WO2013057820A1 - 電池システムの監視装置およびこれを備えた蓄電装置 - Google Patents

電池システムの監視装置およびこれを備えた蓄電装置 Download PDF

Info

Publication number
WO2013057820A1
WO2013057820A1 PCT/JP2011/074173 JP2011074173W WO2013057820A1 WO 2013057820 A1 WO2013057820 A1 WO 2013057820A1 JP 2011074173 W JP2011074173 W JP 2011074173W WO 2013057820 A1 WO2013057820 A1 WO 2013057820A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
voltage
balancing
battery
voltage detection
Prior art date
Application number
PCT/JP2011/074173
Other languages
English (en)
French (fr)
Inventor
彰彦 工藤
睦 菊地
江守 昭彦
Original Assignee
日立ビークルエナジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ビークルエナジー株式会社 filed Critical 日立ビークルエナジー株式会社
Priority to EP11874219.6A priority Critical patent/EP2770606B1/en
Priority to US14/352,227 priority patent/US9673640B2/en
Priority to PCT/JP2011/074173 priority patent/WO2013057820A1/ja
Priority to JP2013539463A priority patent/JP5775935B2/ja
Priority to CN201180074269.9A priority patent/CN103891093B/zh
Publication of WO2013057820A1 publication Critical patent/WO2013057820A1/ja
Priority to US15/596,700 priority patent/US10454283B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present invention relates to a battery system monitoring device and a power storage device including the same.
  • a plurality of cell groups in which a plurality of secondary battery unit cells are connected in series are connected in series or in series and parallel.
  • An assembled battery battery system
  • SOC state of charge
  • a cell controller that performs balancing discharge for equalization (balancing) is provided in the monitoring apparatus for the assembled battery to manage the assembled battery (see, for example, Patent Document 1).
  • the cell controller includes a plurality of integrated circuits (cell controller ICs) and manages the plurality of cell groups.
  • the SOC of each single battery cell is calculated from the open circuit voltage (OCV) of each single battery cell. That is, each unit measured in a state in which the battery system is in an unloaded state, that is, an inverter that generates three-phase AC power from DC power from the battery system and supplies it to a HEV or EV drive motor is not connected.
  • the SOC of each single battery cell is calculated from the voltage between the terminals of the battery cell.
  • the voltage between terminals of each single battery cell is measured by inputting the voltage between terminals of each single battery cell to the voltage input terminal of the cell controller IC.
  • An RC filter is provided at a voltage input terminal of the cell controller IC in order to remove noise associated with charging / discharging of the battery system.
  • a battery system monitoring device that monitors a cell group in which a plurality of single battery cells are connected in series, and monitors and controls the state of the plurality of single battery cells in the cell group.
  • a cell controller IC a battery controller for controlling the cell controller IC, a positive electrode and a negative electrode of each unit cell, and a plurality of voltage input terminals of the cell controller IC for measuring a voltage between terminals of the unit cell
  • a plurality of voltage detection lines connected to one another, a power supply line connecting the positive electrode of the single battery cell having the highest potential among the plurality of single battery cells and the power supply terminal of the cell controller IC, and the lowest potential of the plurality of single battery cells.
  • a voltage detection line and a negative electrode connected to the positive electrode of the single battery cell comprising a ground wire connecting the negative electrode of the single battery cell and the ground terminal of the cell controller IC.
  • Each battery cell has a balancing switch connected between the connected voltage detection lines for balancing discharge of the battery cells and a balancing resistor connected in series with the balancing switch.
  • a resistor is provided in series, and between two voltage detection lines of a plurality of voltage detection lines, or between a power supply line and any one voltage detection line of a plurality of voltage detection lines, or between a ground line and a plurality of voltages.
  • the battery controller controls the cell controller IC so that the effective resistance value of the balancing switch is reduced so that the single battery cell is not overcharged.
  • the predetermined value of the effective resistance value of the balancing switch is the resistance value of the voltage input resistance provided on the voltage detection line. The value calculated from the overcharge protection voltage value of the unit cell and the voltage value when the SOC of the unit cell is 100% is preferable.
  • the effective resistance value of the balancing switch is calculated from the resistance value of the balancing resistor and the on / off duty ratio of the balancing switch: It is preferable to set the calculated value.
  • the battery system monitoring apparatus in the battery system monitoring apparatus according to any one of the first to third aspects, is configured to monitor a plurality of cell groups. It is preferable to provide a plurality of controller ICs.
  • a power storage device including the battery system monitoring device according to any one of the first to fourth aspects and a battery system.
  • an electric drive device including the power storage device according to the fifth aspect.
  • a method for calculating a predetermined value of the on / off duty ratio of the balancing switch of the battery system monitoring apparatus of the first aspect wherein the predetermined value is: It is a value calculated from the resistance value of the voltage input resistance provided on the voltage detection line where the leak has occurred, the overcharge protection voltage value of the single battery cell, and the voltage value when the SOC of the single battery cell is 100%. is there.
  • the effective resistance value of the balancing switch is the resistance value of the balancing resistor. It is preferable to set the calculated value from the ON / OFF duty ratio of the balancing switch.
  • the battery system monitoring device By using the battery system monitoring device according to the present invention, in the power storage device provided with the battery system monitoring device, it is possible to reliably avoid overcharging of the secondary battery.
  • the power storage device and the power storage device are mounted, and HEV, EV, etc. The safety of the electric vehicle can be improved.
  • FIG. 1 is a diagram illustrating a configuration of an entire electric drive device of a hybrid vehicle including a battery monitoring device for an assembled battery according to an embodiment.
  • One example of an RC filter circuit for cell voltage detection and a balancing circuit is shown.
  • Another example of the RC filter circuit for cell voltage detection and the balancing circuit is shown.
  • Another example of the RC filter circuit for cell voltage detection and the balancing circuit will be shown. It is a figure which shows the change of the cell voltage with respect to SOC, and the operation
  • FIG. It is a figure for demonstrating the leak current when a leak generate
  • FIG. The relationship between the resistance value of the leakage resistance (RL) and the actual voltage of the single battery cell when the voltage input resistance for voltage measurement is one value with the detection voltages of the single battery cells of the cell group aligned.
  • FIG. It is a figure which shows roughly the mode of the balancing discharge of the cell from which the high voltage was detected when leak generate
  • Embodiment described below is an example at the time of applying the electrical storage apparatus provided with the battery system monitoring apparatus by this invention with respect to the electrical storage apparatus provided with the battery system used for a hybrid vehicle (HEV) etc.
  • HEV hybrid vehicle
  • the present invention is not limited to HEVs and can be widely applied to various power storage devices mounted on plug-in hybrid vehicles (PHEV), electric vehicles (EV), railway vehicles, and the like.
  • a lithium-ion battery having a voltage in the range of 3.0 to 4.2 V (average output voltage: 3.6 V) is assumed as a storage / discharge device that is the minimum unit of control. Any device that can store and discharge electricity that restricts its use when the SOC (State of Charge) is too high (overcharge) or too low (overdischarge) can be used. Collectively, they are called single cells, single battery cells, or simply cells.
  • a plurality of single battery cells (generally several to a dozen or more) connected in series are called cell groups, and a plurality of cell groups connected in series are battery modules. It is called. Further, a plurality of cell groups or battery modules connected in series or in series and parallel are referred to as a battery system.
  • a cell group, a battery module, and a battery system are collectively referred to as an assembled battery.
  • a cell controller IC that detects the cell voltage of each single battery cell and monitors the battery state while performing a balancing operation or the like is normally provided for each cell group.
  • FIG. 1 shows a configuration example of an electric drive device for a hybrid vehicle equipped with a power storage device equipped with a battery system monitoring device according to the present invention.
  • the electric drive apparatus of the hybrid vehicle includes a vehicle controller 400, a motor controller 300, a battery controller 200, a plurality of cell controller ICs 100, a battery system 130, an inverter 340, a motor 350, and the like.
  • the vehicle controller 400, the motor controller 300, the battery controller 200, the cell controller IC 100, and the inverter 340 exchange information with each other via a communication circuit installed in the vehicle.
  • the battery system 130 includes a plurality of cell groups 120 connected in series, and each cell group 120 includes a plurality of secondary battery cells 110 such as lithium-ion batteries connected in series.
  • the battery system monitoring apparatus 10 includes a battery controller 200, a plurality of cell controller ICs 100, and a connection circuit including a resistor, a capacitor, and the like provided between the cell controller IC 100 and the cell group 120.
  • the power storage device includes the battery system monitoring device 10 and the battery system 130.
  • a communication circuit between the battery controller 200 and the plurality of cell controller ICs 100 is connected in a loop, and a signal is transmitted from the battery controller 200 to the highest cell controller IC 100 via the signal isolator 201. Signals are sequentially transmitted in series from the cell controller IC 100 to the lowest cell controller IC 100, and finally, signals are transmitted from the lowest cell controller IC 100 to the battery controller 200 via the signal isolator 202.
  • the battery controller 200 can exchange information with all the cell controller ICs 100 via a loop communication circuit. Although an example in which signal transmission is performed via a loop communication circuit is shown here, a configuration using a bidirectional communication circuit is also possible, and in this case, the signal isolator 202 is unnecessary. Further, although not shown, a communication circuit can be connected in parallel from the battery controller 200 to all the cell controller ICs 100 to perform signal transmission in parallel.
  • the vehicle controller 400 controls the traveling speed and braking / driving force of the vehicle based on an operation signal from a vehicle driving operation device such as an accelerator pedal, a brake pedal, or a shift lever operated by the driver of the hybrid vehicle.
  • the motor controller 300 controls the battery controller 200 and the inverter 340 based on the speed command and braking / driving force command from the vehicle controller 400, and controls the rotational speed and torque of the vehicle travel drive motor 350.
  • the battery controller 200 controls charging / discharging of the battery system 130 and SOC (State Of Charge) based on the voltage, current, and temperature of the battery system 130 detected by the voltage sensor 210, the current sensor 220, and the temperature sensor 230.
  • SOC State Of Charge
  • a battery system 130 mounted on a hybrid vehicle is generally a battery system in which many cells or cell groups are connected in series and parallel, and the voltage at both ends is a high voltage and high capacity of several hundred volts.
  • the present invention can be applied to such a high-voltage, high-capacity battery system.
  • the cell controller IC 100 is provided for each cell group 120 by dividing a plurality of cells 110 constituting the battery system into groups every predetermined number. For example, when battery systems 130 in which 100 cells 110 are connected in series are grouped into four cells, 25 sets of cell controller ICs 100 are used. Each cell controller IC 100 detects a voltage between terminals of each cell constituting each cell group 120 and transmits the detected voltage to the battery controller 200, and performs energization control of the balancing current for each cell 110 in accordance with a command from the battery controller 200.
  • the balancing resistor 102 is a resistor for limiting the discharge (balancing discharge) current of each cell for correcting the variation in SOC of each cell, and is provided for each cell 110.
  • the DC power charged in the battery system 130 is supplied to the smoothing capacitor 330 and the inverter 340 through the positive electrode side contactor 310 and the negative electrode side contactor 320, converted into AC power by the inverter 340, applied to the AC motor 350, and the AC motor. 350 is driven.
  • This conversion from DC power to AC power is performed by switching of a switching element (not shown) provided in the inverter 340.
  • AC power generated by AC motor 350 is converted to DC power by a diode element (not shown) provided in inverter 340 and smoothing capacitor 330 to be positive-side contactor 310 and negative-side contactor 320. Is applied to the battery system 130 through the charging, and the battery system 130 is charged.
  • Ripple noise and switching noise are generated with the operation of the inverter 340. Although these noises are reduced to some extent by the smoothing capacitor 330, they cannot be completely removed and flow into the battery system 130, and a noise voltage proportional to the noise current is superimposed on the voltage between terminals of each cell. Since this noise becomes a cell voltage detection error, a voltage signal input to a voltage measurement circuit (not shown) for measuring the voltage must be suppressed by using an RC filter or the like. Note that a voltage measurement circuit (not shown) is provided in the cell controller IC 100 and will not be described in detail.
  • FIG. 2 shows an example of an RC filter circuit for cell voltage detection using the cell controller IC 100 and a balancing circuit.
  • the positive and negative terminals of the four unit cells 110 connected in series are connected to the cell voltage input terminals (CV terminals) of the cell controller IC 100 via the voltage detection lines SL1 to SL5. ) 105.
  • Each of the voltage detection lines SL1 to SL5 is provided with a cell voltage input resistor (Rcv) 101 that forms an RC filter.
  • a capacitor 103 is connected between voltage detection lines connected to the positive and negative terminals of each cell, that is, between two adjacent voltage detection lines, thereby forming an RC filter.
  • the cell controller IC 100 has a GND terminal (GND) 107 and a Vcc terminal (VCC) 104.
  • the GND terminal is connected to the negative electrode of the battery cell having the lowest potential among the four battery cells connected in series with the ground line (GL).
  • the Vcc terminal is connected to the positive electrode of the single battery cell having the highest potential among the four single battery cells connected in series by a power line (GL).
  • the highest potential of the cell group supplied through this power supply line is used as the operating power supply Vcc of the cell controller IC100.
  • the resistance value of the cell voltage input resistance (Rcv) 101 and the resistance value of the balancing resistance (BS resistance, Rb) are also expressed as Rcv and Rb, respectively.
  • the voltage detection line is a voltage for measuring the voltage between terminals of each single battery cell provided in the cell controller IC 100 from the positive and negative electrodes of each single battery cell with a voltage measurement circuit (not shown). This refers to wiring up to the input of a multiplexer (not shown) that selects a detection line.
  • a series circuit of a balancing switch (BSW) 108 and a balancing resistor (BS resistor, Rb) 102 is connected in parallel with each cell, and balancing discharge is performed under the control of the balancing switch 108.
  • the balancing switch 108 is provided in the cell controller IC 100, and is configured by, for example, a MOSFET switch.
  • the balancing switch 108 has two voltage detection lines connected to positive and negative terminals of a cell corresponding to the balancing switch by two wires (referred to as balancing lines BL) via a balancing terminal (BS terminal) 106. Are connected to each.
  • FIG. 3 shows another example of the RC filter circuit, in which the capacitor 103 of the RC filter is connected to the GND terminal 107 of the cell controller IC 100.
  • the effective capacitor capacity of the RC filter corresponding to the connected cell changes.
  • the frequency characteristics are different.
  • the RC constant may be the same, but the withstand voltage of the capacitor 103 needs to be increased to withstand the voltage of four unit cells.
  • FIG. 4 shows still another example of the RC filter circuit, in which the connection point of the capacitor 103 is connected to the voltage detection line (SL3 in FIG. 4) at the midpoint potential of the series battery. Even in this method, the constants of the RC filters connected to each cell are the same. Further, there is an advantage that the withstand voltage of the capacitor 504 can be half that of the RC filter circuit of FIG.
  • FIG. 2 is connected between the voltage detection line SL5 and the ground line (GL).
  • the capacitor 103 is connected between each of the voltage detection lines SL1 to SL5 and the ground line (GL).
  • the capacitor 103 is connected between the voltage detection line SL3 and the ground line (GL).
  • a circuit configuration in which the capacitor 103 is connected between these voltage detection lines and the power supply line (VL) is also possible.
  • the operation of such a circuit configuration is the same as the circuit configuration shown in FIGS. 2 to 4 and can be easily understood from the description with reference to FIGS. 2 to 4 below. Therefore, the operation between the voltage detection line and the power supply line (VL) is not limited.
  • a diagram of a circuit configuration for connecting the capacitor 103 is omitted.
  • the OCV open circuit voltage
  • the SOC of each single battery cell is calculated therefrom. If the OCV is high, the SOC is also high. Therefore, balancing discharge is performed on a cell having a high OCV to reduce the SOC, so that the SOCs of a plurality of cells constituting the battery system 130 are aligned.
  • the balancing discharge function is an important function for a lithium ion battery, and if there is no balancing discharge function, variation in SOC occurs. Will occur.
  • charging / discharging is controlled by the total voltage, that is, the average SOC, cells having a low SOC during charging / discharging may be overdischarged, and cells having a high SOC may be overcharged.
  • the lithium ion battery when the SOC is low, copper which is a current collector of the negative electrode is eluted and may be deposited as a dendrite to cause a short circuit between the positive electrode and the negative electrode. For this reason, charging is appropriately performed so that each cell does not enter an overdischarged state.
  • a lithium ion battery when it is overcharged, reactions such as decomposition of the electrolytic solution, decomposition of the positive electrode and negative electrode active material occur, and this reaction is not only irreversible, but also increases the temperature and internal pressure in the battery. .
  • the lithium ion battery employs a structure in which a gas discharge valve is provided in the cell to safely release the internal pressure.
  • the SOC of the other cell is lowered by the amount of the balancing discharge, and conversely, the SOC of the cell becomes relatively higher by that amount. Since all cells (battery system) are charged with balancing discharge of cells with apparently high OCV, and the variation in OCV is reduced, the total voltage of the battery system is apparent when such operations are repeated. In addition, only the relevant cell is overcharged while remaining normal.
  • Two cell controller ICs 100 equipped with a voltage measurement circuit are provided so that the voltage measurement circuit of the cell is a dual system. Even if a problem occurs in the voltage measurement function of one cell controller IC 100, the other cell controller IC 100 It has been carried out to ensure that the cell voltage can be detected with the voltage measurement function.
  • FIG. 5 is a diagram showing a change in the cell voltage with respect to the SOC and the operation of the gas discharge valve when the lithium ion battery is charged with a constant current and is intentionally overcharged.
  • the cell voltage increases as the SOC increases, and the internal pressure increases and the gas discharge valve operates when the SOC is about 280%.
  • the gas discharge valve operates when the SOC is 230% or more. Therefore, the SOC 230% or more is set as the gas discharge valve operation region.
  • the lower limit SOC of the gas discharge valve operating region largely depends on the characteristics of the lithium ion battery, and varies depending on various conditions such as the positive electrode active material, the negative electrode active material, and the electrolyte composition.
  • the gas discharge valve operation region shown in FIG. 5 shows an example.
  • the characteristic that as the SOC increases, the cell voltage rises and approaches the gas discharge valve operating region is a characteristic common to all lithium ion batteries. Therefore, in the control device of the conventional battery system, the cell voltage determined to be overcharged is set to a cell voltage between the cell voltage at 100% SOC and the cell voltage at the lower limit SOC of the gas discharge valve operating region, and the redundant system The detection voltage of the overcharge detection circuit is set to a value of the cell voltage within the SOC range, and charge / discharge control is performed so that the overcharge voltage is not charged.
  • the leakage may occur due to deterioration of the capacitor of the RC filter, deterioration of the diode for ESD countermeasure provided in the cell controller IC 100, insulation failure near the voltage detection terminal of the cell controller IC 100, or the like.
  • a leak has occurred in the RC filter capacitor. The same can be understood when a leak occurs due to another cause, and the operation of the battery system according to the present invention described below can be applied.
  • FIG. 2 a case where a capacitor 103 of an RC filter is connected in parallel with the cell between two voltage detection lines connected to the positive and negative electrodes of each cell as shown in FIG. To do.
  • a cell in which the detection voltage is lowered due to leakage in the capacitor 103 is referred to as a leak generation cell.
  • this is just a name and does not mean that this cell is actually leaking.
  • FIG. 6 shows the balancing switch 108 provided in the cell controller IC 100 of FIG. 2 extracted from the outside, and omits the description of the cell controller IC 100.
  • V2 Vc2 * RL / (2 * Rcv + RL) (1)
  • the leakage current IL flowing through the leakage resistance (RL) 131 also flows through the voltage input resistance Rcv of the voltage detection lines SL2 and SL3, and a voltage drop due to the two voltage input resistances Therefore, the voltage between the CV terminals is measured lower than the actual voltage of the cell 2.
  • the voltage V1 between the CV terminals to which the voltage detection lines SL1 and SL2 are connected and the detection voltage of the cell 3 are the detection voltages of the cell 1.
  • a voltage V3 between the CV terminals to which the voltage detection lines SL3 and SL4 are connected is expressed by the following equations (2) and (3), respectively.
  • V1 Vc1 + Vc2 ⁇ Rcv / (2 ⁇ Rcv + RL) (2)
  • V3 Vc3 + Vc2 ⁇ Rcv / (2 ⁇ Rcv + RL) (3)
  • the voltage between the CV terminals of the cells 1 and 3 rises conversely due to the leakage current flowing in the leakage resistance 131 of the cell 2, and voltage values higher than the respective actual voltages are obtained. Measured.
  • the smaller the leak resistance the lower the detection voltage of the cell (cell 2) where the leak occurred.
  • the cell detection voltage is high.
  • the resistance value of the leak resistance (RL) 131 is lowered to 100 ⁇ , the actual voltage of 3.6 V is 2.25 V, and the detected value of the voltage between the terminals of the leaked cell is 2.25 V.
  • the detected value of the inter-terminal voltage in the upper and lower cells (cells 2 and 3) of (cell 2) is detected as a voltage exceeding 4.2V.
  • insulation defects such as a capacitor of the RC filter, an ESD countermeasure diode in the cell controller IC 100, and a wiring pattern near the CV terminal of the cell controller IC 100 usually progress gradually. If this leak suddenly increases at some point due to some noise, the detected value of the cell voltage exceeds 4.2V and exceeds the overcharge protection voltage of 4.35V, and an abnormality is detected as overcharge. There is a possibility.
  • the overcharge protection voltage is a voltage that prevents further charging.
  • the lithium ion battery generates heat at a certain voltage or higher, and when the voltage rises further, deterioration of electrodes and electrolyte (chemical change) occurs, and the battery deteriorates irreversibly. The voltage drops. Thereafter, when the charging is further continued, as described in FIG. 5, the electrolytic solution is decomposed to generate gas, and the gas discharge valve is activated. Therefore, this overcharge protection voltage is set to a voltage with a margin so that the problem of heat generation does not occur. Since this voltage varies depending on the composition and structure of the lithium battery, the above 4.35 V is merely an example of a certain lithium ion battery. Similarly, there is an overdischarge protection voltage, but the description is omitted here.
  • the balancing resistor 102 and the cell voltage input resistor 101 are set to appropriate values, it is possible to prevent the actual voltage of the cell from exceeding the overcharge protection voltage. it can.
  • setting of the resistance values of the balancing resistor 102 and the cell voltage input resistor 101 will be described.
  • FIGS. 7 (Calculated value of balancing current and actual current value when leak occurs) Balancing discharge when a leak occurs will be described with reference to FIGS.
  • the actual voltage is 3.6 V in cell 1 and cell 3, but the detected voltage increases as the resistance value of leak resistance (RL) 131 decreases. .
  • the detection voltage of the cell 2 becomes low, but the magnitude of the decrease in the detection voltage in the cell 2 is larger than the magnitude of the increase in the detection voltage in the cells 1 and 3. If the detected voltage is too low, it is determined that the battery is in an overdischarged state, a warning is issued, and countermeasures such as stopping the use of the battery system are taken.
  • problems such as heat generation and an increase in pressure inside the cell do not occur as in the case of overcharge.
  • the operation of overcharging and the operation of the battery system monitoring apparatus according to the present invention for preventing this will be described.
  • the planned amount of current is not discharged, so the voltage of this cell after the end of discharge does not drop to the originally planned voltage, and the voltage detected after the end of discharge is in a state where balancing has not been achieved.
  • Somewhat higher voltage When this higher voltage is detected, balancing discharge is performed again, and balancing discharge is finally performed to eliminate the detected voltage variation.
  • FIG. 9 schematically shows the state of this balancing discharge.
  • the straight line A indicates that the magnitude ⁇ V of the discharge target is the same between the actual voltage and the detected voltage due to the variation in the voltage between the terminals of the cell, and the straight line B indicates that the actual voltage is not eliminated for the above reason. This indicates that the voltage does not drop to the planned voltage.
  • the first balancing discharge is performed with the initially detected cell voltage
  • the actual voltage ⁇ V decreases only from the straight line A ( ⁇ V1) to the straight line B ( ⁇ V2).
  • the voltage ( ⁇ V2) that has not reached the balancing discharge is detected at the next cell terminal voltage measurement, and further balanced discharge (second balancing discharge) is performed. In this way, balancing discharge based on the detected voltage is performed, and eventually the actual voltage is lowered by the cell voltage variation ⁇ V based on the detected voltage.
  • the balancing discharge eliminates the variation in the voltage between the terminals of the plurality of cells, but the voltage between the terminals is not based on the actual voltage but based on the detected voltage.
  • the voltage of all the cells is once adjusted to a low voltage by the balancing discharge and further charged, or the balancing discharge and the charging may be alternately performed.
  • the detection voltages of all the cells are adjusted to 3.6 V after charging
  • the actual voltage of the cells is a value corresponding to the leakage resistance based on the graph shown in FIG. For example, with a leak resistance of 300 ⁇ , the cells 1 and 3 have 3.25V and the cell 2 has 4.35V.
  • the balancing resistor (Rb) 102 is several tens of ⁇ to several hundreds ⁇ , but the average current can be appropriately reduced by the on / off switching control (duty control) of the balancing switch (BSW) 108. That is, by the duty control of the BSW 108, the balancing resistance Rb ef whose resistance value is effectively variable can be obtained. Also in the following description, the balancing resistor is assumed to be an effective balancing resistor Rb ef including duty control.
  • FIG. 10 shows how much the actual voltage of the voltage between the terminals of the cell in which the leak occurs may increase due to the relationship between the leak current and the balancing current.
  • the inter-terminal voltage of all cells is assumed to be an actual voltage of 4.1 V, that is, a voltage corresponding to a normal SOC of 100%.
  • the cell voltage input resistance (Rcv) 101 is 100 ⁇ .
  • the leak current (IL) 132 is calculated by the following equation (4).
  • IL Vc2 / (2 ⁇ Rcv + RL). . . (4)
  • the leak current IL increases as the leak resistance RL decreases, and crosses the balancing current when the leak discharge resistance 2 ⁇ Rcv + RL is 512 ⁇ .
  • the leak resistance (RL) 131 is about 312 ⁇ at this intersection.
  • the balancing current is larger than the leakage current where the leakage discharge resistance is larger than 512 ⁇ .
  • the battery system not only balancing discharge but also charging of all cells is performed as appropriate. In such a state, balancing discharge is not performed in a single battery cell in which leakage occurs, so that the battery is charged by the amount of this balancing discharge, and the actual cell voltage increases. The actual voltage of the cell causing this leak is shown as a curve of “actual cell voltage” in FIG.
  • the voltage V (F, D) (F is full charge and D is the detection voltage) corresponding to the voltage of the voltage of the actual voltage V (F, R) ( (F means full charge and R means actual voltage) may rise to a voltage represented by the following equation (5).
  • V (F, R) V (F, D) ⁇ (Rb ef + Rcv) / Rb ef . . . (5)
  • Rb ef 2 ⁇ Rcv + RL.
  • the actual voltage of the leak generating cell shown in FIGS. 10 and 11 is expressed by this equation (5).
  • the leak resistance starts from a large value on the right side of the figure and proceeds to the left side, but the actual voltage of the leaking cell increases until the leak discharge resistance reaches 512 ⁇ . If it is less than 512 ⁇ , the leakage current is larger than the balancing current, so the actual voltage of the cell in which the leakage occurs decreases. Therefore, when the highest actual voltage is likely to occur, the leakage resistance is 312 ⁇ (leakage discharge resistance is 512 ⁇ ). In this case, the voltage can rise to the voltage reachable limit shown on the upper side of FIG. There is sex.
  • FIG. 11 is a diagram for explaining the control for reducing the actual voltage of the leaking cell to 4.30 V or less, which is about the above-described overcharge protection voltage.
  • the actual voltages of all the cells are initially 4.1V.
  • the leakage discharge resistance is 4000 ⁇ with the maximum voltage of 4.30 V and balancing with the straight line of the leakage current IL. What is necessary is just to make the straight line of an electric current cross.
  • the duty of the balancing switch may be controlled so that the effective resistance value R ef of the balancing switch 108 becomes the leakage discharge resistance 4000 ⁇ .
  • V (F, R) is a maximum voltage shown in FIGS. 10 and 11 for preventing the voltage from becoming higher than this, and this is assumed to be V max . That is, the expression (5) is expressed by the equivalent expression (6).
  • V max V F ⁇ (Rb ef + Rcv) / Rb ef . . . (6)
  • an RC filter composed of a cell voltage input resistor (Rcv) 101 and a capacitor 103 in order to remove noise superimposed on the terminal voltage of each unit cell input to the cell voltage input terminal (CV terminal) 105.
  • the constants are set first. If the effective balancing resistance corresponding to the resistance value of Rcv is set to be equal to or larger than the value obtained from the Rb ef equation (7), the actual voltage in the leaked cell can be set to the overcharge protection voltage V max or less.
  • the battery can safely supply the current that is substantially reached.
  • the balancing current is set so as to be in the voltage range.
  • the effective resistance of the balancing resistor may be determined from the resistance value of the RC filter, the use upper limit voltage of the cell, and the overcharge protection voltage so as to be equal to or lower than the protection voltage. That is, by setting the effective balancing resistance value set by the above equation (7), even if a leak occurs somewhere on the input side of the voltage measurement circuit of the cell controller IC, overcharge at the time of the leak occurrence Can be avoided.
  • the operation of the battery pack monitoring apparatus according to the present invention has been described with respect to an example of one cell group 120 and the cell controller IC 100 that monitors the cell group 120. Further, the balancing discharge operation in the assembled battery monitoring device has been described on the assumption that a leak has occurred in the center cell of the three unit cells.
  • a leak occurs at the highest level (high potential side) or the lowest level (low potential side) of the plurality of unit cells 110 in the cell group 120, the lower cell next to the highest level cell or the lowest level cell
  • the detection voltage of the cell using the voltage detection line through which the leak discharge current flows as the cell voltage detection line is affected by the leak and rises. Since the cell with the lowered detection voltage is overcharged by the balancing current, the overcharge voltage reaches the sum of the error that occurs when the same leakage current as the balancing current value flows and the upper limit voltage of the battery. Become.
  • the applied voltage increases by the number of batteries between the voltage detection lines. Accordingly, the leakage discharge current also increases by the number of batteries.
  • the effective balancing resistance may be set to a value that is smaller by the number of batteries as compared with the case of the description of the RC filter circuit of FIG.
  • the CV to which the voltage detection line SL2 is connected due to a leakage discharge current.
  • the potential of the terminal decreases, and the detection voltage of the cell (cell 1) on the upper side of the voltage detection line SL2 increases.
  • the magnitude of the increase in the detection voltage is three times that in the case of FIG. 2 because there are three unit cells between the voltage detection lines SL2 and SL5.
  • the leakage discharge current is tripled, and the effective balancing resistance for balancing with this is 1 /.
  • the duty ratio of the balancing switch of the cell 1 should be reduced to 1/3 even in the case of leakage between the voltage detection line SL2 and the ground line (GL) in FIG.
  • the detection voltage of the cell on the upper side of the voltage detection line provided with Rcv that causes a voltage increase at the CV terminal due to the leakage current decreases, and the leakage current causes the CV terminal to
  • the detection voltage of the cell on the upper side of the voltage detection line provided with Rcv that causes a voltage drop at the point of time increases.
  • the leak occurs in the capacitor 103 of the RC filter.
  • other causes such as an insulation failure of the wiring board at the voltage input terminal (between the CV terminals), and in the cell controller IC 100 Leakage may occur due to an insulation failure of the ESD countermeasure diode.
  • these cases can be understood in exactly the same way as the case of the leak in the above capacitor, their explanation is also omitted.

Abstract

複数の単電池セルを直列接続したセルグループを監視する電池システム監視装置であって、単電池セルの正極に接続された電圧検出線と負極に接続された電圧検出線の間に接続された、単電池セルのバランシング放電を行うバランシングスイッチとこれに直列に接続されたバランシング抵抗とを単電池セル毎に備え、電圧検出線には、電圧入力抵抗が直列に設けられ、複数の電圧検出線の内の2つの電圧検出線の間、または電源線と複数の電圧検出線のいずれか1つの電圧検出線の間、またはグラウンド線と複数の電圧検出線のいずれか1つの電圧検出線の間でリークが発生したとしても、単電池セルが過充電とならないように、バッテリコントローラは、セルコントローラICを制御して、バランシングスイッチの実効抵抗値を所定の値以上に設定する。

Description

電池システムの監視装置およびこれを備えた蓄電装置
 本発明は電池システムの監視装置およびこれを備えた蓄電装置に関する。
 ハイブリッド自動車(HEV)や電気自動車(EV)などでは、所望の高電圧を確保するため、二次電池の単電池セルを複数個直列接続したセルグループを複数個直列あるいは直並列に接続して構成される組電池(電池システム)が用いられている。このような組電池においては、各単電池セルの残存容量計算や保護管理のため、セル電圧(単電池セルの端子間電圧)の計測と、充電状態(SOC、State of Charge)すなわち残存容量の均等化(バランシング)のためのバランシング放電を行うセルコントローラを組電池の監視装置内に設けて組電池の管理を行っている(例えば特許文献1参照)。また、このセルコントローラは複数の集積回路(セルコントローラIC)を備え、上記の複数個のセルグループの管理を行っている。
 各単電池セルのSOCは、各単電池セルの開路電圧(OCV)から算出される。すなわち、電池システムが無負荷の状態、すなわち電池システムからのDC電力から三相AC電力を生成してHEVやEVの駆動用モータに供給するインバータ等が接続されていない状態で測定された各単電池セルの端子間電圧から各単電池セルのSOCが算出される。各単電池セルの端子間電圧は、上記のセルコントローラICの電圧入力端子に各単電池セルの端子間電圧が入力されて測定される。このセルコントローラICの電圧入力端子には、電池システムの充放電に伴うノイズを除去するためにRCフィルタが設けられている。
特開2009-89484号公報
 セルコントローラICの入力端子に設けられたRCフィルタのコンデンサ劣化、セルコントローラIC内に設けられたESD対策用のダイオード劣化、あるいはセルコントローラICの電圧検出端子付近の絶縁不良等の種々の原因で、電圧入力端子側で電流リークが発生する可能性がある。この電流リークが発生すると、セルコントローラICの各単電池セルの端子間電圧が正確に測定されず、各単電池セルのSOCも正しい値が得られない。このような正しくないSOCに基づいて各単電池セルのバランシング放電を行うと、過充電や過放電となる可能性がある。
(1)本発明の第1の態様によると、複数の単電池セルを直列接続したセルグループを監視する電池システム監視装置であって、このセルグループの複数の単電池セルの状態を監視し制御するセルコントローラICと、セルコントローラICを制御するバッテリコントローラと、単電池セルの端子間電圧を測定するための、単電池セルの正極および負極のそれぞれとセルコントローラICの複数の電圧入力端子と一対一に接続する複数の電圧検出線と、複数の単電池セルの内最高電位の単電池セルの正極とセルコントローラICの電源端子を接続する電源線と、複数の単電池セルの内最低電位の単電池セルの負極とセルコントローラICのグラウンド端子とを接続するグラウンド線とを備え、単電池セルの正極に接続された電圧検出線と負極に接続された電圧検出線の間に接続された、単電池セルのバランシング放電を行うバランシングスイッチとこれに直列に接続されたバランシング抵抗とを単電池セル毎に備え、電圧検出線には、電圧入力抵抗が直列に設けられ、複数の電圧検出線の内の2つの電圧検出線の間、または電源線と複数の電圧検出線のいずれか1つの電圧検出線の間、またはグラウンド線と複数の電圧検出線のいずれか1つの電圧検出線の間でリークが発生したとしても、単電池セルが過充電とならないように、バッテリコントローラは、セルコントローラICを制御して、バランシングスイッチの実効抵抗値を所定の値以上に設定する。
(2)本発明の第2の態様によると、第1の態様の電池システム監視装置において、バランシングスイッチの実効抵抗値の所定の値は、電圧検出線に設けられた電圧入力抵抗の抵抗値と、単電池セルの過充電保護電圧値と、単電池セルのSOCが100%の場合の電圧値とから算出される値であることが好ましい。
(3)本発明の第3の態様によると、第2の態様の電池システム監視装置において、バランシングスイッチの実効抵抗値は、バランシング抵抗の抵抗値とバランシングスイッチのオン・オフのデューティ比とから、算出された値に設定されることが好ましい。
(4)本発明の第3の態様によると、第1乃至第3の態様のいずれか1つの態様の電池システム監視装置において、電池システム監視装置は、複数のセルグループを監視するために、セルコントローラICを複数個備えることが好ましい。
(5)本発明の第5の態様によると、第1乃至第4の態様のいずれか1つの態様の電池システム監視装置と、電池システムとを備える蓄電装置である。
(6)本発明の第6の態様によると、第5の態様の蓄電装置をそなえる電動駆動装置である。
(7)本発明の第7の態様によると、第1の態様の電池システム監視装置のバランシングスイッチのオン・オフのデューティ比の所定の値を算出する方法であって、この所定の値は、リークが発生した電圧検出線に設けられた電圧入力抵抗の抵抗値と、単電池セルの過充電保護電圧値と、単電池セルのSOCが100%の場合の電圧値とから算出される値である。
(8)本発明の第8の態様によると、第7の態様のバランシングスイッチのオン・オフのデューティ比の所定の値を算出する方法において、バランシングスイッチの実効抵抗値は、バランシング抵抗の抵抗値とバランシングスイッチのオン・オフのデューティ比とから前記算出された値に設定されることが好ましい。
 本発明による電池システム監視装置を用いることにより、この電池システム監視装置を備えた蓄電装置では、確実に二次電池の過充電を避けることができ、蓄電装置ならびに蓄電装置を搭載しHEVやEV等の電動車両の安全性を向上することができる。
一実施の形態の組電池の電池監視装置を含むハイブリッド自動車の電動駆動装置全体の構成を示す図である。 セル電圧検出のためのRCフィルタ回路と、バランシング回路の1つの例を示す。 セル電圧検出のためのRCフィルタ回路と、バランシング回路の他の例を示す。 セル電圧検出のためのRCフィルタ回路と、バランシング回路のさらに他の例を示す。 定電流でリチウムイオン電池を充電し、意図的に過充電状態とした場合の、SOCに対するセル電圧の変化とガス排出弁の動作を示す図である。 2つの電圧検出線間でリークが発生した場合のリーク電流を分かり易く示して、この場合のバランシング動作を説明するための図である。 セルグループの単電池セルの実電圧が揃った状態で、電圧測定のための電圧入力抵抗がある1つの値のときの、リーク抵抗(RL)の抵抗値と検出されるセル電圧の関係を示す図である。 セルグループの単電池セルの検出電圧が揃った状態で、電圧測定のための電圧入力抵抗がある1つの値のときの、リーク抵抗(RL)の抵抗値と単電池セルの実電圧の関係を示す図である。 リークが発生した場合に、高い電圧が検出されたセルのバランシング放電の様子を概略的に示す図である。 リーク電流とバランシング電流の関係により、リークを発生しているセルの端子間電圧の実電圧がどの程度まで上昇する可能性があるかを示す図である。 リーク発生しているセルの実電圧を、過充電保護電圧程度の電圧以下にするための制御を説明するための図である。
 以下、図1~図11を参照して本発明を実施するための形態について説明する。以下に説明する実施形態は、本発明による電池システム監視装置を備えた蓄電装置を、ハイブリッド自動車(HEV)などに用いられる電池システムを備えた蓄電装置に対して適用した場合の例である。なお、本発明はHEVに限らず、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)、鉄道車両などに搭載される各種蓄電装置に対して幅広く適用可能である。
 以下の実施形態では、制御の最小単位となる蓄電・放電デバイスとして3.0~4.2V(平均出力電圧:3.6V)の範囲に電圧を持つリチウムイオン電池を想定しているが、それ以外でもSOC(State of Charge)の高すぎる場合(過充電)や低すぎる場合(過放電)に使用を制限するような、電気を蓄え放電可能なデバイスであれば何でもよく、ここでは、それらを総称して単電池あるいは単電池セルあるいは単にセルと呼ぶ。
 また、以下に説明する実施形態では、単電池セルを複数個(概ね数個から十数個)直列に接続したものをセルグループと呼び、このセルグループを複数個直列に接続したものを電池モジュールと呼んでいる。更にこのセルグループあるいは電池モジュールを複数個直列または直並列に接続したものを電池システムと呼称する。セルグループ、電池モジュールおよび電池システムを総称して組電池と呼んでいる。各単電池セルのセル電圧を検出し、バランシング動作等を行いながら電池状態を監視するセルコントローラICは通常セルグループ毎に設けられる。
 図1は、本発明による電池システム監視装置を備えた蓄電装置を搭載したハイブリッド自動車用電動駆動装置の構成例を示す。ハイブリッド自動車の電動駆動装置は、車両コントローラ400、モータコントローラ300、バッテリコントローラ200、複数のセルコントローラIC100、電池システム130、インバータ340、モーター350などを備えている。これらの内、車両コントローラ400、モータコントローラ300、バッテリーコントローラ200、セルコントローラIC100およびインバータ340は、車両内に設置される通信回路を介して互いに情報の授受を行う。なお、電池システム130は、複数のセルグループ120を直列に接続したものであり、各セルグループ120はさらに、リチウムイオン電池等の二次電池の単電池セル110が複数個直列に接続されて構成されている。また、電池システム監視装置10は、バッテリコントローラ200、複数のセルコントローラIC100、セルコントローラIC100とセルグループ120の間に設けられた抵抗やコンデンサ等を含む接続回路を備えて構成されている。蓄電装置は、この電池システム監視装置10と電池システム130から構成される。
 バッテリコントローラ200と複数のセルコントローラIC100との間の通信回路はループ状に接続されており、バッテリコントローラ200から最上位のセルコントローラIC100へシグナルアイソレータ201を介して信号が伝送され、さらに最上位のセルコントローラIC100から最下位のセルコントローラIC100まで順に直列に信号が伝送され、最後に最下位のセルコントローラIC100からバッテリコントローラ200へシグナルアイソレータ202を介して信号が伝送される。バッテリコントローラ200は、ループ状の通信回路を介してすべてのセルコントローラIC100との間で情報の授受を行うことができる。
 なお、ここではループ状の通信回路を介して信号伝送を行う例を示しているが、双方向通信回路を用いて構成することも可能であり、この場合はシグナルアイソレータ202は不要となる。さらに、図示はしないが、バッテリコントローラ200からすべてのセルコントローラIC100へ並列に通信回路を接続し、パラレルに信号伝送を行うことも可能である。
 車両コントローラ400は、ハイブリッド自動車の運転者が操作するアクセルペダルやブレーキペダル、あるいは変速レバーなどの車両運転操作装置からの操作信号に基づいて車両の走行速度や制駆動力などを制御する。モータコントローラ300は、車両コントローラ400からの速度指令や制駆動力指令に基づいてバッテリコントローラ200およびインバータ340を制御し、車両走行駆動用モータ350の回転速度およびトルクを制御する。
 バッテリーコントローラ200は、電圧センサ210、電流センサ220、温度センサ230により検出された電池システム130の電圧、電流、温度に基づいて電池システム130の充放電とSOC(State Of Charge)を制御するとともに、各セルコントローラIC100を制御して電池システム130を構成する複数の単電池セル(以下、単にセルという)110のSOCを管理し、過充電状態とならないようにSOCのばらつきを補正するための放電(以下、バランシング放電という)を行う。
 なお、図1に示す一実施の形態の組電池の制御装置では、例えば4個のセル110が直列に接続されたセルグループ120が複数個直列に接続された電池システムを例示する。なお、セルグループ120を構成する単電池セル110の数は4個以上であってもよい。セルコントローラIC100はセルグループ120の仕様に合わせたものを使用する。
 ハイブリッド自動車に搭載される電池システム130は多くのセルあるいはセルグループが直並列に接続され、両端電圧が数100Vの高圧、高容量とした電池システムが一般的である。もちろんこのような高圧、高容量の電池システムに対しても本発明を適用することができる。
 セルコントローラIC100は、電池システムを構成する複数のセル110を所定個数ごとにグループに分け、各セルグループ120ごとに設けられる。例えば、100個のセル110が直列に接続された電池システム130を、セル4個ごとにグループ分けする場合には、25組のセルコントローラIC100が用いられる。各セルコントローラIC100は、各セルグループ120を構成するセルそれぞれの端子間電圧を検出してバッテリコントローラ200へ送信し、バッテリコントローラ200からの指令にしたがってセル110ごとにバランシング電流の通電制御を行う。バランシング抵抗102は、各セルのSOCのばらつきを補正するための各セルの放電(バランシング放電)の電流を制限するための抵抗であり、セル110ごとに設けられる。
 電池システム130に充電された直流電力は正極側コンタクタ310、負極側コンタクタ320を介して平滑コンデンサ330およびインバータ340へ供給され、インバータ340により交流電力に変換されて交流モーター350に印加され、交流モーター350の駆動が行われる。この直流電力から交流電力への変換はインバータ340に備えられたスイッチング素子(不図示)のスイッチングによって行われる。一方、車両の制動時には、交流モータ350により発電された交流電力がインバータ340に備えられたダイオード素子(不図示)と平滑用コンデンサ330により直流電力に変換されて正極側コンタクタ310、負極側コンタクタ320を介して電池システム130に印加され、電池システム130の充電が行われる。
 インバータ340の動作に伴ってリプルノイズ及びスイッチングノイズが発生する。これらのノイズは、平滑用コンデンサー330によって、ある程度低減されるが、完全には除去しきれず電池システム130に流れこみ、各セルの端子間電圧にはノイズ電流に比例したノイズ電圧が重畳する。このノイズはセル電圧の検出誤差となるため、電圧を測定する電圧測定回路(不図示)に入力される電圧信号はRCフィルタ等を用いて、ノイズを抑制しなければならない。なお、電圧測定回路(不図示)は、セルコントローラIC100内に設けられており詳細は省略する。
(RCフィルタ回路及びバランシング回路の例)
 図2にセルコントローラIC100を用いたセル電圧検出のためのRCフィルタ回路と、バランシング回路の例を示す。ここでは、図1に示す1つのセルグループ120で、4個の直列接続された単電池セル110の正負極端子が電圧検出線SL1~5を介してセルコントローラIC100のセル電圧入力端子(CV端子)105に接続されている。各々の電圧検出線SL1~5には、RCフィルタを形成するセル電圧入力抵抗(Rcv)101が設けられている。また、各々のセルの正負極端子に接続された電圧検出線、すなわち2つの隣り合う電圧検出線の間にはコンデンサ103が接続され、RCフィルタを形成している。
 セルコントローラIC100はGND端子(GND)107とVcc端子(VCC)104を有している。GND端子は、直列接続された4個の単電池セルの内最低電位の単電池セルの負極とグラウンド線(GL)で接続されている。またVcc端子は、直列接続された4個の単電池セルの内最高電位の単電池セルの正極と電源線(GL)で接続されている。この電源線を介して供給されるセルグループの最高電位がセルコントローラIC100の動作電源Vccとして使用される。
 なお、セル電圧入力抵抗(Rcv)101の抵抗値とバランシング抵抗(BS抵抗、Rb)の抵抗値もそれぞれRcv、Rbと表わす。
 この明細書では、電圧検出線は、各単電池セルの正負極から、セルコントローラIC100内に設けられた、各単電池セルの端子間電圧を電圧測定回路(不図示)で測定するために電圧検出線を選択するマルチプレクサ(不図示)の入力までの配線を指す。
 各セルには、バランシングスイッチ(BSW)108とバランシング抵抗(BS抵抗、Rb)102の直列回路が各セルと並列に接続され、バランシングスイッチ108の制御でバランシング放電が行われる。バランシングスイッチ108は、セルコントローラIC100内部に設けられており、たとえばMOSFETスイッチ等で構成されている。このバランシングスイッチ108は、バランシング端子(BS端子)106を介して、2本の配線(バランシング線BLと呼ぶ)により、このバランシングスイッチに対応したセルの正負極端子に接続された2つの電圧検出線にそれぞれ接続されている。
(RCフィルタ回路の変形例1)
 図3はRCフィルタ回路の他の例であり、RCフィルタのコンデンサ103がセルコントローラIC100のGND端子107に接続されるものである。図2のRCフィルタの方式では、4個のコンデンサに同じ容量のものを用いた場合、接続されるセルに対応したRCフィルタの実効コンデンサ容量が変わるので、単電池セル毎にRCフィルタびカットオフ周波数特性が異なる。周波数特性を同一にするにはRCの定数を各セル毎に変更する必要があった。図3の方式では、RCの定数は同一で良いが、コンデンサ103の耐圧は単電池セル4個分の電圧に耐えるように高くする必要がある。
(RCフィルタ回路の変形例2)
 図4はRCフィルタ回路のさらに他の例であり、コンデンサ103の接続点を直列電池の中点電位の電圧検出線(図4ではSL3)に接続するものである。この方式でも、各セルに接続されたRCフィルタの定数は同一となる。また、コンデンサ504の耐圧が図3のRCフィルタ回路の半分で済む利点がある。
 なお、図2の電圧検出線SL5とグラウンド線(GL)の間にコンデンサ103が接続されており、図3では電圧検出線SL1~5の各々と、グラウンド線(GL)の間にコンデンサ103が接続されており、図4では電圧検出線SL3とグラウンド線(GL)の間にコンデンサ103が接続されている。これらの電圧検出線とグラウンド線との間にコンデンサ103を接続する代わりに、これらの電圧検出線と電源線(VL)との間にコンデンサ103を接続する回路構成も可能である。
 このような回路構成の動作も図2~4に示す回路構成と同様であり、以下の図2~4を参照した説明から容易に分かるので、電圧検出線と電源線(VL)との間にコンデンサ103を接続する回路構成の図は省略する。
(リチウムイオン電池の特性とバランシング放電の必要性)
 ここで、本発明による組電池の監視装置を備えた蓄電装置で用いる単電池セルの例としてリチウムイオン電池の特性について説明する。電池システム130を構成する複数の単電池セルのSOCがばらつく原因としては、各セルの自己放電速度のばらつき、充放電効率のばらつき、制御回路の動作時消費電流および停止時暗電流のばらつきなどのいろいろな要素があるが、乗用車に搭載される電池は比較的、放置期間が長いため、自己放電(自然放電)のばらつきが主となる。リチウムイオン電池の場合は、システム起動時に各単電池セルのOCV(開路電圧)を測定して、これから各単電池セルのSOCを算出する。OCVが高いとSOCも高いので、このOCVが高いセルのバランシング放電を行ってSOCを低減し、電池システム130を構成する複数のセルのSOCを揃えるようにする。
 リチウムイオン電池は、ニッケル-水素やニッケル-カドミウム電池のように過充電状態において負極に発生した酸素を吸収する反応がないため、過充電でSOCのばらつきを低減することはできない。したがって、リチウムイオン電池にとってバランシング放電機能は重要な機能であり、バランシング放電機能がないとSOCのばらつきが発生するため、バッテリすなわち電池システム(組電池)として用いるとSOCが高いセルとSOCが低いセルとが発生してしまう。電池システムでは総電圧つまり平均のSOCにより充放電を制御するため、充放電時にSOCが低いセルは過放電状態になり、SOCが高いセルは過充電状態になる可能性がある。
 リチウムイオン電池では、SOCが低いと負極の集電体である銅が溶出し、デンドライトとして析出して正極と負極との間の短絡を引き起こす可能性がある。このため、各セルが過放電の状態とならないように適宜充電が行われる。また、リチウムイオン電池では、過充電状態となると電解液の分解、正極および負極活物質の分解などの反応が起こり、その反応は不可逆反応であるばかりでなく、電池内の温度と内圧が上昇する。このような過充電状態を避けるために、リチウムイオン電池では、セルにガス排出弁を設けて安全に内圧を逃がす構造を取り入れている。
 多くのセルを直並列に接続したバッテリーでは、バッテリーの総電圧を総電圧検出回路で検出するとともに、すべてのセルの電圧をセルコントローラIC100内の電圧測定回路で検出し、それらの検出値によりバッテリーの充放電制御を行っているので、バッテリー全体が過充電または過放電になる可能性は低い。しかし、セルコントローラIC100の電圧入力端子への電圧入力側での不具合(RCフィルタのコンデンサ劣化、セルコントローラIC100内に設けられたESD対策用のダイオード(例えば特開2010-193589号公報の図5参照)の劣化、あるいはセルコントローラIC100の電圧検出端子付近の絶縁不良等)で、あるセルの電圧測定が正常に行われない場合には、正常なバランシング放電が行われず、このセルが過充電となる可能性がある。例えば、セルコントローラIC100の電圧測定回路の入力側で、あるセルの電圧を低く検出するような故障が発生したとすると、当該セルの実際のOCVが低くない場合であっても低い電圧が検出されるので、当該セルがバランシング放電の対象外になり、他のセルがバランシング放電の対象となる。そのため、バランシング放電終了後は、バランシング放電を行った分だけ他のセルのSOCが低くなり、逆に当該セルのSOCがその分だけ相対的に高くなる。見掛け上OCVの高いセルのバランシング放電を行って、OCVのばらつきを低減した状態で全セル(電池システム)の充電が行われるので、このような動作が繰り返されると、電池システムの総電圧は見かけ上、正常なままで、当該セルのみ過充電状態になる。
 このようなセル電圧測定回路の入力側の不具合にともなう過充電状態を防止するため、および電圧測定回路自体の故障によるセル電圧の誤測定を避けるため、従来の組電池の制御装置では、すべてのセルの電圧測定回路を二重系とするように、電圧測定回路を備えたセルコントローラIC100を2系統設け、一方のセルコントローラIC100の電圧測定機能で不具合が生じても他方のセルコントローラIC100での電圧測定機能でセル電圧を確実に検出できるようにすることが行われてきた。
(リチウムイオン電池の過充電時の挙動)
 次に、リチウムイオン電池の過充電状態における挙動例を説明する。図5は、定電流でリチウムイオン電池を充電し、意図的に過充電状態とした場合の、SOCに対するセル電圧の変化とガス排出弁の動作を示す図である。図から明らかなように、SOCの上昇にともなってセル電圧が上昇し、SOCが280%程度で内圧が上昇してガス排出弁が動作している。このリチウムイオン電池では、SOCが230%以上でガス排出弁が動作する可能性があるため、SOC230%以上をガス排出弁作動領域とする。ガス排出弁作動領域の下限のSOCは、リチウムイオン電池の特性に大きく依存し、正極活物質、負極活物質、電解液組成などのいろいろな条件により異なる。図5に示すガス排出弁作動領域は一例を示したものである。
 しかし、SOCが大きくなるとセル電圧が上昇してガス排出弁作動領域に近づくという特性は、すべてのリチウムイオン電池に共通の特性である。そのため、従来の電池システムの制御装置では、過充電と判断するセル電圧を、SOC100%におけるセル電圧から、ガス排出弁作動領域の下限SOCにおけるセル電圧までの間のセル電圧に設定し、冗長系の過充電検出回路の検出電圧も上記SOC範囲内のセル電圧の値に設定して、この過充電となる電圧以上に充電されないように充放電制御を行っている。
(リークの発生)
 前述のように、リークはRCフィルタのコンデンサ劣化、セルコントローラIC100内に設けられたESD対策用のダイオード劣化、あるいはセルコントローラIC100の電圧検出端子付近の絶縁不良等で発生する可能性がある。以下ではこれらの中でRCフィルタのコンデンサでリークが発生したとして説明する。他の原因でリークが発生した場合も全く同様に理解することができ、以下で説明する本発明による電池システムの動作を適用することができる。
 また、以下では、図2に示すように、セル毎にこれらのセルの正負極に接続された2つの電圧検出線の間にRCフィルタのコンデンサ103がセルと並列に接続されている場合について説明する。なお、コンデンサ103にリークが発生したことにより検出電圧が低下したセルをリーク発生セルと呼ぶ。ただし、これはあくまで呼称であって、実際にこのセルがリークしていることを意味するものではない。
(RCフィルタのコンデンサでリークが発生した場合のセル電圧測定値)
 ここでは説明を簡単にするため、直列に接続された3つのセルの中央のセルの正負極に接続された2つの電圧検出線の間に接続されたコンデンサ103でリークが発生したとして説明する。このコンデンサ103のリークを、コンデンサ103に並列に接続されたリーク抵抗(RL)131で表わす。なお、図6は、見易いように、図2のセルコントローラIC100内に設けられたバランシングスイッチ108を外に抜き出して示し、セルコントローラIC100の記載を省略したものでる。
 セル2の実電圧をVc2とすると、セルコントローラIC100のセル2の電圧入力端子(CV端子)間の電圧V2は以下の式(1)で示される。
  V2=Vc2×RL/(2×Rcv+RL)             ・・・・・(1)
 セル2が接続された2つのCV端子間において、リーク抵抗(RL)131に流れるリーク電流ILは、電圧検出線SL2、SL3の電圧入力抵抗Rcvにも流れ、この2つの電圧入力抵抗による電圧降下のため、CV端子間の電圧はセル2の実電圧より低く測定される。
 また、セル1、セル3の実電圧をそれぞれVc1、Vc3とすると、セル1の検出電圧である、電圧検出線SL1とSL2が接続されたCV端子間の電圧V1、およびセル3の検出電圧である、電圧検出線SL3とSL4が接続されたCV端子間の電圧V3はそれぞれ以下の式(2)、(3)で示される。
  V1=Vc1+Vc2×Rcv/(2×Rcv+RL)       ・・・・・(2)
  V3=Vc3+Vc2×Rcv/(2×Rcv+RL)       ・・・・・(3)
 式(2)、(3)に示されるように、セル2のリーク抵抗131で流れるリーク電流により、セル1および3のCV端子間電圧は逆に上昇し、それぞれの実電圧より高い電圧値が測定される。
 これは、電圧検出線SL2が接続されたCV端子での電位が、電圧検出線SL2に設けられたセル電圧入力抵抗Rcvにより低下し、また電圧電出線SL3が接続されたCV端子での電位が、電圧検出線SL3に設けられたセル電圧入力抵抗Rcvにより上昇するためである。
 言い換えれば、リーク電流によりCV端子での電圧降下を生じるセル電圧入力抵抗Rcvが設けられた電圧検出線の上側のセルの検出電圧は上昇し、リーク電流でCV端子での電圧上昇を生じるセル電圧入力抵抗Rcvが設けられた電圧検出線の下側のセルの検出電圧とは共に上昇することになる。
 図7は、簡単のため、たとえば、Vc1=Vc2=Vc3=3.6V、Rcv=30Ωとした場合に、リーク抵抗(RL)の抵抗値と検出されるセル電圧の関係を示す。図に示すように、リーク抵抗が小さくなるほど、リークが発生したセル(セル2)の検出電圧が低くなる。逆に、リークが発生したセルの上下のセル(セル1、セル3)では、セルの検出電圧は高くなる。この例では、リーク抵抗(RL)131の抵抗値が100Ωまで低下した場合、3.6Vの実電圧はリークを発生したセルの端子間電圧の検出値は2.25Vとなり、リークを発生したセル(セル2)の上下のセル(セル2、3)での端子間電圧の検出値は4.2Vを超える電圧として検出される。
 後述の説明から分かるように、RCフィルタのコンデンサやセルコントローラIC100内のESD対策ダイオード等、またセルコントーラIC100のCV端子付近の配線パターン等の絶縁不良は、通常徐々に進行する。何らかのノイズ等の影響で、もしもこのリークが、ある時点で突然増大した場合、セル電圧の検出値は4.2Vを超えて4.35Vの過充電保護電圧を上回り、過充電として異常を検出される可能性がある。
 なお、過充電保護電圧は、これ以上充電させない電圧である。また、図5で説明したように、リチウムイオン電池はある電圧以上では発熱が増加し、さらに電圧が上昇すると電極や電解液の劣化(化学変化)が起こり、不可逆的に電池が劣化し、一旦電圧は低下する。その後、さらに充電を続けると、図5で説明したように、電解液が分解してガスが発生し、ガス排出弁が作動する。
 したがって、この過充電保護電圧は、発熱の問題が起きないような余裕をもった電圧に設定する。この電圧はリチウム電池の組成や構造によって異なるので、上記の4.35Vはあくまであるリチウムイオン電池での例である。また同様に過放電保護電圧もあるが、ここでは説明は省略する。
 図8は、図7とは逆に、各単電池セルで検出された端子間電圧が、V1=V2=V3=3.6Vの場合に、各々のセルの実電圧とリーク抵抗(RL)131の抵抗値の関係を示したものである。ここでもRcv=30Ωとしている。
 リーク抵抗(RL)131の抵抗値が300Ωの場合、端子間電圧の測定で3.6Vが検出されていても、リークの発生しているセルの実電圧は4.35Vとなっている。さらにリーク抵抗RLが100Ωまで低下した場合には、リーク発生セルの実電圧は約5.8Vに達する可能性がある。
 しかしながら、バランシング抵抗102とセル電圧入力抵抗101が適切な値に設定された、本発明による組電池の監視装置を用いることにより、セルの実電圧が過充電保護電圧以上とならないようにすることができる。以下、このバランシング抵抗102とセル電圧入力抵抗101の抵抗値の設定について説明する。
(リーク発生時のバランシング電流の計算値と実際の電流値)
 図6、図7、図9を参照してリーク発生時のバランシング放電について説明する。
 図7は、たとえば、図6のセル2の電圧検出線SL2、SL3が接続された、2つのセル電圧入力端子105の間でリークが発生し、その上下のセル1、セル3で高い電圧が検出された場合を示している。ただし、ここではセル1~3は、全て同程度の実電圧(=3.6V)になっているとする。またRcv=30Ωとして計算してある。
 式(2)、(3)で説明したように、セル1、セル3では実電圧が3.6Vであるが、リーク抵抗(RL)131の抵抗値が小さくなると、検出される電圧は高くなる。またセル2の検出電圧は逆に低くなるが、セル2での検出電圧の低下の大きさはセル1、セル3での検出電圧の増加の大きさより大きい。検出電圧があまりに低い場合には、過放電状態であるとして判断されて警告が発せられ、電池システムの使用停止等の対応が行われる。しかし、過放電の場合は過充電の場合のような発熱やセル内部の圧力増大等の問題は発生しない。ここでは過充電となるような動作とこれを防ぐための本発明による電池システム監視装置の動作について説明する。
 図7で、リーク抵抗RLが300Ωの場合を考える。リークが発生したセル2の上下のセル1、3では実電圧3.6Vより高い3.9Vがセルの端子間電圧(セル電圧)として検出される。電池システムの複数の単電池セルでこのようにセル電圧にばらつきが発生すると、高いセル電圧の単電池セルで、検出された電圧を下げる動作すなわちバランシング放電が行われる。このバランシング放電は、図6に示すように、バランシングスイッチ(BSW)108をオンとして行う。これによりバランシング放電電流(IB)133が流れる。
 バランシング放電時間は、検出されたセル電圧とバランシング抵抗で算出されるバランシング電流とこのセルのSOCに基づいて算出される。なお、算出方法については種々の方法があり、ここでは説明は省略する。
 バランシング放電がセルの実電圧でなく、検出された電圧に基づいて行われるので、算出されたバランシング電流は、実電圧に基づくものに比べ、約8.3%(3.9V/3.6V=1.083)大きくなる。この状態で放電を行うと、予定した電流量が放電されないので、放電終了後のこのセルの電圧は当初予定した電圧まで低下せず、放電終了後に検出される電圧は、バランシング未達の状態であるやや高めの電圧となる。この高めの電圧が検出されると、再度バランシング放電が行われ、結局検出された電圧ばらつきを解消するようなバランシング放電が行われる。
 図9は、このバランシング放電の様子を概略的に示したものである。直線Aはセルの端子間電圧のばらつきで放電対象となるものの大きさΔVが実電圧と検出電圧とで一致することを示し、直線Bは、上記の理由によってこのΔVが解消されず実電圧が予定していた電圧まで低下しないことを示している。
 当初検出されたセル電圧で1回目のバランシング放電を行っても、実電圧のΔVは直線A(ΔV1)から直線B(ΔV2)までしか低下しない。バランシング放電未達となった電圧(ΔV2)分は、次回のセルの端子間電圧測定時に検出され、さらにバランシング放電される(2回目のバランシング放電)。このようにして、検出電圧に基づくバランシング放電が行われ、結局検出電圧に基づくセル電圧のばらつきΔVだけ実電圧も低下することになる。
 このように、バランシング放電によって、複数のセルの端子間電圧のばらつきが解消されるが、この端子間電圧は実電圧にもとづくものではなく、検出電圧に基づくものである。バランシング放電によって、全てのセルの電圧は一旦低い電圧に揃えられ、さらに充電されるか、あるいは、バランシング放電と充電を交互に行ってもよい。充電後に全てのセルの検出電圧が3.6Vに揃えられたとすると、セルの実電圧は図8に示すグラフに基づきリーク抵抗に応じた値となる。たとえば、リーク抵抗300Ωで、セル1、3は3.25V、セル2は4.35Vとなる。
 なお、バランシング抵抗(Rb)102は、数十Ω~数百Ωであるが、バランシングスイッチ(BSW)108のオン/オフの切り替え制御(デューティ制御)により、平均電流を適宜低減できる。すなわち、BSW108のデューティ制御によって、抵抗値が実効的に可変なバランシング抵抗Rbefとすることができる。以下の説明でも、バランシング抵抗はデューティ制御を含む実効的なバランシング抵抗Rbefとする。
(バランシング放電によるリーク発生セルの過充電)
 図10は、リーク電流とバランシング電流の関係により、リークが発生しているセルの端子間電圧の実電圧がどの程度まで上昇する可能性があるかを示している。ただし、ここでは最初全てのセルの端子間電圧が実電圧で4.1V、すなわち通常100%のSOCに対応する電圧になっているとしている。また、セル電圧入力抵抗(Rcv)101は、100Ωとしている。
 図6での記載に合わせて、リーク電流(IL)132は、以下の式(4)で算出される。
 IL=Vc2/(2×Rcv+RL)                   ...(4)
 ただし、リーク電流を算出するために、図10の横軸は純粋なリーク抵抗RLでなく、リーク放電抵抗2×Rcv+RLとしているので、横軸が200Ωの所で、RL=0Ωとなり、これが最大のリーク電流となる。
 実効バランシング抵抗Rbefが約512Ωであるとすると、上記で説明したように、バランシング電流IBは実電圧で考えてよいので、IB=4.1V/512Ω=0.008Aとなる。
 リーク電流ILは、リーク抵抗RLが小さいほど増加し、リーク放電抵抗2×Rcv+RLが512Ωの所でバランシング電流と交差する。リーク抵抗(RL)131は、この交差点で約312Ωとなる。
 図10で、リーク放電抵抗が512Ωより大きい所ではバランシング電流の方がリーク電流より大きい。電池システムでは、バランシング放電だけでなく、全セルの充電も適宜行われる。このような状態では、リークが発生している単電池セルではバランシング放電が行われないので、このバランシング放電の分だけ充電され、その実セル電圧は増加する。このリークを起こしているセルの実電圧が図10の「実セル電圧」の曲線として示されている。
 上記の説明を言い換えると、実効バランシング抵抗Rbefとリーク放電抵抗が一致すればバランシング電流とリーク電流が一致するので、リーク発生後のバランシング放電と充電により、全セル電圧の検出電圧がSOC=100%の電圧に対応する電圧V(F、D)(Fはフル充電、Dは検出電圧を意味する)に揃えられた場合、リークが発生しているセルの実電圧V(F、R)(Fはフル充電、Rは実電圧を意味する)は、以下の式(5)で表わされる電圧まで上昇する可能性がある。
  V(F、R)=V(F、D)×(Rbef+Rcv)/Rbef        ...(5)
ここでRbef=2×Rcv+RLとなっている。
 図10および図11に示されている、リーク発生セルの実電圧はこの式(5)で表わされるものである。
 リークは、通常、最初わずかなリークから始まり、次第にリーク電流が増加する。すなわち、リーク発生当初はリーク抵抗は大きいが、次第にリーク抵抗が小さくなり、リーク電流が増加する。
 図10では、リーク抵抗は図右側の大きな値から始まり、左側に進んでゆくが、リーク放電抵抗が512Ωまでは、リークが発生しているセルの実電圧が増加する。512Ω以下になるとリーク電流の方が、バランシング電流より大きいので、リーク発生しているセルの実電圧は逆に低下する。
 したがって最も高い実電圧が発生する可能性のある場合は、リーク抵抗が312Ω(リーク放電抵抗が512Ω)となる場合で、この場合は図10の上側に示す電圧到達可能限界まで電圧が上昇する可能性がある。
 図11は、リーク発生しているセルの実電圧を、上記の過充電保護電圧程度の電圧である4.30V以下にするための制御を説明するための図である。図11でも図10の場合と同様に、最初全てのセルの実電圧が4.1Vであったとする。
 上記の説明で分かるように、リークが発生したセルの実電圧の最大到達電圧を4.30Vとするには、最大到達電圧が4.30Vとなるリーク放電抵抗4000Ωでリーク電流ILの直線とバランシング電流の直線が交差するようにすればよい。
 バランシングスイッチ108に実効抵抗値Refが、このリーク放電抵抗4000Ωとなるように、バランシングスイッチのデューティを制御すればよいことになる。
 以上で説明したリーク発生時のバランシング放電において、さらに分かり易くまとめ直すと以下のようになる。
 式(5)のV(F、D)は、単電池セルがSOC=100%の時の電圧になるので、これをさらにVとする。またV(F、R)は、それ以上の電圧とならないようにするための、図10、11に示す到達最大電圧であり、これをVmaxとする。すなわち式(5)をこれ等価な式(6)で表わす。
  Vmax=V×(Rbef+Rcv)/Rbef               ...(6)
ただし、ここでVmax=V(F、R)、V=V(F、D)、Rbef=実効バランシング抵抗である。
 式(6)を変形すると、RbefとRcvの関係が明瞭になる。
  Rbef=Rcv×V/(Vmax-V)                 ...(7)
 Vmaxは前述の過充電保護電圧、VはSOC100%のセル電圧、Rbefは実効バランシング電圧すなわちRbef=Rb×デューティ比である。
 通常、セル電圧入力端子(CV端子)105に入力される各単電池セルの端子電圧に重畳するノイズを除去するために、セル電圧入力抵抗(Rcv)101とコンデンサ103とで構成されるRCフィルタの定数がまず設定される。
 このRcvの抵抗値に対応する実効バランシング抵抗をRbef式(7)から求められる値以上とすれば、リーク発生したセルにおける実電圧を過充電保護電圧Vmax以下とすることができる。
 以上説明したように、本発明では、リーク発生時のセルバランス動作による過充電が、バランシング電流からリーク電流を減じた電流で行われることに着目し、実質的に到達する電流を電池が安全な電圧範囲になるように、バランシング電流を設定するものである。
 そのためには、セルの使用上限電圧であるSOC100%となる場合の電圧と、バランシング電流と等しいリーク電流が流れた場合の電圧検出誤差の和が、安全な電圧範囲に入る様に、すなわち過充電保護電圧以下となるように、RCフィルタの抵抗値とセルの使用上限電圧と過充電保護電圧とから、バランシング抵抗の実効抵抗を決めればよい。
 すなわち、上記の式(7)で設定される実効バランシング抵抗の値に設定することにより、セルコントローラICの電圧測定回路の入力側のどこかでリークが発生したとしても、リーク発生時の過充電を避けることができる。
 上記の説明では、1つのセルグループ120とこのセルグループ120を監視するセルコントローラIC100の例について本発明による組電池の監視装置の動作について説明した。また、この組電池の監視装置でのバランシング放電動作について、3つの単電池セルの中央のセルでリークが発生したとして説明した。
 セルグループ120の複数の単電池セル110の最上位(高電位側)あるいは最下位(低電位側)でリークが発生した場合には、最上位のセルの隣の下位のセル、あるいは最下位のセルの隣の上位のセルに対して、上記の説明と同様な方法が適用できることは、式(2)あるいは(3)の説明で明らかである。
(RCフィルタ回路の変形例1、2でのバランシング放電)
 尚、上記の説明ではRCフィルタのコンデンサはセルコントローラIC100の電圧検出端子(CV端子)間に接続されると想定されているが、RCフィルタのコンデンサがセルコントローラIC100のグラウンド(GND)に接続される場合(RCフィルタ回路の変形例1、図3)、あるいはセルグループの中間電位の電圧検出線に接続される場合(RCフィルタ回路の変形例2、図4)あるいは別の個所に接続される場合がある。その場合でも、コンデンサにリーク電流が流れることにより、RCフィルタのR(Rcv)で電圧降下が発生し、セル電圧検出値の低下は発生するので、同様に考えることができる。
 すなわち、リーク放電電流が流れる電圧検出線をセル電圧の電圧検出線として用いているセルの検出電圧がリークによって影響を受け、上昇する。検出電圧の低下したセルがバランシング電流分過充電されるので、その過充電の到達電圧は、バランシング電流値と同一のリーク電流が流れた場合に発生する誤差と、電池の使用上限電圧の和となる。
 これらのRCフィルタ回路の変形例においても、上記で説明したような、リーク放電電流とバランシング放電電流が同じ大きさとなる条件の、セル電圧入力抵抗Rcvと実効バランシング電流Rbefの関係を同様に求めることができる。
 説明を簡単にするため、リーク発生が検出されたときの全単電池セルの実電圧は同じとなっており、充放電後の全単電池セルの検出電圧が同じになるとする。これは上記の図2のRCフィルタ回路での説明と同等の条件である。
 図2ではRCフィルタ回路のコンデンサの印加電圧が、単電池セル1個分となっているが、図3、図4の場合は、図2の場合と比較して、コンデンサが接続される2つの電圧検出線の間の電池の個数分だけ印加電圧が増えることになる。
 したがって、リーク放電電流も電池の個数分だけ増加する。これと同じバランシング放電電流を流すには、上記の図2のRCフィルタ回路での説明の場合と比較して、実効バランシング抵抗を電池の個数分だけ小さい値とすればよい。
 たとえば、図3のRCフィルタ回路で、電圧検出線SL2とグラウンド線(GL)との間に接続されたコンデンサ103にリークが発生した場合、リーク放電電流によって、電圧検出線SL2が接続されたCV端子の電位が低下し、電圧検出線SL2の上側のセル(セル1)の検出電圧が上昇する。
 この検出電圧の上昇の大きさは、電圧検出線SL2とSL5の間に3個の単電池セルがあるので、図2の場合に比べ3倍となる。これに対応してリーク放電電流は3倍となり、またこれにバランスするための実効バランシング抵抗は1/3になる。
 しかしながら、1つのコンデンサ103でリーク発生が検出された時には、他のコンデンサにおいても、劣化が始まっている可能性がある。あるいは、コンデンサ以外の部分、たとえばセルコントローラIC100のセル電圧入力端子(CV端子)105付近の配線パターンでも絶縁の劣化が始まっている可能性がある。安全性の観点からは、たとえば上記のように図3の電圧検出線SL2とグラウンド線(GL)の間でのリークの場合であっても、セル1のバランシングスイッチのデューティ比を1/3にせず、式(7)で算出される、セル電圧1個分の場合の実効バランシング抵抗とすることが望ましい。
 以上の説明は、RCフィルタ回路のコンデンサ103が図2~4に示すように接続されている場合について説明した。前述のように、グラウンド線(GL)にコンデンサ103の一端を接続する回路構成の代わりに、電源線(VL)にコンデンサ103の一端を接続する回路構成であっても上記と同様なバランシング動作が可能であることは明白であり、この詳細な説明は省略する。ただし、この場合でも、上記の説明と同様に、リーク電流によりCV端子での電圧上昇を生じるRcvが設けられた電圧検出線の上側のセルの検出電圧は低下し、また、リーク電流によりCV端子での電圧降下を生じるRcvが設けられた電圧検出線の上側のセルの検出電圧が上昇することになる。
 また、以上の説明では、リークがRCフィルタのコンデンサ103で発生するとして説明したが、これ以外の原因、たとえば電圧入力端子(CV端子間)での配線基板の絶縁不良や、セルコントローラIC100内のESD対策用ダイオードの絶縁不良等でもリークが発生する可能性がある。しかし、これらの場合も上記のコンデンサでのリークの場合と全く同様に理解することができるので、これらの説明も省略する。
 以上の説明は本発明の実施形態の例であり、本発明はこれらの実施形態に限定されない。当業者であれば、本発明の特徴を損なわずに様々な変形実施が可能である。したがって、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。
 

Claims (8)

  1.  複数の単電池セルを直列接続したセルグループを監視する電池システム監視装置であって、
     前記セルグループの複数の単電池セルの状態を監視し制御するセルコントローラICと、
     前記セルコントローラICを制御するバッテリコントローラと、
     前記単電池セルの端子間電圧を測定するための、前記単電池セルの正極および負極のそれぞれと前記セルコントローラICの複数の電圧入力端子と一対一に接続する複数の電圧検出線と、
     前記複数の単電池セルの内最高電位の単電池セルの正極と前記セルコントローラICの電源端子を接続する電源線と、
     前記複数の単電池セルの内最低電位の単電池セルの負極と前記セルコントローラICのグラウンド端子とを接続するグラウンド線とを備え、
     前記単電池セルの正極に接続された電圧検出線と負極に接続された電圧検出線の間に接続された、当該単電池セルのバランシング放電を行うバランシングスイッチとこれに直列に接続されたバランシング抵抗とを前記単電池セル毎に備え、
     前記電圧検出線には、電圧入力抵抗が直列に設けられ、
     前記複数の電圧検出線の内の2つの電圧検出線の間、または前記電源線と前記複数の電圧検出線のいずれか1つの電圧検出線の間、または前記グラウンド線と前記複数の電圧検出線のいずれか1つの電圧検出線の間でリークが発生したとしても、前記単電池セルが過充電とならないように、前記バッテリコントローラは、前記セルコントローラICを制御して、バランシングスイッチの実効抵抗値を所定の値以上に設定する電池システム監視装置。
  2.  請求項1に記載の電池システム監視装置において、
     前記バランシングスイッチの実効抵抗値の前記所定の値は、前記電圧検出線に設けられた電圧入力抵抗の抵抗値と、前記単電池セルの過充電保護電圧値と、前記単電池セルのSOCが100%の場合の電圧値とから算出される値である電池システム監視装置。
  3.  請求項2に記載の電池システム監視装置において、
     前記バランシングスイッチの実効抵抗値は、バランシング抵抗の抵抗値とバランシングスイッチのオン・オフのデューティ比とから前記算出された値に設定される電池システム監視装置。
  4.  請求項1乃至3のいずれか1項に記載の電池システム監視装置において、
     前記電池システム監視装置は、複数の前記セルグループを監視するために、前記セルコントローラICを複数個備える電池システム監視装置。
  5.  請求項1乃至4のいずれか1項に記載の電池システム監視装置と、電池システムとを備える蓄電装置。
  6.  請求項5に記載の蓄電装置を備える電動駆動装置。
  7.  請求項1に記載の電池システム監視装置の前記バランシングスイッチのオン・オフのデューティ比の前記所定の値を算出する方法であって、
     前記所定の値は、前記リークが発生した電圧検出線に設けられた電圧入力抵抗の抵抗値と、前記単電池セルの過充電保護電圧値と、前記単電池セルのSOCが100%の場合の電圧値とから算出される値であるバランシングスイッチのオン・オフのデューティ比の算出方法。
  8.  請求項7に記載のバランシングスイッチのオン・オフのデューティ比の算出方法において、
     前記バランシングスイッチの実効抵抗値は、バランシング抵抗の抵抗値とバランシングスイッチのオン・オフのデューティ比とから前記算出された値に設定されるバランシングスイッチのオン・オフのデューティ比の算出方法。
PCT/JP2011/074173 2011-10-20 2011-10-20 電池システムの監視装置およびこれを備えた蓄電装置 WO2013057820A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11874219.6A EP2770606B1 (en) 2011-10-20 2011-10-20 Battery system monitoring device and charge storage device equipped with same
US14/352,227 US9673640B2 (en) 2011-10-20 2011-10-20 Battery system monitoring apparatus and electric storage device including the same for balancing a plurality of battery cells by discharging them based on voltage dependent turn-on resistance adapting of the balancing switch
PCT/JP2011/074173 WO2013057820A1 (ja) 2011-10-20 2011-10-20 電池システムの監視装置およびこれを備えた蓄電装置
JP2013539463A JP5775935B2 (ja) 2011-10-20 2011-10-20 電池システムの監視装置およびこれを備えた蓄電装置
CN201180074269.9A CN103891093B (zh) 2011-10-20 2011-10-20 电池系统的监视装置及具备其的蓄电装置
US15/596,700 US10454283B2 (en) 2011-10-20 2017-05-16 Battery system monitoring apparatus and electric storage device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074173 WO2013057820A1 (ja) 2011-10-20 2011-10-20 電池システムの監視装置およびこれを備えた蓄電装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/352,227 A-371-Of-International US9673640B2 (en) 2011-10-20 2011-10-20 Battery system monitoring apparatus and electric storage device including the same for balancing a plurality of battery cells by discharging them based on voltage dependent turn-on resistance adapting of the balancing switch
US15/596,700 Continuation US10454283B2 (en) 2011-10-20 2017-05-16 Battery system monitoring apparatus and electric storage device including the same

Publications (1)

Publication Number Publication Date
WO2013057820A1 true WO2013057820A1 (ja) 2013-04-25

Family

ID=48140497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074173 WO2013057820A1 (ja) 2011-10-20 2011-10-20 電池システムの監視装置およびこれを備えた蓄電装置

Country Status (5)

Country Link
US (2) US9673640B2 (ja)
EP (1) EP2770606B1 (ja)
JP (1) JP5775935B2 (ja)
CN (1) CN103891093B (ja)
WO (1) WO2013057820A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103840A (ja) * 2012-10-24 2014-06-05 Toyota Motor Corp 蓄電システム
CN109017352A (zh) * 2018-06-21 2018-12-18 重庆国翰能源发展有限公司 一种充电桩储能结构供电监控方法

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042974A1 (en) * 2011-04-22 2014-02-13 Sk Innovation Co., Ltd. Detachable battery module, and method and apparatus for the charge equalization of a battery string using same
US9340122B2 (en) * 2011-05-31 2016-05-17 Hitachi Automotive Systems, Ltd. Battery system monitoring apparatus
JP6026226B2 (ja) * 2012-10-30 2016-11-16 株式会社日立情報通信エンジニアリング 蓄電システム及び電源システム
DE102013208583A1 (de) * 2013-05-08 2014-11-13 Robert Bosch Gmbh Antriebsbatterie für den n-phasigen Betrieb eines Elektromotors sowie ein Antriebssystem und ein Verfahren zum Betrieb des Antriebssystems
US9954378B2 (en) * 2013-08-28 2018-04-24 Nec Corporation Method and program for controlling power storage system and storage battery
JP2015056928A (ja) * 2013-09-10 2015-03-23 株式会社東芝 過充電保護装置
KR102165937B1 (ko) * 2014-05-30 2020-10-14 삼성전자주식회사 배터리 관리 방법 및 장치
US9857431B2 (en) * 2014-07-23 2018-01-02 Gm Global Technology Operation Llc Battery cell voltage sensing circuit diagnostics
CN107407699B (zh) * 2015-03-11 2020-01-10 日立汽车系统株式会社 电池管理装置、电池监视电路、控制系统
US10396582B2 (en) * 2015-07-01 2019-08-27 Maxim Integrated Products, Inc. Master slave charging architecture with communication between chargers
WO2017054148A1 (zh) * 2015-09-30 2017-04-06 长园科技实业股份有限公司 充放电平衡结构
FR3042282B1 (fr) * 2015-10-12 2018-11-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Systeme electronique de controle d'une batterie electrique
KR102472906B1 (ko) * 2015-11-25 2022-12-01 삼성에스디아이 주식회사 배터리 팩 및 이를 포함하는 전기 구동 차량
CN105576765B (zh) * 2016-02-04 2019-08-30 惠州市蓝微新源技术有限公司 一种多节电池的电压采集电路
DE102016202761A1 (de) * 2016-02-23 2017-08-24 Continental Automotive Gmbh Batteriesystem mit einer Spannungsausgleichsschaltung, Verfahren zum Erkennen eines fehlerhaften Zustandes der Spannungsausgleichsschaltung und der Zellspannungsmessung
US11201378B2 (en) * 2016-05-17 2021-12-14 Faraday & Future Inc. Battery monitor protection
US10541542B2 (en) * 2016-09-30 2020-01-21 O2Micro Inc. System and method for charging a battery pack
EP3323665B1 (en) * 2016-11-18 2019-07-10 Fico Triad, S.A. A battery pack balancing system and method
EP3327455B1 (en) 2016-11-28 2020-10-21 NXP USA, Inc. Leakage current determination
EP3548327B1 (en) 2016-12-01 2022-07-20 Volvo Truck Corporation A system and a method for selecting energy storage cells for balancing of an electrical energy storage pack
JP2018117438A (ja) * 2017-01-17 2018-07-26 太陽誘電株式会社 リチウムイオンキャパシタを備えた電源モジュール
US10326287B2 (en) * 2017-03-27 2019-06-18 Apple Inc. Multiple battery cell monitor having shared control lines and balance switch
CN110462969B (zh) * 2017-03-31 2023-06-02 三洋电机株式会社 监视装置和蓄电系统
CN109425802B (zh) * 2017-08-22 2021-02-26 华邦电子股份有限公司 漏电流检测装置及其检测方法
US20190267678A1 (en) * 2017-10-16 2019-08-29 Ronald Bindl Method and System for Storing Energy and Providing a Regulated Output
KR102236384B1 (ko) * 2017-10-27 2021-04-05 주식회사 엘지화학 배터리 밸런싱을 위한 장치 및 그것을 포함하는 배터리팩
KR102030118B1 (ko) * 2017-11-03 2019-10-08 주식회사 엘지화학 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
JP7056113B2 (ja) * 2017-12-08 2022-04-19 株式会社デンソー 電池制御装置
JP6477845B1 (ja) * 2017-12-08 2019-03-06 ミツミ電機株式会社 電池制御回路
JP7163313B2 (ja) * 2017-12-22 2022-10-31 三洋電機株式会社 管理装置、及び電源システム
CN112136260A (zh) * 2018-05-14 2020-12-25 三洋电机株式会社 管理装置、蓄电系统
CN112384405B (zh) * 2018-07-05 2024-02-02 沃尔沃卡车集团 控制车辆中的电池系统的方法
CN109037814B (zh) * 2018-09-05 2021-02-19 成都芯源系统有限公司 一种充电平衡管理电路和方法
EP3621193A1 (en) * 2018-09-06 2020-03-11 ABB Schweiz AG Artificial stable short circuit failure mode function by using parallel modules for each switching function
JP6950661B2 (ja) * 2018-10-29 2021-10-13 株式会社デンソー 電池監視装置
JP7022346B2 (ja) * 2018-11-28 2022-02-18 トヨタ自動車株式会社 電源システム
US11233277B2 (en) * 2019-09-13 2022-01-25 Ford Global Technologies, Llc Electrified vehicle traction battery component identification assembly and identification method
CN113306397B (zh) * 2020-02-26 2023-04-07 宇通客车股份有限公司 一种电池系统的绝缘失效定位方法、系统及新能源汽车
US11131717B1 (en) 2020-08-18 2021-09-28 Element Energy, Inc. Methods and systems for in-situ leakage current testing of cells in multi-cell battery packs

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285162A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 組み電池の充電装置
JP2009089484A (ja) 2007-09-28 2009-04-23 Hitachi Ltd 電池用集積回路および該電池用集積回路を使用した車両用電源システム
JP2010193589A (ja) 2009-02-17 2010-09-02 Hitachi Ltd 電池システム

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3854082A (en) * 1973-06-07 1974-12-10 Master Control Syst Inc Battery charging circuit
US6097177A (en) * 1992-11-24 2000-08-01 Seiko Instruments Inc. Charge/discharge control circuit and chargeable electric power source apparatus
US5742148A (en) * 1992-11-24 1998-04-21 Seiko Instruments Inc. Charge/discharge control circuit and chargeable electric power source apparatus
JPH07336905A (ja) * 1994-06-08 1995-12-22 Nissan Motor Co Ltd 組電池の充電装置
CA2169706A1 (en) * 1995-03-03 1996-09-04 Troy Lynn Stockstad Circuit and method for battery charge control
US6242890B1 (en) * 1998-06-09 2001-06-05 Seiko Instruments Inc. Charge/discharge control circuit and chargeable electric power source apparatus
TW472426B (en) * 1998-10-06 2002-01-11 Hitachi Ltd Battery apparatus and control system therefor
JP2000184609A (ja) * 1998-12-17 2000-06-30 Japan Storage Battery Co Ltd 群電池の容量平準化回路
JP2001224138A (ja) * 2000-02-07 2001-08-17 Hitachi Ltd 蓄電装置及び蓄電器の電圧検出方法
JP2001289886A (ja) * 2000-04-03 2001-10-19 Sanyo Electric Co Ltd 電池電圧測定装置
JP3848574B2 (ja) * 2001-02-20 2006-11-22 セイコーインスツル株式会社 充放電制御装置
JP3791767B2 (ja) * 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路
JP3696124B2 (ja) * 2001-05-17 2005-09-14 三洋電機株式会社 組電池の電圧検出回路
JP4605952B2 (ja) * 2001-08-29 2011-01-05 株式会社日立製作所 蓄電装置及びその制御方法
US6977483B2 (en) * 2002-08-23 2005-12-20 Nissan Motor Co., Ltd. Battery pack malfunction detection apparatus and method for detecting a disconnection at a connecting line between a given cell and a corresponding detection terminal
US7456614B2 (en) * 2003-10-27 2008-11-25 Sony Corporation Battery pack
US7180268B2 (en) * 2004-03-25 2007-02-20 O2Micro International Limited Circuits capable of trickle precharge and/or trickle discharge
JP4168978B2 (ja) * 2004-05-31 2008-10-22 新神戸電機株式会社 組電池用制御回路
JP4241567B2 (ja) * 2004-10-06 2009-03-18 サンケン電気株式会社 電圧測定装置
JP2007040842A (ja) * 2005-08-03 2007-02-15 Matsushita Electric Ind Co Ltd 電圧計測装置及び電動工具
US7573238B2 (en) * 2005-08-09 2009-08-11 Panasonic Ev Energy Co., Ltd. Voltage detection device and electric vehicle including voltage detection device
JP4569460B2 (ja) * 2005-12-16 2010-10-27 日産自動車株式会社 組電池の容量調整装置
JP4374351B2 (ja) * 2006-04-12 2009-12-02 矢崎総業株式会社 充電状態調整装置
KR100846710B1 (ko) * 2006-09-07 2008-07-16 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
JP5091473B2 (ja) * 2006-12-14 2012-12-05 パナソニック株式会社 組電池制御方法、組電池制御回路、及びこれを備えた充電回路、電池パック
JP4722067B2 (ja) * 2007-03-06 2011-07-13 日立ビークルエナジー株式会社 蓄電装置,蓄電池管理制御装置及びモータ駆動装置
JP4886588B2 (ja) * 2007-05-10 2012-02-29 ルネサスエレクトロニクス株式会社 電圧センサモジュール及び電圧監視装置
JP5254568B2 (ja) * 2007-05-16 2013-08-07 日立ビークルエナジー株式会社 セルコントローラ、電池モジュールおよび電源システム
JP5060857B2 (ja) * 2007-07-19 2012-10-31 日立ビークルエナジー株式会社 セルコントローラ
JP4769277B2 (ja) * 2007-11-26 2011-09-07 本田技研工業株式会社 電池モジュール電圧検出装置
JP4649464B2 (ja) * 2007-11-29 2011-03-09 本田技研工業株式会社 電池電圧検出装置
JP5549121B2 (ja) * 2008-06-17 2014-07-16 三洋電機株式会社 組電池の電圧検出装置及びこれを具えたバッテリシステム
WO2009158367A2 (en) * 2008-06-27 2009-12-30 Johnson Controls - Saft Advanced Power Solutions Llc Cell diagnostic system and method
US8405358B2 (en) * 2008-09-02 2013-03-26 O2Micro Inc. Battery charging systems with controllable charging currents
US8093862B2 (en) * 2008-09-03 2012-01-10 Modalis Engineering, Inc. Systems, apparatus and methods for battery charge management
JP4803228B2 (ja) * 2008-09-03 2011-10-26 日本テキサス・インスツルメンツ株式会社 電圧検出装置
JP5180016B2 (ja) * 2008-09-25 2013-04-10 ルネサスエレクトロニクス株式会社 電圧検出回路
JP2010088179A (ja) * 2008-09-30 2010-04-15 Panasonic Corp 電池均等化回路、及び電池電源装置
US8089788B2 (en) * 2008-09-30 2012-01-03 Intel Corporation Switched capacitor voltage regulator having multiple conversion ratios
JP5349021B2 (ja) * 2008-11-26 2013-11-20 三洋電機株式会社 バッテリシステム
EP2230529B1 (en) * 2009-03-18 2012-11-14 Vito NV A power cell system with means for detecting a discontinuity
US8258792B2 (en) * 2009-05-11 2012-09-04 Semiconductor Components Industries, Llc. Monitoring system and method
JP5535531B2 (ja) * 2009-06-25 2014-07-02 矢崎総業株式会社 断線検出装置
US9157967B2 (en) * 2010-02-11 2015-10-13 A123 Systems Llc System and method for assessing voltage threshold detecting circuitry within a battery pack
CN102299529B (zh) * 2010-06-25 2014-04-02 凹凸电子(武汉)有限公司 电池组管理系统、电动车及管理电池组的方法
US8723481B2 (en) * 2010-06-25 2014-05-13 O2Micro, Inc. Battery pack with balancing management
JP5911673B2 (ja) * 2010-07-30 2016-04-27 三洋電機株式会社 電源装置
KR101453229B1 (ko) * 2011-03-18 2014-10-22 아사히 가세이 일렉트로닉스 가부시끼가이샤 직렬 축전 셀의 밸런스 충전 회로, 직렬 축전 셀의 밸런스 충전 방법
US8742619B2 (en) * 2011-03-25 2014-06-03 Sanyo Electric Co., Ltd. Battery system, electric vehicle, movable body, power storage device, and power supply device
JP6093106B2 (ja) * 2011-03-30 2017-03-08 株式会社ケーヒン 電池電圧検出装置
CN103444046B (zh) * 2011-03-31 2016-06-08 瑞萨电子株式会社 电压监视模块和使用其的电压监视系统
US9340122B2 (en) * 2011-05-31 2016-05-17 Hitachi Automotive Systems, Ltd. Battery system monitoring apparatus
US8841888B2 (en) * 2011-06-16 2014-09-23 02Micro, Inc. Individual cell voltage detection circuit for charge and discharge control in a battery pack
JP5691950B2 (ja) * 2011-09-05 2015-04-01 株式会社デンソー 電圧監視装置
US9746525B2 (en) * 2011-09-08 2017-08-29 Hitachi Automotive Systems, Ltd. Battery system monitoring device
WO2013038762A1 (ja) * 2011-09-14 2013-03-21 本田技研工業株式会社 電圧測定装置
FR3021173B1 (fr) * 2014-05-13 2016-06-24 Schneider Toshiba Inverter Europe Sas Convertisseur de puissance multi-niveaux

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11285162A (ja) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd 組み電池の充電装置
JP2009089484A (ja) 2007-09-28 2009-04-23 Hitachi Ltd 電池用集積回路および該電池用集積回路を使用した車両用電源システム
JP2010193589A (ja) 2009-02-17 2010-09-02 Hitachi Ltd 電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2770606A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014103840A (ja) * 2012-10-24 2014-06-05 Toyota Motor Corp 蓄電システム
CN109017352A (zh) * 2018-06-21 2018-12-18 重庆国翰能源发展有限公司 一种充电桩储能结构供电监控方法

Also Published As

Publication number Publication date
US20140327400A1 (en) 2014-11-06
US20170250545A1 (en) 2017-08-31
JP5775935B2 (ja) 2015-09-09
EP2770606A1 (en) 2014-08-27
US10454283B2 (en) 2019-10-22
EP2770606B1 (en) 2019-04-17
EP2770606A4 (en) 2015-09-02
US9673640B2 (en) 2017-06-06
CN103891093A (zh) 2014-06-25
CN103891093B (zh) 2016-12-14
JPWO2013057820A1 (ja) 2015-04-02

Similar Documents

Publication Publication Date Title
JP5775935B2 (ja) 電池システムの監視装置およびこれを備えた蓄電装置
JP5753764B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
US8928282B2 (en) Control system for assembled battery
US8471529B2 (en) Battery fault tolerant architecture for cell failure modes parallel bypass circuit
EP3151360B1 (en) Battery system
JP5789846B2 (ja) 車両用の電源装置とこの電源装置を備える車両
US7692430B2 (en) Power control unit
US9746525B2 (en) Battery system monitoring device
US9024586B2 (en) Battery fault tolerant architecture for cell failure modes series bypass circuit
JP5798887B2 (ja) 蓄電システム
EP2632021A1 (en) Battery system
WO2013046978A1 (ja) 蓄電システムおよび蓄電システムの活線挿抜方法
JP2014520498A (ja) 二次電池、それを用いたマルチパック並列構造の情報交換のための二次電池管理システム及び方法
JP2013099167A (ja) 蓄電システムを搭載した車両の制御装置及び制御方法
KR20130081215A (ko) 전원 장치
WO2013024541A1 (ja) 電池監視装置およびこれを備えた電池制御装置
JP6251136B2 (ja) 電池システム監視装置およびこれを備えた蓄電装置
KR20090129212A (ko) 고전압 배터리시스템 전류센서의 고장진단방법
JP6403897B2 (ja) 電池管理装置
CN112384405B (zh) 控制车辆中的电池系统的方法
CN103963656A (zh) 蓄电池系统
CN114954012A (zh) 采用基于单元因子来确定电池极限的方法的电气化动力系
KR102017573B1 (ko) 전기 자동차의 충전 제어장치 및 그 방법
WO2023188397A1 (ja) 電池システム監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874219

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013539463

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011874219

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14352227

Country of ref document: US