WO2023190621A1 - 無方向性電磁鋼板及びモータコア - Google Patents

無方向性電磁鋼板及びモータコア Download PDF

Info

Publication number
WO2023190621A1
WO2023190621A1 PCT/JP2023/012705 JP2023012705W WO2023190621A1 WO 2023190621 A1 WO2023190621 A1 WO 2023190621A1 JP 2023012705 W JP2023012705 W JP 2023012705W WO 2023190621 A1 WO2023190621 A1 WO 2023190621A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
content
oriented electrical
electrical steel
Prior art date
Application number
PCT/JP2023/012705
Other languages
English (en)
French (fr)
Inventor
俊 太田
一郎 田中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023549890A priority Critical patent/JP7448873B2/ja
Publication of WO2023190621A1 publication Critical patent/WO2023190621A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition

Definitions

  • the present disclosure relates to a non-oriented electrical steel sheet and a motor core.
  • a motor is composed of a stator and a rotor.
  • Non-oriented electrical steel sheets used for the cores of stators and rotors are required to have low iron loss in order to achieve high efficiency.
  • Patent Document 1 discloses a technology related to a non-oriented electrical steel sheet with excellent magnetic properties.
  • Patent Document 2 discloses a technology regarding a non-oriented electrical steel sheet that can improve motor efficiency.
  • Patent Document 3 discloses a technology related to a non-oriented electrical steel sheet with excellent magnetic properties.
  • Patent Document 1 Patent No. 5447167 Patent Document 2: Patent No. 5716315 Patent Document 3: International Publication No. 2013/069754
  • the present disclosure has been made in view of the above-mentioned problems, and provides a non-oriented electrical steel sheet and a motor core that are suitable as materials for, for example, a stator core and a rotor core of a motor, and have low deterioration in iron loss when compressive stress is applied.
  • the purpose is to provide.
  • the gist of the present disclosure is as follows. [1] In mass%, C: 0.006% or less, Si: 1.0% or more and 5.0% or less, sol. Al: less than 2.5%, Mn: 3.0% or less, P: 0.30% or less, S: 0.010% or less, N: 0.010% or less, O: 0.10% or less, Sn: 0 to 0.20%, Sb: 0 to 0.20%, Ca: 0-0.01%, Cr: 0-5.0%, Ni: 0 to 5.0%, Cu: 0 to 5.0%, Ce: 0 to 0.10%, B: 0 to 0.10%, Mg: 0 to 0.10%, Ti: 0 to 0.10%, V: 0 to 0.10%, Zr: 0 to 0.10%, Nd: 0 to 0.10%, Bi: 0-0.10%, W: 0 to 0.10%, Mo: 0 to 0.10%, Nb: 0 to 0.10%, Y: 0 to 0.10%, The remainder: Fe and
  • Electromagnetic steel sheet [4]
  • the value of ⁇ 111 ⁇ 112> integration degree/ ⁇ 111 ⁇ 011> integration degree is 1.00 or less at a position of 1/4 of the plate thickness from the surface of the steel plate in the thickness direction [1 ] - [3]
  • the non-oriented electrical steel sheet according to any one of [3].
  • the ⁇ 411 ⁇ 148> integration degree is 2.00 or less at a position of 1/4 of the plate thickness from the surface of the steel plate in the plate thickness direction.
  • Non-oriented electrical steel sheet as described.
  • the ⁇ 411 ⁇ 011> integration degree is 2.00 or less at a position 1/4 of the plate thickness in the plate thickness direction from the surface of the steel plate.
  • Non-oriented electrical steel sheet as described.
  • Non-oriented electrical steel sheet [8]
  • a motor core having a structure in which a plurality of non-oriented electrical steel sheets according to any one of [1] to [7] are laminated.
  • a non-oriented electrical steel sheet and a motor core that can be suitably used as a material for a stator core and a rotor core of a motor, and have a small deterioration in core loss when compressive stress is applied. Can be done.
  • the present disclosure is not limited to the configurations disclosed in the embodiments below, and various changes can be made without departing from the spirit of the present disclosure.
  • the limited numerical range in the present disclosure includes the numerical values described as the lower limit value and the upper limit value, respectively. However, numerical values indicated as “more than” or “less than” are not included in the numerical range. "%" regarding the content of each element means “mass %".
  • the upper limit of one numerical range may be replaced with the upper limit of another numerical range described in stages, and You may substitute the values shown in the example.
  • the lower limit value of a certain stepwise numerical range may be replaced with the lower limit value of the numerical range described in another stepwise manner. You may substitute the values shown.
  • a preferable lower limit value and an upper limit value are separately described for the content of each element, a numerical range obtained by arbitrarily combining the lower limit value and the upper limit value may be used as the preferable content of the element.
  • the content of an element is described as "0 ⁇ " or "0% or more" with a lower limit of 0%, or if only the upper limit is described, that element does not have to be included. It means that.
  • Non-oriented electrical steel sheet The non-oriented electrical steel sheet according to the present disclosure can be suitably used as an iron core of a motor of an electric vehicle, a hybrid vehicle, or the like.
  • the non-oriented electrical steel sheet refers not only to coil products but also to the steel sheet (core material) that constitutes the iron core.
  • core material steel sheet
  • non-oriented electrical steel sheet in each aspect of the present disclosure refers not only to a "steel sheet” in the form of a coil or cut plate manufactured by a steel sheet manufacturer, but also to a "steel sheet” that is processed by a customer through punching, lamination, etc. It also includes the "steel plate” that is processed into the shape of a motor core and that constitutes the motor core.
  • the non-oriented electrical steel sheet according to the present disclosure contains Si as a chemical composition, optionally contains selected elements, and the remainder consists of Fe and impurities. Each element will be explained below.
  • C 0% or more and 0.006% or less
  • C (carbon) is an element that is contained as an impurity and deteriorates magnetic properties. Therefore, the C content is set to 0.006% or less. Preferably it is 0.003% or less. Since the C content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be set to 0.0005% or 0.0010%.
  • Si 1.0% or more and 5.0% or less
  • Si is an element effective in increasing the specific resistance of a steel plate and reducing iron loss. Therefore, the Si content is set to 1.0% or more.
  • Si is an effective element for reducing magnetic in-plane anisotropy and mechanical in-plane anisotropy as a non-oriented electrical steel sheet for the iron core of a motor.
  • the Si content is preferably more than 2.0% and 5.0% or less, more preferably 2.5% or more and 5.0% or less, and 3.0% or more and 5.0% It is more preferably at most 3.2% or more and at most 5.0%.
  • the Si content is set to 5.0% or less.
  • the Si content is preferably 1.0% or more and 4.5% or less, more preferably 1.0% or more and 4.0% or less, and 1. More preferably, it is 0% or more and 3.5% or less.
  • sol. Al 0% or more and less than 2.5%
  • Al aluminum
  • aluminum is an effective selective element for increasing the resistivity of a steel sheet and reducing iron loss, but when it is included in excess, the magnetic flux density is significantly reduced. For this reason, sol. Al content shall be less than 2.5%. sol. There is no need to limit the lower limit of the Al content, and the lower limit may be 0%. However, in order to more reliably obtain the effect of the above action, sol.
  • the Al content is preferably 0.03% or more, more preferably 0.10% or more.
  • sol. Al means acid-soluble aluminum.
  • Si and Al are elements effective in reducing the magnetic in-plane anisotropy and the mechanical in-plane anisotropy. Therefore, Si and sol.
  • the total content of Al is preferably more than 2.0%, more preferably more than 3.0%, even more preferably more than 4.0%.
  • Si and Al have a high solid solution strengthening ability, so if they are included in excess, cold rolling becomes difficult. Therefore, Si and sol.
  • the total content of Al is preferably less than 5.5%.
  • Mn 0% or more and 3.0% or less Mn (manganese) is an effective selective element for increasing the specific resistance of the steel plate and reducing iron loss.
  • Mn manganese
  • the Mn content is set to 3.0% or less.
  • the Mn content is preferably 2.7% or less, more preferably 2.5% or less.
  • the lower limit may be 0%.
  • the Mn content is preferably 0.0010% or more, more preferably 0.0030% or more, and 0.010% or more. is even more preferable.
  • P 0% or more and 0.30% or less
  • P phosphorus
  • P is an element generally contained as an impurity.
  • P has the effect of improving the texture of the non-oriented electrical steel sheet and improving the magnetic properties, it may be included as necessary.
  • P is also a solid solution strengthening element, when the P content becomes excessive, the steel sheet becomes hard and cold rolling becomes difficult. Therefore, the P content is set to 0.30% or less.
  • the P content is preferably 0.20% or less. There is no need to limit the lower limit of the P content, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the P content is preferably 0.0010% or more, more preferably 0.010% or more, and 0.015% or more. is even more preferable.
  • S 0% or more and 0.010% or less S (sulfur) is contained as an impurity and combines with Mn in the steel to form fine MnS, which inhibits the growth of crystal grains during annealing and causes non-directionality. Deteriorates the magnetic properties of electrical steel sheets. Therefore, the S content is set to 0.010% or less.
  • the S content is preferably 0.005% or less, more preferably 0.003% or less. Since the S content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be set to 0.0001% or 0.001%.
  • N 0% or more and 0.010% or less N (nitrogen) is contained as an impurity, combines with Al to form fine AlN, inhibits the growth of crystal grains during annealing, and deteriorates magnetic properties. For this reason, the N content is set to 0.010% or less.
  • the N content is preferably 0.005% or less, more preferably 0.003% or less. Since the N content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be 0.0001% or more, 0.0010% or more, or 0.0015% or more.
  • O oxygen
  • oxygen oxygen
  • the O content is set to 0.10% or less.
  • the O content is preferably 0.08% or less, more preferably 0.05% or less, even more preferably 0.010% or less, and particularly preferably 0.008% or less.
  • the O content is preferably small, there is no need to limit the lower limit, and the lower limit may be 0%. However, since it is not easy to reduce the content to 0% industrially, the lower limit may be 0.0001% or more, 0.0005% or more, or 0.0008% or more.
  • the chemical composition of the non-oriented electrical steel sheet according to the present disclosure may contain at least one of Sn, Sb, Ca, Cr, Ni, Cu, and Ce as a selective element.
  • the content of these selected elements may be as follows.
  • Sn 0% or more and 0.20% or less
  • Sb 0% or more and 0.20% or less
  • Sn (tin) and Sb (antimony) improve the texture of non-oriented electrical steel sheets and improve magnetic properties (e.g. magnetic flux density).
  • magnetic properties e.g. magnetic flux density).
  • Sn and Sb are each 0.20% or less. There is no need to limit the lower limit of each content of Sn and Sb, and the lower limit may be 0%.
  • the Sn content is preferably 0.0010% or more, and more preferably 0.01% or more.
  • the Sb content is preferably 0.0010% or more, preferably 0.002% or more, and more preferably 0.01% or more.
  • Ca 0% or more and 0.01% or less
  • Ca (calcium) suppresses the precipitation of fine sulfides (MnS, Cu 2 S, etc.) by generating coarse sulfides, so it is an effective choice for inclusion control. It is an element that, when added in an appropriate amount, has the effect of improving crystal grain growth and improving magnetic properties (for example, iron loss).
  • the Ca content is set to 0.01% or less.
  • the Ca content is preferably 0.008% or less, more preferably 0.005% or less.
  • the Ca content is preferably 0.0003% or more.
  • the Ca content is preferably 0.001% or more, more preferably 0.002% or more.
  • Cr 0% or more and 5.0% or less Cr (chromium) is a selective element that increases specific resistance and improves magnetic properties (for example, iron loss). However, if it is contained in excess, the saturation magnetic flux density may be lowered, and the effect of the above action is saturated, leading to an increase in cost. Therefore, the Cr content is set to 5.0% or less.
  • the Cr content may be 4.0% or less, preferably 0.5% or less, and more preferably 0.1% or less. There is no need to limit the lower limit of the Cr content, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the Cr content is preferably 0.0010% or more.
  • Ni 0% or more and 5.0% or less
  • Ni nickel
  • the Ni content is set to 5.0% or less.
  • the Ni content may be 4.0% or less, preferably 0.5% or less, and more preferably 0.1% or less.
  • the lower limit may be 0%.
  • the Ni content is preferably 0.0010% or more.
  • Cu 0% or more and 5.0% or less
  • Cu (copper) is a selective element that improves the strength of steel sheets.
  • the Cu content is set to 5.0% or less.
  • the Cu content may be 4.0% or less, and preferably 0.1% or less.
  • the lower limit may be 0%.
  • the Cu content is preferably 0.0010% or more.
  • Ce 0% or more and 0.10% or less Ce (cerium) suppresses the precipitation of fine sulfides (MnS, Cu 2 S, etc.) by forming coarse sulfides and oxysulfides, and improves grain growth. It is a selective element that improves iron loss and reduces iron loss. However, if it is contained in excess, oxides are produced in addition to sulfides and oxysulfides, which may deteriorate iron loss, and the effects of the above action become saturated, leading to an increase in cost. Therefore, the Ce content is set to 0.10% or less. The Ce content is preferably 0.01% or less. There is no need to limit the lower limit of the Ce content, and the lower limit may be 0%. However, in order to more reliably obtain the effects of the above action, the Ce content is preferably 0.001% or more. The Ce content is more preferably 0.002% or more, even more preferably 0.003% or more, even more preferably 0.005% or more.
  • the chemical composition of the non-oriented electrical steel sheet according to the present disclosure further contains, for example, at least one of B, Mg, Ti, V, Zr, Nd, Bi, W, Mo, Nb, and Y as a selective element. It's okay.
  • the content of these selected elements may be controlled based on known knowledge. For example, the content of these selected elements may be as follows.
  • B 0% or more and 0.10% or less
  • Mg 0% or more and 0.10% or less
  • Ti 0% or more and 0.10% or less
  • V 0% or more and 0.10% or less
  • Zr 0% or more and 0.10% or less
  • Nd 0% or more and 0.10% or less
  • Bi 0% or more and 0.10% or less
  • W 0% or more and 0.10% or less
  • Mo 0% or more and 0.10% or less
  • Nb 0% or more and 0.10% or less
  • Y 0% or more and 0.10% or less.
  • the non-oriented electrical steel sheet according to the present disclosure contains Si in an amount of 1.0% to 5.0%, and also has a chemical composition in mass% of C: 0.0010% or more and 0.006% or less, sol. Al: 0.10% or more and less than 2.5%, Mn: 0.0010% or more and 3.0% or less, P: 0.0010% or more and 0.30% or less, S: 0.0001% or more and 0.010% or less, N: more than 0.0015% and less than 0.010%, O: 0.0001% or more and 0.10% or less, Sn: 0.0010% or more and 0.20% or less, Sb: 0.0010% or more and 0.20% or less, Ca: 0.0003% or more and 0.01% or less, Cr: 0.0010% or more and 5.0% or less, Ni: 0.0010% or more and 5.0% or less, Cu: 0.0010% or more and 5.0% or less, Ce: 0.001% or more and 0.10% or less, B: 0.0001% or more and 0.10% or
  • the B content is preferably 0.02% or less, more preferably 0.01% or less.
  • the Mg content is preferably 0.01% or less, more preferably 0.005% or less.
  • the Ti content is preferably 0.100% or less, more preferably 0.002% or less.
  • the V content is preferably 0.05% or less, more preferably 0.04% or less.
  • the Zr content is preferably 0.08% or less, more preferably 0.06% or less.
  • the Nd content is preferably 0.05% or less, more preferably 0.01% or less.
  • the Bi content is preferably 0.05% or less, more preferably 0.01% or less.
  • the W content is preferably 0.05% or less, more preferably 0.01% or less.
  • the Mo content is preferably 0.05% or less, more preferably 0.01% or less.
  • the Nb content is preferably 0.05% or less, more preferably 0.03% or less.
  • the Y content is more preferably 0.05% or less, more preferably 0.01%
  • the preferable lower limit of the content of each element is as follows.
  • the B content is preferably 0.0002% or more.
  • the Mg content is preferably 0.0004% or more.
  • the Ti content is preferably 0.001% or more.
  • the V content is preferably 0.002% or more. It is preferable that the Zr content is 0.002% or more.
  • the Nd content is preferably 0.002% or more.
  • the Bi content is preferably 0.002% or more.
  • the W content is preferably 0.002% or more.
  • the Mo content is preferably 0.002% or more.
  • the Nb content is preferably 0.002% or more.
  • the Y content is preferably 0.002% or more.
  • the non-oriented electrical steel sheet according to the present disclosure may contain one or more selected from the group consisting of the above groups A to E, for example, group A, group B, group C, group D, and/or Alternatively, it may contain one or more elements of Group E.
  • the above chemical composition may be measured by a general steel analysis method.
  • the chemical composition may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • sol. Al may be measured by ICP-AES using a filtrate obtained by thermally decomposing a sample with an acid.
  • ICP emission spectrometry was used
  • C and S combustion-infrared absorption method was used
  • N inert gas melting-thermal conductivity method
  • O inert gas melting-non-dispersive infrared absorption method was used. It can be measured using the method.
  • the above chemical composition is that of a non-oriented electrical steel sheet that does not include an insulating coating or the like. If the non-oriented electrical steel sheet serving as the measurement sample has an insulating coating or the like on its surface, the measurement is performed after removing this.
  • the insulation coating etc. may be removed by the following method. First, a non-oriented electrical steel sheet having an insulating coating and the like is immersed in a sodium hydroxide aqueous solution, a sulfuric acid aqueous solution, and a nitric acid aqueous solution in this order, and then washed. Finally, dry with warm air. Thereby, a non-oriented electrical steel sheet from which the insulation coating has been removed can be obtained. Further, the insulating coating and the like may be removed by grinding.
  • the non-oriented electrical steel sheet according to the present disclosure has a ⁇ 111 ⁇ 011> integration degree of 2.00 or more and 8.00 or less (hereinafter referred to as " In some cases, the description "at a position 1/4 of the thickness of the steel plate in the thickness direction from the surface of the steel plate” may be omitted.
  • the "degree of integration" of crystal orientation in the present disclosure is an index commonly used when displaying texture.
  • the ⁇ 111 ⁇ 011> degree of aggregation refers to the frequency of existence of crystal grains with the crystal orientation ⁇ 111 ⁇ 011> relative to a structure with a random orientation distribution (in this case, the degree of aggregation is 1). This is an indicator that shows whether it is twice as large.
  • the non-oriented electrical steel sheet according to the present disclosure has a ⁇ 111 ⁇ 011> integration degree of 2.00 or more and 8.00 or less at a position 1/4 of the sheet thickness in the sheet thickness direction from the surface of the steel sheet.
  • ⁇ 110 ⁇ 001> integration degree is 1.00 or more
  • ⁇ 111 ⁇ 112> integration degree/ ⁇ 111 ⁇ 011> integration degree is 1.00 or less
  • ⁇ 411 ⁇ 148 > Integration degree is 2.00 or less
  • ⁇ 411 ⁇ 011> Integration degree is 2.00 or less.
  • the ⁇ 111 ⁇ 011> integration degree of 2.00 or more and 8.00 or less is an important feature of the non-oriented electrical steel sheet of the present disclosure.
  • the ⁇ 111 ⁇ 011> orientation is an orientation with good magnetic properties when stress is applied.
  • the present inventors have determined that at the same time as ⁇ 111 ⁇ 011>, the ⁇ 110 ⁇ 001> direction, the ⁇ 111 ⁇ 112> direction, the ⁇ 411 ⁇ 148> direction, and the ⁇ 411 ⁇
  • the ⁇ 110 ⁇ 001> orientation is an orientation with excellent magnetic properties, and the degree of integration is preferably 1.00 or more.
  • the ⁇ 111 ⁇ 112> orientation is the orientation in which deterioration of magnetic properties can be avoided to the maximum extent when stress is applied, if the degree of integration is too high, the magnetic properties will be inferior when no compressive stress is applied. . Therefore, considering the balance of the degree of integration with ⁇ 111 ⁇ 011>, which has the same plane index and has almost the same effect on magnetic properties, ⁇ 111 ⁇ 112> degree of integration/ ⁇ 111 ⁇ 011 >It is desirable that the value of the degree of integration (ratio of the degree of integration) be 1.00 or less.
  • the ⁇ 411 ⁇ 148> orientation is an orientation in which the magnetic properties tend to be inferior when compressive stress is applied, and the degree of integration is preferably 2.00 or less.
  • the ⁇ 411 ⁇ 011> orientation is an orientation in which magnetic properties tend to be inferior when compressive stress is applied, and the degree of integration is preferably 2.00 or less.
  • Crystal orientation can be measured by the following method.
  • a steel plate sample of about 30 mm x 30 mm cut out from a steel plate is subjected to mechanical polishing and chemical polishing to remove the surface layer from 1/4t of the steel plate surface on one side.
  • the 1/4t portion means a portion corresponding to a depth of t ⁇ 1/4 from the surface, where t is the thickness of the steel plate.
  • test specimens for measurement are prepared by reducing the thickness until the 1/4 t portion of the original steel plate becomes the surface. Note that when removing the surface layer from the 1/4 t portion of one side surface of the steel plate by mechanical polishing and chemical polishing, it may be difficult to expose the surface of the 1/4 t portion strictly, and a certain amount of removal allowance is allowed.
  • the degree of integration of the crystal orientations can be considered to be approximately the same.
  • mechanical polishing and chemical polishing are performed to a depth of 1/4t ⁇ 1/8t from the surface of the steel plate, that is, in the range of 1/8t to 3/8t. All you have to do is expose the surface and measure the crystal orientation.
  • the crystal orientation can be determined by electron back scattering diffraction (EBSD).
  • EBSD electron back scattering diffraction
  • the observation visual field is preferably 2400 ⁇ m 2 or more and 2.5 mm 2 or less per field of view, and it is desirable to use the average value of each numerical value calculated for a plurality of visual fields of 2 or more and 5 or less.
  • ODF Orientation Determination Function
  • the effect of the invention (suppression of deterioration of iron loss when compressive stress is applied) can be confirmed using iron loss W10/400 [W/kg] when excited at a magnetic flux density of 1.0 T and a frequency of 400 Hz.
  • the iron loss is calculated as (WL+WC+2 ⁇ WD) where the iron loss is WL, WC, and WD when the excitation direction is the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and the 45° direction (D direction), respectively. )/4 is used.
  • this characteristic may be referred to as "all-circumference average (iron loss).”
  • the rolling direction is clear if the non-oriented electrical steel sheet is provided in the form of a coil, but if it is in the form of a cut plate or taken out from the motor core, it cannot be determined from the shape alone. In this case, the rolling direction can be determined by the grooves formed on the surface of the steel sheet during cold rolling. This method is one that is routinely applied by those skilled in the art and is not difficult to judge.
  • the entire circumference average iron loss Wn [W/kg] calculated from the iron loss value in each in-plane direction in a no-load state, and each with a compressive stress of 20 MPa applied in each excitation direction.
  • the effectiveness of the invention is confirmed by the deterioration margin Ws-Wn of the all-around average iron loss Ws [W/kg] calculated from the iron loss value in the in-plane direction.
  • the non-oriented electrical steel sheet of the present disclosure preferably has a Ws-Wn of 8.50 or less. Ws-Wn is more preferably 8.25 or less, and even more preferably 8.00 or less.
  • Each magnetic property may be measured by a single sheet magnetic property test method (Single Sheet Tester: SST) specified in JIS C2556:2015.
  • SST Single Sheet Tester
  • it is difficult to collect a test piece with the size specified by JIS for example, take a test piece with a width of 55 mm x length of 55 mm, and perform measurements in accordance with the Single Plate Magnetic Characteristics Test Method. You may do so.
  • the average crystal grain size may be within a general practical range, and is 30 ⁇ m or more and 200 ⁇ m or less.
  • the average crystal grain size may be measured by the cutting method specified in JIS G0551:2020.
  • the average value of the crystal grain size measured by a cutting method in the plate thickness direction and the rolling direction may be used.
  • An optical microscope photograph can be used as the vertical cross-sectional structure photograph, and for example, a photograph taken at a magnification of 50 times may be used.
  • plate thickness Basically, the thinner the plate thickness, the lower the iron loss. It may be within a general practical range, preferably 0.35 mm or less. More preferably, it is 0.30 mm or less. On the other hand, since excessive thinning significantly reduces the productivity of steel plates and motors, the plate thickness is preferably 0.10 mm or more. More preferably, it is 0.15 mm or more.
  • the plate thickness may be measured using a micrometer. Note that if the non-oriented electrical steel sheet serving as the measurement sample has an insulating coating or the like on its surface, the measurement is performed after removing this.
  • the method for removing the insulating film is as described above.
  • the method for manufacturing a non-oriented electrical steel sheet according to the present disclosure includes a hot rolling process, a first cold rolling process, an intermediate annealing process, a second cold rolling process, and a final annealing process in this order, and these steps In particular, it is effective to apply the following conditions (A) to (E).
  • the temperature in the following description means the surface temperature of the steel plate.
  • Heat treatment after hot rolling Heat treatment at 900° C. or higher is not performed after hot finish rolling and before the start of first cold rolling.
  • B First cold rolling step: The rolling reduction is 30% or more and 85% or less.
  • (C) Intermediate annealing step The average temperature increase rate from 500°C to 650°C is 300°C/second or more and 1000°C/second or less, the holding temperature is 700°C or more and 1100°C or less, and the holding time is 10 seconds or more and 300 seconds or less. and the average cooling rate from 700°C to 500°C is 25°C/second or more.
  • (E) Final annealing step The holding temperature is 900°C or more and 1200°C or less.
  • the hot rolled steel sheet to be subjected to the first cold rolling step can be obtained by hot rolling a steel ingot or slab (hereinafter also referred to as "slab") having the above-described chemical composition.
  • steel having the above chemical composition is formed into a slab by a general method such as a continuous casting method or a method of blooming a steel ingot, and the slab is charged into a heating furnace and hot rolled. At this time, if the slab temperature is high, hot rolling may be performed without charging the slab into a heating furnace.
  • Various conditions for hot rolling are not particularly limited. Generally, conditions are adopted in which the slab heating temperature is 950 to 1250°C, the finishing temperature is 700 to 1000°C, and the finished plate thickness is about 1.0 to 4.0 mm.
  • the hot rolled sheet that has been hot rolled is subsequently subjected to a first cold rolling.
  • the hot-rolled steel sheet to be subjected to the first cold rolling step is not heat-treated at 900° C. or higher after hot finish rolling. This restriction is intended to prevent the structure formed by hot working from changing significantly before the first cold rolling.
  • the temperature at the exit side of the final hot rolling pass is 900°C or higher, cooling starts from the exit side of the final pass and remains in the temperature range of 900°C or higher until the temperature reaches below 900°C. Since the temperature is cooled to less than 900° C. within a few seconds, residence during this time can be ignored in the present disclosure.
  • this heat treatment in the present disclosure is directed to the heat history performed by hot-rolled sheet winding or hot-rolled sheet annealing. If heat treatment is performed at 900°C or higher after hot finish rolling is completed, the grain size of the hot rolled sheet will increase, resulting in a change in the structure after the intermediate annealing process, resulting in ⁇ 111 ⁇ after the finish annealing specified above. ⁇ 011> The degree of integration is no longer satisfied. Therefore, it is not preferable to retain heat after winding up the hot-rolled sheet, and the hot-rolling temperature at which the hot-rolled sheet is held for a particularly long period of time should preferably be 850°C or lower, more preferably 800°C or lower.
  • the hot rolled steel sheet having the above chemical composition is cold rolled at a reduction rate (cumulative reduction rate) of 30% or more and 85% or less. If the rolling reduction in the first cold rolling step is less than 30% or more than 85%, it may not be possible to obtain the desired magnetic properties. Therefore, the rolling reduction ratio in the first cold rolling step is set to 30% or more and 85% or less.
  • Conditions other than those mentioned above for cold rolling are not particularly limited, and are appropriately selected depending on the chemical composition of the hot rolled steel sheet, the intended thickness of the steel sheet, etc. shall be.
  • the cold rolled steel sheet obtained in the first cold rolling step is heated at an average temperature increase rate of 300° C./second to 1000° C./second and a holding temperature of 700° C./second to 650° C.
  • Intermediate annealing is performed at a temperature of 1100°C or higher, a holding time of 10 seconds or more and 300 seconds or less, and an average cooling rate of 25°C/second or more from 700°C to 500°C. If the above conditions in the intermediate annealing step are not satisfied, the desired magnetic properties may not be obtained.
  • Conditions other than those mentioned above for intermediate annealing are not particularly limited. Note that there is no need to limit the upper limit of the average cooling rate from 700° C. to 500° C., but the upper limit may be set to 70° C./sec if necessary.
  • the holding temperature is preferably 850°C or higher. Further, the holding time is preferably 180 seconds or less. Furthermore, it is preferable that the average cooling rate from 700°C to 500°C is 28°C/sec or more. In particular, after satisfying each condition of the present disclosure, Si content: more than 2.0%, average temperature increase rate from 500°C to 650°C: 300°C/sec or more, holding temperature: 850°C or more, and holding If the following conditions are satisfied: time: 180 seconds or less; average cooling rate from 700° C. to 500° C.: 33° C./second or more, a non-oriented electrical steel sheet with good magnetic properties during stress application can be obtained.
  • the intermediate annealed steel sheet obtained in the above intermediate annealing step is cold rolled at a reduction rate (cumulative reduction rate) of 30% to 75% to a thickness of 0.10 mm to 0.35 mm.
  • the plate thickness shall be .
  • the rolling reduction ratio in the second cold rolling step is set to 30% or more and 75% or less.
  • the plate thickness is preferably 0.10 mm or more and 0.35 mm or less.
  • the plate thickness is more preferably 0.15 mm or more and 0.30 mm or less.
  • Conditions other than those mentioned above for cold rolling are not particularly limited, and should be appropriately selected depending on the chemical composition of the steel plate, the intended thickness of the steel plate, etc. .
  • the cold rolled steel sheet obtained in the second cold rolling step is subjected to final annealing at a temperature range of 900° C. or higher and 1200° C. or lower. These conditions are not special and are generally employed in the production of non-oriented electrical steel sheets. If the final annealing temperature in the final annealing step is less than 900° C., the average crystal grain size will be less than 30 ⁇ m due to insufficient grain growth, and sufficient magnetic properties may not be obtained. Therefore, the final annealing temperature is set to 900°C or higher.
  • the final annealing temperature exceeds 1200°C
  • grain growth other than the ⁇ 111 ⁇ 011> orientation which is a feature of the non-oriented electrical steel sheet of the present disclosure
  • the final annealing temperature is 1200°C or less.
  • the final annealing time maintained in the temperature range of 900° C. or higher and 1200° C. or lower does not need to be particularly specified, but it is preferably set to 1 second or longer in order to more reliably obtain good magnetic properties.
  • the final annealing time is preferably 120 seconds or less.
  • finish annealing can be performed following the second cold rolling by the steel sheet manufacturer.
  • this finish annealing can be performed following the second cold rolling by the steel sheet manufacturer.
  • a coating step may be performed in which an insulating film made of only organic components, only inorganic components, or an organic-inorganic composite is applied to the surface of the steel sheet according to a general method. good. From the viewpoint of reducing environmental load, an insulating film that does not contain chromium may be applied and formed. Further, the coating step may be a step of applying an insulating coating that exhibits adhesive ability by applying heat and pressure.
  • the coating material exhibiting adhesive ability acrylic resin, phenol resin, epoxy resin, melamine resin, or the like can be used.
  • the use of the non-oriented electrical steel sheet according to the present disclosure is not particularly limited, it is suitable as a material for a stator core and a rotor core of a motor.
  • the non-oriented electromagnetic steel sheet according to the present disclosure can be punched into a predetermined shape to form a motor core having a structure in which a plurality of sheets are laminated.
  • Such a motor core has little deterioration in iron loss when compressive stress is applied, and can contribute to higher efficiency of the motor.
  • non-oriented electrical steel sheet according to the present disclosure is not limited to the following examples.
  • Slabs (steel types A to B7) whose chemical compositions are shown in Tables 1-1 and 1-2 are inserted into a heating furnace and heated to 1100°C, and then hot rolled to a thickness of 2.0 mm.
  • Manufactured steel plates The finishing temperature was 850°C and the winding temperature was 600°C. However, for some steel plates, some of the conditions, such as plate thickness, finishing temperature, and coiling temperature, were changed.
  • No. A16 has a finishing temperature of 930°C and a winding temperature of 900°C.
  • the finishing temperature is 1000°C
  • the winding temperature is 800°C
  • n1 is a finishing temperature of 800°C and a winding temperature of 300°C.
  • this example was carried out without forming an insulating film on the surface of the steel plate.
  • the magnetic properties of each steel plate were measured by SST.
  • the iron loss W10/400 [W/kg] when excited at a magnetic flux density of 1.0 T and a frequency of 400 Hz is the iron loss Wn [W/kg] in a no-load state, with a compressive stress of 20 MPa applied in the excitation direction.
  • the iron loss Ws [W/kg] was measured, respectively, and Ws-Wn was determined. When Ws-Wn was 8.50 or less, it was determined that iron loss during application of compressive stress was good.
  • Table 2-1 The manufacturing conditions of each steel plate are shown in Table 2-1, Table 3-1, Table 4-1, and Table 5-1, and the texture, average grain size, and magnetic properties are shown in Table 2-2, Table 3-2, and Table 4. -2, as shown in Table 5-2.
  • underlining means outside the scope of the present disclosure or outside the scope of the preferred manufacturing method described above.
  • the steel sheet of the example is manufactured using the chemical composition and preferred manufacturing method of the present disclosure, has an average grain size of 30 ⁇ m or more and 200 ⁇ m or less, and has a ⁇ 111 ⁇ 011> integration degree of 2.00 or more and 8.00 or less:
  • the iron loss deterioration (Ws-Wn) was 8.50 W/kg or less, and the iron loss when compressive stress was applied was good.
  • steel sheets of comparative examples whose chemical composition, average grain size, or ⁇ 111 ⁇ 011> integration degree are outside the range of the present disclosure have iron loss deterioration (Ws-Wn) exceeding 8.50 W/kg. Therefore, the iron loss when compressive stress was applied was larger than that in the example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

質量%で、C:0.006%以下、Si:1.0%以上5.0%以下、sol.Al:2.5%未満、Mn:3.0%以下、P:0.30%以下、S:0.010%以下、N:0.010%以下、O:0.10%以下、任意選択的に他の元素を含み、残部がFeおよび不純物からなる化学組成を有し、平均結晶粒径が30μm以上200μm以下、鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<011>集積度が2.00以上8.00以下である無方向性電磁鋼板、及び当該無方向性電磁鋼板を含むモータコア。

Description

無方向性電磁鋼板及びモータコア
 本開示は、無方向性電磁鋼板及びモータコアに関する。
 地球温暖化ガスを削減する必要性から、工業分野では消費エネルギーの少ない製品が開発されている。例えば、自動車分野においては、ガソリンエンジンとモータとを組み合わせたハイブリッド駆動自動車、モータ駆動の電気自動車等の低燃費自動車がある。これら低燃費自動車に共通した技術はモータであり、モータの高効率化が重要な技術となっている。
 一般に、モータは、固定子(ステータ)と回転子(ロータ)とで構成される。この固定子および回転子の鉄心に用いられる無方向性電磁鋼板には、高効率化のために鉄損が小さいことが求められている。
 しかし実用的には、モータ稼働時に固定子および回転子に付与される圧縮応力を考慮する必要がある。この圧縮応力は一般的に無方向性電磁鋼板の鉄損を劣化させる。そのため、固定子に用いられる無方向性電磁鋼板は、圧縮応力付与時における鉄損が良好であることが望ましい。
 例えば、特許文献1には、磁気特性に優れる無方向性電磁鋼板に関する技術が開示されている。特許文献2には、モータ効率を向上できる無方向性電磁鋼板に関する技術が開示されている。特許文献3には、磁気特性に優れる無方向性電磁鋼板に関する技術が開示されている。
  特許文献1:特許第5447167号公報
  特許文献2:特許第5716315号公報
  特許文献3:国際公開第2013/069754号
 本開示は、上記問題点に鑑みてなされたものであり、例えばモータのステータ鉄心およびロータ鉄心の素材として好適であり、圧縮応力付与時における鉄損の劣化が小さい無方向性電磁鋼板及びモータコアを提供することを目的とする。
 本開示の要旨は以下のとおりである。
[1] 質量%で、
 C :0.006%以下、
 Si:1.0%以上5.0%以下、
 sol.Al:2.5%未満、
 Mn:3.0%以下、
 P :0.30%以下、
 S :0.010%以下、
 N :0.010%以下、
 O :0.10%以下、
 Sn:0~0.20%、
 Sb:0~0.20%、
 Ca:0~0.01%、
 Cr:0~5.0%、
 Ni:0~5.0%、
 Cu:0~5.0%、
 Ce:0~0.10%、
 B :0~0.10%、
 Mg:0~0.10%、
 Ti:0~0.10%、
 V :0~0.10%、
 Zr:0~0.10%、
 Nd:0~0.10%、
 Bi:0~0.10%、
 W :0~0.10%、
 Mo:0~0.10%、
 Nb:0~0.10%、
 Y :0~0.10%、
 残部:Feおよび不純物、
からなる化学組成を有し、
 平均結晶粒径が30μm以上200μm以下であり、
 鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<011>集積度が2.00以上8.00以下である無方向性電磁鋼板。
[2] 質量%で、
 Sn:0.0010%以上0.20%以下、
 Sb:0.0010%以上0.20%以下、
 Ca:0.0003%以上0.01%以下、
 Cr:0.0010%以上5.0%以下、
 Ni:0.0010%以上5.0%以下、
 Cu:0.0010%以上5.0%以下、
 Ce:0.001%以上0.10%以下、
 B :0.0001%以上0.10%以下、
 Mg:0.0001%以上0.10%以下、
 Ti:0.0001%以上0.10%以下、
 V :0.0001%以上0.10%以下、
 Zr:0.0002%以上0.10%以下、
 Nd:0.002%以上0.10%以下、
 Bi:0.002%以上0.10%以下、
 W :0.002%以上0.10%以下、
 Mo:0.002%以上0.10%以下、
 Nb:0.0001%以上0.10%以下、及び
 Y :0.002%以上0.10%以下、
からなる群から選択される1種又は2種以上を含む、[1]に記載の無方向性電磁鋼板。
[3] 前記鋼板の表面から板厚方向に板厚の1/4の位置において、{110}<001>集積度が1.00以上である[1]又は[2]に記載の無方向性電磁鋼板。
[4] 前記鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<112>集積度/{111}<011>集積度の値が1.00以下である[1]~[3]のいずれか1つに記載の無方向性電磁鋼板。
[5] 前記鋼板の表面から板厚方向に板厚の1/4の位置において、{411}<148>集積度が2.00以下である[1]~[4]のいずれか1つに記載の無方向性電磁鋼板。
[6] 前記鋼板の表面から板厚方向に板厚の1/4の位置において、{411}<011>集積度が2.00以下である[1]~[5]のいずれか1つに記載の無方向性電磁鋼板。
[7] 前記鋼板の表面から板厚方向に板厚の1/4の位置において、板厚が0.10mm以上0.35mm以下である[1]~[6]のいずれか1つに記載の無方向性電磁鋼板。
[8] [1]~[7]のいずれか1つに記載の無方向性電磁鋼板が複数枚積層された構造を有するモータコア。
 本開示の上記態様によれば、例えば、モータのステータ鉄心およびロータ鉄心の素材として好適に利用可能であり、圧縮応力付与時における鉄損の劣化が小さい無方向性電磁鋼板及びモータコアを提供することができる。
 以下に、本開示の無方向性電磁鋼板の好適な一実施形態について詳細に説明する。ただし、本開示は、下記実施形態に開示の構成のみに制限されることなく、本開示の趣旨を逸脱しない範囲で種々の変更が可能である。また、本開示における数値限定範囲には、特に断りのない限り、下限値及び上限値としてそれぞれ記載されている数値がその範囲に含まれる。ただし、「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 また、本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の上限値は、他の段階的な記載の数値範囲の上限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 本明細書中に段階的に記載されている数値範囲において、ある段階的な数値範囲の下限値は、他の段階的な記載の数値範囲の下限値に置き換えてもよく、また、実施例に示されている値に置き換えてもよい。
 また、各元素の含有量について、好ましい下限値と上限値が別々に記載されている場合、下限値と上限値を任意に組み合わせた数値範囲をその元素の好ましい含有量としてもよい。
 なお、元素の含有量について「0~」又は「0%以上」として下限値が0%として記載されている場合、あるいは、上限値のみ記載されている場合は、その元素を含まなくてもよいことを意味する。
[無方向性電磁鋼板]
 本開示に係る無方向性電磁鋼板は、電気自動車やハイブリッド自動車などのモータの鉄心用として好適に用いることができる。ここで、無方向性電磁鋼板とはコイル製品だけでなく、鉄心を構成する鋼板(鉄心素材)も対象とする。
 すなわち、本開示の各態様における「無方向性電磁鋼板」とは、鋼板製造メーカで製造した状態のコイル状または切板状の「鋼板」だけでなく、例えば、需要家によって打抜き加工、積層などによりモータコア形状に加工され、モータコアを構成する「鋼板」も含まれる。
(化学組成)
 まず、本開示に係る無方向性電磁鋼板の化学組成の限定理由について説明する。
 本開示に係る無方向性電磁鋼板は、化学組成として、Siを含有し、必要に応じて選択元素を含有し、残部がFe及び不純物からなる。以下、各元素について説明する。
C:0%以上0.006%以下
 C(炭素)は、不純物として含有され、磁気特性を劣化させる元素である。したがって、C含有量は0.006%以下とする。好ましくは、0.003%以下である。C含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただし、工業的に含有量を0%にすることは容易ではないので、下限値を0.0005%としてもよく、0.0010%としてもよい。
Si:1.0%以上5.0%以下
 Si(ケイ素)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な元素である。したがって、Si含有量は1.0%以上とする。また、Siは、モータの鉄心用の無方向性電磁鋼板として、磁気的な板面内異方性を小さく且つ機械的な板面内異方性を小さくするのに有効な元素である。この場合、Si含有量は、2.0%超5.0%以下であることが好ましく、2.5%以上5.0%以下であることがさらに好ましく、3.0%以上5.0%以下であることがさらに好ましく、3.2%以上5.0%以下であることがさらに好ましい。一方、過剰に含有させると磁束密度が著しく低下する。したがって、Si含有量は5.0%以下とする。磁束密度の低下を抑制する観点では、Si含有量は、1.0%以上4.5%以下であることが好ましく、1.0%以上4.0%以下であることがより好ましく、1.0%以上3.5%以下であることがさらに好ましい。
sol.Al:0%以上2.5%未満
 Al(アルミニウム)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素であるが、過剰に含有させると磁束密度が著しく低下する。このため、sol.Al含有量は2.5%未満とする。sol.Al含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、sol.Al含有量を0.03%以上とすることが好ましく、0.10%以上とすることがより好ましい。なお、sol.Alは、酸可溶性アルミニウムを意味する。
 ここで、SiおよびAlは、磁気的な板面内異方性を小さく且つ機械的な板面内異方性を小さくするのに有効な元素である。そのため、Siおよびsol.Alの合計含有量は、2.0%超であることが好ましく、3.0%超であることがさらに好ましく、4.0%超であることがさらに好ましい。一方、SiおよびAlは、固溶強化能が高いので、過剰に含有させると冷間圧延が困難になる。したがって、Siとsol.Alの合計含有量は5.5%未満とすることが好ましい。
Mn:0%以上3.0%以下
 Mn(マンガン)は、鋼板の比抵抗を高めて鉄損を低減させるのに有効な選択元素である。ただし、Mnは、SiやAlに比べて合金コストが高いため、Mn含有量が多くなると経済的に不利となる。このため、Mn含有量は3.0%以下とする。Mn含有量は好ましくは2.7%以下であり、より好ましくは2.5%以下である。Mn含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Mn含有量は、0.0010%以上であることが好ましく、0.0030%以上であることがより好ましく、0.010%以上であることがさらに好ましい。
P:0%以上0.30%以下
 P(リン)は、一般に不純物として含有される元素である。ただし、Pは無方向性電磁鋼板の集合組織を改善して磁気特性を向上させる作用を有するので、必要に応じて含有させてもよい。しかしながら、Pは固溶強化元素でもあるため、P含有量が過剰になると、鋼板が硬質化して冷間圧延が困難になる。このため、P含有量は0.30%以下とする。P含有量は、0.20%以下であることが好ましい。P含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、P含有量は、0.0010%以上であることが好ましく、0.010%以上であることがより好ましく、0.015%以上であることがさらに好ましい。
S:0%以上0.010%以下
 S(硫黄)は、不純物として含有され、鋼中のMnと結合して微細なMnSを形成し、焼鈍時の結晶粒の成長を阻害し、無方向性電磁鋼板の磁気特性を劣化させる。このため、S含有量は0.010%以下とする。S含有量は、0.005%以下であることが好ましく、0.003%以下であることがさらに好ましい。S含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただし、工業的に含有量を0%にすることは容易ではないので、下限値を0.0001%としてもよく、0.001%としてもよい。
N:0%以上0.010%以下
 N(窒素)は、不純物として含有され、Alと結合して微細なAlNを形成し、焼鈍時の結晶粒の成長を阻害し、磁気特性を劣化させる。このため、N含有量を0.010%以下とする。N含有量は、0.005%以下であることが好ましく、0.003%以下であることがさらに好ましい。N含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただし、工業的に含有量を0%にすることは容易ではないので、下限値は、0.0001%以上としてもよく、0.0010%以上としてもよく、0.0015%以上としてもよい。
O:0%以上0.10%以下
 O(酸素)は、不純物として含有され、酸化物を形成して磁気特性を劣化させる。このため、O含有量を0.10%以下とする。O含有量は0.08%以下であることが好ましく、0.05%以下であることがより好ましく、0.010%以下であることがさらに好ましく、0.008%以下であることが特に好ましい。O含有量は、少ないことが好ましいので、下限値を制限する必要がなく、下限値が0%でもよい。ただし、工業的に含有量を0%にすることは容易ではないので、下限値は、0.0001%以上としてもよく、0.0005%以上としてもよく、0.0008%以上としてもよい。
 本開示に係る無方向性電磁鋼板の化学組成は、上記の元素に加えて、選択元素として、Sn、Sb、Ca、Cr、Ni、Cu、及びCeの少なくとも1種を含有してもよい。例えば、これらの選択元素の含有量は、以下とすればよい。
Sn:0%以上0.20%以下
Sb:0%以上0.20%以下
 Sn(錫)およびSb(アンチモン)は、無方向性電磁鋼板の集合組織を改善して磁気特性(例えば、磁束密度)を向上させる作用を有する選択元素であるので、必要に応じて含有させてもよい。しかしながら、Snおよび/またはSbを過剰に含有させると、鋼を脆化させて冷延破断を引き起こすことがあり、また磁気特性を劣化させることがある。このため、SnおよびSbの含有量はそれぞれ0.20%以下とする。SnおよびSbの各含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Sn含有量は、0.0010%以上であることが好ましく、0.01%以上であることがさらに好ましい。また、Sb含有量は、0.0010%以上であることが好ましく、0.002%以上であることが好ましく、0.01%以上であることがさらに好ましい。
Ca:0%以上0.01%以下
 Ca(カルシウム)は、粗大な硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制するので介在物制御に有効な選択元素であり、適度に添加すると結晶粒成長性を向上させて磁気特性(例えば、鉄損)を向上させる作用を有する。しかしながら、Caを過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ca含有量は0.01%以下とする。Ca含有量は、0.008%以下であることが好ましく、0.005%以下であることがさらに好ましい。Ca含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Ca含有量を0.0003%以上とすることが好ましい。Ca含有量は、0.001%以上であることが好ましく、0.002%以上であることがさらに好ましい。
Cr:0%以上5.0%以下
 Cr(クロム)は、固有抵抗を高めて、磁気特性(例えば、鉄損)を向上させる選択元素である。しかしながら、過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cr含有量は5.0%以下とする。Cr含有量は、4.0%以下でもよく、0.5%以下であることが好ましく、0.1%以下であることがさらに好ましい。Cr含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Cr含有量は0.0010%以上であることが好ましい。
Ni:0%以上5.0%以下
 Ni(ニッケル)は、磁気特性(例えば、飽和磁束密度)を向上させる選択元素である。しかしながら、Niを過剰に含有させると、上記作用による効果は飽和してコストの増加を招く。したがって、Ni含有量は5.0%以下とする。Ni含有量は、4.0%以下でもよく、0.5%以下であることが好ましく、0.1%以下であることがさらに好ましい。Ni含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Ni含有量は0.0010%以上であることが好ましい。
Cu:0%以上5.0%以下、
 Cu(銅)は、鋼板強度を向上させる選択元素である。しかしながら、Cuを過剰に含有させると、飽和磁束密度を低下させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Cu含有量は5.0%以下とする。Cu含有量は、4.0%以下でもよく、0.1%以下であることが好ましい。Cu含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Cu含有量は0.0010%以上であることが好ましい。
Ce:0%以上0.10%以下
 Ce(セリウム)は、粗大な硫化物、酸硫化物を生成することで微細な硫化物(MnS、CuS等)の析出を抑制し、粒成長性を良好にして鉄損を低減させる選択元素である。しかしながら、過剰に含有させると、硫化物および酸硫化物以外に酸化物も生成し、鉄損を劣化させることがあり、また上記作用による効果は飽和してコストの増加を招く。したがって、Ce含有量は0.10%以下とする。Ce含有量は、0.01%以下であることが好ましい。Ce含有量は、下限値を制限する必要がなく、下限値が0%でもよい。ただし、上記作用による効果をより確実に得るには、Ce含有量は0.001%以上であることが好ましい。Ce含有量は、0.002%以上であることがさらに好ましく、0.003%以上であることがさらに好ましく、0.005%以上であることがさらに好ましい。
 本開示に係る無方向性電磁鋼板の化学組成は、さらに選択元素として、例えば、B、Mg、Ti、V、Zr、Nd、Bi、W、Mo、Nb、及びYの少なくとも1種を含有してもよい。これらの選択元素の含有量は、公知の知見に基づいて制御すればよい。例えば、これらの選択元素の含有量は、以下とすればよい。
  B :0%以上0.10%以下、
  Mg:0%以上0.10%以下、
  Ti:0%以上0.10%以下、
  V :0%以上0.10%以下、
  Zr:0%以上0.10%以下、
  Nd:0%以上0.10%以下、
  Bi:0%以上0.10%以下、
  W :0%以上0.10%以下、
  Mo:0%以上0.10%以下、
  Nb:0%以上0.10%以下、
  Y :0%以上0.10%以下。
  また、本開示に係る無方向性電磁鋼板は、Siを1.0%以上5.0%以下含むほか、化学組成として、質量%で、
  C :0.0010%以上0.006%以下、
  sol.Al:0.10%以上2.5%未満、
  Mn:0.0010%以上3.0%以下、
  P :0.0010%以上0.30%以下、
  S :0.0001%以上0.010%以下、
  N :0.0015%超0.010%以下、
  O :0.0001%以上0.10%以下、
  Sn:0.0010%以上0.20%以下、
  Sb:0.0010%以上0.20%以下、
  Ca:0.0003%以上0.01%以下、
  Cr:0.0010%以上5.0%以下、
  Ni:0.0010%以上5.0%以下、
  Cu:0.0010%以上5.0%以下、
  Ce:0.001%以上0.10%以下、
  B :0.0001%以上0.10%以下、
  Mg:0.0001%以上0.10%以下、
  Ti:0.0001%以上0.10%以下、
  V :0.0001%以上0.10%以下、
  Zr:0.0002%以上0.10%以下、
  Nd:0.002%以上0.10%以下、
  Bi:0.002%以上0.10%以下、
  W :0.002%以上0.10%以下、
  Mo:0.002%以上0.10%以下、
  Nb:0.0001%以上0.10%以下、及び
  Y :0.002%以上0.10%以下、
 の少なくとも1種を含有することが好ましい。
 B含有量は0.02%以下であることが好ましく、0.01%以下であることがより好ましい。
 Mg含有量は0.01%以下であることが好ましく、0.005%以下であることがより好ましい。
 Ti含有量は0.100%以下であることが好ましく、0.002%以下であることがより好ましい。
 V含有量は0.05%以下であることが好ましく、0.04%以下であることがより好ましい。
 Zr含有量は0.08%以下であることが好ましく、0.06%以下であることがより好ましい。
 Nd含有量は0.05%以下であることが好ましく、0.01%以下であることがより好ましい。
 Bi含有量は0.05%以下であることが好ましく、0.01%以下であることがより好ましい。
 W含有量は0.05%以下であることが好ましく、0.01%以下であることがより好ましい。
 Mo含有量は0.05%以下であることが好ましく、0.01%以下であることがより好ましい。 
 Nb含有量は0.05%以下であることが好ましく、0.03%以下であることがより好ましい。
 Y含有量は0.05%以下であることがより好ましく、0.01%以下であることがより好ましい。
 また、後述する効果を奏し得る観点から、各元素の含有量の好ましい下限値は下記のとおりである。
 B含有量は0.0002%以上であることが好ましい。
 Mg含有量は0.0004%以上であることが好ましい。
 Ti含有量は0.001%以上であることが好ましい。
 V含有量は0.002%以上であることが好ましい。
 Zr含有量は0.002%以上であることが好ましい。
 Nd含有量は0.002%以上であることが好ましい。
 Bi含有量は0.002%以上であることが好ましい。
 W含有量は0.002%以上であることが好ましい。
 Mo含有量は0.002%以上であることが好ましい。
 Nb含有量は0.002%以上であることが好ましい。
 Y含有量は0.002%以上であることが好ましい。
 上記任意元素は、各元素による効果の違いにより下記A群~E群に分けられる。
[A群]Sn、Sb、Ca、Cr、Ni、Cu、Ce
 集合組織、介在物制御、固有抵抗、飽和磁束密度、固溶強化等を通じて磁気特性及び/又は機械特性を向上させる効果を奏し得る元素
[B群]Ti、V、Zr、Nb
 析出物の粗大化を通じて粒成長性を改善する効果を奏し得る元素
[C群]Mg、Nd、Bi、Y
 硫化物、酸化物などの介在物制御の効果を奏し得る元素
[D群]B
 窒化物制御により好適な効果を奏し得る元素
[E群]
 機械特性向上に好適な効果を奏し得る元素
 W、Mo
 本開示に係る無方向性電磁鋼板は、上記A群~E群からなる群より選ばれる1種又は2種以上を含んでもよく、例えば、A群、B群、C群、D群、及び/又はE群の1種又は2種以上の元素を含んでもよい。
 上記した化学組成は、鋼の一般的な分析方法によって測定すればよい。例えば、化学組成は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、sol.Alは、試料を酸で加熱分解した後の濾液を用いてICP-AESによって測定すればよい。また、SiはICP発光分光分析法を用い、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 なお、上記化学組成は、絶縁被膜等を含まない無方向性電磁鋼板の組成である。測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。例えば、次の方法で絶縁被膜等を除去すればよい。まず、絶縁被膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液、硫酸水溶液、硝酸水溶液に順に浸漬後、洗浄する。最後に、温風で乾燥させる。これにより、絶縁被膜が除去された無方向性電磁鋼板を得ることができる。また、研削によって絶縁被膜等を除去してもよい。
(結晶方位の特徴)
 本開示に係る無方向性電磁鋼板は、鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<011>集積度が2.00以上8.00以下(以下、「鋼板の表面から板厚方向に板厚の1/4の位置において」の記載を省略する場合がある。)である。
 なお、本開示における結晶方位の「集積度」とは、集合組織を表示する際に通常用いられる指標である。例えば、{111}<011>集積度とは、結晶方位{111}<011>を有する結晶粒の存在頻度が、ランダムな方位分布を持つ組織(この場合、集積度は1)に対して何倍であるかを示す指標である。
 本開示に係る無方向性電磁鋼板は、前記鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<011>集積度が2.00以上8.00以下であることに加え、好ましくは、{110}<001>集積度が1.00以上、{111}<112>集積度/{111}<011>集積度の値が1.00以下、{411}<148>集積度が2.00以下、及び{411}<011>集積度が2.00以下の少なくとも1つを満たすことである。
 {111}<011>集積度が2.00以上8.00以下であることは本開示の無方向性電磁鋼板において、重要な特徴となる。{111}<011>方位は、応力付与時における磁気特性が良好な方位である。
 さらに、本発明者らは、下記に示す通り、{111}<011>と同時に{110}<001>方位、{111}<112>方位、{411}<148>方位、及び{411}<011>方位の集積度の少なくともいずれか1つを適切に制御することで、通常時および応力付与時における磁気特性を高いレベルで両立させることに成功した。
 {110}<001>方位は磁気特性に優れた方位であり、集積度を1.00以上とすることが好ましい。
 {111}<112>方位は応力付与時の磁気特性の劣化を最大限に回避可能な方位であるものの、集積度が高すぎると圧縮応力を付与していない状態での磁気特性が劣位となる。そのため、面指数が同じであり、磁気特性に与える影響がほぼ同一の方位である{111}<011>との集積度のバランスに鑑みて{111}<112>集積度/{111}<011>集積度の値(集積度の比)を1.00以下とすることが望ましい。
 {411}<148>方位は圧縮応力付与時に磁気特性が劣位になりやすい方位であり、集積度を2.00以下とすることが好ましい。
 {411}<011>方位は圧縮応力付与時に磁気特性が劣位になりやすい方位であり、集積度を2.00以下とすることが好ましい。
 結晶方位は次の方法で測定できる。鋼板から切り出した30mm×30mm程度の鋼板サンプルに機械研磨および化学研磨を実施して片側の鋼板表面~1/4t部の表面層を除去する。ここで1/4t部とは、鋼板の厚さをtとした場合に、表面からt×1/4の深さに相当する部分を意味する。この表面層の除去に際し、元の鋼板の1/4t部が表面となるまで、それぞれ減厚した測定用試験片を作製する。なお、機械研磨と化学研磨により鋼板の片側表面~1/4t部の表面層を除去する際、厳密に1/4t部の面が出にくい場合があり、除去代はある程度許容される。本開示に係る無方向性電磁鋼板の平均結晶粒径(30μm以上200μm以下)を考慮し、鋼板表面から深さ1/4t部に対して深さ方向に当該鋼板の平均結晶粒径分の領域の結晶方位の集積度は同程度とみなすことができる。好ましい板厚(0.10mm以上0.35mm以下)を考慮して、機械研磨および化学研磨により、鋼板表面から深さ1/4t±1/8t、すなわち、1/8t~3/8tの範囲の面を出して結晶方位を測定すればよい。
 鋼板から採取した試料を研磨して表層の1/4t部まで除去した後、電子線後方散乱回折(EBSD:Electron Back Scattering Diffraction)法により結晶方位を求めることができる。観察視野は1視野あたり2400μm以上2.5mm以下が望ましく、2箇所以上5箇所以下の複数の視野について算出した各数値の平均値を採用することが望ましい。上記の観察結果より、結晶方位分布関数ODF(Orientation Determination Function)を作成する。この結晶方位分布関数に基づき、表面における各方位の集積度を得る。なお、ODFの展開次数は集積度の値の正確性を確保するため、18以上であることが望ましい。
(磁気特性)
 本開示においては、磁束密度1.0T、周波数400Hzで励磁した際の鉄損W10/400[W/kg]を用いて発明効果(圧縮応力付与時における鉄損の劣化抑制)を確認できる。鉄損は、励磁方向を鋼板の圧延方向(L方向)、圧延直角方向(C方向)および45°方向(D方向)としたときの鉄損をそれぞれWL、WCおよびWDとして、(WL+WC+2×WD)/4で得られる板面内特性の平均値を用いる。本明細書ではこの特性を「全周平均(鉄損)」と呼称することがある。圧延方向は、無方向性電磁鋼板がコイル状で提供されていれば明確であるが、切板状である場合やモータ鉄心から取り出された状態においては、形状だけからは判別できない。この場合は、冷間圧延時に形成される鋼板表面の溝により圧延方向を決定できる。この方法は当業者であれば日常的に適用されている方法であり、その判断は困難ではない。
 本開示においては、無負荷状態での各面内方向の鉄損値から計算される全周平均鉄損Wn[W/kg]と、各励磁方向に20MPaの圧縮応力を負荷した状態での各面内方向の鉄損値から計算される全周平均鉄損Ws[W/kg]の劣化代Ws-Wnにより発明効果を確認する。本開示の無方向性電磁鋼板は、Ws-Wnが8.50以下であることを好ましい形態とする。Ws-Wnは8.25以下であることがさらに好ましく、8.00以下であることがさらに好ましい。
 各磁気特性は、JIS C2556:2015に規定される単板磁気特性試験法(Single Sheet Tester:SST)により測定すればよい。なお、JISに規定されるサイズの試験片を採取することが難しい場合には、例えば、幅55mm×長さ55mmとなるように試験片を採取して、単板磁気特性試験法に準拠した測定を行ってもよい。その際、JIS C 2550:2011に規定されるエプスタイン試験器へ換算したエプスタイン相当値とすることが好ましい。
(平均結晶粒径)
 結晶粒径は、過大であっても過小であっても高周波条件での鉄損が劣化することがある。そのため、平均結晶粒径は、一般的な実用範囲とすれば良く、30μm以上200μm以下とする。
 平均結晶粒径は、JIS G0551:2020に規定される切断法により測定すればよい。例えば、板厚方向の縦断面組織写真において、板厚方向および圧延方向について切断法により測定した結晶粒径の平均値を用いればよい。この縦断面組織写真としては光学顕微鏡写真を用いることができ、例えば50倍の倍率で撮影した写真を用いればよい。
(板厚)
 板厚は、基本的には薄いほど低鉄損となる。一般的な実用範囲とすれば良く、好ましくは0.35mm以下とする。より好ましくは0.30mm以下である。一方、過度の薄肉化は鋼板やモータの生産性を著しく低下させるので、板厚は0.10mm以上とすることが好ましい。より好ましくは、0.15mm以上である。
 板厚は、マイクロメーターにより測定すればよい。なお、測定試料となる無方向性電磁鋼板が、表面に絶縁被膜等を有している場合は、これを除去した後に測定する。絶縁被膜の除去方法は、上述の通りである。
[無方向性電磁鋼板の製造方法]
 以下、本開示に係る無方向性電磁鋼板の製造方法の一例を説明する。なお、本開示に係る無方向性電磁鋼板は、上述の構成を有すれば、製造方法は特に限定されない。下記の製造方法は、本開示に係る無方向性電磁鋼板を製造するための一つの例であり、本開示に係る無方向性電磁鋼板の製造方法の好適な例である。
 本開示に係る無方向性電磁鋼板の製造方法は、熱間圧延工程、第1冷間圧延工程、中間焼鈍工程、第2冷間圧延工程、仕上焼鈍工程をこの順で有し、これらの工程において特に下記条件(A)~(E)を適用することが有効である。なお、以下の説明における温度は鋼板の表面温度を意味する。
(A)熱間圧延後の熱処理:熱間仕上圧延の後、第1冷間圧延開始までの間に、900℃以上の熱処理を実施しない。
(B)第1冷間圧延工程:圧下率を30%以上85%以下とする。
(C)中間焼鈍工程:500℃から650℃までの平均昇温速度を300℃/秒以上1000℃/秒以下とし、保持温度を700℃以上1100℃以下とし、保持時間を10秒以上300秒以下とし、且つ700℃から500℃までの平均冷却速度を25℃/秒以上とする。
(D)第2冷間圧延工程:圧下率を30%以上75%以下、仕上板厚を0.10mm以上0.35mm以下とする。
(E)仕上焼鈍工程:保持温度を900℃以上1200℃以下とする。
 以下、各工程について説明する。
(熱間圧延工程)
 上記第1冷間圧延工程に供する熱延鋼板は、前述した化学組成を有する鋼塊または鋼片(以下、「スラブ」ともいう。)に熱間圧延を施すことにより得ることができる。
 熱間圧延においては、上記化学組成を有する鋼を、連続鋳造法あるいは鋼塊を分塊圧延する方法など一般的な方法によりスラブとし、加熱炉に装入して熱間圧延を施す。この際、スラブ温度が高い場合には加熱炉に装入しないで熱間圧延を行ってもよい。
 熱間圧延の各種条件は特に限定されるものではない。一般的にはスラブ加熱温度を950~1250℃、仕上温度を700~1000℃、仕上板厚を1.0~4.0mm程度の条件が採用される。
(熱延板に対する熱処理)
 熱間圧延を終了した熱延板に、引き続き第1冷間圧延を施す。この際、第1冷間圧延工程に供する熱延鋼板は、熱間での仕上圧延後、900℃以上の熱処理を実施しない。この制約は熱間加工で形成された組織を第一冷間圧延の前に大きく変化させないことを目的とするものである。熱延最終パスの出側温度が900℃以上となる場合、最終パス出側から冷却を開始し900℃未満に達するまでの間は900℃以上の温度域に滞留することとなるが、一般的には数秒以内に900℃未満まで冷却されるため、本開示ではこの間の滞留は無視できる。よって、本開示におけるこの熱処理は、熱延板巻取または熱延板焼鈍により施される熱履歴が対象となる。熱間仕上圧延が終了した後に、900℃以上の熱処理を実施すると熱延板の粒径が大きくなることで、中間焼鈍工程後の組織が変化し、上記で規定した仕上焼鈍後の{111}<011>集積度を満たさなくなる。そのため、熱延板巻取後に保熱することは好ましくなく、特に長時間の保持となる熱延巻取温度は、好ましくは850℃以下、さらに好ましくは800℃以下とすべきである。
(第1冷間圧延工程)
 第1冷間圧延工程においては、上記化学組成を有する熱延鋼板に30%以上85%以下の圧下率(累積圧下率)の冷間圧延を施す。
 第1冷間圧延工程における圧下率が30%未満もしくは85%超であると、目的とする磁気特性を得ることができない場合がある。したがって、第1冷間圧延工程における圧下率は30%以上85%以下とする。
 冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の上記以外の条件は特に限定されるものではなく、熱延鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
(中間焼鈍工程)
 中間焼鈍工程においては、上記第1冷間圧延工程により得られた冷延鋼板に、500℃から650℃までの平均昇温速度を300℃/秒以上1000℃/秒以下とし、保持温度を700℃以上1100℃以下とし、保持時間を10秒以上300秒以下とし、さらに700℃から500℃までの平均冷却速度を25℃/秒以上とする中間焼鈍を施す。
 中間焼鈍工程における上記の各条件を満たさない場合、目的とする磁気特性を得ることができない場合がある。中間焼鈍の上記以外の条件は特に限定されるものではない。
 なお、700℃から500℃までの平均冷却速度は、上限値を制限する必要がないが、必要に応じて、上限値を70℃/秒としてもよい。
 保持温度は、850℃以上であることが好ましい。また、保持時間は、180秒以下であることが好ましい。さらに、700℃から500℃までの平均冷却速度を28℃/秒以上とすることが好ましい。特に、本開示の各条件を満たした上で、Si含有量:2.0%超、500℃から650℃までの平均昇温速度:300℃/秒以上、保持温度:850℃以上、且つ保持時間:180秒以下、700℃から500℃までの平均冷却速度:33℃/秒以上を全て満足すれば、応力付与時における磁気特性が良好な無方向性電磁鋼板を得
ることができる。
(第2冷間圧延工程)
 第2冷間圧延工程においては、上記中間焼鈍工程により得られた中間焼鈍鋼板に30%以上75%以下の圧下率(累積圧下率)の冷間圧延を施して0.10mm以上0.35mm以下の板厚とする。
 第2冷間圧延工程における圧下率が30%未満または75%超であると、目的とする磁気特性を得ることができない場合がある。したがって、第2冷間圧延工程における圧下率は30%以上75%以下とする。
 板厚は0.10mm以上0.35mm以下とすることが好ましい。板厚は、0.15mm以上0.30mm以下であることがより好ましい。
 冷間圧延時の鋼板温度、圧延ロール径など、冷間圧延の上記以外の条件は特に限定されるものではなく、鋼板の化学組成、目的とする鋼板の板厚などにより適宜選択するものとする。
(仕上焼鈍工程)
 仕上焼鈍工程においては、上記第2冷間圧延工程により得られた冷延鋼板に900℃以上1200℃以下の温度域に保持する仕上焼鈍を施す。この条件は特別なものではなく、一般的な無方向性電磁鋼板の製造において採用されているものである。
 仕上焼鈍工程における仕上焼鈍温度が900℃未満では、粒成長不足により平均結晶粒径が30μm未満となって十分な磁気特性が得られない場合がある。したがって、仕上焼鈍温度は900℃以上とする。一方、仕上焼鈍温度が1200℃超では、本開示の無方向性電磁鋼板が特徴としている{111}<011>方位以外の粒成長が優勢となり、粒成長が過度に進行してしまい平均結晶粒径が200μm超となって十分な磁気特性が得られない場合がある。したがって、仕上焼鈍温度は1200℃以下とする。
 900℃以上1200℃以下の温度域に保持する仕上焼鈍時間は特に規定せずともよいが、良好な磁気特性をより確実に得るには1秒間以上とすることが好ましい。一方、生産性の観点からは仕上焼鈍時間を120秒間以下とすることが好ましい。
 仕上焼鈍の上記以外の条件は特に限定されるものではない。
 なお、この仕上焼鈍は、鋼板製造者によって第2冷間圧延に引き続いて実施することが可能である。または、第2冷間圧延が完了した鋼板を出荷し、鋼板の需要家で、例えば打抜き加工、鋼板積層を行った後、コア形状での熱処理、いわゆる歪取焼鈍として実施することも可能である。
(その他の工程)
 上記熱間圧延の際に鋼板表面に生成したスケールを除去してから冷間圧延に供するため、熱延鋼板を酸洗することが好ましい。
 上記第2冷間圧延工程後あるいは仕上焼鈍工程後に、一般的な方法に従って、有機成分のみ、無機成分のみ、あるいは有機無機複合物からなる絶縁被膜を鋼板表面に塗布形成するコーティング工程を行ってもよい。環境負荷軽減の観点から、クロムを含有しない絶縁被膜を塗布形成しても構わない。また、コーティング工程は、加熱及び加圧することにより接着能を発揮する絶縁コーティングを施す工程であってもよい。接着能を発揮するコーティング材料としては、アクリル樹脂、フェノール樹脂、エポキシ樹脂またはメラミン樹脂などを用いることができる。
[用途]
 本開示に係る無方向性電磁鋼板の用途は特に限定されないが、モータのステータ鉄心およびロータ鉄心の素材として好適である。本開示に係る無方向性電磁鋼板を所定の形状に打抜き加工し、複数枚積層した構造を有するモータコアとすることができる。このようなモータコアは圧縮応力付与時における鉄損の劣化が小さく、モータの高効率化に資することができる。
 以下、実施例について説明するが、本開示に係る無方向性電磁鋼板は以下の実施例に限定されるものではない。
 真空溶解炉で表1-1及び表1-2の鋼種に示す化学組成に調整したスラブ(インゴット)をそれぞれ製造した。なお、表1-1及び表1-2に示す成分において下線を付した含有量は、本開示の範囲外であることを意味し、残部はFe及び不純物である。空欄は、その成分(元素)を意図的に添加していないことを意味する。
 表1-1及び表1-2に化学組成を示すスラブ(鋼種A~B7)を加熱炉に挿入して1100℃に加熱した後、板厚2.0mmとする熱間圧延を施し、熱延鋼板を製造した。仕上温度850℃、巻取温度600℃を基本とした。但し、一部の鋼板は、板厚、仕上温度、巻取温度などのいずれかの条件を変更した。例えば、No.a16は、仕上温度930℃、巻取温度900℃としている。また、No.k1及びv1は、仕上温度1000℃、巻取温度800℃とし、No.n1は、仕上温度800℃、巻取温度300℃としている。
 これらの熱延鋼板について、熱延板焼鈍、第1冷間圧延、中間焼鈍、第2冷間圧延、仕上焼鈍を順次実施した。各条件は表2-1、表3-1、表4-1、表5-1にに示す通りである。
 また、今回の実施例は、鋼板の表面に絶縁被膜を形成せずに実施した。
[平均結晶粒径の測定]
 各鋼板について、仕上焼鈍後に、前述した切断法により板厚方向および圧延方向の縦断面を50倍で観察した光学顕微鏡写真を用いて結晶粒径を測定し、平均結晶粒径を求めた。
[集合組織の測定]
 各鋼板から切り出した30mm×30mm程度の鋼板サンプルに機械研磨および化学研磨を実施して元の鋼板の1/4t部が表面となるまで、それぞれ減厚した測定用試験片を作製した。得られた試験片についてEBSDで1視野当たり900μm×2500μmで観察し、5箇所観察した。観察結果より、結晶方位分布関数ODFを作成し、結晶方位分布関数に基づき、表面における各方位の集積度を得た。各方位の集積度は、各視野について算出した数値の平均値を採用した。
[磁気特性の測定]
 各鋼板の磁気特性について、SSTにより測定した。磁束密度1.0T、周波数400Hzで励磁した際の鉄損W10/400[W/kg]として、無負荷状態での鉄損Wn[W/kg]、励磁方向に20MPaの圧縮応力を負荷した状態での鉄損Ws[W/kg]をそれぞれ測定し、Ws-Wnを求めた。Ws-Wnが8.50以下である場合に圧縮応力付与時における鉄損が良好であると判断した。
 各鋼板の製造条件を表2-1、表3-1、表4-1、表5-1に、集合組織、平均結晶粒径、磁気特性を表2-2、表3-2、表4-2、表5-2にそれぞれ示す。なお、下線は本開示の範囲外又は前述した好ましい製造方法の範囲外であることを意味する。

 

 

 

 

 

 

 
 本開示の化学成分及び好ましい製造方法により製造し、平均結晶粒径が30μm以上200μm以下であり、{111}<011>集積度が2.00以上8.00以下である実施例の鋼板は、鉄損劣化(Ws-Wn)が8.50W/kg以下であり、圧縮応力付与時における鉄損が良好であった。
 一方、化学成分、平均結晶粒径、又は{111}<011>集積度が本開示の範囲外である比較例の鋼板は、鉄損劣化(Ws-Wn)が8.50W/kgを超えており、圧縮応力付与時における鉄損が実施例に比べて大きかった。
 なお、表2-2におけるNo.a20、a23、表5-2におけるNo.ab2、ac2は、いずれも第1冷間圧延において割れが発生し、鋼板特性の測定を行わなかった。
 2022年3月30日に出願された日本特許出願2022-057541及び2022年8月23日に出願された日本特許出願2022-132805の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (8)

  1.  質量%で、
     C :0.006%以下、
     Si:1.0%以上5.0%以下、
     sol.Al:2.5%未満、
     Mn:3.0%以下、
     P :0.30%以下、
     S :0.010%以下、
     N :0.010%以下、
     O :0.10%以下、
     Sn:0~0.20%、
     Sb:0~0.20%、
     Ca:0~0.01%、
     Cr:0~5.0%、
     Ni:0~5.0%、
     Cu:0~5.0%、
     Ce:0~0.10%、
     B :0~0.10%、
     Mg:0~0.10%、
     Ti:0~0.10%、
     V :0~0.10%、
     Zr:0~0.10%、
     Nd:0~0.10%、
     Bi:0~0.10%、
     W :0~0.10%、
     Mo:0~0.10%、
     Nb:0~0.10%、
     Y :0~0.10%、
     残部:Feおよび不純物、
    からなる化学組成を有し、
     平均結晶粒径が30μm以上200μm以下であり、
     鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<011>集積度が2.00以上8.00以下である無方向性電磁鋼板。
  2.  質量%で、
     Sn:0.0010%以上0.20%以下、
     Sb:0.0010%以上0.20%以下、
     Ca:0.0003%以上0.01%以下、
     Cr:0.0010%以上5.0%以下、
     Ni:0.0010%以上5.0%以下、
     Cu:0.0010%以上5.0%以下、
     Ce:0.001%以上0.10%以下、
     B :0.0001%以上0.10%以下、
     Mg:0.0001%以上0.10%以下、
     Ti:0.0001%以上0.10%以下、
     V :0.0001%以上0.10%以下、
     Zr:0.0002%以上0.10%以下、
     Nd:0.002%以上0.10%以下、
     Bi:0.002%以上0.10%以下、
     W :0.002%以上0.10%以下、
     Mo:0.002%以上0.10%以下、
     Nb:0.0001%以上0.10%以下、及び
     Y :0.002%以上0.10%以下、
    からなる群から選択される1種又は2種以上を含む、請求項1に記載の無方向性電磁鋼板。
  3.  前記鋼板の表面から板厚方向に板厚の1/4の位置において、{110}<001>集積度が1.00以上である請求項1又は請求項2に記載の無方向性電磁鋼板。
  4.  前記鋼板の表面から板厚方向に板厚の1/4の位置において、{111}<112>集積度/{111}<011>集積度の値が1.00以下である請求項1~請求項3のいずれか1項に記載の無方向性電磁鋼板。
  5.  前記鋼板の表面から板厚方向に板厚の1/4の位置において、{411}<148>集積度が2.00以下である請求項1~請求項4のいずれか1項に記載の無方向性電磁鋼板。
  6.  前記鋼板の表面から板厚方向に板厚の1/4の位置において、{411}<011>集積度が2.00以下である請求項1~請求項5のいずれか1項に記載の無方向性電磁鋼板。
  7.  板厚が0.10mm以上0.35mm以下である請求項1~請求項6のいずれか1項に記載の無方向性電磁鋼板。
  8.  請求項1~請求項7のいずれか1項に記載の無方向性電磁鋼板が複数枚積層された構造を有するモータコア。
PCT/JP2023/012705 2022-03-30 2023-03-28 無方向性電磁鋼板及びモータコア WO2023190621A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023549890A JP7448873B2 (ja) 2022-03-30 2023-03-28 無方向性電磁鋼板及びモータコア

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022057541 2022-03-30
JP2022-057541 2022-03-30
JP2022132805 2022-08-23
JP2022-132805 2022-08-23

Publications (1)

Publication Number Publication Date
WO2023190621A1 true WO2023190621A1 (ja) 2023-10-05

Family

ID=88201935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012705 WO2023190621A1 (ja) 2022-03-30 2023-03-28 無方向性電磁鋼板及びモータコア

Country Status (2)

Country Link
JP (1) JP7448873B2 (ja)
WO (1) WO2023190621A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062998A1 (fr) * 2000-02-28 2001-08-30 Nippon Steel Corporation Tube d'acier facile a former et procede de production de ce dernier
WO2021037061A1 (zh) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 一种600MPa级无取向电工钢板及其制造方法
JP2021165411A (ja) * 2020-04-06 2021-10-14 日本製鉄株式会社 ロータ用無方向性電磁鋼板およびその製造方法
WO2023008513A1 (ja) * 2021-07-30 2023-02-02 日本製鉄株式会社 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
WO2023008514A1 (ja) * 2021-07-30 2023-02-02 日本製鉄株式会社 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001062998A1 (fr) * 2000-02-28 2001-08-30 Nippon Steel Corporation Tube d'acier facile a former et procede de production de ce dernier
WO2021037061A1 (zh) * 2019-08-26 2021-03-04 宝山钢铁股份有限公司 一种600MPa级无取向电工钢板及其制造方法
JP2021165411A (ja) * 2020-04-06 2021-10-14 日本製鉄株式会社 ロータ用無方向性電磁鋼板およびその製造方法
WO2023008513A1 (ja) * 2021-07-30 2023-02-02 日本製鉄株式会社 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
WO2023008514A1 (ja) * 2021-07-30 2023-02-02 日本製鉄株式会社 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法

Also Published As

Publication number Publication date
JPWO2023190621A1 (ja) 2023-10-05
TW202409309A (zh) 2024-03-01
JP7448873B2 (ja) 2024-03-13

Similar Documents

Publication Publication Date Title
JP6226072B2 (ja) 電磁鋼板
JP6866935B2 (ja) 無方向性電磁鋼板の製造方法
JP4586669B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP6651759B2 (ja) 無方向性電磁鋼板およびその製造方法
US7922834B2 (en) Non-oriented electrical steel sheet and production process thereof
JP4779474B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP5712863B2 (ja) 無方向性電磁鋼板の製造方法
JP5716315B2 (ja) 無方向性電磁鋼板およびその製造方法
CN111819301B (zh) 无取向电磁钢板
KR20010007290A (ko) 무방향성 전자(電磁)강판 및 그 제조방법
JP7372521B2 (ja) 無方向性電磁鋼板及びその製造方法
JP2012036459A (ja) 無方向性電磁鋼板およびその製造方法
JP4710465B2 (ja) 回転子用無方向性電磁鋼板の製造方法
JP6476979B2 (ja) 無方向性電磁鋼板およびその製造方法
JP5824965B2 (ja) 無方向性電磁鋼板の製造方法
JP6848597B2 (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP2004183002A (ja) 自動車用無方向性電磁鋼板およびその製造方法
JP5712862B2 (ja) 無方向性電磁鋼板の製造方法
JP6617857B1 (ja) 無方向性電磁鋼板およびその製造方法
JP7243938B1 (ja) 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
JP7243936B1 (ja) 無方向性電磁鋼板、鉄心、鉄心の製造方法、モータ、およびモータの製造方法
JP4506664B2 (ja) 回転子用無方向性電磁鋼板およびその製造方法
JP7448873B2 (ja) 無方向性電磁鋼板及びモータコア
TWI857539B (zh) 無方向性電磁鋼板及馬達鐵芯
JP5712864B2 (ja) 無方向性電磁鋼板の製造方法、および冷間圧延性の評価方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023549890

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23780630

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024019807

Country of ref document: BR