WO2013069754A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents
無方向性電磁鋼板およびその製造方法 Download PDFInfo
- Publication number
- WO2013069754A1 WO2013069754A1 PCT/JP2012/079066 JP2012079066W WO2013069754A1 WO 2013069754 A1 WO2013069754 A1 WO 2013069754A1 JP 2012079066 W JP2012079066 W JP 2012079066W WO 2013069754 A1 WO2013069754 A1 WO 2013069754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel sheet
- rolling
- annealing
- temperature
- less
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1222—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1216—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
- C21D8/1233—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
- C21D8/1244—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
- C21D8/1272—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/008—Ferrous alloys, e.g. steel alloys containing tin
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14775—Fe-Si based alloys in the form of sheets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/16—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B2001/225—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2201/00—Treatment for obtaining particular effects
- C21D2201/03—Amorphous or microcrystalline structure
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/12—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14766—Fe-Si based alloys
- H01F1/14791—Fe-Si-Al based alloys, e.g. Sendust
Definitions
- the present invention relates to a non-oriented electrical steel sheet having an ⁇ - ⁇ transformation (ferrite-austenite transformation) and excellent magnetic properties, and a method for producing the same.
- This application claims priority based on Japanese Patent Application No. 2011-247637 filed in Japan on November 11, 2011 and Japanese Patent Application No. 2011-247683 filed in Japan on November 11, 2011. The contents are incorporated herein.
- non-oriented electrical steel sheets used as iron cores are required to have higher magnetic flux density and lower iron loss.
- low-Si steel is advantageous for producing a steel plate with a high magnetic flux density, but it inevitably uses steel having a component composition range having an ⁇ - ⁇ transformation.
- Many methods have been proposed for improving the magnetic properties of low-Si non-oriented electrical steel sheets.
- Patent Document 1 proposes a method in which hot rolling is finished at an Ar3 transformation point or higher, and the temperature is slowly cooled from the Ar3 transformation point to an Ar1 transformation point at 5 ° C / sec or less.
- Patent Document 2 proposes a method in which Sn is added to steel, the finishing temperature of hot rolling is controlled according to the Sn concentration, and a high magnetic flux density is obtained.
- this method is limited to a Si concentration of 0.4% or less, and is insufficient for obtaining a low iron loss.
- Patent Document 3 proposes a steel plate that has a high magnetic flux density and excellent grain growth during strain relief annealing by limiting the heating temperature and finishing temperature during hot rolling. In this method, since there is no process such as self-annealing instead of hot rolling annealing, a high magnetic flux density cannot be obtained.
- Patent Document 4 proposes that in hot rolling, a rough bar before finish rolling is heated online, the finishing temperature of hot rolling is Ar1 + 20 ° C. or more, and the winding temperature is 640 to 750 ° C. ing. However, this method aims at detoxification of precipitates, and a high magnetic flux density is not obtained.
- An object of the present invention is a non-oriented electrical steel sheet having an ⁇ - ⁇ transformation, which is a non-oriented electrical steel sheet having a higher magnetic flux density and lower iron loss, and a method for producing the same. is there.
- the present invention optimizes the hot rolling conditions together with the component composition of the steel to coarsen the structure after hot rolling annealing or the structure after self-annealing, and the product after cold rolling and finish annealing It increases the magnetic flux density.
- the present invention thus made is as follows.
- Non-magnetic precipitate AlN having an average diameter of 10 nm to 200 nm is a structure composed of ferrite grains having a number density of 10 pieces / ⁇ m 3 or less and not containing an unrecrystallized structure, and the average grain diameter of the ferrite grains is 30 ⁇ m. ⁇ 200 ⁇ m, A non-oriented electrical steel sheet having an average magnetic flux density B50 in a rolling direction and a direction perpendicular to a rolling direction of 1.75 T or more.
- a method for producing a non-oriented electrical steel sheet characterized in that an annealing temperature in the hot rolling annealing is set to 750 ° C. to Ac1 transformation point, and an annealing temperature in the finish annealing is set to 800 ° C. to Ac1 transformation point.
- a method for producing a non-oriented electrical steel sheet characterized in that an annealing temperature in the finish annealing is set to 800 ° C. to Ac1 transformation point.
- B50 is the magnetic flux density when a magnetic field of 50 Hz and 5000 A / m is applied.
- FIG. 1 is a diagram showing a change in the relationship between the hot rolling finishing temperature FT and the average magnetic flux density B50 when the holding time for hot rolling annealing is changed.
- FIG. 2 is a diagram showing a change in the relationship between the hot rolling finishing temperature FT and the iron loss W15 / 50 when the hot rolling annealing holding time is changed.
- FIG. 3 is a photograph showing an example of bending observed in a steel sheet that has been subjected to finish annealing after cold rolling on a material that has been processed under conditions where the finishing temperature FT of hot rolling is 1060 ° C. and the hot rolling annealing is 850 ° C. ⁇ 120 minutes. It is.
- FIG. 4 is a photograph showing the metal structure of the cross section after hot rolling annealing.
- FIG. 5 is a photograph showing the observation result of fine precipitates (SEM 50000 times).
- the steel ingot was heated at a temperature of 1150 ° C. for 1 hour and subjected to hot rolling.
- the finish rolling finish temperature FT was changed in the range of 880 ° C. to 1080 ° C.
- the finished thickness was 2.5 mm.
- the obtained hot rolled steel sheet is subjected to hot rolling annealing at a temperature of 850 ° C. and a holding time of 1 to 120 minutes, or the steel sheet is pickled without performing hot rolling annealing, and the thickness of the steel sheet is increased.
- the thickness of the steel sheet is increased.
- FIG. 1 shows the relationship between the finish rolling end temperature FT and the average magnetic flux density B50 in the L / C direction when the holding time for hot rolling annealing is changed.
- FIG. 2 shows the relationship between the finish rolling finish temperature FT and the iron loss W15 / 90 when the hot rolling annealing holding time is changed.
- the average magnetic flux density B50 has the highest finish rolling end temperature FT in the vicinity of the Ar1 transformation point.
- the average magnetic flux density B50 of the material rises rapidly, and the lower the finish rolling end temperature FT, the higher the average magnetic flux density B50.
- the average magnetic flux density B50 reaches 1.79T.
- the average magnetic flux density B50 of the material increased rapidly and became around 1.81 T regardless of the finish rolling end temperature FT.
- Table 1 shows the conditions under which folding was observed. Such a folding phenomenon is observed when the finish rolling finish temperature FT is high and the holding time for hot rolling annealing is long.
- FIG. 4 shows a cross-sectional structure after hot rolling annealing.
- FIG. 5 shows the result of the microstructure observation.
- the finish rolling finish temperature FT was 1060 ° C.
- fine precipitates were observed at the grain boundaries, and it was confirmed that the fine precipitates were AlN.
- this fine AlN suppresses grain growth when the annealing holding time is short, it is presumed that abnormal grain growth occurs due to ripening and unbounding of grain boundaries.
- the solubility of AlN is smaller in the ⁇ phase than in the ⁇ phase, a large amount of AlN precipitates when the parent phase is transformed from the ⁇ phase to the ⁇ phase.
- the structure of the ⁇ phase before transformation includes an unrecrystallized structure in some cases, and even if recrystallized, the grain size is smaller than that of the ⁇ phase before reduction. .
- ⁇ nuclei are generated with the grain boundaries of the old ⁇ phase as precipitation sites, and a fine ⁇ phase structure is formed. Since AlN is likely to precipitate simultaneously with the transformation, the grain boundaries of the ⁇ -phase grains become precipitation sites, and AlN precipitates finely and in large quantities.
- the present invention has been made on the basis of such examination results, and the requirements for the non-oriented electrical steel sheet and the manufacturing method thereof defined in the present invention will be sequentially described in detail below.
- % of content means the mass%.
- C is a harmful element that degrades iron loss and also causes magnetic aging, so 0.005% or less. Preferably it is 0.003% or less. Including 0%.
- Si is an element that increases the specific resistance of steel and decreases iron loss, and the lower limit is 0.1%. Excessive addition reduces the magnetic flux density. Therefore, the upper limit of Si is 2.0%. Preferably, it is 0.1% to 1.6%.
- Mn increases the specific resistance of the steel and coarsens the sulfide to render it harmless. However, excessive addition leads to steel embrittlement and cost increase. Therefore, 0.05% to 0.6% is set. Preferably, it is 0.1% to 0.5%.
- ⁇ P 0.100% or less> P is added to ensure the hardness of the steel sheet after recrystallization. Excessive addition causes embrittlement of the steel. Therefore, it is made 0.100% or less. Preferably, the content is 0.001% to 0.08%.
- Al is easily bonded to N to form AlN.
- the hot rolling method described later fine precipitation can be prevented.
- the amount is too large, fine precipitation tends to occur even if the hot rolling method is used. Therefore, it is 0.5% or less.
- it is also an element effective for deoxidation. Preferably, it is 0.03% to 0.4%.
- At least one of Sn and Sb 0.05% to 0.2%> Sn and Sb are added as necessary to improve the texture after cold rolling and recrystallization and to increase the magnetic flux density.
- the content is preferably 0.05% to 0.2%.
- it is 0.05% to 0.15%.
- ⁇ B 0.0005% to 0.0030%>
- B forms BN, fixes N in preference to Al, and has the effect of suppressing fine precipitation of AlN when the steel sheet is transformed from the ⁇ phase to the ⁇ phase.
- B is added as necessary. .
- the content is preferably 0.0005% to 0.0030%.
- the content is 0.001% to 0.002%.
- the present invention seeks to obtain excellent magnetic properties by suppressing fine precipitation of AlN.
- the presumed nitrogen content is in the normal range and is not particularly specified. For example, even if the content is 40 ppm, good magnetic properties can be obtained by using the present invention. More preferable magnetic properties can be obtained by setting the concentration to 30 ppm or less, more preferably 20 ppm or less.
- the non-oriented electrical steel sheet of the present invention has the above-mentioned ⁇ - ⁇ transformation steel composition, and the balance of the composition is Fe and inevitable impurities.
- the number density of nonmagnetic precipitates AlN having an average diameter of 10 nm to 200 nm in the steel sheet is suppressed to 10 pieces / ⁇ m 3 or less.
- the average diameter of AlN that has the greatest effect on grain growth during hot rolling annealing or finish annealing was 10 nm to 200 nm. Therefore, the number density of AlN of this size is specified.
- the number density exceeds 10 pieces / ⁇ m 3 , the grain growth of recrystallization of the hot-rolled steel sheet is not sufficient at the time of hot-rolling annealing, leading to a decrease in magnetic flux density. Furthermore, it adversely affects grain growth by recrystallization during finish annealing after cold rolling.
- it is 5 / ⁇ m 3 or less.
- the structure of the non-oriented electrical steel sheet of the present invention is a structure composed of ferrite grains not containing an unrecrystallized structure, and the average grain diameter of the ferrite grains is set to be 30 ⁇ m to 200 ⁇ m. Even if it contains an unrecrystallized structure or is completely recrystallized, if the average particle size is less than 30 ⁇ m, the hysteresis loss increases and the total iron loss increases. Preferably it is 40 micrometers or more, More preferably, it is 60 micrometers or more. On the other hand, when the average grain size of the ferrite grains exceeds 200 ⁇ m, eddy current loss increases and the total iron loss increases. Preferably it is 150 micrometers or less.
- the average magnetic flux density B50 in the rolling direction and the direction perpendicular to the rolling direction is 1.75 T or more. Further, as described above, Sn and Sb have the effect of improving the average magnetic flux density B50 by improving the texture after cold rolling and recrystallization.
- the manufacturing method for obtaining the non-oriented electrical steel sheet of this invention is demonstrated.
- the slab having the steel composition described above is hot-rolled, the obtained hot-rolled steel sheet is annealed, cold-rolled after pickling, and then subjected to finish annealing.
- a method of self-annealing using the heat at the time of hot rolling is also possible for annealing the hot-rolled steel sheet.
- the temperature at which the slab is heated in hot rolling is set to 1250 ° C. or lower in order to prevent re-dissolution / fine precipitation of impurities such as sulfides and to prevent iron loss.
- the temperature is set to 1050 ° C. or higher.
- the temperature is preferably 1100 ° C to 1200 ° C.
- the subsequent hot rolling rough rolling and descaling may be performed by a normal method, and the conditions are not particularly limited.
- the end temperature FT is set to 800 ° C. to (Ar1 transformation point + 20 ° C.).
- the finish rolling end temperature FT is less than 800 ° C., the hot rolling operation becomes unstable and the productivity is lowered.
- the finish rolling finish temperature FT is Ar1 transformation point + 20 ° C. or more, AlN is finely precipitated in a large amount at the ⁇ grain boundaries after transformation, and the grain growth of ferrite grains in the hot-rolled annealed steel sheet is inhibited. .
- the steel sheet after cold rolling and recrystallization may be broken.
- it is in the range of 800 ° C. to Ar1 transformation point.
- the coil winding temperature is 500 to 700 ° C. If it is less than 500 degreeC, the operation of hot rolling will become unstable. If it is 700 degreeC or more, many scales will adsorb
- the temperature range is from 750 ° C. to the Ac1 transformation point.
- the holding time can be appropriately selected.
- the method can be either continuous annealing or box annealing.
- the hot-rolled annealed steel sheet is pickled, cold-rolled to obtain a cold-rolled steel sheet, and then finish-annealed.
- the annealed structure is a ferrite phase that does not contain an unrecrystallized structure, and the average grain size of the ferrite grains is 30 ⁇ m to 200 ⁇ m.
- the annealing temperature is set to 800 ° C. or more.
- the Ac1 transformation point is set below. The 850 ° C. to Ac1 transformation point is preferable.
- the finish rolling finish temperature FT of the hot rolling is set to 800 ° C. to (Ar1 transformation point + 20 ° C.) as in the case of the external heating method. This is to avoid the ferrite grain growth during the subsequent self-annealing when operated at an Ar1 transformation point + 20 ° C. or higher.
- the lower limit is set to 800 ° C. for stabilization of hot rolling operation, but a higher value is preferable for increasing the temperature of self-annealing after winding.
- it is 850 ° C. to Ar 1 transformation point + 20 ° C.
- the coil winding temperature is 780 ° C. or higher for self-annealing in which the coil itself is annealed with the heat of hot rolling.
- the time until the water cooling is started is 10 minutes or more.
- the coiling temperature is preferably 800 ° C. or higher, more preferably 850 ° C. or higher because the higher the temperature, the larger the structure due to self-annealing.
- the coarse bar may be heated immediately before finish rolling in order to increase the winding temperature.
- the subsequent coiling temperature may also decrease due to the limitation of the previous finishing temperature.
- the hot-rolled steel sheet immediately before winding can be heated to raise the temperature to a temperature lower than the Ac1 transformation point.
- These heating methods are not particularly limited, but induction heating or the like can be used.
- the upper limit of the coiling temperature is preferably not more than the Ac1 transformation point. When it becomes higher than the Ac1 transformation point, it transforms again in the cooling process, the structure before cold rolling becomes fine, and the magnetic flux density after cold rolling and recrystallization decreases.
- the self-annealed steel sheet produced by the above process is pickled, cold-rolled to obtain a cold-rolled steel sheet, and then finish-annealed.
- the annealed structure is a ferrite phase that does not contain an unrecrystallized structure, and the average grain size of the ferrite grains is 30 ⁇ m to 200 ⁇ m.
- the annealing temperature is set to 800 ° C. or more.
- the Ac1 transformation point is set below. The 850 ° C. to Ac1 transformation point is preferable.
- the present invention is a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss as described above, and a method for producing the electrical steel sheet.
- the present invention can be implemented using examples. The effects will be further described. Note that the conditions and the like in the experiments described below are examples adopted for confirming the feasibility and effects of the present invention, and the present invention is not limited to these examples.
- Example 1 An ingot having the composition shown in Table 2 was manufactured by melting in a vacuum in a laboratory, and then this ingot was heated and roughly rolled to obtain a coarse bar having a thickness of 40 mm. The obtained rough bar is hot-finished and rolled into a hot-rolled steel sheet having a thickness of 2.5 mm. After hot-rolling annealing at 850 ° C. for 15 minutes, pickling is performed to cool to 0.5 mm. Hot-rolled and finish-annealed. The table shows the transformation temperature, hot rolling heating temperature, finish rolling temperature, winding equivalent temperature, and finish annealing temperature after cold rolling of each steel.
- the magnetic properties of the obtained sample were evaluated by the Epstein method (JIS C 2556), the particle size was measured (JIS G 0552), and the precipitates were also observed. The results are also shown in the same table.
- the magnetic characteristics are shown as average values in the L direction and the C direction. In this evaluation, a case where the average magnetic flux density B50 was 1.75 T or more and the iron loss W15 / 50 was 5.0 W / kg or less was evaluated as good, and all the examples of the present invention obtained good characteristics.
- Example 2 In mass%, C: 0.0014%, Si: 0.5%, Mn: 0.2%, P: 0.076%, Al: 0.3%, and Sn: 0.09%, An ingot made of steel having a component composition with the balance being Fe and inevitable impurities was melted in a laboratory vacuum melting furnace. This steel has an Ar1 transformation point of 955 ° C, an Ar3 transformation point of 985 ° C, and an Ac1 transformation point of 1018 ° C.
- the non-oriented electrical steel sheet manufactured by the manufacturing method within the scope of the present invention obtained excellent magnetic properties.
- D2, D3, and D5 were all processed at a temperature at which the hot rolling operation becomes unstable, and in this experiment, a non-oriented electrical steel sheet having excellent magnetic properties was obtained, but the reproducibility was up to Can not be confirmed.
- D4 although the magnetic properties were excellent, the scale attached to the surface of the steel sheet could not be sufficiently removed by pickling, and the steel sheet shape was abnormally deteriorated by cold rolling, so it could not be handled as a product. Met.
- Example 3 The molten steel melted in the converter was vacuum degassed, adjusted to the composition shown in Table 4, and continuously cast into a slab.
- the slab was heated and hot-rolled, and the thickness was 2.5 mm. It was wound up as a hot rolled plate.
- the table shows the transformation temperature of each steel, the heating temperature of the slab, the finishing temperature of finish rolling, and the winding temperature of the hot rolled steel sheet. Thereafter, the hot-rolled steel sheet was pickled, cold-rolled to 0.5 mm, and subjected to finish annealing. The finish annealing temperature is also shown in the same table.
- the obtained material was subjected to magnetic measurement, particle size measurement, and precipitation observation in the same manner as in Example 1.
- the manufacturing conditions and measurement results are shown together in Table 4.
- Table 4 a case where the average magnetic flux density B50 was 1.75 T or more and the iron loss W15 / 50 was 5.0 W / kg or less was evaluated as good, and all the examples of the present invention obtained good characteristics.
- the non-oriented electrical steel sheet having the component composition within the range of the present invention has excellent magnetic properties.
- F3 had a low average magnetic flux density B50
- F6 had a break in the steel sheet
- the others had a large iron loss.
- This steel had an Ar1 transformation point of 955 ° C, an Ar3 transformation point of 985 ° C, and an Ac1 transformation point of 1018 ° C.
- This slab was heated, hot-rolled, and wound up as a hot-rolled steel sheet having a thickness of 2.5 mm.
- Table 5 shows the heating temperature of the slab, the finishing temperature of the finish rolling, and the winding temperature of the hot-rolled steel sheet.
- the wound coil was held for 15 minutes and then cooled with water. Some materials having a high winding temperature were heated immediately before winding. Thereafter, the hot-rolled steel sheet was pickled, cold-rolled to 0.5 mm, and subjected to finish annealing at the temperature shown in Table 5 for 30 seconds.
- Example 2 The obtained material was subjected to magnetic measurement, particle size measurement, and precipitation observation in the same manner as in Example 1.
- the production conditions and measurement results are shown together in Table 5.
- Sn average magnetic flux density
- the non-oriented electrical steel sheet manufactured by the manufacturing method within the scope of the present invention has excellent magnetic properties.
- F3 had a low average magnetic flux density B50
- F6 had a fracture in the steel sheet
- the others had a large iron loss.
- the present invention can contribute to high efficiency of various devices such as motors.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Abstract
Description
また、特許文献2には、鋼にSnを添加し、Sn濃度に応じて熱間圧延の仕上げ温度を制御し、高い磁束密度を得る方法が提案されている。しかしこの方法はSi濃度が0.4%以下に限定されており、低い鉄損を得るには不十分である。
また、特許文献4は、熱間圧延において、仕上げ圧延前の粗バーをオンラインで加熱し、熱間圧延の仕上げ温度をAr1+20℃以上とし、巻き取り温度を640~750℃とすることが提案されている。ところが、この方法は析出物の無害化を目的としており、高い磁束密度は得られていない。
そのようになされた本発明は次のとおりである。
(1)質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下、
を含有し、残部がFe及び不可避不純物であり、
平均直径10nm~200nmの非磁性析出物AlNを、個数密度10個/μm3以下含有し、かつ、未再結晶組織を含まないフェライト粒からなる組織であり、前記フェライト粒の平均粒径が30μm~200μmであり、
圧延方向及び圧延直角方向の平均の磁束密度B50が1.75T以上であることを特徴とする無方向性電磁鋼板。
(2)さらに、質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする(1)に記載の無方向性電磁鋼板。
(3)さらに、質量%で、Bを0.0005%~0.0030%含有することを特徴とする(1)または(2)に記載の無方向性電磁鋼板。
(4)質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下
を含有し、残部がFe及び不可避不純物である鋼組成を有するスラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に熱間圧延焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程とを有し、
前記熱間圧延において、前記スラブの加熱温度を1050℃~1250℃、仕上げ圧延の終了温度を800℃~(Ar1変態点+20℃)、コイルの巻き取り温度を500℃~700℃とし、
前記熱間圧延焼鈍における焼鈍温度を750℃~Ac1変態点とし、前記仕上げ焼鈍における焼鈍温度を800℃~Ac1変態点とすることを特徴とする無方向性電磁鋼板の製造方法。
(5)前記スラブは、さらに質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする(4)に記載の無方向性電磁鋼板の製造方法。
(6)前記スラブは、さらに質量%で、Bを0.0005%~0.0030%含有することを特徴とする(4)または(5)に記載の無方向性電磁鋼板の製造方法。
(7)質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下
を含有し、残部がFe及び不可避不純物である鋼組成を有するスラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程とを有し、
前記熱間圧延において、前記スラブの加熱温度を1050℃~1250℃、仕上げ圧延の終了温度を800℃~(Ar1変態点+20℃)、コイルの巻き取り温度を780℃以上とし、
前記仕上げ焼鈍における焼鈍温度を800℃~Ac1変態点とすることを特徴とする無方向性電磁鋼板の製造方法。
(8)前記スラブは、さらに質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする(7)に記載の無方向性電磁鋼板の製造方法。
(9)前記スラブは、さらに質量%で、Bを0.0005%~0.0030%含有することを特徴とする(7)または(8)に記載の無方向性電磁鋼板の製造方法。
ここでB50は、50Hz、5000A/mの磁場を印加した時の磁束密度である。
質量%で、C:0.0011%、Si:0.7%、Mn:0.17%、P:0.073%、Al:0.31%、及びSn:0.095%を含有し、残部がFe及び不可避的不純物である成分組成の鋼を用いた鋼塊を実験室的に溶製した。フォーマスタ試験で、この鋼のAr1変態点は963℃、Ar3変態点は1020℃、Ac1変態点は1060℃であることを確認した。
Cは鉄損を劣化させ、磁気時効の原因にもなる有害な元素なので、0.005%以下とする。好ましくは0.003%以下である。0%も含む。
Siは鋼の固有抵抗を増加させ鉄損を低下させる元素であり、下限は0.1%とする。過剰な添加は磁束密度を低下させる。従ってSiの上限は2.0%とする。好ましくは0.1%~1.6%である。
Mnは鋼の固有抵抗を高め、また硫化物を粗大化して無害化する。ただし過剰な添加は鋼の脆化、コストの上昇に繋がる。従って0.05%~0.6%とする。好ましくは0.1%~0.5%である。
Pは再結晶後の鋼板の硬度を確保するために添加する。過剰な添加は鋼の脆化を招く。従って0.100%以下とする。好ましくは0.001%~0.08%である。
AlはNと結合してAlNを形成しやすい。後に述べる熱間圧延の方法を適用することによって、微細析出を防止できるが、多すぎるとその熱間圧延の方法を用いても微細に析出する傾向を持つ。従って、0.5%以下とする。一方で脱酸に有効な元素でもある。好ましくは、0.03%~0.4%である。
SnやSbは冷間圧延、再結晶後の集合組織を改善して、その磁束密度を向上させるために必要に応じて添加される。ただし過剰な添加は鋼を脆化させる。このため、添加する場合は0.05%~0.2%とするのがよい。好ましくは0.05%~0.15%である。
BはBNを形成し、Alに優先してNを固定して、鋼板がγ相からα相に変態した時のAlNの微細析出を抑える作用があり、このために必要に応じて添加される。しかし過剰に添加すると、固溶して集合組織を劣化させ、磁束密度を低下させる。このため、添加する場合は0.0005%~0.0030%とするのがよい。好ましくは0.001%~0.002%である。
先に記述したように、本発明ではAlNの微細析出を抑制することで優れた磁気特性を得ようとするものである。前提としている窒素含有量は通常の範囲のものであり特に規定するものでではないが、例えば、40ppmの含有でも本発明を用いれば、良好な磁気特性が得られる。好ましくは30ppm以下、より好ましくは20ppm以下にすることで、より良好な磁気特性を得ることができる。
上記のような観察の結果、本発明では熱間圧延焼鈍時や仕上げ焼鈍時の粒成長に最も影響を与えるAlNの平均直径は10nm~200nmであった。従ってこのサイズのAlNの個数密度を規定する。個数密度が10個/μm3を超えると、熱間圧延焼鈍時に熱間圧延鋼板の再結晶の粒成長が十分でなく、磁束密度の低下に繋がる。更に、冷間圧延後の仕上げ焼鈍時における再結晶での粒成長にも悪影響を与える。好ましくは、5個/μm3以下である。
本発明の製造方法は、上記に記載の鋼組成を有するスラブに対して熱間圧延を施し、得られた熱間圧延鋼板に焼鈍を施し、酸洗後に冷間圧延を施し、その後仕上げ焼鈍を施すが、熱間圧延鋼板への焼鈍は、連続焼鈍やバッチ焼鈍などの外部からコイルを加熱する方法の他に、熱間圧延時の熱を利用して自己焼鈍する方法も可能である。
表2に示した成分組成のインゴットを実験室で真空溶解して製造し、次いで、このインゴットを加熱し、粗圧延して厚さ40mmの粗バーを得た。得られた粗バーに熱間仕上げ圧延を施し、厚さが2.5mmの熱間圧延鋼板とし、850℃、15分の熱間圧延焼鈍の後、酸洗を行って、0.5mmまで冷間圧延し、仕上げ焼鈍を行った。同表に各鋼の変態温度、熱間圧延加熱温度、仕上げ圧延温度、巻き取り相当温度、及び冷間圧延後の仕上げ焼鈍温度を示す。
質量%で、C:0.0014%、Si:0.5%、Mn:0.2%、P:0.076%、Al:0.3%、及びSn:0.09%を含有し、残部がFe及び不可避的不純物である成分組成の鋼よりなるインゴットを実験室の真空溶解炉で溶製した。この鋼のAr1変態点は955℃、Ar3変態点は985℃、Ac1変態点は1018℃である。
得られた材料について、実施例1と同様に、磁気測定、粒径測定、析出部観察を行った。製造条件と測定結果とをあわせて表3に示す。Snを添加した本実施例において、本発明の製造条件で製造すると、平均磁束密度B50が1.77T以上、鉄損W15/50が4.5W/kg以下の良好な特性が得られた。
転炉で溶製した溶鋼を真空脱ガス処理し、表4に示した成分組成に調整後、連続鋳造してスラブとし、このスラブを加熱して熱間圧延を施し、厚さが2.5mmの熱間圧延板として巻き取った。同表には、それぞれの鋼の変態温度、スラブの加熱温度、仕上げ圧延の終了温度、熱間圧延鋼板の巻き取り温度を示す。
その後、この熱間圧延鋼板を酸洗し、0.5mmまで冷間圧延し、仕上げ焼鈍を行った。同じく同表に仕上げ焼鈍温度を示す。
本発明範囲の成分組成の無方向性電磁鋼板は、優れた磁気特性が得られた。一方、比較例では、F3は平均磁束密度B50が低く、F6は鋼板に破断が生じ、それ以外のものは鉄損が大きかった。
C:0.0011%、Si:0.5%、Mn:0.17%、P:0.073%、Al:0.31%、及びSn:0.095%を含有し、残部がFe及び不可避的不純物である成分組成のスラブを転炉で溶製した。この鋼のAr1変態点は955℃、Ar3変態点は985℃、Ac1変態点は1018℃であった。
その後、熱間圧延鋼板を酸洗し、0.5mmまで冷間圧延し、表5に示す温度で30秒間の仕上げ焼鈍を行った。
Claims (9)
- 質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下、
を含有し、残部がFe及び不可避不純物であり、
平均直径10nm~200nmの非磁性析出物AlNを、個数密度10個/μm3以下含有し、かつ、未再結晶組織を含まないフェライト粒からなる組織であり、前記フェライト粒の平均粒径が30μm~200μmであり、
圧延方向及び圧延直角方向の平均の磁束密度B50が1.75T以上であることを特徴とする無方向性電磁鋼板。 - さらに、質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする請求項1に記載の無方向性電磁鋼板。
- さらに、質量%で、Bを0.0005%~0.0030%含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。
- 質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下
を含有し、残部がFe及び不可避不純物である鋼組成を有するスラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に熱間圧延焼鈍を施して熱間圧延焼鈍鋼板を得る工程と、
前記熱間圧延焼鈍鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程とを有し、
前記熱間圧延において、前記スラブの加熱温度を1050℃~1250℃、仕上げ圧延の終了温度を800℃~(Ar1変態点+20℃)、コイルの巻き取り温度を500℃~700℃とし、
前記熱間圧延焼鈍における焼鈍温度を750℃~Ac1変態点とし、前記仕上げ焼鈍における焼鈍温度を800℃~Ac1変態点とすることを特徴とする無方向性電磁鋼板の製造方法。 - 前記スラブは、さらに質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする請求項4に記載の無方向性電磁鋼板の製造方法。
- 前記スラブは、さらに質量%で、Bを0.0005%~0.0030%含有することを特徴とする請求項4または5に記載の無方向性電磁鋼板の製造方法。
- 質量%で、
C:0.005%以下、
Si:0.1%~2.0%、
Mn:0.05%~0.6%、
P:0.100%以下、
Al:0.5%以下
を含有し、残部がFe及び不可避不純物である鋼組成を有するスラブに熱間圧延を施して熱間圧延鋼板を得る工程と、
前記熱間圧延鋼板に冷間圧延を施して冷間圧延鋼板を得る工程と、
前記冷間圧延鋼板に仕上げ焼鈍を施す工程とを有し、
前記熱間圧延において、前記スラブの加熱温度を1050℃~1250℃、仕上げ圧延の終了温度を800℃~(Ar1変態点+20℃)、コイルの巻き取り温度を780℃以上とし、
前記仕上げ焼鈍における焼鈍温度を800℃~Ac1変態点とすることを特徴とする無方向性電磁鋼板の製造方法。 - 前記スラブは、さらに質量%で、Sn、Sbの少なくとも一方を0.05%~0.2%含有することを特徴とする請求項7に記載の無方向性電磁鋼板の製造方法。
- 前記スラブは、さらに質量%で、Bを0.0005%~0.0030%含有することを特徴とする請求項7または8に記載の無方向性電磁鋼板の製造方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280055225.6A CN103930583B (zh) | 2011-11-11 | 2012-11-09 | 无方向性电磁钢板及其制造方法 |
US14/354,631 US9728312B2 (en) | 2011-11-11 | 2012-11-09 | Non-oriented electrical steel sheet and manufacturing method thereof |
EP19179826.3A EP3575431B1 (en) | 2011-11-11 | 2012-11-09 | Non-oriented electrical steel sheet and manufacturing method thereof |
BR112014011159-6A BR112014011159B1 (pt) | 2011-11-11 | 2012-11-09 | Chapa de aço elétrico não orientado e seus métodos de produção |
PL19179826T PL3575431T3 (pl) | 2011-11-11 | 2012-11-09 | Sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej |
IN3203DEN2014 IN2014DN03203A (ja) | 2011-11-11 | 2012-11-09 | |
JP2013543034A JP5605518B2 (ja) | 2011-11-11 | 2012-11-09 | 無方向性電磁鋼板およびその製造方法 |
KR1020147012217A KR101598312B1 (ko) | 2011-11-11 | 2012-11-09 | 무방향성 전자 강판 및 그 제조 방법 |
PL12847037T PL2778244T3 (pl) | 2011-11-11 | 2012-11-09 | Sposób wytwarzania blachy cienkiej z niezorientowanej stali elektrotechnicznej |
EP12847037.4A EP2778244B1 (en) | 2011-11-11 | 2012-11-09 | Manufacturing method of non-oriented electrical steel sheet |
US15/608,222 US10214791B2 (en) | 2011-11-11 | 2017-05-30 | Non-oriented electrical steel sheet |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-247637 | 2011-11-11 | ||
JP2011247683 | 2011-11-11 | ||
JP2011-247683 | 2011-11-11 | ||
JP2011247637 | 2011-11-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/354,631 A-371-Of-International US9728312B2 (en) | 2011-11-11 | 2012-11-09 | Non-oriented electrical steel sheet and manufacturing method thereof |
US15/608,222 Division US10214791B2 (en) | 2011-11-11 | 2017-05-30 | Non-oriented electrical steel sheet |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013069754A1 true WO2013069754A1 (ja) | 2013-05-16 |
Family
ID=48290122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/079066 WO2013069754A1 (ja) | 2011-11-11 | 2012-11-09 | 無方向性電磁鋼板およびその製造方法 |
Country Status (9)
Country | Link |
---|---|
US (2) | US9728312B2 (ja) |
EP (2) | EP2778244B1 (ja) |
JP (1) | JP5605518B2 (ja) |
KR (1) | KR101598312B1 (ja) |
CN (1) | CN103930583B (ja) |
IN (1) | IN2014DN03203A (ja) |
PL (2) | PL3575431T3 (ja) |
TW (1) | TWI479029B (ja) |
WO (1) | WO2013069754A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015092455A3 (en) * | 2013-12-19 | 2015-09-03 | Dunaújvárosi Főiskola | Technical arrangement and process based on a single theory for the preparation of multiphase and trip steels by controlled temperature conduction warm sheeting |
JP2017088930A (ja) * | 2015-11-05 | 2017-05-25 | 新日鐵住金株式会社 | 無方向性電磁鋼板用の熱延鋼帯及び無方向性電磁鋼板の製造方法 |
JP2019508574A (ja) * | 2015-12-23 | 2019-03-28 | ポスコPosco | 無方向性電磁鋼板及びその製造方法 |
WO2021167065A1 (ja) | 2020-02-20 | 2021-08-26 | 日本製鉄株式会社 | 無方向性電磁鋼板用の熱延鋼板、無方向性電磁鋼板、およびその製造方法 |
WO2022176158A1 (ja) | 2021-02-19 | 2022-08-25 | 日本製鉄株式会社 | 無方向性電磁鋼板用熱延鋼板、無方向性電磁鋼板用熱延鋼板の製造方法、および無方向性電磁鋼板の製造方法 |
WO2022176154A1 (ja) | 2021-02-19 | 2022-08-25 | 日本製鉄株式会社 | 無方向性電磁鋼板用熱延鋼板およびその製造方法 |
WO2023008514A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
WO2023008510A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
WO2023008513A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101657815B1 (ko) * | 2014-12-23 | 2016-09-20 | 주식회사 포스코 | 전자기 특성이 우수한 연자성 강재, 연자성 강 부품 및 그들의 제조방법 |
KR101657848B1 (ko) * | 2014-12-26 | 2016-09-20 | 주식회사 포스코 | 단조성이 우수한 연자성 강재, 연자성 강 부품 및 그들의 제조방법 |
EP3272894B1 (en) | 2015-03-17 | 2019-06-19 | Nippon Steel & Sumitomo Metal Corporation | Non-oriented electromagnetic steel sheet and method for manufacturing same |
WO2016175121A1 (ja) * | 2015-04-27 | 2016-11-03 | 新日鐵住金株式会社 | 無方向性電磁鋼板 |
RU2694299C1 (ru) * | 2015-10-02 | 2019-07-11 | ДжФЕ СТИЛ КОРПОРЕЙШН | Лист нетекстурированной электротехнической стали и способ его получения |
WO2018079059A1 (ja) | 2016-10-27 | 2018-05-03 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
JP6665794B2 (ja) | 2017-01-17 | 2020-03-13 | Jfeスチール株式会社 | 無方向性電磁鋼板およびその製造方法 |
CN107460409B (zh) * | 2017-07-05 | 2019-10-18 | 邢台钢铁有限责任公司 | 一种汽车发电机极爪用高Al电工钢方坯及其生产方法 |
US11421297B2 (en) * | 2018-03-23 | 2022-08-23 | Nippon Steel Corporation | Non-oriented electrical steel sheet |
CN109112268B (zh) * | 2018-11-02 | 2020-07-10 | 东北大学 | 一种改善无取向硅钢磁性能的方法 |
CN109252102B (zh) * | 2018-11-02 | 2020-07-14 | 东北大学 | 一种提高低硅无取向硅钢磁性能的方法 |
EP3943203B1 (en) * | 2019-04-22 | 2024-09-11 | JFE Steel Corporation | Method for producing non-oriented electrical steel sheet |
TWI753651B (zh) * | 2019-11-15 | 2022-01-21 | 日商日本製鐵股份有限公司 | 無方向性電磁鋼板 |
CN114901850B (zh) * | 2020-02-20 | 2023-09-26 | 日本制铁株式会社 | 无取向电磁钢板用热轧钢板 |
CN112609130B (zh) * | 2020-12-16 | 2022-06-21 | 江苏省沙钢钢铁研究院有限公司 | 高牌号无取向硅钢及其生产方法 |
CN113403455B (zh) * | 2021-06-17 | 2024-03-19 | 张家港扬子江冷轧板有限公司 | 无取向硅钢的生产方法 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638420A (en) * | 1979-09-03 | 1981-04-13 | Kawasaki Steel Corp | Manufacture of nonoriented electromagnetic steel strip of excellent magnetism |
JPH0331420A (ja) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | 磁気特性の優れたフルプロセス無方向性電磁鋼板の製造方法 |
JPH04107215A (ja) * | 1990-08-24 | 1992-04-08 | Kobe Steel Ltd | 電磁鋼板用熱延板の製造方法 |
JPH04136138A (ja) * | 1990-09-27 | 1992-05-11 | Sumitomo Metal Ind Ltd | 磁気特性の優れた無方向性電磁鋼板 |
JPH06192731A (ja) | 1992-12-28 | 1994-07-12 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH1161257A (ja) | 1997-08-08 | 1999-03-05 | Nkk Corp | 鉄損が低く且つ磁気異方性の小さい無方向性電磁鋼板の製造方法 |
JPH11315326A (ja) * | 1998-04-30 | 1999-11-16 | Nkk Corp | 鉄損の低い無方向性電磁鋼板の製造方法及び鉄損の低い無方向性電磁鋼板 |
JP2002003945A (ja) * | 2000-06-23 | 2002-01-09 | Nippon Steel Corp | 磁性に優れた無方向性電磁鋼板の製造方法 |
JP2002115034A (ja) * | 2000-10-05 | 2002-04-19 | Sumitomo Metal Ind Ltd | 無方向性電磁鋼板とその冷延用素材ならびにその製造方法 |
JP2002356752A (ja) * | 2001-05-31 | 2002-12-13 | Nippon Steel Corp | 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法 |
JP2002363713A (ja) * | 2001-06-01 | 2002-12-18 | Nippon Steel Corp | 鉄損および磁束密度が極めて優れたセミプロセス無方向性電磁鋼板およびその製造方法 |
JP2006241554A (ja) | 2005-03-04 | 2006-09-14 | Nippon Steel Corp | 磁束密度が高い無方向性電磁鋼板の製造方法 |
JP2007217744A (ja) | 2006-02-16 | 2007-08-30 | Jfe Steel Kk | 無方向性電磁鋼板およびその製造方法 |
JP2010024531A (ja) * | 2008-07-24 | 2010-02-04 | Nippon Steel Corp | 高周波用無方向性電磁鋼鋳片の製造方法 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5179424A (ja) | 1975-01-07 | 1976-07-10 | Kobe Steel Ltd | Etsukusugataautorigaasochi |
JPS5476422A (en) * | 1977-11-30 | 1979-06-19 | Nippon Steel Corp | Manufacture of non-oriented electrical sheet with superior magnetism by self annealing of hot rolled sheet |
JPH01198426A (ja) * | 1988-02-03 | 1989-08-10 | Nkk Corp | 磁気特性の優れた無方向性電磁鋼板の製造方法 |
JPH05186855A (ja) * | 1991-06-26 | 1993-07-27 | Nippon Steel Corp | 磁気特性に優れた無方向性電磁鋼板およびその製造方法 |
DE69230239T2 (de) | 1991-08-14 | 2000-04-13 | Nippon Steel Corp., Tokio/Tokyo | Verfahren zur Herstellung eines nichtorientierenten Elektrostahlblechs mit guten magnetischen Eigenschaften |
JP4091673B2 (ja) | 1997-03-10 | 2008-05-28 | 新日本製鐵株式会社 | 磁束密度が高い無方向性電磁鋼板の製造方法 |
JPH11286725A (ja) | 1998-04-01 | 1999-10-19 | Nippon Steel Corp | 磁性に優れた無方向性電磁鋼板の製造方法 |
US6425962B1 (en) * | 1999-10-13 | 2002-07-30 | Nippon Steel Corporation | Non-oriented electrical steel sheet excellent in permeability and method of producing the same |
JP4016552B2 (ja) * | 1999-12-03 | 2007-12-05 | 住友金属工業株式会社 | 磁気特性および表面性状の優れた無方向性電磁鋼板の製造法 |
CN1318627C (zh) * | 2001-06-28 | 2007-05-30 | 杰富意钢铁株式会社 | 无方向性电磁钢板及其制造方法 |
JP4804478B2 (ja) * | 2004-12-21 | 2011-11-02 | ポスコ | 磁束密度を向上させた無方向性電磁鋼板の製造方法 |
US20110056592A1 (en) * | 2008-04-14 | 2011-03-10 | Yoshihiro Arita | High-strength non-oriented electrical steel sheet and method of manufacturing the same |
JP2009102739A (ja) * | 2008-12-12 | 2009-05-14 | Sumitomo Metal Ind Ltd | 無方向性電磁鋼板の製造方法 |
JP2011247637A (ja) | 2010-05-24 | 2011-12-08 | Furuno Electric Co Ltd | 受信機、復調方法およびプログラム |
JP2011247683A (ja) | 2010-05-25 | 2011-12-08 | Nippon Seiki Co Ltd | 車両用表示装置 |
JP5724837B2 (ja) * | 2011-11-11 | 2015-05-27 | 新日鐵住金株式会社 | 無方向性電磁鋼板およびその製造方法 |
-
2012
- 2012-11-09 US US14/354,631 patent/US9728312B2/en active Active
- 2012-11-09 KR KR1020147012217A patent/KR101598312B1/ko active IP Right Grant
- 2012-11-09 EP EP12847037.4A patent/EP2778244B1/en active Active
- 2012-11-09 PL PL19179826T patent/PL3575431T3/pl unknown
- 2012-11-09 IN IN3203DEN2014 patent/IN2014DN03203A/en unknown
- 2012-11-09 EP EP19179826.3A patent/EP3575431B1/en active Active
- 2012-11-09 JP JP2013543034A patent/JP5605518B2/ja active Active
- 2012-11-09 TW TW101141794A patent/TWI479029B/zh active
- 2012-11-09 PL PL12847037T patent/PL2778244T3/pl unknown
- 2012-11-09 CN CN201280055225.6A patent/CN103930583B/zh active Active
- 2012-11-09 WO PCT/JP2012/079066 patent/WO2013069754A1/ja active Application Filing
-
2017
- 2017-05-30 US US15/608,222 patent/US10214791B2/en active Active
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5638420A (en) * | 1979-09-03 | 1981-04-13 | Kawasaki Steel Corp | Manufacture of nonoriented electromagnetic steel strip of excellent magnetism |
JPH0331420A (ja) * | 1989-06-29 | 1991-02-12 | Nippon Steel Corp | 磁気特性の優れたフルプロセス無方向性電磁鋼板の製造方法 |
JPH04107215A (ja) * | 1990-08-24 | 1992-04-08 | Kobe Steel Ltd | 電磁鋼板用熱延板の製造方法 |
JPH04136138A (ja) * | 1990-09-27 | 1992-05-11 | Sumitomo Metal Ind Ltd | 磁気特性の優れた無方向性電磁鋼板 |
JPH06192731A (ja) | 1992-12-28 | 1994-07-12 | Nippon Steel Corp | 磁束密度が高くかつ鉄損が低い無方向性電磁鋼板の製造方法 |
JPH1161257A (ja) | 1997-08-08 | 1999-03-05 | Nkk Corp | 鉄損が低く且つ磁気異方性の小さい無方向性電磁鋼板の製造方法 |
JPH11315326A (ja) * | 1998-04-30 | 1999-11-16 | Nkk Corp | 鉄損の低い無方向性電磁鋼板の製造方法及び鉄損の低い無方向性電磁鋼板 |
JP2002003945A (ja) * | 2000-06-23 | 2002-01-09 | Nippon Steel Corp | 磁性に優れた無方向性電磁鋼板の製造方法 |
JP2002115034A (ja) * | 2000-10-05 | 2002-04-19 | Sumitomo Metal Ind Ltd | 無方向性電磁鋼板とその冷延用素材ならびにその製造方法 |
JP2002356752A (ja) * | 2001-05-31 | 2002-12-13 | Nippon Steel Corp | 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法 |
JP2002363713A (ja) * | 2001-06-01 | 2002-12-18 | Nippon Steel Corp | 鉄損および磁束密度が極めて優れたセミプロセス無方向性電磁鋼板およびその製造方法 |
JP2006241554A (ja) | 2005-03-04 | 2006-09-14 | Nippon Steel Corp | 磁束密度が高い無方向性電磁鋼板の製造方法 |
JP2007217744A (ja) | 2006-02-16 | 2007-08-30 | Jfe Steel Kk | 無方向性電磁鋼板およびその製造方法 |
JP2010024531A (ja) * | 2008-07-24 | 2010-02-04 | Nippon Steel Corp | 高周波用無方向性電磁鋼鋳片の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2778244A4 |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015092455A3 (en) * | 2013-12-19 | 2015-09-03 | Dunaújvárosi Főiskola | Technical arrangement and process based on a single theory for the preparation of multiphase and trip steels by controlled temperature conduction warm sheeting |
JP2017088930A (ja) * | 2015-11-05 | 2017-05-25 | 新日鐵住金株式会社 | 無方向性電磁鋼板用の熱延鋼帯及び無方向性電磁鋼板の製造方法 |
JP2019508574A (ja) * | 2015-12-23 | 2019-03-28 | ポスコPosco | 無方向性電磁鋼板及びその製造方法 |
JP7008021B2 (ja) | 2015-12-23 | 2022-01-25 | ポスコ | 無方向性電磁鋼板及びその製造方法 |
KR20220125316A (ko) | 2020-02-20 | 2022-09-14 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판용의 열연 강판, 무방향성 전자 강판 및 그 제조 방법 |
WO2021167065A1 (ja) | 2020-02-20 | 2021-08-26 | 日本製鉄株式会社 | 無方向性電磁鋼板用の熱延鋼板、無方向性電磁鋼板、およびその製造方法 |
CN115135788A (zh) * | 2020-02-20 | 2022-09-30 | 日本制铁株式会社 | 无取向性电磁钢板用热轧钢板、无取向性电磁钢板及其制造方法 |
KR20230132814A (ko) | 2021-02-19 | 2023-09-18 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판용 열연 강판, 무방향성 전자 강판용열연 강판의 제조 방법, 및 무방향성 전자 강판의 제조 방법 |
WO2022176154A1 (ja) | 2021-02-19 | 2022-08-25 | 日本製鉄株式会社 | 無方向性電磁鋼板用熱延鋼板およびその製造方法 |
KR20230130705A (ko) | 2021-02-19 | 2023-09-12 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판용 열연 강판 및 그 제조 방법 |
WO2022176158A1 (ja) | 2021-02-19 | 2022-08-25 | 日本製鉄株式会社 | 無方向性電磁鋼板用熱延鋼板、無方向性電磁鋼板用熱延鋼板の製造方法、および無方向性電磁鋼板の製造方法 |
WO2023008514A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
WO2023008510A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
WO2023008513A1 (ja) | 2021-07-30 | 2023-02-02 | 日本製鉄株式会社 | 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 |
KR20230126730A (ko) | 2021-07-30 | 2023-08-30 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판, 철심, 철심의 제조 방법, 모터,및 모터의 제조 방법 |
US11749429B2 (en) | 2021-07-30 | 2023-09-05 | Nippon Steel Corporation | Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor |
KR20230137416A (ko) | 2021-07-30 | 2023-10-04 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판, 철심, 철심의 제조 방법, 모터 및 모터의 제조 방법 |
KR20230144583A (ko) | 2021-07-30 | 2023-10-16 | 닛폰세이테츠 가부시키가이샤 | 무방향성 전자 강판, 철심, 철심의 제조 방법, 모터, 및 모터의 제조 방법 |
US11814710B2 (en) | 2021-07-30 | 2023-11-14 | Nippon Steel Corporation | Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor |
US11859265B2 (en) | 2021-07-30 | 2024-01-02 | Nippon Steel Corporation | Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor |
Also Published As
Publication number | Publication date |
---|---|
PL3575431T3 (pl) | 2022-04-04 |
TW201333216A (zh) | 2013-08-16 |
CN103930583A (zh) | 2014-07-16 |
EP3575431A1 (en) | 2019-12-04 |
US20140238558A1 (en) | 2014-08-28 |
EP2778244B1 (en) | 2020-04-22 |
KR20140073569A (ko) | 2014-06-16 |
KR101598312B1 (ko) | 2016-02-26 |
CN103930583B (zh) | 2016-05-04 |
US10214791B2 (en) | 2019-02-26 |
JP5605518B2 (ja) | 2014-10-15 |
PL2778244T3 (pl) | 2020-08-10 |
BR112014011159A2 (pt) | 2017-05-09 |
EP3575431B1 (en) | 2021-12-29 |
US20170260598A1 (en) | 2017-09-14 |
TWI479029B (zh) | 2015-04-01 |
EP2778244A4 (en) | 2015-07-08 |
IN2014DN03203A (ja) | 2015-05-22 |
US9728312B2 (en) | 2017-08-08 |
JPWO2013069754A1 (ja) | 2015-04-02 |
EP2778244A1 (en) | 2014-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5605518B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP5668460B2 (ja) | 無方向性電磁鋼板の製造方法 | |
WO2013137092A1 (ja) | 無方向性電磁鋼板の製造方法 | |
TWI457443B (zh) | Manufacturing method of non - directional electromagnetic steel sheet | |
JP7462737B2 (ja) | 600MPa級無方向性電磁鋼板及びその製造方法 | |
JP7006772B2 (ja) | 方向性電磁鋼板の製造方法および方向性電磁鋼板 | |
KR20090057010A (ko) | 고자속 밀도 방향성 규소 강판의 제조 방법 | |
JP5724837B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO1986007390A1 (en) | Process for producing silicon steel sheet having soft magnetic characteristics | |
JP4932544B2 (ja) | 板幅方向にわたり安定して磁気特性が得られる方向性電磁鋼板の製造方法 | |
JP2024041844A (ja) | 無方向性電磁鋼板の製造方法 | |
JP2019026891A (ja) | 無方向性電磁鋼板、及びその製造方法 | |
JP7465354B2 (ja) | 無方向性電磁鋼板およびその製造方法 | |
JP5287615B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP2008202070A (ja) | 無方向性電磁鋼板およびその製造方法 | |
WO2016139818A1 (ja) | 方向性電磁鋼板およびその製造方法 | |
JP2004332031A (ja) | 磁気特性に優れた無方向性電磁鋼板の製造方法 | |
JP2015212403A (ja) | 無方向性電磁鋼板の製造方法 | |
JPH055126A (ja) | 無方向性電磁鋼板の製造方法 | |
CN114901850A (zh) | 无取向电磁钢板用热轧钢板 | |
JP4259269B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP5712652B2 (ja) | 方向性電磁鋼板の製造方法 | |
JP6228956B2 (ja) | 低鉄損高磁束密度方向性電気鋼板及びその製造方法 | |
JP7268803B1 (ja) | 無方向性電磁鋼板とその製造方法 | |
KR100940719B1 (ko) | 응력제거 소둔 후 자속밀도 특성이 우수한 무방향성전기강판의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201280055225.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12847037 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2013543034 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14354631 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20147012217 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012847037 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112014011159 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112014011159 Country of ref document: BR Kind code of ref document: A2 Effective date: 20140508 |