WO2023008514A1 - 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 - Google Patents

無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 Download PDF

Info

Publication number
WO2023008514A1
WO2023008514A1 PCT/JP2022/029070 JP2022029070W WO2023008514A1 WO 2023008514 A1 WO2023008514 A1 WO 2023008514A1 JP 2022029070 W JP2022029070 W JP 2022029070W WO 2023008514 A1 WO2023008514 A1 WO 2023008514A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
oriented electrical
electrical steel
iron core
Prior art date
Application number
PCT/JP2022/029070
Other languages
English (en)
French (fr)
Inventor
一郎 田中
岳顕 脇坂
俊 太田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=85086088&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2023008514(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to EP22849575.0A priority Critical patent/EP4379072A1/en
Priority to CN202280017826.1A priority patent/CN116917521A/zh
Priority to KR1020237029196A priority patent/KR20230137416A/ko
Priority to JP2022558029A priority patent/JP7243936B1/ja
Priority to BR112023014735A priority patent/BR112023014735A2/pt
Priority to US18/077,873 priority patent/US11859265B2/en
Publication of WO2023008514A1 publication Critical patent/WO2023008514A1/ja
Priority to US18/349,604 priority patent/US20230349032A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0233Manufacturing of magnetic circuits made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/22Notching the peripheries of circular blanks, e.g. laminations for dynamo-electric machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/24Perforating, i.e. punching holes
    • B21D28/26Perforating, i.e. punching holes in sheets or flat parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a non-oriented electrical steel sheet. More specifically, the present invention relates to a non-oriented electrical steel sheet suitable for the iron core of a motor for an electric vehicle, a hybrid vehicle, or the like, an iron core, an iron core manufacturing method, a motor, and a motor manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2021-126290 filed in Japan on July 30, 2021, the content of which is incorporated herein.
  • a motor generally consists of a stator and a rotor.
  • Iron cores for this stator include integral punched iron cores and split iron cores.
  • Non-oriented electromagnetic cores with good magnetic properties in the rolling direction (hereinafter also referred to as "L direction”) and in the direction perpendicular to the rolling direction (hereinafter also referred to as "C direction”) are used for integrally punched cores and split cores.
  • a steel plate is required.
  • a rotor core for example, there is a rotor core for an embedded permanent magnet motor (IPM motor).
  • IPM motor embedded permanent magnet motor
  • a rotor core for an IPM motor contains permanent magnets inside the rotor. Therefore, a non-oriented electrical steel sheet having excellent magnetic properties and excellent mechanical properties is required for the iron core.
  • each member of the motor is required to have high shape accuracy.
  • the integrally punched iron core is formed by punching a steel plate blank into a hollow disk shape
  • the rotor iron core for the IPM motor is produced by punching a steel plate blank into a disk shape. It is formed.
  • the shape accuracy after punching may deteriorate due to the mechanical anisotropy of the steel plate blank. Therefore, non-oriented electrical steel sheets with small mechanical anisotropy are desired for these iron cores.
  • Patent Document 1 discloses a technique related to a non-oriented electrical steel sheet with excellent magnetic properties.
  • Patent Literature 2 discloses a technique related to a non-oriented electrical steel sheet that can improve the motor efficiency of a split core motor.
  • Patent Document 3 discloses a technique related to a non-oriented electrical steel sheet having excellent magnetic properties.
  • the present invention has been made in view of the above problems, and manufactures a non-oriented electrical steel sheet having small magnetic anisotropy and small mechanical anisotropy, an iron core, and an iron core for an iron core of a motor.
  • the object is to provide a method, a motor and a method of manufacturing a motor.
  • the gist of the present invention is as follows.
  • a non-oriented electrical steel sheet in % by mass, C: 0.005% or less, Si: 1.0% or more and 5.0% or less, sol. Al: less than 2.5%, Mn: 3.0% or less, P: 0.3% or less, S: 0.01% or less, N: 0.01% or less, B: 0.10% or less, O: 0.10% or less, Mg: 0.10% or less, Ca: 0.01% or less, Ti: 0.10% or less, V: 0.10% or less, Cr: 5.0% or less, Ni: 5.0% or less, Cu: 5.0% or less, Zr: 0.10% or less, Sn: 0.10% or less, Sb: 0.10% or less, Ce: 0.10% or less, Nd: 0.10% or less, Bi: 0.10% or less, W: 0.10% or less, Mo: 0.10% or less, Nb: 0.10% or less, Y: 0.10% or less, and has a chemical composition with the balance consisting of Fe and impur
  • X1 (2 ⁇ B50L + B50C )/(3 ⁇ Is) (Formula 1)
  • X2 ( B50L +2* B50D + B50C )/(4*Is) (Formula 2)
  • B 50L is the magnetic flux density in the rolling direction when magnetized with a magnetizing force of 5000 A / m.
  • B 50C is the magnetic flux density in the direction perpendicular to the rolling when magnetized with a magnetizing force of 5000 A / m.
  • B 50D is the magnetic flux density in the direction of 45° from the rolling direction when magnetized with a magnetizing force of 5000 A / m.
  • Is is the spontaneous magnetization at room temperature.
  • Al 0.10% or more and less than 2.5%, Mn: 0.0010% or more and 3.0% or less, P: 0.0010% or more and 0.3% or less, S: 0.0001% or more and 0.01% or less, N: more than 0.0015% and 0.01% or less, B: 0.0001% or more and 0.10% or less, O: 0.0001% or more and 0.10% or less, Mg: 0.0001% or more and 0.10% or less, Ca: 0.0003% or more and 0.01% or less, Ti: 0.0001% or more and 0.10% or less, V: 0.0001% or more and 0.10% or less, Cr: 0.0010% or more and 5.0% or less, Ni: 0.0010% or more and 5.0% or less, Cu: 0.0010% or more and 5.0% or less, Zr: 0.0002% or more and 0.10% or less, Sn: 0.0010% or more and 0.10% or less, Sb: 0.0010% or more and 0.10% or less, Ce: 0.001% or more and 0.1
  • the total Al content may be greater than 4.0%.
  • the X1 value may be 0.800 or more and less than 0.830.
  • the X2 value may be 0.805 or more and 0.825 or less.
  • a core according to an aspect of the present invention may include the non-oriented electrical steel sheet according to any one of (1) to (6) above.
  • a method for manufacturing an iron core according to an aspect of the present invention may include processing and laminating the non-oriented electrical steel sheet according to any one of (1) to (6) above. .
  • a motor according to an aspect of the present invention may include the core described in (7) above.
  • a method for manufacturing a motor according to an aspect of the present invention includes a step of processing and laminating the non-oriented electrical steel sheets according to any one of (1) to (6) above to manufacture an iron core, and You may have the process of assembling the said core.
  • a non-oriented electrical steel sheet with small magnetic anisotropy and small mechanical anisotropy, an iron core, a method for manufacturing an iron core, a motor, and a motor for an iron core of a motor A manufacturing method can be provided.
  • FIG. 1 is a schematic diagram of a non-oriented electrical steel sheet according to an embodiment of the present invention.
  • FIG. 1 shows a schematic diagram of a non-oriented electrical steel sheet according to one embodiment of the present invention.
  • the non-oriented electrical steel sheet according to the present embodiment contains Si as a chemical composition, optionally contains selective elements, and the balance consists of Fe and impurities. Each element will be described below.
  • C 0% or more and 0.005% or less
  • C (carbon) is an element that is contained as an impurity and deteriorates magnetic properties. Therefore, the C content should be 0.005% or less. Preferably, it is 0.003% or less. Since the C content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to make the content 0% industrially, the lower limit may be more than 0% or 0.0010%.
  • Si 1.0% or more and 5.0% or less Si (silicon) is an element effective in increasing the resistivity of the steel sheet and reducing iron loss. Therefore, the Si content should be 1.0% or more. Moreover, Si is an effective element for reducing magnetic anisotropy and mechanical anisotropy as a non-oriented electrical steel sheet for the core of a motor. In this case, the Si content is preferably greater than 3.25%, more preferably 3.27% or more, further preferably 3.30% or more, and 3.40% or more. is more preferred. On the other hand, if it is contained excessively, the magnetic flux density is remarkably lowered. Therefore, the Si content should be 5.0% or less. The Si content is preferably 4.0% or less, more preferably 3.5% or less.
  • sol. Al 0% or more and less than 2.5%
  • Al aluminum
  • sol. Al content is less than 2.5%.
  • sol. There is no need to limit the lower limit of Al, and the lower limit may be 0%. However, in order to more reliably obtain the effect of the above action, sol. It is preferable to set the Al content to 0.10% or more.
  • sol. Al means acid-soluble aluminum.
  • Si and Al are elements effective in reducing magnetic anisotropy and mechanical anisotropy. Therefore, Si and sol.
  • the total Al content is preferably over 4.0%, more preferably over 4.10%, and even more preferably over 4.15%. On the other hand, since Si and Al have high solid-solution strengthening ability, cold rolling becomes difficult when they are contained excessively. Therefore, Si and sol.
  • the total Al content is preferably less than 5.5%.
  • Mn 0% or more and 3.0% or less
  • Mn manganese
  • the Mn content is set to 3.0% or less. Preferably, it is 2.5% or less.
  • the lower limit of Mn is preferably 0%.
  • the Mn content is preferably 0.0010% or more, more preferably 0.010% or more.
  • P 0% or more and 0.3% or less
  • P phosphorus
  • P is an element generally contained as an impurity.
  • P since it has the effect of improving the texture of the non-oriented electrical steel sheet and improving the magnetic properties, it may be contained as necessary.
  • P since P is also a solid-solution strengthening element, an excessive P content hardens the steel sheet and makes cold rolling difficult. Therefore, the P content should be 0.3% or less.
  • the P content is preferably 0.2% or less. There is no need to limit the lower limit of P, and the lower limit may be 0%. However, in order to more reliably obtain the above-mentioned effects, the P content is preferably 0.0010% or more, more preferably 0.015% or more.
  • S 0% or more and 0.01% or less S (sulfur) is contained as an impurity, combines with Mn in steel to form fine MnS, inhibits grain growth during annealing, It degrades the magnetic properties of the electrical steel sheet. Therefore, the S content should be 0.01% or less.
  • the S content is preferably 0.005% or less, more preferably 0.003% or less. Since the S content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be set to 0.0001%.
  • N 0% or more and 0.01% or less N (nitrogen) is contained as an impurity, combines with Al to form fine AlN, inhibits the growth of crystal grains during annealing, and degrades magnetic properties. Therefore, the N content is set to 0.01% or less.
  • the N content is preferably 0.005% or less, more preferably 0.003% or less. Since the N content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be 0.0001% or more, may be more than 0.0015%, or may be 0.0025% or more.
  • Sn 0% or more and 0.10% or less
  • Sb 0% or more and 0.10% or less
  • Sn (tin) and Sb (antimony) improve the texture of the non-oriented electrical steel sheet and improve the magnetic properties (e.g., magnetic flux density ), it may be contained as necessary. However, if it is contained excessively, it may embrittle the steel and cause cold-rolling fracture, and may deteriorate the magnetic properties. Therefore, the contents of Sn and Sb are each set to 0.10% or less. Sn and Sb do not need to have a lower limit, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the Sn content is preferably 0.0010% or more, more preferably 0.01% or more. The Sb content is preferably 0.0010% or more, preferably 0.002% or more, more preferably 0.01% or more, and more than 0.025%. More preferred.
  • Ca 0% or more and 0.01% or less
  • Ca (calcium) suppresses precipitation of fine sulfides (MnS, Cu 2 S, etc.) by forming coarse sulfides, so it is an effective choice for inclusion control. It is an element, and when added in an appropriate amount, it has the effect of improving crystal grain growth and improving magnetic properties (for example, iron loss). However, if it is contained excessively, the effects due to the above action become saturated, leading to an increase in cost. Therefore, the Ca content should be 0.01% or less.
  • the Ca content is preferably 0.008% or less, more preferably 0.005% or less.
  • the Ca content is preferably 0.001% or more, more preferably 0.003% or more.
  • Cr 0% or more and 5.0% or less Cr (chromium) is a selective element that increases specific resistance and improves magnetic properties (for example, iron loss). However, if it is contained excessively, the saturation magnetic flux density may be lowered, and the effect due to the above action is saturated, leading to an increase in cost. Therefore, the Cr content is set to 5.0% or less.
  • the Cr content is preferably 0.5% or less, more preferably 0.1% or less. There is no need to limit the lower limit of Cr, and the lower limit may be 0%. However, the Cr content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Ni 0% or more and 5.0% or less
  • Ni (nickel) is a selective element that improves magnetic properties (for example, saturation magnetic flux density). However, if it is contained excessively, the effects due to the above action become saturated, leading to an increase in cost. Therefore, the Ni content is set to 5.0% or less.
  • the Ni content is preferably 0.5% or less, more preferably 0.1% or less. There is no need to limit the lower limit of Ni, and the lower limit may be 0%. However, the Ni content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Cu 0% or more and 5.0% or less
  • Cu (copper) is a selective element that improves steel sheet strength. However, if it is contained excessively, the saturation magnetic flux density may be lowered, and the effect due to the above action is saturated, leading to an increase in cost. Therefore, the Cu content is set to 5.0% or less.
  • the Cu content is preferably 0.1% or less. There is no need to limit the lower limit of Cu, and the lower limit may be 0%. However, the Cu content is preferably 0.0010% or more in order to more reliably obtain the effects of the above action.
  • Ce 0% or more and 0.10% or less
  • Ce suppresses the precipitation of fine sulfides (MnS, Cu 2 S, etc.) by forming coarse sulfides and oxysulfides, and improves grain growth.
  • MnS, Cu 2 S, etc. fine sulfides
  • the Ce content should be 0.10% or less.
  • the Ce content is preferably 0.01% or less, more preferably 0.009% or less, and even more preferably 0.008% or less.
  • the Ce content is preferably 0.001% or more in order to more reliably obtain the effects of the above action.
  • the Ce content is more preferably 0.002% or more, more preferably 0.003% or more, and even more preferably 0.005% or more.
  • the chemical composition of the non-oriented electrical steel sheet according to the present embodiment includes, in addition to the above elements, selective elements such as B, O, Mg, Ti, V, Zr, Nd, Bi, W, Mo, Nb, Y may be contained.
  • selective elements such as B, O, Mg, Ti, V, Zr, Nd, Bi, W, Mo, Nb, Y may be contained.
  • the content of these selective elements may be controlled based on known knowledge. For example, the content of these selective elements may be as follows.
  • B 0% or more and 0.10% or less
  • O 0% or more and 0.10% or less
  • Mg 0% or more and 0.10% or less
  • Ti 0% or more and 0.10% or less
  • V 0% or more and 0.10% or less
  • Zr 0% or more and 0.10% or less
  • Nd 0% or more and 0.10% or less
  • Bi 0% or more and 0.10% or less
  • W 0% or more and 0.10% or less
  • Mo 0% or more and 0.10% or less
  • Nb 0% or more and 0.10% or less
  • Y 0% or more and 0.10% or less.
  • the non-oriented electrical steel sheet according to the present embodiment has a chemical composition of, in mass%, C: 0.0010% or more and 0.005% or less, sol. Al: 0.10% or more and less than 2.5%, Mn: 0.0010% or more and 3.0% or less, P: 0.0010% or more and 0.3% or less, S: 0.0001% or more and 0.01% or less, N: more than 0.0015% and 0.01% or less, B: 0.0001% or more and 0.10% or less, O: 0.0001% or more and 0.10% or less, Mg: 0.0001% or more and 0.10% or less, Ca: 0.0003% or more and 0.01% or less, Ti: 0.0001% or more and 0.10% or less, V: 0.0001% or more and 0.10% or less, Cr: 0.0010% or more and 5.0% or less, Ni: 0.0010% or more and 5.0% or less, Cu: 0.0010% or more and 5.0% or less, Zr: 0.0002% or more and 0.10% or less, sol
  • the B content is preferably 0.01% or less
  • the O content is preferably 0.01% or less
  • the Mg content is preferably 0.005% or less
  • the Ti content is preferably 0.002% or less
  • the V content is preferably 0.002% or less
  • the Zr content is preferably 0.002% or less
  • the Nd content is 0.01%
  • Bi content is preferably 0.01% or less
  • W content is preferably 0.01% or less
  • Mo content is preferably 0.01% or less
  • the Nb content is 0.002% or less
  • the Y content is preferably 0.01% or less
  • the Ti content is preferably 0.001% or more
  • the V content is preferably 0.002% or more
  • the Nb content is preferably 0.002% or more.
  • the above chemical composition can be measured by a general analysis method for steel.
  • the chemical composition may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • sol. Al can be measured by ICP-AES using the filtrate obtained by thermally decomposing the sample with acid.
  • C and S may be measured using the combustion-infrared absorption method, N using the inert gas fusion-thermal conductivity method, and O using the inert gas fusion-nondispersive infrared absorption method.
  • the above chemical composition is the composition of a non-oriented electrical steel sheet that does not contain an insulating coating or the like. If the non-oriented electrical steel sheet used as the measurement sample has an insulating coating or the like on the surface, the measurement is performed after removing this.
  • the insulating coating or the like may be removed by the following method. First, a non-oriented electrical steel sheet having an insulating coating or the like is immersed in an aqueous sodium hydroxide solution, an aqueous sulfuric acid solution, and an aqueous nitric acid solution in that order, and then washed. Finally, it is dried with warm air. Thereby, a non-oriented electrical steel sheet from which the insulating coating is removed can be obtained. Alternatively, the insulating coating or the like may be removed by grinding.
  • the X1 value defined by the following (Equation 1) shall be less than 0.845.
  • the X2 value defined by the following (formula 2) shall be 0.800 or more.
  • X1 (2 ⁇ B50L + B50C )/(3 ⁇ Is) (Formula 1)
  • X2 ( B50L +2* B50D + B50C )/(4*Is) (Formula 2)
  • B 50L is the magnetic flux density in the rolling direction when magnetized with a magnetizing force of 5000 A / m.
  • B 50C is the magnetic flux density in the direction perpendicular to the rolling when magnetized with a magnetizing force of 5000 A / m.
  • B 50D is the magnetic flux density in the direction of 45° from the rolling direction when magnetized with a magnetizing force of 5000 A / m.
  • Is is the spontaneous magnetization at room temperature.
  • Is in (Equation 1) and (Equation 2) can be obtained by the following (Equation 3) and (Equation 4).
  • (Formula 3) obtains the spontaneous magnetization on the assumption that the spontaneous magnetization of the steel sheet is simply diluted by elements other than Fe.
  • the density of the steel sheet in (Formula 3) may be measured according to JIS Z8807:2012.
  • the density may be measured in the state of having the insulating coating by the method concerned, and the same density value is used when evaluating the magnetic properties described later.
  • the density of Fe in (Equation 3) should be 7.873 g/cm 3 .
  • Fe content (mass%) 100 (mass%) - [C, Si, Mn, sol. Total content of Al, P, S, N, B, O, Mg, Ca, Ti, V, Cr, Ni, Cu, Zr, Sn, Sb, Ce, Nd, Bi, W, Mo, Nb, Y ( % by mass)] (Formula 4)
  • the X1 value is preferably 0.800 or more, or 0.800 or more. It is preferably less than 830.
  • the X2 value is preferably 0.805 or more, or preferably 0.825 or less.
  • the iron loss W10 /1k when excited at a magnetic flux density of 1.0 T and a frequency of 1 kHz shall be 80 W/kg or less.
  • Iron loss W10 /1k is preferably 70 W/kg or less, more preferably 49 W/kg or less. It should be noted that the lower limit of iron loss W 10/1k need not be limited, but the lower limit may be set to 30 W/kg, if necessary.
  • the magnetic properties can be measured by the single sheet magnetic property test method (Single Sheet Tester: SST) specified in JIS C2556:2015.
  • a test piece of a smaller size for example, a test piece of width 55 mm ⁇ length 55 mm
  • a test piece of width 55 mm ⁇ length 55 mm is collected and conforms to the single plate magnetic property test method. measurements may be taken.
  • two test pieces of width 8 mm x length 16 mm are used to make a test piece of width 16 mm x length 16 mm according to the single plate magnetic property test method. measurements may be taken. In that case, it is preferable to use an Epstein-equivalent value converted into a value measured by an Epstein tester specified in JIS C 2550:2011.
  • the average crystal grain size is set to 30 ⁇ m or more and 200 ⁇ m or less.
  • the average crystal grain size can be measured by the cutting method specified in JIS G0551:2020.
  • a vertical cross-sectional structure photograph an average value of grain sizes measured by a cutting method in the plate thickness direction and the rolling direction may be used.
  • An optical microscopic photograph can be used as the longitudinal section structure photograph, and for example, a photograph taken at a magnification of 50 times may be used.
  • the plate thickness shall be 0.35 mm or less. Preferably, it is 0.30 mm or less. On the other hand, excessive thinning significantly reduces the productivity of the steel plate and the motor, so the plate thickness should be 0.10 mm or more. Preferably, it is 0.15 mm or more.
  • the plate thickness can be measured with a micrometer.
  • the non-oriented electrical steel sheet used as a measurement sample has an insulating film etc. on the surface, it measures after removing this.
  • the method for removing the insulating coating is as described above.
  • the roundness after the round punching process is more than 0.9997 and 1.0000 or less.
  • the minimum value of the diameter of the outer circumference circle of the molded product is It is preferable that the value (circularity) obtained by dividing by the maximum diameter of the outer peripheral circle of the product is more than 0.9997 and 1.0000 or less.
  • the circularity is preferably greater than 0.9998, more preferably 0.9999 or more.
  • the above roundness may be measured by the following method.
  • a non-oriented electrical steel sheet is punched out with a disk-shaped (perfect circle) die having an outer diameter of 79.5 mm at a punching speed of 250 strokes/minute using a 25t continuous progressive press.
  • 60 punched products are piled up and crimped as a core.
  • the obtained disc-shaped core simulates the rotor core of the motor, and the roundness of the outer circumference circle can be an index of the accuracy of the air gap with the stator core.
  • the diameter of the outer circumference of the obtained disc-shaped core is measured at a plurality of points, and the ratio between the maximum value and the minimum value of the measured diameters is taken as the roundness.
  • the minimum diameter of the outer circumference circle of the molded product A value obtained by dividing the value by the maximum value of the diameter of the outer peripheral circle of the molded product is defined as the roundness.
  • the non-oriented electrical steel sheet according to the present embodiment has small magnetic anisotropy and small mechanical anisotropy for the iron core of a motor.
  • the non-oriented electrical steel sheet according to the present embodiment satisfies X1 value of less than 0.845, X2 value of 0.800 or more, and iron loss W 10/1k of 80 W/kg or less.
  • the effect of excellent circularity can be obtained.
  • the non-oriented electrical steel sheet according to the present embodiment has an X1 value of less than 0.830, an X2 value of 0.800 or more, and an iron loss W 10/1k of 49 W when the chemical composition and manufacturing conditions are preferably controlled. /kg or less, and as a result, the effect of further improving the roundness can be obtained.
  • the non-oriented electrical steel sheet according to the present embodiment Since the non-oriented electrical steel sheet according to the present embodiment has small magnetic anisotropy and small mechanical anisotropy, it is suitable for iron cores of motors such as electric vehicles and hybrid vehicles. Therefore, the core including the non-oriented electrical steel sheet according to this embodiment exhibits excellent performance. In addition, since the non-oriented electrical steel sheet according to this embodiment is suitable for the iron core, a motor including this iron core exhibits excellent performance.
  • the method of manufacturing the non-oriented electrical steel sheet according to the present embodiment is not particularly limited as long as it has the above configuration.
  • the following manufacturing method is one example for manufacturing the non-oriented electrical steel sheet according to this embodiment, and is a suitable example of the manufacturing method for the non-oriented electrical steel sheet according to this embodiment.
  • a method for manufacturing a non-oriented electrical steel sheet according to the present embodiment is characterized by having the following steps (A) to (D).
  • Second cold rolling step (D) Cold rolling obtained by the second cold rolling step (D) cold rolling with a rolling reduction of 50% or more and 85% or less to make a plate thickness of 0.10 mm or more and 0.35 mm or less
  • First cold rolling step In the first cold rolling step, the hot-rolled steel sheet having the above chemical composition is cold-rolled at a rolling reduction (cumulative rolling reduction) of 10% or more and 75% or less. If the rolling reduction in the first cold rolling step is less than 10% or more than 75%, it may not be possible to obtain the desired magnetic properties and roundness. Therefore, the rolling reduction in the first cold rolling step is set to 10% or more and 75% or less.
  • Cold rolling conditions other than the above such as the steel sheet temperature during cold rolling and the diameter of the rolling rolls, are not particularly limited, and are appropriately selected according to the chemical composition of the hot rolled steel sheet, the desired thickness of the steel sheet, and the like.
  • Hot-rolled steel sheets are usually cold-rolled after the scale formed on the surface of the steel sheet during hot rolling is removed by pickling. As will be described later, when the hot-rolled steel sheet is subjected to hot-rolled steel annealing, the hot-rolled steel sheet may be pickled either before the hot-rolled steel annealing or after the hot-rolled steel annealing.
  • the cold-rolled steel sheet obtained in the first cold rolling step is heated from 500°C to 650°C at an average temperature increase rate of 300°C/sec or more and 1000°C/sec or less, and the holding temperature is 700°C. °C or higher and 1100 °C or lower, the holding time is 10 seconds or longer and 300 seconds or shorter (0.0028 hours or longer and 0.0833 hours or shorter), and the average cooling rate from 700 °C to 500 °C is 25 °C/second or higher. Annealed. If the above conditions are not satisfied in the intermediate annealing step, it may not be possible to obtain the desired magnetic properties and roundness. Conditions other than those described above for the intermediate annealing are not particularly limited.
  • the average cooling rate from 700° C. to 500° C. does not need to have an upper limit, but the upper limit may be set at 70° C./sec, if necessary.
  • the holding temperature is preferably 850°C or higher. Moreover, the holding time is preferably 180 seconds or less (0.05 hours or less). Furthermore, it is preferable that the average cooling rate from 700° C. to 500° C. is 28° C./second or more. In particular, after satisfying the conditions of the present embodiment, the Si content: more than 3.25%, the average temperature increase rate from 500 ° C. to 650 ° C.: 300 ° C./sec or more, the holding temperature: 850 ° C. or more, and If the holding time is 180 seconds or less and the average cooling rate from 700° C. to 500° C. is 33° C./second or more, it is possible to obtain a non-oriented electrical steel sheet that satisfies both magnetic properties and circularity. .
  • the intermediate-annealed steel sheet obtained in the intermediate-annealing step is cold-rolled at a rolling reduction (cumulative rolling reduction) of 50% or more and 85% or less to obtain a rolling reduction of 0.10 mm or more and 0.35 mm or less. thickness.
  • the rolling reduction in the second cold rolling step is set to 50% or more and 85% or less.
  • the plate thickness shall be 0.10 mm or more and 0.35 mm or less.
  • the plate thickness is preferably 0.15 mm or more and 0.30 mm or less.
  • Cold rolling conditions other than those described above such as the steel sheet temperature during cold rolling and the diameter of the rolling rolls, are not particularly limited, and are appropriately selected according to the chemical composition of the steel sheet, the desired thickness of the steel sheet, and the like. .
  • the cold-rolled steel sheet obtained in the second cold rolling step is subjected to finish annealing in a temperature range of 900°C or higher and 1200°C or lower. If the final annealing temperature in the final annealing step is less than 900° C., insufficient grain growth may result in an average grain size of less than 30 ⁇ m, resulting in insufficient magnetic properties. Therefore, the final annealing temperature should be 900° C. or higher. On the other hand, if the final annealing temperature exceeds 1200° C., grain growth proceeds excessively, resulting in an average crystal grain size exceeding 200 ⁇ m, and sufficient magnetic properties may not be obtained.
  • the final annealing temperature should be 1200° C. or lower.
  • the finish annealing time for holding in the temperature range of 900° C. or higher and 1200° C. or lower may not be particularly specified, but it is preferable to set it to 1 second or longer in order to more reliably obtain good magnetic properties. On the other hand, from the viewpoint of productivity, it is preferable to set the finish annealing time to 120 seconds or less. Conditions other than the above for the finish annealing are not particularly limited.
  • Hot-rolled sheet annealing process The hot-rolled steel sheet to be subjected to the first cold rolling step may be subjected to hot-rolled sheet annealing. Better magnetic properties can be obtained by subjecting the hot-rolled sheet to annealing.
  • Hot-rolled sheet annealing may be performed by either box annealing or continuous annealing. When box annealing is used, it is preferable to keep the temperature range of 700° C. or higher and 900° C. or lower for 1 hour or longer and 20 hours or shorter. When continuous annealing is performed, it is preferable to hold the temperature in the temperature range of 850° C. or higher and 1100° C. or lower for 1 second or longer and 180 seconds or shorter. Conditions other than the above for hot-rolled sheet annealing are not particularly limited.
  • the hot-rolled steel sheet to be subjected to the first cold rolling step can be obtained by subjecting a steel ingot or steel billet (hereinafter also referred to as "slab") having the chemical composition described above to hot rolling.
  • slab steel ingot or steel billet
  • the steel having the above chemical composition is made into a slab by a general method such as continuous casting or blooming of a steel ingot, and the slab is charged into a heating furnace and hot rolled. At this time, if the slab temperature is high, the hot rolling may be performed without charging the slab into the heating furnace.
  • Various conditions for hot rolling are not particularly limited.
  • a coating step may be performed in which an insulating film consisting of only organic components, only inorganic components, or an organic-inorganic composite is applied to the surface of the steel sheet according to a general method. From the viewpoint of reducing the environmental load, an insulating coating that does not contain chromium may be applied. Moreover, the coating step may be a step of applying an insulating coating that exerts adhesiveness by applying heat and pressure. Acrylic resins, phenol resins, epoxy resins, melamine resins, or the like can be used as coating materials exhibiting adhesive properties.
  • An iron core may be manufactured using the non-oriented electrical steel sheet according to the present embodiment manufactured as described above.
  • This iron core manufacturing method may have a step of processing and laminating the above-described non-oriented electrical steel sheets.
  • a motor may be manufactured using this iron core.
  • a method for manufacturing this motor may include a step of processing and laminating the above-described non-oriented electrical steel sheets to manufacture a core, and a step of assembling the core.
  • non-oriented electrical steel sheets were manufactured by carrying out each step under the conditions shown in Tables 1 to 16.
  • pickling was performed after the hot rolling.
  • test No. Nos. 1, 7, and 19 were pickled before hot-rolled sheet annealing, and the others were pickled after hot-rolled sheet annealing.
  • the holding time of the finish annealing was set to 30 seconds.
  • the chemical composition, plate thickness, average grain size, X1 and X2 values related to magnetic flux density, iron loss W 10/1k , and circularity of the manufactured non-oriented electrical steel sheets were measured. These measurement methods are as described above. These measurement results are shown in Tables 1-16.
  • the chemical composition of the manufactured non-oriented electrical steel sheet was substantially the same as that of the slab. Elements represented by "-” in the table indicate that they are not consciously controlled and manufactured. In addition, the Si content indicated by "3.3” in the table was over 3.25%. In addition, manufacturing conditions represented by "-” in the table indicate that the control was not performed.
  • the plate thickness of the produced non-oriented electrical steel sheet was the same as the finished plate thickness after the second cold rolling step.
  • the circularity was defined as the ratio of the maximum and minimum diameters of the outer circumference of the disc-shaped core, and the circularity was evaluated according to the following criteria. Excellent: circularity of 0.9999 or more and 1.0000 or less Very Good: circularity of more than 0.9998 to less than 0.9999 Good: circularity of more than 0.9997 to 0.9998 or less Poor: circularity is 0.9997 or less
  • Test No. 1 to 91 all of the present invention examples had small magnetic anisotropy and small mechanical anisotropy as non-oriented electrical steel sheets.
  • Test No. Of 1 to 91 the comparative examples were not excellent in at least one of magnetic properties and roundness.
  • a non-oriented electrical steel sheet with small magnetic anisotropy and small mechanical anisotropy, an iron core, a method for manufacturing an iron core, a motor, and a motor for an iron core of a motor Since it becomes possible to provide a manufacturing method, the industrial applicability is high.
  • Non-oriented electrical steel sheet L Rolling direction C: direction perpendicular to rolling D: 45° direction from the rolling direction

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

この無方向性電磁鋼板は、化学組成として、質量%で、Si:1.0%以上5.0%以下を含有し、板厚が0.10mm以上0.35mm以下であり、平均結晶粒径が30μm以上200μm以下であり、X1=(2×B50L+B50C)/(3×Is)で規定されるX1値が0.845未満であり、X2=(B50L+2×B50D+B50C)/(4×Is)で規定されるX2値が0.800以上であり、鉄損W10/1kが80W/kg以下である。

Description

無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
 本発明は、無方向性電磁鋼板に関する。より詳しくは、本発明は、電気自動車やハイブリッド自動車などのモータの鉄心用として好適な無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法に関する。
 本願は、2021年7月30日に、日本に出願された特願2021-126290号に基づき優先権を主張し、その内容をここに援用する。
 地球温暖化ガスを削減する必要性から、工業分野では消費エネルギーの少ない製品が開発されている。例えば、自動車分野においては、ガソリンエンジンとモータとを組み合わせたハイブリッド駆動自動車、モータ駆動の電気自動車等の低燃費自動車がある。これら低燃費自動車に共通した技術はモータであり、モータの高効率化が重要な技術となっている。
 一般に、モータは、固定子(ステータ)と回転子(ロータ)とで構成される。この固定子用の鉄心としては、一体打抜き型鉄心と分割鉄心とがある。一体打抜き型鉄心用および分割鉄心用としては、圧延方向(以下、「L方向」ともいう。)および圧延直角方向(以下、「C方向」ともいう。)の磁気特性が良好な無方向性電磁鋼板が求められている。
 一方、回転子用の鉄心としては、例えば、永久磁石埋め込みモータ(IPMモータ)用のロータ鉄心がある。IPMモータ用のロータ鉄心は、ロータ内部に永久磁石を内蔵する。そのため、この鉄心用としては、磁気特性に優れるとともに機械特性にも優れる無方向性電磁鋼板が求められている。
 また、モータは、その内部構造として固定子と回転子との間の隙間が小さいほど、モータとしての性能が向上する。そのため、モータの各部材は、形状精度が高いことが要求される。例えば、上記の一体打抜き型鉄心は、鋼板ブランクを中空円板状に打抜加工することで形成され、上記のIPMモータ用のロータ鉄心は、鋼板ブランクを円板状に打抜加工することで形成される。ただ、鋼板ブランクを中空円板状や円板状に打抜加工する場合、鋼板ブランクの機械的な異方性に由来して、打抜加工後の形状精度が低下してしまうことがある。そのため、これらの鉄心用としては、機械的な異方性が小さい無方向性電磁鋼板が求められている。
 例えば、特許文献1には、磁気特性に優れる無方向性電磁鋼板に関する技術が開示されている。特許文献2には、分割鉄心型モータのモータ効率を向上できる無方向性電磁鋼板に関する技術が開示されている。特許文献3には、磁気特性に優れる無方向性電磁鋼板に関する技術が開示されている。
日本国特許第5447167号公報 日本国特許第5716315号公報 国際公開第2013/069754号
 本発明は、上記問題点に鑑みてなされたものであり、モータの鉄心用として、磁気的な異方性が小さく且つ機械的な異方性が小さい無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法を提供することを目的とする。
 本発明の要旨は以下のとおりである。
 (1)本発明の一態様にかかる無方向性電磁鋼板は、
 質量%で、
  C :0.005%以下、
  Si:1.0%以上5.0%以下、
  sol.Al:2.5%未満、
  Mn:3.0%以下、
  P :0.3%以下、
  S :0.01%以下、
  N :0.01%以下、
  B :0.10%以下、
  O :0.10%以下、
  Mg:0.10%以下、
  Ca:0.01%以下、
  Ti:0.10%以下、
  V :0.10%以下、
  Cr:5.0%以下、
  Ni:5.0%以下、
  Cu:5.0%以下、
  Zr:0.10%以下、
  Sn:0.10%以下、
  Sb:0.10%以下、
  Ce:0.10%以下、
  Nd:0.10%以下、
  Bi:0.10%以下、
  W :0.10%以下、
  Mo:0.10%以下、
  Nb:0.10%以下、
  Y :0.10%以下、
 を含有し、残部がFeおよび不純物からなる化学組成を有し、
 板厚が0.10mm以上0.35mm以下であり、
 平均結晶粒径が30μm以上200μm以下であり、
 下記(式1)で規定されるX1値が0.845未満であり、
 下記(式2)で規定されるX2値が0.800以上であり、
 磁束密度1.0T、周波数1kHzで励磁した際の鉄損W10/1kが80W/kg以下である
ことを特徴とする無方向性電磁鋼板。
    X1=(2×B50L+B50C)/(3×Is)       (式1)
    X2=(B50L+2×B50D+B50C)/(4×Is)   (式2)
(ここで、
 B50Lは磁化力5000A/mで磁化した際の圧延方向の磁束密度、
 B50Cは磁化力5000A/mで磁化した際の圧延直角方向の磁束密度、
 B50Dは磁化力5000A/mで磁化した際の圧延方向から45°方向の磁束密度、
 Isは室温における自発磁化である。)
 (2)上記(1)に記載の無方向性電磁鋼板では、
 前記化学組成として、質量%で、
  Si:3.25%超5.0%以下
 を含有してもよい。
 (3)上記(1)または(2)に記載の無方向性電磁鋼板では、
 前記化学組成として、質量%で、
  C :0.0010%以上0.005%以下、
  sol.Al:0.10%以上2.5%未満、
  Mn:0.0010%以上3.0%以下、
  P :0.0010%以上0.3%以下、
  S :0.0001%以上0.01%以下、
  N :0.0015%超0.01%以下、
  B :0.0001%以上0.10%以下、
  O :0.0001%以上0.10%以下、
  Mg:0.0001%以上0.10%以下、
  Ca:0.0003%以上0.01%以下、
  Ti:0.0001%以上0.10%以下、
  V :0.0001%以上0.10%以下、
  Cr:0.0010%以上5.0%以下、
  Ni:0.0010%以上5.0%以下、
  Cu:0.0010%以上5.0%以下、
  Zr:0.0002%以上0.10%以下、
  Sn:0.0010%以上0.10%以下、
  Sb:0.0010%以上0.10%以下、
  Ce:0.001%以上0.10%以下、
  Nd:0.002%以上0.10%以下、
  Bi:0.002%以上0.10%以下、
  W :0.002%以上0.10%以下、
  Mo:0.002%以上0.10%以下、
  Nb:0.0001%以上0.10%以下、
  Y :0.002%以上0.10%以下、
 の少なくとも1種を含有してもよい。
 (4)上記(1)~(3)の何れか1つに記載の無方向性電磁鋼板では、
 前記化学組成として、質量%で、
  Siおよびsol.Alの合計含有量が4.0%超であってもよい。
 (5)上記(1)~(4)の何れか1つに記載の無方向性電磁鋼板では、
 前記X1値が0.800以上0.830未満であってもよい。
 (6)上記(1)~(5)の何れか1つに記載の無方向性電磁鋼板では、
 前記X2値が0.805以上0.825以下であってもよい。
 (7)本発明の一態様にかかる鉄心は、上記(1)~(6)の何れか1つに記載の無方向性電磁鋼板を含んでもよい。
 (8)本発明の一態様にかかる鉄心の製造方法は、上記(1)~(6)の何れか1つに記載の無方向性電磁鋼板を加工し、積層する工程を有してもよい。
 (9)本発明の一態様にかかるモータは、上記(7)に記載の鉄心を含んでもよい。
 (10)本発明の一態様にかかるモータの製造方法は、上記(1)~(6)の何れか1つに記載の無方向性電磁鋼板を加工し積層して鉄心を製造する工程、および上記鉄心を組み立てる工程を有してもよい。
 本発明の上記態様によれば、モータの鉄心用として、磁気的な異方性が小さく且つ機械的な異方性が小さい無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法を提供することができる。
本発明の一実施形態に係る無方向性電磁鋼板の模式図である。
 以下に、本発明の好適な実施形態について詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 図1に、本発明の一実施形態に係る無方向性電磁鋼板の模式図を示す。
 (化学組成)
 まず、本実施形態に係る無方向性電磁鋼板の化学組成の限定理由について説明する。
 本実施形態に係る無方向性電磁鋼板は、化学組成として、Siを含有し、必要に応じて選択元素を含有し、残部がFe及び不純物からなる。以下、各元素について説明する。
C:0%以上0.005%以下
 C(炭素)は、不純物として含有され、磁気特性を劣化させる元素である。したがって、C含有量は0.005%以下とする。好ましくは、0.003%以下である。C含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値を、0%超としてもよく、0.0010%としてもよい。
 Si:1.0%以上5.0%以下
 Si(ケイ素)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Si含有量は1.0%以上とする。また、Siは、モータの鉄心用の無方向性電磁鋼板として、磁気的な異方性を小さく且つ機械的な異方性を小さくするのに有効な元素である。この場合、Si含有量は、3.25%超であることが好ましく、3.27%以上であることがさらに好ましく、3.30%以上であることがさらに好ましく、3.40%以上であることがさらに好ましい。一方、過剰に含有させると磁束密度が著しく低下する。したがって、Si含有量は5.0%以下とする。Si含有量は、4.0%以下であることが好ましく、3.5%以下であることがさらに好ましい。
sol.Al:0%以上2.5%未満
 Al(アルミニウム)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素であるが、過剰に含有させると磁束密度が著しく低下する。このため、sol.Al含有量は2.5%未満とする。sol.Alは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、sol.Al含有量を0.10%以上とすることが好ましい。なお、sol.Alは、酸可溶性アルミニウムを意味する。
 ここで、SiおよびAlは、磁気的な異方性を小さく且つ機械的な異方性を小さくするのに有効な元素である。そのため、Siおよびsol.Alの合計含有量は、4.0%超であることが好ましく、4.10%超であることがさらに好ましく、4.15%超であることがさらに好ましい。一方、SiおよびAlは、固溶強化能が高いので、過剰に含有させると冷間圧延が困難になる。したがって、Siとsol.Alの合計含有量は5.5%未満とすることが好ましい。
Mn:0%以上3.0%以下
 Mn(マンガン)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素である。ただ、Mnは、SiやAlに比べて合金コストが高いため、Mn含有量が多くなると経済的に不利となる。このため、Mn含有量は3.0%以下とする。好ましくは2.5%以下である。Mnは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Mn含有量は、0.0010%以上であることが好ましく、0.010%以上であることがさらに好ましい。
P:0%以上0.3%以下
 P(リン)は、一般に不純物として含有される元素である。ただ、無方向性電磁鋼板の集合組織を改善して磁気特性を向上させる作用を有するので、必要に応じて含有させてもよい。しかしながら、Pは固溶強化元素でもあるため、P含有量が過剰になると、鋼板が硬質化して冷間圧延が困難になる。このため、P含有量は0.3%以下とする。P含有量は、0.2%以下であることが好ましい。Pは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、P含有量は、0.0010%以上であることが好ましく、0.015%以上であることがさらに好ましい。
S:0%以上0.01%以下
 S(硫黄)は、不純物として含有され、鋼中のMnと結合して微細なMnSを形成し、焼鈍時の結晶粒の成長を阻害し、無方向性電磁鋼板の磁気特性を劣化させる。このため、S含有量は0.01%以下とする。S含有量は、0.005%以下であることが好ましく、0.003%以下であることがさらに好ましい。S含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値を0.0001%としてもよい。
N:0%以上0.01%以下
 N(窒素)は、不純物として含有され、Alと結合して微細なAlNを形成し、焼鈍時の結晶粒の成長を阻害し、磁気特性を劣化させる。このため、N含有量を0.01%以下とする。N含有量は、0.005%以下であることが好ましく0.003%以下であることがさらに好ましい。N含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただ、工業的に含有量を0%にすることは容易ではないので、下限値は、0.0001%以上としてもよく、0.0015%超としてもよく、0.0025%以上としてもよい。
Sn:0%以上0.10%以下
Sb:0%以上0.10%以下
 Sn(錫)およびSb(アンチモン)は、無方向性電磁鋼板の集合組織を改善して磁気特性(例えば、磁束密度)を向上させる作用を有する選択元素であるので、必要に応じて含有させてもよい。しかしながら、過剰に含有させると、鋼を脆化させて冷延破断を引き起こすことがあり、また磁気特性を劣化させることがある。このため、SnおよびSbの含有量はそれぞれ0.10%以下とする。SnおよびSbは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Sn含有量は、0.0010%以上であることが好ましく、0.01%以上であることがさらに好ましい。また、Sb含有量は、0.0010%以上であることが好ましく、0.002%以上であることが好ましく、0.01%以上であることがさらに好ましく、0.025%超であることがさらに好ましい。
Ca:0%以上0.01%以下
 Ca(カルシウム)は、粗大な硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制するので介在物制御に有効な選択元素であり、適度に添加すると結晶粒成長性を向上させて磁気特性(例えば、鉄損)を向上させる作用を有する。しかしながら、過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ca含有量は0.01%以下とする。Ca含有量は、0.008%以下であることが好ましく、0.005%以下であることがさらに好ましい。Caは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ca含有量を0.0003%以上とすることが好ましい。Ca含有量は、0.001%以上であることが好ましく、0.003%以上であることがさらに好ましい。
Cr:0%以上5.0%以下
 Cr(クロム)は、固有抵抗を高めて、磁気特性(例えば、鉄損)を向上させる選択元素である。しかしながら、過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cr含有量は5.0%以下とする。Cr含有量は、0.5%以下であることが好ましく、0.1%以下であることがさらに好ましい。Crは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Cr含有量は0.0010%以上であることが好ましい。
Ni:0%以上5.0%以下
 Ni(ニッケル)は、磁気特性(例えば、飽和磁束密度)を向上させる選択元素である。しかしながら、過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ni含有量は5.0%以下とする。Ni含有量は、0.5%以下であることが好ましく、0.1%以下であることがさらに好ましい。Niは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ni含有量は0.0010%以上であることが好ましい。
Cu:0%以上5.0%以下
 Cu(銅)は、鋼板強度を向上させる選択元素である。しかしながら、過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cu含有量は5.0%以下とする。Cu含有量は、0.1%以下であることが好ましい。Cuは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Cu含有量は0.0010%以上であることが好ましい。
Ce:0%以上0.10%以下
 Ce(セリウム)は、粗大な硫化物、酸硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制し、粒成長性を良好にして鉄損を低減させる選択元素である。しかしながら、過剰に含有させると、硫化物および酸硫化物以外に酸化物も生成し、鉄損を劣化させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Ce含有量は0.10%以下とする。Ce含有量は、0.01%以下であることが好ましく、0.009%以下であることがさらに好ましく、0.008%以下であることがさらに好ましい。Ceは、下限値を制限する必要がなく、下限値が0%でもよい。ただ、上記作用による効果をより確実に得るには、Ce含有量は0.001%以上であることが好ましい。Ce含有量は、0.002%以上であることがさらに好ましく、0.003%以上であることがさらに好ましく、0.005%以上であることがさらに好ましい。
 本実施形態に係る無方向性電磁鋼板の化学組成は、上記の元素に加えて、選択元素として、例えば、B、O、Mg、Ti、V、Zr、Nd、Bi、W、Mo、Nb、Yを含有してもよい。これらの選択元素の含有量は、公知の知見に基づいて制御すればよい。例えば、これらの選択元素の含有量は、以下とすればよい。
  B :0%以上0.10%以下、
  O :0%以上0.10%以下、
  Mg:0%以上0.10%以下、
  Ti:0%以上0.10%以下、
  V :0%以上0.10%以下、
  Zr:0%以上0.10%以下、
  Nd:0%以上0.10%以下、
  Bi:0%以上0.10%以下、
  W :0%以上0.10%以下、
  Mo:0%以上0.10%以下、
  Nb:0%以上0.10%以下、
  Y :0%以上0.10%以下。
 また、本実施形態に係る無方向性電磁鋼板は、化学組成として、質量%で、
  C :0.0010%以上0.005%以下、
  sol.Al:0.10%以上2.5%未満、
  Mn:0.0010%以上3.0%以下、
  P :0.0010%以上0.3%以下、
  S :0.0001%以上0.01%以下、
  N :0.0015%超0.01%以下、
  B :0.0001%以上0.10%以下、
  O :0.0001%以上0.10%以下、
  Mg:0.0001%以上0.10%以下、
  Ca:0.0003%以上0.01%以下、
  Ti:0.0001%以上0.10%以下、
  V :0.0001%以上0.10%以下、
  Cr:0.0010%以上5.0%以下、
  Ni:0.0010%以上5.0%以下、
  Cu:0.0010%以上5.0%以下、
  Zr:0.0002%以上0.10%以下、
  Sn:0.0010%以上0.10%以下、
  Sb:0.0010%以上0.10%以下、
  Ce:0.001%以上0.10%以下、
  Nd:0.002%以上0.10%以下、
  Bi:0.002%以上0.10%以下、
  W :0.002%以上0.10%以下、
  Mo:0.002%以上0.10%以下、
  Nb:0.0001%以上0.10%以下、
  Y :0.002%以上0.10%以下、
 の少なくとも1種を含有することが好ましい。
 また、B含有量は0.01%以下であることが好ましく、O含有量は0.01%以下であることが好ましく、Mg含有量は0.005%以下であることが好ましく、Ti含有量は0.002%以下であることが好ましく、V含有量は0.002%以下であることが好ましく、Zr含有量は0.002%以下であることが好ましく、Nd含有量は0.01%以下であることが好ましく、Bi含有量は0.01%以下であることが好ましく、W含有量は0.01%以下であることが好ましく、Mo含有量は0.01%以下であることが好ましく、Nb含有量は0.002%以下であることが好ましく、Y含有量は0.01%以下であることが好ましい。また、Ti含有量は0.001%以上であることが好ましく、V含有量は0.002%以上であることが好ましく、Nb含有量は0.002%以上であることが好ましい。
 上記した化学組成は、鋼の一般的な分析方法によって測定すればよい。例えば、化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 なお、上記化学組成は、絶縁被膜等を含まない無方向性電磁鋼板の組成である。測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。例えば、次の方法で絶縁被膜等を除去すればよい。まず、絶縁被膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液、硫酸水溶液、硝酸水溶液に順に浸漬後、洗浄する。最後に、温風で乾燥させる。これにより、絶縁被膜が除去された無方向性電磁鋼板を得ることができる。また、研削によって絶縁被膜等を除去してもよい。
 (磁気特性)
 磁束密度に関しては、下記(式1)で規定されるX1値が0.845未満とする。
 また、下記(式2)で規定されるX2値が0.800以上とする。
    X1=(2×B50L+B50C)/(3×Is)      (式1)
    X2=(B50L+2×B50D+B50C)/(4×Is)  (式2)
 ここで、
 B50Lは磁化力5000A/mで磁化した際の圧延方向の磁束密度、
 B50Cは磁化力5000A/mで磁化した際の圧延直角方向の磁束密度、
 B50Dは磁化力5000A/mで磁化した際の圧延方向から45°方向の磁束密度、
 Isは室温における自発磁化である。
 (式1)および(式2)におけるIsは、下記(式3)および(式4)により求めればよい。なお、(式3)は、鋼板の自発磁化がFe以外の元素によって単純に希釈されると仮定して自発磁化を求めるものである。また、(式3)における鋼板の密度はJIS Z8807:2012に従って測定すればよい。また、絶縁被膜が施されている場合は、絶縁被膜を有する状態で当該の方法にて測定すればよく、後述する磁気特性の評価の際にも同じ密度値を使用する。また、(式3)におけるFeの密度は、7.873g/cmとすればよい。
    Is=2.16×{(鋼板の密度)/(Feの密度)}×[Feの含有量(質量%)]/100      (式3)
    Feの含有量(質量%)=100(質量%)-[C、Si、Mn、sol.Al、P、S、N、B、O、Mg、Ca、Ti、V、Cr、Ni、Cu、Zr、Sn、Sb、Ce、Nd、Bi、W、Mo、Nb、Yの合計含有量(質量%)]      (式4)
 モータの鉄心用の無方向性電磁鋼板として、磁気的な異方性を小さく且つ機械的な異方性を小さくするには、X1値が、0.800以上であることが好ましく、あるいは0.830未満であることが好ましい。また、真円度を更に優れたものとするためX2値は、0.805以上であることが好ましく、あるいは0.825以下であることが好ましい。
 鉄損に関しては、磁束密度1.0T、周波数1kHzで励磁した際の鉄損W10/1kが80W/kg以下とする。鉄損W10/1kは、70W/kg以下であることが好ましく、49W/kg以下であることがさらに好ましい。なお、鉄損W10/1kは、下限値を制限する必要がないが、必要に応じて、下限値を30W/kgとしてもよい。
 磁気特性は、JIS C2556:2015に規定される単板磁気特性試験法(Single Sheet Tester:SST)により測定すればよい。なお、JISに規定されるサイズの試験片を採取することに代えて、より小さいサイズの試験片、例えば、幅55mm×長さ55mmの試験片を採取して、単板磁気特性試験法に準拠した測定を行ってもよい。また、幅55mm×長さ55mmの試験片が採取できない場合には、幅8mm×長さ16mmの試験片を2枚用いて幅16mm×長さ16mmの試験片として単板磁気特性試験法に準拠した測定を行ってもよい。その際、JIS C 2550:2011に規定されるエプスタイン試験器での測定値へ換算したエプスタイン相当値とすることが好ましい。
 (平均結晶粒径)
 結晶粒径は、過大であっても過小であっても高周波条件での鉄損が劣化することがある。そのため、平均結晶粒径は30μm以上200μm以下とする。
 平均結晶粒径は、JIS G0551:2020に規定される切断法により測定すればよい。例えば、縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば50倍の倍率で撮影した写真を用いればよい。
 (板厚)
 板厚は、0.35mm以下とする。好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させるので、板厚は0.10mm以上とする。好ましくは、0.15mm以上である。
 板厚は、マイクロメーターにより測定すればよい。なお、測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。絶縁被膜の除去方法は、上述の通りである。
 なお、機械的な異方性として、真円打抜加工後の真円度が、0.9997超1.0000以下であることが好ましい。具体的には、外径79.5mmの円板状の金型で打抜加工して打ち抜き品を60枚積層してかしめて成形したとき、成形品の外周円の直径の最小値を、成形品の外周円の直径の最大値で割った値(真円度)が、0.9997超1.0000以下であることが好ましい。
 上記の真円度が0.9997超であるとき、打抜部材の形状精度が高いと見なせる。その結果、モータとして使用する際に、コギングトルクの増加や、振動騒音の増加を好ましく抑制できる。上記の真円度は、0.9998超であることが好ましく、0.9999以上であることがさらに好ましい。
 上記の真円度は、次の方法により測定すればよい。無方向性電磁鋼板を、25t連続順送プレス機にて、250ストローク/分の打ち抜き速度で、外径79.5mmの円板状(真円)の金型で打ち抜く。打ち抜き品60枚を積んで、コアとしてかしめる。得られた円板状のコアは、モータにおけるロータ鉄心を模擬しており、外周円の真円度がステータ鉄心とのエアギャップ精度の指標となり得る。得られた円板状コアの外周円の直径を複数個所で測定し、測定した直径の最大値と最小値との比を真円度とする。具体的には、外径79.5mmの円板状(真円)の金型で打抜加工して打ち抜き品を60枚積層してかしめて成形したとき、成形品の外周円の直径の最小値を、成形品の外周円の直径の最大値で割った値を真円度とする。
 本実施形態に係る無方向性電磁鋼板は、モータの鉄心用として、磁気的な異方性が小さく且つ機械的な異方性が小さい。例えば、本実施形態に係る無方向性電磁鋼板は、X1値:0.845未満、X2値:0.800以上、および鉄損W10/1k:80W/kg以下を満足し、その結果、真円度が優れるという効果を得られる。さらに、本実施形態に係る無方向性電磁鋼板は、化学組成および製造条件を好ましく制御すれば、X1値:0.830未満、X2値:0.800以上、および鉄損W10/1k:49W/kg以下を満足し、その結果、真円度がさらに優れるという効果を得られる。この場合、モータの鉄心用として、磁気的な異方性が小さく且つ機械的な異方性が小さいと判断できる。
(鉄心およびモータ)
 本実施形態に係る無方向性電磁鋼板は、磁気的な異方性が小さく且つ機械的な異方性が小さいので、電気自動車やハイブリッド自動車などのモータの鉄心に好適である。そのため、本実施形態に係る無方向性電磁鋼板を含む鉄心は、優れた性能を示す。また、本実施形態に係る無方向性電磁鋼板は鉄心に好適であるので、この鉄心を含むモータは、優れた性能を示す。
 (製造方法)
 以下、本実施形態に係る無方向性電磁鋼板の製造方法の一例を説明する。なお、本実施形態に係る無方向性電磁鋼板は、上述の構成を有すれば、製造方法は特に限定されない。下記の製造方法は、本実施形態に係る無方向性電磁鋼板を製造するための一つの例であり、本実施形態に係る無方向性電磁鋼板の製造方法の好適な例である。
 本実施形態に係る無方向性電磁鋼板の製造方法は、下記工程(A)~(D)を有することを特徴とする。
(A)上述の化学組成を有する熱延鋼板に10%以上75%以下の圧下率の冷間圧延を施す第1冷間圧延工程
(B)第1冷間圧延工程により得られた冷延鋼板に、500℃から650℃までの平均昇温速度を300℃/秒以上1000℃/秒以下とし、保持温度を700℃以上1100℃以下とし、保持時間を10秒以上300秒以下(0.0028時間以上0.0833時間以下)とし、且つ700℃から500℃までの平均冷却速度を25℃/秒以上とする中間焼鈍を施す中間焼鈍工程
(C)中間焼鈍工程により得られた中間焼鈍鋼板に50%以上85%以下の圧下率の冷間圧延を施して0.10mm以上0.35mm以下の板厚とする第2冷間圧延工程
(D)第2冷間圧延工程により得られた冷延鋼板に900℃以上1200℃以下の温度域に保持する仕上焼鈍を施す仕上焼鈍工程
 以下、各工程について説明する。
 (第1冷間圧延工程)
 第1冷間圧延工程においては、上記化学組成を有する熱延鋼板に10%以上75%以下の圧下率(累積圧下率)の冷間圧延を施す。
 第1冷間圧延工程における圧下率が10%未満もしくは75%超であると、目的とする磁気特性および真円度を得ることができない場合がある。したがって、第1冷間圧延工程における圧下率は10%以上75%以下とする。
 冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の上記以外の条件は特に限定されるものではなく、熱延鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
 熱延鋼板は、通常、熱間圧延の際に鋼板表面に生成したスケールを酸洗により除去してから冷間圧延に供される。後述するように熱延鋼板に熱延板焼鈍を施す場合には、熱延板焼鈍前あるいは熱延板焼鈍後のいずれかにおいて酸洗すればよい。
 (中間焼鈍工程)
 中間焼鈍工程においては、上記第1冷間圧延工程により得られた冷延鋼板に、500℃から650℃までの平均昇温速度を300℃/秒以上1000℃/秒以下とし、保持温度を700℃以上1100℃以下とし、保持時間を10秒以上300秒以下(0.0028時間以上0.0833時間以下)とし、さらに700℃から500℃までの平均冷却速度を25℃/秒以上とする中間焼鈍を施す。
 中間焼鈍工程における上記の各条件を満たさない場合、目的とする磁気特性および真円度を得ることができない場合がある。中間焼鈍の上記以外の条件は特に限定されるものではない。
 なお、700℃から500℃までの平均冷却速度は、上限値を制限する必要がないが、必要に応じて、上限値を70℃/秒としてもよい。
 保持温度は、850℃以上であることが好ましい。また、保持時間は、180秒以下(0.05時間以下)であることが好ましい。さらに、700℃から500℃までの平均冷却速度を28℃/秒以上であることが好ましい。特に、本実施形態の各条件を満たした上で、Si含有量:3.25%超、500℃から650℃までの平均昇温速度:300℃/秒以上、保持温度:850℃以上、且つ保持時間:180秒以下、700℃から500℃までの平均冷却速度を33℃/秒以上を同時に満足すれば、磁気特性と真円度とが好ましく両立した無方向性電磁鋼板を得ることができる。
 (第2冷間圧延工程)
 第2冷間圧延工程においては、上記中間焼鈍工程により得られた中間焼鈍鋼板に50%以上85%以下の圧下率(累積圧下率)の冷間圧延を施して0.10mm以上0.35mm以下の板厚とする。
 第2冷間圧延工程における圧下率が50%未満または85%超であると、目的とする磁気特性および真円度を得ることができない場合がある。したがって、第2冷間圧延工程における圧下率は50%以上85%以下とする。
 板厚は0.10mm以上0.35mm以下とする。板厚は、0.15mm以上0.30mm以下であることが好ましい。
 冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の上記以外の条件は特に限定されるものではなく、鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
 (仕上焼鈍工程)
 仕上焼鈍工程においては、上記第2冷間圧延工程により得られた冷延鋼板に900℃以上1200℃以下の温度域に保持する仕上焼鈍を施す。
 仕上焼鈍工程における仕上焼鈍温度が900℃未満では、粒成長不足により平均結晶粒径が30μm未満となって十分な磁気特性が得られない場合がある。したがって、仕上焼鈍温度は900℃以上とする。一方、仕上焼鈍温度が1200℃超では、粒成長が過度に進行してしまい平均結晶粒径が200μm超となって十分な磁気特性が得られない場合がある。したがって、仕上焼鈍温度は1200℃以下とする。
 900℃以上1200℃以下の温度域に保持する仕上焼鈍時間は特に規定せずともよいが、良好な磁気特性をより確実に得るには1秒間以上とすることが好ましい。一方、生産性の観点からは仕上焼鈍時間を120秒間以下とすることが好ましい。
 仕上焼鈍の上記以外の条件は特に限定されるものではない。
 (熱延板焼鈍工程)
 上記第1冷間圧延工程に供する熱延鋼板には、熱延板焼鈍を施してもよい。熱延板焼鈍を施すことにより、一層良好な磁気特性が得られる。
 熱延板焼鈍は箱焼鈍および連続焼鈍のいずれによって行ってもよい。箱焼鈍により行う場合には、700℃以上900℃以下の温度域に1時間以上20時間以下保持することが好ましい。連続焼鈍により行う場合には、850℃以上1100℃以下の温度域に1秒間以上180秒間以下保持することが好ましい。
 熱延板焼鈍の上記以外の条件は特に限定されるものではない。
 (熱間圧延工程)
 上記第1冷間圧延工程に供する熱延鋼板は、上記化学組成を有する鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施すことにより得ることができる。
 熱間圧延においては、上記化学組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。
 熱間圧延の各種条件は特に限定されるものではない。
 (その他の工程)
 上記仕上焼鈍工程後に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁被膜を鋼板表面に塗布するコーティング工程を行ってもよい。環境負荷軽減の観点から、クロムを含有しない絶縁被膜を塗布しても構わない。また、コーティング工程は、加熱・加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
 (鉄心の製造方法、およびモータの製造方法)
 上記のように製造した本実施形態に係る無方向性電磁鋼板を用いて、鉄心を製造すればよい。この鉄心の製造方法は、上記した無方向性電磁鋼板を加工して積層する工程を有すればよい。また、この鉄心を用いて、モータを製造すればよい。このモータの製造方法は、上記した無方向性電磁鋼板を加工し積層して鉄心を製造する工程、およびこの鉄心を組み立てる工程を有すればよい。
 実施例により本発明の一態様の効果を更に具体的に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限り、種々の条件を採用し得る。以下、実施例および比較例を例示して、本発明を具体的に説明する。
 化学組成を調整したスラブを用いて、表1~16に示す条件で各工程を実施して無方向性電磁鋼板を製造した。なお、熱延板焼鈍を実施しない場合は、熱間圧延後に酸洗を実施した。熱延板焼鈍を実施する場合、試験No.1、7、および19は熱延板焼鈍前に酸洗を実施し、それ以外は熱延板焼鈍後に酸洗を実施した。また、仕上焼鈍の保持時間は30秒とした。
 製造した無方向性電磁鋼板について、化学組成、板厚、平均結晶粒径、磁束密度に関するX1値およびX2値、鉄損W10/1k、真円度を測定した。これらの測定方法は、上述の通りである。これらの測定結果を表1~16に示す。なお、製造した無方向性電磁鋼板の化学組成は、スラブの化学組成と実質的に同一であった。表中で「-」で表す元素は、意識した制御および製造をしていないことを示す。また、表中で「3.3」で示すSi含有量は、3.25%超であった。また、表中で「-」で表す製造条件は、その制御を行っていないことを示す。また、製造した無方向性電磁鋼板の板厚は、第2冷間圧延工程後の仕上板厚と同一であった。
 なお、機械的な異方性として、真円度を上述した円板状コアの外周円の直径の最大値と最小値の比と定義して、以下の基準により真円度を評価した。
  Excellent:真円度が0.9999以上1.0000以下
  Very Good:真円度が0.9998超~0.9999未満
  Good     :真円度が0.9997超~0.9998以下
  Poor     :真円度が0.9997以下
 表1~16に示すように、試験No.1~91のうち、本発明例は、いずれも無方向性電磁鋼板として、磁気的な異方性が小さく且つ機械的な異方性が小さかった。一方、試験No.1~91のうち、比較例は、磁気特性および真円度の少なくとも一方が優れなかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 本発明の上記態様によれば、モータの鉄心用として、磁気的な異方性が小さく且つ機械的な異方性が小さい無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法の提供が可能となるので、産業上の利用可能性が高い。
 1: 無方向性電磁鋼板
 L: 圧延方向  
 C: 圧延直角方向  
 D: 圧延方向から45°方向

Claims (10)

  1.  質量%で、
      C :0.005%以下、
      Si:1.0%以上5.0%以下、
      sol.Al:2.5%未満、
      Mn:3.0%以下、
      P :0.3%以下、
      S :0.01%以下、
      N :0.01%以下、
      B :0.10%以下、
      O :0.10%以下、
      Mg:0.10%以下、
      Ca:0.01%以下、
      Ti:0.10%以下、
      V :0.10%以下、
      Cr:5.0%以下、
      Ni:5.0%以下、
      Cu:5.0%以下、
      Zr:0.10%以下、
      Sn:0.10%以下、
      Sb:0.10%以下、
      Ce:0.10%以下、
      Nd:0.10%以下、
      Bi:0.10%以下、
      W :0.10%以下、
      Mo:0.10%以下、
      Nb:0.10%以下、
      Y :0.10%以下、
     を含有し、残部がFeおよび不純物からなる化学組成を有し、
     板厚が0.10mm以上0.35mm以下であり、
     平均結晶粒径が30μm以上200μm以下であり、
     下記(式1)で規定されるX1値が0.845未満であり、
     下記(式2)で規定されるX2値が0.800以上であり、
     磁束密度1.0T、周波数1kHzで励磁した際の鉄損W10/1kが80W/kg以下である
    ことを特徴とする無方向性電磁鋼板。
        X1=(2×B50L+B50C)/(3×Is)       (式1)
        X2=(B50L+2×B50D+B50C)/(4×Is)    (式2)
    (ここで、
     B50Lは磁化力5000A/mで磁化した際の圧延方向の磁束密度、
     B50Cは磁化力5000A/mで磁化した際の圧延直角方向の磁束密度、
     B50Dは磁化力5000A/mで磁化した際の圧延方向から45°方向の磁束密度、
     Isは室温における自発磁化である。)
  2.  前記化学組成として、質量%で、
      Si:3.25%超5.0%以下
     を含有する
    ことを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  前記化学組成として、質量%で、
      C :0.0010%以上0.005%以下、
      sol.Al:0.10%以上2.5%未満、
      Mn:0.0010%以上3.0%以下、
      P :0.0010%以上0.3%以下、
      S :0.0001%以上0.01%以下、
      N :0.0015%超0.01%以下、
      B :0.0001%以上0.10%以下、
      O :0.0001%以上0.10%以下、
      Mg:0.0001%以上0.10%以下、
      Ca:0.0003%以上0.01%以下、
      Ti:0.0001%以上0.10%以下、
      V :0.0001%以上0.10%以下、
      Cr:0.0010%以上5.0%以下、
      Ni:0.0010%以上5.0%以下、
      Cu:0.0010%以上5.0%以下、
      Zr:0.0002%以上0.10%以下、
      Sn:0.0010%以上0.10%以下、
      Sb:0.0010%以上0.10%以下、
      Ce:0.001%以上0.10%以下、
      Nd:0.002%以上0.10%以下、
      Bi:0.002%以上0.10%以下、
      W :0.002%以上0.10%以下、
      Mo:0.002%以上0.10%以下、
      Nb:0.0001%以上0.10%以下、
      Y :0.002%以上0.10%以下、
     の少なくとも1種を含有する
    ことを特徴とする請求項1または請求項2に記載の無方向性電磁鋼板。
  4.  前記化学組成として、質量%で、
      Siおよびsol.Alの合計含有量が4.0%超である
    ことを特徴とする請求項1から請求項3までのいずれかに記載の無方向性電磁鋼板。
  5.  前記X1値が0.800以上0.830未満である
    ことを特徴とする請求項1から請求項4までのいずれかに記載の無方向性電磁鋼板。
  6.  前記X2値が0.805以上0.825以下である
    ことを特徴とする請求項1から請求項5までのいずれかに記載の無方向性電磁鋼板。
  7.  請求項1から請求項6までのいずれかに記載の無方向性電磁鋼板を含む鉄心。
  8.  請求項1から請求項6までのいずれかに記載の無方向性電磁鋼板を加工し、積層する工程を有する鉄心の製造方法。
  9.  請求項7に記載の鉄心を含むモータ。
  10.  請求項1から請求項6までのいずれかに記載の無方向性電磁鋼板を加工し、積層して鉄心を製造する工程および前記鉄心を組み立てる工程を有するモータの製造方法。
PCT/JP2022/029070 2021-07-30 2022-07-28 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法 WO2023008514A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP22849575.0A EP4379072A1 (en) 2021-07-30 2022-07-28 Non-oriented electrical steel sheet, iron core, iron core manufacturing method, and motor manufacturing method
CN202280017826.1A CN116917521A (zh) 2021-07-30 2022-07-28 无取向性电磁钢板、铁芯、铁芯的制造方法、电机以及电机的制造方法
KR1020237029196A KR20230137416A (ko) 2021-07-30 2022-07-28 무방향성 전자 강판, 철심, 철심의 제조 방법, 모터 및 모터의 제조 방법
JP2022558029A JP7243936B1 (ja) 2021-07-30 2022-07-28 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
BR112023014735A BR112023014735A2 (pt) 2021-07-30 2022-07-28 Chapa de aço elétrico não orientado, núcleo de ferro, métodos de fabricação de um núcleo de ferro e de um motor, e, motor
US18/077,873 US11859265B2 (en) 2021-07-30 2022-12-08 Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor
US18/349,604 US20230349032A1 (en) 2021-07-30 2023-07-10 Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126290 2021-07-30
JP2021-126290 2021-07-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/077,873 Continuation US11859265B2 (en) 2021-07-30 2022-12-08 Non oriented electrical steel sheet, iron core, manufacturing method of iron core, motor, and manufacturing method of motor

Publications (1)

Publication Number Publication Date
WO2023008514A1 true WO2023008514A1 (ja) 2023-02-02

Family

ID=85086088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029070 WO2023008514A1 (ja) 2021-07-30 2022-07-28 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法

Country Status (7)

Country Link
US (2) US11859265B2 (ja)
EP (1) EP4379072A1 (ja)
JP (1) JP7243936B1 (ja)
KR (1) KR20230137416A (ja)
CN (1) CN116917521A (ja)
BR (1) BR112023014735A2 (ja)
WO (1) WO2023008514A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190621A1 (ja) * 2022-03-30 2023-10-05 日本製鉄株式会社 無方向性電磁鋼板及びモータコア

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113451A (ja) * 2001-10-05 2003-04-18 Kawasaki Steel Corp 電動パワーステアリングモータ用の無方向性電磁鋼板およびその製造方法
JP2011236486A (ja) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP2012036458A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
WO2013069754A1 (ja) 2011-11-11 2013-05-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP5716315B2 (ja) 2010-08-10 2015-05-13 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017057462A (ja) * 2015-09-16 2017-03-23 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2021126290A (ja) 2020-02-13 2021-09-02 タカラベルモント株式会社 口腔内マッサージ器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5816717Y2 (ja) 1977-09-08 1983-04-04 竹内 良子 撹拌装置
JPS6245875Y2 (ja) 1980-07-01 1987-12-09
JPH07116508B2 (ja) 1989-03-03 1995-12-13 日本鋼管株式会社 磁気特性の優れた無方向性電磁鋼板の製造方法
JP2970423B2 (ja) 1994-09-19 1999-11-02 住友金属工業株式会社 無方向性電磁鋼板の製造方法
JP2005200756A (ja) 2004-01-19 2005-07-28 Sumitomo Metal Ind Ltd 無方向性電磁鋼板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003113451A (ja) * 2001-10-05 2003-04-18 Kawasaki Steel Corp 電動パワーステアリングモータ用の無方向性電磁鋼板およびその製造方法
JP2011236486A (ja) * 2010-05-13 2011-11-24 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP5447167B2 (ja) 2010-05-13 2014-03-19 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2012036458A (ja) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd 無方向性電磁鋼板およびその製造方法
JP5716315B2 (ja) 2010-08-10 2015-05-13 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
WO2013069754A1 (ja) 2011-11-11 2013-05-16 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2017057462A (ja) * 2015-09-16 2017-03-23 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法
JP2021126290A (ja) 2020-02-13 2021-09-02 タカラベルモント株式会社 口腔内マッサージ器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190621A1 (ja) * 2022-03-30 2023-10-05 日本製鉄株式会社 無方向性電磁鋼板及びモータコア

Also Published As

Publication number Publication date
US11859265B2 (en) 2024-01-02
CN116917521A (zh) 2023-10-20
US20230113209A1 (en) 2023-04-13
JP7243936B1 (ja) 2023-03-22
JPWO2023008514A1 (ja) 2023-02-02
US20230349032A1 (en) 2023-11-02
KR20230137416A (ko) 2023-10-04
EP4379072A1 (en) 2024-06-05
BR112023014735A2 (pt) 2024-02-06

Similar Documents

Publication Publication Date Title
JP6651759B2 (ja) 無方向性電磁鋼板およびその製造方法
JP6226072B2 (ja) 電磁鋼板
JP5716315B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2012036459A (ja) 無方向性電磁鋼板およびその製造方法
JP2008127600A (ja) 分割コア用無方向性電磁鋼板
JP5671869B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5447167B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2021025097A (ja) 無方向性電磁鋼板及びその製造方法
JP6476979B2 (ja) 無方向性電磁鋼板およびその製造方法
JP7243936B1 (ja) 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
JP7243938B1 (ja) 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
JP5671872B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5671871B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5671870B2 (ja) 無方向性電磁鋼板およびその製造方法
JP2003055746A (ja) 無方向性電磁鋼板およびその製造方法
JP5402846B2 (ja) 無方向性電磁鋼板の製造方法
JP2019183231A (ja) 無方向性電磁鋼板、ステータコア、ロータコア及びこれらの製造方法
JP7243937B1 (ja) 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
JP7448873B2 (ja) 無方向性電磁鋼板及びモータコア
JP5972540B2 (ja) 無方向性電磁鋼板
CN118160189A (zh) 旋转电机、无取向性电磁钢板、及层叠铁芯、以及旋转电机的制造方法、以及层叠铁芯的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022558029

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849575

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023014735

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 202317053348

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20237029196

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237029196

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280017826.1

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023014735

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230721

WWE Wipo information: entry into national phase

Ref document number: 2022849575

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849575

Country of ref document: EP

Effective date: 20240229