JP7022346B2 - 電源システム - Google Patents
電源システム Download PDFInfo
- Publication number
- JP7022346B2 JP7022346B2 JP2018222766A JP2018222766A JP7022346B2 JP 7022346 B2 JP7022346 B2 JP 7022346B2 JP 2018222766 A JP2018222766 A JP 2018222766A JP 2018222766 A JP2018222766 A JP 2018222766A JP 7022346 B2 JP7022346 B2 JP 7022346B2
- Authority
- JP
- Japan
- Prior art keywords
- sweep
- module
- battery
- switching element
- main line
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/10—Parallel operation of dc sources
- H02J1/102—Parallel operation of dc sources being switching converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0024—Parallel/serial switching of connection of batteries to charge or load circuit
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/00302—Overcharge protection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
- H02J7/0032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits disconnection of loads if battery is not under charge, e.g. in vehicle if engine is not running
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
Description
本発明は、電池と回路を含むモジュールを複数備えた電源システムに関する。
電池と回路を含むモジュールを複数備え、複数のモジュールの各々を制御することで、外部への電力の出力、および、外部から入力される電力の蓄電の少なくともいずれかを行う電源装置が知られている。例えば、特許文献1に記載されている電源装置は、電池、第1のスイッチング素子、および第2のスイッチング素子を含む電池回路モジュールを複数備える。複数の電池回路モジュールは、各々の出力端子を介して直列に接続されている。電源装置の制御回路は、第1のスイッチング素子および第2のスイッチング素子をオンオフ駆動するゲート信号を、各々の電池回路モジュールに対して一定時間毎にそれぞれ出力する。これにより、複数の電池回路モジュールから目標とする電力を出力する。
電池を含むモジュールを複数備えた電源装置では、性能が互いに異なる複数の電池が電源装置中に混在する場合がある。性能が異なる複数の電池を一様に使用すると、電源装置全体の性能が、複数の電池のうち性能が低い電池によって規定されてしまう場合がある。この場合、性能が高い電池を十分に活用することが困難となる。
本発明の典型的な目的は、性能が異なる複数の電池を十分に活用することが可能な電源システムを提供することである。
かかる目的を実現するべく、ここに開示される一態様の電源システムは、少なくとも外部から入力される電力を通電するメインラインと、該メインラインに接続された複数のスイープモジュールと、制御部と、を備え、上記スイープモジュールは、少なくとも1つの電池を備えた電池モジュールと、上記電池モジュールと上記メインラインの間の接続および切断を切り替える少なくとも1つのスイッチング素子を備えた電力回路モジュールと、を備え、上記制御部は、上記スイッチング素子を制御するゲート信号を上記電力回路モジュールに出力することで、複数の上記電池モジュールのうち、上記メインラインに接続させる上記電池モジュールを順次切り替えるスイープ制御を実行する第1処理と、上記メインラインを通じた外部からの電力の入力中に、上記電池モジュール毎にSOCを検出し、検出したSOCの大きさが高SOCの条件を満たす上記電池モジュールである高SOCモジュールを上記メインラインから切断すると共に、上記高SOCモジュールを備えた上記スイープモジュールを除外して上記スイープ制御を実行させる第2処理と、を実行する。
上記構成の電源システムは、メインラインに接続させるスイープモジュールを順次切り替えるスイープ制御を実行する。ここで、制御部は、メインラインを通じた外部からの電力の入力中に、電池モジュール毎にSOCを検出する。制御部は、検出したSOCの大きさが高SOC値の条件を満たす電池モジュールである高SOCモジュールを、メインラインから切断する。その結果、高SOCモジュールに対する充電が停止される。また、制御部は、高SOCモジュールを備えたスイープモジュールを除外して、スイープ制御を実行する。この場合、スイープ制御によって複数の電池モジュールの充電が行われている間に、一部の電池モジュールのSOCが高くなると、SOCが高くなった電池モジュールが停止されると共に、他の電池モジュールに対する充電が継続される。つまり、性能が低い電池モジュールのSOCが高くなっても、性能が高い電池モジュールに対する充電が継続される。また、SOCが高くなった電池モジュールへの充電がスルーされることで、一部の電池モジュールが過充電状態となる可能性が低下し、電池モジュールの寿命が長くなる。また、複数の電池モジュールに対して放電を実行させる際に、SOCが低い電池モジュールが過放電状態となる可能性も低下する。従って、性能が異なる複数の電池が十分に活用される。
ここに開示される電源システムの好適な一態様では、電力回路モジュールのスイッチング素子は、第1スイッチング素子と第2スイッチング素子を備える。第1スイッチング素子は、メインラインに対して直列に、かつ電池モジュールに対して並列に取り付けられる。第2スイッチング素子は、メインラインに電池モジュールを直列に接続する回路に設けられる。制御部は、複数のスイープモジュールのうち、メインラインへの接続対象とする複数のスイープモジュールの各々に対して、第1スイッチング素子および第2スイッチング素子のオンとオフの交互駆動を制御するゲート信号を、定められた遅延時間毎に順に出力することで、スイープ制御を実行する。制御部は、高SOCモジュールをメインラインから切断する場合に、第1スイッチング素子のオン状態と第2スイッチング素子のオフ状態を維持させる信号を、高SOCモジュールを備えたスイープモジュールに出力する。この場合、複数のスイープモジュールのスイープ制御、および、スイープ制御中の高SOCモジュールの切断が、共に適切に実行される。
以下、本開示における典型的な実施形態の1つについて、図面を参照しつつ詳細に説明する。本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。また、各図における寸法関係は実際の寸法関係を反映するものではない。
<全体の概略構成>
図1を参照して、本実施形態における電源システム1の全体構成について概略的に説明する。電源システム1は、上位の電力系統8に接続された配電装置5に対する電力の出力、および、配電装置5から入力される電力の蓄電の少なくともいずれか(以下、単に「電力の入出力」という場合もある)を行う。一例として、本実施形態では、配電装置5としてPCS(Power Conditioning Subsystem)が用いられている。PCSは、電力系統8から電源システム1等へ入力される電力および電源システム1等から電力系統8へ出力される電力を、電源システム1等と電力系統8との間で相互に変換する機能を有する。
図1を参照して、本実施形態における電源システム1の全体構成について概略的に説明する。電源システム1は、上位の電力系統8に接続された配電装置5に対する電力の出力、および、配電装置5から入力される電力の蓄電の少なくともいずれか(以下、単に「電力の入出力」という場合もある)を行う。一例として、本実施形態では、配電装置5としてPCS(Power Conditioning Subsystem)が用いられている。PCSは、電力系統8から電源システム1等へ入力される電力および電源システム1等から電力系統8へ出力される電力を、電源システム1等と電力系統8との間で相互に変換する機能を有する。
電力系統8で電力が余った場合に、配電装置5は余剰の電力を電源システム1に出力する。この場合、電源システム1は、配電装置5から入力された電力を蓄電する。また、電源システム1は、上位の電力系統8を制御する上位システム6からの指示に応じて、電源システム1に蓄電されている電力を配電装置5に出力する。図1では、上位システム6は、電力系統8および配電装置5を制御するシステムとして、電力系統8および配電装置5とは別で設けられているように図示されている。しかし、上位システム6は、電力系統8または配電装置5に組み込まれていてもよい。
電源システム1は、少なくとも1つのストリング10を備えている。本実施形態の電源システム1は、複数(N個:N≧2)のストリング10(10A,10B,・・・,10N)を備えている。図1では、便宜上、N個のストリング10のうち、2つのストリング10A,10Bのみを図示している。ストリング10は、配電装置5との間の電力の入出力の単位となる。複数のストリング10は、配電装置5に対して並列に接続されている。配電装置5と各々のストリング10の間の電力の入出力(通電)は、メインライン7を通じて行われる。
ストリング10は、SCU(String Control Unit)11、および、複数(M個:M≧2)のスイープモジュール20(20A,20B,・・・,20M)を備える。各々のスイープモジュール20は、電池および制御回路を備える。SCU11は、ストリング10毎に設けられている。SCU11は、1つのストリング10に含まれる複数のスイープモジュール20を統合制御するコントローラである。各々のSCU11は、電力制御装置としてのGCU(Group control Unit)2との間で通信を行う。GCU2は、複数のストリング10を含むグループ全体を統合制御するコントローラである。GCU2は、上位システム6および各々のSCU11との間で通信を行う。上位システム6、GCU2、およびSCU11の間の通信の方法には、種々の方法(例えば、有線通信、無線通信、ネットワークを介した通信等の少なくともいずれか)を採用できる。
なお、ストリング10およびスイープモジュール20等を制御するコントローラの構成を変更することも可能である。例えば、GCU2とSCU11が別々に設けられていなくてもよい。つまり、1つのコントローラが、少なくとも1つのストリング10を含むグループ全体と、ストリング10に含まれる複数のスイープモジュール20を共に制御してもよい。
<スイープモジュール>
図2を参照して、スイープモジュール20について詳細に説明する。スイープモジュール20は、電池モジュール30、電力回路モジュール40、およびスイープユニット(SU(Sweep Unit))50を備える。
図2を参照して、スイープモジュール20について詳細に説明する。スイープモジュール20は、電池モジュール30、電力回路モジュール40、およびスイープユニット(SU(Sweep Unit))50を備える。
電池モジュール30は、少なくとも1つの電池31を備えている。本実施形態の電池モジュール30には、複数の電池31が設けられている。複数の電池31は直列に接続されている。本実施形態では、電池31として二次電池が使用されている。電池31には、種々の二次電池(例えば、ニッケル水素電池、リチウムイオン電池、ニッケルカドミウム電池等)の少なくともいずれかを使用できる。なお、電源システム1において、複数種類の電池31を混在させることも可能である。もちろん、全ての電池モジュール30内の電池31の種類が全て同じであってもよい。
電池モジュール30には、電圧検出部35および温度検出部36が装着されている。電圧検出部35は、電池モジュール30が備える電池31(本実施形態では、直列に接続された複数の電池31)の電圧を検出する。温度検出部36は、電池モジュール30が備える電池31の温度、または、電池31の近傍の温度を検出する。温度検出部36には、温度を検出する各種素子(例えばサーミスタ等)を使用できる。
電池モジュール30は、電力回路モジュール40に対して着脱可能に設けられている。詳細には、本実施形態では、複数の電池31を備えた電池モジュール30が1つの単位となって、電力回路モジュール40からの取り外し、および、電力回路モジュール40への装着が行われる。従って、電池モジュール30に含まれる電池31が1つずつ交換される場合に比べて、作業者が電池31を交換する際の作業工数が減少する。なお、本実施形態では、電圧検出部35および温度検出部36は、電池モジュール30とは別で交換される。しかし、電圧検出部35および温度検出部36の少なくとも一方が、電池モジュール30と共に交換されてもよい。
電力回路モジュール40は、電池モジュール30における電力の入出力を適切に実現させるための回路を形成する。本実施形態では、電力回路モジュール40は、電池モジュール30とメインライン7の間の接続および切り離しを切り替える少なくとも1つのスイッチング素子を備えている。本実施形態では、電力回路モジュール40は、電池モジュール30をメインライン7に接続するための入出力回路43と、入出力回路43に配置された第1スイッチング素子41および第2スイッチング素子42を備える。第1スイッチング素子41および第2スイッチング素子42は、スイープユニット50から入力される信号(例えばゲート信号等)に応じてスイッチング動作を行う。
本実施形態では、図2に示されているように、第1スイッチング素子41は、入出力回路43において、メインライン7に対して直列に、かつ、電池モジュール30に対して並列に取り付けられている。第2スイッチング素子42は、入出力回路43において、メインライン7に電池モジュール30を直列に接続する部分に取り付けられている。第1スイッチング素子41は、メインライン7に放電電流が流れる方向に沿って順方向となるように、ソースとドレインが配置される。第2スイッチング素子42は、メインライン7に電池モジュール30を直列に取り付ける入出力回路43において、電池モジュール30に充電電流が流れる方向に沿って順方向となるように、ソースとドレインが配置される。本実施形態では、第1スイッチング素子41と第2スイッチング素子42は、それぞれMOSFET(例えば、Si-MOSFET)であり、順方向に向いたボディダイオード41a,42aをそれぞれ備えている。ここで、第1スイッチング素子41のボディダイオード41aは、第1ボディダイオードと適宜に称されうる。第2スイッチング素子42のボディダイオード42aは、第2ボディダイオードと適宜に称される。
なお、第1スイッチング素子41と第2スイッチング素子42は、図2の例に限定されない。第1スイッチング素子41および第2スイッチング素子42には、導通と非導通を切り替えることが可能な種々の素子を使用することが可能である。本実施形態では、第1スイッチング素子41および第2スイッチング素子42の両方に、MOSFET(詳細にはSi-MOSFET)が使用されている。しかし、MOSFET以外の素子(例えば、トランジスタ等)が採用されてもよい。
また、電力回路モジュール40は、インダクタ46およびコンデンサ47を備える。インダクタ46は、電池モジュール30と第2スイッチング素子42の間に設けられている。コンデンサ47は、電池モジュール30と並列に接続されている。本実施形態では、電池モジュール30の電池31に二次電池が使用されているので、内部抵抗損失の増加による電池31の劣化を抑制する必要がある。従って、電池モジュール30、インダクタ46、およびコンデンサ47によってRLCフィルタを形成することで、電流の平準化が図られている。
また、電力回路モジュール40には温度検出部48が設けられている。温度検出部48は、第1スイッチング素子41および第2スイッチング素子42の少なくとも一方の発熱を検出するために設けられている。本実施形態では、第1スイッチング素子41、第2スイッチング素子42、および温度検出部48は、1つの基盤に組み込まれている。従って、第1スイッチング素子41および第2スイッチング素子42の一方の故障が発見された時点で、基盤ごと交換される。よって、本実施形態では、1つの温度検出部48が第1スイッチング素子41および第2スイッチング素子42の近傍に設けられることで、部品点数が削減されている。ただし、第1スイッチング素子41の温度を検出する温度検出部と、第2スイッチング素子42の温度を検出する温度検出部が別々に設けられていてもよい。温度検出部48には、温度を検出する各種素子(例えばサーミスタ等)を使用できる。
図1および図2に示すように、ストリング10内の複数の電池モジュール30は、それぞれ電力回路モジュール40を介在させてメインライン7に対して直列に接続されている。そして、電力回路モジュール40の第1スイッチング素子41と第2スイッチング素子42が適宜に制御されることによって、電池モジュール30はメインライン7に接続されたり、切り離されたりする。図2に示された電力回路モジュール40の構成例では、第1スイッチング素子41がオフとされ、且つ第2スイッチング素子42がオンとされると、電池モジュール30はメインライン7に接続される。第1スイッチング素子41がオンとされ、且つ第2スイッチング素子42がオフとされると、電池モジュール30はメインライン7から切り離される。
スイープユニット(SU(Sweep Unit))50は、スイープモジュール20に関する各種制御を行うようにスイープモジュール20に組み込まれた制御ユニットであり、スイープ制御ユニットとも称される。詳細には、スイープユニット50は、電力回路モジュール40における第1スイッチング素子41および第2スイッチング素子42を駆動させる信号を出力する。また、スイープユニット50は、スイープモジュール20の状態(例えば、電池モジュール30の電圧、電池31の温度、および、スイッチング素子41,42の温度等)を、上位のコントローラ(本実施形態では、図1に示すSCU11)に通知する。スイープユニット50は、ストリング10の複数のスイープモジュール20にそれぞれ組み込まれている。ストリング10の複数のスイープモジュール20に組み込まれたスイープユニット50は、順に繋がっており、SCU11から出力されたゲート信号GSを順に伝搬するように構成されている。図2に示されているように、本実施形態では、スイープユニット50は、SU処理部51、遅延/選択回路52、およびゲートドライバ53を備えている。
SU処理部51は、スイープユニット50における各種処理を司るコントローラである。SU処理部51には、例えばマイコン等を使用できる。SU処理部51には、電圧検出部35、温度検出部36、および温度検出部48からの検出信号が入力される。また、SU処理部51は、上位のコントローラ(本実施形態ではストリング10のSCU11)との間で各種信号の入出力を行う。
SCU11からSU処理部51に入力される信号には、強制スルー信号CSS、および強制接続信号CCSが含まれる。強制スルー信号CSSは、配電装置5からストリング10に延びるメインライン7(図1参照)から、電池モジュール30を切り離すことを指示する信号である。つまり、強制スルー信号CSSが入力されたスイープモジュール20は、配電装置5との間で電力を入出力するための動作をスルーする。強制接続信号CCSは、メインライン7に対する電池モジュール30の接続の維持を指示する信号である。
遅延/選択回路52にはゲート信号GSが入力される。ゲート信号(本実施形態ではPWM信号)GSは、第1スイッチング素子41および第2スイッチング素子42のオン状態とオフ状態の交互の繰り返しスイッチング動作を制御する信号である。ゲート信号GSは、オンとオフが交互に繰り返されるパルス状の信号である。ゲート信号GSは、まず、SCU11(図1参照)から、1つのスイープモジュール20内の遅延/選択回路52に入力される。次いで、ゲート信号GSは、1つのスイープモジュール20の遅延/選択回路52から、他のスイープモジュール20の遅延/選択回路52に順に伝播されていく。
ストリング10では、図3および図4に例示するスイープ制御が実行される。ここで、図3は、スイープ動作におけるタイミングチャートの一例である。具体的には、図3には、全てのスイープモジュール20にスイープ動作を実行させた場合の、各スイープモジュール20の接続状態と、配電装置5に出力される電圧との関係が一例として示されている。図4は、強制スルー動作におけるタイミングチャートの一例である。具体的には、図4には、一部のスイープモジュール20に強制スルー動作を実行させた場合の、各スイープモジュール20の接続状態と、配電装置5に出力される電圧との関係が一例として示されている。
ストリング10において実行されるスイープ制御では、ストリング10に組み込まれた複数のスイープモジュール20(例えば、M個)のうち、同じタイミングでONになるスイープモジュール20の数mが定められる。スイープ制御でのゲート信号GSは、例えば、パルス波形で構成されている。ゲート信号GSは、例えば、メインライン7に電池モジュール30を接続するための信号波形と、電池モジュール30をメインライン7から切り離すための信号波形とを順に並べられているとよい。ゲート信号GSにおいて、メインライン7に電池モジュール30を接続するための信号波形は、ストリング10をスイープする予め定められた周期Tにおいて、メインライン7に接続する電池モジュール30の数が組み込まれているとよい。また、電池モジュール30をメインライン7から切り離すための信号波形は、ストリング10に組み込まれた電池モジュール30のうち、電池モジュール30をメインライン7から切り離すことが必要な所要数が組み込まれている。電池モジュール30をメインライン7から切り離すための信号波形や、電池モジュール30をメインライン7から切り離すための信号波形は、適宜に波長などが調整される。
本実施形態のストリング10では、M個のスイープモジュール20が、配電装置5側からスイープモジュール20A,20B,・・・,20Mの順に直列に接続されている。以下では、配電装置5に近い側を上流側、配電装置5から遠い側を下流側とする。まず、ゲート信号GSは、SCU11から、最も上流側のスイープモジュール20A内のスイープユニット50の遅延/選択回路52に入力される。次いで、ゲート信号GSは、スイープモジュール20Aの遅延/選択回路52から、下流側に隣接するスイープモジュール20Bの遅延/選択回路52に伝播される。下流側に隣接するスイープモジュール20へのゲート信号の伝播が、最も下流側のスイープモジュール20Mまで順に繰り返される。
ここで、遅延/選択回路52は、SCU11または上流側のスイープモジュール20から入力したパルス状のゲート信号GSを、定められた遅延時間だけ遅延させて、下流側のスイープモジュール20に伝播させることができる。この場合、遅延時間を示す信号が、SCU11からスイープユニット50(例えば、本実施形態ではスイープユニット50内のSU処理部51)に入力される。遅延/選択回路52は、信号によって示された遅延時間に基づいて、ゲート信号GSを遅延させる。また、遅延/選択回路52は、入力したゲート信号GSを遅延させずに、そのまま下流側のスイープモジュール20に伝播させることもできる。
また、ゲートドライバ53は、第1スイッチング素子41および第2スイッチング素子42のスイッチング動作を駆動する。遅延/選択回路52は、ゲートドライバ53の駆動を制御する信号を、ゲートドライバ53に対して出力する。ゲートドライバ53は、第1スイッチング素子41と第2スイッチング素子42とにそれぞれ制御信号を出力する。電池モジュール30をメインライン7に接続する場合、ゲートドライバ53は、第1スイッチング素子41をオフとし、且つ第2スイッチング素子42をオンとするための制御信号を出力する。電池モジュール30をメインライン7から切り離す場合、ゲートドライバ53は、第1スイッチング素子41をオンとし、且つ第2スイッチング素子42をオフとするための制御信号を出力する。
本実施形態の遅延/選択回路52は、SCU11などの制御装置によって制御され、スイープ動作、強制スルー動作、および強制接続動作を選択的に実行する。
例えば、スイープ動作では、ゲート信号GSによって第1スイッチング素子41と第2スイッチング素子42が操作される。ストリング10に含まれた複数の電池モジュール30は、メインライン7に所定の順番で接続され、かつ、所定の順番で切り離される。その結果、ストリング10は、メインライン7に接続される電池モジュール30を短い制御周期で順次入れ替えながら、予め定められた数の電池モジュール30がメインライン7に常時接続されたような状態で駆動する。かかるスイープ動作によって、ストリング10は、メインライン7に接続される電池モジュール30を短い制御周期で順次入れ替えつつも、予め定められた数の電池モジュール30が直列に接続された1つの組電池のように機能する。かかるスイープ動作が実現するように、ストリング10の各スイープモジュール20がSCU11によって制御される。かかる制御において、SCU11は、ストリング10に対してゲート信号GSを出力するとともに、各スイープモジュール20に組み込まれたSU処理部51に制御信号を出力する。スイープ動作の一例の詳細な説明は、図3および図4に例示して後述する。
スイープ動作中には、遅延/選択回路52は、入力されたゲート信号GSをゲートドライバ53にそのまま出力すると共に、ゲート信号GSを遅延時間だけ遅延させて、下流側のスイープモジュール20に伝播させる。その結果、スイープ動作中のスイープモジュール20の電池モジュール30は、ストリング10内でタイミングがずらされつつ、メインライン7に順次接続され、かつ、メインライン7から順次切り離される。
強制スルー動作中には、遅延/選択回路52は、入力されたゲート信号GSに関わらず、第1スイッチング素子41をオンで維持させ、且つ第2スイッチング素子42をオフで維持させる信号を、ゲートドライバ53に出力する。その結果、強制スルー動作中のスイープモジュール20の電池モジュール30は、メインライン7から切り離される。また、強制スルー動作中のスイープモジュール20の遅延/選択回路52は、ゲート信号GSを遅延させずに、そのまま下流側のスイープモジュール20に伝播させる。
強制接続動作中には、遅延/選択回路52は、入力されたゲート信号GSに関わらず、第1スイッチング素子41をオフで維持させ、且つ第2スイッチング素子42をオンで維持させる信号を、ゲートドライバ53に出力する。その結果、強制接続動作中のスイープモジュール20の電池モジュール30は、メインライン7に常時接続される。また、強制接続動作中のスイープモジュール20の遅延/選択回路52は、ゲート信号GSを遅延させずに、そのまま下流側のスイープモジュール20に伝播させる。
遅延/選択回路52は、上述のような所要の機能を奏する1つの集積回路として構成されていてもよい。また、遅延/選択回路52は、ゲート信号GSを遅延させる回路と、ゲートドライバ53に選択的にゲート信号GSを送る回路と組み合わせてもよい。以下に本実施形態における遅延/選択回路52の構成例を説明する。
本実施形態では、図2に示されているように、遅延/選択回路52は、遅延回路52aと、選択回路52bとを備えている。遅延/選択回路52に入力されたゲート信号GSは、遅延回路52aに入力される。遅延回路52aは、ゲート信号GSを所定の遅延時間だけ遅延させて選択回路52bに出力する。また、遅延/選択回路52に入力されたゲート信号GSは、遅延回路52aを通らない別のルートでそのまま選択回路52bに出力される。選択回路52bは、SU処理部51から指示信号を受けて、指示信号に応じて出力する。
SU処理部51からの指示信号が、スイープ動作の実施を指示する場合には、選択回路52bは、入力されたゲート信号GSをそのまま当該スイープモジュール20のゲートドライバ53に出力する。ゲートドライバ53は、電力回路モジュール40に制御信号を出力し、第1スイッチング素子41をオフとし、且つ第2スイッチング素子42をオンとし、電池モジュール30をメインライン7に接続する。他方で選択回路52bは、1つ下流のスイープモジュール20の遅延/選択回路52に、遅延されたゲート信号GSを出力する。つまり、電池モジュール30がスイープ動作においてメインライン7に接続された場合には、1つ下流のスイープモジュール20に所定の遅延時間だけ遅延したゲート信号GSが送られる。
SU処理部51からの指示信号が強制スルー信号CSSである場合には、選択回路52bは、電池モジュール30をスルーするための信号をゲートドライバ53に出力する。強制スルー信号CSSが継続されることによって、強制スルー信号CSSを受けたスイープモジュール20の電池モジュール30は、メインライン7から切り離された状態で維持される。この場合、選択回路52bによって、遅延回路52aを通らない別のルートで選択回路52bに入力されたゲート信号GSが、1つ下流のスイープモジュール20に出力される。
SU処理部51からの指示信号が強制接続信号CCSである場合には、選択回路52bは、電池モジュール30をメインライン7に接続するための信号をゲートドライバ53に出力する。つまり、ゲートドライバ53は、第1スイッチング素子41をオフとし、且つ第2スイッチング素子42をオンとし、電池モジュール30をメインライン7に接続する。強制接続信号CCSが継続されることによって、電池モジュール30は、メインライン7に接続された状態が維持される。この場合、選択回路52bによって、遅延回路52aを通らない別のルートで選択回路52bに入力されたゲート信号GSが、1つ下流のスイープモジュール20に出力される。
図1および図2に示されているように、本実施形態では、1つのストリング10に含まれる複数のスイープユニット50(詳細には、複数の遅延/選択回路52)が、デイジーチェーン方式で順に接続されている。その結果、SCU11から1つのスイープユニット50に入力されるゲート信号GSが、複数のスイープユニット50の間で順に伝播される。従って、SCU11における処理が簡素化され易く、信号性が増加することも容易に抑制される。しかし、SCU11は、複数のスイープユニット50の各々に対して個別にゲート信号GSを出力することも可能である。
スイープユニット50は、インジケータ57を備えている。インジケータ57は、例えば、電池モジュール30や電力回路モジュール40などを含むスイープモジュール20の状態を作業者に通知する。インジケータ57は、例えば、スイープモジュール20内の電池モジュール30に不具合(例えば、故障および電池31の劣化等)が検出されたこと(つまり、電池モジュール30が交換すべき状態であること)を、作業者に通知することができる。
一例として、本実施形態のインジケータ57には、発光素子の一種であるLEDが用いられている。しかし、LED以外のデバイス(例えばディスプレイ等)がインジケータ57として使用されてもよい。また、音声を出力するデバイス(例えばスピーカー等)がインジケータ57として使用されてもよい。また、インジケータ57は、アクチュエータ(例えば、モータまたはソレノイド等)によって部材を駆動させることで、スイープモジュール20の状態を作業者に通知してもよい。また、インジケータ57は、スイープモジュール20の状態に応じて、異なる方法で状態が示されるように構成されているとよい。
本実施形態では、インジケータ57の動作は、スイープユニット50内のSU処理部51によって制御される。しかし、SU処理部51以外のコントローラ(例えばSCU11等)が、インジケータ57の動作を制御してもよい。
本実施形態では、スイープユニット50毎にインジケータ57が設けられている。従って、作業者は、並べて配置された複数のスイープモジュール20の中から、インジケータ57によって状態が通知されているスイープモジュール20を容易に識別することができる。しかし、インジケータ57の構成を変更することも可能である。例えば、スイープユニット50毎に設けられたインジケータ57とは別に、またはインジケータ57と共に、複数のスイープモジュール20の状態を纏めて通知する状態通知部が設けられていてもよい。この場合、状態通知部は、例えば、1つのモニタに複数のスイープモジュール20の状態(例えば、不具合が生じているか否か等)を纏めて表示させてもよい。
<スイープ制御>
ストリング10において実行されるスイープ制御について説明する。ここで、スイープ制御は、ストリング10の各電池モジュール30にスイープ動作をさせるための制御である。ストリング10において実行されるスイープ制御では、SCU11は、パルス状のゲート信号GSを出力する。また、ストリング10の複数のスイープモジュール20におけるスイッチング素子41,42は、適宜にオンとオフが切り替えられて駆動する。その結果、電池モジュール30のメインライン7に対する接続と、メインライン7からの切り離しが、スイープモジュール20毎に高速で切り替えられる。さらに、ストリング10は、上流側からX番目のスイープモジュール20に入力するゲート信号GSを、(X-1)番目のスイープモジュール20に入力するゲート信号GSに対して遅延させることができる。その結果、ストリング10に含まれるM個のスイープモジュール20のうち、メインライン7に接続されるm個(m<M)のスイープモジュール20が、順次切り替えられる。これにより、ストリング10に含まれた複数の電池モジュール30が、メインライン7に所定の順番で接続され、かつ、所定の順番で切り離される。そして、予め定められた数の電池モジュール30がメインライン7に常時接続されたような状態になる。かかるスイープ動作によって、ストリング10は、予め定められた数の電池モジュール30が直列に接続された1つの組電池として機能する。
ストリング10において実行されるスイープ制御について説明する。ここで、スイープ制御は、ストリング10の各電池モジュール30にスイープ動作をさせるための制御である。ストリング10において実行されるスイープ制御では、SCU11は、パルス状のゲート信号GSを出力する。また、ストリング10の複数のスイープモジュール20におけるスイッチング素子41,42は、適宜にオンとオフが切り替えられて駆動する。その結果、電池モジュール30のメインライン7に対する接続と、メインライン7からの切り離しが、スイープモジュール20毎に高速で切り替えられる。さらに、ストリング10は、上流側からX番目のスイープモジュール20に入力するゲート信号GSを、(X-1)番目のスイープモジュール20に入力するゲート信号GSに対して遅延させることができる。その結果、ストリング10に含まれるM個のスイープモジュール20のうち、メインライン7に接続されるm個(m<M)のスイープモジュール20が、順次切り替えられる。これにより、ストリング10に含まれた複数の電池モジュール30が、メインライン7に所定の順番で接続され、かつ、所定の順番で切り離される。そして、予め定められた数の電池モジュール30がメインライン7に常時接続されたような状態になる。かかるスイープ動作によって、ストリング10は、予め定められた数の電池モジュール30が直列に接続された1つの組電池として機能する。
図3は、ストリング10に含まれる全てのスイープモジュール20にスイープ動作を実行させた場合の、各スイープモジュール20の接続状態と、配電装置5に出力される電圧の関係の一例を示すタイミングチャートである。1つのストリング10に含まれるスイープモジュール20の数Mは、適宜変更できる。図3に示す例では、1つのストリング10に5個のスイープモジュール20が含まれており、5個のスイープモジュール20の全てにスイープ動作を実行させている。
また、図3に示す例では、ストリング10のSCU11に対し、配電装置5へ出力する電圧VH[V]を100VとするVH指令信号が入力されている。各々のスイープモジュール20における電池モジュール30の電圧Vmod[V]は、43.2Vである。また、ゲート信号GSを遅延させる遅延時間DL[μsec]は、電源システム1に求められる仕様に応じて適宜設定される。ゲート信号GSの周期T(つまり、スイープモジュール20の接続と切り離しの周期)は、スイープ動作を実行させるスイープモジュール20の数P(≦M)に、遅延時間DLを掛けた値となる。従って、遅延時間DLを長く設定すると、ゲート信号GSの周波数は低周波となる。逆に、遅延時間DLを短く設定すると、ゲート信号GSの周波数は高周波となる。図3に示す例では、遅延時間DLは2.4μsecに設定されている。従って、ゲート信号GSの周期Tは、「2.4μsec×5=12μsec」となる。
本実施形態では、第1スイッチング素子41がオフとされ、且つ第2スイッチング素子42がオンとされたスイープモジュール20の電池モジュール30が、メインライン7に接続される。つまり、第1スイッチング素子41がオフとされ、且つ第2スイッチング素子42がオンとされると、電池モジュール30に対して並列になるように設けられたコンデンサ47が入出力回路43に接続されて、電力が入出力される。スイープモジュール20のスイープユニット50は、ゲート信号GSがオンとなっている間に、電池モジュール30をメインライン7に接続する。一方で、第1スイッチング素子41がオフとされ、且つ第2スイッチング素子42がオンとされたスイープモジュール20の電池モジュール30は、メインライン7から切り離される。スイープユニット50は、ゲート信号GSがオフとなっている間は、電池モジュール30をメインライン7から切り離す。
なお、第1スイッチング素子41と第2スイッチング素子42が同時にオン状態となると、短絡が発生してしまう。従って、スイープユニット50は、第1スイッチング素子41と第2スイッチング素子42を切り替える場合、一方の素子をオンからオフに切り替えた後、僅かな待機時間が経過した後に、他方の素子をオフからオンに切り替える。その結果、短絡の発生が防止される。
VH指令信号によって指令されたVH指令値をVH_com、各電池モジュール30の電圧をVmod、スイープ動作を実行させるスイープモジュール20の数(つまり、スイープ制御においてメインライン7への接続対象とするスイープモジュール20の数)をPとする。この場合、ゲート信号GSにおいて、周期Tに対してオンの期間が占めるデューティー比は、「VH_com/(Vmod×P)」で求められる。図3に示す例では、ゲート信号GSのデューティー比は、約0.46となる。なお、厳密には、短絡の発生を防止するための待機時間の影響で、デューティー比がずれる。従って、スイープユニット50は、フィードバック処理またはフィードフォワード処理を用いて、デューティー比の補正を行ってもよい。
図3に示すように、スイープ制御が開始されると、まず、P個のスイープモジュール20のうちの1つ(図3に示す例では、最も上流側のNo.1のスイープモジュール20)が接続状態となる。その後、遅延時間DLが経過すると、次のスイープモジュール20(図3に示す例では、上流側から2番目のNo.2のスイープモジュール20)も接続状態となる。この状態では、配電装置5へ出力される電圧VHは、2つのスイープモジュール20の電圧の合算値となり、VH指令値に達していない。さらに遅延時間DLが経過すると、No.3のスイープモジュール20が接続状態となる。この状態では、メインライン7に接続されるスイープモジュール20の数は、No.1~No.3の3個となる。従って、配電装置5へ出力される電圧VHは、3つのスイープモジュール20の電圧の合算値となり、VH指令値よりも大きくなる。その後、No.1のスイープモジュール20がメインライン7から切り離されると、電圧VHは2つのスイープモジュール20の電圧の合算値へ戻る。No.3の接続が開始されてから遅延時間DLが経過すると、No.4のスイープモジュール20が接続状態となる。その結果、メインライン7に接続されるスイープモジュール20の数は、No.2~No.4の3つとなる。以上のように、スイープ制御によると、M個(図3では5個)のスイープモジュール20のうち、メインライン7に接続されるm個(図3では3個)のスイープモジュール20が、順次切り替えられる。
図3に示すように、VH指令値が、各電池モジュール30の電圧Vmodで割り切れない場合もある。この場合、配電装置5へ出力される電圧VHは変動する。しかし、電圧VHは、RLCフィルタによって平準化されて、配電装置5へ出力される。なお、配電装置5から入力される電力を、各スイープモジュール20の電池モジュール30に蓄電する場合も、図3に例示したタイミングチャートと同様に、各スイープモジュール20の接続状態が制御される。
<強制スルー動作>
図4を参照して、一部のスイープモジュール20に強制スルー動作を実行させ、他のスイープモジュール20にスイープ動作を実行させる場合の制御について説明する。前述したように、強制スルー動作の実行を指示されたスイープモジュール20は、電池モジュール30をメインライン7から切断した状態を維持する。図4に示す例では、No.2のスイープモジュール20に強制スルー動作を実行させる点が、図3に示す例とは異なる。つまり、図4に示す例では、1つのストリング10に含まれる5個のスイープモジュール20のうち、スイープ動作を実行させるスイープモジュール20の数(つまり、メインライン7への接続対象とするスイープモジュール20の数)Pが4個となっている。VH指令値、各々の電池モジュール30の電圧Vmod、および遅延時間DLは、図3に示す例と同じである。図4に示す例では、ゲート信号GSの周期Tは、「2.4μsec×4=9.6μsec」となる。ゲート信号GSのデューティー比は、約0.58となる。
図4を参照して、一部のスイープモジュール20に強制スルー動作を実行させ、他のスイープモジュール20にスイープ動作を実行させる場合の制御について説明する。前述したように、強制スルー動作の実行を指示されたスイープモジュール20は、電池モジュール30をメインライン7から切断した状態を維持する。図4に示す例では、No.2のスイープモジュール20に強制スルー動作を実行させる点が、図3に示す例とは異なる。つまり、図4に示す例では、1つのストリング10に含まれる5個のスイープモジュール20のうち、スイープ動作を実行させるスイープモジュール20の数(つまり、メインライン7への接続対象とするスイープモジュール20の数)Pが4個となっている。VH指令値、各々の電池モジュール30の電圧Vmod、および遅延時間DLは、図3に示す例と同じである。図4に示す例では、ゲート信号GSの周期Tは、「2.4μsec×4=9.6μsec」となる。ゲート信号GSのデューティー比は、約0.58となる。
図4に示すように、一部のスイープモジュール20(図4ではNo.2のスイープモジュール20)に強制スルー動作を実行させる場合には、図3に例示した場合に比べて、スイープ動作を実行させるスイープモジュール20の数Pが減少する。しかし、ストリング10は、スイープ動作を実行させるスイープモジュール20の数Pの減少に応じて、ゲート信号GSの周期Tと、ゲート信号GSのデューティー比を調整する。その結果、配電装置5に出力される電圧VHの波形は、図3に例示した電圧VHの波形と同じになる。従って、ストリング10は、スイープ動作を実行させるスイープモジュール20の数Pを増減させる場合でも、指令された電圧VHを適切に配電装置5に出力することができる。
ストリング10は、例えば、いずれかのスイープモジュール20内の電池31に不具合(例えば、劣化または故障等)が発生した場合には、不具合が発生した電池31を含むスイープモジュール20に強制スルー動作を実行させることができる。従って、ストリング10は、不具合が発生していないスイープモジュール20を用いて、指令された電圧VHを適切に配電装置5に出力することができる。また、作業者は、ストリング10を正常に作動させたまま、不具合が発生した電池31を含む電池モジュール30(つまり、強制スルー動作を行っているスイープモジュール20の電池モジュール30)を交換することができる。換言すると、本実施形態の電源システム1では、電池モジュール30を交換する際に、ストリング10全体の動作を停止させる必要が無い。
なお、一部のスイープモジュール20に強制接続動作を実行させる場合には、強制接続動作を実行させるスイープモジュール20の接続状態が、常時接続となる。例えば、図4に示すNo.2のスイープモジュール20に対し、強制スルー動作でなく強制接続動作を実行させる場合には、No.2の接続状態は、「切断」でなく「接続」で維持される。
電源システム1が複数のストリング10を備える場合、上記で説明したスイープ制御は、複数のストリング10の各々において実行される。電源システム1の全体を統合制御するコントローラ(本実施形態ではGCU2)は、上位システム6からの指令を満たすように、複数のストリング10の動作を制御する。例えば、1つのストリング10のみでは、上位システム6から要求されたVH指令値を満たせない場合には、GCU2は、複数のストリング10に電力を出力させることで、VH指令値を満たすことも可能である。
<ストリング>
図1を参照して、ストリング10および電源システム1の全体構成について詳細に説明する。前述したように、ストリング10は、SCU11と、メインライン7に電力回路モジュール40を介して直列に接続された複数のスイープモジュール20を備えている。さらに、ストリング10のメインライン7は、配電装置5から延びるバスライン9に接続されている。ストリング10は、メインライン7における配電装置5側(上流側)から順に、バスライン電圧検出部21、システム遮断器(システム遮断器は、適宜に、「SMR(System Main Relay)」と称される。)22、ストリングコンデンサ23、ストリング電流検出部24、ストリングリアクトル25、およびストリング電圧検出部26を備える。なお、一部の部材の配置を変更することも可能である。例えば、システム遮断器22は、ストリングコンデンサ23よりも下流側に設けられていてもよい。
図1を参照して、ストリング10および電源システム1の全体構成について詳細に説明する。前述したように、ストリング10は、SCU11と、メインライン7に電力回路モジュール40を介して直列に接続された複数のスイープモジュール20を備えている。さらに、ストリング10のメインライン7は、配電装置5から延びるバスライン9に接続されている。ストリング10は、メインライン7における配電装置5側(上流側)から順に、バスライン電圧検出部21、システム遮断器(システム遮断器は、適宜に、「SMR(System Main Relay)」と称される。)22、ストリングコンデンサ23、ストリング電流検出部24、ストリングリアクトル25、およびストリング電圧検出部26を備える。なお、一部の部材の配置を変更することも可能である。例えば、システム遮断器22は、ストリングコンデンサ23よりも下流側に設けられていてもよい。
バスライン電圧検出部21は、配電装置5からストリング10へ延びるバスライン9における電圧を検出する。システム遮断器22は、ストリング10と配電装置5の間の接続および遮断を切り替える。本実施形態では、システム遮断器22は、SCU11から入力される信号に従って駆動される。ストリングコンデンサ23およびストリングリアクトル25は、RLCフィルタを形成することで、電流の平準化を図る。ストリング電流検出部24は、ストリング10と配電装置5の間に流れる電流を検出する。ストリング電圧検出部26は、ストリング10においてメインライン7に直列に接続された複数のスイープモジュール20の電圧を足し合せた電圧、つまり、ストリング10のストリング電圧を検出する。
図1に示された形態では、システム遮断器22は、スイッチ22aとヒューズ22bとを備えている。スイッチ22aは、ストリング10を、配電装置5から接続したり、遮断したりするための装置である。スイッチ22aは、適宜に、ストリングスイッチと称されうる。このスイッチ22aをオンにすることにより、ストリング10のメインライン7と、配電装置5のバスライン9とが接続される。このスイッチ22aをオフにすることにより、ストリング10が配電装置5から切り離される。スイッチ22aは、ストリング10を制御するSCU11によって制御される。スイッチ22aが操作されることによって、ストリング10は、配電装置5から適宜に遮断されたり、接続されたりする。ヒューズ22bは、ストリング10のメインライン7に、ストリング10の設計上、予定されていない大電流が流れた場合にこれを停止するための装置である。ヒューズ22bは、適宜にストリングヒューズと称される。
ここで、1つの電池モジュール30に組み込まれる電池が同じ規格の電池であれば、組み込まれた電池の数が多ければ多いほど、1つの電池モジュール30の電圧は高くなる。他方で、電池モジュール30の電圧が高いと、作業者が扱う上で危険であり、かつ、重たくなる。かかる観点で、1つの電池モジュール30には、満充電の状態で作業人が触れても、重大な事故にならない程度の電圧(例えば、60V未満、好ましくは、例えば、42V未満)で、かつ、一人の作業者で交換容易な程度の重量になる範囲内で、多くの電池が組み込まれているとよい。そして、ストリング10に組み込まれる電池モジュール30は、全て同じ電池で構成されている必要はなく、電池モジュール30に組み込まれる電池の種類や規格などに応じて、1つの電池モジュール30に組み込まれる電池の数が定められるとよい。ストリング10では、かかる電池モジュール30が組み込まれたスイープモジュール20が、直列に組み合わされることで、所要の電圧が出力可能なように構成されている。さらに、この電源システム1は、複数のストリング10が組み合わされることによって、電力系統8に接続されるための所要の電力を出力可能なように構成されている。
本実施形態では、電源システム1の複数のストリング10が接続される配電装置5は、ストリング10A,10B毎に接続されるサブ配電装置5A,5Bを備えている。サブ配電装置5A,5Bを通じて、サブ配電装置5A,5Bに接続された各ストリング10A,10Bは、並列に接続される。配電装置5は、各ストリング10に接続されたサブ配電装置5A,5Bを通じて、電力系統8から各ストリング10A,10Bに入力される電力の分配や、各ストリング10A,10Bから電力系統8に出力される電力の統合などを制御する。配電装置5およびサブ配電装置5A,5Bは、上位システム6に接続されたGCU2と、各ストリング10を制御するSCU11との協働によって、複数のストリング10が組み込まれた電源システム1が全体として1つの電源装置として機能するように制御される。
例えば、本実施形態では、配電装置5の下流側、つまり、各ストリング10A,10B側は、直流電流で制御されている。配電装置5の上流側、つまり、電力系統8は、交流で制御されている。各ストリング10A,10Bの電圧は、配電装置5を通じて、電力系統8の電圧に対して概ね均衡するように制御されている。電力系統8よりも各ストリング10A,10Bの電圧が低くなるように制御されると、電力系統8から各ストリング10A,10Bに電流が流れる。このとき、各ストリング10A,10Bにおいてスイープ制御が行われると、適宜、電池モジュール30が充電される。電力系統8よりも各ストリング10A,10Bの電圧が高くなるように制御されると、各ストリング10A,10Bから電力系統8へ電流が流れる。このとき、各ストリング10A,10Bにおいてスイープ制御が行われると、適宜、電池モジュール30から放電される。配電装置5は、各ストリング10A,10Bの電圧を、電力系統8の電圧に対して均等に保ち、各ストリング10A,10Bに電流がほとんど流れないように制御することもできる。本実施形態では、このような制御は、ストリング10A,10Bが接続されたサブ配電装置5A,5B毎に制御されうる。例えば、ストリング10A,10B毎に電圧が調整されることによって、配電装置5に繋がれた複数のストリング10A,10Bのうち一部のストリング10には、ほとんど電流が流れないように制御することもできる。
この電源システム1では、配電装置5に並列に接続されたストリング10の数を増やすことにより、電源システム1全体としての容量を大きくできる。例えば、この電源システム1によれば、電力系統8の急な需要増を吸収しうるような出力を出したり、電力系統8の急な電力不足を補ったりするような大型のシステムを組むことができる。例えば、電源システム1の容量を大きくすることによって、電力系統8の大きな余剰電力を適宜に電源システム1の充電に廻すことができる。例えば、深夜の電力需要が低い時間帯で発電所の出力が余る場合や、大型の太陽光発電システムで発電量が急増するような場合には、電源システム1は、配電装置5を通じて余剰電力を吸収しうる。反対に、電力系統8に電力需要が急増するような場合でも、上位システム6からの指令に従い、配電装置5を通じて電源システム1から電力系統8に適宜に所要の電力を出力することができる。これによって、電源システム1によって、電力系統8の電力不足が適宜に補われる。
この電源システム1では、ストリング10に組み込まれた複数の電池モジュール30のうち、全ての電池モジュール30を常時接続する必要はない。上述のように電池モジュール30毎に強制スルー動作を実行することができるので、電池モジュール30に異常が生じた場合には、異常が生じた電池モジュール30をストリング10のスイープ制御から切り離すことができる。従って、この電源システム1では、電池モジュール30に用いられる電池は、必ずしも未使用の新しい電池である必要はない。
例えば、ハイブリッド車や電気自動車などの電動車両の駆動用電源として用いられた二次電池が適宜に再利用されうる。かかる駆動電源として用いられた二次電池は、例えば、10年程度使用されても、二次電池としての機能を十分に奏する。この電源システム1では、異常が生じた電池モジュール30を直ぐに切り離すことができるので、例えば、必要な所要の性能を奏することを確認して、電池モジュール30に組み込むとよい。電動車両の駆動用電源として用いられた二次電池は、順次回収される時期に来ている。電源システム1は、例えば、電動車両で1万台分の二次電池を組み込むようなこともでき、回収された二次電池を相当量吸収することができると考えられる。なお、電動車両の駆動用電源として用いられた二次電池の性能は、いつ劣化するか分からない。このような二次電池が電源システム1の電池モジュール30に再利用されるような場合には、電池モジュール30に不具合がいつ生じるか予測できない。
ここで提案される電源システム1によれば、スイープモジュール20を通じて電池モジュール30を適宜に切り離すことができる。このため、突発的に電池モジュール30や電池モジュール30に組み込まれた二次電池に不具合が生じても電源システム1全体は止める必要がない。
<充電制御処理>
充電制御処理では、1つのストリング10に設けられた複数の電池モジュール30の各々の性能が十分に活用されるように、各々の電池モジュール30にスイープ制御による充電が行われる。図5を参照して、本実施形態の電源システム1が実行する充電制御処理について説明する。
充電制御処理では、1つのストリング10に設けられた複数の電池モジュール30の各々の性能が十分に活用されるように、各々の電池モジュール30にスイープ制御による充電が行われる。図5を参照して、本実施形態の電源システム1が実行する充電制御処理について説明する。
本実施形態で例示する充電制御処理は、ストリング10が備えるコントローラ(制御部)であるSCU11によって実行される。SCU11は、配電装置5から入力される電力の充電を開始させる指示をGCU2から入力すると、図5に例示する充電制御処理を開始する。ただし、充電制御処理を実行するコントローラはSCU11に限定されない。例えば、GCU2が充電制御処理を実行してもよいし、SCU11およびGCU2以外に充電制御処理を実行するコントローラが設けられてもよい。複数のコントローラ(例えば、SCU11と複数のスイープユニット50)が協働して充電制御処理を実行してもよい。
SCU11は、充電制御処理を開始すると、スイープ制御の条件を設定する(S1)。詳細には、SCU11は、スイープ制御においてメインライン7への接続対象とするスイープモジュール20の数P等に基づいて、ゲート信号GSの遅延時間DL、周期T等のスイープ制御の条件を設定する。SCU11は、設定した条件に従って、スイープ制御を開始する(S2)。充電制御処理中には、配電装置5からメインライン7を通じて電力が入力されている。従って、スイープ動作を実行する複数のスイープモジュール20内の電池モジュール30には、入力された電力が充電されていく。
SCU11は、ストリング10内の電池モジュール30毎に、SOC(State of Charge)を検出する(S4)。電池モジュール30のSOCを検出するための具体的な方法は、適宜選択できる。例えば、SCU11は、電圧検出部35によって検出される電池モジュール30の電圧に基づいてSOCを検出してもよい。この場合、温度検出部36によって検出される電池モジュール30の温度が電圧と共に考慮されたうえで、SOCが検出されてもよい。また、電池モジュール30を流れる電流が考慮されたうえで、SOCが検出されてもよい。また、SCU11は、電池モジュール30の開放電圧値と、電池モジュール30を流れる電流の積算値とに基づいて、SOCを検出してもよい。
SCU11は、ストリング10内の複数の電池モジュール30の中に、S4で検出されたSOCの大きさが特定の条件(高SOCの条件)を満たした電池モジュール30が存在するか否かを判断する(S5)。高SOCの条件とは、スイープ動作を実行させている複数のスイープモジュール20から、スイープ制御による充電を先に停止させるスイープモジュール20を決定するために設定されるSOCの条件である。つまり、電池モジュール30の充電が進んでSOCの値が増加した結果、増加したSOCの値が高SOCの条件を満たすと、条件を満たした電池モジュール30への充電が停止される。高SOCの条件は、適宜設定されればよい。例えば、検出されるSOCの値が閾値以上となることが、高SOCの条件とされてもよい。この場合、閾値は予め定められていてもよいし、作業者による操作指示等に応じて変更されてもよい。また、検出されるSOCの値が、ストリング10内の他の電池モジュール30のSOCの値に比べてまた、ストリング10内の全ての電池モジュール30のSOCの平均値に対する、検出されたSOCの割合が、特定の割合(例えば、α倍:α>1)以上となった場合に、高SOCの条件を満たすと判断されてもよい。スイープ制御による充電が行われている複数の電池モジュール30のうち、性能が低い電池モジュール30のSOCは、性能が高い電池モジュール30のSOCに比べて短時間で増加しやすい。高SOCの条件を満たした電池モジュール30(以下、「高SOCモジュール」という)が存在しなければ(S5:NO)、処理はS11へ移行する。
高SOCモジュールが存在する場合(S5:YES)、SCU11は、高SOCモジュールを備えたスイープモジュール20に対し、前述した強制スルー信号CSSを出力する(S7)。その結果、高SOCモジュールがメインライン7から切断されて、高SOCモジュールに対する充電が停止される。SCU11は、高SOCモジュールを備えたスイープモジュール20を、スイープ制御におけるメインライン7への接続対象から除外する(S8)。SCU11は、スイープ制御の条件を再設定し、再設定した条件でスイープ制御を継続させる(S9)。その結果、高SOCモジュールに対する充電が停止された状態で、他の電池モジュール30へのスイープ制御による充電が行われる。つまり、性能が低い電池モジュール30の充電が終了しても、性能が高い電池モジュール30の充電が適切に行われる。従って、性能が異なる複数の電池モジュール30が混在している場合でも、複数の電池モジュール30が十分に活用される。また、本実施形態では、高SOCモジュールに電流が流れない時間が増加する。従って、高SOCモジュール内の電池31がニッケル水素電池である場合には、電流が流れない間に、電池31の内部で発生した水素の吸収が進む。よって、電池31の内圧の上昇も抑制され易い。また、電流が流れない時間が増加するので、電池31の温度上昇も抑制され易い。また、高SOCモジュールに対する充電がスルーされることで、高SOCモジュールが過充電状態となる可能性が低下し、電池モジュールの寿命が長くなる。さらに、複数の電池モジュール30に放電を実行させる際に、SOCが低い電池モジュール30が過放電状態となる可能性も低下する。
次いで、SCU11は、各種処理を実行する(S11)。例えば、上位のコントローラ(本実施形態ではGCU2)からの指令が変更された場合には、SCU11は、変更された指令に基づいて、複数のスイープモジュール20の駆動条件を再設定する。次いで、SCU11は、スイープ制御による充電を終了させる指示が入力されたか否かを判断する(S12)。入力されていなければ(S12:NO)、処理はS4へ戻り、スイープ制御による充電が継続される。終了指示が入力されると(S12:YES)、充電制御処理は終了する。
上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、上記実施形態では、複数の電池モジュール30の各々のSOCが、SCU11によって検出される。しかし、他のコントローラ(例えば、スイープユニット50)によってSOCが検出されてもよい。
なお、図5のS2でスイープ制御を実行する処理は、「第1処理」の一例である。図5のS4,S5,S7~S9で、高SOCモジュールをメインライン7から切断しつつスイープ制御による充電を継続させる処理は、「第2処理」の一例である。
以上、具体的な実施形態を挙げて本発明を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に記載した実施形態を様々に変形、変更したものが含まれる。
1 電源システム
5 配電装置
7 メインライン
10 ストリング
11 SCU
20 スイープモジュール
30 電池モジュール
31 電池
35 電圧検出部
36 温度検出部
40 電力回路モジュール
41 第1スイッチング素子
42 第2スイッチング素子
50 スイープユニット(SU)
5 配電装置
7 メインライン
10 ストリング
11 SCU
20 スイープモジュール
30 電池モジュール
31 電池
35 電圧検出部
36 温度検出部
40 電力回路モジュール
41 第1スイッチング素子
42 第2スイッチング素子
50 スイープユニット(SU)
Claims (2)
- 少なくとも外部から入力される電力を通電するメインラインと、
前記メインラインに接続された複数のスイープモジュールと、
制御部と、
を備え、
前記スイープモジュールは、
少なくとも1つの電池を備えた電池モジュールと、
前記電池モジュールと前記メインラインの間の接続および切断を切り替える少なくとも1つのスイッチング素子を備えた電力回路モジュールと、
を備え、
前記制御部は、
前記スイッチング素子を制御するゲート信号を前記電力回路モジュールに出力することで、複数の前記電池モジュールのうち、前記メインラインに接続させる前記電池モジュールを順次切り替えるスイープ制御を実行する第1処理と、
前記メインラインを通じた外部からの電力の入力中に、前記電池モジュール毎にSOCを検出し、検出したSOCの大きさが高SOCの条件を満たす前記電池モジュールである高SOCモジュールを前記メインラインから切断すると共に、前記高SOCモジュールを備えた前記スイープモジュールを除外して前記スイープ制御を実行させる第2処理と、
を実行するように構成された、電源システム。 - 前記電力回路モジュールの前記スイッチング素子は、
前記メインラインに対して直列に、かつ、前記電池モジュールに対して並列に取り付けられた第1スイッチング素子と、
前記メインラインに前記電池モジュールを直列に接続する回路に設けられた第2スイッチング素子と
を有し、
前記制御部は、
複数の前記スイープモジュールのうち、前記メインラインへの接続対象とする複数の前記スイープモジュールの各々に対して、前記第1スイッチング素子および前記第2スイッチング素子のオンとオフの交互駆動を制御する前記ゲート信号を、定められた遅延時間毎に順に出力することで、前記スイープ制御を実行し、
前記高SOCモジュールを前記メインラインから切断する場合に、前記第1スイッチング素子のオン状態と前記第2スイッチング素子のオフ状態を維持させる信号を、前記高SOCモジュールを備えた前記スイープモジュールに出力するように構成された、請求項1に記載の電源システム。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018222766A JP7022346B2 (ja) | 2018-11-28 | 2018-11-28 | 電源システム |
US16/686,579 US11050247B2 (en) | 2018-11-28 | 2019-11-18 | Power supply system |
EP19210339.8A EP3661005B1 (en) | 2018-11-28 | 2019-11-20 | Power supply system |
CN201911172295.XA CN111245043A (zh) | 2018-11-28 | 2019-11-26 | 电源系统 |
KR1020190154829A KR102299782B1 (ko) | 2018-11-28 | 2019-11-27 | 전원 시스템 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018222766A JP7022346B2 (ja) | 2018-11-28 | 2018-11-28 | 電源システム |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020089141A JP2020089141A (ja) | 2020-06-04 |
JP7022346B2 true JP7022346B2 (ja) | 2022-02-18 |
Family
ID=68732694
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018222766A Active JP7022346B2 (ja) | 2018-11-28 | 2018-11-28 | 電源システム |
Country Status (5)
Country | Link |
---|---|
US (1) | US11050247B2 (ja) |
EP (1) | EP3661005B1 (ja) |
JP (1) | JP7022346B2 (ja) |
KR (1) | KR102299782B1 (ja) |
CN (1) | CN111245043A (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6960897B2 (ja) | 2018-10-31 | 2021-11-05 | 株式会社豊田中央研究所 | 電源装置 |
JP6898904B2 (ja) | 2018-10-31 | 2021-07-07 | 株式会社豊田中央研究所 | 電源装置 |
JP6960898B2 (ja) * | 2018-10-31 | 2021-11-05 | 株式会社豊田中央研究所 | 電源装置 |
JP7089673B2 (ja) * | 2018-11-29 | 2022-06-23 | トヨタ自動車株式会社 | 電源システム |
JP7501421B2 (ja) | 2021-03-26 | 2024-06-18 | トヨタ自動車株式会社 | 電源システム、及び制御装置 |
JP7480760B2 (ja) | 2021-08-24 | 2024-05-10 | トヨタ自動車株式会社 | 電源システム、及びエネルギーマネジメント方法 |
JP2023031439A (ja) | 2021-08-25 | 2023-03-09 | トヨタ自動車株式会社 | 電源システム |
JP7480762B2 (ja) | 2021-08-25 | 2024-05-10 | トヨタ自動車株式会社 | 電源システム |
JP7480761B2 (ja) | 2021-08-25 | 2024-05-10 | トヨタ自動車株式会社 | 電源システム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182782A (ja) | 2017-04-03 | 2018-11-15 | 株式会社豊田中央研究所 | 電源装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003901730A0 (en) * | 2003-04-11 | 2003-05-01 | Cochlear Limited | Power management system |
JP2011182599A (ja) * | 2010-03-03 | 2011-09-15 | Toshiba Corp | 直列充放電システム及び直列充放電システムにおけるセルの切り離し方法 |
CN103891093B (zh) * | 2011-10-20 | 2016-12-14 | 日立汽车系统株式会社 | 电池系统的监视装置及具备其的蓄电装置 |
JP5605401B2 (ja) | 2012-07-20 | 2014-10-15 | トヨタ自動車株式会社 | 蓄電システムおよび制御方法 |
JPWO2014132321A1 (ja) * | 2013-02-26 | 2017-02-02 | 株式会社日立製作所 | 電源装置 |
JP5615995B1 (ja) * | 2013-03-29 | 2014-10-29 | 三洋電機株式会社 | 電源システム及び電源システムの充放電制御方法 |
US9340120B2 (en) * | 2013-10-11 | 2016-05-17 | Ford Global Technologies, Llc | System and method for adjusting battery pack state of charge limits |
US10056653B2 (en) * | 2013-12-10 | 2018-08-21 | Sanyo Electric Co., Ltd. | Battery management device and power supply device |
US10286801B2 (en) * | 2014-08-18 | 2019-05-14 | Toyota Jidosha Kabushiki Kaisha | Charge system to improve battery operational life |
US20170057372A1 (en) * | 2015-08-25 | 2017-03-02 | Ford Global Technologies, Llc | Electric or hybrid vehicle battery pack voltage measurement |
JP6531745B2 (ja) | 2016-10-27 | 2019-06-19 | 株式会社豊田中央研究所 | 電源装置及び電源装置の制御方法 |
US10901042B2 (en) * | 2017-04-25 | 2021-01-26 | GM Global Technology Operations LLC | Method and apparatus for evaluating battery cells containing materials that exhibit voltage hysteresis |
-
2018
- 2018-11-28 JP JP2018222766A patent/JP7022346B2/ja active Active
-
2019
- 2019-11-18 US US16/686,579 patent/US11050247B2/en active Active
- 2019-11-20 EP EP19210339.8A patent/EP3661005B1/en active Active
- 2019-11-26 CN CN201911172295.XA patent/CN111245043A/zh active Pending
- 2019-11-27 KR KR1020190154829A patent/KR102299782B1/ko active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018182782A (ja) | 2017-04-03 | 2018-11-15 | 株式会社豊田中央研究所 | 電源装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3661005A1 (en) | 2020-06-03 |
KR20200064012A (ko) | 2020-06-05 |
CN111245043A (zh) | 2020-06-05 |
KR102299782B1 (ko) | 2021-09-08 |
JP2020089141A (ja) | 2020-06-04 |
US20200169080A1 (en) | 2020-05-28 |
EP3661005B1 (en) | 2021-12-08 |
US11050247B2 (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7022346B2 (ja) | 電源システム | |
JP7100804B2 (ja) | 電源システム | |
JP7025716B2 (ja) | 電源システム | |
JP7145391B2 (ja) | 電源システム | |
JP7129008B2 (ja) | 電源システム | |
JP7089673B2 (ja) | 電源システム | |
JP7054453B2 (ja) | 電源システム | |
JP7216889B2 (ja) | 電源システム | |
JP7121908B2 (ja) | 電源システム | |
JP2020089173A (ja) | 電源システム | |
JP2021151056A (ja) | 電源システム | |
JP2021168556A (ja) | 電源システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210325 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220119 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7022346 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |