RU2694299C1 - Лист нетекстурированной электротехнической стали и способ его получения - Google Patents

Лист нетекстурированной электротехнической стали и способ его получения Download PDF

Info

Publication number
RU2694299C1
RU2694299C1 RU2018115739A RU2018115739A RU2694299C1 RU 2694299 C1 RU2694299 C1 RU 2694299C1 RU 2018115739 A RU2018115739 A RU 2018115739A RU 2018115739 A RU2018115739 A RU 2018115739A RU 2694299 C1 RU2694299 C1 RU 2694299C1
Authority
RU
Russia
Prior art keywords
less
sheet
electrical steel
steel
phase
Prior art date
Application number
RU2018115739A
Other languages
English (en)
Inventor
Ёсихико ОДА
Тадаси НАКАНИСИ
Томоюки ОКУБО
Ёсиаки ДЗАЙДЗЭН
Хироаки НАКАДЗИМА
Original Assignee
ДжФЕ СТИЛ КОРПОРЕЙШН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ДжФЕ СТИЛ КОРПОРЕЙШН filed Critical ДжФЕ СТИЛ КОРПОРЕЙШН
Application granted granted Critical
Publication of RU2694299C1 publication Critical patent/RU2694299C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Изобретение относится к области металлургии, а именно к листу нетекстурированной электротехнической стали, используемому в качестве материала стального сердечника высокоэффективного асинхронного двигателя. Лист имеет химическую композицию, содержащую, мас.%: C: 0,0050 или меньше, Si: 1,50 или больше и 4,00 или меньше, Al: 0,500 или меньше, Mn: 0,10 или больше и 5,00 или меньше, S: 0,0200 или меньше, P: 0,200 или меньше, N: 0,0050 или меньше, O: 0,0200 или меньше, остальное - Fe и неизбежные примеси. Лист имеет температуру Ar3 фазового превращения 700°C или выше, размер зерна 80 мкм или больше и 200 мкм или меньше, и твёрдость по Викерсу 140 HV или больше и 230 HV или меньше. Обеспечивается получение материалов, имеющих хороший баланс характеристик плотности магнитного потока и потерь в сердечнике, без осуществления отжига в зоне горячих состояний. 2 н. и 2 з.п. ф-лы, 2 ил., 3 табл.

Description

Область техники, к которой относится изобретение
Настоящее изобретение относится к листу нетекстурированной электротехнической стали и к способу его получения.
Уровень техники
В настоящее время для удовлетворения возрастающим требованиям энергосбережения на предприятиях используют высокоэффективные асинхронные двигатели. Для повышения эффективности указанных двигателей были предприняты усилия для увеличения толщины слоистой структуры стального сердечника и увеличения коэффициента заполнения его обмотки. Дальнейшие усилия были приложены для замены традиционного низкокачественного материал на более качественный материал, имеющий характеристики малых потерь в сердечнике, в качестве листа электротехнической стали, применяемых для стальных сердечников.
Кроме того, с точки зрения снижения потерь в обмотке, требуется, чтобы указанные материалы сердечника для асинхронных двигателей имели характеристики малых потерь в сердечнике и снижали эффективный ток возбуждения при заданной плотности магнитного потока. С целью снижения эффективного тока возбуждения, целесообразно увеличить плотность магнитного потока материала сердечника.
Кроме того, в случае приводных двигателей гибридных электромобилей, которые в настоящее время имеют широкое распространение, требуется высокий крутящий момент в момент запуска и ускорения, и таким образом, желательно дальнейшее повышение плотности магнитного потока.
В качестве листа электротехнической стали, имеющего высокую плотность магнитного потока, например, в документе JP2000129410A (PTL 1) описан лист нетекстурированной электротехнической стали, полученный из стали, в которую добавлены Si 4% или меньше и Co от 0,1% или больше до 5% или меньше. Однако, поскольку Co является весьма дорогим металлом, это приводит к проблеме существенного увеличения затрат при использовании в обычном двигателе.
Для увеличения плотности магнитного потока листа электротехнической стали, эффективным является уменьшение размера зерна до проведения холодной прокатки. Например, в документе JP2006291346A (PTL 2) описана методика увеличения плотности магнитного потока за счет того, что сталь, содержащую Si от 1,5% или больше до 3,5% или меньше, подвергают высокотемпературному отжигу в зоне горячих состояний, чтобы обеспечить размер зерна 300 мкм или больше до проведения холодной прокатки. Однако осуществление отжига в зоне горячих состояний при высокой температуре вызывает проблемы повышения затрат и увеличения размера зерна до холодной прокатки, что делает более вероятным разрушение листа в процессе холодной прокатки.
С другой стороны, применение материала с низким содержанием Si дает возможность повышения плотности магнитного потока без проведения отжига в зоне горячих состояний, не взирая на то, что указанный материал является мягким, причем наблюдается значительное увеличение потерь в сердечнике, когда он штампуется в материал сердечника двигателя.
Перечень цитирования
Патентная литература
PTL 1: JP2000129410A
PTL 2: JP2006291346A
Краткое изложение изобретения
Техническая проблема
В указанных условиях существует потребность в технологии для повышения плотности магнитного потока листа электротехнической стали и снижения потерь в сердечнике, не вызывающей значительного увеличения затрат.
Таким образом, было бы полезно разработать лист нетекстурированной электротехнической стали с повышенной плотностью магнитного потока и пониженными потерями в сердечнике, и способ получения такого листа.
Решение проблемы
Авторы изобретения выполнили интенсивные исследования для решения указанных выше проблем и в результате было обнаружено, что путем подбора химического состава композиции, в которой фазовый переход γ→α (степень превращение γ-фазы в α-фазу) инициируется в процессе горячей прокатки, и регулирования твёрдости по Викерсу (HV) в диапазоне от 140 HV до 230 HV, возможно получение материалов, имеющих хороший баланс характеристик плотности магнитного потока и потери в сердечнике, без осуществления отжига в зоне горячих состояний.
Настоящее изобретение было завершено на основе полученных данных, и ниже описаны характерные признаки изобретения.
1. Лист нетекстурированной электротехнической стали, содержащий: химическую композицию, содержащую (состоящую из), масс.%, C: 0,0050% или меньше, Si: 1,50% или больше и 4,00% или меньше, Al: 0,500% или меньше, Mn: 0,10% или больше и 5,00% или меньше, S: 0,0200% или меньше, P: 0,200% или меньше, N: 0,0050% или меньше, и O: 0,0200% или меньше, остальное Fe и неизбежные примеси, причем лист нетекстурированной электротехнической стали имеет температуру Ar3 фазового превращения 700°C или выше, размер зерна 80 мкм или больше и 200 мкм или меньше, и твёрдость по Викерсу 140 HV или больше и 230 HV или меньше.
2. Лист нетекстурированной электротехнической стали по пункту 1, химическая композиция которой дополнительно содержит, в масс.%, Ge: 0,0500% или меньше.
3. Лист нетекстурированной электротехнической стали по пунктам 1 или 2, химическая композиция которой дополнительно содержит, в масс.%, по меньшей мере, один из металлов Ti: 0,0030% или меньше, Nb: 0,0030% или меньше, V: 0,0030% или меньше, или Zr: 0,0020% или меньше.
4. Способ получения листа нетекстурированной электротехнической стали по любому пункту 1-3, где способ включает в себя проведение горячей прокатки, по меньшей мере, за один проход или больше в двухфазной области из γ-фазы и α-фазу.
Преимущества изобретения
Согласно описанию изобретения, возможно получение листа электротехнической стали с высокой плотностью магнитного потока малыми потерями в сердечнике, без осуществления отжига в зоне горячих состояний.
Краткое описание чертежей
На прилагаемых чертежах:
фиг. 1 представляет собой схематичный чертеж образца кольцевого уплотнения; и
на фиг. 2 приведен график, иллюстрирующий влияние температуры Ar3 фазового превращения на плотность магнитного потока B50.
Подробное описание изобретения
Причины ограничения изобретение описаны ниже.
Во-первых, с целью исследования влияния двухфазной области на магнитные характеристики, были приготовлены образцы стали от A до C, имеющие химическую композицию, приведенную в таблице 1, путем выплавки стали в лаборатории и горячей прокатки. Горячую прокатку проводили в 7 проходов, причем температура на входе в первый проход (F1) была установлена равной 1030°C и температура на входе в последний проход (F7) равна 910°C.
Таблица 1
Сталь Химическая композиция (масс,%)
C Si Al Mn P S N O Ge Ti V Zr Nb
А 0,0015 1,40 0,500 0,20 0,010 0,0005 0,0020 0,0020 0,0001 0,0010 0,0010 0,0005 0,0005
В 0,0016 1,30 0,300 0,30 0,010 0,0007 0,0022 0,0018 0,0001 0,0010 0,0010 0,0005 0,0005
С 0,0016 1,70 0,001 0,30 0,010 0,0007 0,0022 0,0055 0,0001 0,0010 0,0010 0,0005 0,0005
После декапирования каждый горячекатаный лист подвергается холодной прокатке до толщины листа 0,5 мм и окончательному отжигу при 950°C в течение 10 секунд в атмосфере 20% H2-80% N2.
Из каждого полученного таким образом листа после окончательного отжигa получают путем штамповки кольцевой образец 1, имеющий наружный диаметр 55 мм и внутренний диаметр 35 мм, прикладывают V уплотнения 2 в шести равномерно распределённых положениях кольцевого образца 1, как показано на фиг. 1, и 10 кольцевых образцов 1 пакетируют и фиксируют вместе в многослойную структуру. Измерение магнитных характеристик осуществляют, используя многослойную структуру с намоткой первых 100 витков и вторых 100 витков, и результаты измерений оценивают с использованием ваттметра. Твёрдость по Викерсу измеряют согласно стандарту JIS Z2244, проталкивая алмазный индентор 500 г в поперечное сечение каждого стального листа. После полирования и травления поперечного сечения ниталем, проводят измерения размера зерна согласно стандарту JIS G 0551.
В таблице 2 указаны магнитные характеристики образцов стали от A до C из таблицы 1. Обращая внимание на плотность магнитного потока, становится понятно, что плотность магнитного потока является малой в стали A, но высокой для сталей B и C. Для установления причины этого авторы изобретения исследовали текстуру материала после окончательного отжигa, и обнаружили, что в стали А, в отличие от образцов стали В и С, формируется текстура (111), которая является неблагоприятной для магнитных характеристик. Известно, что микроструктура листа электротехнической стали, до холодной прокатки, оказывает сильное влияние на формирование текстуры в листе электротехнической стали, поэтому было проведено исследование микроструктуры после горячей прокатки, и было установлено, что сталь A имеет нерекристаллизованную микроструктуру. По этой причине, предполагают, что в стали A, формируется текстура (111) в ходе процессов холодной прокатки и окончательного отжига после горячей прокатки.
Таблица 2
Сталь Плотность магнитного потока B50(T) Магнитные потери в железе W15/50 (Вт/кг) HV Размер зерна (мкм)
А 1,65 3,60 145 121
В 1,70 4,20 135 120
С 1,70 3,50 150 122
Кроме того, авторы исследовали микроструктуру образцов стали B и C, после проведения горячей прокатки, и обнаружили, что их микроструктура является полностью рекристаллизованной. Таким образом, предполагают, что в образцах стали B и C, подавляется формирование текстуры (111), неблагоприятной для магнитных характеристик, и плотность магнитного потока увеличивается.
Как описано выше, с целью выявления причины изменения микроструктуры после горячей прокатки для различных типов сталей, характеристику превращения в ходе горячей прокатки оценивали путем измерения коэффициента линейного расширения. В результате было установлено, что сталь A имеет одну α-фазу в диапазоне от высокой температуры до низкой температуры, и что в ходе горячей прокатки не происходит какого-либо фазового превращения. С другой стороны, установлено, что температура Ar3 фазового превращения составляет 1020°C для стали B 950°C для стали C, и что превращение γ→α происходит при первом проходе для стали B и между третьим и пятым проходами для стали C. Считается, что появление фазового превращения γ→α в ходе горячей прокатки вызывает протекание рекристаллизации с приложением усилия превращения в качестве побудительной причины.
Как следует из сказанного, важно, чтобы превращение γ→α происходило в диапазоне температур, в котором проводится горячая прокатка. Поэтому был осуществлен следующий эксперимент, чтобы установить температуру Ar3 фазового превращения, при который должно завершиться фазовое превращение γ→α. Конкретно, были приготовлены в лаборатории образцы стали, причем каждый содержал в качестве базовых компонентов C: 0,0017%, Al: 0,001%, P: 0,010%, S: 0,0007%, N: 0,0022%, O: от 0,0050% до 0,0070%, Ge: 0,0001%, Ti: 0,0010%, V: 0,0010%, Zr: 0,0005% и Nb: 0,0005%, и соответственно имел различное содержание Si и Mn для различных температур Ar3 превращения, и образцы стали формовали в слябы. Полученные таким образом слябы подвергали горячей прокатке. Горячую прокатку проводили в 7 проходов, причем температура на входе в первый проход (F1) была установлена равной 900°C и температура на входе в последний проход (F7) равна 780°C, таким образом, чтобы, по меньшей мере, один проход горячей прокатки проводился в двухфазной области из α-фазы в γ-фазу.
После декапирования, каждый горячекатаный лист подвергают холодной прокатке до толщины листа 0,5 мм и окончательному отжигу при 950°C в течение 10 секунд в атмосфере 20% H2-80% N2.
Из каждого полученного таким образом листа после окончательного отжигa получают путем штамповки кольцевой образец 1, имеющий наружный диаметр 55 мм и внутренний диаметр 35 мм, прикладывают V уплотнения 2 в шести равномерно распределённых положениях кольцевого образца 1, как показано на фиг. 1, и 10 кольцевых образцов 1 пакетируют и фиксируют вместе. Измерение магнитных характеристик осуществляют, используя многослойную структуру с намоткой первых 100 витков и вторых 100 витков, и результаты измерений оценивают с использованием ваттметра.
Фиг. 2 иллюстрирует влияние температуры Ar3 фазового превращения на плотность магнитного потока B50. Можно увидеть, что, когда температура Ar3 фазового превращения составляет 700°C или ниже, плотность магнитного потока B50 уменьшается. Хотя причина этого не ясна, полагают, что, когда температура Ar3 фазового превращения составляет 700оС или ниже, размер зерна до холодной прокатки настолько мал, что инициируется образование неблагоприятной для магнитных характеристик (111) текстуры, в ходе последующих процессов от холодной прокатки до окончательного отжига.
Как следует из сказанного, температура Ar3 фазового превращения установлена равной 700°C или выше. Для температуры Ar3 фазового превращения не устанавливается какой-либо верхний предел. Однако важно то, что протекание превращения γ→α инициируется в ходе горячей прокатки, причем необходимо, чтобы, по меньшей мере, один проход горячей прокатки был осуществлен в двухфазной области γ-фазы и α-фазы. С учетом сказанного, предпочтительно, чтобы температура Ar3 фазового превращения была установлена равной 1000°C или ниже. Причина заключается в том, что осуществление горячей прокатки в ходе превращения способствует развитию текстуры, которая является предпочтительной для магнитных характеристик.
Обращая внимание на оценку потерь в сердечнике, приведенную выше в таблице 2, можно увидеть, что потери в сердечнике малы для образцов стали A и C и значительны для стали B. Хотя причина этого не ясна, полагают, что, это происходит вследствие низкой твёрдости (HV) стального листа после окончательного отжигa стали B, поле сжимающего напряжения, порождённое путем штамповки и уплотнения, легко распространяется, и потери в сердечнике увеличиваются. Поэтому значение твёрдости по Викерсу установлено равным 140 HV или больше, и предпочтительно 150 HV или больше. С другой стороны, при твёрдости по Викерсу выше 230 HV происходит интенсивный износ пресс-формы, что приводит к излишнему росту затрат. Поэтому установлен верхний предел, равный 230 HV.
Далее описан лист нетекстурированной электротехнической стали согласно одному из раскрытых вариантов осуществления. Сначала будут разъяснены ограничения для химического состава стали. При выражении содержания компонентов в "%", имеется в виду "масс.%," если не указано другое.
C: 0,0050% или меньше
Содержание С установлено равным 0,0050% или меньше, с точки зрения предотвращения магнитного старения. С другой стороны, поскольку C оказывает влияние на улучшение плотности магнитного потока, предпочтительно содержание C составляет 0,0010% или больше.
Si: 1,50% или больше и 4,00% или меньше
Si является полезным элементом, который повышает удельное сопротивление стального листа. Поэтому содержание Si предпочтительно составляет 1,50% или больше. С другой стороны, при содержании Si, превышающем 4,00%, происходит снижение плотности магнитного потока насыщения и связанное с этим уменьшение плотности магнитного потока. Поэтому верхний предел для содержания Si установлен равным 4,00%. Предпочтительно, содержание Si составляет 3,00% или меньше. Причина этого состоит в том, что, если содержание Si превышает 3,00%, то необходимо добавлять большое количество Mn для того, чтобы получить двухфазную область, что неоправданно увеличивает затраты.
Al: 0,500% или меньше
Al является элементом, который запирает γ-область, причем пониженное содержание Al является предпочтительным. Содержание Al установлено равным 0,500% или меньше, предпочтительно 0,020% или меньше, и более предпочтительно 0,002% или меньше.
Mn: 0,10% или больше и 5,00% или меньше
Поскольку Mn является элементом, который эффективно расширяет γ-область, нижний предел для содержания Mn установлен равным 0,10%. С другой стороны, при содержании Mn, превышающем 5,00%, происходит снижение плотности магнитного потока. Поэтому верхний предел для содержания Mn установлен равным 5,00%. Предпочтительно, содержание Mn составляет 3,00% или меньше. Причина состоит в том, что при содержании Mn превышающем 3,00%, неоправданно увеличиваются затраты.
S: 0,0200% или меньше
S вызывает увеличение потерь в сердечнике из-за выделения MnS, если ее содержание превосходит 0,0200%. Поэтому верхний предел для содержания S установлен равным 0,0200%.
P: 0,200% или меньше
P повышает твёрдость стального листа, если его содержание превосходит 0,200%. Поэтому содержание P установлено равным 0,200% или меньше, и более предпочтительно 0,100% или меньше. Более предпочтительно, содержание P установлено в диапазоне от 0,010% до 0,050%. Причина этого заключается в том, что P влияет на подавление азотирования за счет поверхностной сегрегации.
N: 0,0050% или меньше
N усиливает выделение AlN и увеличивает потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание N установлено равным 0,0050% или меньше.
O: 0,0200% или меньше
О вызывает образование оксидов и увеличивает потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание О установлено равным 0,0200% или меньше.
Описаны основные компоненты стального листа согласно изобретению. Оставшуюся часть, отличающуюся от указанных выше компонентов, представляет собой Fe и неизбежные примеси. Однако следующие необязательные элементы также могут быть добавлены как подходящие.
Ge: 0,0500% или меньше
Ge является элементом, который часто встречается в металлоломе, поскольку он используется в полупроводниках. Однако, если содержание Ge превышает 0,0500%, подавляется рекристаллизация после горячей прокатки, и плотность магнитного потока может снижаться. Поэтому верхний предел для содержания Ge установлен равным 0,0500%.
Ti: 0,0030% или меньше
Ti способствует выделению TiN и может увеличить потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание Ti установлено равным 0,0030% или меньше.
Nb: 0,0030% или меньше
Nb способствует выделению NbC и может увеличить потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание Nb установлено равным 0,0030% или меньше.
V: 0,0030% или меньше
V способствует выделению VN и VC и может увеличить потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание V установлено равным 0,0030% или меньше.
Zr: 0,0020% или меньше
Zr способствует выделению ZrN и может увеличить потери в сердечнике, если он присутствует в большом количестве. Поэтому содержание Zr установлено равным 0,0020% или меньше.
Средний размер зерна составляет 80 мкм или больше и 200 мкм или меньше. Когда средний размер зерна меньше, чем 80 мкм, твёрдость по Викерсу может быть доведена до 140 HV или больше, даже для материала с низким содержанием Si. Однако, при малом размере зерна могут увеличиваться потери в сердечнике. Поэтому размер зерна установлен равным 80 мкм или больше. С другой стороны, когда размер зерна превышает 200 мкм, увеличивается пластическая деформация из-за штамповки и уплотнения, что приводит к увеличению потерь в сердечнике. Поэтому верхний предел для размера зерна установлен равным 200 мкм. С целью получения размера зерна в диапазоне 80 мкм или больше и 200 мкм или меньше, необходим соответствующий контроль температуры окончательного отжига. Кроме того, для обеспечения твёрдости по Викерсу в диапазоне 140 HV или больше и 230 HV или меньше, необходимы добавки соответствующих элементов, вызывающих упрочнение твёрдого раствора, таких как Si, Mn, или P.
Далее приведено конкретное описание условий для получения листов нетекстурированной электротехнической стали согласно изобретению.
Согласно изобретению, листы нетекстурированной электротехнической стали могут быть получены с использованием традиционных способов, пока химическая композиция и условия горячей прокатки, определенные в описании, находятся в заданных диапазонах. Другими словами, расплавленную сталь подвергают продувке в конвертере и дегазации, при которых устанавливается заданная химическая композиция стали, с последующим литьем и горячей прокаткой. Температура подачи в устройство чистовой обработки и температура сматывания листа в рулон в ходе горячей прокатки конкретно не устанавливаются, однако необходимо осуществлять, по меньшей мере, один проход горячей прокатки в двухфазной области γ-фазы и α-фазы. Предпочтительно, температура сматывания листа в рулон устанавливается равной 650°C или ниже для того, чтобы предотвратить окисление во время сматывания листа. Затем стальной лист подвергают холодной прокатке один, или два раза или больше с осуществлением промежуточного отжига между ними, до заданной толщины листа, и последующему окончательному отжигу.
Примеры
Расплавленную сталь подвергают продувке в конвертере с целью получения образцов стали. Затем каждый образец стали подвергают дегазации, отливают с получением химических композиций, указанных в таблице 3, и проводят повторный нагрев сляба при 1140°C в течение 1 ч, подвергают горячей прокатке, чтобы получить стальной лист, имеющий толщину листа 2,0 мм. Окончательную горячую прокатку проводят в 7 проходов, температура на входе в первый проход и температура на входе в окончательный проход показаны в таблице 3, и температура сматывания полосы в рулон устанавливается равной 670°C. После этого каждый стальной лист подвергают декапированию, холодной прокатке до толщины листа 0,5 мм, и окончательному отжигу в атмосфере 20% H2-80% N2 в условиях, указанных в таблице 3. Затем оценивают магнитные характеристики (W15/50, B50) и твёрдость (HV). При измерении магнитных характеристик образцы Эпштейна вырезают в направлении прокатки и перпендикулярно направлению прокатки из каждого стального листа, и проводят измерение Эпштейна. Твёрдость по Викерсу измеряют согласно стандарту JIS Z2244 путем вдавливания алмазного индентора 500 г в поперечное сечение каждого стального листа. Размер зерна измеряют согласно стандарту JIS G0551 после полирования и травления поперечного сечения ниталем.
Figure 00000001
Figure 00000002
Figure 00000003
Из таблицы 3 можно увидеть, что все листы нетекстурированной электротехнической стали согласно примерам описания, у которых химическая композиция, температура Ar3 превращения, размер зерна и твёрдость по Викерсу находятся в пределах объема изобретения, имеют как отличную плотность магнитного потока, так и характеристики потери в сердечнике, по сравнению со стальными листами в сравнительных примерах.
Промышленная применимость
Согласно изобретению возможно получение листа нетекстурированной электротехнической стали, обладающего хорошим балансом характеристик плотности магнитного потока и потерь в сердечнике, без проведения отжига в зоне горячих состояний.
Перечень позиций на фиг. 1
1 - Кольцевой образец
2 - V уплотнение.

Claims (18)

1. Лист нетекстурированной электротехнической стали, который имеет химическую композицию, содержащую, мас.%:
C: 0,0050 или меньше,
Si: 1,50 или больше и 4,00 или меньше,
Al: 0,500 или меньше,
Mn: 0,10 или больше и 5,00 или меньше,
S: 0,0200 или меньше,
P: 0,200 или меньше,
N: 0,0050 или меньше и
O: 0,0200 или меньше,
остальное - Fe и неизбежные примеси, причем лист нетекстурированной электротехнической стали имеет температуру Ar3 фазового превращения 700°C или выше, размер зерна 80 мкм или больше и 200 мкм или меньше, и твёрдость по Викерсу 140 HV или больше и 230 HV или меньше.
2. Лист нетекстурированной электротехнической стали по п. 1, химическая композиция которого дополнительно содержит, мас.%:
Ge: 0,0500 или меньше.
3. Лист нетекстурированной электротехнической стали по п. 1 или 2, химическая композиция которого дополнительно содержит по меньшей мере один компонент из, мас.%:
Ti: 0,0030 или меньше,
Nb: 0,0030 или меньше,
V: 0,0030 или меньше или
Zr: 0,0020 или меньше.
4. Способ получения листа нетекстурированной электротехнической стали по любому из пп. 1-3, который включает в себя выплавку стального сляба, имеющего химическую композицию, указанную в любом из пп. 1-3, проведение горячей прокатки отлитого сляба по меньшей мере за один проход в двухфазной области перехода из γ-фазы в α-фазу с получением горячекатаного стального листа, проведение холодной прокатки горячекатаного стального листа с получением холоднокатаного листа конечной толщины и осуществление окончательного отжига холоднокатаного листа.
RU2018115739A 2015-10-02 2016-08-25 Лист нетекстурированной электротехнической стали и способ его получения RU2694299C1 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015197103 2015-10-02
JP2015-197103 2015-10-02
PCT/JP2016/003878 WO2017056383A1 (ja) 2015-10-02 2016-08-25 無方向性電磁鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
RU2694299C1 true RU2694299C1 (ru) 2019-07-11

Family

ID=58423184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018115739A RU2694299C1 (ru) 2015-10-02 2016-08-25 Лист нетекстурированной электротехнической стали и способ его получения

Country Status (10)

Country Link
US (1) US20190024205A9 (ru)
EP (1) EP3358027B1 (ru)
JP (1) JP6319465B2 (ru)
KR (2) KR20200020013A (ru)
CN (1) CN107923019B (ru)
CA (1) CA2993594C (ru)
MX (1) MX2018003731A (ru)
RU (1) RU2694299C1 (ru)
TW (1) TWI615483B (ru)
WO (1) WO2017056383A1 (ru)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6665794B2 (ja) * 2017-01-17 2020-03-13 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法
JP6891682B2 (ja) * 2017-07-13 2021-06-18 日本製鉄株式会社 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
CA3100847C (en) 2018-05-21 2022-07-12 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
KR102241985B1 (ko) * 2018-12-19 2021-04-19 주식회사 포스코 무방향성 전기강판 및 그 제조방법
TWI755150B (zh) 2019-11-15 2022-02-11 日商日本製鐵股份有限公司 無方向性電磁鋼板之製造方法
KR102348508B1 (ko) * 2019-12-19 2022-01-07 주식회사 포스코 무방향성 전기강판 및 그 제조방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JP2001059145A (ja) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
RU2362829C2 (ru) * 2004-11-04 2009-07-27 Ниппон Стил Корпорейшн Нетекстурированный электротехнический стальной лист, улучшенный по потерям в сердечнике
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
RU2467826C2 (ru) * 2008-07-24 2012-11-27 Ниппон Стил Корпорейшн Литой сляб из нетекстурированной электротехнической стали и способ его изготовления
WO2013131213A1 (zh) * 2012-03-08 2013-09-12 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法
EP2778244A1 (en) * 2011-11-11 2014-09-17 Nippon Steel & Sumitomo Metal Corporation Anisotropic electromagnetic steel sheet and method for producing same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638420A (en) * 1979-09-03 1981-04-13 Kawasaki Steel Corp Manufacture of nonoriented electromagnetic steel strip of excellent magnetism
JP3319898B2 (ja) * 1994-12-20 2002-09-03 川崎製鉄株式会社 コイル内で磁気特性の均一な無方向性電磁鋼帯の製造方法
JPH10183311A (ja) * 1996-12-20 1998-07-14 Kawasaki Steel Corp 打抜き加工性および磁気特性に優れた無方向性電磁鋼板
JPH10251752A (ja) * 1997-03-13 1998-09-22 Kawasaki Steel Corp 磁気特性に優れる熱延電磁鋼板の製造方法
JP4281119B2 (ja) * 1997-12-04 2009-06-17 Jfeスチール株式会社 電磁鋼板の製造方法
JP2000129410A (ja) 1998-10-30 2000-05-09 Nkk Corp 磁束密度の高い無方向性電磁鋼板
CN1102670C (zh) * 1999-06-16 2003-03-05 住友金属工业株式会社 无方向性电磁钢片及其制造方法
JP3855554B2 (ja) * 1999-09-03 2006-12-13 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
US6436199B1 (en) * 1999-09-03 2002-08-20 Kawasaki Steel Corporation Non-oriented magnetic steel sheet having low iron loss and high magnetic flux density and manufacturing method therefor
JP4292707B2 (ja) * 2000-12-14 2009-07-08 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2004084053A (ja) * 2002-06-26 2004-03-18 Nippon Steel Corp 磁気特性の著しく優れた電磁鋼板とその製造方法
JP4718749B2 (ja) * 2002-08-06 2011-07-06 Jfeスチール株式会社 回転機用高磁束密度無方向性電磁鋼板及び回転機用部材
KR101130725B1 (ko) * 2004-12-21 2012-03-28 주식회사 포스코 자기적 특성이 우수한 무방향성 전기강판 및 그 제조방법
JP4804478B2 (ja) * 2004-12-21 2011-11-02 ポスコ 磁束密度を向上させた無方向性電磁鋼板の製造方法
JP5025942B2 (ja) 2005-03-14 2012-09-12 新日本製鐵株式会社 無方向性電磁鋼板の製造方法
KR101089305B1 (ko) * 2008-12-19 2011-12-02 주식회사 포스코 이방성이 작은 무방향성 전기강판 및 그 제조방법
JP2011140683A (ja) * 2010-01-06 2011-07-21 Nippon Steel Corp 磁気特性と打ち抜き加工性に優れた無方向性電磁鋼板
WO2018079059A1 (ja) * 2016-10-27 2018-05-03 Jfeスチール株式会社 無方向性電磁鋼板およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2092605C1 (ru) * 1991-10-22 1997-10-10 Поханг Айрон энд Стил Ко., Лтд. Листы изотропной электротехнической стали и способы их изготовления
JP2001059145A (ja) * 1999-06-16 2001-03-06 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
RU2362829C2 (ru) * 2004-11-04 2009-07-27 Ниппон Стил Корпорейшн Нетекстурированный электротехнический стальной лист, улучшенный по потерям в сердечнике
RU2398894C1 (ru) * 2006-06-16 2010-09-10 Ниппон Стил Корпорейшн Лист высокопрочной электротехнической стали и способ его производства
RU2467826C2 (ru) * 2008-07-24 2012-11-27 Ниппон Стил Корпорейшн Литой сляб из нетекстурированной электротехнической стали и способ его изготовления
EP2778244A1 (en) * 2011-11-11 2014-09-17 Nippon Steel & Sumitomo Metal Corporation Anisotropic electromagnetic steel sheet and method for producing same
WO2013131213A1 (zh) * 2012-03-08 2013-09-12 宝山钢铁股份有限公司 磁性优良的无取向电工钢板及其钙处理方法

Also Published As

Publication number Publication date
KR20180034573A (ko) 2018-04-04
US20180202021A1 (en) 2018-07-19
JPWO2017056383A1 (ja) 2017-10-05
TWI615483B (zh) 2018-02-21
TW201713783A (zh) 2017-04-16
JP6319465B2 (ja) 2018-05-09
WO2017056383A1 (ja) 2017-04-06
CA2993594A1 (en) 2017-04-06
US20190024205A9 (en) 2019-01-24
CN107923019A (zh) 2018-04-17
KR20200020013A (ko) 2020-02-25
EP3358027B1 (en) 2019-11-06
CN107923019B (zh) 2019-10-18
MX2018003731A (es) 2018-06-18
CA2993594C (en) 2020-12-22
EP3358027A4 (en) 2018-08-08
EP3358027A1 (en) 2018-08-08

Similar Documents

Publication Publication Date Title
RU2694299C1 (ru) Лист нетекстурированной электротехнической стали и способ его получения
RU2722359C1 (ru) Лист из нетекстурированной электротехнической стали и способ его изготовления
JP6665794B2 (ja) 無方向性電磁鋼板およびその製造方法
JPWO2020136993A1 (ja) 無方向性電磁鋼板およびその製造方法
JP2008031490A (ja) 無方向性電磁鋼板
JPH0888114A (ja) 無方向性電磁鋼板の製造方法
JP4810777B2 (ja) 方向性電磁鋼板およびその製造方法
JP7331802B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2874564B2 (ja) 磁気特性の優れた無方向性電磁鋼板の製造方法
JP4852804B2 (ja) 無方向性電磁鋼板
JPH04337050A (ja) 磁気特性の優れた高抗張力磁性材料およびその製造方法
JP3235356B2 (ja) 磁気特性に優れた無方向性電磁鋼板
WO2023090138A1 (ja) 無方向性電磁鋼板とその製造方法並びにモータコアの製造方法
JP2000054085A (ja) 鉄損が低く打ち抜き性に優れた無方向性電磁鋼板