルボ-ルァミノ基、プロ ピルカルボ-ルァミノ基、ペンチルカルボ-ルァミノ基、シクロへキシルカルボ-ルァ ミノ基、 2—ェチルへキシルカルボ-ルァミノ基、ォクチルカルボ-ルァミノ基、ドデシ ルカルボ-ルァミノ基、フエ-ルカルポ-ルァミノ基、ナフチルカルボ-ルァミノ基等) 、力ルバモイル基(例えば、ァミノカルボ-ル基、メチルァミノカルボ-ル基、ジメチル ァミノカルボ-ル基、プロピルアミノカルボ-ル基、ペンチルァミノカルボ-ル基、シク 口へキシルァミノカルボ-ル基、ォクチルァミノカルボ-ル基、 2—ェチルへキシルァ ミノカルボ-ル基、ドデシルァミノカルボ-ル基、フエ-ルァミノカルボ-ル基、ナフチ ルァミノカルボ-ル基、 2—ピリジルァミノカルボ-ル基等)、ウレイド基 (例えば、メチ ルゥレイド基、ェチルウレイド基、ペンチルゥレイド基、シクロへキシルウレイド基、オタ チルウレイド基、ドデシルウレイド基、フ -ルゥレイド基ナフチルウレイド基、 2—ピリ ジルアミノウレイド基等)、スルフィエル基(例えば、メチルスルフィ-ル基、ェチルスル フィエル基、ブチルスルフィ-ル基、シクロへキシルスルフィ-ル基、 2—ェチルへキ シルスルフィ-ル基、ドデシルスルフィ-ル基、フエ-ルスルフィ-ル基、ナフチルス ルフィ-ル基、 2—ピリジルスルフィエル基等)、アルキルスルホ -ル基(例えば、メチ ノレスノレホニノレ基、ェチノレスノレホ-ノレ基、ブチノレスノレホニノレ基、シクロへキシノレスノレホ -ル基、 2—ェチルへキシルスルホ -ル基、ドデシルスルホ -ル基等)、ァリールスル ホ-ル基(フヱ-ルスルホ-ル基、ナフチルスルホ-ル基、 2—ピリジルスルホ -ル基 等)、アミノ基 (例えば、アミノ基、ェチルァミノ基、ジメチルァミノ基、プチルァミノ基、 シクロペンチルァミノ基、 2—ェチルへキシルァミノ基、ドデシルァミノ基、ァ-リノ基、 ナフチルァミノ基、 2—ピリジルァミノ基等)、ハロゲン原子 (例えば、フッ素原子、塩素 原子、臭素原子等)、フッ化炭化水素基 (例えば、フルォロメチル基、トリフルォロメチ ル基、ペンタフルォロェチル基、ペンタフルォロフエ-ル基等)、シァノ基、ニトロ基、 ヒドロキシ基、メルカプト基、シリル基 (例えば、トリメチルシリル基、トリイソプロピルシリ ル基、トリフエ-ルシリル基、フエ-ルジェチルシリル基等)等が挙げられる。 [0152] これらの置換基は、上記の置換基によって更に置換されて 、てもよ 、。また、これら の置換基は複数が互いに結合して環を形成して 、てもよ 、。
[0153] 好まし 、置換基としては、アルキル基、シクロアルキル基、フッ化炭化水素基、ァリ ール基、芳香族複素環基である。
[0154] 2価の連結基としては、アルキレン、ァルケ-レン、アルキ-レン、ァリーレンなどの 炭化水素基のほか、ヘテロ原子を含むものであってもよぐまた、チォフェン 2, 5— ジィル基や、ピラジン 2, 3 ジィル基のような、芳香族複素環を有する化合物 (へ テロ芳香族化合物ともいう)に由来する 2価の連結基であってもよいし、酸素や硫黄な どのカルコゲン原子であってもよい。また、アルキルイミノ基、ジアルキルシランジィル 基ゃジァリールゲルマンジィル基のような、ヘテロ原子を会して連結する基でもよ!/、。
[0155] 単なる結合手とは、連結する置換基同士を直接結合する結合手である。
[0156] 本発明にお 、ては、前記一般式 (I)の Z力 員環であることが好ま 、。これにより、
1
より発光効率を高くすることができる。更に、一層長寿命化させることができる。
[0157] また、本発明においては、前記一般式 (I)の Z力 ½員環であることが好ましい。これ
2
により、より発光効率を高くすることができる。更に、より一層長寿命化させることがで きる。
[0158] 更に、前記一般式 (I)の Zと Zを共に 6員環とすることで、より一層発光効率と高くす
1 2
ることができるので好ましい。更に、より一層長寿命化させることができるので好ましい
[0159] 以下、本発明に係る一般式 (I)で表される化合物の具体例を示すが、本発明はこ れらに限定されない。
[0160] [化 22]
Figure imgf000041_0001
[0161] [化 23]
Figure imgf000042_0001
[0162] [化 24]
Figure imgf000043_0001
[0163] [化 25]
Figure imgf000044_0001
[0164] [化 26]
Figure imgf000045_0001
[0165] [化 27] 化合物
Figure imgf000046_0001
Figure imgf000046_0002
28]
Figure imgf000047_0001
[0167] [化 29]
Figure imgf000048_0001
[0168] [化 30] 化合物 中心骨格 A
Figure imgf000049_0001
31]
Figure imgf000050_0001
[0170] [化 32]
Figure imgf000051_0001
[0171] [化 33]
Figure imgf000052_0001
[0172] [化 34]
Figure imgf000053_0001
[0173] [化 35]
Figure imgf000054_0001
[0174] [化 36]
Figure imgf000055_0001
[0175] [化 37]
Figure imgf000056_0001
[0176] [化 38]
Figure imgf000057_0001
[0177] [化 39]
[of^ [mo]
Figure imgf000058_0001
Figure imgf000059_0001
[0179] [化 41]
[Zf^ [0810]
Figure imgf000060_0001
ZTZ90C/900Zdf/X3d 69 811爾900 OAV
Figure imgf000061_0001
[0181] [化 43]
Figure imgf000062_0001
[0182] [化 44]
Figure imgf000063_0001
[0183] [化 45]
Figure imgf000064_0001
[0184] [化 46]
Figure imgf000065_0001
Figure imgf000065_0002
[0185] M匕^ [Sf^ [9810]
Figure imgf000066_0001
Figure imgf000067_0001
[0187] [化 49]
[Oe^ ] [8810]
Figure imgf000068_0001
ZTZ90C/900Zdf/X3d Z9 81 0I/900Z OAV
[TS^ ] [6810]
Figure imgf000069_0001
ZTZ90C/900Zdf/X3d 89 811爾900 OAV
[2S^ ] [0610]
Figure imgf000070_0001
ZTZ90C/900Zdf/X3d 69 811爾900 OAV 158 159
Figure imgf000071_0001
Figure imgf000071_0002
53]
Figure imgf000072_0001
[0193] [化 55]
Figure imgf000073_0001
[0194] [化 56]
Figure imgf000074_0001
[0195] [化 57]
Figure imgf000075_0001
[0196] また、本発明に用いられる発光ホストとしては、従来公知の低分子化合物でも、繰り 返し単位をもつ高分子化合物でもよぐビュル基やエポキシ基のような重合性基を有 する低分子化合物 (蒸着重合性発光ホスト)でも ヽ。
[0197] 公知のホストイ匕合物としては、正孔輸送能、電子輸送能を有しつつ、且つ発光の長 波長化を防ぎ、なお且つ高 Tg (ガラス転移温度)である化合物が好ま 、。
[0198] 公知のホストイ匕合物の具体例としては、以下の文献に記載されている化合物が挙 げられる。例えば、特開 2001— 257076号公報、同 2002— 308855号公報、同 20 01— 313179号公報、同 2002— 319491号公報、同 2001— 357977号公報、同 2002— 334786号公報、同 2002— 8860号公報、同 2002— 334787号公報、同 2002— 15871号公報、同 2002— 334788号公報、同 2002— 43056号公報、同 2002— 334789号公報、同 2002— 75645号公報、同 2002— 338579号公報、 同 2002— 105445号公報、同 2002— 343568号公報、同 2002— 141173号公報 、同 2002— 352957号公報、同 2002— 203683号公報、同 2002— 363227号公 報、同 2002— 231453号公報、同 2003— 3165号公報、同 2002— 234888号公 報、同 2003— 27048号公報、同 2002— 255934号公報、同 2002— 260861号 公報、同 2002— 280183号公報、同 2002— 299060号公報、同 2002— 302516 号公報、同 2002— 305083号公報、同 2002— 305084号公報、同 2002— 3088 37号公報等が挙げられる。
[0199] (発光ドーパント)
本発明の有機 EL素子の発光層に含まれる発光ドーパントについて説明する。
[0200] 本発明に用いられる発光ドーパントとしては、蛍光性化合物、燐光発光体 (リン光性 化合物、リン光発光性ィ匕合物等ともいう)を用いることが出来るが、より発光効率の高 い有機 EL素子を得る観点からは、本発明の有機 EL素子の発光層や発光ユニットに 使用される発光ドーパント(単に、発光材料ということもある)としては、上記のホストイ匕 合物を含有すると同時に、燐光発光体を含有することが好ましい。
[0201] (燐光発光体)
燐光発光体は、励起三重項からの発光が観測される化合物であり、具体的には、 室温(25°C)にてリン光発光する化合物であり、リン光量子収率が、 25°Cにおいて 0. 01以上の化合物であると定義される力 好ましいリン光量子収率は 0. 1以上である。
[0202] 上記リン光量子収率は、第 4版実験化学講座 7の分光 IIの 398頁(1992年版、丸 善)に記載の方法により測定できる。溶液中でのリン光量子収率は種々の溶媒を用 いて測定できるが、本発明に係るリン光発光体は、任意の溶媒のいずれかにおいて 上記リン光量子収率 (0. 01以上)が達成されればょ 、。
[0203] 燐光発光体の発光は原理としては 2種挙げられ、一つはキャリアが輸送されるホスト 化合物上でキャリアの再結合が起こってホストイ匕合物の励起状態が生成し、このエネ ルギーを燐光発光体に移動させることで燐光発光体力 の発光を得るというエネルギ 一移動型、もう一つは燐光発光体がキャリアトラップとなり、燐光発光体上でキャリア の再結合が起こり燐光発光体力 の発光が得られるというキャリアトラップ型であるが 、いずれの場合においても、燐光発光体の励起状態のエネルギーはホストイ匕合物の 励起状態のエネルギーよりも低 、ことが条件である。
[0204] 燐光発光体は、有機 EL素子の発光層に使用される公知のものの中から適宜選択 して用いることができる。
[0205] 燐光発光体としては、好ましくは元素周期表で 8族〜 10族の金属を含有する錯体 系化合物であり、更に好ましくはイリジウム化合物、オスミウム化合物、または白金化 合物(白金錯体系化合物)、希土類錯体であり、中でも最も好ましいのはイリジウム化 合物である。
[0206] 以下に、燐光発光体として用いられる化合物の具体例を示すが、本発明はこれら に限定されない。これらの化合物は、例えば、 Inorg. Chem. 40卷、 1704〜1711 に記載の方法等により合成できる。
[0207] [化 58]
Figure imgf000077_0001
[0208] [化 59]
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0003
Figure imgf000078_0004
奮s〔〕021
Figure imgf000079_0001
Figure imgf000080_0001
[0211] (蛍光発光体 (蛍光性ドーパント等とも!、う) )
蛍光発光体 (蛍光性ドーパント)の代表例としては、クマリン系色素、ピラン系色素、 シァニン系色素、クロコ-ゥム系色素、スクァリウム系色素、ォキソベンツアントラセン 系色素、フルォレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色 素、スチルベン系色素、ポリチオフ ン系色素、又は希土類錯体系蛍光体等が挙げ られる。
[0212] また、従来公知のドーパントも本発明に用いることができ、例えば、国際公開第 00 Z70655号パンフレツ卜、特開 2002— 280178号公報、特開 2001— 181616号公 報、特開 2002— 280179号公報、特開 2001— 181617号公報、特開 2002— 280 180号公報、特開 2001— 247859号公報、特開 2002— 299060号公報、特開 20 01— 313178号公報、特開 2002— 302671号公報、特開 2001— 345183号公報 、特開 2002— 324679号公報、国際公開第 02/15645号パンフレット、特開 2002 — 332291号公報、特開 2002— 50484号公報、特開 2002— 332292号公報、特 開 2002— 83684号公報、特表 2002— 540572号公報、特開 2002— 117978号 公報、欄 2002— 338588号公報、欄 2002— 170684号公報、欄 2002— 3 52960号公報、国際公開第 01Z93642号パンフレツ K特開 2002— 50483号公 報、特開 2002— 100476号公報、特開 2002— 173674号公報、特開 2002— 359 082号公報、特開 2002— 175884号公報、特開 2002— 363552号公報、特開 20 02— 184582号公報、特開 2003— 7469号公報、特表 2002— 525808号公報、 特開 2003— 7471号公報、特表 2002— 525833号公報、特開 2003— 31366号 公報、特開 2002— 226495号公報、特開 2002— 234894号公報、特開 2002— 2 35076号公報、特開 2002— 241751号公報、特開 2001— 319779号公報、特開 2001— 319780号公報、特開 2002— 62824号公報、特開 2002— 100474号公 報、特開 2002— 203679号公報、特開 2002— 343572号公報、特開 2002— 203 678号公報等が挙げられる。
[0213] 《阻止層(電子阻止層、正孔阻止層)》
本発明に係る阻止層(例えば、電子阻止層、正孔阻止層)について説明する。
[0214] 本発明においては、正孔阻止層、電子阻止層等に、本発明の有機 EL素子材料を を用いることが好ましぐ特に好ましくは正孔阻止層に用いることである。
[0215] 本発明の有機 EL素子材料を正孔阻止層、電子阻止層に含有させる場合、請求の 範囲第 1項〜第 29項のいずれか 1項に記載されている、本発明に係る金属または該 金属の塩を正孔阻止層や電子阻止層等の層構成成分として 100質量%の状態で含 有させてもよいし、他の有機化合物 (例えば、本発明の有機 EL素子の構成層に用い られる化合物等)等と混合してもよ ヽ。
[0216] 本発明に係る阻止層の膜厚としては好ましくは 3ηπ!〜 lOOnmであり、更に好ましく ίま 5nm〜30nmでめる。
[0217] 《正孔阻止層》
正孔阻止層とは広い意味では電子輸送層の機能を有し、電子を輸送する機能を有 しつつ正孔を輸送する能力が著しく小さい材料力 なり、電子を輸送しつつ正孔を阻 止することで電子と正孔の再結合確率を向上させることができる。
[0218] 正孔阻止層としては、例えば特開平 11— 204258号公報、同 11 204359号公 報、及び「有機 EL素子とその工業化最前線(1998年 11月 30日 ェヌ'ティー 'エス 社発行)」の 237頁等に記載の正孔阻止(ホールブロック)層等を本発明に係る正孔 阻止層として適用可能である。また、後述する電子輸送層の構成を必要に応じて、本 発明に係る正孔阻止層として用 、ることが出来る。
[0219] 《電子阻止層》
一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、正孔を輸送する機 能を有しつつ電子を輸送する能力が著しく小さい材料力 なり、正孔を輸送しつつ電 子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述 する正孔輸送層の構成を必要に応じて電子阻止層として用いることが出来る。
[0220] また、本発明においては、発光層に隣接する隣接層、即ち、正孔阻止層、電子阻 止層に、上記一般式 (33)で表される化合物を用いることが好ましぐ特に正孔阻止 層に用いることが好ましい。
[0221] 《正孔輸送層》
正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料力 なり、広い意味で 正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数 層設けることができる。
[0222] 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性の!/、ずれかを有す るものであり、有機物、無機物のいずれであってもよい。例えば、トリァゾール誘導体 、ォキサジァゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ビラ ゾリン誘導体及びピラゾロン誘導体、フ -レンジァミン誘導体、ァリールァミン誘導 体、ァミノ置換カルコン誘導体、ォキサゾール誘導体、スチリルアントラセン誘導体、 フルォレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、ァニリ ン系共重合体、また導電性高分子オリゴマー、特にチォフェンオリゴマー等が挙げら れる。
[0223] 正孔輸送材料としては上記のものを使用することができる力 ボルフイリンィ匕合物、 芳香族第 3級ァミン化合物及びスチリルアミン化合物、特に芳香族第 3級アミンィ匕合 物を用いることが好ましい。
[0224] 芳香族第 3級アミンィ匕合物及びスチリルアミンィ匕合物の代表例としては、 N, N, N ' , N' —テトラフエニル一 4, 4' —ジァミノフエ-ル; N, N' —ジフエ-ル一 N, N ' —ビス(3—メチルフエ-ル)一〔1, 1' —ビフエ-ル〕一 4, 4' —ジァミン(TPD) ; 2, 2 ビス(4 ジ一 p トリルァミノフエ-ル)プロパン; 1 , 1—ビス(4 ジ一 p トリ ルァミノフエ-ル)シクロへキサン; N, N, N' , N' —テトラ一 p トリル一 4, 4' - ジアミノビフエ-ル; 1 , 1 ビス(4 ジ一 p トリルァミノフエ-ル) 4 フエ-ルシク 口へキサン;ビス(4 -ジメチルァミノ 2 メチルフエ-ル)フエニルメタン;ビス(4 -ジ —p トリルァミノフエ-ル)フエ-ルメタン; N, N' —ジフエ-ル一 N, N' —ジ(4— メトキシフエ-ル) 4, 4' ージアミノビフエニル; N, N, N' , N' —テトラフエ-ル —4, 4' ージアミノジフエ-ルエーテル; 4, 4' ビス(ジフエ-ルァミノ)クオ一ドリフ ェ -ル; N, N, N トリ(p トリル)ァミン; 4— (ジ— p トリルァミノ)— 4' —〔4— (ジ —p トリルァミノ)スチリル〕スチルベン; 4— N, N ジフエ-ルァミノ—(2 ジフエ- ルビ-ル)ベンゼン; 3—メトキシ一 4' — N, N ジフエニルアミノスチルベンゼン; N フエ-ルカルバゾール、更には、米国特許第 5, 061 , 569号明細書に記載されて いる 2個の縮合芳香族環を分子内に有するもの、例えば、 4, 4' ビス〔N—(1ーナ フチル) N フエ-ルァミノ〕ビフヱ-ル(NPD)、特開平 4 308688号公報に記 載されているトリフエ-ルァミンユニットが 3つスターバースト型に連結された 4, 4' , A" —トリス〔?^— (3—メチルフエ-ル) N フエ-ルァミノ〕トリフエ-ルァミン(MTD ATA)等が挙げられる。
[0225] 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とし た高分子材料を用いることもできる。また、 P型— Si、 p型— SiC等の無機化合物も正 孔注入材料、正孔輸送材料として使用することができる。
[0226] また、特開平 11— 251067号公報、 J. Huang et. al.著文献 (Applied Physic s Letters 80 (2002) , p. 139)に記載されているような所謂、 p型正孔輸送材料 を用いることもできる。本発明においては、より高効率の発光素子が得られることから 、これらの材料を用いることが好ましい。
[0227] 正孔輸送層は上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5nm〜200nmである。この正孔輸送層は上記材料の 1種または 2種以上力もなる一層構造であってもよ 、。 [0228] また、不純物をドープした p性の高い正孔輸送層を用いることもできる。その例とし ては、特開平 4— 297076号公報、特開 2000— 196140号公報、特開 2001— 102 175号公報、 J. Appl. Phys. , 95, 5773 (2004)等に記載されたものが挙げられる
[0229] 本発明においては、このような ρ性の高い正孔輸送層を用いることが、より低消費電 力の素子を作製することができるため好ましい。
[0230] 《電子輸送層》
電子輸送層とは電子を輸送する機能を有する材料力 なり、広い意味で電子注入 層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けるこ とがでさる。
[0231] 従来、単層の電子輸送層、及び複数層とする場合は発光層に対して陰極側に隣 接する電子輸送層に用いられる電子輸送材料 (正孔阻止材料を兼ねる)としては、陰 極より注入された電子を発光層に伝達する機能を有していればよぐその材料として は従来公知の化合物の中から任意のものを選択して用いることができ、例えば、 -ト 口置換フルオレン誘導体、ジフヱ-ルキノン誘導体、チォピランジオキシド誘導体、力 ルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導 体、ォキサジァゾール誘導体等が挙げられる。更に、上記ォキサジァゾール誘導体 にお 、て、ォキサジァゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘 導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、 電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、 またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
[0232] また、 8 キノリノール誘導体の金属錯体、例えば、トリス(8 キノリノール)アルミ- ゥム(Alq)、トリス(5, 7—ジクロロ一 8—キノリノール)アルミニウム、トリス(5, 7—ジブ ロモ一 8 キノリノール)アルミニウム、トリス(2 メチル 8 -キノリノール)アルミ-ゥ ム、トリス(5—メチル 8—キノリノール)アルミニウム、ビス(8—キノリノール)亜鉛(Zn q)等、及びこれらの金属錯体の中心金属が In、 Mg、 Cu、 Ca、 Sn、 Gaまたは Pbに 置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフ リーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基ゃスルホン酸基 等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発 光層の材料として例示したジスチリルビラジン誘導体も、電子輸送材料として用いる ことができるし、正孔注入層、正孔輸送層と同様に、 n型— Si、 n型— SiC等の無機半 導体も電子輸送材料として用いることができる。
[0233] 電子輸送層は上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャス ト法、インクジェット法を含む印刷法、 LB法等の公知の方法により、薄膜ィ匕することに より形成することができる。電子輸送層の膜厚については特に制限はないが、通常は 5nm〜5 μ m程度、好ましくは 5〜200nmである。電子輸送層は上記材料の 1種ま たは 2種以上力もなる一層構造であってもよ 、。
[0234] また、不純物をドープした n性の高 、電子輸送層を用いることもできる。その例とし ては、特開平 4 297076号公報、特開平 10— 270172号公報、特開 2000— 196 140号公報、特開 2001— 102175号公報、 Appl. Phys. , 95, 5773 (2004) ¾ どに記載されたものが挙げられる。
[0235] 本発明においては、このような η性の高い電子輸送層を用いることがより低消費電 力の素子を作製することができるため好ましい。
[0236] 《拡散防止層》
本発明に係る拡散防止層とは、広くは EL素子の発光効率の低下または発光寿命 の低減を引き起こす原因となる EL素子を構成する、各構成中の有機材料 (例えば、 電子輸送材料、電子供与性化合物等) ·無機材料 (例えば、金属、該金属の塩等)、 または前記有機 ·無機材料中の混入物が(隣接層から)発光層内へ拡散すること、ま たは発光層内での拡散を防止する役割を有するものを指す。この様な役割を有して いれば、陽極バッファ一層、正孔輸送層、発光層、正孔阻止層、電子輸送層、陰極 ノ ッファー層等、他の層と兼用しても構わない。
[0237] 本発明の効果を最大限得るためには、電子輸送材料含有層に含まれる金属または 該金属の塩中のイオンの拡散を防止または抑制することが好ましい。
[0238] また、該拡散防止層(他層と兼ねている場合も含む)が発光層と陽極あるいは陰極 との間の層に位置することが好ましぐさらには正孔輸送層と発光層の間にあり、正孔 輸送層に隣接する位置、陰極または陰極バッファ一層と発光層の間にあり、陰極また は陰極バッファ一層に隣接する位置に有することがより好ま 、。
[0239] 本発明に係る拡散防止層の形成に用いられる材料は、従来公知の金属イオントラ ップ等に用いられる化合物(例えば、クラウンエーテルィ匕合物)や、金属や金属イオン を包接できる化合物を用いることができる。ここで、前記包接可能な化合物は、例え ば、「超分子科学:中嶋直敏編著;ィ匕学同人出版; 2004年 3月発刊」及び、同書に参 考文献として挙げられている文献等に記載の化合物を用いることが出来る。
[0240] 次に、本発明の有機 EL素子の構成層として用いられる、注入層について説明する
[0241] 《注入層》:電子注入層、正孔注入層
注入層は必要に応じて設け、電子注入層と正孔注入層があり、上記のごとく陽極と 発光層または正孔輸送層の間、及び、陰極と発光層または電子輸送層との間に存 在させてもよい。
[0242] 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機層間に設けられる 層のことで、「有機 EL素子とその工業ィ匕最前線(1998年 11月 30日 ェヌ'ティー'ェ ス社発行)」の第 2編第 2章「電極材料」(123〜166頁)に詳細に記載されており、正 孔注入層(陽極バッファ一層)と電子注入層(陰極バッファ一層)とがある。
[0243] 陽極バッファ一層(正孔注入層)は、特開平 9— 45479号公報、同 9 260062号 公報、同 8— 288069号公報等にもその詳細が記載されており、具体例として、銅フ タロシアニンに代表されるフタロシアニンバッファ一層、酸ィ匕バナジウムに代表される 酸化物バッファ一層、アモルファスカーボンバッファ一層、ポリア-リン(ェメラルディ ン)やポリチォフェン等の導電性高分子を用いた高分子バッファ一層等が挙げられる
[0244] 陰極バッファ一層(電子注入層)は、特開平 6— 325871号公報、同 9 17574号 公報、同 10— 74586号公報等にもその詳細が記載されており、具体的には、スト口 ンチウムゃアルミニウム等に代表される金属バッファ一層、フッ化リチウムに代表され るアルカリ金属化合物バッファ一層、フッ化マグネシウムに代表されるアルカリ土類金 属化合物バッファ一層、酸ィヒアルミニウムに代表される酸ィヒ物バッファ一層等が挙げ られる。 [0245] 上記バッファ一層(注入層)はごく薄い膜であることが望ましぐ素材にもよるが、そ の膜厚は 0. lnm〜100nmの範囲が好ましい。
[0246] この注入層は、上記材料を、例えば真空蒸着法、スピンコート法、キャスト法、インク ジェット法、 LB法等の公知の方法により、薄膜ィ匕することにより形成することができる 。注入層の膜厚については特に制限はないが、通常は 5nm〜5000nm程度である 。この注入層は、上記材料の一種または二種以上からなる一層構造であってもよい。
[0247] 《陽極》
本発明の有機 EL素子に係る陽極としては、仕事関数の大きい (4eV以上)金属、 合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用い られる。このような電極物質の具体例としては Au等の金属、 Cul、インジウムチンォキ シド (ITO)、 SnO、 ZnO等の導電性透明材料が挙げられる。また、 IDIXO (In O -
2 2 3
ZnO)等非晶質で透明導電膜を作製可能な材料を用いてもよい。陽極は、これらの 電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させ、フォトリソグラフィ 一法で所望の形状のパターンを形成してもよぐあるいはパターン精度をあまり必要 としない場合は(100 m以上程度)、上記電極物質の蒸着やスパッタリング時に所 望の形状のマスクを介してパターンを形成してもよい。この陽極より発光を取り出す場 合には、透過率を 10%より大きくすることが望ましぐまた、陽極としてのシート抵抗は 数百 Ω Ζ口以下が好ましい。さらに膜厚は材料にもよる力 通常 ΙΟηπ!〜 1000nm、 好ましくは 10nm〜200nmの範囲で選ばれる。
[0248] 《陰極》
一方、本発明に係る陰極としては、仕事関数の小さい (4eV以下)金属 (電子注入 性金属と称する)、合金、電気伝導性化合物及びこれらの混合物を電極物質とするも のが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム一力リウ ム合金、マグネシウム、リチウム、マグネシウム Z銅混合物、マグネシウム Z銀混合物 、マグネシウム /アルミニウム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸化アルミニウム (Al O )混合物、アルミニウム、インジウム、リチウム Zアルミ-ゥ
2 3
ム混合物、希土類金属等が挙げられる。これらの中で、電子注入性及び酸化等に対 する耐久性の点から、電子注入性金属とこれより仕事関数の値が大きく安定な金属 である第二金属との混合物、例えばマグネシウム Z銀混合物、マグネシウム Zアルミ
-ゥム混合物、マグネシウム Zインジウム混合物、アルミニウム Z酸ィ匕アルミニウム (A
1 o )混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。陰極は、
2 3
これらの電極物質を蒸着やスパッタリング等の方法により、薄膜を形成させることによ り、作製することができる。また、陰極としてのシート抵抗は数百 ΩΖ口以下が好まし く、膜厚は通常 10nm〜1000nm、好ましくは 50nm〜200nmの範囲で選ばれる。 なお、発光を透過させるため、有機 EL素子の陽極または陰極のいずれか一方が、 透明または半透明であれば発光輝度が向上し好都合である。
[0249] 《基体 (基板、基材、支持体等とも!ヽぅ)》
本発明の有機 EL素子に係る基体としては、ガラス、プラスチック等の種類には特に 限定はなぐまた、透明のものであれば特に制限はないが、好ましく用いられる基板と しては例えばガラス、石英、光透過性榭脂フィルムを挙げることができる。特に好まし V、基体は、有機 EL素子にフレキシブル性を与えることが可能な榭脂フィルムである。
[0250] 榭脂フィルムとしては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフ タレート(PEN)、ポリエーテルスルホン(PES)、ポリエーテルイミド、ポリエーテルエ ーテルケトン、ポリフエ-レンスルフイド、ポリアリレート、ポリイミド、ポリカーボネート(P C)、セルローストリアセテート (TAC)、セルロースアセテートプロピオネート(CAP) 等力 なるフィルム等が挙げられる。
[0251] 榭脂フィルムの表面には、無機物もしくは有機物の被膜またはその両者のハイプリ ッド被膜が形成されていてもよぐ水蒸気透過率が 0. 01gZm2'dayatm以下の高 ノ リア性フィルムであることが好まし ヽ。
[0252] 本発明の有機エレクト口ルミネッセンス素子の発光の室温における外部取り出し効 率は 1%以上であることが好ましぐより好ましくは 2%以上である。ここに、外部取り出 し量子効率 (%) =有機 EL素子外部に発光した光子数 Z有機 EL素子に流した電子 数 X 100である。
[0253] また、カラーフィルタ一等の色相改良フィルタ一等を併用してもよい。
[0254] 照明用途で用いる場合には、発光ムラを低減させるために粗面加工したフィルム( アンチグレアフィルム等)を併用することもできる。 [0255] 多色表示装置として用いる場合は少なくとも 2種類の異なる発光極大波長を有する 有機 EL素子カゝらなるが、有機 EL素子を作製する好適な例を説明する。
[0256] 《有機 EL素子の作製方法》
本発明の有機 EL素子の作製方法の一例として、陽極 Z正孔輸送層 Z発光層 Z正 孔阻止層 Z電子輸送層 Z電子輸送材料含有層 Z陰極からなる有機 EL素子の作製 法について説明する。
[0257] まず適当な基体上に、所望の電極物質、例えば陽極用物質力 なる薄膜を、 1 μ m 以下、好ましくは ΙΟηπ!〜 200nmの膜厚になるように、蒸着やスパッタリング等の方 法により形成させ、陽極を作製する。次に、前記陽極上に素子材料である、正孔輸送 層、発光層、正孔阻止層、電子輸送層、電子輸送材料含有層等の形成に用いる有 機化合物を含有する薄膜を形成させる。
[0258] この有機化合物を含有する薄膜の薄膜ィ匕の方法としては、前記の如くスピンコート 法、キャスト法、インクジェット法、蒸着法、印刷法等があるが、均質な膜が得られや すぐかつピンホールが生成しにくい等の点から、真空蒸着法またはスピンコート法 が特に好ましい。さらに層ごとに異なる製膜法を適用してもよい。製膜に蒸着法を採 用する場合、その蒸着条件は、使用する化合物の種類等により異なるが、一般にボ ート加熱温度 50°C〜450°C、真空度 10— 6Pa〜: LO— 2Pa、蒸着速度 0. 01nm〜50nm /秒、基板温度— 50°C〜300°C、膜厚 0. lnm〜5 μ mの範囲で適宜選ぶことが望 ましい。
[0259] これらの層の形成後、その上に陰極用物質力もなる薄膜を、 1 μ m以下好ましくは 5 0nm〜200nmの範囲の膜厚になるように、例えば、蒸着やスパッタリング等の方法 により形成させ、陰極を設けることにより、所望の有機 EL素子が得られる。この有機 E L素子の作製は、一回の真空引きで一貫して正孔輸送層から陰極まで作製するのが 好ましいが、途中で取り出して異なる製膜法を施しても力まわない。その際、作業を 乾燥不活性ガス雰囲気下で行うことが好まし 、。
[0260] 《ボトムェミッションとトップェミッションにつ!/、て》
本発明の有機 EL素子の発光の光取り出し方向は、支持基板 (支持体とも 、う)側か ら発光を取り出す、いわゆる、ボトムェミッション型でも、陰極側力 発光を取り出す、 トップェミッション型でもよいが、アクティブ型の素子のように支持基板側に TFT (薄膜 トランジスタ)等を設置する (複合ィ匕とも 、う)場合は、素子の発光部分の割合 (発光面 積率ともいう)をできるだけ大きくするためには、 TFTが設置されていない側、つまり、 陰極側から発光を取り出す、トップェミッション型が好ま U、。
[0261] 《光取出し方法》
本発明の有機 EL素子は、空気よりも屈折率の高い (屈折率が 1. 6〜2. 1程度)層 の内部で発光し、発光層で発生した光のうち 15%から 20%程度の光しか取り出せな いことが一般的に言われている。これは、臨界角以上の角度 Θで界面 (透明基板と 空気との界面)に入射する光は、全反射を起こし素子外部に取り出すことができない ことや、透明電極ないし発光層と透明基板との間で光が全反射を起こし、光が透明 電極ないし発光層を導波し、結果として、光が素子側面方向に逃げるためである。
[0262] この光の取り出しの効率を向上させる手法としては、例えば、透明基板表面に凹凸 を形成し、透明基板と空気界面での全反射を防ぐ方法 (例えば、米国特許第 4, 774 , 435号明細書)。基板に集光性を持たせることにより効率を向上させる方法 (例えば 、特開昭 63— 314795号公報)。素子の側面等に反射面を形成する方法 (例えば、 特開平 1— 220394号公報)。基板と発光体の間に中間の屈折率を持つ平坦層を導 入し、反射防止膜を形成する方法 (例えば、特開昭 62— 172691号公報)。基板と 発光体の間に基板よりも低屈折率を持つ平坦層を導入する方法 (例えば、特開 200 1— 202827号公報)。基板、透明電極層や発光層のいずれかの層間 (含む、基板と 外界間)に回折格子を形成する方法 (特開平 11— 283751号公報)などがある。
[0263] 本発明においては、これらの方法を本発明の有機エレクト口ルミネッセンス素子と組 み合わせて用いることができるが、基板と発光体の間に基板よりも低屈折率を持つ平 坦層を導入する方法、あるいは基板、透明電極層や発光層のいずれかの層間 (含む 、基板と外界間)に回折格子を形成する方法を好適に用いることができる。
[0264] 本発明は、これらの手段を組み合わせることにより、更に高輝度あるいは耐久性に 優れた素子を得ることができる。
[0265] 透明電極と透明基板の間に低屈折率の媒質を光の波長よりも長い厚みで形成する と、透明電極から出てきた光は、媒質の屈折率が低いほど、外部への取り出し効率が 高くなる。
[0266] 低屈折率層としては、例えば、エア口ゲル、多孔質シリカ、フッ化マグネシウム、フッ 素系ポリマーなどが挙げられる。透明基板の屈折率は一般に 1. 5〜1. 7程度である ので、低屈折率層は、屈折率がおよそ 1. 5以下であることが好ましい。またさらに 1. 35以下であることが好まし 、。
[0267] また、低屈折率媒質の厚みは、媒質中の波長の 2倍以上となるのが望ましい。これ は、低屈折率媒質の厚みが、光の波長程度になってエバネッセントで染み出した電 磁波が基板内に入り込む膜厚になると、低屈折率層の効果が薄れるからである。
[0268] 全反射を起こす界面または、 Vヽずれかの媒質中に回折格子を導入する方法は、光 取り出し効率の向上効果が高いという特徴がある。この方法は、回折格子が 1次の回 折や、 2次の回折といった、いわゆるブラッグ回折により、光の向きを屈折とは異なる 特定の向きに変えることができる性質を利用して、発光層から発生した光のうち、層 間での全反射等により外に出ることができない光を、いずれかの層間もしくは、媒質 中(透明基板内や透明電極内)に回折格子を導入することで光を回折させ、光を外 に取り出そうとするものである。
[0269] 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。これは 、発光層で発光する光はあらゆる方向にランダムに発生するので、ある方向にのみ周 期的な屈折率分布を持っている一般的な 1次元回折格子では、特定の方向に進む 光しか回折されず、光の取り出し効率がさほど上がらな!/、。
[0270] し力しながら、屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む 光が回折され、光の取り出し効率が上がる。
[0271] 回折格子を導入する位置としては前述のとおり、いずれかの層間もしくは、媒質中( 透明基板内や透明電極内)でもよいが、光が発生する場所である有機発光層の近傍 が望ましい。
[0272] このとき、回折格子の周期は、媒質中の光の波長の約 1Z2〜3倍程度が好ましい 。回折格子の配列は、正方形のラチス状、三角形のラチス状、ノ、ユカムラチス状など 、 2次元的に配列が繰り返されることが好ましい。
[0273] 《集光シート》 本発明の有機エレクト口ルミネッセンス素子は、支持基板 (基板)の光取出し側に、 例えばマイクロレンズアレイ上の構造を設けるようにカ卩ェしたり、あるいは、所謂集光 シートと組み合わせることにより、特定方向、例えば素子発光面に対し正面方向に集 光することにより、特定方向上の輝度を高めることができる。
[0274] マイクロレンズアレイの例としては、基板の光取り出し側に一辺が 30 μ mでその頂 角が 90度となるような四角錐を 2次元に配列する。一辺は 10 /z m〜: LOO /z mが好ま しい。これより小さくなると回折の効果が発生して色付ぐ大きすぎると厚みが厚くなり 好ましくない。
[0275] 集光シートとしては、例えば液晶表示装置の LEDバックライトで実用化されているも のを用いることが可能である。このようなシートとして例えば、住友スリーェム社製輝度 上昇フィルム(BEF)などを用いることができる。プリズムシートの形状としては、例え ば基材に頂角 90度、ピッチ 50 111の 状のストライプが形成されたものであってもよ いし、頂角が丸みを帯びた形状、ピッチをランダムに変化させた形状、その他の形状 であってもよい。
[0276] また、発光素子からの光放射角を制御するために光拡散板'フィルムを、集光シー トと併用してもよい。例えば、(株)きもと製拡散フィルム (ライトアップ)などを用いること ができる。
[0277] 《表示装置》
本発明の表示装置について説明する。
[0278] 本発明の表示装置は単色でも多色でもよいが、ここでは、多色表示装置について 説明する。多色表示装置の場合は、発光層形成時のみシャドーマスクを設け、一面 に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で膜を形成できる
[0279] 発光層のみパターユングを行う場合、その方法に限定はないが、好ましくは蒸着法 、インクジェット法、印刷法である。蒸着法を用いる場合においてはシャドーマスクを 用いたパターユングが好まし 、。
[0280] また、作製順序を逆にして、陰極、電子輸送層、正孔阻止層、発光層、正孔輸送層 、陽極の順に作製することも可能である。 [0281] このようにして得られた多色表示装置に、直流電圧を印加する場合には、陽極を + 、陰極を—の極性として電圧 2V〜40V程度を印加すると、発光が観測できる。また、 逆の極性で電圧を印加しても電流は流れずに発光は全く生じない。さらに、交流電 圧を印加する場合には、陽極が +、陰極が一の状態になったときのみ発光する。な お、印加する交流の波形は任意でよい。
[0282] 多色表示装置は、表示デバイス、ディスプレー、各種発光光源として用いることがで きる。表示デバイス、ディスプレーにおいて、青、赤、緑発光の 3種の有機 EL素子を 用いることにより、フルカラーの表示が可能となる。
[0283] 表示デバイス、ディスプレーとしてはテレビ、ノ ソコン、モノくィル機器、 AV機器、文 字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生 する表示装置として使用してもよぐ動画再生用の表示装置として使用する場合の駆 動方式は単純マトリックス (パッシブマトリックス)方式でもアクティブマトリックス方式で もどちらでもよい。
[0284] 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告 、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光 センサーの光源等が挙げられるがこれに限定するものではない。
[0285] 《照明装置》
本発明の照明装置について説明する。
[0286] 本発明の有機 EL素子に共振器構造を持たせた有機 EL素子として用いてもよぐこ のような共振器構造を有した有機 EL素子の使用目的としては光記憶媒体の光源、 電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる 力 これらに限定されない。また、レーザー発振をさせることにより、上記用途に使用 してちよい。
[0287] また、本発明の有機 EL素子は、照明用や露光光源のような一種のランプとして使 用してもよいし、画像を投影するタイプのプロジェクシヨン装置や、静止画像や動画像 を直接視認するタイプの表示装置 (ディスプレイ)として使用してもよい。動画再生用 の表示装置として使用する場合の駆動方式は単純マトリクス (パッシブマトリクス)方 式でもアクティブマトリクス方式でもどちらでもよい。または、異なる発光色を有する本 発明の有機 EL素子を 2種以上使用することにより、フルカラー表示装置を作製する ことが可能である。
[0288] 以下、本発明の有機 EL素子を有する表示装置の一例を図面に基づいて説明する
[0289] 図 1は、有機 EL素子力 構成される表示装置の一例を示した模式図である。有機 EL素子の発光により画像情報の表示を行う、例えば、携帯電話等のディスプレイの 模式図である。
[0290] ディスプレイ 1は、複数の画素を有する表示部 A、画像情報に基づ!/、て表示部 Aの 画像走査を行う制御部 B等力もなる。
[0291] 制御部 Bは、表示部 Aと電気的に接続され、複数の画素それぞれに外部からの画 像情報に基づいて走査信号と画像データ信号を送り、走査信号により走査線毎の画 素が画像データ信号に応じて順次発光して画像走査を行って画像情報を表示部 A に表示する。
[0292] 図 2は、表示部 Aの模式図である。
[0293] 表示部 Aは基板上に、複数の走査線 5及びデータ線 6を含む配線部と、複数の画 素 3等とを有する。表示部 Aの主要な部材の説明を以下に行う。
[0294] 図においては、画素 3の発光した光力 白矢印方向(下方向)へ取り出される場合 を示している。
[0295] 配線部の走査線 5及び複数のデータ線 6は、それぞれ導電材料からなり、走査線 5 とデータ線 6は格子状に直交して、直交する位置で画素 3に接続している(詳細は図 示していない)。
[0296] 画素 3は、走査線 5から走査信号が印加されると、データ線 6から画像データ信号を 受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑 領域の画素、青領域の画素を、適宜、同一基板上に並置することによって、フルカラ 一表示が可能となる。
[0297] 次に、画素の発光プロセスを説明する。
[0298] 図 3は、画素の模式図である。
[0299] 画素は、有機 EL素子 10、スイッチングトランジスタ 11、駆動トランジスタ 12、コンデ ンサ 13等を備えている。複数の画素に有機 EL素子 10として、赤色、緑色、青色発 光の有機 EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行 うことができる。
[0300] 図 3において、制御部 B力もデータ線 6を介してスイッチングトランジスタ 11のドレイ ンに画像データ信号が印加される。そして、制御部 B力 走査線 5を介してスィッチン グトランジスタ 11のゲートに走査信号が印加されると、スイッチングトランジスタ 11の 駆動がオンし、ドレインに印加された画像データ信号がコンデンサ 13と駆動トランジ スタ 12のゲートに伝達される。
[0301] 画像データ信号の伝達により、コンデンサ 13が画像データ信号の電位に応じて充 電されるとともに、駆動トランジスタ 12の駆動がオンする。駆動トランジスタ 12は、ドレ インが電源ライン 7に接続され、ソースが有機 EL素子 10の電極に接続されており、ゲ 一トに印加された画像データ信号の電位に応じて電源ライン 7から有機 EL素子 10に 電流が供給される。
[0302] 制御部 Bの順次走査により走査信号が次の走査線 5に移ると、スイッチングトランジ スタ 11の駆動がオフする。しかし、スイッチングトランジスタ 11の駆動がオフしてもコン デンサ 13は充電された画像データ信号の電位を保持するので、駆動トランジスタ 12 の駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機 EL素子 1 0の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に 同期した次の画像データ信号の電位に応じて駆動トランジスタ 12が駆動して有機 E L素子 10が発光する。
[0303] すなわち、有機 EL素子 10の発光は、複数の画素それぞれの有機 EL素子 10に対 して、アクティブ素子であるスイッチングトランジスタ 11と駆動トランジスタ 12を設けて 、複数の画素 3それぞれの有機 EL素子 10の発光を行っている。このような発光方法 をアクティブマトリクス方式と呼んで 、る。
[0304] ここで、有機 EL素子 10の発光は、複数の階調電位を持つ多値の画像データ信号 による複数の階調の発光でもよ 、し、 2値の画像データ信号による所定の発光量の オン、才フでもよ!/、。
[0305] また、コンデンサ 13の電位の保持は、次の走査信号の印加まで継続して保持して もよ 、し、次の走査信号が印加される直前に放電させてもょ 、。
[0306] 本発明においては、上述したアクティブマトリクス方式に限らず、走査信号が走査さ れたときのみデータ信号に応じて有機 EL素子を発光させるパッシブマトリクス方式の 発光駆動でもよい。
[0307] 図 4は、ノッシブマトリクス方式による表示装置の模式図である。図 4にお 、て、複 数の走査線 5と複数の画像データ線 6が画素 3を挟んで対向して格子状に設けられ ている。
[0308] 順次走査により走査線 5の走査信号が印加されたとき、印加された走査線 5に接続 して 、る画素 3が画像データ信号に応じて発光する。ノッシブマトリクス方式では画 素 3にアクティブ素子が無く、製造コストの低減が計れる。
[0309] 本発明に係わる有機 EL材料は、また、照明装置として、実質白色の発光を生じる 有機 EL素子に適用できる。複数の発光材料により複数の発光色を同時に発光させ て混色によりを得る。複数の発光色の組み合わせとしては、青色、緑色、青色の 3原 色の 3つの発光極大波長を含有させたものでもよいし、青色と黄色、青緑と橙色等の 補色の関係を利用した 2つの発光極大波長を含有したものでもよい。
[0310] また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光または 蛍光を発光する材料 (発光ドーパント)を、複数組み合わせたもの、蛍光またはリン光 を発光する発光材料と、該発光材料からの光を励起光として発光する色素材料とを 組み合わせたものの 、ずれでもよ!/ヽが、本発明に係わる白色有機エレクト口ルミネッ センス素子においては、発光ドーパントを複数組み合わせる方式が好ましい。
[0311] 複数の発光色を得るための有機エレクト口ルミネッセンス素子の層構成としては、複 数の発光ドーパントを、一つの発光層中に複数存在させる方法、複数の発光層を有 し、各発光層中に発光波長の異なるドーパントをそれぞれ存在させる方法、異なる波 長に発光する微小画素をマトリックス状に形成する方法等が挙げられる。
[0312] 本発明に係わる白色有機エレクト口ルミネッセンス素子においては、必要に応じ製 膜時にメタルマスクやインクジェットプリンティング法等でパター-ングを施してもよい 。 ノターニングする場合は、電極のみをパター-ングしてもいいし、電極と発光層を ノ ターニングしても 、 、し、素子全層をパター-ングしても 、 、。 [0313] 発光層に用!、る発光材料としては特に制限はなく、例えば液晶表示素子における ノ ックライトであれば、 CF (カラーフィルター)特性に対応した波長範囲に適合するよ うに、本発明に係わる白金錯体、また公知の発光材料の中から任意のものを選択し て組み合わせて白色化すればょ 、。
[0314] このように、本発明の有機 EL素子は、前記表示デバイス、ディスプレーにカ卩えて、 各種発光光源、照明装置として、家庭用照明、車内照明、また、露光光源のような一 種のランプとして、液晶表示装置のバックライト等、表示装置にも有用に用いられる。
[0315] その他、時計等のバックライト、看板広告、信号機、光記憶媒体等の光源、電子写 真複写機の光源、光通信処理機の光源、光センサーの光源等、更には表示装置を 必要とする一般の家庭用電気器具等広い範囲の用途が挙げられる。
実施例
[0316] 以下に実施例を挙げて本発明を説明する力 本発明はこれらに限定されない。
[0317] 実施例 1
《有機 EL素子 1 1〜1 22の作製》
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (ΝΗテクノグラス社製 ΝΑ45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定した。
[0318] 次 、で、真空槽を 4 X 10—4Paまで減圧した後、 CuPcを蒸着速度 0. lnm/秒で透 明支持基板に膜厚 20nm蒸着し正孔注入層を設けた。次にひ— NPDを 0. lnm/ 秒で蒸着し正孔輸送層を 20nm設けた。その上に CBPと Ir— 1の入った前記加熱ボ ートに通電して加熱し、それぞれ蒸着速度 0. 2nmZ秒、 0. 012nmZ秒で前記正 孔輸送層上に共蒸着して発光層を 30nm設けた。なお、蒸着時の基板温度は室温 であった。更に、 B— Alqを蒸着速度 0. InmZ秒で前記発光層の上に蒸着して膜 厚 lOnmの正孔阻止の役割も兼ねた電子輸送層を設けた。その上に、更に、電荷輸 送材料 N— 30とサエスゲッター製セシウムディスペンサーから金属セシウムを 0. In m/秒、 0. 025nm/秒で蒸着して電子輸送層を膜厚 50nm設けた。 [0319] 引き続きアルミニウム l lOnmを蒸着して陰極を形成し、有機 EL素子 1—1を作製し た。
[0320] 有機 EL素子 1—1の作製において、電子輸送層の電荷輸送材料として用いている N— 30を表 1に示す電荷輸送材料に変えた以外は有機 EL素子 1 1と同じ方法で 1 — 2〜1— 22を作製した。上記で使用した化合物の構造を以下に示す。
[0321] [化 62]
Figure imgf000098_0001
ぐ寿命 >
各有機 EL素子を 2. 5mAZcm2の一定電流で駆動したときに、輝度が発光開始直 後の輝度 (初期輝度)の半分に低下するのに要した時間を測定し、これを半減寿命 時間( τ )として寿命の指標とした。なお測定には分光放射輝度計 CS - 1000 (ミノ ルタ (株)製)を用いた。
[0324] 表 1の寿命の測定結果は、有機 EL素子 1一 22を 100とした時の相対値で表した。
[0325] 〈駆動電圧〉
各有機 EL素子を 2. 5mAZcm2の一定電流で駆動したときの電圧を測定し、 電圧評価値 有機 EL素子 1— 1 1— 21の駆動電圧 Z有機 EL素子 1一 22の駆 動電圧 X 100でそれぞれ表した。値が小さい方が比較に対して駆動電圧が低いこと を示している。
[0326] [表 1]
Figure imgf000099_0001
[0327] 実施例 2
実施例 1の金属セシウムをフッ化セシウムに変更した以外同じ有機 EL素子 2— 1 2— 22を評価した結果、実施例 1と同様の効果が得られた。
[0328] 実施例 3
陽極として 100mm X 100mm X I. 1mmのガラス基板上に ITO (インジウムチンォ キシド)を lOOnm製膜した基板 (NHテクノグラス社製 NA45)にパターユングを行つ た後、この ITO透明電極を設けた透明支持基板をイソプロピルアルコールで超音波 洗浄し、乾燥窒素ガスで乾燥し、 UVオゾン洗浄を 5分間行なった。この透明支持基 板を市販の真空蒸着装置の基板ホルダーに固定した。
[0329] 次!、で、真空槽を 4 X 10— 4Paまで減圧した後、 m— MTDATAとF4—TCNQをそ れぞれ蒸着速度 0. 2nmZ秒、 0. 002nmZ秒で透明支持基板上に lOOnm共蒸着 し正孔注入層を設けた。次に m— MTDATXAを 0. lnm/秒で蒸着し正孔輸送層 を設けた。その上に CDBPと Ir— 12の入った前記加熱ボートに通電して加熱し、そ れぞれ蒸着速度 0. InmZ秒、 0. 003nm/秒で前記正孔輸送層上に共蒸着して 発光層を 30nm設けた。なお、蒸着時の基板温度は室温であった。更に、 HB— 1を 蒸着速度 0. InmZ秒で前記発光層の上に蒸着して膜厚 lOnmの正孔阻止の役割 も兼ねた電子輸送層を設けた。その上に、更に、拡散防止層として、 N— 3(^0. In mZ秒の蒸着速度で lOnm設けた。
[0330] 拡散防止層の上に、電荷輸送材料 N— 31とフッ化セシウムを 0. InmZ秒、 0. 02
5nmZ秒の速度で蒸着し電子輸送層を膜厚 50nm設けた。
[0331] 引き続きアルミニウム l lOnmを蒸着して陰極を形成し、有機 EL素子 3—1を作製し た。
[0332] 有機 EL素子 3— 1の作製にぉ 、て、拡散防止層のな!、素子を有機 EL素子 3— 2、 さらに有機 EL素子 3 - 2の電子輸送層の電荷輸送材料として用いて 、る N— 30を B Phenに置き換えた素子を有機 EL素子 3 - 3とした。表 2に有機 EL素子 3— 1〜3— 3の保存性を評価した結果を示す。
[0333] [化 63] m-MTDATA F4— TCNQ
Figure imgf000101_0001
[0334] 保存性は 85°C、 100時間で保存したときの前後で、 2. 5mAZcm2定電流駆動に おける輝度がどれだけ変化したかを評価した。
[0335] 保存性 = 100時間保存後の輝度 Z100時間保存前の輝度 X 100なお輝度測定 には実施例 1同様分光放射輝度計 CS - 1000 (ミノルタ (株)製)を用いた。
[0336] [表 2] 有機 EL素子 保存性 備考
3 - I 95 本発明
3 - 2 85 本発明
3 - 3 32 比較例
[0337] 本発明の電荷輸送層では比較例に比して、保存性が良いことが分かる。さらに、拡 散防止層を設けた 3—1素子では更に保存性が向上している。これは、電子輸送層 力 発光層へのセシウムイオンの拡散を防 、で 、るためと考えられる。
[0338] 実施例 4
実施例 3において、 N— 30を、それぞれ表 1に使用した電荷輸送材料に代え試験 を行ったが、実施例 3と同様の効果が確認された。

Claims

請求の範囲
支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの有機 化合物層を有する有機エレクト口ルミネッセンス素子において、該有機化合物層の少 なくとも一つが、下記一般式(1)で表される電荷輸送材料を含み、且つ、金属、該金 属の塩及び電子供与性化合物の群から選択される少なくとも一つを含有する、電子 輸送材料含有層であることを特徴とする有機エレクト口ルミネッセンス素子。
[化 1] 一般式 (1)
I II
Χ6 ノ 8
(式中、 X〜Χは C—Rもしくは窒素原子を表す。 Rはそれぞれ独立に水素もしくは
5 8 1 1
置換基を表し、隣接して R
1が存在する場合、 R
1同士がお互いに結合して環を形成し てちよい。 )
前記一般式(1)で表される電荷輸送材料が、下記一般式 (2)で表されることを特徴と する請求の範囲第 1項に記載の有機エレクト口ルミネッセンス素子。
[化 2]
Figure imgf000103_0001
(式中、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、 R 〜R はお互いに
15 18 15 18
結合して環を形成してもよい。 )
支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの有機 化合物層を有する有機エレクト口ルミネッセンス素子において、該有機化合物層の少 なくとも一つが、下記一般式 (3)で表される電荷輸送材料を含み、且つ、金属、該金 属の塩及び電子供与性化合物の群から選択される少なくとも一つを含有する、電子 輸送材料含有層であることを特徴とする有機エレクト口ルミネッセンス素子。
[化 3]
般式 (3)
Figure imgf000104_0001
(式中、 R 、R はそれぞれ独立に水素もしくは置換基を表し、 Zは置換基を有しても
21 22 1 よい芳香族炭化水素環または芳香族複素環を形成するに必要な原子団を表す。) [4] 前記一般式 (3)において、 Zが、 6員の芳香族炭化水素環または芳香族複素環を形
1
成するに必要な原子団であることを特徴とする請求の範囲第 3項に記載の有機エレ タトロルミネッセンス素子。
[5] 前記電荷輸送材料が下記一般式 (4)で表されることを特徴とする請求の範囲第 3項 または第 4項に記載の有機エレクト口ルミネッセンス素子。
—般式 (4)
Figure imgf000104_0002
(式中、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、お互いに結合して環
31 36
を形成してもよい。)
前記電荷輸送材料が下記一般式(5)または(6)で表されることを特徴とする請求の 範囲第 3項〜第 5項のいずれか 1項記載の有機エレクト口ルミネッセンス素子。
一般式 (5) 一般式 (6)
Arl - (Q )
1 n
〔式中、 Qはそれぞれ独立に置換基を有してもよいピリミジン、キナゾリン、ベンゾキ
1
ナゾリン残基を表し、 Lは二価の連結基もしくは直接結合を表す。また、 Arlは芳香
1
族炭化水素環残基もしくは芳香族複素環残基を表す。ここにおいて nは 0以上の整 数を表す。〕
前記一般式(5)および (6)において、 Qが下記一般式(7)で表されることを特徴とす
1
る請求の範囲第 6項に記載の有機エレクト口ルミネッセンス素子。
[化 5] 一般式 (7)
Figure imgf000105_0001
(式中、 R 〜R はそれぞれ独立に水素原子もしくは置換基を表し、 R 〜R はお互
41 45 41 45 いに結合し環を形成してもよい。 *は連結部位を示す。 )
[8] 前記一般式 (3)、(4)、(5)、 (6)または(7)にお 、て、前記置換基が分子量 240以 下であることを特徴とする請求の範囲第 3項〜第 7項のいずれ力 1項に記載の有機ェ レクト口ルミネッセンス素子。
[9] 前記一般式(2)で表される電荷輸送材料が、下記一般式 (8)または(9)で表されるこ とを特徴とする請求の範囲第 2項に記載の有機エレクト口ルミネッセンス素子。
[化 6] 一般式 (8) 一般式 (9)
Figure imgf000105_0002
(式中、 R 〜R はそれぞれ独立に水素もしくは置換基を表し、 R 、R は互いに結
51 54 51 52
合して環を形成してもよい。 Z、 Zは置換基を有してもよい芳香族炭化水素環または
2 3
芳香族複素環を形成するに必要な原子団を表す。 )
[10] 前記一般式 (8)または (9)において、 Z、 Z力 6員の芳香族炭化水素環もしくは芳
2 3
香族複素環を形成するに必要な原子団であることを特徴とする請求の範囲第 9項に 記載の有機エレクト口ルミネッセンス素子。
[11] 前記一般式 (8)または(9)で表される電荷輸送材料力 下記一般式(10)または(11 )で表されることを特徴とする請求の範囲第 9項または第 10項に記載の有機エレクト ロノレミネッセンス素子。
[化 7]
-般式 (10) —般式 (1 "
Figure imgf000106_0001
(式中、 R 〜R 、R 〜R はそれぞれ独立に水素もしくは置換基を表す。)
61 66 71 76
前記電荷輸送材料が下記一般式( 12)または( 13)で表されることを特徴とする請求 の範囲第 1項、第 2項及び第 9項〜第 11項のいずれ力 1項に記載の有機エレクトロル ミネッセンス素子。
一般式 (12)
Q -L -Q
2 2 2
一般式 (13)
Ar2- (Q )
2 n
(式中、 Qはそれぞれ独立に置換基を有してもよいピリダジン、シンノリン、フタラジン
2
、ベンゾシンノリン、ベンゾフタラジン残基を表す。 Lは二価の連結基もしくは直接結
2
合を表す。 Ar2は芳香族炭化水素環残基もしくは芳香族複素環残基を表す。 nは 0 以上の整数を表す。 ) [13] 前記一般式(1)、 (2)、 (8)、 (9)、 (10)、 (11)、 (12)または(13)において、前記置 換基が分子量 240以下であることを特徴とする請求の範囲第 1項、第 2項及び第 9項 〜第 12項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[14] 支持基板上に少なくとも陽極、陰極及び該陽極と該陰極間に少なくとも一つの有機 化合物層を有する有機エレクト口ルミネッセンス素子において、該有機化合物層の少 なくとも一つが、下記一般式(14)または(15)で表される電荷輸送材料を含み、且つ 、金属、該金属の塩及び電子供与性化合物の群から選択される少なくとも一つを含 有する、電子輸送材料含有層であることを特徴とする有機エレクト口ルミネッセンス素 子。
[化 8] 一般
Figure imgf000107_0001
(式中、 X 〜X はそれぞれ独立に C Rもしくは窒素原子を表す力 X 〜X のう
11 14 87 11 14 ち必ず一つは窒素原子を表し、また X
11〜X
14のうち窒素原子は一つである。 R
81〜R
83
、 R はそれぞれ独立に水素原子もしくは置換基を表すが、置換基同士が結合し環を
87
形成してもよい。また、 X 〜X はそれぞれ独立に C—Rもしくは窒素原子を表すが
15 18 87
、 X 〜X のうち必ず一つは窒素原子を表し、また X 〜x のうち窒素原子は一つで
15 18 11 14
ある。 R 〜R 、R はそれぞれ独立に水素原子もしくは置換基を表すが、置換基同
84 86 87
士が結合し環を形成してもよい。 )
[15] 前記一般式(14)または( 15)で表される電荷輸送材料が下記一般式( 16)または( 1 7)で表されることを特徴とする請求の範囲第 14項に記載の有機エレクト口ルミネッセ ンス素子。
一般式 (16)
Q -L -Q 一般式 (17)
Ar3- (Q )
3 n
(式中、 Qはそれぞれ独立に置換基を有してもよいナフチリジン、ベンゾナフチリジン
3
残基を表す。 Lは二価の連結基もしくは直接結合を表す。 Ar3は芳香族炭化水素環
3
もしくは芳香族複素環を表す。 nは 0以上の整数を表す。 )
[16] 前記一般式(14)、 (15)、 (16)または(17)において、前記置換基が分子量 240以 下であることを特徴とする請求の範囲第 14項または第 15項に記載の有機エレクト口 ルミネッセンス素子。
[17] 前記一般式(1)、 (2)、 (3)、 (4)、 (10)、 (11)、 (14)または(15)で表される電荷輸 送材料が、少なくとも一つの含窒素へテロ芳香族環を含む複数の芳香族環が連結し 環構造を形成していることを特徴とする請求の範囲第 1項、第 2項、第 11項及び第 1 4項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[18] 前記金属が、アルカリ金属、アルカリ土類金属から選ばれることを特徴とする請求の 範囲第 1項または第 14項に記載の有機エレクト口ルミネッセンス素子。
[19] 前記金属の塩が、アルカリ金属塩、アルカリ土類金属塩カゝら選ばれることを特徴とす る請求の範囲第 1項または第 14項に記載の有機エレクト口ルミネッセンス素子。
[20] 前記アルカリ金属、アルカリ土類金属カゝら選ばれる金属が、リチウム、カリウム、ナトリ ゥム、セシウム、ノ リウム、カルシウム、ストロンチウムであることを特徴とする請求の範 囲第 18項に記載の有機エレクト口ルミネッセンス素子。
[21] 前記アルカリ金属、アルカリ土類金属カゝら選ばれる金属がセシウムであることを特徴と する請求の範囲第 18項に記載の有機エレクト口ルミネッセンス素子。
[22] 前記アルカリ金属塩、アルカリ土類金属塩が、リチウム塩、カリウム塩、ナトリウム塩、 セシウム塩、バリウム塩、カルシウム塩、ストロンチウム塩力 選ばれることを特徴とす る請求の範囲第 19項に記載の有機エレクト口ルミネッセンス素子。
[23] 前記アルカリ金属塩、アルカリ土類金属塩の対ァニオン力 フッ素イオンであることを 特徴とする請求の範囲第 19項または第 22項に記載の有機エレクト口ルミネッセンス 素子。
[24] 前記アルカリ金属塩、アルカリ土類金属塩が、フッ化セシウムであることを特徴とする 請求の範囲第 23項に記載の有機エレクト口ルミネッセンス素子。
[25] 前記電子供与性化合物が、芳香族ァミン化合物、チオフ ンィ匕合物、フルバレンィ匕 合物であることを特徴とする請求の範囲第 1項または第 14項に記載の有機エレクト口 ルミネッセンス素子。
[26] 構成層として拡散防止層を有し、該拡散防止層は、金属または該金属のイオンの拡 散を防止または抑制することを特徴とする請求の範囲第 1項〜第 25項のいずれか 1 項に記載の有機エレクト口ルミネッセンス素子。
[27] 前記拡散防止層が、前記一般式 (1)または(12)で表される電荷輸送材料を含有す ることを特徴とする請求の範囲第 26項に記載の有機エレクト口ルミネッセンス素子。
[28] リン光発光に基づく発光が含まれていることを特徴とする請求の範囲第 1項〜第 27 項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[29] 少なくとも青色の成分を含んでいることを特徴とする請求の範囲第 1項〜第 28項の いずれか 1項に記載の有機エレクト口ルミネッセンス素子。
[30] 発光が、支持基板とは逆の方向から取り出されることを特徴とする請求の範囲第 1項
〜第 29項のいずれ力 1項に記載の有機エレクト口ルミネッセンス素子。
[31] 陽極、有機化合物層の少なくとも 1層及び陰極力 なる群力 選択される少なくとも一 つが、蒸着法により製造されることを特徴とする請求の範囲第 1項〜第 30項のいず れカ 1項に記載の有機エレクト口ルミネッセンス素子。
[32] 請求の範囲第 1項〜第 31項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を具備することを特徴とする表示装置。
[33] 請求の範囲第 1項〜第 31項のいずれか 1項に記載の有機エレクト口ルミネッセンス素 子を具備することを特徴とする照明装置。
PCT/JP2006/306212 2005-03-29 2006-03-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置 WO2006104118A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007510507A JP5266514B2 (ja) 2005-03-29 2006-03-28 有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005094192 2005-03-29
JP2005-094192 2005-03-29

Publications (1)

Publication Number Publication Date
WO2006104118A1 true WO2006104118A1 (ja) 2006-10-05

Family

ID=37053374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/306212 WO2006104118A1 (ja) 2005-03-29 2006-03-28 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Country Status (2)

Country Link
JP (3) JP5266514B2 (ja)
WO (1) WO2006104118A1 (ja)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001878A (ja) * 2005-06-21 2007-01-11 Canon Inc 1,8−ナフチリジン化合物及びそれを用いた有機発光素子
JP2007084458A (ja) * 2005-09-20 2007-04-05 Chemiprokasei Kaisha Ltd 1,8−ナフチリジン誘導体および該誘導体を含有する有機電界発光素子
JP2008208065A (ja) * 2007-02-26 2008-09-11 Chemiprokasei Kaisha Ltd フルオレン誘導体、それよりなる電子輸送材料、電子注入材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2009110075A1 (ja) * 2008-03-05 2009-09-11 パイオニア株式会社 有機半導体素子
JP2010045199A (ja) * 2008-08-13 2010-02-25 Junji Kido 有機電界発光素子
WO2011014039A1 (en) * 2009-07-31 2011-02-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2012066122A1 (en) * 2010-11-18 2012-05-24 Syngenta Participations Ag 2 - (pyridin- 2 -yl) -quinazoline derivatives and their use as microbicides
CN102625806A (zh) * 2009-07-31 2012-08-01 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和使用该化合物的有机电致发光设备
JP2012527083A (ja) * 2009-05-13 2012-11-01 ネオビューコロン カンパニー,リミテッド 有機電界発光素子およびその製造方法
JPWO2012120897A1 (ja) * 2011-03-10 2014-07-17 コニカミノルタ株式会社 位相差フィルム、偏光板、液晶表示装置及び化合物
JP2014183315A (ja) * 2013-03-15 2014-09-29 Dow Global Technologies Llc 電子フィルムおよびデバイス用のキナゾリン誘導化合物
CN104167429A (zh) * 2014-08-01 2014-11-26 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
WO2015083974A1 (ko) * 2013-12-03 2015-06-11 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20150121394A (ko) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015182769A1 (ja) * 2014-05-29 2015-12-03 東ソー株式会社 キナゾリン及びベンゾキナゾリン化合物、その製法及び用途
EP2842954A4 (en) * 2012-04-24 2015-12-16 Samsung Sdi Co Ltd CONNECTION FOR ORGANIC OPTOELECTRIC DEVICE, ORGANIC LIGHT EMITTING DEVICE THEREFOR AND DISPLAY DEVICE WITH THIS ORGANIC LIGHT EMITTING DEVICE
JP2016020333A (ja) * 2014-05-29 2016-02-04 東ソー株式会社 ベンゾキナゾリン化合物、その製造方法、およびその用途
JP2016020332A (ja) * 2014-06-18 2016-02-04 東ソー株式会社 キナゾリン化合物、その製造方法、およびその用途
KR101624412B1 (ko) * 2013-08-26 2016-05-25 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
JP2016526030A (ja) * 2013-05-13 2016-09-01 チェイル インダストリーズ インコーポレイテッド 有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置
US9508939B2 (en) 2013-07-23 2016-11-29 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescent element produced using same
WO2017038642A1 (ja) * 2015-09-03 2017-03-09 コニカミノルタ株式会社 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
CN106883187A (zh) * 2015-12-16 2017-06-23 上海大学 一种喹唑啉衍生物及其制备方法和应用
JP2017533893A (ja) * 2014-10-30 2017-11-16 エルジー・ケム・リミテッド 環化合物およびこれを含む有機発光素子
WO2018079211A1 (ja) * 2016-10-28 2018-05-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
CN111683935A (zh) * 2018-06-11 2020-09-18 株式会社Lg化学 杂环化合物及包含其的有机发光器件
WO2020218067A1 (ja) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 透明電極及びそれを具備した電子デバイス
US11723268B2 (en) * 2016-04-28 2023-08-08 Lg Chem, Ltd. Organic light-emitting element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6836908B2 (ja) 2017-01-10 2021-03-03 住友化学株式会社 有機デバイスの製造方法
US10529941B2 (en) 2017-06-22 2020-01-07 Joled Inc. Organic electroluminescent element, organic electroluminescent unit, and electronic apparatus
US11456435B2 (en) 2017-07-13 2022-09-27 Joled Inc. Organic electroluminescent element, organic electroluminescent unit, and electronic apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711246A (ja) * 1993-06-28 1995-01-13 Fuji Electric Co Ltd 有機薄膜発光素子
JPH09188875A (ja) * 1996-01-09 1997-07-22 Toray Ind Inc 発光素子、及びそれを用いたバックライトまたはディスプレイ
JP2002175886A (ja) * 2000-09-29 2002-06-21 Canon Inc 導電素子及びこれを用いた有機エレクトロルミネッセンス素子、及び導電素子の製造方法
JP2003045662A (ja) * 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2004277377A (ja) * 2003-03-18 2004-10-07 Junji Kido フルオレン系化合物、およびこれを用いた有機電界発光素子
JP2004311413A (ja) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0913024A (ja) * 1995-06-27 1997-01-14 Hitachi Chem Co Ltd 有機電界発光素子
JP4486713B2 (ja) * 1997-01-27 2010-06-23 淳二 城戸 有機エレクトロルミネッセント素子
JP3690286B2 (ja) * 2001-02-02 2005-08-31 松下電器産業株式会社 有機電界発光素子
JP2002352961A (ja) * 2001-05-25 2002-12-06 Toray Ind Inc 有機電界発光装置
JP4299028B2 (ja) * 2002-03-11 2009-07-22 Tdk株式会社 有機el素子
JP3925265B2 (ja) * 2002-03-25 2007-06-06 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及びそれを用いた表示装置
JP2004193011A (ja) * 2002-12-12 2004-07-08 Fuji Photo Film Co Ltd 有機電界発光素子
JP4590825B2 (ja) * 2003-02-21 2010-12-01 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子
JP2004319305A (ja) * 2003-04-17 2004-11-11 Dainippon Printing Co Ltd エレクトロルミネッセンス素子および高分子化合物
JP4467253B2 (ja) * 2003-05-13 2010-05-26 広栄化学工業株式会社 チオフェン誘導体類、その製造方法およびこれを用いてなる有機電界発光素子
EP1486551B1 (en) * 2003-06-13 2016-03-16 Semiconductor Energy Laboratory Co., Ltd. Light emitting element and light emitting device
JP2005063763A (ja) * 2003-08-08 2005-03-10 Seiko Epson Corp 有機el装置とその製造方法、及び電子機器
US7163548B2 (en) * 2003-11-05 2007-01-16 Ethicon Endo-Surgery, Inc Ultrasonic surgical blade and instrument having a gain step

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711246A (ja) * 1993-06-28 1995-01-13 Fuji Electric Co Ltd 有機薄膜発光素子
JPH09188875A (ja) * 1996-01-09 1997-07-22 Toray Ind Inc 発光素子、及びそれを用いたバックライトまたはディスプレイ
JP2002175886A (ja) * 2000-09-29 2002-06-21 Canon Inc 導電素子及びこれを用いた有機エレクトロルミネッセンス素子、及び導電素子の製造方法
JP2003045662A (ja) * 2001-08-01 2003-02-14 Konica Corp 有機エレクトロルミネッセンス素子及び表示装置
JP2004277377A (ja) * 2003-03-18 2004-10-07 Junji Kido フルオレン系化合物、およびこれを用いた有機電界発光素子
JP2004311413A (ja) * 2003-03-26 2004-11-04 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007001878A (ja) * 2005-06-21 2007-01-11 Canon Inc 1,8−ナフチリジン化合物及びそれを用いた有機発光素子
JP2007084458A (ja) * 2005-09-20 2007-04-05 Chemiprokasei Kaisha Ltd 1,8−ナフチリジン誘導体および該誘導体を含有する有機電界発光素子
JP2008208065A (ja) * 2007-02-26 2008-09-11 Chemiprokasei Kaisha Ltd フルオレン誘導体、それよりなる電子輸送材料、電子注入材料およびそれを用いた有機エレクトロルミネッセンス素子
WO2009110075A1 (ja) * 2008-03-05 2009-09-11 パイオニア株式会社 有機半導体素子
JP2010045199A (ja) * 2008-08-13 2010-02-25 Junji Kido 有機電界発光素子
JP2012527083A (ja) * 2009-05-13 2012-11-01 ネオビューコロン カンパニー,リミテッド 有機電界発光素子およびその製造方法
WO2011014039A1 (en) * 2009-07-31 2011-02-03 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
CN102625806A (zh) * 2009-07-31 2012-08-01 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和使用该化合物的有机电致发光设备
WO2012066122A1 (en) * 2010-11-18 2012-05-24 Syngenta Participations Ag 2 - (pyridin- 2 -yl) -quinazoline derivatives and their use as microbicides
JPWO2012120897A1 (ja) * 2011-03-10 2014-07-17 コニカミノルタ株式会社 位相差フィルム、偏光板、液晶表示装置及び化合物
JP5920336B2 (ja) * 2011-03-10 2016-05-18 コニカミノルタ株式会社 位相差フィルム、偏光板、液晶表示装置及び化合物
EP2842954A4 (en) * 2012-04-24 2015-12-16 Samsung Sdi Co Ltd CONNECTION FOR ORGANIC OPTOELECTRIC DEVICE, ORGANIC LIGHT EMITTING DEVICE THEREFOR AND DISPLAY DEVICE WITH THIS ORGANIC LIGHT EMITTING DEVICE
US9324948B2 (en) 2012-04-24 2016-04-26 Samsung Sdi Co., Ltd. Compound for organic optoelectronic device, organic light emitting diode including the same and display including the organic light emitting diode
JP2014183315A (ja) * 2013-03-15 2014-09-29 Dow Global Technologies Llc 電子フィルムおよびデバイス用のキナゾリン誘導化合物
CN104292218A (zh) * 2013-03-15 2015-01-21 陶氏环球技术有限责任公司 用于电子薄膜和器件的喹唑啉衍生的化合物
TWI631109B (zh) * 2013-03-15 2018-08-01 陶氏全球科技有限責任公司 用於電子膜及元件之喹唑啉衍生化合物
JP2016526030A (ja) * 2013-05-13 2016-09-01 チェイル インダストリーズ インコーポレイテッド 有機光電子素子用化合物、これを含む有機発光素子および前記有機発光素子を含む表示装置
US9508939B2 (en) 2013-07-23 2016-11-29 Idemitsu Kosan Co., Ltd. Compound and organic electroluminescent element produced using same
KR101624412B1 (ko) * 2013-08-26 2016-05-25 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
WO2015083974A1 (ko) * 2013-12-03 2015-06-11 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20150064410A (ko) * 2013-12-03 2015-06-11 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102093186B1 (ko) * 2013-12-03 2020-03-25 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20150121394A (ko) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR102231248B1 (ko) * 2014-04-18 2021-03-24 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10446764B2 (en) 2014-05-22 2019-10-15 Samsung Sdi Co., Ltd. Organic compound, composition, organic optoelectric device, and display device
JP2016020333A (ja) * 2014-05-29 2016-02-04 東ソー株式会社 ベンゾキナゾリン化合物、その製造方法、およびその用途
WO2015182769A1 (ja) * 2014-05-29 2015-12-03 東ソー株式会社 キナゾリン及びベンゾキナゾリン化合物、その製法及び用途
JP2016020332A (ja) * 2014-06-18 2016-02-04 東ソー株式会社 キナゾリン化合物、その製造方法、およびその用途
CN104167429A (zh) * 2014-08-01 2014-11-26 京东方科技集团股份有限公司 一种柔性显示面板及其制备方法、显示装置
US9640596B2 (en) 2014-08-01 2017-05-02 Boe Technology Group Co., Ltd. Flexible display panel, manufacturing method thereof and display device
US10431748B2 (en) 2014-10-30 2019-10-01 Lg Chem, Ltd. Cyclic compound and organic light-emitting element comprising same
JP2017533893A (ja) * 2014-10-30 2017-11-16 エルジー・ケム・リミテッド 環化合物およびこれを含む有機発光素子
WO2017038642A1 (ja) * 2015-09-03 2017-03-09 コニカミノルタ株式会社 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
JPWO2017038642A1 (ja) * 2015-09-03 2018-06-21 コニカミノルタ株式会社 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
CN106883187A (zh) * 2015-12-16 2017-06-23 上海大学 一种喹唑啉衍生物及其制备方法和应用
US11723268B2 (en) * 2016-04-28 2023-08-08 Lg Chem, Ltd. Organic light-emitting element
JPWO2018079211A1 (ja) * 2016-10-28 2019-09-12 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
WO2018079211A1 (ja) * 2016-10-28 2018-05-03 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
JP7029404B2 (ja) 2016-10-28 2022-03-03 メルク パテント ゲーエムベーハー 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス用材料
CN111683935A (zh) * 2018-06-11 2020-09-18 株式会社Lg化学 杂环化合物及包含其的有机发光器件
CN111683935B (zh) * 2018-06-11 2023-09-29 株式会社Lg化学 杂环化合物及包含其的有机发光器件
WO2020218067A1 (ja) * 2019-04-26 2020-10-29 コニカミノルタ株式会社 透明電極及びそれを具備した電子デバイス
CN113727838A (zh) * 2019-04-26 2021-11-30 柯尼卡美能达株式会社 透明电极和具备该透明电极的电子设备

Also Published As

Publication number Publication date
JPWO2006104118A1 (ja) 2008-09-11
JP5266514B2 (ja) 2013-08-21
JP2014082524A (ja) 2014-05-08
JP5692425B2 (ja) 2015-04-01
JP2013038432A (ja) 2013-02-21
JP5644822B2 (ja) 2014-12-24

Similar Documents

Publication Publication Date Title
JP5692425B2 (ja) 有機エレクトロルミネッセンス素子
JP5839027B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置
JP5742586B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5320739B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5697856B2 (ja) 有機エレクトロルミネッセンス素子、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5747555B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010044342A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007077810A1 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6056884B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
WO2006103874A1 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5862117B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP2013048190A (ja) 有機エレクトロルミネッセンス素子および照明装置
JP2014045101A (ja) 有機エレクトロルミネッセンス素子、照明装置および表示装置
JP2012164731A (ja) 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置および照明装置
US9437833B2 (en) Organic electroluminescence element
WO2009157477A1 (ja) 有機エレクトロルミネッセンス素子の製造方法及び白色発光有機エレクトロルミネッセンス素子
WO2007043321A1 (ja) 有機エレクトロルミネッセンス素子、液晶表示装置及び照明装置
WO2016175068A1 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2006090568A1 (ja) 有機エレクトロルミネッセンス素子、発光パネル、液晶表示装置及び照明装置
JP5987281B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子の製造方法
WO2013140885A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
JP2009076826A (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2013042460A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6468314B2 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2013094276A1 (ja) 有機el素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007510507

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06730160

Country of ref document: EP

Kind code of ref document: A1