WO2017038642A1 - 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器 - Google Patents

環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器 Download PDF

Info

Publication number
WO2017038642A1
WO2017038642A1 PCT/JP2016/074864 JP2016074864W WO2017038642A1 WO 2017038642 A1 WO2017038642 A1 WO 2017038642A1 JP 2016074864 W JP2016074864 W JP 2016074864W WO 2017038642 A1 WO2017038642 A1 WO 2017038642A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
layer
organic
light emitting
compound
Prior art date
Application number
PCT/JP2016/074864
Other languages
English (en)
French (fr)
Inventor
秀雄 ▲高▼
倫生 泉
寛之 磯部
宗太 佐藤
晃喜 池本
▲ジン▼ 薛
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2017537809A priority Critical patent/JP6809468B2/ja
Publication of WO2017038642A1 publication Critical patent/WO2017038642A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed systems contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to a cyclic heteroaromatic compound, a material for an organic electronics element, an organic electronics element, and an electronic device.
  • Organic electronic elements such as organic electroluminescent elements, organic thin-film solar cells, and organic transistors are attracting attention as next-generation electronic materials because they are excellent in lightness, moldability, and flexibility.
  • organic electroluminescent elements hereinafter, the “organic EL element” in some cases is expected to be applied to electronic devices such as lighting devices and display devices.
  • an organic EL element As an organic EL element, a heterojunction type in which different materials are used for an organic compound layer composed of an electron transport layer, a hole transport layer, and a light emitting layer is known. That is, in a heterojunction type organic EL device, an electron transport material that mediates electron transport, a hole transport material that mediates hole transport, and light emitting molecules such as dispersed phosphorescent dopants and fluorescent dopants (light emission). Three different materials of host material (light emitting layer host material) that allow charge recombination on the molecule of the dopant) are required.
  • Alq3 tris (8-hydroxyquinolyl) aluminum
  • BAlq bis (2-methyl-8-quinolyl) -4- (phenylphenolate) aluminum
  • hole transport material poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate (PEDOT / PSS), triarylamine derivatives and the like are known.
  • CBP 4,4'-N, N-dicarbazole-biphenyl
  • the heterojunction type organic EL element different materials are used for each layer constituting the organic compound layer, which has a problem that the manufacturing process is increased and the manufacturing cost is increased. Further, since an interface is formed between the layers, the interface causes deterioration of the organic EL element, and there is a problem that the stability of light emission is not sufficient.
  • an organic EL element having a simpler structure and easy to manufacture a homogenous material that uses the same material for each material such as an electron transport material, a hole transport material, and a light emitting layer host material constituting the organic compound layer is used. Joining types are known.
  • materials that can be used for such a homojunction type organic compound layer for example, phenazaricin derivatives (see Patent Document 1) and CZBDF [bis (carbazolyl) bendodifuran] (see Non-Patent Document 1) are known. Yes.
  • Organic thin-film solar cells have a structure having an organic compound layer between a cathode and an anode, and are attracting attention because they can reduce power generation costs and environmental burdens compared to inorganic solar cells. Yes.
  • As the organic compound layer a bulk heterojunction layer in which an electron donor layer and an electron acceptor layer are mixed is known.
  • a cyclic heteroaromatic compound useful for improving the photoelectric conversion efficiency of the organic electronics element and a material for an organic electronics element, an organic electronics element containing the cyclic heteroaromatic compound, and Provide electronic equipment.
  • the cyclic heteroaromatic compound of the present invention is represented by the following general formula (1).
  • A represents a divalent aromatic ring or heteroaromatic ring, and n represents a natural number of 2 or more. Each A may be different and at least one A is heteroaromatic.
  • the material for organic electronics elements of the invention contains the cyclic heteroaromatic compound.
  • the organic electronics element of the present invention contains the cyclic heteroaromatic compound in the organic compound layer.
  • the electronic device of the present invention includes the organic electronic element.
  • a cyclic heteroaromatic compound useful for improving the photoelectric conversion efficiency of an organic compound layer material, and an organic electronics element material, organic electronics element, and electron containing the cyclic heteroaromatic compound Equipment can be provided.
  • [2n] is a diagram showing a MALDI-TOF MS spectrum of CHA-2.
  • [6] A diagram showing a 1 H-NMR spectrum of CHA-2.
  • [8] A diagram showing the 1 H-NMR spectrum of CHA-2.
  • [10] A diagram showing a 1 H-NMR spectrum of CHA-2.
  • [12] A diagram showing a 1 H-NMR spectrum of CHA-2.
  • [14] is a diagram showing 1 H-NMR spectrum of CHA-2.
  • [6] A diagram showing a 13 C-NMR spectrum of CHA-2.
  • [8] A diagram showing a 13 C-NMR spectrum of CHA-2.
  • [10] A diagram showing a 13 C-NMR spectrum of CHA-2.
  • [6] is a diagram showing 1 H-NMR spectrum of CHA-1.
  • Cyclic heteroaromatic compounds and materials for organic electronics elements > [Cyclic heteroaromatic compound]
  • the cyclic heteroaromatic compound of this embodiment is represented by the following general formula (1).
  • the organic electronics element material contains a cyclic heteroaromatic compound represented by the following general formula (1).
  • A represents a divalent aromatic ring or a heteroaromatic ring
  • n represents a natural number of 2 or more.
  • Each A may be different and at least one A is heteroaromatic.
  • the cyclic heteroaromatic compound represented by the general formula (1) is preferably a cyclic heteroaromatic compound represented by the following general formula (2).
  • Q represents a trivalent hetero atom, CR, or A′R ′ (a-3) . Each Q may be different and at least one Q is a heteroatom.
  • R represents a hydrogen atom or a substituent.
  • a ′ represents a tetravalent or higher valent hetero atom, and a represents the valence of the hetero atom.
  • R ′ represents a hydrogen atom or a substituent, and when a-3 is 2 or more, each R ′ may be different.
  • the substituent represented by R and R ′ is an alkyl group (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group).
  • the cyclic heteroaromatic compound represented by the general formula (1) is preferably a cyclic heteroaromatic compound represented by the following general formula (3).
  • Y represents a trivalent hetero atom, CR, or A′R ′ (a-3) . Each Y may be different and at least one Y is a heteroatom.
  • R represents a hydrogen atom or a substituent.
  • a ′ represents a tetravalent or higher valent hetero atom, and a represents the valence of the hetero atom.
  • R ′ represents a hydrogen atom or a substituent, and when a-3 is 2 or more, each R ′ may be different.
  • examples of the substituent represented by R and R ′ include the same substituents as those in the general formula (2).
  • the cyclic heteroaromatic compound can be identified by IR (infrared absorption spectrum), 1 H-NMR, 13 C-NMR, MS (MALDI TOF), elemental analysis, and thermal decomposition temperature measurement.
  • the cyclic heteroaromatic compound can have a single crystal structure and can be identified by single crystal X-ray structure analysis.
  • the cyclic heteroaromatic compound represented by the general formula (1) can be synthesized by a coupling reaction of a compound represented by the following general formula (4).
  • X represents a halogen atom or pinacolatoborane.
  • halogen atom examples include fluorine (F), chlorine (Cl), bromine (Br), and iodine (I), and among these, bromine (Br) from the viewpoint of having sufficient reactivity in the coupling reaction. It is preferable that
  • the coupling reaction may be any method capable of producing the cyclic heteroaromatic compound represented by the general formula (1), and a known coupling reaction can be appropriately employed.
  • a Suzuki coupling reaction a Still coupling reaction, a Kumada coupling reaction, an Ullmann reaction, a Yamamoto coupling reaction, a Negishi coupling reaction, an Nirayama coupling reaction, and a combination of these reactions can be used.
  • Yamamoto coupling reaction it is preferable to use the Yamamoto coupling reaction from the viewpoint that the yield of the obtained cyclic heteroaromatic compound is high and the material used for the reaction is easily available.
  • an organic solvent can be used.
  • the organic solvent include toluene, N, N-dimethylformamide (DMF), benzene, xylene, mesitylene, DMSO and the like, and these may be used alone or in combination of two or more. .
  • toluene, N, N-dimethylformamide, and benzene are preferably used.
  • it is preferably used after sufficiently deoxygenated from the viewpoint of suppressing side reactions, although it depends on the halogenated benzene used and the coupling reaction used. . Further, it is more preferable to use in an inert gas atmosphere such as nitrogen or argon under light shielding.
  • alkali an alkali or an appropriate catalyst in order to advance the reaction.
  • alkalis and catalysts can be selected according to the coupling reaction employed.
  • the alkali include potassium carbonate, sodium carbonate, cesium carbonate, potassium hydroxide, sodium hydroxide, tripotassium phosphate, potassium acetate, potassium fluoride, cesium fluoride and the like.
  • the catalyst examples include nickel catalysts such as bis (1,5-cyclooctadiene) nickel, copper catalysts, palladium catalysts, platinum catalysts, iron catalysts and the like.
  • nickel catalysts such as bis (1,5-cyclooctadiene) nickel
  • copper catalysts such as bis (1,5-cyclooctadiene) nickel
  • palladium catalysts such as platinum catalysts
  • platinum catalysts such as platinum catalysts
  • iron catalysts and the like examples include nickel catalysts such as bis (1,5-cyclooctadiene) nickel, copper catalysts, palladium catalysts, platinum catalysts, iron catalysts and the like.
  • bis (1,5-cyclooctadiene) nickel is preferably used.
  • the addition amount of alkali is preferably 2 to 5 mol with respect to 1 mol of the halogenated benzene represented by the general formula (4).
  • the addition amount of the catalyst is not particularly limited as long as it is an effective amount as a catalyst, but is 0.1 to 2.5 mol with respect to 1 mol of the halogenated benzene represented by the general formula (4). It is preferable that If the addition amount of the alkali and the catalyst is less than the lower limit, the reaction efficiency tends to decrease. On the other hand, if the addition amount exceeds the upper limit, further addition is wasted and the economy tends to decrease.
  • the method of mixing the above alkali or catalyst is not particularly limited.
  • a method of slowly adding an alkali and / or catalyst solution while stirring a reaction solution containing a halogenated benzene and an organic solvent under an inert atmosphere such as argon or nitrogen, or an alkali and / or catalyst For example, a method of slowly adding the reaction solution to the contained solution may be used.
  • the total concentration of the alkali and / or catalyst and the halogenated benzene represented by the general formula (4) is highly diluted to further promote cyclization. From the viewpoint of adjusting the conditions, the content is preferably 1 to 15% by mass (5 to 50 mM).
  • the coupling reaction is preferably carried out in an inert gas atmosphere under light shielding.
  • the inert gas include nitrogen gas and argon gas.
  • the temperature of the coupling reaction varies depending on the organic solvent used, but is preferably 20 to 80 ° C.
  • the reaction time for the coupling reaction is not particularly limited and varies depending on the halogenated benzene used and the coupling reaction employed. The upper limit of the reaction time may be set when the target degree of polymerization is reached, but it is preferably about 1 to 24 hours.
  • FIG. 1 shows a MALDI-TOF MS spectrum of each compound.
  • the 1 H-NMR spectrum and 13 C-NMR spectrum of each compound are shown in FIGS. 2 to 11, respectively.
  • the HPLC chart of each compound is shown in FIG.
  • CHA-2 IR (powder) ⁇ 2953, 1575, 1472, 1440, 1359, 1178, 1142, 1077, 944, 888, 834, 812, 801, 754, 691, 677, 651, 630, 621
  • CHA-2 IR ⁇ 2953, 1570, 1473, 1447, 1399, 1360, 1247, 1173, 1139, 900, 879, 835, 800, 775, 753, 735, 691, 660, 632
  • CHA-2 IR (powder) ⁇ 2955, 1589, 1565, 1475, 1464, 1450, 1402, 1359, 1249, 1170, 1138, 1069, 910, 883, 854, 834, 797, 753, 729, 684, 656, 633
  • CHA-2 IR (powder) ⁇ 2954, 1567, 1465, 1362, 1248, 1166, 1137, 989, 879, 837, 804, 754, 691, 652, 632
  • CHA-2 (10 mg, 1.5 ⁇ 10 ⁇ 2 mmol) is added to 0.9 mL of 1MTBAF solution and stirred at room temperature for 21 hours. To this is added 3 mL of water and the mixture is filtered to collect the precipitate. The collected precipitate can be washed with 10 mL of methanol and dried under reduced pressure to give [6] CHA-1 (7.2 mg, 1.5 ⁇ 10 ⁇ 2 mmol).
  • Examples of the cyclic heteroaromatic compound represented by the general formula (1) include the following [6] CHA-3, [8] CHA-3, and [10] CHA-3. it can. [6] Structures of CHA-3, [8] CHA-3, and [10] CHA-3, and 1 H-NMR spectra of [6] CHA-3 and [8] CHA-3, and 13 C-NMR spectra are shown in FIGS. In addition, FIG. 20 shows the 1 H-NMR spectrum of [10] CHA-3.
  • the organic electronics element material may be composed of only the cyclic heteroaromatic compound represented by the above general formula (1), and the effect of the cyclic heteroaromatic compound represented by the general formula (1). In the range that does not inhibit the above, impurities derived from reagents used in the synthesis of cyclic heteroaromatic compounds, impurities generated by purification, and the like may further be included.
  • the organic electronics element of the present embodiment is an organic electronics element comprising an anode, a cathode, and an organic compound layer disposed between the cathode and the anode.
  • a cyclic heteroaromatic compound represented by the formula (1) is contained.
  • Examples of the organic electronics element include an organic electroluminescence element (organic EL element), an organic thin film solar cell, and an organic diode.
  • the organic compound layer is a layer containing an organic compound, and examples of the layer structure of the organic EL element include a hole transport layer, a light emitting layer, and an electron transport layer.
  • examples of the layer structure of the organic EL element include a hole transport layer, a light emitting layer, and an electron transport layer.
  • these layers can also be included in the organic compound layer.
  • a layer structure of an organic EL element it can be set as the single layer (henceforth a single organic compound layer) by an organic compound layer.
  • the organic thin film solar cell can be set as the structure which provides a light emission area
  • the layer configuration of the organic thin film solar cell include a hole transport layer, a p-type semiconductor layer, a power generation layer, an n-type semiconductor layer, and an electron transport layer.
  • the organic electronics element at least any one of a single organic compound layer or a plurality of organic compound layers has the cyclic heteroaromatic compound represented by the above general formula (1) for an organic electronics element. Included as material.
  • the organic electronics element is an organic EL element having a plurality of organic compound layers
  • the above-described organic compound layer is formed on at least one of the hole transport layer, the light emitting layer, and the electron transport layer.
  • the cyclic heteroaromatic compound represented by the general formula (1) is preferably included.
  • the organic electronics element is an organic EL element having a single organic compound layer
  • the cyclic heteroaromatic compound represented by the general formula (1) is used as a common host material on the entire single organic compound layer. It is preferably included.
  • the cyclic heteroaromatic compound represented by the general formula (1) can be used as any of the electron transport material, the hole transport material, and the host material of the light emitting layer, a single organic compound layer, or Any of the plurality of layers can be contained as a material for an organic electronics element.
  • Organic electroluminescence device an organic EL element will be described as a preferred embodiment of the organic electronics element.
  • the cyclic heteroaromatic compound represented by the above general formula (1) can be used as a material for the organic compound layer of the organic EL element.
  • anode / hole transport layer / light emitting layer / electron transport layer / cathode (ii) Anode / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / cathode (iii) anode / hole transport layer / Light emitting layer / hole blocking layer / electron transport layer / electron injection layer (cathode buffer layer) / cathode (iv) anode / hole injection layer (anode buffer layer) / hole transport layer / light emitting layer / hole blocking layer / Electron transport layer / electron injection layer (cathode buffer layer) / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer / electron injection layer (cathode buffer layer) / cathode (v) anode / hole transport layer / light emitting layer / electron transport layer (cathode buffer layer) / cathode (v) anode / hole transport
  • the layers excluding the anode and the cathode can be composed of an organic compound layer.
  • the organic EL element preferably has a plurality of organic compound layers as a constituent layer.
  • the organic compound layer include a single organic compound layer, a hole transport layer, a light emitting layer, a hole blocking layer, and an electron transport layer in the above layer configuration.
  • an organic compound is contained in the constituent layers of the organic EL element such as other hole injection layers and electron injection layers, they are included in the organic compound layer.
  • the anode buffer layer, the cathode buffer layer, etc. the anode buffer layer, the cathode buffer layer, etc. are also included in the organic compound layer.
  • the electron transport layer is a layer having a function of transporting electrons, and includes an electron injection layer and a hole blocking layer in a broad sense. Further, the electron transport layer may be composed of a plurality of layers.
  • the hole transport layer is a layer having a function of transporting holes, and includes a hole injection layer and an electron blocking layer in a broad sense. The hole transport layer may be composed of a plurality of layers.
  • At least one of the plurality of organic compound layers includes the cyclic heteroaromatic compound represented by the above general formula (1) as a material for organic electronics elements.
  • each layer which comprises an organic EL element is demonstrated.
  • the layer sandwiched between the anode and the cathode can be an organic compound layer (single organic compound layer) configured as a single layer.
  • the single organic compound layer has a light emitting region including at least one light emitting dopant and a common host material.
  • the single organic compound layer preferably has an undoped region composed of only a common host material together with a light emitting region.
  • the undoped region may be provided only on either the cathode side or the anode side of the light emitting region, or may be provided on both sides.
  • the light emitting region may be sandwiched between undoped regions.
  • the light emitting dopant contained in the light emitting region is preferably a phosphorescent dopant.
  • the hole delay rate (Hr) which shows interaction with a common host material and a light emission dopant is less than 0.1.
  • a hole delay rate is 0.06 or less.
  • the hole delay rate can be determined by the following method.
  • As an organic EL element two types of hole-only devices (D6, D0) that flow only holes are produced (specifically, see Example 2 described later), and the hole mobility ⁇ D0 at 100 mA / cm 2 is produced.
  • ⁇ D6 is calculated from the following Mott-Gurney equation (Child's row in solids).
  • the single organic compound layer is preferably provided with a plurality of regions in the stacking direction of the organic EL element, together with the light emitting region and the undoped region.
  • the single organic compound layer preferably has a hole transport region together with a light emitting region and an undoped region.
  • the hole transport region is a region including a hole transport material described later together with the common host material.
  • the hole transport region is provided on the anode side of the light emitting region in the single organic compound layer.
  • it is preferable that the single organic compound layer is formed in the order of the hole transport region, the light emitting region, and the undoped region from the anode side.
  • the electron transport region is a region including an electron transport material described later together with the common host material.
  • the electron transport region is provided on the cathode side of the light emitting region in the single organic compound layer.
  • it is preferable that the single organic compound layer is formed in the order of the electron transport region, the light emitting region, and the undoped region from the cathode side.
  • the single organic compound layer has a configuration in which the region other than the undoped region and the light emitting region do not have overlapping regions.
  • the hole transport region, the electron transport region, and the light emitting region do not have overlapping regions.
  • the single organic compound layer preferably contains 0.1% by mass or more of the common host material in the entire region. Moreover, it is preferable that this single organic compound layer contains the cyclic
  • the above-mentioned CHA-1 to CHA-12 are preferably included as the cyclic heteroaromatic compound represented by the general formula (1).
  • the light emitting layer composing the organic EL element or the light emitting region composing the single organic compound layer has the electrons and holes injected from the electrode or the electron transport layer (region) and the hole transport layer (region) again. It is a layer that combines to emit light.
  • the light emitting portion may be in the light emitting layer (region) or the interface between the light emitting layer (region) and the adjacent layer (region).
  • the configurations of both the light emitting layer and the light emitting region constituting the single organic compound layer are collectively referred to as the light emitting layer.
  • the light emitting layer may be a single layer, or may be configured by combining a plurality of layers. Similarly, a plurality of light emitting regions may be provided in a single organic compound layer.
  • the emission maximum wavelength of the blue light emitting layer is preferably 430 nm to 480 nm
  • the emission maximum wavelength of the green light emitting layer is in the range of 510 nm to 550 nm
  • the emission maximum wavelength of the red light emitting layer is in the range of 600 nm to 640 nm.
  • a monochromatic light emitting layer is preferred.
  • an organic EL element having a white light emitting layer in which at least three light emitting layers are laminated may be used.
  • a non-light emitting intermediate layer may be provided between the light emitting layers.
  • the total thickness of the light emitting layer is not particularly limited, but from the viewpoint of improving the uniformity of the film, preventing unnecessary application of high voltage during light emission, and improving the stability of the emitted color against the drive current. It is preferable to adjust to a range of 2 nm to 5 ⁇ m, more preferable to adjust to a range of 2 nm to 200 nm, and particularly preferable to adjust to a range of 10 nm to 20 nm.
  • the light emitting layer of the organic EL element preferably contains a light emitting layer host material and at least one kind of light emitting dopant among phosphorescent light emitting dopant and fluorescent dopant.
  • the light emitting layer can be formed by forming a light emitting layer host material or a light emitting dopant by a known thinning method such as a vacuum deposition method, a spin coating method, a casting method, an LB method, or an ink jet method.
  • the light emitting layer may further contain a hole transport material and an electron transport material described later.
  • the light emitting layer host material and the common host material are compounds contained in the light emitting layer, the mass ratio in the layer is 20% or more, and A compound having a phosphorescence quantum yield of phosphorescence emission at room temperature (25 ° C.) of less than 0.1.
  • the phosphorescence quantum yield is less than 0.01.
  • one type of host material may be used alone, or two or more types may be used in combination.
  • the efficiency of the organic EL element can be increased by adjusting the movement of charges.
  • the cyclic heteroaromatic compound represented by the above general formula (1) is preferably used alone or in combination with other host materials. Further, when the cyclic heteroaromatic compound represented by the general formula (1) is used as an electron transport material or a hole transport material described later, the cyclic heteroaromatic compound represented by the general formula (1) is used as the host material. You may use materials other than an aromatic compound individually or in combination of 2 or more types.
  • the hole transport ability and the electron transport ability can be prevented, and the emission wavelength can be prevented from being increased.
  • a compound having Tg glass transition temperature
  • Luminescent dopant As the light-emitting dopant, a fluorescent dopant (also referred to as a fluorescent compound) or a phosphorescent dopant (also referred to as a phosphorescent emitter, a phosphorescent compound, a phosphorescent compound, or the like) can be used. From the viewpoint of obtaining an organic EL device with higher luminous efficiency, it is preferable to contain a phosphorescent dopant.
  • a phosphorescent dopant is a compound in which light emission from an excited triplet is observed. Specifically, it is a compound that emits phosphorescence at room temperature (25 ° C.), and phosphorescence quantum of phosphorescence emission at 25 ° C. A compound having a yield of 0.01 or more. Preferably, the phosphorescence quantum yield is 0.1 or more.
  • a phosphorescence quantum yield can be measured by the method as described in 398 pages (1992 version, Maruzen) of the spectroscopy II of the 4th edition experimental chemistry lecture 7. Although the phosphorescence quantum yield in a solution can be measured using various solvents, the phosphorescent dopant only needs to achieve the phosphorescence quantum yield (0.01 or more) in any solvent. .
  • the first principle is that recombination of carriers occurs on the host material to which carriers are transported, an excited state of the host material is generated, and this energy is transferred to the phosphorescent dopant to transfer the energy from the phosphorescent dopant. It is an energy transfer type that obtains luminescence.
  • the second principle is a carrier trap type in which a phosphorescent dopant becomes a carrier trap, carrier recombination occurs on the phosphorescent dopant, and light emission from the phosphorescent dopant is obtained. In any of the above cases, it is a condition that the excited state energy of the phosphorescent dopant is lower than the excited state energy of the host material.
  • the light emitting dopant can be appropriately selected from known materials used for the light emitting layer of the organic EL device.
  • it is a complex compound containing a group 8-10 metal in the periodic table, more preferably an iridium compound (Ir complex), an osmium compound, a platinum compound (platinum complex compound), or a rare earth complex.
  • an iridium compound (Ir complex) is most preferred.
  • a compound represented by the following general formula (5) is preferable.
  • P and Q represent a carbon atom or a nitrogen atom
  • A1 represents an atomic group that forms an aromatic hydrocarbon ring or an aromatic heterocycle with PC
  • A2 represents an aromatic hydrocarbon ring with QN.
  • P1-L1-P2 represents a bidentate ligand
  • P1 and P2 each independently represent a carbon atom, a nitrogen atom or an oxygen atom
  • L1 represents P1
  • a group of atoms forming a bidentate ligand together with P2 is shown
  • M represents a metal element of Groups 8 to 10 in the periodic table.
  • r represents an integer of 1 to 3
  • s represents an integer of 0 to 2
  • r + s is 2 or 3.
  • the aromatic hydrocarbon ring represented by A1 includes a benzene ring, biphenyl ring, naphthalene ring, azulene ring, anthracene ring, phenanthrene ring, pyrene ring, chrysene ring, naphthacene ring, triphenylene ring, o-terphenyl ring, m-terphenyl ring, p-terphenyl ring, acenaphthene ring, coronene ring, fluorene ring, fluoranthrene ring, naphthacene ring, pentacene ring, perylene ring, pentaphen ring, picene ring, pyrene ring, Examples include a pyranthrene ring and anthraanthrene ring. These rings may further have a substituent described later.
  • examples of the aromatic heterocycle represented by A1 include a furan ring, a thiophene ring, an oxazole ring, a pyrrole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, and a benzimidazole.
  • Examples of the substituent that the aromatic hydrocarbon ring or the aromatic heterocyclic ring may have include an alkyl group (for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, a tert-butyl group, a pentyl group, a hexyl group, Octyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, etc.), cycloalkyl group (eg, cyclopentyl group, cyclohexyl group, etc.), alkenyl group (eg, vinyl group, allyl group, etc.), alkynyl group (eg, ethynyl) Group, propargyl group, etc.), aromatic hydrocarbon group (aromatic hydrocarbon ring group, aromatic carbocyclic group, aryl group, etc.), for example, phenyl group, p-chlorophen
  • the aromatic hydrocarbon ring and aromatic heterocycle represented by A2 have the same meanings as the aromatic hydrocarbon ring and aromatic heterocycle represented by A1, respectively.
  • examples of the bidentate ligand represented by P1-L1-P2 include substituted or unsubstituted phenylpyridine, phenylpyrazole, phenylimidazole, phenyltriazole, phenyltetrazole, and pyrazabole. Acetylacetone, picolinic acid and the like.
  • M represents a transition metal element of group 8 to 10 (also simply referred to as a transition metal) in the periodic table of elements. Among them, iridium and platinum are preferable, and iridium is particularly preferable. These phosphorescent dopants are described in, for example, Inorg. Chem. 40, 1704 to 1711, and the like.
  • Fluorescent dopants include coumarin dyes, pyran dyes, cyanine dyes, croconium dyes, squalium dyes, oxobenzanthracene dyes, fluorescein dyes, rhodamine dyes, pyrylium dyes, perylene dyes Examples thereof include dyes, stilbene dyes, polythiophene dyes, and rare earth complex phosphors.
  • the luminescent dopant one of these luminescent dopants may be used alone, or two or more luminescent dopants may be used in combination, but an organic EL device with higher luminous efficiency can be obtained, and any luminescent color can be obtained. From the standpoint that it can be obtained, it is preferable to use a phosphorescent dopant in combination with a plurality of other light-emitting dopants.
  • the hole transport layer and hole transport region of the organic EL element are a layer or a region containing a hole transport material having a function of transporting holes.
  • the hole transport layer may be a single layer or a combination of a plurality of layers.
  • the cyclic heteroaromatic compound represented by the above general formula (1) is used alone or in combination with another hole transport material. Is preferred.
  • the cyclic heteroaromatic compound represented by the above general formula (1) is used as the above host material or an electron transport material described later, it is represented by the general formula (1) as a hole transport material.
  • Other materials other than the cyclic heteroaromatic compound to be used may be used alone or in combination of two or more.
  • the hole transport material other than the cyclic heteroaromatic compound represented by the general formula (1) may be any material that has either hole injection or transport or electron barrier properties, and is organic or inorganic. Any of these may be used. For example, triazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Examples thereof include stilbene derivatives, silazane derivatives, aniline copolymers, or conductive polymer oligomers such as thiophene oligomers. Among them, it is preferable to use a porphyrin compound, an aromatic tertiary amine compound, and a styrylamine compound, particularly an aromatic
  • aromatic tertiary amine compounds and styrylamine compounds include N, N, N ′, N′-tetraphenyl-4,4′-diaminophenyl, N, N′-diphenyl-N, N '-Bis (3-methylphenyl)-[1,1'-biphenyl] -4,4'-diamine (TPD), 2,2-bis (4-di-p-tolylaminophenyl) propane, 1,1 -Bis (4-di-p-tolylaminophenyl) cyclohexane, N, N, N ', N'-tetra-p-tolyl-4,4'-diaminobiphenyl, 1,1-bis (4-di-p -Tolylaminophenyl) -4-phenylcyclohexane, bis (4-dimethylamino-2-methylphenyl) phenylmethane, bis (4-di-p-toly
  • polymer materials in which these materials are introduced into polymer chains or these materials are used as polymer main chains can be used.
  • inorganic compounds such as p-type-Si and p-type-SiC can also be used as the hole injection material and the hole transport material.
  • JP-A-11-251067, J. Org. Huang et. al. A so-called p-type hole transport material described in the literature (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • the hole transport layer can be formed of the hole transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the hole transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • a hole transport layer having a high p property doped with impurities may be used.
  • examples thereof include JP-A-4-297076, JP-A-2000-196140, JP-A-2001-102175, J. Pat. Appl. Phys. 95, 5773 (2004), and the like.
  • Specific examples include poly (3,4-ethylenedioxythiophene) -polystyrene sulfonate.
  • the electron transport layer and the electron transport region of the organic EL element are layers or regions containing a material having a function of transporting electrons.
  • the electron transport layer may be a single layer or a combination of a plurality of layers.
  • the cyclic heteroaromatic compound represented by the above general formula (1) as an electron transport material (also serving as a hole blocking material) alone or with another electron transport material It is preferable to use in combination. Further, when the electron transport layer is a plurality of layers, it is represented by the above general formula (1) as an electron transport material (also serving as a hole blocking material) used for the electron transport layer adjacent to the light emitting layer on the cathode side.
  • These cyclic heteroaromatic compounds are preferably used alone or in combination with other electron transport materials.
  • the cyclic heteroaromatic compound represented by the general formula (1) is used as the above-described host material or hole transport material
  • the cyclic heteroaromatic compound represented by the general formula (1) is used as the electron transport material. You may use other materials other than a group compound individually or in combination of 2 or more types.
  • the electron transport material other than the cyclic heteroaromatic compound represented by the general formula (1) may have a function of transmitting electrons injected from the cathode to the light emitting layer. Any one can be selected and used. Examples of such compounds include nitro-substituted fluorene derivatives, diphenylquinone derivatives, thiopyran dioxide derivatives, carbodiimides, fluorenylidenemethane derivatives, anthraquinodimethane and anthrone derivatives, oxadiazole derivatives, and the like.
  • a thiadiazole derivative in which the oxygen atom of the oxadiazole ring is substituted with a sulfur atom, and a quinoxaline derivative having a quinoxaline ring known as an electron withdrawing group can also be used as an electron transport material.
  • a polymer material in which these materials are introduced into a polymer chain or these materials are used as a polymer main chain can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) aluminum , Tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), bis (2-methyl-8-quinolinate) -4- ( Phenylphenolato) aluminum (BAlq), tris (8-quinolinolato) aluminum (Alq3) and the like, and metal complexes in which the central metal of these metal complexes is replaced with In, Mg, Cu, Ca, Sn, Ga or Pb It can be used as an electron transport material.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • distyrylpyrazine derivatives that can be used as a host material for the light-emitting layer can also be used as an electron transport material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as electron transport materials. It can be used as a transport material.
  • the electron transport layer can be formed of the electron transport material by a known method such as a vacuum deposition method, a spin coating method, a casting method, a printing method including an ink jet method, or an LB method.
  • the thickness of the electron transport layer is not particularly limited, but is usually about 5 nm to 5 ⁇ m, preferably 5 nm to 200 nm.
  • the electron transport layer can be an electron transport layer having a high n property doped with impurities.
  • examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • injection layer electron injection layer, hole injection layer
  • the injection layer of the organic EL element can be provided as necessary.
  • the organic EL element and its industrialization front line (published by NTT Corporation on November 30, 1998), Volume 2, Chapter 2, “Electrode Materials” (pages 123-166)
  • a hole injection layer (anode buffer layer), an electron injection layer (cathode buffer layer), and the like can be provided in the organic EL element.
  • the injection layer is a layer provided between the electrode and the organic compound layer for lowering the driving voltage and improving the light emission luminance.
  • the injection layer can be provided between the anode and the light emitting layer or the hole transport layer, and between the cathode and the light emitting layer or the electron transport layer.
  • anode buffer layer (hole injection layer) Details of the anode buffer layer (hole injection layer) are described in JP-A-9-45479, JP-A-9-260062, JP-A-8-288069 and the like. Specific examples include a phthalocyanine buffer layer typified by copper phthalocyanine, an oxide buffer layer typified by vanadium oxide, an amorphous carbon buffer layer, and a polymer buffer using a conductive polymer such as polyaniline (emeraldine) or polythiophene. Layer and the like.
  • cathode buffer layer (electron injection layer) are described in JP-A-6-325871, JP-A-9-17574, JP-A-10-74586, and the like.
  • a metal buffer layer typified by strontium and aluminum
  • an alkali metal compound buffer layer typified by lithium fluoride
  • an alkaline earth metal compound buffer layer typified by magnesium fluoride
  • aluminum oxide And an oxide buffer layer is preferably a very thin film, and the film thickness is preferably in the range of 0.1 nm to 10 nm depending on the material.
  • the blocking layer of the organic EL element can be provided as necessary.
  • the blocking layer for example, JP-A-11-204258, JP-A-11-204359, and “Organic EL element and its forefront of industrialization” (issued on November 30, 1998 by NTT) Examples thereof include a hole blocking (hole block) layer described in pages.
  • the hole blocking layer is a layer having a function of an electron transport layer in a broad sense, and is made of a hole blocking material having a function of transporting electrons and having a remarkably small ability to transport holes, and transporting electrons. By blocking holes, the recombination probability of electrons and holes can be improved. Such a hole blocking layer is preferably provided adjacent to the light emitting layer.
  • the organic EL element has a plurality of light emitting layers having different emission colors
  • the light emitting layer whose emission maximum wavelength is closest to the short wavelength side is closest to the anode among all the light emitting layers.
  • 50% by mass or more of the compound contained in the hole blocking layer provided in this device has an ionization potential of 0.3 eV or more larger than the host material of the light emitting layer having the shortest wave.
  • the ionization potential is defined by the energy required to emit electrons at the HOMO (highest occupied molecular orbital) level of the compound to the vacuum level, and can be obtained by the following method, for example.
  • Gaussian 98 Gaussian 98, Revision A.11.4, MJ Frisch, et al, Gaussian, Inc., Pittsburgh PA, 2002.
  • a molecular orbital calculation software manufactured by Gaussian, USA
  • eV unit converted value a value obtained by rounding off the second decimal place of a value (eV unit converted value) calculated by performing structural optimization using B3LYP / 6-31G *.
  • the reason why this calculated value is effective is that there is a high correlation between the calculated value obtained by this method and the experimental value.
  • a method of direct measurement by photoelectron spectroscopy For example, a method using a low energy electron spectrometer “Model AC-1” manufactured by Riken Keiki Co., Ltd., or a method using a method known as ultraviolet photoelectron spectroscopy.
  • the electron blocking layer is a layer having a function of a hole transport layer in a broad sense, and is made of a material having a function of transporting holes and a remarkably small ability to transport electrons, and transporting holes. By blocking electrons, the probability of recombination of electrons and holes can be improved.
  • the thickness of the hole blocking layer is preferably 3 nm to 100 nm, more preferably 5 nm to 30 nm.
  • anode As the anode of the organic EL element, a structure using a metal, an alloy, an electrically conductive compound, and a mixture thereof having a high work function (4 eV or more) as an electrode material is preferable.
  • the electrode substance include conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • conductive transparent materials such as metals such as Au, CuI, indium tin oxide (ITO), SnO 2 , and ZnO.
  • an amorphous material such as IDIXO (In 2 O 3 —ZnO) capable of forming a transparent conductive film may be used.
  • the anode can be formed by thinning these electrode materials by a method such as vapor deposition or sputtering. Further, a pattern having a desired shape may be formed by a photolithography method. Alternatively, when the pattern accuracy is not required much (about 100 ⁇ m or more), the pattern may be formed through a mask having a desired shape at the time of vapor deposition or sputtering of the electrode material. Moreover, when using the substance which can be apply
  • the transmittance When taking out light emission from this anode, it is desirable to make the transmittance larger than 10%, and the sheet resistance as the anode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the anode depends on the material, but is usually in the range of 10 nm to 1000 nm, preferably 10 nm to 200 nm.
  • cathode As the cathode of the organic EL element, a configuration using a metal having a low work function (4 eV or less) (referred to as an electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof is preferable.
  • electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of an electron injecting metal and a metal (second metal) having a larger work function value and more stable than this such as a magnesium / silver mixture, Magnesium / aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the cathode can be formed by thinning the electrode material by a method such as vapor deposition or sputtering.
  • the sheet resistance as a cathode is several hundred ⁇ / sq. The following is preferred.
  • the thickness of the cathode is usually in the range of 10 nm to 5 ⁇ m, preferably 50 nm to 200 nm.
  • an organic EL element it is preferable that either one of an anode or a cathode is transparent or translucent from a viewpoint of transmitting the emitted light.
  • an organic EL element for example, after forming an electrode material as a cathode with a film thickness of 1 nm to 20 nm, the conductive transparent material described in the description of the anode is formed, thereby forming a transparent or translucent cathode. Can be produced.
  • the organic EL element preferably includes a support substrate (also referred to as a base, a substrate, a base, a support, etc.).
  • the support substrate is not limited to glass, plastic, or the like, and may be transparent or opaque. When light is extracted from the support substrate side, the support substrate is preferably transparent.
  • the opaque support substrate examples include metal plates such as aluminum and stainless steel, films, opaque resin substrates, ceramic substrates, and the like.
  • transparent substrate examples include glass, quartz, and a transparent resin film.
  • a resin film is particularly preferable from the viewpoint that flexibility can be imparted to the organic EL element.
  • the resin film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyethylene, polypropylene, cellophane, cellulose diacetate, cellulose triacetate, cellulose acetate butyrate, cellulose acetate propionate (CAP), Cellulose esters such as cellulose acetate phthalate and cellulose nitrate or derivatives thereof, polyvinylidene chloride, polyvinyl alcohol, polyethylene vinyl alcohol, syndiotactic polystyrene, polycarbonate, norbornene resin, polymethylpentene, polyether ketone, polyimide, polyether Sulfone (PES), polyphenylene sulfide, polysulfones, polyether Cycloolefin
  • An inorganic film, an organic film, or a hybrid film of both may be formed on the surface of the resin film.
  • Such a film has a water vapor transmission rate (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method according to JIS K 7129-1992 of 0.01 g / (m 2 ⁇ 24h)
  • the following barrier film is preferable, the oxygen permeability measured by a method according to JIS K 7126-1987 is 10 ⁇ 3 ml / (m 2 ⁇ 24h ⁇ MPa) or less, and the water vapor permeability is A high barrier film of 10 ⁇ 5 g / (m 2 ⁇ 24 h) or less is more preferable.
  • the material of the coating film may be any material that has a function of suppressing the intrusion of elements such as moisture and oxygen that degrade the organic EL elements.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • a layer made of an organic material is laminated on these inorganic layers.
  • the method for forming a coating on the surface of the resin film is not particularly limited.
  • vacuum deposition method sputtering method, reactive sputtering method, molecular beam epitaxy method, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma polymerization method, plasma CVD method, laser CVD method, thermal CVD Method, coating method and the like can be used.
  • the organic EL element preferably further includes a sealing member disposed on the opposite side of the support substrate so as to cover the anode, the organic compound layer, and the cathode.
  • a sealing member may be a concave plate shape or a flat plate shape, and transparency and electrical insulation are not particularly limited. When the sealing member is processed into a concave plate shape, sandblasting, chemical etching, or the like is used.
  • the sealing member include a glass plate, a polymer plate / film, and a metal plate / film.
  • the glass plate include soda-lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, and quartz.
  • the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • the metal plate include one or more metals or alloys selected from the group consisting of stainless steel, iron, copper, aluminum, magnesium, nickel, zinc, chromium, titanium, molybdenum, silicon, germanium, and tantalum.
  • the sealing member a polymer film or a metal film is preferable from the viewpoint that the organic EL element can be thinned.
  • the polymer film preferably has an oxygen permeability measured by a method according to JIS K 7126-1987 of 1 ⁇ 10 ⁇ 3 ml / (m 2 ⁇ 24 h ⁇ MPa) or less, and JIS K 7129-1992.
  • the water vapor permeability (25 ⁇ 0.5 ° C., relative humidity (90 ⁇ 2)% RH) measured by a method in accordance with JIS is 1 ⁇ 10 ⁇ 3 g / (m 2 ⁇ 24 h) or less. preferable.
  • Such a sealing member can seal the layer structure of the organic EL element, for example, by adhering to the support substrate with an adhesive (sealant).
  • the adhesive include photocuring and thermosetting adhesives having reactive vinyl groups of acrylic acid oligomers and methacrylic acid oligomers, and moisture curing adhesives such as 2-cyanoacrylates.
  • fever and chemical curing types (two-component mixing), such as an epoxy type can be mentioned.
  • hot-melt type polyamide, polyester, and polyolefin can be mentioned.
  • a cationic curing type ultraviolet curing epoxy resin adhesive can be mentioned.
  • an adhesive that can be adhesively cured at a temperature between room temperature and 80 ° C.
  • a desiccant may be dispersed in the adhesive.
  • coating of the adhesive agent to a sealing part may use commercially available dispenser, and may print like screen printing.
  • such a sealing member may be formed as a sealing film by forming an inorganic or organic layer in contact with the support substrate on the electrode facing the support substrate or outside the electrode cathode.
  • the material for forming the sealing film may be any material that has a function of suppressing intrusion of moisture, oxygen, or the like that degrades the organic EL element.
  • silicon oxide, silicon dioxide, silicon nitride, or the like can be used.
  • vacuum deposition sputtering, reactive sputtering, molecular beam epitaxy, cluster ion beam method, ion plating method, plasma polymerization method, atmospheric pressure plasma
  • a polymerization method a plasma CVD method, a laser CVD method, a thermal CVD method, a coating method, or the like can be used.
  • the gap between the sealing member and the display area of the organic EL element can be a gas phase or a liquid phase.
  • a gas phase or liquid phase for example, an inert gas such as nitrogen or argon, an inert liquid such as fluorinated hydrocarbon, or silicon oil is preferably used. It is also possible to make the gap a vacuum. Moreover, a hygroscopic compound (water trapping agent) can also be enclosed inside.
  • Examples of the hygroscopic compound include metal oxides (for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide) and sulfates (for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate).
  • metal oxides for example, sodium oxide, potassium oxide, calcium oxide, barium oxide, magnesium oxide, aluminum oxide
  • sulfates for example, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate.
  • Etc. metal halides (eg calcium chloride, magnesium chloride, cesium fluoride, tantalum fluoride, cerium bromide, magnesium bromide, barium iodide, magnesium iodide etc.), perchloric acids (eg perchloric acid) Barium, magnesium perchlorate, etc.).
  • An anhydrous salt is preferably used in sulfates, metal halides and per
  • a protective film or a protective plate may be provided as a protective layer from the viewpoint of increasing the mechanical strength of the organic EL element outside the sealing member on the side facing the support substrate.
  • the sealing member is a sealing film
  • the material for the protective layer the same glass plate, polymer plate, polymer film, metal plate, metal film and the like as those mentioned as the sealing member can be used. From the viewpoint of light weight and thinning, it is preferable to use a polymer film.
  • the part extraction quantum efficiency at 23 ° C. of light emission of the organic EL element is preferably 1% or more. More preferably, it is 5% or more.
  • a hue improvement filter such as a color filter may be used in combination, or a color conversion filter using a phosphor for converting emitted light from the organic EL element into multiple colors may be used in combination.
  • the ⁇ max of light emission of the organic EL element is preferably 480 nm or less.
  • an organic EL element emits light inside a layer having a refractive index higher than that of air (refractive index is about 1.7 to 2.1), and about 15% to 20% of light generated in the light emitting layer. It is said that only the light can be extracted. This is because light incident on the interface (transparent substrate / air interface) at an angle ⁇ greater than the critical angle causes total reflection and cannot be extracted outside the device. In addition, light is totally reflected at the interface between the transparent electrode, the light emitting layer, the transparent substrate, and the like, so that the light is guided through the transparent electrode and the light emitting layer, and as a result, the light escapes in the side surface direction of the element.
  • refractive index higher than that of air
  • a method for improving the light extraction efficiency for example, a method of forming irregularities on the surface of the transparent substrate to prevent total reflection between the transparent substrate and the air interface (US Pat. No. 4,774,435), A method of improving the light extraction efficiency by providing light condensing property (Japanese Patent Laid-Open No. Sho 63-314795), a method of forming a reflective surface on the side surface of an organic EL element (Japanese Patent Laid-Open No. 1-220394), A method of forming an antireflection film by introducing a flat layer having an intermediate refractive index between the light emitting layer and the transparent substrate (Japanese Patent Laid-Open No.
  • the organic EL element among the methods for improving the light extraction efficiency described above, a method of introducing a flat layer having a lower refractive index than the substrate between the light emitting layer and the transparent substrate, or a substrate, a transparent electrode layer, A method of forming a diffraction grating between any layers of the light emitting layer (including between the substrate and the outside) can be suitably used. By combining these means, it is possible to obtain an organic EL element having higher brightness or durability.
  • the low refractive index layer When a low refractive index medium (low refractive index layer) is formed between the transparent electrode and the transparent substrate with a thickness longer than the wavelength of light, the lower the refractive index of the medium, the more the light comes out of the transparent electrode. The light extraction efficiency is increased.
  • the low refractive index layer include aerogel, porous silica, magnesium fluoride, and a fluorine-based polymer. Since the refractive index of the transparent substrate is generally about 1.5 to 1.7, the low refractive index layer preferably has a refractive index of about 1.5 or less, more preferably 1.35 or less.
  • the thickness of the low refractive index layer is preferably at least twice the wavelength in the medium. This is because if the thickness of the low refractive index layer is about the wavelength of light and the electromagnetic wave exuded by evanescent enters the substrate, the effect of light extraction efficiency by the low refractive index layer decreases.
  • the method of introducing a diffraction grating into an interface that causes total reflection or in any medium has a feature that the effect of improving the light extraction efficiency is high.
  • This method utilizes the property that the diffraction grating can change the direction of light to a specific direction different from refraction by so-called Bragg diffraction such as first-order diffraction and second-order diffraction.
  • light generated from the light emitting layer can be diffracted by a diffraction grating introduced into an interlayer or a medium (in a transparent substrate or a transparent electrode) and extracted outside.
  • the diffraction grating to be introduced has a two-dimensional periodic refractive index. Since light emitted from the light emitting layer is randomly generated in every direction, a general one-dimensional diffraction grating having a periodic refractive index distribution only in a certain direction diffracts only light traveling in a specific direction. The effect of improving the light extraction efficiency is not great. By making the refractive index distribution a two-dimensional distribution, light traveling in all directions is diffracted, and the light extraction efficiency is further improved.
  • the position where the diffraction grating is introduced can be any one of the layers or the medium (in the transparent substrate or the transparent electrode).
  • the period of the diffraction grating is preferably about 1/2 to 3 times the wavelength of light in the medium.
  • the arrangement of the diffraction grating is preferably two-dimensionally repeated, such as a square lattice, a triangular lattice, or a honeycomb lattice.
  • the organic EL element can increase the luminance in a specific direction by providing a light collecting member on the light extraction side of the support substrate. For example, by providing a microlens array-like structure or a so-called condensing sheet on the light extraction side of the support substrate, and condensing in the front direction with respect to the element light emitting surface, the luminance in the front direction can be increased. .
  • the microlens array there is a configuration in which quadrangular pyramids having a side length of 10 ⁇ m to 100 ⁇ m and an apex angle of 90 degrees are two-dimensionally arranged on the light extraction side of the substrate. If the length of one side of the quadrangular pyramid is smaller than 10 ⁇ m, the effect of diffraction occurs and the color is changed, which is not preferable. Further, if the length of one side of the quadrangular pyramid is larger than 100 ⁇ m, the microlens array becomes too thick, which is not preferable.
  • the light condensing member for example, a light condensing sheet that is put into practical use in an LED backlight of a liquid crystal display device can be used.
  • a condensing sheet for example, a brightness enhancement film (BEF) manufactured by Sumitomo 3M Limited can be used.
  • the prism sheet may have, for example, a shape in which a triangular stripe is formed on a cross-section with a vertex angle of 90 degrees and a pitch of 50 ⁇ m on a base material, and the vertex angle is rounded and the pitch is random. It may be a changed shape or other shapes.
  • a light diffusing plate and a film with a condensing sheet.
  • a diffusion film (light-up) manufactured by Kimoto Co., Ltd. can be used.
  • a desired anode material is formed on a supporting substrate by a method such as vapor deposition or sputtering so as to have a film thickness of 1 ⁇ m or less, preferably 10 nm to 200 nm, thereby producing an anode.
  • an organic compound layer including a hole injection layer, a hole transport layer, a light emitting layer, a hole blocking layer, an electron transport layer, and an electron injection layer is sequentially formed on the anode.
  • Examples of methods for forming these layers include vapor deposition methods and coating methods (wet processes, wet film forming methods).
  • a spin coating method, a casting method, a die coating method, a blade coating method, a roll coating method, an ink jet method, a printing method, a spray coating method, a curtain coating method, or the like can be used.
  • a forming method having high suitability for a roll-to-roll method such as a die coating method, a roll coating method, an ink jet method, or a spray coating method is preferable.
  • film formation by a coating method such as a spin coating method, an ink jet method, or a printing method is preferable from the standpoint that a homogeneous film is easily obtained and pinholes are hardly generated.
  • a different film forming method may be applied for each layer.
  • each layer it is preferable to use a vapor deposition method for forming each layer.
  • the cyclic heteroaromatic compound represented by the above general formula (1) is used for the organic compound layer, it is preferably formed using a vapor deposition method.
  • the cyclic heteroaromatic compound represented by the general formula (1) is used for all of the hole transport layer, the light emitting layer, and the electron transport layer, these layers may all be formed by vapor deposition. .
  • a compound having a carbazole ring as a partial structure, a compound having this polymerizable group, or a polymer of these compounds is used as the host material, it is preferable to form the light emitting layer by a coating method. Moreover, it is preferable to form more than half of the layers formed between the anode and the cathode by a coating method.
  • hole injection layer / hole transport layer / light emitting layer / hole blocking layer / electron transport layer / electron injection layer / cathode hole injection layer / hole transport layer / light emitting layer / positive
  • at least three layers are preferably formed by a coating method.
  • each layer of the organic EL element When forming each layer of the organic EL element by a coating method, various materials used for coating are used by dissolving or dispersing in a liquid medium.
  • the liquid medium include ketones such as methyl ethyl ketone and cyclohexanone, fatty acid esters such as ethyl acetate, halogenated hydrocarbons such as dichlorobenzene, aromatic hydrocarbons such as toluene, xylene, mesitylene, and cyclohexylbenzene, cyclohexane.
  • aliphatic hydrocarbons such as decalin and dodecane
  • organic solvents such as DMF and DMSO
  • As a dispersion method ultrasonic waves, high shear force dispersion, media dispersion, or the like can be used.
  • a cathode material is formed on the organic compound layer to a thickness of 1 ⁇ m or less, preferably in the range of 50 nm to 200 nm to form a cathode.
  • a method such as vapor deposition or sputtering can be used to form the cathode.
  • An organic EL element can be manufactured by the above process.
  • a direct current voltage When a direct current voltage is applied to the organic EL device thus obtained, light emission can be observed by applying a voltage of about 2 to 40 V with the anode as + and the cathode as-polarity. Moreover, you may apply an alternating voltage to an organic EL element.
  • the alternating current waveform to be applied may be arbitrary.
  • the production order is reversed, and the cathode, electron injection layer, electron transport layer, hole blocking layer, light emitting layer, hole transport layer, hole injection layer, and anode are produced in this order from the support substrate side. It is also possible to do.
  • organic thin-film solar cells Next, an organic thin-film solar cell will be described as a preferred embodiment of the organic electronics element.
  • the cyclic heteroaromatic compound represented by the above general formula (1) can also be used as a material for an organic compound layer of an organic thin film solar cell.
  • anode / power generation layer / cathode ii) anode / hole transport layer / power generation layer / cathode
  • anode / hole transport layer / power generation layer / electron transport layer / cathode iii) anode / hole transport layer / power generation layer / electron transport layer / cathode
  • anode / hole transport layer / P-type semiconductor layer / power generation layer / n-type semiconductor layer / electron transport layer / cathode v) anode / hole transport layer / first power generation layer / electron transport layer / intermediate electrode / hole transport layer / second power generation layer /
  • Electron transport layer / cathode vi) anode / single organic compound layer (undoped region, power generation region, undoped region) / cathode
  • anode / single organic compound layer p-type semiconductor region, power generation region, and
  • a ring represented by the above general formula (1) is used as a material for at least one of a hole transport layer, a p-type semiconductor layer, a power generation layer, an n-type semiconductor layer, and an electron transport layer.
  • the heteroaromatic compound is preferably used alone or in combination with other materials.
  • the cyclic heteroaromatic compound represented by the above general formula (1) Is preferably used alone or in combination with other materials.
  • each layer of an organic thin-film solar cell As other materials other than the cyclic heteroaromatic compound represented by the general formula (1), known materials used for organic compound layers of conventional organic thin film solar cells can be appropriately used. Moreover, as a formation method of each layer of an organic thin-film solar cell, the method similar to the formation method of each layer quoted by the conventionally well-known method, for example, the manufacturing method of the above-mentioned organic EL element, can be used suitably.
  • the above-described organic electronics element can be applied to an electronic device in which various organic electronics elements are used.
  • an electronic apparatus to which an organic EL element is applied will be described as an example of an electronic apparatus to which the organic electronic element is applied.
  • Examples of electronic devices to which organic EL elements are applied include display devices such as display devices, displays, and various light emission sources.
  • display devices such as display devices, displays, and various light emission sources.
  • an electronic device to which the organic EL element is applied for example, a lighting device (home lighting, interior lighting), a clock or a liquid crystal backlight, a billboard advertisement, a traffic light, a light source of an optical storage medium, an electrophotographic copying machine
  • Examples of the light source include a light source, a light source of an optical communication processor, and a light source of an optical sensor.
  • the organic EL element can be effectively used in electronic devices such as a backlight of a liquid crystal display device and a light source for illumination.
  • the organic EL element may be patterned by a metal mask, an ink jet printing method, or the like at the time of forming each constituent layer according to the application of the applied electronic device.
  • a metal mask for example, only the electrode may be patterned, the electrode and the light emitting layer may be patterned, or all the constituent layers may be patterned.
  • the color emitted from the organic EL element was measured with a spectral radiance meter CS-2000 (manufactured by Konica Minolta Sensing Co., Ltd.), and the result of "New Color Science Handbook” (Edited by the Japan Society for Color Science, The University of Tokyo Press, 1985), 108. This is determined by applying the CIE chromaticity coordinates described in FIG. 4.16 on the page.
  • a display device including an organic EL element can constitute both a single color display device and a multicolor display device.
  • a multicolor display device will be described.
  • a shadow mask is provided, and the light emitting layer is formed on one surface using a method such as an evaporation method, a casting method, a spin coating method, an ink jet method, or a printing method.
  • the method for forming the light-emitting layer is not limited, but preferably an evaporation method, an inkjet method, a spin coating method, or a printing method is used.
  • the configuration of the organic EL element included in the display device can be appropriately selected from the above-described configuration examples of the organic EL element. Moreover, the manufacturing method of the above-mentioned organic EL element is applicable to the manufacturing method of an organic EL element.
  • a DC voltage When a DC voltage is applied to the multicolor display device, light emission can be observed by applying a voltage of about 2V to 40V with the anode of the organic EL element being positive and the cathode being negative.
  • a voltage when a voltage is applied with the opposite polarity, no current flows and no light emission occurs.
  • an AC voltage when an AC voltage is applied, light is emitted only when the anode is in the + state and the cathode is in the-state.
  • the alternating current waveform to be applied may be arbitrary.
  • the multicolor display device can be used as a display device, a display, and various light sources.
  • a display device or display full-color display is possible by using three types of organic EL elements of blue, red, and green light emission.
  • Display devices and displays include televisions, personal computers, mobile devices, AV devices, teletext displays, information displays in automobiles, and the like. In particular, it may be used as a display device for reproducing still images and moving images, and the driving method when used as a display device for reproducing moving images may be either a simple matrix (passive matrix) method or an active matrix method. .
  • Light sources include home lighting, interior lighting, clock and liquid crystal backlights, billboard advertisements, traffic lights, light sources for optical storage media, light sources for electrophotographic copying machines, light sources for optical communication processors, light sources for optical sensors, etc. Can be mentioned.
  • This display generally includes a display unit A having a plurality of pixels, a control unit B that performs image scanning of the display unit A based on image information, and the like.
  • the control unit B is electrically connected to the display unit A, and sends a scanning signal and an image data signal to each of the plurality of pixels based on image information from the outside. Then, image scanning is performed in which pixels for each scanning line according to the scanning signal are sequentially emitted according to the image data signal, and image information is displayed on the display unit A.
  • the display unit A includes a wiring unit including a plurality of scanning lines and data lines orthogonal thereto, and a plurality of pixels surrounded by the scanning lines and the data lines on the substrate.
  • the scanning line and the data line of the wiring portion are each made of a conductive material, and the scanning line and the data line are orthogonal to each other in a lattice shape and are connected to the pixel at the orthogonal position.
  • the pixel receives an image data signal from the data line and emits light according to the received image data.
  • Full-color display is possible by appropriately arranging pixels in the red region, the green region, and the blue region on the same substrate.
  • the pixel includes an organic EL element, a switching transistor, a driving transistor, a capacitor, and the like.
  • a full color display can be performed by using red, green, and blue light emitting organic EL elements as the organic EL elements for a plurality of pixels and arranging them on the same substrate.
  • an image data signal is applied from the control unit B to the drain of the switching transistor via the data line.
  • a scanning signal is applied from the control unit B to the gate of the switching transistor via the scanning line, the switching transistor is turned on, and the image data signal applied to the drain is transmitted to the capacitor and the gate of the driving transistor.
  • the drive transistor has a drain connected to the power supply line and a source connected to the electrode of the organic EL element, and current is supplied from the power supply line to the organic EL element in accordance with the potential of the image data signal applied to the gate. .
  • the switching transistor When the scanning signal moves to the next scanning line by the sequential scanning of the control unit B, the switching transistor is turned off. However, since the capacitor holds the potential of the charged image data signal even if the driving of the switching transistor is turned off, the driving of the driving transistor is kept on and the organic EL is applied until the next scanning signal is applied. The device continues to emit light. When a scanning signal is next applied by sequential scanning, the drive transistor is driven according to the potential of the next image data signal synchronized with the scanning signal, and the organic EL element emits light.
  • the organic EL element emits light by providing a switching transistor and a drive transistor, which are active elements, for each organic EL element constituting the plurality of pixels, thereby emitting light from each organic EL element of the plurality of pixels. It is carried out.
  • a light emitting method is called an active matrix method.
  • the light emission of the organic EL element may be a light emission of a plurality of gradations by a multi-value image data signal having a plurality of gradation potentials, or a predetermined light emission amount on / off by a binary image data signal. Further, the capacitor potential may be maintained until the next scanning signal is applied, or may be discharged immediately before the next scanning signal is applied.
  • the display driving method is not limited to the above-described active matrix method, and may be a passive matrix method in which the organic EL element emits light according to the data signal only when the scanning signal is scanned.
  • a plurality of scanning lines and a plurality of image data lines are provided in a lattice shape so as to face each other with a pixel interposed therebetween.
  • the scanning signal of the scanning line is applied by sequential scanning, the pixels connected to the applied scanning line emit light according to the image data signal.
  • the passive matrix method there is no active element in the pixel, and the manufacturing cost can be reduced.
  • the illuminating device As the illuminating device, a configuration in which an organic EL element has a resonator structure can be used.
  • Examples of the method of using the lighting device in which the organic EL element has a resonator structure include a light source of an optical storage medium, a light source of an electrophotographic copying machine, a light source of an optical communication processor, and a light source of an optical sensor. Moreover, you may use for various light sources by making a laser oscillation.
  • an illuminating device it may be used as a kind of lamp for illumination or an exposure light source, a projection device that projects an image, or a display display that directly recognizes a still image or a moving image. May be used as
  • the driving method when the lighting device is used as a display for moving image reproduction may be either a simple matrix (passive matrix) method or an active matrix method.
  • a full color display device can also be produced by using two or more organic EL elements having different emission colors.
  • the illuminating device which produces substantially white light emission.
  • it is possible to simultaneously emit a plurality of emission colors by using a plurality of light emitting materials and obtain white light emission by color mixing.
  • a configuration including three emission maximum wavelengths of three primary colors of red, green, and blue may be included, and two emission using a complementary color relationship such as blue and yellow, blue green and orange, etc.
  • the structure containing the maximum wavelength may be sufficient.
  • a combination of light emitting materials for obtaining a plurality of emission colors includes a combination of a plurality of phosphorescent or fluorescent materials (light emitting dopants), a light emitting material that emits fluorescence or phosphorescence, and light from the light emitting material. Any combination of pigment materials that emit light as excitation light may be used. In the white organic EL element, it is only necessary to mix and mix a plurality of light emitting dopants.
  • a method such as providing a mask and separately coating the light emitting layer, the hole transport layer, the electron transport layer, or the like can be applied. Further, since layers other than these can be made common, patterning such as a mask is unnecessary, and can be formed on one surface by a vapor deposition method, a casting method, a spin coating method, an inkjet method, a printing method, or the like. According to this method, unlike a white organic EL device in which light emitting elements of a plurality of colors are arranged in parallel in an array, the elements themselves are luminescent white.
  • the light emitting material used for the light emitting layer there is no particular limitation on the light emitting material used for the light emitting layer.
  • a white light combining any light emitting dopant so as to suit the wavelength range corresponding to the CF (color filter) characteristics. You just have to.
  • an organic EL element is formed on a glass substrate (for example, a thickness of 300 ⁇ m), and a non-light emitting surface of the organic EL element is covered with a glass case.
  • the substrate and the glass case are bonded together by a sealing material (for example, epoxy photo-curing adhesive, Luxtrack LC0629B manufactured by Toagosei Co., Ltd.) formed around the organic EL element, and the organic EL element is sealed.
  • Illumination devices can be mentioned.
  • the sealing material can be cured by contacting the glass substrate and the glass case and irradiating UV light from the glass substrate side.
  • the sealing operation is preferably performed in a glove box in a nitrogen atmosphere, preferably in a high-purity nitrogen gas atmosphere having a purity of 99.999% or higher, without bringing the organic EL element into contact with the air.
  • the glass case is preferably filled with nitrogen gas and further provided with a water catching agent.
  • a hole-only device (HOD) having the configuration shown in FIG. 21 was produced by the following method. First, a base material (NA Techno Glass NA-45) in which an ITO (indium tin oxide) layer was formed to a thickness of 100 nm on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate 13 was prepared. After patterning the ITO layer, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and UV ozone cleaning were performed for 5 minutes to form an anode 17 made of ITO on the glass substrate 13.
  • a base material NA Techno Glass NA-45
  • ITO indium tin oxide
  • this substrate was attached to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the organic compound layers 16 were sequentially laminated by the vacuum deposition method under the following conditions.
  • cyclic heteroaromatic compound 1 [6] CHA-1) is 70 nm at a film formation rate of 10 nm / s, and then NPD (HTL2) is formed at a film formation rate of 10 nm / s. It formed 20 nm.
  • Al (cathode 15) was formed to 100 nm at a film formation rate of 40 nm / s. Thereafter, it was sealed with a glass case 12 to produce HOD-1.
  • cyclic heteroaromatic compound 1 [6] CHA-1) was changed to cyclic heteroaromatic compounds 2 to 5 to produce HOD-2 to HOD-5.
  • HOD (TPy) for a comparison was produced using polypyridine (TPy) which is an acyclic heteroaromatic compound.
  • the electron-only device (EOD) having the configuration shown in FIG. 21 was produced by the following method. First, a base material (NA Techno Glass NA-45) in which an ITO (indium tin oxide) layer was formed to a thickness of 100 nm on a 100 mm ⁇ 100 mm ⁇ 1.1 mm glass substrate 13 was prepared. After patterning the ITO layer, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and UV ozone cleaning were performed for 5 minutes to form an anode 17 made of ITO on the glass substrate 13.
  • a base material NA Techno Glass NA-45
  • ITO indium tin oxide
  • the substrate was attached to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the organic compound layer 16 was sequentially laminated on the formed anode 17 by the vacuum deposition method under the following conditions.
  • calcium is deposited at a deposition rate of 1 nm / s at 5 nm
  • cyclic heteroaromatic compound 1 [6] CHA-1) is deposited at a deposition rate of 10 nm / s at 70 nm
  • LiF is deposited at a deposition rate of 1 nm / s.
  • Al cathode 15
  • Al was formed to a thickness of 100 nm at a film formation rate of 40 nm / s. Thereafter, it was sealed with a glass case 12 to produce EOD-1.
  • cyclic heteroaromatic compound 1 [6] CHA-1) was changed to cyclic heteroaromatic compounds 2 to 5 to produce EOD-2 to EOD-5.
  • EOD (TPy) for a comparison was produced using polypyridine (TPy) which is an acyclic heteroaromatic compound.
  • ⁇ V (HOD) and ⁇ V (EOD) are comparative HOD (TPy) using polypyridine (TPy), which is an acyclic heteroaromatic compound, instead of the cyclic heteroaromatic compounds 1 to 5, In addition, the relative value with the voltage difference of EOD (TPy) as 100 was evaluated.
  • Table 1 shows ⁇ V (HOD) of each device.
  • Table 2 shows ⁇ V (EOD) of each device.
  • the stability under oxidation using EOD shows that the device using the cyclic heteroaromatic compounds 1 to 5 has a remarkable stabilizing effect than the device using the acyclic compound TPy. From this result, it is considered that the cyclization of the heteroaromatic compound greatly contributes to the stabilization of the originally unstable or active cation radical species.
  • the organic EL element 101 was produced by the following method.
  • the configuration of the organic EL element 101 was the same as the configuration shown in FIG. 21 described above, and the layer configuration of the organic compound layer was the configuration shown in FIG.
  • a base material (NA-45 manufactured by NH Techno Glass Co., Ltd.) in which an ITO (indium tin oxide) layer was formed to a thickness of 100 nm on a glass substrate 13 of 100 mm ⁇ 100 mm ⁇ 1.1 mm was prepared. After patterning the ITO layer, ultrasonic cleaning with isopropyl alcohol, drying with dry nitrogen gas, and UV ozone cleaning were performed for 5 minutes to form an anode 17 made of ITO on the glass substrate 13.
  • ITO indium tin oxide
  • the substrate formed up to the hole transport layer was attached to a vacuum deposition apparatus, the vacuum chamber was depressurized to 4 ⁇ 10 ⁇ 4 Pa, and the organic compound layer 16 was sequentially laminated by the vacuum deposition method under the following conditions.
  • 20 nm of NPD (HTL2) was formed on PEDOT / PSS (HTL1) at a film formation rate of 10 nm / s.
  • a cyclic heteroaromatic compound 1 ([6] CHA-1) (HOST) and Ir (ppy) 3 were formed to 40 nm by a binary simultaneous vapor deposition method.
  • the film formation rate of the cyclic heteroaromatic compound 1 was 9.4 nm / s, and the film formation rate of Ir (ppy) 3 was 0.6 nm / s.
  • 10 nm of BAlq (ETL1) was formed at a film formation rate of 10 nm / s.
  • Alq 3 (ETL2) was formed to a thickness of 20 nm at a deposition rate of 10 nm / s.
  • LiF was formed to a thickness of 0.5 nm at a film formation rate of 1 nm / s.
  • Al (cathode 15) was formed to 100 nm at a film formation rate of 40 nm / s. Thereafter, the organic EL element 101 was manufactured by sealing with the glass case 12 as described above.
  • Organic EL elements 102 to 105 were produced in the same manner as the organic EL element 101 except that the cyclic heteroaromatic compound 1 ([6] CHA-1) was changed to the cyclic heteroaromatic compounds 2 to 5. Moreover, it replaced with the cyclic
  • TPy polypyridine
  • Table 3 shows the evaluation results of the element life and storage stability of each organic EL element.
  • the organic EL elements 101 to 105 using the cyclic heteroaromatic compounds 1 to 5 are organic EL using the acyclic heteroaromatic compound TPy having a similar partial structure. It can be seen that the stability of the element over the time of current driving, that is, the so-called element lifetime is improved with respect to the element (TPy). This is because the oxidation characteristics are improved by using a cyclic heteroaromatic compound based on the above-mentioned evaluation of redox characteristics using EOD, and the element of holes due to holes leaks into the electron transport layer without being recombined or blocked. This is thought to be because the deterioration could be suppressed. In addition, it is clear that the use of a cyclic heteroaromatic compound also improves the difference in external quantum extraction efficiency (storability) before and after storage of the device after storage for 300 hours in a constant temperature bath at 80 ° C.

Abstract

有機エレクトロニクス素子の光電変換効率の向上に有用な環状芳香族化合物である、下記一般式(1)で表され環状ヘテロ芳香族化合物を提供する。 [一般式(1)中、Aは、2価の芳香族環又はヘテロ芳香族環を表し、nは2以上の自然数を表す。各々のAは異なっていてもよく、少なくとも1つのAはヘテロ芳香族である。]

Description

環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
 本発明は、環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器に関する。
 有機エレクトロルミネッセンス素子、有機薄膜太陽電池、有機トランジスタ等の有機エレクトロニクス素子は、軽量性、成型性及び柔軟性に優れることから、次世代電子材料として注目を集めており、例えば、有機エレクトロルミネッセンス素子(以下、場合により「有機EL素子」という)は、照明装置や表示装置等の電子機器への適用が期待されている。
 有機EL素子としては、電子輸送層、正孔輸送層、及び、発光層からなる有機化合物層にそれぞれ異なる材料が用いられたヘテロ接合タイプが知られている。即ち、ヘテロ接合タイプの有機EL素子では、電子輸送を媒介する電子輸送材料、正孔輸送を媒介する正孔輸送材料、及び、分散されたリン光発光性ドーパントや蛍光ドーパント等の発光分子(発光ドーパント)の分子上での電荷再結合を可能とするホスト材料(発光層ホスト材料)の3種の異なる材料が必要となる。
 現在では、それぞれの材料として必要な性能を特化させ、細分化させた材料を開発することが主流となっている。例えば、電子輸送材料としてはAlq3(トリス(8-ヒドロキシキノリール)アルミニウム)やBAlq(ビス(2-メチル-8-キノリール)-4-(フェニルフェノレート)アルミニウム)等が知られている。正孔輸送材料としてはポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT・PSS)やトリアリールアミン誘導体等が知られている。ホスト材料としてはCBP(4,4’-N,N-dicarbazole-biphenyl)等が知られている。
 しかしながら、ヘテロ接合タイプの有機EL素子では、有機化合物層を構成する各層にそれぞれ異なる材料が用いられるため、製造工程が嵩んで製造コストが高くなるという問題を有している。さらに、各層の間にそれぞれ界面が生じるため、その界面が有機EL素子の劣化の原因となることや、発光の安定性が十分ではないという問題を有している。
 一方、より単純な構造で製造が容易な有機EL素子としては、有機化合物層を構成する電子輸送材料、正孔輸送材料、及び、発光層ホスト材料等の各材料に、同一の材料を用いるホモ接合タイプが知られている。このようなホモ接合タイプの有機化合物層に用いることができる材料としては、例えば、フェナザリシン誘導体(特許文献1参照)や、CZBDF[bis(carbazolyl)bendodifuran](非特許文献1参照)が知られている。
 また、有機薄膜太陽電池は、陰極と陽極との間に有機化合物層を有する構造を有しており、無機太陽電池に比べて、発電コストが低減できることや環境負荷を軽減できることから注目を集めている。有機化合物層としては、電子供与体層及び電子受容体層とが混合されたバルクヘテロジャンクション層等が知られている。
特開2006-083167号公報
Hayato Tsuji, Chikahiko Mitsui, Yoshiharu Sato, and Eiichi Nakamura, Advanced Materials, 2009, 21, 3776-3779.
 有機エレクトロニクス素子においては、さらなる光電変換効率の向上が求められている。このため、本発明においては、有機エレクトロニクス素子の光電変換効率の向上に有用な環状ヘテロ芳香族化合物、並びに、この環状ヘテロ芳香族化合物を含有する、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器を提供する。
 本発明の環状ヘテロ芳香族化合物は、下記一般式(1)で表される。なお、一般式(1)中、Aは、2価の芳香族環又はヘテロ芳香族環を表し、nは2以上の自然数を表す。各々のAは異なっていてもよく、少なくとも1つのAはヘテロ芳香族である。
 また、発明の有機エレクトロニクス素子用材料は、上記環状ヘテロ芳香族化合物を含有する。本発明の有機エレクトロニクス素子は、有機化合物層に上記環状ヘテロ芳香族化合物を含有する。本発明の電子機器は、上記有機エレクトロニクス素子を備える。
Figure JPOXMLDOC01-appb-C000004
 本発明によれば、有機化合物層材料の光電変換効率の向上に有用な環状ヘテロ芳香族化合物、並びに、この環状ヘテロ芳香族化合物を含有する、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器を提供することができる。
[2n]CHA-2のMALDI-TOF MSスペクトルを示す図である。 [6]CHA-2のH-NMRスペクトルを示す図である。 [8]CHA-2のH-NMRスペクトルを示す図である。 [10]CHA-2のH-NMRスペクトルを示す図である。 [12]CHA-2のH-NMRスペクトルを示す図である。 [14]CHA-2のH-NMRスペクトルを示す図である。 [6]CHA-2の13C-NMRスペクトルを示す図である。 [8]CHA-2の13C-NMRスペクトルを示す図である。 [10]CHA-2の13C-NMRスペクトルを示す図である。 [12]CHA-2の13C-NMRスペクトルを示す図である。 [14]CHA-2の13C-NMRスペクトルを示す図である。 [2n]CHA-2のHPLCチャートを示す図である。 [6]CHA-1のMALDI-TOF MSスペクトルを示す図である。 [6]CHA-1のH-NMRスペクトルを示す図である。 [6]CHA-1の13C-NMRスペクトルを示す図である。 [6]CHA-3のH-NMRスペクトルを示す図である。 [6]CHA-3の13C-NMRスペクトルを示す図である。 [8]CHA-3のH-NMRスペクトルを示す図である。 [8]CHA-3の13C-NMRスペクトルを示す図である。 [10]CHA-3のH-NMRスペクトルを示す図である。 実施例の評価に用いたHOD、EOD、及び、有機EL素子の概略図である。 実施例の評価に用いた有機EL素子の概略図である。
 以下、本発明を実施するための形態の例を説明するが、本発明は以下の例に限定されるものではない。
 なお、説明は以下の順序で行う。
1.環状ヘテロ芳香族化合物、及び、有機エレクトロニクス素子用材料
2.有機エレクトロニクス素子
3.電子機器
〈1.環状ヘテロ芳香族化合物、及び、有機エレクトロニクス素子用材料〉
[環状ヘテロ芳香族化合物]
 以下、本発明の環状ヘテロ芳香族化合物、及び、有機エレクトロニクス素子用材料の具体的な実施形態について説明する。本実施形態の環状ヘテロ芳香族化合物は、下記一般式(1)によって表される。また、有機エレクトロニクス素子用材料は、下記一般式(1)によって表される環状ヘテロ芳香族化合物を含有する。
Figure JPOXMLDOC01-appb-C000005
 一般式(1)中、Aは、2価の芳香族環又はヘテロ芳香族環を表し、nは2以上の自然数を表す。各々のAは異なっていてもよく、少なくとも1つのAはヘテロ芳香族である。
 また、上記一般式(1)によって表される環状ヘテロ芳香族化合物は、下記一般式(2)で表される環状ヘテロ芳香族が好ましい。
Figure JPOXMLDOC01-appb-C000006
 一般式(2)中、Qは、3価のヘテロ原子、CR、又は、A´R´(a-3)を表す。各々のQは異なっていてもよく、少なくとも1つのQはヘテロ原子である。
 上記式において、Rは水素原子又は置換基を表す。また、A´は4価以上のヘテロ原子を表し、aはヘテロ原子の価数を示す。R´は、水素原子又は置換基を示し、a-3が2以上の場合、それぞれのR´は異なっていてもよい。
 上記式において、R及びR´で表される置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基、1-プロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、イソプロペニル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する任意の炭素原子の一つが窒素原子で置き換わったものを示す)、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基、アクリロイル基、メタクリロイル基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基、または、ヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基、ボロン酸基、ボロン酸エステル基、ボラン基等が挙げられる。
 また、上記一般式(1)によって表される環状ヘテロ芳香族化合物は、下記一般式(3)で表される環状ヘテロ芳香族が好ましい。
Figure JPOXMLDOC01-appb-C000007
 一般式(3)中、Yは、3価のヘテロ原子、CR、又は、A´R´(a-3)を表す。各々のYは異なっていてもよく、少なくとも1つのYはヘテロ原子である。
 上記式において、Rは水素原子又は置換基を表す。また、A´は4価以上のヘテロ原子を表し、aはヘテロ原子の価数を示す。R´は、水素原子又は置換基を示し、a-3が2以上の場合、それぞれのR´は異なっていてもよい。
 一般式(3)において、R及びR´で表される置換基としては、上述の一般式(2)と同じ置換基を挙げることができる。
 上記一般式(1)で表される環状ヘテロ芳香族化合物の具体例として、(CHA-1)~(CHA-12)を以下に示す。なお、以下において、TMSはトリメチルシリル基を表し、Rは上述の一般式(2)の置換基である。
Figure JPOXMLDOC01-appb-C000008
 上記環状ヘテロ芳香族化合物は、IR(赤外吸収スペクトル)、H-NMR、13C-NMR、MS(MALDI TOF)、元素分析、熱分解温度測定により同定することができる。また、環状ヘテロ芳香族化合物は、単結晶構造をとることができ、単結晶X線構造解析により同定することができる。
[環状ヘテロ芳香族化合物の合成方法]
 環状ヘテロ芳香族化合物の合成方法について説明する。上記一般式(1)で表される環状ヘテロ芳香族化合物は、下記一般式(4)表わされる化合物のカップリング反応により合成することができる。
Figure JPOXMLDOC01-appb-C000009
 式中、Xはハロゲン原子、又は、ピナコラートボランを表す。
 ハロゲン原子としては、フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)が挙げられ、これらの中でも、カップリング反応において十分な反応性を有するという観点から、臭素(Br)であることが好ましい。
 カップリング反応としては、上記一般式(1)で表される環状ヘテロ芳香族化合物を製造することが可能な方法であればよく、公知のカップリング反応を適宜採用することができる。例えば、鈴木カップリング反応、スティルカップリング反応、熊田カップリング反応、ウルマン反応、山本カップリング反応、根岸カップリング反応、檜山カップリング反応、並びに、これらの反応を組み合わせた反応を用いることができる。これらの中でも、得られる環状ヘテロ芳香族化合物の収率が高く、反応に用いる材料の入手が容易であるという観点から、山本カップリング反応を用いることが好ましい。
 また、カップリング方法においては、有機溶媒を用いることができる。有機溶媒としては、トルエン、N,N-ジメチルホルムアミド(DMF)、ベンゼン、キシレン、メシチレン、DMSO等が挙げられ、これらの1種を単独で、又は、2種以上を混合して用いてもよい。これらの中でも、トルエン、N,N-ジメチルホルムアミド、ベンゼンを用いることが好ましい。また、このような有機溶媒を用いる場合には、用いるハロゲン化ベンゼンや採用するカップリング反応によっても異なるが、副反応を抑制するという観点から、十分に脱酸素処理を施してから用いることが好ましい。また、遮光下において、窒素やアルゴン等の不活性ガス雰囲気下で用いることがより好ましい。
 さらに、上記一般式(1)で表される環状ヘテロ芳香族化合物の合成においては、反応を進行させるために、アルカリや適当な触媒を添加することが好ましい。これらのアルカリや触媒は、採用するカップリング反応に応じて選択することができる。
 例えば、アルカリとしては、炭酸カリウム、炭酸ナトリウム、炭酸セシウム、水酸化カリウム、水酸化ナトリウム、リン酸三カリウム、酢酸カリウム、フッ化カリウム、フッ化セシウム等が挙げられる。
 触媒としては、ビス(1,5-シクロオクタジエン)ニッケル等のニッケル触媒、銅触媒、パラジウム触媒、プラチナ触媒、鉄触媒等が挙げられる。このようなアルカリや触媒の中でも、反応に用いる有機溶媒に十分に溶解するものを用いることが好ましく、ビス(1,5-シクロオクタジエン)ニッケルを用いることが好ましい。
 また、アルカリの添加量としては、一般式(4)で表されるハロゲン化ベンゼン1モルに対して、2~5モルとすることが好ましい。また、触媒の添加量としては、触媒としての有効量であればよく、特に制限されないが、一般式(4)で表されるハロゲン化ベンゼン1モルに対して、0.1~2.5モルとすることが好ましい。このようなアルカリ及び触媒の添加量が下限未満では、反応の効率性が低下する傾向にあり、他方、上限を超えると、それ以上の添加が無駄となり、経済性が低下する傾向にある。
 上述のアルカリや触媒を混合する方法としては特に制限されない。例えば、ハロゲン化ベンゼンと有機溶媒とを含有する反応液を、アルゴンや窒素等の不活性雰囲気下で撹拌しながらゆっくりとアルカリ及び/又は触媒の溶液を添加する方法や、アルカリ及び/又は触媒を含有する溶液に反応液をゆっくりと添加する方法等が挙げられる。このような混合により得られる混合液(反応液)において、アルカリ及び/又は触媒と、一般式(4)で表されるハロゲン化ベンゼンとの総濃度は、環化をより促進するために高希釈条件にするという観点から1~15質量%(5~50mM)であることが好ましい。
 また、カップリング反応の条件としては、遮光下、不活性ガス雰囲気中において行うことが好ましい。不活性ガスとしては、例えば、窒素ガスやアルゴンガス等が挙げられる。
 カップリング反応の温度としては、用いる有機溶媒等によって異なるが、20~80℃であることが好ましい。カップリング反応の反応時間としては、特に制限されず、用いるハロゲン化ベンゼンや採用するカップリング反応によっても異なる。目的の重合度に達したときを反応時間の上限としてもよいが、1~24時間程度であることが好ましい。
 なお、カップリング反応を停止させる場合は、用いるハロゲン化ベンゼンや採用するカップリング反応によっても異なるが、反応液に、例えば、水、希塩酸等を添加することが好ましい。また、カップリング反応後は、酸洗浄、アルカリ洗浄、中和、水洗浄、有機溶媒洗浄、再沈殿、遠心分離、抽出、カラムクロマトグラフィー、及び、透析等の慣用の分離操作、精製操作、乾燥、その他の操作による純化処理を適宜施すことが好ましい。
(合成反応1)
 上記一般式(1)で表される環状ヘテロ芳香族化合物の合成方法の一例を示す。
Figure JPOXMLDOC01-appb-C000010
 ビス(ピナコラート)ジボロン(9.07g,35.7mmol)、化合物1(5.00g,16.2mmol)、酢酸カリウム(7.95g,81.1mmol)、及び、PdCl(DPPF)・CHCl(663mg,0.812mmol)を、ジオキサン中において、80℃で18時間撹拌する。次に、水(約100mL)を加えて反応を停止した後、クロロホルムを用いて有機相を抽出し、さらに塩水により洗浄する。次に、抽出した有機相に対し、硫酸マグネシウムを用いて減圧下で溶媒を蒸発させて濃縮する。得られた粗生成物を、シリカゲルカラムクロマトグラフィ(溶離液:クロロホルム)を用いて精製する。そして、メタノールを用いて再結晶することにより、化合物2(収率80%,5.23グラム,13.0ミリモル)が得られる。
 化合物2のH-NMR測定、13C-NMR測定、及び、MS測定の結果を以下に示す。
H-NMR(400MHz,CDCl,rt):δ8.27(d,J=1.2Hz,1H),8.05(d,J=1.2Hz,2H),1.34(s,24H),0.29(s,9H)
13C-NMR(100MHz,CDCl,rt):δ142.7,142.7,142.1,138.6,83.8,22.0,-0.8
MS(MALDI-TOF),neat m/z calcd for[M]2136Si,402.22,found 402.25.
 次に、化合物2(6.90g,17.2mmol)、化合物3(4.06g,17.1mmol)、Pd(PPh(1.98g,1.71mmol)、及び、炭酸セシウム(27.9g,85.6mmol)を、DMF(1.7L)中において、110℃で11時間撹拌する。次に、溶媒を蒸発させて除去し、粗生成物を水(約1.5L)で洗浄し、沈殿物を濾過して回収する。次に、クロロホルムで沈殿物を抽出し、硫酸マグネシウムを用いて減圧下で溶媒を蒸発させて乾燥することにより、[2n]CHA-2の混合物(6.26g)を得ることができる。次に、[2n]CHA-2の混合物を、シリカゲルカラムクロマトグラフィ(溶離液:50%クロロホルム/ヘキサン)と、GPC(Gel Permeation Chromatography)(溶離液:クロロホルム)とを用いて分離し、さらに、クロロホルムとメタノールとを用いて再結晶することにより、[6]CHA-2(収率13%,521mg,757mmol)、[8]CHA-2(収率5%,241mg,227mmol)、[10]CHA-2(収率7%,268mg,236mmol)、[12]CHA-2(収率5%,210mg,154mmol)、及び、[14]CHA-2(収率4%,161mg,91.9mmol)を得ることができる。
 得られた化合物、[6]CHA-2、[8]CHA-2、[10]CHA-2、[12]CHA-2、及び、[14]CHA-2の各々について、IR測定、H-NMR測定、13C-NMR測定、熱分解温度(Td)測定、MS測定、及び、元素分析の結果を以下に示す。
 また、各化合物のMALDI-TOF MSスペクトルを図1に示す。各化合物のH-NMRスペクトル、及び、13C-NMRスペクトルをそれぞれ図2~図11に示す。各化合物のHPLCチャートを図12に示す。
[6]CHA-2
IR(powder)ν2953,1575,1472,1440,1359,1178,1142,1077,944,888,834,812,801,754,691,677,651,630,621
H-NMR(400MHz,CDCl,rt):δ9.71(t,J=2.0Hz,3H),8.05(d,J=2.0Hz,6H),7.88(t,J=3.5Hz,3H),7.81(d,J=3.5Hz,6H),0.39(s,27H)
13C-NMR(100MHz,CDCl3,rt):δ157.4,140.6,139.7,137.4,132.0,128.0,119.0,-0.8
(onset) 413℃(helium atmosphere)
HRMS(MALDI-TOF)m/z calcd for[M+H]4246Si,676.2994,found676.2993
Anal.calcd for C4245Si・0.1CHCl,C:73.49,H:6.61,N:6.11,Cl:1.55,foundC:73.24,H:6.70,N:6.15,Cl:1.65.
[8]CHA-2
IR(powder)ν2956,1565,1464,1436,1368,1249,1214,1163,1137,1088,988,900,881,837,818,811,754,710,694,651,644,633
H-NMR(400MHz,CDCl,rt):δ8.51(t,J=1.6Hz,4H),7.86(d,J=1.6Hz,8H),7.79(t,J=8.0Hz,4H),7.58(d,J=8.0Hz,8H),0.32(s,36H)
13C-NMR(100MHz,CDCl3,rt):δ159.2,141.0,140.5,137.0,132.4,129.7,120.0,-0.8
(onset) 448℃(helium atmosphere)
HRMS(MALDI-TOF)m/z calcd for[M+H]5661Si,901.3968,found901.3968
Anal.calcd for C5661Si・1.1CHCl・0.1CHOH,C:65.54,H:6.16,N:5.26,Cl:10.99,foundC:65.42,H:5.84,N:5.50,Cl:10.89.
[10]CHA-2
IR(powder)ν2953,1570,1473,1447,1399,1360,1247,1173,1139,900,879,835,800,775,753,735,691,660,632
H-NMR(400MHz,CDCl,rt):δ9.26(t,J=1.6Hz,5H),8.37(d,J=1.6Hz,10H),7.86(d,J=8.0Hz,10H),7.57(t,J=8.0Hz,5H),0.31(s,45H)
13C-NMR(100MHz,CDCl3,rt):δ157.1,141.5,139.3,137.7,132.5,126.6,119.1,-0.9
(onset) 477℃(helium atmosphere)
HRMS(MALDI-TOF)m/z calcd for[M+H]7076Si,1126.4942,found1126.4943
Anal.calcd for C7075Si・0.06CHCl,C:74.21,H:6.67,N:6.18,Cl:0.56,foundC:74.08,H:6.86,N:6.31,Cl:0.60.
[12]CHA-2
IR(powder)ν2955,1589,1565,1475,1464,1450,1402,1359,1249,1170,1138,1069,910,883,854,834,797,753,729,684,656,633
H-NMR(400MHz,CDCl,rt):δ9.38(t,J=1.6Hz,6H),8.56(d,J=1.6Hz,12H),8.07(d,J=3.8Hz,12H),7.99(t,J=3.8Hz,6H),0.48(s,54H)
13C-NMR(100MHz,CDCl3,rt):δ156.5,141.5,138.7,137.6,132.4,126.2,118.6,-0.7
(onset) 510℃(helium atmosphere)
HRMS(MALDI-TOF)m/zcalcdfor[M+H]8491Si,1351.5915,found1351.5919
Anal.calcdforC8490Si・0.13CHCl,C:73.88,H:6.64,N:6.14,Cl:1.01,foundC:73.59,H:6.76,N:6.15,Cl:0.94.
[14]CHA-2
IR(powder)ν2954,1567,1465,1362,1248,1166,1137,989,879,837,804,754,691,652,632
H-NMR(400MHz,CDCl,rt):δ9.08(t,J=1.6Hz,7H),8.35(d,J=1.6Hz,14H),7.76(d,J=6.4Hz,14H),7.62(t,J=6.4Hz,7H),0.34(s,63H)
13C-NMR(100MHz,CDCl3,rt):δ156.8,141.2,139.2,137.5,132.4,126.7,118.8,-0.9
(onset) 499℃(helium atmosphere)
HRMS(MALDI-TOF)m/z calcd for[M+H]98106Si,1576.6889,found1576.6894
Anal.calcd for C98105Si・1.2CHCl・CHOH,C:68.66,H:6.34,N:5.59,Cl:7.28,foundC:68.34,H:6.19,N:5.91,Cl:7.40.
(合成例2)
 次に、上述の方法で合成した[6]CHA-2から、[6]CHA-1を合成する方法の一例を示す。
Figure JPOXMLDOC01-appb-C000011
 [6]CHA-2(10mg,1.5×10-2mmol)を0.9mLの1MTBAF溶液に加え、室温で21時間撹拌する。これに、水3mLを加え、混合物を濾過することにより、沈殿物を回収する。回収した沈殿物を10mLのメタノールで洗浄し、減圧下で乾燥させて、[6]CHA-1(7.2mg,1.5×10-2mmol)を得ることができる。
 [6]CHA-1のH-NMR測定、13C-NMR測定、熱分解温度(Td)測定、MS測定の結果を以下に示す。また、[6]CHA-1のMALDI-TOF MSスペクトル、H-NMRスペクトル、及び、13C-NMRスペクトルを、それぞれ図13、図14、及び、図15に示す。
H-NMR(400MHz,CDCl,rt):δ9.76(t,J=1.6Hz,3H),7.94(dd,J=8,1.6Hz,6H),7.86(t,J=8Hz,3H),7.79(d,J=8Hz,6H),7.57(t,J=8Hz,3H)
13C-NMR(150MHz,CDCl,rt):δ156.9,140.2,137.3,128.4,126.9,126.9,118.9
 MS(MALDI-TOF)m/z calcd for[M]3321,459.17,found459.31.[M+H]3322,460.18,found460.30.
 また、上記一般式(1)で表される環状ヘテロ芳香族化合物の一例として、下記の[6]CHA-3、[8]CHA-3、及び、[10]CHA-3、を挙げることができる。[6]CHA-3、[8]CHA-3、及び、[10]CHA-3の構造、及び、[6]CHA-3及び[8]CHA-3のH-NMRスペクトル、及び、13C-NMRスペクトルを、図16~図19に示す。また、[10]CHA-3のH-NMRスペクトルを、図20に示す。
Figure JPOXMLDOC01-appb-C000012
[6]CHA-3 (KI-01-033-GPC3-recryst)
H-NMR (CDCl,600MHz):δ9.05(6H,d,J=2.1Hz,H),8.58(3H,t,J=2.1Hz,H),8.23(3H,t,J=2.1Hz,H),7.89(6H,dd,J=7.6,2.1Hz,H),7.69(3H,t,J=7.6Hz,H
13C-NMR(CDCl,150MHz):δ146.6(CH),138.3(Cq),135.7(Cq),133.9(CH),130.2(CH),127.5(CH),125.9(CH)
 Elementalanalysis(%);Calcd for C3321:C86.25,H4.61,N9.14;found:C86.16,H4.61,N9.14.
Figure JPOXMLDOC01-appb-C000013
[8]CHA-3(KI-01-035-GPC3-recryst)
H-NMR(CDCl,600MHz):δ8.81(8H,d,J=1.4Hz,H),8.13(4H,t,J=1.4Hz,H),7.76(4H,s,H),7.66-7.73(12H,m,HandH
13C-NMR(CDCl,150MHz):δ147.9(CH),139.2(Cq),137.0(Cq),133.5(CH),129.9(CH),127.5(CH),127.3
Figure JPOXMLDOC01-appb-C000014
[10]CHA-3
H-NMR(CDCl,600MHz):δ8.87(d,10H,J=1.6Hz,H),8.06(5H,t,J=1.4Hz,H),7.78(5H,s,H),7.70(10H,d,J=7.2Hz,H),7.63(5H,t,J=7.2Hz,H).
[有機エレクトロニクス素子用材料]
 有機エレクトロニクス素子用材料は、上述の一般式(1)で表される環状ヘテロ芳香族化合物のみから構成されていてもよく、また、一般式(1)で表される環状ヘテロ芳香族化合物による効果を阻害しない範囲内において、環状ヘテロ芳香族化合物の合成に用いた試薬由来の不純物、精製により生じる不純物等が更に含まれていてもよい。
〈2.有機エレクトロニクス素子〉
 次に、有機エレクトロニクス素子の実施形態について説明する。本実施形態の有機エレクトロニクス素子は、陽極、陰極、及び、陰極と陽極との間に配置される有機化合物層を備える有機エレクトロニクス素子であって、有機化合物層の有機エレクトロニクス素子用材料として上述の一般式(1)で表される環状ヘテロ芳香族化合物を含有する。
 有機エレクトロニクス素子としては、有機エレクトロルミネッセンス素子(有機EL素子)、有機薄膜太陽電池、有機ダイオード等が挙げられる。また、有機化合物層とは有機化合物が含有されている層であり、例えば、有機EL素子の層構成の中では、正孔輸送層、発光層、電子輸送層等が挙げられる。また、その他、正孔阻止層、正孔注入層、電子注入層等にも有機化合物が含有されている場合には、これらの層も有機化合物層に含めることができる。また、有機EL素子の層構成としては、有機化合物層による単一層(以下、単一有機化合物層)とすることができる。そして、この単一有機化合物層内に発光領域と、発光領域以外の領域、例えば、正孔輸送領域や非ドープ領域等とを設ける構成とすることができる。
 また、有機薄膜太陽電池の層構成の中では、正孔輸送層、p型半導体層、発電層、n型半導体層、電子輸送層等が挙げられる。
 有機エレクトロニクス素子は、単一有機化合物層、又は、複数ある有機化合物層のうちの少なくともいずれか1層に、上述の一般式(1)で表される環状ヘテロ芳香族化合物が、有機エレクトロニクス素子用材料として含まれる。また、有機エレクトロニクス素子が、複数の有機化合物層を有する有機EL素子である場合には、正孔輸送層、発光層及び電子輸送層のうちの少なくともいずれか1層の有機化合物層に、上述の一般式(1)で表される環状ヘテロ芳香族化合物が含まれていることが好ましい。また、有機エレクトロニクス素子が、単一有機化合物層を有する有機EL素子の場合には、一般式(1)で表される環状ヘテロ芳香族化合物が、共通ホスト材料として単一有機化合物層の全体に含まれていることが好ましい。
 一般式(1)で表される環状ヘテロ芳香族化合物は、電子輸送材料、正孔輸送材料及び発光層のホスト材料のいずれの材料としても用いることができるため、単一有機化合物層、又は、複数層のいずれの層においても有機エレクトロニクス素子用材料として含有させることができる。
[有機エレクトロルミネッセンス素子]
 以下、有機エレクトロニクス素子の好ましい一態様として、有機EL素子について説明する。上述の一般式(1)で表される環状ヘテロ芳香族化合物は、有機EL素の有機化合物層の材料として用いることが可能である。
(有機EL素子の構成)
 以下に有機EL素子の層構成の好ましい具体例を示すが、有機EL素子の層構成はこれらに限定されない。
(i)陽極/正孔輸送層/発光層/電子輸送層/陰極
(ii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(iii)陽極/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)/陰極
(iv)陽極/正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層(陰極バッファー層)/陰極
(v)陽極/正孔輸送層/発光層/電子輸送層/電子注入層(陰極バッファー層)/陰極(vi)陽極/正孔注入層(陽極バッファー層)/正孔輸送層/発光層/正孔阻止層/電子輸送層/陰極
(vii)陽極/単一有機化合物層(非ドープ領域、発光領域、非ドープ領域)/陰極
(viii)陽極/単一有機化合物層(正孔輸送領域、発光領域、及び、非ドープ領域)/陰極
(iX)陽極/単一有機化合物層(非ドープ領域、発光領域、及び、電子輸送領域)/陰極
(X)陽極/単一有機化合物層(発光領域)/陰極
 上記の層構成において、陽極と陰極を除く層を有機化合物層により構成することができる。有機EL素子は、構成層として複数の有機化合物層を有することが好ましい。有機化合物層としては、例えば、上記の層構成の中で、単一有機化合物層、正孔輸送層、発光層、正孔阻止層、電子輸送層等が挙げられる。また、その他の正孔注入層、電子注入層等の有機EL素子の構成層に有機化合物が含有されていれば、有機化合物層に含まれる。更に、陽極バッファー層、陰極バッファー層等に有機化合物が用いられる場合には、陽極バッファー層、陰極バッファー層等も、各々有機化合物層に含まれる。なお、電子輸送層は、電子を輸送する機能を有する層であり、広い意味で電子注入層、及び、正孔阻止層も含まれる。また、電子輸送層は、複数層で構成されていてもよい。正孔輸送層は、正孔を輸送する機能を有する層であり、広い意味で正孔注入層、及び、電子阻止層も含まれる。また、正孔輸送層は、複数層で構成されていてもよい。
 有機EL素子においては、上記複数ある有機化合物層のうちの少なくともいずれか1層に、上述の一般式(1)で表される環状ヘテロ芳香族化合物が、有機エレクトロニクス素子用材料として含まれる。以下、有機EL素子を構成する各層について説明する。
(単一有機化合物層)
 有機EL素子においては、陽極と陰極とに挟持される層を、単一層として構成される有機化合物層(単一有機化合物層)とすることができる。単一有機化合物層は、少なくとも1種類の発光ドーパントと、共通ホスト材料とを含む発光領域を有する。さらに、単一有機化合物層は、発光領域とともに、共通ホスト材料のみから構成される非ドープ領域を有することが好ましい。非ドープ領域は、発光領域の陰極側又は陽極側のいずれか一方のみに設けられていてもよく、両側に設けられていてもよい。例えば、発光領域が非ドープ領域で挟持される構成としてもよい。
 上述の有機化合物層を単一層とする構成では、発光領域に含まれる発光ドーパントは、リン光発光性ドーパントであることが好ましい。そして、共通ホスト材料と発光ドーパントとの相互作用を示す正孔遅延率(Hr)が0.1未満であることが好ましい。さらに、正孔遅延率が0.06以下であることが好ましい。正孔(ホール)抑制力を示す正孔遅延率が0.1未満だと、上記構成での有機EL素子の外部取り出し量子効率が向上する。
 正孔遅延率は、以下の方法により求めることができる。
 有機EL素子として、正孔のみを流す2種のホールオンリーデバイス(D6、D0)を作製(具体的には、後述の実施例2を参照)し、100mA/cmでのホール移動度μD0、μD6を下記Mott-Gurney式(Child’s law in solids)より算出する。
 J=9/8×ε×ε×μ×V/L
(J:電流、ε:誘電率、ε:真空中での誘電率、μ:移動度、V:電圧、L:膜厚)
 そして、2種のホールオンリーデバイス(D6、D0)のそれぞれで求められた移動度μD0及びμD6から、[正孔遅延率=μD6/μD0]として求めることができる。
 さらに、単一有機化合物層は、発光領域と非ドープ領域と共に、有機EL素子の積層方向に複数の領域が設けられていることが好ましい。例えば、単一有機化合物層は、発光領域と非ドープ領域と共に、正孔輸送領域を有することが好ましい。また、電子輸送領域を有していてもよい。
 正孔輸送領域は、共通ホスト材料と共に後述する正孔輸送材料を含む領域である。正孔輸送領域は、単一有機化合物層内において発光領域よりも陽極側に設けられる。正孔輸送領域を有する場合は、単一有機化合物層が、陽極側から正孔輸送領域、発光領域、非ドープ領域の順で形成されていることが好ましい。
 電子輸送領域は、共通ホスト材料と共に後述する電子輸送材料を含む領域である。電子輸送領域は、単一有機化合物層内において発光領域よりも陰極側に設けられる。電子輸送領域を有する場合は、単一有機化合物層が、陰極側から電子輸送領域、発光領域、非ドープ領域の順で形成されていることが好ましい。
 また、単一有機化合物層では、非ドープ領域以外の領域と発光領域とが、互いに重複する領域を有していない構成とすることが好ましい。例えば、正孔輸送領域や電子輸送領域と発光領域とが、互いに重複する領域を有していない構成とすることが好ましい。
 単一有機化合物層は、全領域において共通ホスト材料が0.1質量%以上含有されていることが好ましい。また、この単一有機化合物層は、全体(全領域)において、共通ホスト材料として上述の一般式(1)で表される環状ヘテロ芳香族化合物を含むことが好ましい。特に、上記一般式(1)で表される環状ヘテロ芳香族化合物として、上記CHA-1~CHA-12を含むことが好ましい。
(発光層・発光領域)
 有機EL素子を構成する発光層、又は、単一有機化合物層を構成する発光領域は、電極又は電子輸送層(領域)、正孔輸送層(領域)から注入されてくる電子及び正孔が再結合して発光する層である。発光層及び発光領域において、発光する部分は発光層(領域)内であっても発光層(領域)と隣接層(領域)との界面であってもよい。以下の説明においては、特に断りがない限り、発光層と、単一有機化合物層を構成する発光領域との両方の構成をまとめて、発光層と表記する。
 発光層は、1層であってもよく、複数の層を組み合わせて積層した構成であってもよい。同様に、発光領域も単一有機化合物層内に複数設けられていてもよい。有機EL素子においては、青色発光層の発光極大波長が430nm~480nmであることが好ましく、緑色発光層の発光極大波長が510nm~550nm、赤色発光層の発光極大波長が600nm~640nmの範囲にある単色発光層であることが好ましい。また、これらの少なくとも3層の発光層が積層された、白色発光層を有する有機EL素子であってもよい。さらに、発光層間には非発光性の中間層を有していてもよい。
 発光層の膜厚の総和としては特に制限はないが、膜の均質性や、発光時に不必要な高電圧を印加するのを防止し、かつ、駆動電流に対する発光色の安定性向上の観点から、2nm~5μmの範囲に調整することが好ましく、2nm~200nmの範囲に調整することが更に好ましく、10nm~20nmの範囲に調整することが特に好ましい。
 有機EL素子の発光層は、発光層ホスト材料と、リン光発光性ドーパント及び蛍光ドーパントのうちの少なくとも1種類の発光ドーパントとを含有することが好ましい。発光層は、発光層ホスト材料や発光ドーパントを、例えば、真空蒸着法、スピンコート法、キャスト法、LB法、インクジェット法等の公知の薄膜化法により成膜して形成することができる。
 また、発光層は、後述する正孔輸送材料や電子輸送材料を更に含有していてもよい。
 (発光層ホスト材料・共通ホスト材料)
 発光層ホスト材料、及び、共通ホスト材料(以下、場合により「ホスト材料」という)とは、発光層に含有される化合物のうち、その層中での質量比が20%以上であり、かつ、室温(25℃)におけるリン光発光のリン光量子収率が0.1未満の化合物を指す。好ましくは、リン光量子収率が0.01未満である。
 ホスト材料としては、1種のホスト材料を単独で用いてもよく、2種以上を組み合わせて用いてもよい。ホスト材料を複数種用いる場合には、電荷の移動を調整することによって有機EL素子のより高効率化を図ることができる。
 ホスト材料としては、上述の一般式(1)で表される環状ヘテロ芳香族化合物を、単独で、又は、他のホスト材料と組み合わせて用いることが好ましい。また、一般式(1)で表される環状ヘテロ芳香族化合物が、後述する電子輸送材料や正孔輸送材料等として用いられる場合には、ホスト材料に一般式(1)で表される環状ヘテロ芳香族化合物以外の他の材料を単独で又は2種以上を組み合わせて用いてもよい。
 上述の一般式(1)で表される環状ヘテロ芳香族化合物以外の他のホスト材料としては、正孔輸送能、電子輸送能を有しつつ、かつ、発光の長波長化を防ぎ、なおかつ高Tg(ガラス転移温度)である化合物が好ましい。具体的には、特開2001-257076号公報、同2002-308855号公報、同2001-313179号公報、同2002-319491号公報、同2001-357977号公報、同2002-334786号公報、同2002-8860号公報、同2002-334787号公報、同2002-15871号公報、同2002-334788号公報、同2002-43056号公報、同2002-334789号公報、同2002-75645号公報、同2002-338579号公報、同2002-105445号公報、同2002-343568号公報、同2002-141173号公報、同2002-352957号公報、同2002-203683号公報、同2002-363227号公報、同2002-231453号公報、同2003-3165号公報、同2002-234888号公報、同2003-27048号公報、同2002-255934号公報、同2002-260861号公報、同2002-280183号公報、同2002-299060号公報、同2002-302516号公報、同2002-305083号公報、同2002-305084号公報、同2002-308837号公報等に記載されている化合物等が挙げられる。これらの中でも、他のホスト材料としては、カルバゾール環を部分構造として有する化合物、重合性基を有し、かつ、カルバゾール環を部分構造として有する化合物、及び、これらの化合物の重合体が好ましい。例えば、CBP(4,4’-N,N-dicarbazole-biphenyl)が好ましい。
(発光ドーパント)
 発光ドーパントとしては、蛍光ドーパント(蛍光性化合物ともいう)、リン光発光性ドーパント(リン光発光体、リン光性化合物、リン光発光性化合物等ともいう)を用いることができる。より発光効率の高い有機EL素子が得られるという観点から、リン光発光性ドーパントを含有することが好ましい。
 リン光発光性ドーパントは、励起三重項からの発光が観測される化合物であり、具体的には、室温(25℃)にてリン光発光する化合物であり、25℃におけるリン光発光のリン光量子収率が0.01以上の化合物を指す。好ましくは、リン光量子収率は0.1以上である。なお、リン光量子収率は、第4版実験化学講座7の分光IIの398頁(1992年版、丸善)に記載の方法により測定することができる。溶液中でのリン光量子収率は種々の溶媒を用いて測定できるが、ン光発光性ドーパントは、任意の溶媒のいずれかにおいて上記リン光量子収率(0.01以上)が達成されればよい。
 リン光発光性ドーパントの発光原理としては2種挙げられる。第1の原理は、キャリアが輸送されるホスト材料上でキャリアの再結合が起こり、ホスト材料の励起状態が生成し、このエネルギーをリン光発光性ドーパントに移動させることでリン光発光性ドーパントからの発光を得るというエネルギー移動型である。第2の原理はリン光発光性ドーパントがキャリアトラップとなり、リン光発光性ドーパント上でキャリアの再結合が起こり、リン光発光性ドーパントからの発光が得られるというキャリアトラップ型である。
 上記のいずれの場合においても、リン光発光性ドーパントの励起状態のエネルギーはホスト材料の励起状態のエネルギーよりも低いことが条件である。
 発光ドーパントとしては、有機EL素子の発光層に使用される公知のものの中から適宜選択して用いることができる。好ましくは、元素周期表で8族~10族の金属を含有する錯体系化合物であり、更に好ましくはイリジウム化合物(Ir錯体)、オスミウム化合物、又は白金化合物(白金錯体系化合物)、希土類錯体である。最も好ましいのはイリジウム化合物(Ir錯体)である。
 また、リン光発光性ドーパントとしては、下記一般式(5)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000015
 式中、P及びQは炭素原子又は窒素原子を示し、A1はP-Cと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を示し、A2はQ-Nと共に芳香族炭化水素環又は芳香族複素環を形成する原子群を示し、P1-L1-P2は2座の配位子を示し、P1、P2はそれぞれ独立に炭素原子、窒素原子又は酸素原子を示し、L1はP1、P2と共に2座の配位子を形成する原子群を示し、Mは元素周期表における8~10族の金属元素を示す。rは1~3の整数を示し、sは0~2の整数を示すが、r+sは2又は3である。
 一般式(5)において、A1で表される芳香族炭化水素環としては、ベンゼン環、ビフェニル環、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、o-テルフェニル環、m-テルフェニル環、p-テルフェニル環、アセナフテン環、コロネン環、フルオレン環、フルオラントレン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピレン環、ピラントレン環、アンスラアントレン環等が挙げられる。これらの環は更に、後述する置換基を有してもよい。
 一般式(5)において、A1で表される芳香族複素環としては、例えば、フラン環、チオフェン環、オキサゾール環、ピロール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、トリアジン環、ベンゾイミダゾール環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環、インドール環、インダゾール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、シンノリン環、キノリン環、イソキノリン環、フタラジン環、ナフチリジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭素原子の1つが更に窒素原子で置換されている環を示す)等が挙げられる。これらの環は更に、後述する置換基を有していてもよい。
 芳香族炭化水素環又は芳香族複素環が有していてもよい置換基としては、アルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、シクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、アルケニル基(例えば、ビニル基、アリル基等)、アルキニル基(例えば、エチニル基、プロパルギル基等)、芳香族炭化水素基(芳香族炭化水素環基、芳香族炭素環基、アリール基等ともいい、例えば、フェニル基、p-クロロフェニル基、メシチル基、トリル基、キシリル基、ナフチル基、アントリル基、アズレニル基、アセナフテニル基、フルオレニル基、フェナントリル基、インデニル基、ピレニル基、ビフェニリル基等)、芳香族複素環基(例えば、ピリジル基、ピリミジニル基、フリル基、ピロリル基、イミダゾリル基、ベンゾイミダゾリル基、ピラゾリル基、ピラジニル基、トリアゾリル基(例えば、1,2,4-トリアゾール-1-イル基、1,2,3-トリアゾール-1-イル基等)、オキサゾリル基、ベンゾオキサゾリル基、チアゾリル基、イソオキサゾリル基、イソチアゾリル基、フラザニル基、チエニル基、キノリル基、ベンゾフリル基、ジベンゾフリル基、ベンゾチエニル基、ジベンゾチエニル基、インドリル基、カルバゾリル基、カルボリニル基、ジアザカルバゾリル基(カルボリニル基のカルボリン環を構成する炭素原子の1つが窒素原子で置き換わったものを示す)、キノキサリニル基、ピリダジニル基、トリアジニル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、アルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ペンチルオキシ基、ヘキシルオキシ基、オクチルオキシ基、ドデシルオキシ基等)、シクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、アリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、アルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、シクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、アリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、アルコキシカルボニル基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、アリールオキシカルボニル基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、アシル基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、アシルオキシ基(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、アミド基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、カルバモイル基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、ウレイド基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基ナフチルウレイド基、2-ピリジルアミノウレイド基等)、スルフィニル基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、アリールスルホニル基又はヘテロアリールスルホニル基(例えば、フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、アミノ基(例えば、アミノ基、エチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、フッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、ホスホノ基等が挙げられる。また、これらの置換基は上記の置換基によって更に置換されていてもよい。また、これらの置換基は複数が互いに結合して環を形成していてもよい。
 一般式(5)において、A2で表される芳香族炭化水素環、芳香族複素環としては、A1で表される芳香族炭化水素環、芳香族複素環とそれぞれ同義である。
 また、一般式(5)において、P1-L1-P2で表される2座の配位子としては、例えば、置換又は無置換のフェニルピリジン、フェニルピラゾール、フェニルイミダゾール、フェニルトリアゾール、フェニルテトラゾール、ピラザボール、アセチルアセトン、ピコリン酸等が挙げられる。
 さらに、一般式(5)において、Mは、元素周期表における8~10族の遷移金属元素(単に遷移金属ともいう)を示すが、中でも、イリジウム、白金が好ましく、特にイリジウムが好ましい。 これらのリン光発光性ドーパントは、例えば、Inorg.Chem.40巻、1704~1711に記載の方法等により合成することができる。
 蛍光ドーパント(蛍光性化合物)としては、クマリン系色素、ピラン系色素、シアニン系色素、クロコニウム系色素、スクアリウム系色素、オキソベンツアントラセン系色素、フルオレセイン系色素、ローダミン系色素、ピリリウム系色素、ペリレン系色素、スチルベン系色素、ポリチオフェン系色素、又は希土類錯体系蛍光体等が挙げられる。
 発光ドーパントとしては、これらの発光ドーパントのうちの1種を単独で用いても2種以上を組み合わせて用いてもよいが、より発光効率の高い有機EL素子が得られ、かつ、任意の発光色を得ることができるという観点からは、リン光発光性ドーパントに複数種の他の発光ドーパントを組み合わせて用いることが好ましい。
(正孔輸送層・正孔輸送領域)
 有機EL素子の正孔輸送層、正孔輸送領域とは、正孔を輸送する機能を有する正孔輸送材料を含む層又は領域である。正孔輸送層は単層であってもよく、複数層を組み合わせて設けてもよい。正孔輸送層及び正孔輸送領域は、正孔輸送材料として、上述の一般式(1)で表される環状ヘテロ芳香族化合物を単独で、又は、他の正孔輸送材料と組み合わせて用いることが好ましい。また、上述の一般式(1)で表される環状ヘテロ芳香族化合物が、上述のホスト材料や、後述する電子輸送材料として用いられる場合には、正孔輸送材料として一般式(1)で表される環状ヘテロ芳香族化合物以外の他の材料を単独で又は2種以上を組み合わせて用いてもよい。
 一般式(1)で表される環状ヘテロ芳香族化合物以外の他の正孔輸送材料としては、正孔の注入又は輸送、電子の障壁性のいずれかを有するものであればよく、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、又は、特にチオフェンオリゴマー等の導電性高分子オリゴマーが挙げられる。中でも、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 芳香族第3級アミン化合物、及び、スチリルアミン化合物の代表例としては、N,N,N′,N′-テトラフェニル-4,4′-ジアミノフェニル、N,N′-ジフェニル-N,N′-ビス(3-メチルフェニル)-〔1,1′-ビフェニル〕-4,4′-ジアミン(TPD)、2,2-ビス(4-ジ-p-トリルアミノフェニル)プロパン、1,1-ビス(4-ジ-p-トリルアミノフェニル)シクロヘキサン、N,N,N′,N′-テトラ-p-トリル-4,4′-ジアミノビフェニル、1,1-ビス(4-ジ-p-トリルアミノフェニル)-4-フェニルシクロヘキサン、ビス(4-ジメチルアミノ-2-メチルフェニル)フェニルメタン、ビス(4-ジ-p-トリルアミノフェニル)フェニルメタン、N,N′-ジフェニル-N,N′-ジ(4-メトキシフェニル)-4,4′-ジアミノビフェニル、N,N,N′,N′-テトラフェニル-4,4′-ジアミノジフェニルエーテル、4,4′-ビス(ジフェニルアミノ)クオードリフェニル、N,N,N-トリ(p-トリル)アミン、4-(ジ-p-トリルアミノ)-4′-〔4-(ジ-p-トリルアミノ)スチリル〕スチルベン、4-N,N-ジフェニルアミノ-(2-ジフェニルビニル)ベンゼン、3-メトキシ-4′-N,N-ジフェニルアミノスチルベンゼン、N-フェニルカルバゾール、米国特許第5,061,569号明細書に記載されている2個の縮合芳香族環を分子内に有する化合物(例えば、4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル[NPD])、特開平4-308688号公報に記載されているトリフェニルアミンユニット3つがスターバースト型に連結された4,4′,4″-トリス〔N-(3-メチルフェニル)-N-フェニルアミノ〕トリフェニルアミン[MTDATA]等が挙げられる。
 また、これらの材料を高分子鎖に導入した、又は、これらの材料を高分子の主鎖とした高分子材料を用いることもできる。さらに、p型-Si、p型-SiC等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。また、特開平11-251067号公報、J.Huang et.al.著文献(Applied PhysicsLetters 80(2002),p.139)に記載されている、所謂p型正孔輸送材料を用いることもできる。
 正孔輸送層は、上記正孔輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により形成することができる。正孔輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。
 正孔輸送層としては、不純物をドープしたp性の高い正孔輸送層とすることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報の各公報、J.Appl.Phys.,95,5773(2004)等に記載された構成が挙げられる。具体的には、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネートが挙げられる。このようなp性の高い正孔輸送層とすることによって、より消費電力の低い有機EL素子を作製することができる。
(電子輸送層・電子輸送領域)
 有機EL素子の電子輸送層、電子輸送領域とは、電子を輸送する機能を有する材料を含む層又は領域である。電子輸送層は単層であってもよく、複数層を組み合わせて設けてもよい。
 電子輸送層が単層の場合、電子輸送材料(正孔阻止材料を兼ねる)として上述の一般式(1)で表される環状ヘテロ芳香族化合物を、単独で、又は、他の電子輸送材料と組み合わせて用いることが好ましい。
 また、電子輸送層が複数層の場合は、発光層に対して陰極側に隣接する電子輸送層に用いられる電子輸送材料(正孔阻止材料を兼ねる)として上述の一般式(1)で表される環状ヘテロ芳香族化合物を、単独で、又は、他の電子輸送材料と組み合わせて用いることが好ましい。また、一般式(1)で表される環状ヘテロ芳香族化合物が、上述のホスト材料や正孔輸送材料として用いられる場合には、電子輸送材料として一般式(1)で表される環状ヘテロ芳香族化合物以外の他の材料を単独で又は2種以上を組み合わせて用いてもよい。
 一般式(1)で表される環状ヘテロ芳香族化合物以外の他の電子輸送材料としては、陰極から注入された電子を発光層に伝達する機能を有していればよく、従来公知の化合物の中から任意に選択して用いることができる。このような化合物としては、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。また、上記オキサジアゾール誘導体において、更に、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も電子輸送材料として用いることができる。さらに、これらの材料を高分子鎖に導入した、又は、これらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)、ビス(2-メチル-8-キノリレート)-4-(フェニルフェノラト)アルミニウム(BAlq)、トリス(8-キノリノラト)アルミニウム(Alq3)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、Ga又はPbに置き替わった金属錯体も、電子輸送材料として用いることができる。
 その他、メタルフリー若しくはメタルフタロシアニン、又はそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。また、発光層のホスト材料として用いることもできるジスチリルピラジン誘導体も、電子輸送材料として用いることができ、正孔輸送層と同様に、n型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 電子輸送層は、上記電子輸送材料を、例えば、真空蒸着法、スピンコート法、キャスト法、インクジェット法を含む印刷法、LB法等の公知の方法により形成することができる。電子輸送層の膜厚については特に制限はないが、通常は5nm~5μm程度、好ましくは5nm~200nmである。
 また、電子輸送層としては、不純物をドープしたn性の高い電子輸送層とすることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載された構成が挙げられる。このようなn性の高い電子輸送層とすることによって、より低消費電力の有機EL素子を作製することができる。
(注入層:電子注入層、正孔注入層)
 有機EL素子の注入層は、必要に応じて設けることができる。例えば、「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の第2編第2章「電極材料」(123~166頁)に記載されている正孔注入層(陽極バッファー層)や電子注入層(陰極バッファー層)等を有機EL素子に設けることができる。
 注入層とは、駆動電圧低下や発光輝度向上のために電極と有機化合物層との間に設けられる層である。注入層は、陽極と発光層又は正孔輸送層との間、及び、陰極と発光層又は電子輸送層との間に設けることができる。
 陽極バッファー層(正孔注入層)は、特開平9-45479号公報、同9-260062号公報、同8-288069号公報等に詳細が記載されている。具体例としては、銅フタロシアニンに代表されるフタロシアニンバッファー層、酸化バナジウムに代表される酸化物バッファー層、アモルファスカーボンバッファー層、ポリアニリン(エメラルディン)やポリチオフェン等の導電性高分子を用いた高分子バッファー層等が挙げられる。
 陰極バッファー層(電子注入層)は、特開平6-325871号公報、同9-17574号公報、同10-74586号公報等に詳細が記載されている。具体的には、ストロンチウムやアルミニウム等に代表される金属バッファー層、フッ化リチウムに代表されるアルカリ金属化合物バッファー層、フッ化マグネシウムに代表されるアルカリ土類金属化合物バッファー層、酸化アルミニウムに代表される酸化物バッファー層等が挙げられる。上記バッファー層(注入層)はごく薄い膜であることが望ましく、素材にもよるが膜厚が0.1nm~10nmの範囲であることが好ましい。
(阻止層:正孔阻止層、電子阻止層)
 有機EL素子の阻止層は、必要に応じて設けることができる。阻止層としては、例えば、特開平11-204258号公報、同11-204359号公報、及び「有機EL素子とその工業化最前線(1998年11月30日エヌ・ティー・エス社発行)」の237頁等に記載されている正孔阻止(ホールブロック)層等が挙げられる。
 正孔阻止層は、広義には電子輸送層の機能を有する層であり、電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の再結合確率を向上させることができる。このような正孔阻止層は、発光層に隣接して設けられていることが好ましい。
 また、有機EL素子が発光色の異なる複数の発光層を有する場合、その発光極大波長が最も短波側にある発光層が、全発光層中、最も陽極に近いことが好ましい。このような場合には、最短波の発光層と、最短波の発光層の次に陽極に近い発光層との間にも、正孔阻止層が設けられることが好ましい。さらに、この置に設けられる正孔阻止層に含有される化合物の50質量%以上が、最短波の発光層のホスト材料に対しそのイオン化ポテンシャルが0.3eV以上大きいことが好ましい。
 なお、イオン化ポテンシャルは化合物のHOMO(最高被占分子軌道)レベルにある電子を真空準位に放出するのに必要なエネルギーで定義され、例えば下記に示すような方法により求めることができる。
(1)米国Gaussian社製の分子軌道計算用ソフトウェアであるGaussian98(Gaussian98、Revision A.11.4,M.J.Frisch,et al,Gaussian,Inc.,Pittsburgh PA,2002.)を用い、キーワードとしてB3LYP/6-31G*を用いて構造最適化を行うことにより算出した値(eV単位換算値)の小数点第2位を四捨五入した値としてイオン化ポテンシャルを求める方法。この計算値が有効な背景には、この手法で求めた計算値と実験値の相関が高いことがある。
(2)光電子分光法で直接測定する方法。例えば、理研計器社製の低エネルギー電子分光装置「Model AC-1」を用いる方法、又は、紫外光電子分光として知られている
方法を用いる方法。
 一方、電子阻止層は、広義には正孔輸送層の機能を有する層であり、正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。正孔阻止層の膜厚としては、好ましくは3nm~100nmであり、更に好ましくは5nm~30nmである。
(陽極)
 有機EL素子の陽極としては、仕事関数の大きい(4eV以上)金属、合金、電気伝導性化合物、及び、これらの混合物を電極物質として用いる構成が好ましい。電極物質の具体例としては、Au等の金属、CuI、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性透明材料が挙げられる。また、IDIXO(In-ZnO)等の非晶質で透明導電膜を作製可能な材料を用いてもよい。
 陽極は、これらの電極物質を蒸着やスパッタリング等の方法により薄膜化させることで形成することができる。また、フォトリソグラフィー法で所望の形状のパターンを形成してもよい。或いは、パターン精度をあまり必要としない場合(100μm以上程度)は、電極物質の蒸着やスパッタリング時に、所望の形状のマスクを介してパターンを形成してもよい。また、有機導電性化合物のように塗布可能な物質を用いる場合には、印刷方式、コーティング方式等の塗布法(ウェットプロセス、湿式成膜法)を用いて成形することもできる。
 この陽極から発光を取り出す場合には、透過率を10%より大きくすることが望ましく、また陽極としてのシート抵抗は数百Ω/sq.以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1000nm、好ましくは10nm~200nmの範囲である。
(陰極)
 有機EL素子の陰極としては、仕事関数の小さい(4eV以下)金属(電子注入性金属と称する)、合金、電気伝導性化合物、及び、これらの混合物をとして用いる構成が好ましい。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。
 これらの中でも、電子注入性及び酸化等に対する耐久性の点から、電子注入性金属と、これより仕事関数の値が大きく安定な金属(第二金属)との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。
 陰極は、電極物質を蒸着やスパッタリング等の方法により薄膜化することにより形成することができる。また、陰極としてのシート抵抗は数百Ω/sq.以下が好ましい。陰極の膜厚は、通常10nm~5μm、好ましくは50nm~200nmの範囲である。
 なお、有機EL素子において、発光した光を透過させる観点から、陽極又は陰極のいずれか一方が、透明又は半透明であることが好ましい。このような有機EL素子では、例えば、陰極として電極物質を1nm~20nmの膜厚で成膜した後に、陽極の説明で挙げた導電性透明材料を成膜することで、透明又は半透明の陰極を作製することができる。
(支持基板)
 有機EL素子は、支持基板(基体、基板、基材、支持体等ともいう)を備えていることが好ましい。支持基板としては、ガラス、プラスチック等の種類に限定はなく、また透明であっても不透明であってもよい。支持基板側から光を取り出す場合には、支持基板が透明であることが好ましい。
 不透明な支持基板としては、例えば、アルミ、ステンレス等の金属板、フィルムや不透明樹脂基板、セラミック製の基板等が挙げられる。
 透明な支持基板(以下、場合により「透明基板」という)としては、ガラス、石英、透明樹脂フィルムを挙げることができる。有機EL素子にフレキシブル性を与えることが可能であるという観点からは、樹脂フィルムが特に好ましい。樹脂フィルムとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン、ポリプロピレン、セロファン、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート(CAP)、セルロースアセテートフタレート、セルロースナイトレート等のセルロースエステル類又はそれらの誘導体、ポリ塩化ビニリデン、ポリビニルアルコール、ポリエチレンビニルアルコール、シンジオタクティックポリスチレン、ポリカーボネート、ノルボルネン樹脂、ポリメチルペンテン、ポリエーテルケトン、ポリイミド、ポリエーテルスルホン(PES)、ポリフェニレンスルフィド、ポリスルホン類、ポリエーテルイミド、ポリエーテルケトンイミド、ポリアミド、フッ素樹脂、ナイロン、ポリメチルメタクリレート、アクリル又はポリアリレート類、アートン(商品名JSR社製)又はアペル(商品名三井化学社製)等のシクロオレフィン系樹脂等が挙げられる。
 樹脂フィルムの表面には、無機物、有機物の被膜又はその両者のハイブリッド被膜が形成されていてもよい。このような被膜は、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、0.01g/(m・24h)以下のバリア性フィルムであることが好ましく、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、10-3ml/(m・24h・MPa)以下、水蒸気透過度が、10-5g/(m・24h)以下の高バリア性フィルムであることが更に好ましい。
 上記被膜の材料としては、有機EL素子を劣化させる水分や酸素等素子の浸入を抑制する機能を有する材料であればよい。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。また、このような被膜の脆弱性を改良するために、これら無機層に有機材料からなる層を積層した構造とすることがより好ましい。無機層と有機層との積層順については特に制限はないが、両者を交互に複数回積層させることが好ましい。
 樹脂フィルムの表面に被膜を形成する方法については特に限定はない。例えば、真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。特に、特開2004-68143号公報に記載されている大気圧プラズマ重合法を用いることが好ましい。
(封止部材)
 有機EL素子においては、支持基板の反対側に、陽極、有機化合物層、及び、陰極を覆うように配置された封止部材を更に備えていることが好ましい。このような封止部材としては、凹板状でも平板状でもよく、透明性や電気絶縁性は特に問わない。封止部材を凹板状に加工する場合には、サンドブラスト加工や、化学エッチング加工等が使われる。
 封止部材として具体的には、ガラス板、ポリマー板・フィルム、金属板・フィルム等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を挙げることができる。また、ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等が挙げられる。金属板としては、ステンレス、鉄、銅、アルミニウム、マグネシウム、ニッケル、亜鉛、クロム、チタン、モリブテン、シリコン、ゲルマニウム及びタンタルからなる群から選ばれる1種以上の金属又は合金が挙げられる。
 封止部材としては、有機EL素子を薄膜化できるという観点から、ポリマーフィルム、又は、金属フィルムが好ましい。ポリマーフィルムとしては、JIS K 7126-1987に準拠した方法で測定された酸素透過度が、1×10-3ml/(m・24h・MPa)以下であることが好ましく、JIS K 7129-1992に準拠した方法で測定された水蒸気透過度(25±0.5℃、相対湿度(90±2)%RH)が、1×10-3g/(m・24h)以下であることが更に好ましい。
 このような封止部材は、例えば、支持基板と接着剤(シール材)で接着することによって、有機EL素子の層構成を封止することができる。接着剤としては、具体的には、アクリル酸系オリゴマー、メタクリル酸系オリゴマーの反応性ビニル基を有する光硬化及び熱硬化型接着剤、2-シアノアクリル酸エステル等の湿気硬化型等の接着剤を挙げることができる。また、エポキシ系等の熱及び化学硬化型(二液混合)を挙げることができる。さらに、ホットメルト型のポリアミド、ポリエステル、ポリオレフィンを挙げることができる。また、カチオン硬化タイプの紫外線硬化型エポキシ樹脂接着剤を挙げることができる。
 なお、熱処理により有機EL素子が劣化する場合があるため、室温から80℃までの間の温度で接着硬化できる接着剤を用いることが好ましい。また、接着剤中に乾燥剤を分散させておいてもよい。封止部分への接着剤の塗布は市販のディスペンサーを使ってもよいし、スクリーン印刷のように印刷してもよい。
 また、このような封止部材は、支持基板と対向する側の電極、又は、この電極陰極の外側に、支持基板と接する形で無機物や有機物の層を形成して封止膜とすることもできる。この場合、封止膜を形成する材料としては、有機EL素子を劣化させる水分や酸素等の浸入を抑制する機能を有する材料であればよい。例えば、酸化珪素、二酸化珪素、窒化珪素等を用いることができる。さらに、このような膜の脆弱性を改良するために、これら無機層に有機材料からなる層を積層した構造とすることが好ましい。これらの膜の形成方法については、特に限定はなく、例えば真空蒸着法、スパッタリング法、反応性スパッタリング法、分子線エピタキシー法、クラスタ-イオンビーム法、イオンプレーティング法、プラズマ重合法、大気圧プラズマ重合法、プラズマCVD法、レーザCVD法、熱CVD法、コーティング法等を用いることができる。
 封止部材と有機EL素子の表示領域との間隙を、気相又は液相とすることができる。気相又は液相としては、例えば、窒素、アルゴン等の不活性気体、フッ化炭化水素、シリコンオイルのような不活性液体を用いることが好ましい。また、間隙を真空とすることも可能である。また、内部に吸湿性化合物(捕水剤)を封入することもできる。
 吸湿性化合物としては、例えば、金属酸化物(例えば、酸化ナトリウム、酸化カリウム、酸化カルシウム、酸化バリウム、酸化マグネシウム、酸化アルミニウム等)、硫酸塩(例えば、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト等)、金属ハロゲン化物(例えば、塩化カルシウム、塩化マグネシウム、フッ化セシウム、フッ化タンタル、臭化セリウム、臭化マグネシウム、沃化バリウム、沃化マグネシウム等)、過塩素酸類(例えば、過塩素酸バリウム、過塩素酸マグネシウム等)等が挙げられる。硫酸塩、金属ハロゲン化物及び過塩素酸類においては無水塩が好適に用いられる。
(保護層)
 有機EL素子おいては、支持基板と対向する側の封止部材の外側に、有機EL素子の機械的強度を高める観点から、保護層として保護膜又は保護板を設けてもよい。特に、封止部材が封止膜である場合には、封止膜の機械的強度は必ずしも高くないため、保護層を設けることが好ましい。保護層の材料としては、封止部材として挙げたものと同様のガラス板、ポリマー板、ポリマーフィルム、金属板及び金属フィルム等を用いることができる。軽量かつ薄膜化という観点から、ポリマーフィルムを用いることが好ましい。
(光取り出し)
 有機EL素子の発光の23℃における部取り出し量子効率は、1%以上であることが好ましい。より好ましくは5%以上である。なお、部取り出し量子効率は、[部取り出し量子効率(%)=有機EL素子外部に発光した光子数/有機EL素子に流した電子数×100]である。
 また、有機EL素子としては、カラーフィルター等の色相改良フィルター等を併用してもよく、有機EL素子からの発光光を多色へ変換するための蛍光体による色変換フィルターを併用してもよい。色変換フィルターを用いる場合においては、有機EL素子の発光のλmaxは480nm以下が好ましい。
 また、一般に、有機EL素子は、空気よりも屈折率の高い(屈折率が1.7~2.1程度)層の内部で発光し、発光層で発生した光のうち15%から20%程度の光しか取り出せないといわれている。これは、臨界角以上の角度θで界面(透明基板と空気との界面)に入射する光は、全反射を起こして素子外部に取り出すことができないためである。また、透明電極、発光層、透明基板等の各層の界面において光が全反射を起こし、光が透明電極や発光層を導波し、結果として光が素子側面方向に逃げるためである。
 光の取り出し効率を向上させる手法としては、例えば、透明基板表面に凹凸を形成し、透明基板と空気界面との全反射を防ぐ方法(米国特許第4,774,435号明細書)、基板に集光性を持たせることにより光の取り出し効率を向上させる方法(特開昭63-314795号公報)、有機EL素子の側面等に反射面を形成する方法(特開平1-220394号公報)、発光層と透明基板との間に中間の屈折率を持つ平坦層を導入して反射防止膜を形成する方法(特開昭62-172691号公報)、発光層と透明基板との間に基板よりも屈折率の低い平坦層を導入する方法(特開2001-202827号公報)、基板、透明電極層、発光層のいずれかの層間(基板と外界との間を含む)に回折格子を形成する方法(特開平11-283751号公報)等がある。
 有機EL素子においては、上述の光の取り出し効率を向上させる手法のうち、発光層と透明基板との間に基板よりも屈折率の低い平坦層を導入する方法、又は、基板、透明電極層、発光層のいずれかの層間(基板と外界との間を含む)に回折格子を形成する方法を好適に用いることができる。これらの手段を組み合わせることにより、更に高輝度或いは耐久性に優れた有機EL素子を得ることができる。
 透明電極と透明基板との間に、低屈折率の媒質(低屈折率層)を光の波長よりも長い厚みで形成した場合には、媒質の屈折率が低いほど、透明電極から出てきた光の外部への取り出し効率が高くなる。低屈折率層としては、例えば、エアロゲル、多孔質シリカ、フッ化マグネシウム、フッ素系ポリマー等が挙げられる。透明基板の屈折率は一般に1.5~1.7程度であるので、低屈折率層は屈折率がおよそ1.5以下であることが好ましく、1.35以下であることがより好ましい。また、低屈折率層の厚みは、媒質中の波長の2倍以上となるのが好ましい。これは、低屈折率層の厚みが光の波長程度となり、エバネッセントで染み出した電磁波が基板内に入り込む厚さになると、低屈折率層による光取り出し効率の効果が低下するためである。
 全反射を起こす界面、又は、いずれかの媒質中に回折格子を導入する方法は、光取り出し効率の向上効果が高いという特徴がある。この方法は回折格子が1次の回折や2次の回折といった所謂ブラッグ回折により、光の向きを屈折とは異なる特定の向きに変えることができる性質を利用している。この方法では、発光層から発生した光を、層間又は媒質中(透明基板内や透明電極内)に導入した回折格子で光を回折させ、外に取り出することができる。
 導入する回折格子は、二次元的な周期屈折率を持っていることが望ましい。発光層で発光する光はあらゆる方向にランダムに発生するため、一定の方向にのみ周期的な屈折率分布を持っている一般的な1次元回折格子では、特定の方向に進む光しか回折されないため、光の取り出し効率向上の効果が大きくない。屈折率分布を二次元的な分布にすることにより、あらゆる方向に進む光が回折され、光の取り出し効率がより向上する。
 回折格子を導入する位置としては、上述のように、いずれかの層間又は媒質中(透明基板内や透明電極内)とすることができる。また、光が発生する場所である有機発光層の近傍に回折格子を導入することが好ましい。このとき、回折格子の周期は媒質中の光の波長の約1/2~3倍程度が好ましい。回折格子の配列は正方形のラチス状、三角形のラチス状、ハニカムラチス状等、2次元的に配列が繰り返されることが好ましい。
(集光部材)
 有機EL素子は、支持基板の光取り出し側に集光部材を設けることにより、特定方向の輝度を高めることができる。例えば、支持基板の光取り出し側に、マイクロレンズアレイ状の構造や、所謂集光シート等を設け、素子発光面に対し正面方向に集光することにより、この正面方向の輝度を高めることができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺の長さが10μm~100μmでその頂角が90度となるような四角錐を2次元に配列する構成が挙げられる。四角錐の一辺の長さが10μmより小さくなると、回折の効果が発生して色付くため好ましくない。また、四角錐の一辺の長さが100μmより大きくなると、マイクロレンズアレイが厚くなりすぎるため好ましくない。
 集光部材としては、例えば、液晶表示装置のLEDバックライトで実用化されている集光シートを用いることが可能である。このような集光シートとしては、例えば、住友スリーエム社製輝度上昇フィルム(BEF)等を用いることができる。また、プリズムシートとしては、例えば、基材に頂角90度、ピッチ50μmの断面が三角状のストライプが形成された形状であってもよく、頂角が丸みを帯びた形状、ピッチがランダムに変化された形状、その他の形状であってもよい。また、発光素子からの光放射角を制御するために、光拡散板・フィルムを集光シートと併用してもよい。例えば、(株)きもと製拡散フィルム(ライトアップ)等を用いることができる。
[有機EL素子の製造方法]
 次に、有機エレクトロデバイスの製造方法について説明する。以下の説明では、一例として、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極からなる層構成の有機EL素子の製造方法について説明する。各層の構成は、上述の有機EL素子の説明における構成と同様とすることができるため、以下の製造方法での詳細な説明は省略する。
 まず、支持基板上に所望の陽極用物質を、1μm以下、好ましくは10nm~200nmの膜厚になるように、蒸着やスパッタリング等の方法により形成し、陽極を作製する。次に、陽極上に、正孔注入層、正孔輸送層、発光層、正孔阻止層、電子輸送層、及び、電子注入層からなる有機化合物層を順に形成する。
 これら各層の形成方法としては、蒸着法、塗布法(ウェットプロセス、湿式成膜法)が挙げられる。塗布法としては、スピンコート法、キャスト法、ダイコート法、ブレードコート法、ロールコート法、インクジェット法、印刷法、スプレーコート法、カーテンコート法等を用いることができる。精密な薄膜が形成可能で、かつ高生産性の点から、ダイコート法、ロールコート法、インクジェット法、スプレーコート法等のロール・ツー・ロール方式に適性の高い形成方法が好ましい。また、均質な膜が得られやすく、かつ、ピンホールが生成しにくい等の点からは、スピンコート法、インクジェット法、印刷法等の塗布法による成膜が好ましい。各層の形成方法としては、層毎に異なる成膜方法を適用してもよい。
 また、薄膜化が可能であるという観点から、各層の形成に蒸着法を用いることが好ましい。特に、上述の一般式(1)で表される環状ヘテロ芳香族化合物を有機化合物層に用いる場合には、蒸着法を用いて形成することが好ましい。一般式(1)で表される環状ヘテロ芳香族化合物を正孔輸送層、発光層、及び、電子輸送層の全層に用いる場合には、これらの層をすべて蒸着法で形成してもよい。
 また、ホスト材料として、カルバゾール環を部分構造として有する化合物や、この重合性基を有する化合物、これらの化合物の重合体を用いる場合、発光層を塗布法で形成することが好ましい。また、陽極と陰極との間に形成する層のうち、半数以上の層を塗布法で形成することが好ましい。例えば、陽極/正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層/陰極の構成においては、正孔注入層/正孔輸送層/発光層/正孔阻止層/電子輸送層/電子注入層の6層のうち、少なくとも3層以上を塗布法で形成することが好ましい。
 有機EL素子の各層を塗布法で形成する場合、塗布に用いる各種材料を液媒体に溶解又は分散して使用する。液媒体としては、例えば、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等の脂肪酸エステル類、ジクロロベンゼン等のハロゲン化炭化水素類、トルエン、キシレン、メシチレン、シクロヘキシルベンゼン等の芳香族炭化水素類、シクロヘキサン、デカリン、ドデカン等の脂肪族炭化水素類、DMF、DMSO等の有機溶媒を用いることができる。また、分散方法としては、超音波、高剪断力分散、メディア分散等を用いることができる。
 次に、有機化合物層を形成した後、有機化合物層上に陰極用物質を1μm以下、好ましくは、50nm~200nmの範囲の膜厚に形成し、陰極を形成する。陰極の形成は、例えば、蒸着やスパッタリング等の方法を用いることができる。
 以上の工程により有機EL素子を製造することができる。有機EL素子の製造は、一回の真空引きで一貫して正孔注入層から陰極まで作製することが好ましいが、途中で取り出して異なる成膜法を施すこともできる。その際、作業を乾燥不活性ガス雰囲気下で行うことが好ましい。
 このようにして得られた有機EL素子に、直流電圧を印加する場合には陽極を+、陰極を-の極性として、電圧2~40V程度を印加することにより、発光を観測できる。また、有機EL素子には交流電圧を印加してもよい。なお、印加する交流の波形は任意でよい。
 また、上記の作製順序を逆にして、支持基板側から、陰極、電子注入層、電子輸送層、正孔阻止層、発光層、正孔輸送層、正孔注入層、及び、陽極の順に作製することも可能である。
[有機薄膜太陽電池]
 次に、有機エレクトロニクス素子の好ましい一態様として、有機薄膜太陽電池について説明する。上述の一般式(1)で表される環状ヘテロ芳香族化合物は、有機薄膜太陽電池の有機化合物層の材料として用いることも可能である。
 以下に有機薄膜太陽電池の層構成の好ましい具体例を示すが、有機薄膜太陽電池の層構成はこれらに限定されない。
(i)陽極/発電層/陰極
(ii)陽極/正孔輸送層/発電層/陰極
(iii)陽極/正孔輸送層/発電層/電子輸送層/陰極
(iv)陽極/正孔輸送層/p型半導体層/発電層/n型半導体層/電子輸送層/陰極
(v)陽極/正孔輸送層/第1発電層/電子輸送層/中間電極/正孔輸送層/第2発電層/電子輸送層/陰極
(vi)陽極/単一有機化合物層(非ドープ領域、発電領域、非ドープ領域)/陰極
(vii)陽極/単一有機化合物層(p型半導体領域、発電領域、及び、非ドープ領域)/陰極
(viii)陽極/単一有機化合物層(非ドープ領域、発電領域、及び、n型半導体領域)/陰極
(iX)陽極/単一有機化合物層(発電領域)/陰極
 有機薄膜太陽電池においては、正孔輸送層、p型半導体層、発電層、n型半導体層、電子輸送層の少なくともいずれかの層の材料として、上述の一般式(1)で表される環状ヘテロ芳香族化合物を単独で、又は、他の材料と組み合わせて用いることが好ましい。また、単一有機化合物層を構成する発電領域、非ドープ領域、p型半導体領域、及び、n型半導体領域における共通ホスト材料として、上述の一般式(1)で表される環状ヘテロ芳香族化合物を単独で、又は、他の材料と組み合わせて用いることが好ましい。
 一般式(1)で表される環状ヘテロ芳香族化合物以外の他の材料としては、従来の有機薄膜太陽電池の有機化合物層に使用されている、公知の材料を適宜用いることができる。また、有機薄膜太陽電池の各層の形成方法としては、従来公知の方法、例えば、上述の有機EL素子の製造方法で挙げた、各層の形成方法と同様の方法を適宜用いることができる。
〈3.電子機器〉
 上述の有機エレクトロニクス素子は、各種有機エレクトロニクス素子が用いられる電子機器に適用することができる。以下、有機エレクトロニクス素子が適用される電子機器の一例として、有機EL素子が適用される電子機器について説明する。
 有機EL素子が適用される電子機器としては、例えば、表示デバイス、ディスプレイ、各種発光光源等の表示装置が挙げられる。また、有機EL素子が適用される電子機器としては、例えば、照明装置(家庭用照明、車内照明)、時計や液晶用バックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等の発光光源が挙げられる。特に、有機EL素子は、液晶表示装置のバックライトや照明用光源等の電子機器に有効に用いることができる。
 有機EL素子は、適用される電子機器の用途に応じて、各構成層の成膜時にメタルマスクやインクジェットプリンティング法等でパターニングが施されていてもよい。有機EL素子は、例えば、電極のみがパターニングされていてもよく、電極と発光層とがパターニングされていてもよく、また、構成層の全層がパターニングされていてもよい。
 有機EL素子の発光する色は、分光放射輝度計CS-2000(コニカミノルタセンシング社製)で測定した結果を、「新編色彩科学ハンドブック」(日本色彩学会編、東京大学出版会、1985)の108頁の図4.16に記載のCIE色度座標に当てはめて決定される。
 また、有機EL素子の発光する色において、白色とは、2度視野角正面輝度を上記方法により測定した際に、1000cd/mでのCIE1931表色系における色度がX=0.33±0.07、Y=0.33±0.1の領域内にあることをいう。
(表示装置)
 有機EL素子を備える表示装置は、単色表示装置、及び、多色表示装置のいずれも構成することができる。以下の説明では、多色表示装置について説明する。多色表示装置の場合、発光層を形成する工程において、シャドーマスクを設け、蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等の方法を用いて一面に発光層を形成する。また、発光層のみにパターニングを行う場合、発光層の形成方法に限定はないが、好ましくは蒸着法、インクジェット法、スピンコート法、印刷法を用いる。
 表示装置に具備される有機EL素子の構成としては、上述の有機EL素子の構成例の中から適宜選択することができる。また、有機EL素子の製造方法は、上述の有機EL素子の製造方法を適用することができる。
 多色表示装置に直流電圧を印加する場合には、有機EL素子の陽極を+、陰極を-の極性として、電圧2V~40V程度を印加することにより、発光を観測できる。また、逆の極性で電圧を印加した場合には、電流が流れず、発光が生じない。更に交流電圧を印加する場合には、陽極が+、陰極が-の状態になったときのみ発光する。なお、印加する交流の波形は任意でよい。
 多色表示装置は、表示デバイス、ディスプレイ、各種発光光源として用いることができる。表示デバイス、ディスプレイにおいて、青、赤、緑発光の3種の有機EL素子を用いることによりフルカラーの表示が可能となる。
 表示デバイス、ディスプレイとしては、テレビ、パソコン、モバイル機器、AV機器、文字放送表示、自動車内の情報表示等が挙げられる。特に静止画像や動画像を再生する表示装置として使用してもよく、動画再生用の表示装置として使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式、アクティブマトリクス方式のいずれの方式でもよい。
 発光光源としては家庭用照明、車内照明、時計や液晶用のバックライト、看板広告、信号機、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。
 以下、電子機器の一例として、有機EL素子の発光により画像情報の表示を行う表示装置うち、携帯電話等のディスプレイについて説明する。このディスプレイは、一般に、複数の画素を有する表示部A、画像情報に基づいて表示部Aの画像走査を行う制御部B等からなる。制御部Bは表示部Aと電気的に接続され、複数の画素のそれぞれに外部からの画像情報に基づいて走査信号と画像データ信号を送る。そして、走査信号による走査線毎の画素を、画像データ信号に応じて順次発光させる画像走査を行い、画像情報を表示部Aに表示する。
 表示部Aは基板上に、複数の走査線及びそれに直交するデータ線を含む配線部と、走査線及びデータ線に囲まれた複数の画素等とを有する。配線部の走査線及びデータ線はそれぞれ導電材料からなり、走査線とデータ線は格子状に直交して、直交する位置で画素に接続している。画素は走査線から走査信号が印加されると、データ線から画像データ信号を受け取り、受け取った画像データに応じて発光する。発光の色が赤領域の画素、緑領域の画素、青領域の画素を適宜同一基板上に並置することによって、フルカラー表示が可能となる。
 次に、画素の発光プロセスを説明する。画素は有機EL素子、スイッチングトランジスタ、駆動トランジスタ、コンデンサ等を備えている。複数の画素に有機EL素子として、赤色、緑色、青色発光の有機EL素子を用い、これらを同一基板上に並置することでフルカラー表示を行うことができる。
 ディスプレイにおいて、制御部Bからデータ線を介してスイッチングトランジスタのドレインに画像データ信号が印加される。そして、制御部Bから走査線を介してスイッチングトランジスタのゲートに走査信号が印加されると、スイッチングトランジスタの駆動がオンし、ドレインに印加された画像データ信号がコンデンサと駆動トランジスタのゲートに伝達される。画像データ信号の伝達により、コンデンサが画像データ信号の電位に応じて充電されるとともに、駆動トランジスタの駆動がオンする。駆動トランジスタは、ドレインが電源ラインに接続され、ソースが有機EL素子の電極に接続されており、ゲートに印加された画像データ信号の電位に応じて電源ラインから有機EL素子に電流が供給される。
 制御部Bの順次走査により走査信号が次の走査線に移ると、スイッチングトランジスタの駆動がオフする。しかし、スイッチングトランジスタの駆動がオフしてもコンデンサは充電された画像データ信号の電位を保持するので、駆動トランジスタの駆動はオン状態が保たれて、次の走査信号の印加が行われるまで有機EL素子の発光が継続する。順次走査により次に走査信号が印加されたとき、走査信号に同期した次の画像データ信号の電位に応じて駆動トランジスタが駆動して有機EL素子が発光する。
 すなわち、有機EL素子の発光は、複数の画素を構成するそれぞれの有機EL素子に対して、アクティブ素子であるスイッチングトランジスタと駆動トランジスタとを設けることにより、複数の画素のそれぞれの有機EL素子の発光を行っている。このような発光方法はアクティブマトリクス方式と呼ばれている。
 有機EL素子の発光は複数の階調電位を持つ多値の画像データ信号による複数の階調の発光でもよいし、2値の画像データ信号による所定の発光量のオン、オフでもよい。また、コンデンサの電位の保持は次の走査信号の印加まで継続して保持してもよいし、次の走査信号が印加される直前に放電させてもよい。
 ディスプレイの駆動方式は、上述のアクティブマトリクス方式に限らず、走査信号が走査されたときのみデータ信号に応じて有機EL素子を発光させる、パッシブマトリクス方式でもよい。
 パッシブマトリクス方式においては、複数の走査線と複数の画像データ線とが画素を挟んで対向して格子状に設けられる。順次走査により走査線の走査信号が印加されたとき、印加された走査線に接続している画素が画像データ信号に応じて発光する。パッシブマトリクス方式では画素にアクティブ素子が無く、製造コストの低減を図ることができる。
(照明装置)
 照明装置としては、有機EL素子に共振器構造を持たせた構成を用いることができる。有機EL素子に共振器構造を持たせた照明装置の使用方法としては、光記憶媒体の光源、電子写真複写機の光源、光通信処理機の光源、光センサーの光源等が挙げられる。また、レーザ発振をさせることにより各種光源に使用してもよい。
 また、照明装置としては、照明用や露光光源のような1種のランプとして使用してもよいし、画像を投影するタイプのプロジェクション装置や、静止画像や動画像を直接視認するタイプの表示ディスプレイとして使用してもよい。
 照明装置を動画再生用の表示ディスプレイとして使用する場合の駆動方式は、単純マトリクス(パッシブマトリクス)方式でもアクティブマトリクス方式でもどちらでもよい。異なる発光色を有する有機EL素子を2種以上使用することにより、フルカラー表示装置を作製することもできる。
 また、実質白色の発光を生じる照明装置とすることができる。この場合には、複数の発光材料により複数の発光色を同時に発光させて混色により白色発光を得ることができる。複数の発光色の組み合わせとしては、赤色、緑色、青色の3原色の3つの発光極大波長を含有させた構成でもよく、青色と黄色、青緑と橙色等の補色の関係を利用した2つの発光極大波長を含有した構成でもよい。
 また、複数の発光色を得るための発光材料の組み合わせは、複数のリン光又は蛍光で発光する材料(発光ドーパント)の組み合わせ、蛍光又はリン光で発光する発光材料と、発光材料からの光を励起光として発光する色素材料との組み合わせ等のいずれでもよい。白色有機EL素子においては、発光ドーパントを複数組み合わせ混合するだけでよい。
 照明装置としては、発光層、正孔輸送層、又は、電子輸送層等の形成工程において、マスクを設けて塗り分ける等の方法を適用することができる。また、これら以外の層は共通とすることができるためマスク等のパターニングは不要であり、一面に蒸着法、キャスト法、スピンコート法、インクジェット法、印刷法等で形成できる。この方法によれば、複数色の発光素子をアレー状に並列配置した白色有機EL装置と異なり、素子自体が発光白色である。
 発光層に用いる発光材料としては特に制限はなく、例えば、液晶表示素子におけるバックライトであれば、CF(カラーフィルター)特性に対応した波長範囲に適合するように、任意の発光ドーパントを組み合わせて白色化すればよい。
 有機EL素子を備える照明装置の一態様としては、例えば、ガラス基板(例えば、厚み300μm)上に有機EL素子が形成され、さらに、この有機EL素子の非発光面がガラスケースで覆われ、ガラス基板とガラスケースとが有機EL素子の周囲に形成されたシール材(例えば、エポキシ系光硬化型接着剤、東亞合成社製ラックストラックLC0629B等)により接合されて、有機EL素子が封止された照明装置を挙げることができる。シール材の硬化は、ガラス基板とガラスケースと密着させ、ガラス基板側からUV光を照射することで行なうことができる。なお、封止作業は、有機EL素子を大気に接触させることなく窒素雰囲気下、好ましくは純度99.999%以上の高純度窒素ガスの雰囲気下のグローブボックス内で行うことが好ましい。また、ガラスケース内には窒素ガスが充填され、更に捕水剤が設けられていることが好ましい。
 以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、各合成例において得られた化合物の測定、及び、各実施例において得られた素子の評価は、以下の方法で行った。
〈環状ヘテロ芳香族化合物1~5の合成〉
 以下の方法で、環状ヘテロ芳香族化合物1;[6]CHA-1、環状ヘテロ芳香族化合物2;[2n]CHA-2(n=3~8)、環状ヘテロ芳香族化合物3;[2n]CHA-3(n=3~6)、環状ヘテロ芳香族化合物4;[3n]CHA-4(n=3,4)、及び、環状ヘテロ芳香族化合物5;[2n]CHA-5(n=3,4)の合成を行なった。
[環状ヘテロ芳香族化合物1;[6]CHA-1の合成]
 下記に示す[6]CHA-1を作製した。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 まず、脱気したN,N-ジメチルホルムアミド(DMF;活性アルミナと銅触媒Q-5のカラムを用いた溶媒精製装置により精製、以下同じ)(10mL)中において、2,6-ジブロモピリジン(144mg)と、1,3-ボロン酸エステルベンゼン(200mg)と、テトラキストリフェニルホスフィンパラジウム(68.5mg)と、2-ジシクロヘキシルホスフィノ-2′,6′-ジメトキシビフェニル(SPhos)(249mg)と、炭酸セシウム(4.94mg)との混合物を、110°Cで24時間撹拌した。次に、撹拌後の混合物を冷却した後、水(200mL)を加えた。そして、沈殿物を濾過により回収した。回収した沈殿物をメタノールで洗浄した後、減圧下で乾燥し、粗生成物Aを得た。
 次に、シリカゲルカラムクロマトグラフィ(溶離液:30%クロロホルム/ヘキサン)及びGPCにより分離を行い、粗生成物Aをクロロホルム(500mL)で抽出、精製した[6]CHA-1を得た。
[環状ヘテロ芳香族化合物2;[2n]CHA-2(n=3~8)の合成]
 下記に示す[2n]CHA-2(n=3~8)を作製した。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
 [2n]CHA-2(n=3~8)の合成は、上述の[6]CHA-1の合成に用いた1,3-ボロン酸エステルベンゼンを、(5-トリメチルシリル)1,3-ボロン酸エステルベンゼンに変更した以外は同様に行なった。
[環状ヘテロ芳香族化合物3;[2n]CHA-3(n=3~6)の合成]
 下記に示す[2n]CHA-3(n=3~6)を作製した。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 [2n]CHA-3(n=3~6)の合成は、上述の[6]CHA-1の合成に用いた2,6-ジブロモピリジンを、3,5-ジブロモピリジンに変更した以外は同様に行なった。
[環状ヘテロ芳香族化合物4;[3n]CHA-4(n=3,4)の合成]
 下記に示す[3n]CHA-4(n=3,4)を作製した。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 [3n]CHA-4(n=3,4)の合成は、上述の[2n]CHA-3(n=3~6)の合成に用いた1,3-ボロン酸エステルベンゼンを、2,7-ジブロナフタレンに変更した以外は同様に行なった。
[環状ヘテロ芳香族化合物5;[2n]CHA-5(n=3,4)の合成]
 下記に示す[2n]CHA-5(n=3,4)を作製した。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 [2n]CHA-5(n=3,4)の合成は、上述の[6]CHA-1の合成に用いた1,3-ボロン酸エステルベンゼンを、3,5-ボロン酸エステルピリジンに変更した以外は同様に行なった。
〈環状ヘテロ芳香族化合物の酸化還元特性〉
 環状ヘテロ芳香族化合物1~5の酸化還元特性を明確にするため、ホールオンリーデバイス及びエレクトロンオンリーデバイスの2種類の単電荷デバイスを製造した。
[ホールオンリーデバイス(HOD)の製造]
 以下の方法で、図21に示す構成のホールオンリーデバイス(HOD)を作製した。
 まず、100mm×100mm×1.1mmのガラス基板13上にITO(インジウムチンオキシド)層が100nmの厚さに成膜された基材(NHテクノグラス社製NA-45)を準備した。そして、このITO層にパターニングを行った後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行ってガラス基板13上にITOからなる陽極17を形成した。
 形成した陽極17上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmのPEDOT/PSS(HTL1)を設けた。
 次に、この基板を真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した上で、以下の条件で真空蒸着法にて有機化合物層16を順次積層した。まず、PEDOT/PSS(HTL1)上に、環状ヘテロ芳香族化合物1([6]CHA-1)を成膜レート10nm/sにて70nm、次いでNPD(HTL2)を成膜レート10nm/sにて20nm形成した。最後に、Al(陰極15)を成膜レート40nm/sにて100nm形成した。
 この後、ガラスケース12により封止し、HOD-1を作製した。
 同様に、環状ヘテロ芳香族化合物1([6]CHA-1)を、環状ヘテロ芳香族化合物2~5に変更し、HOD-2~HOD-5を作製した。また、非環状のヘテロ芳香族化合物であるポリピリジン(TPy)を用いて、比較用のHOD(TPy)を作製した。
[エレクトロンオンリーデバイス(EOD)の製造]
 以下の方法で、図21に示す構成のエレクトロンオンリーデバイス(EOD)を作製した。
 まず、100mm×100mm×1.1mmのガラス基板13上にITO(インジウムチンオキシド)層が100nmの厚さに成膜された基材(NHテクノグラス社製NA-45)を準備した。そして、このITO層にパターニングを行った後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行ってガラス基板13上にITOからなる陽極17を形成した。
 この基板を真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した上で、形成した陽極17上に以下の条件で真空蒸着法にて有機化合物層16を順次積層した。まず、カルシウムを成膜レート1nm/sにて5nm、環状ヘテロ芳香族化合物1([6]CHA-1)を成膜レート10nm/sにて70nm、次いでLiFを成膜レート1nm/sにて0.5nm形成した。
 次に、Al(陰極15)を成膜レート40nm/sにて100nm形成した。
 この後、ガラスケース12により封止し、EOD-1を作製した。
 同様に、環状ヘテロ芳香族化合物1([6]CHA-1)を、環状ヘテロ芳香族化合物2~5に変更し、EOD-2~EOD-5を作製した。また、非環状のヘテロ芳香族化合物であるポリピリジン(TPy)を用いて、比較用のEOD(TPy)を作製した。
[HOD、EODを用いた酸化還元特性の評価]
 作製したHOD-1~HOD-5、EOD-1~EOD-5、HOD(TPy)、及び、EOD(TPy)を用い、以下の酸化還元特性について評価を行った。
 各デバイス(HOD、EOD)に、100mA/cmの電流を50時間通電した際の通電前後のデバイスの電圧差ΔV(HOD)、及び、ΔV(EOD)の測定を行った。ΔV(HOD)、及び、ΔV(EOD)は、環状ヘテロ芳香族化合物1~5の替わりに、非環状のヘテロ芳香族化合物であるポリピリジン(TPy)を用いた、比較用のHOD(TPy)、及び、EOD(TPy)の電圧差を100とする相対値で評価した。
 各デバイスのΔV(HOD)を表1に示す。また、各デバイスのΔV(EOD)を表2に示す。
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
 上記の表1及び表2に示す結果から明らかなように、HODを用いた還元下での安定性は、環状ヘテロ芳香族化合物1~5用いたデバイスと、非環状化合物TPyを用いたデバイスとで同等であった。この結果から、環状ヘテロ芳香族化合物1~5用いたデバイスにおいても、従来から知られているヘテロ芳香族環に基づく特性が再現できていることがわかる。
 一方、EODを用いた酸化下での安定性は、環状ヘテロ芳香族化合物1~5用いたデバイスが、非環状化合物TPyを用いたデバイスよりも、顕著な安定化効果を示している。この結果から、ヘテロ芳香族化合物を環状化することによって、本来不安定又は活性なカチオンラジカル種の安定化に大きく寄与すると考えられる。
[有機EL素子101の製造]
 以下の方法で、有機EL素子101を作製した。有機EL素子101の構成は、上述の図21に示す構成と同様とし、有機化合物層の層構成は、図22に示す構成とした。
 まず、100mm×100mm×1.1mmのガラス基板13上にITO(インジウムチンオキシド)層が100nmの厚さに成膜された基材(NHテクノグラス社製NA-45)を準備した。そして、このITO層にパターニングを行った後、イソプロピルアルコールで超音波洗浄し、乾燥窒素ガスで乾燥し、UVオゾン洗浄を5分間行ってガラス基板13上にITOからなる陽極17を形成した。
 形成した陽極17上に、ポリ(3,4-エチレンジオキシチオフェン)-ポリスチレンスルホネート(PEDOT/PSS、Bayer社製、Baytron P Al 4083)を純水で70%に希釈した溶液を3000rpm、30秒でスピンコート法により成膜した後、200℃にて1時間乾燥し、膜厚30nmのPEDOT/PSS(HTL1)を設けた。
 次に、正孔輸送層まで形成した基板を真空蒸着装置に取付け、真空槽を4×10-4Paまで減圧した上で、以下の条件で真空蒸着法にて有機化合物層16を順次積層した。
 まず、PEDOT/PSS(HTL1)上に、NPD(HTL2)を成膜レート10nm/sにて20nm形成した。次に、環状ヘテロ芳香族化合物1([6]CHA-1)(HOST)とIr(ppy)を二元同時蒸着法にて40nm形成した。この時、環状ヘテロ芳香族化合物1の製膜レートを9.4nm/s、Ir(ppy)の製膜レートを0.6nm/sとした。次に、BAlq(ETL1)を成膜レート10nm/sにて10nm形成した。次に、Alq(ETL2)を成膜レート10nm/sにて20nm形成した。次に、LiFを成膜レート1nm/sにて0.5nm形成した。
 最後に、Al(陰極15)を成膜レート40nm/sにて100nm形成した。この後、上述のようにガラスケース12により封止し、有機EL素子101を作製した。
[有機EL素子102~105、有機EL素子(TPy)の製造]
 環状ヘテロ芳香族化合物1([6]CHA-1)を、環状ヘテロ芳香族化合物2~5に変更した以外は、有機EL素子101と同様の方法で有機EL素子102~105を作製した。
 また、環状ヘテロ芳香族化合物1に替えて、非環状のヘテロ芳香族化合物であるポリピリジン(TPy)を用いて、有機EL素子(TPy)を作製した。
[評価:素子寿命]
 作製した各有機EL素子に対し、室温下、2.5mA/cmの定電流条件下による連続発光を行い、初期輝度の半分の輝度になるまでの時間(τ1/2)を素子寿命とした。各有機EL素子の素子寿命は、有機EL素子(TPy)の素子寿命を100とした際の相対値として評価した。
[評価:保存性]
 作製した各有機EL素子を、80℃の恒温槽で300時間保存した後、各有機EL素子保存前後での外部量子取り出し効率の差を測定した。各有機EL素子の保存性は、有機EL素子(TPy)の保存性を100とした際の相対値として評価した。
 各有機EL素子の素子寿命と保存性の評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000028
 上記の表3に示す結果から明らかなように、環状ヘテロ芳香族化合物1~5を用いた有機EL素子101~105は、類似の部分構造を有する非環状ヘテロ芳香族化合物TPyを用いた有機EL素子(TPy)に対し、電流駆動経時の素子の安定性、いわゆる素子寿命が向上していることがわかる。これは、上述のEODを用いた酸化還元特性評価から、環状ヘテロ芳香族化合物を用いることにより酸化特性が向上し、再結合又はブロックできずに電子輸送層に漏れ出てくる、ホールによる素子の劣化が抑制できたためと考えられる。
 また、80℃の恒温槽で300時間保存後の素子の保存前後での外部量子取り出し効率の差(保存性)においても、環状ヘテロ芳香族化合物を用いることで向上することが明らかである。
 なお、本発明は上述の実施形態例において説明した構成に限定されるものではなく、その他本発明構成を逸脱しない範囲において種々の変形、変更が可能である。
 12・・・ガラスケース、13・・・ガラス基板、15・・・陰極、16・・・有機化合物層、17・・・陽極

Claims (9)

  1.  下記一般式(1)で表される環状ヘテロ芳香族化合物。
    Figure JPOXMLDOC01-appb-I000001
     [一般式(1)中、Aは、2価の芳香族環又はヘテロ芳香族環を表し、nは2以上の自然数を表す。各々のAは異なっていてもよく、少なくとも1つのAはヘテロ芳香族である。]
  2.  下記一般式(2)で表される請求項1に記載の環状ヘテロ芳香族化合物。
    Figure JPOXMLDOC01-appb-I000002
     [一般式(2)中、Qは、3価のヘテロ原子、CR(但し、Rは水素原子又は置換基)、又は、A´R´(a-3)(但し、A´は4価以上のヘテロ原子を表し、aは前記ヘテロ原子の価数を示す。R´は、水素原子又は置換基を示し、a-3が2以上の場合、それぞれのR´は異なっていてもよい)を表す。各々のQは異なっていてもよく、少なくとも1つのQはヘテロ原子である。]
  3.  下記一般式(3)で表される請求項1に記載の環状ヘテロ芳香族化合物。
    Figure JPOXMLDOC01-appb-I000003
     [一般式(3)中、Yは、3価のヘテロ原子、CR(但し、Rは水素原子又は置換基)、又は、A´R´(a-3)(但し、A´は4価以上のヘテロ原子を表し、aは前記ヘテロ原子の価数を示す。R´は、水素原子又は置換基を示し、a-3が2以上の場合、それぞれのR´は異なっていてもよい)を表す。各々のYは異なっていてもよく、少なくとも1つのYはヘテロ原子である。]
  4.  請求項1に記載の環状ヘテロ芳香族化合物を含有する有機エレクトロニクス素子用材料。
  5.  請求項1に記載の環状ヘテロ芳香族化合物を有機化合物層に含有する有機エレクトロニクス素子。
  6.  前記有機化合物層として電子輸送層、正孔輸送層、及び、発光層を有し、前記電子輸送層、前記正孔輸送層、及び、前記発光層から選ばれる少なくともいずれか1層以上に前記環状ヘテロ芳香族化合物が含まれる請求項5に記載の有機エレクトロニクス素子。
  7.  前記発光層に発光材料としてリン光発光性ドーパントが含まれる請求項5に記載の有機エレクトロニクス素子。
  8.  前記有機化合物層が、前記環状ヘテロ芳香族化合物を含む共通ホスト材料と発光ドーパントとを含む発光領域、及び、前記共通ホスト材料のみから構成される非ドープ領域を有する請求項5に記載の有機エレクトロニクス素子。
  9.  請求項5に記載の有機エレクトロニクス素子を備える電子機器。
PCT/JP2016/074864 2015-09-03 2016-08-25 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器 WO2017038642A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537809A JP6809468B2 (ja) 2015-09-03 2016-08-25 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-174188 2015-09-03
JP2015174188 2015-09-03

Publications (1)

Publication Number Publication Date
WO2017038642A1 true WO2017038642A1 (ja) 2017-03-09

Family

ID=58188830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074864 WO2017038642A1 (ja) 2015-09-03 2016-08-25 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器

Country Status (2)

Country Link
JP (1) JP6809468B2 (ja)
WO (1) WO2017038642A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136358A (ja) * 2019-02-14 2020-08-31 国立大学法人東海国立大学機構 発光素子用材料及び発光素子

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123983A (ja) * 2001-10-10 2003-04-25 Konica Corp 有機エレクトロルミネッセンス素子
WO2006104118A1 (ja) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007165377A (ja) * 2005-12-09 2007-06-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007194506A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
JP2007194504A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
JP2007194505A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
WO2010123046A1 (ja) * 2009-04-21 2010-10-28 住友化学株式会社 変性金属錯体
JP2012017314A (ja) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd 含窒素芳香族化合物及び金属錯体
KR20120088644A (ko) * 2012-07-20 2012-08-08 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
JP2012222269A (ja) * 2011-04-13 2012-11-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003123983A (ja) * 2001-10-10 2003-04-25 Konica Corp 有機エレクトロルミネッセンス素子
WO2006104118A1 (ja) * 2005-03-29 2006-10-05 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007165377A (ja) * 2005-12-09 2007-06-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2007194506A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
JP2007194504A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
JP2007194505A (ja) * 2006-01-20 2007-08-02 Fujifilm Corp 有機電界発光素子
WO2010123046A1 (ja) * 2009-04-21 2010-10-28 住友化学株式会社 変性金属錯体
JP2012017314A (ja) * 2009-10-30 2012-01-26 Sumitomo Chemical Co Ltd 含窒素芳香族化合物及び金属錯体
JP2012222269A (ja) * 2011-04-13 2012-11-12 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置
KR20120088644A (ko) * 2012-07-20 2012-08-08 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAWITZKI G. ET AL.: "The structure of planar 4,4''',6,6'''-tetraazahexa-m-phenylene", CHEMISHCE BERICHTE, vol. 112, 1979, pages 3104 - 9, ISSN: 0009-2940 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020136358A (ja) * 2019-02-14 2020-08-31 国立大学法人東海国立大学機構 発光素子用材料及び発光素子
JP7257173B2 (ja) 2019-02-14 2023-04-13 国立大学法人東海国立大学機構 発光素子用材料及び発光素子

Also Published As

Publication number Publication date
JP6809468B2 (ja) 2021-01-06
JPWO2017038642A1 (ja) 2018-06-21

Similar Documents

Publication Publication Date Title
JP5609641B2 (ja) 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010044342A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子の製造方法、白色有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2010095564A1 (ja) 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP6085985B2 (ja) 有機金属錯体、有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6056884B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP5708176B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP5692011B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、並びに照明装置
JP2012248663A (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置、照明装置、並びに化合物
WO2012173079A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
WO2011052250A1 (ja) 有機エレクトロルミネッセンス素子、有機エレクトロルミネッセンス素子材料、表示装置及び照明装置
JP2016219487A (ja) 有機エレクトロルミネッセンス素子、表示装置、照明装置、有機エレクトロルミネッセンス素子材料及び新規化合物
JPWO2016143508A1 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料
WO2014034584A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP5636630B2 (ja) 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP6911223B2 (ja) 有機金属錯体、有機エレクトロルミネッセンス素子及びその製造方法、表示装置並びに照明装置
JP5556602B2 (ja) 有機エレクトロニクス素子用材料、有機エレクトロニクス素子、照明装置及び表示装置
WO2013027633A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6717150B2 (ja) 有機エレクトロニクス素子、及び、電子機器
JP6809468B2 (ja) 環状ヘテロ芳香族化合物、有機エレクトロニクス素子用材料、有機エレクトロニクス素子、及び、電子機器
JP5552268B2 (ja) 有機エレクトロルミネッセンス素子、その製造方法、照明装置及び表示装置
WO2013161739A1 (ja) 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6657596B2 (ja) 有機エレクトロニクス素子
JP5776808B2 (ja) 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6388114B2 (ja) 有機エレクトロニクス素子用材料に用いる環状芳香族化合物の製造方法
JP6044695B2 (ja) 有機エレクトロルミネッセンス素子、それが具備された表示装置及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841674

Country of ref document: EP

Kind code of ref document: A1