JP5615995B1 - 電源システム及び電源システムの充放電制御方法 - Google Patents

電源システム及び電源システムの充放電制御方法 Download PDF

Info

Publication number
JP5615995B1
JP5615995B1 JP2014530036A JP2014530036A JP5615995B1 JP 5615995 B1 JP5615995 B1 JP 5615995B1 JP 2014530036 A JP2014530036 A JP 2014530036A JP 2014530036 A JP2014530036 A JP 2014530036A JP 5615995 B1 JP5615995 B1 JP 5615995B1
Authority
JP
Japan
Prior art keywords
switch
power supply
battery
unit
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014530036A
Other languages
English (en)
Other versions
JPWO2014156041A1 (ja
Inventor
山口 昌男
昌男 山口
貴功 原田
貴功 原田
和宏 瀬尾
和宏 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2014530036A priority Critical patent/JP5615995B1/ja
Application granted granted Critical
Publication of JP5615995B1 publication Critical patent/JP5615995B1/ja
Publication of JPWO2014156041A1 publication Critical patent/JPWO2014156041A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/441Methods for charging or discharging for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

電源システムは、外部電源(3)と複数の電池ユニット(2)と接続ユニット(1)とを備え、外部電源(3)から各電池ユニット(2)に電力を供給して充電し、外部電源(3)の出力低下状態で、電池ユニット(2)から駆動対象機器(40)に電力を供給する。接続ユニット(1)は、複数の電池ユニット(2)を並列接続する並列ライン(8)と、各電池ユニット(2)を並列ライン(8)に接続する接続部(9)と、接続部(9)の接続状態を制御する制御部(10)とを備え、外部接続スイッチ(7)を介して外部電源(3)の電力供給ライン(5)に接続している。制御部(10)は、各電池ユニット(2)を均等化しながらプリチャージするバランス充電モードと、通常充電モードと、満充電モードと、各電池ユニット(2)から電力供給ライン(5)に電力を供給する通常放電モードと、放電停止モードと、駆動停止モードを切り換えて複数の電池ユニット(2)を充放電する。

Description

本発明は、複数の電池セルを備える電池ユニットを商用電源から供給される電力で充電し、商用電源から供給される電力が低下した際に、充電された電池ユニットの電力を出力する電源システムに関し、とくに、商用電源の電力を複数の電池ユニットに蓄えて出力を大きくしている電源システム及び電源システムの充放電制御方法に関する。
携帯電話の基地局や信号機などに接続されて、商用電源の停電時には電力を供給するバックアップ用電源装置が知られている。このようなバックアップ電源は、駆動対象機器と接続されており、商用電源に異常が生じたことを検出すると、駆動対象機器に対して所定の電力を供給するよう構成される。
国際公開第2012/043723号
このようなバックアップ電源装置においては、より大容量化して長時間の電力供給を可能とするために、複数の電池ユニットを並列に接続することが考えられる。しかしながら、この場合は、複数の電池ユニットの出力電圧が一致しないと、出力の一部が駆動対象機器に対して供給されずに、他の電池ユニットに供給される等の不具合が生じるという問題があった。
本発明は、従来のこのような問題点を解決するためになされたものであり、その主な目的は、複数の電池ユニットを並列接続して大容量としながら、これらの電池ユニットを均等に充電して安定的に利用可能とする電源システム及び電源システムの充放電制御方法を提供することにある。
上記課題を解決するために、本発明の電源システムによれば、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、直列に接続された複数の電池セル21を備える複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して前記外部電源3に接続する接続ユニット1とを備え、前記外部電源3から各電池ユニット2に電力を供給して、前記電池セル21を充電すると共に、前記外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から駆動対象機器40に電力を供給するようにしている。前記外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、前記電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、前記電力供給ライン5に接続されて、前記接続ユニット1を接続する接続ライン6と、前記接続ライン6上に設けられ、前記電力供給ライン5の電圧が所定値以下になるとオフとなる外部接続スイッチ7とを備えている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、前記外部電源3の接続ライン6に接続されており、前記接続部9は、前記並列ライン8と各電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、前記外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から前記外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記通常放電モードにおいて、前記電力供給ライン5の電圧が前記所定値以下になると、前記外部接続スイッチ7がOFFに制御されて、各電池ユニット2からの放電を停止する放電停止モードと、前記放電停止モードにおいて、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニット2を充放電している。
上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
また、本発明の電源システムによれば、前記満充電モードにおいて、前記電池ユニット2のいずれかの電池セル21の残容量が満充電状態から所定の割合低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2をプリチャージする再充電モードに移行して該電池ユニットを再充電することができる。
上記構成によると、満充電モードが長時間にわたって継続されて、いずれかの電池セルの残容量が減少すると電池ユニットの充電を再開するので、複数の電池ユニットの残容量を常に十分な残容量に保持でき、停電時等の非常時において、長時間にわたって電力供給できる。また、再充電モードにおいて、電池ユニットをプリチャージすることで、大きな突入電流を防止できる。
さらに、本発明の電源システムによれば、前記満充電モード又は前記再充電モードにおいて、前記外部電源3の出力電圧が低下すると、各電池ユニット2の電力が、前記第二整流素子17とON状態の前記第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される予備放電モードによって複数の電池ユニット2から放電することができる。
上記構成によると、前記満充電モード又は前記再充電モードにおいて、外部電源の出力電圧が低下すると、各電池ユニットの電力が、第二整流素子と、ON状態の第一スイッチと、ON状態の外部接続スイッチとを介して電力供給ラインに供給される予備放電モードによって複数の電池ユニットから放電するので、商用電源や外部電源の電圧低下を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が低下する状態で速やかに電力供給ラインに電力を供給できる。
さらに、本発明の電源システムによれば、前記接続ユニット1が、前記外部電源3の接続ライン6への通電状態を検出する電流検出部25を備えて、前記予備放電モードにおいて、前記電流検出部25が前記接続ライン25への放電電流を検出すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2の電力が、ON状態の第二スイッチ12とON状態の第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される通常放電モードに移行して複数の電池ユニット2から放電することができる。
上記構成によると、電流検出部が放電電流を検出する状態で、各接続部の第一スイッチをON、第二スイッチをON、第三スイッチをOFFとして、予備放電モードから通常放電モードに切り換えるので、接続ラインへの放電状態を確認しながら通常放電モードに切り換えできる。また、通常放電モードにおいては、ON状態の第二スイッチとON状態の第一スイッチを介して各電池ユニットから放電するので、低抵抗な状態で安定して放電できる。
さらに、本発明の電源システムによれば、前記通常充電モードにおいて、前記外部電源3の出力電圧が低下すると、各電池ユニット2の電力が、ON状態の前記第二スイッチ12とON状態の前記第一スイッチ11を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記外部接続スイッチ7を介して前記外部電源3の電力供給ライン5に供給される通常放電モードに移行して複数の電池ユニット2から放電することができる。
上記構成によると、通常充電モードにおいて外部電源の出力電圧が低下すると、各電池ユニットの電力がON状態の第二スイッチとON状態の第一スイッチとON状態の外部接続スイッチとを介して電力供給ラインに供給される通常放電モードに移行するので、商用電源や外部電源の電圧低下を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が低下する状態で速やかに電力供給ラインに電力を供給できる。
さらに、本発明の電源システムによれば、前記通常放電モードにおいて、前記外部電源3の出力電圧が復帰すると、前記外部電源3の電力供給ライン5から供給される電力がON状態の前記外部接続スイッチ7を介して前記並列ライン8に供給されると共に、該並列ライン8の電力がON状態の前記第一スイッチ11とON状態の前記第二スイッチ12を介して各電池ユニット2に供給される通常充電モードに移行して複数の電池ユニット2を充電することができる。
上記構成によると、通常放電モードにおいて外部電源の出力電圧が復帰すると、電力供給ラインの電力がON状態の外部接続スイッチとON状態の第一スイッチとON状態の第二スイッチとを介して各電池ユニットに供給される通常充電モードに移行するので、商用電源や外部電源の電圧復帰を検出する機構を設けることなく、また、制御部で接続部を切り換えることなく、外部電源の出力電圧が復帰する状態で速やかに電池ユニットに電力を供給して充電できる。
さらに、本発明の電源システムによれば、前記バランス充電モードにおいて、各電池ユニット2間の電圧差が所定の第二電圧差以上の場合に、前記外部接続スイッチ7が前記制御部10からの信号でOFFに制御され、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2間で電圧差を低減させる均等化モードに移行して複数の電池ユニット2を均等化することができる。
上記構成により、並列接続された複数の電池ユニットの電圧のばらつきを解消できる。とくに、電圧差の大きい電池ユニット同士を速やかに均等化できる。このように、均等化モードを設けて、予め電池ユニット間の電圧差を均等化することで、充電状態のばらつきを抑制できる。
さらに、本発明の電源システムによれば、前記バランス充電モードにおいて、前記電力供給ライン5の電圧と各電池ブロック20の電圧との差が所定の電圧差以下になると、前記外部接続スイッチ7が前記制御部10からの信号でOFFに切り換えられ、前記制御部10が、各接続部9の前記第一スイッチ11をOFFからONに、各接続部9の前記第二スイッチ12をOFFからONに、各接続部9の前記第三スイッチ13をONからOFFに切り換えた後、前記外部接続スイッチ7が前記制御部10からの信号でONに切り換えられて前記通常充電モードに移行することができる。
上記構成により、バランス充電モードから通常充電モードに切り換える制御において、外部接続スイッチがOFFの状態で各接続部の第一スイッチをOFFからONに、第二スイッチをOFFからONに、第三スイッチをONからOFFに切り換えるので、複数のスイッチを順番に切り換える工程で、一部の電池ユニットのみが電力供給ラインに接続された状態となって、この電池ユニットに過電流が流れる事態を確実に防止できる。
さらに、本発明の電源システムによれば、前記駆動停止モードにおいて、前記外部電源3の出力電圧が復帰すると、前記外部接続スイッチ7がONに制御され、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして前記バランス充電モードに移行して各電池ユニット2を充電することができる。
上記構成により、第一整流素子を経由して電池ユニットの充電を可能としつつ、外部電源の電圧低下が生じても、第一スイッチをOFFさせたことで放電が阻止されるので、電池ユニットからの放電を阻止して、放電によって電池ユニット間の電圧差が拡大する事態を回避できる共に、電池ユニットの電圧を同じにして充電することができる。
さらに、本発明の電源システムによれば、前記外部電源3が、前記電源回路4の出力電圧を切り換えながら前記電池ユニット2を充電することができる。
上記構成により、電池ユニットの充電状態において、電池ユニットの充電電圧が最適な電圧となるように電源回路の出力電圧をコントロールして、複数の電池ユニットを理想的に充電できる。
さらに、本発明の電源システムによれば、前記第一整流素子16及び/又は第二整流素子17をダイオードとすることができる。
さらに、本発明の電源システムによれば、前記第一スイッチ11及び/又は第二スイッチ12をトランジスタとすることができる。
さらに、本発明の電源システムによれば、前記第一スイッチ11及び/又は第二スイッチ12をFETとし、前記第一整流素子16及び/又は第二整流素子17を、前記FETに内蔵された寄生ダイオードとすることができる。
上記構成により、予めFETに備えられた寄生ダイオードを利用した整流作用が図られ、システム構成を簡素化できる。
本発明の他の電源システムによれば、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して外部に出力する接続ユニット1とを備え、前記接続ユニット1が、商用電源30から供給される電力を直流に変換して駆動対象機器40に出力する外部電源3の電力供給ライン5に接続されて、この電力供給ライン5から供給される電力で、前記電池ユニット2の電池セル21を充電すると共に、外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から電力供給ライン5に電力を供給するようにしている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、電力供給ライン5の電圧が所定値以下になるとオフになる外部接続スイッチ7を介して外部電源3の電力供給ライン5に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記通常放電モードにおいて、前記電力供給ライン5の電圧が前記所定値以下になると、外部接続スイッチ7がOFFに制御されて、各電池ユニット2からの放電を停止する放電停止モードと、前記放電停止モードにおいて、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニットを充放電している。
上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
さらに、本発明の他の電源システムによれば、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して外部に出力する接続ユニット1とを備え、前記接続ユニット1が、商用電源30から供給される電力を直流に変換して駆動対象機器40に出力する外部電源3の電力供給ライン5に接続されて、この電力供給ライン5から供給される電力で、前記電池ユニット2の電池セル21を充電すると共に、外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から電力供給ライン5に電力を供給するようにしている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、外部電源3の電力供給ライン5に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。電源システムは、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージするバランス充電モードと、前記バランス充電モードの後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる通常充電モードと、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する満充電モードと、前記満充電モードにおいて、外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から外部電源3の電力供給ライン5に電力を供給する通常放電モードと、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする駆動停止モードとを切り換えて複数の電池ユニットを充放電している。
上記構成により、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、バランス充電モードにおいて、電圧差のある電池ユニットを均等化しながらプリチャージした後、通常充電モードで満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、バランス充電モードで各電池ユニットをプリチャージした後、通常充電モードに切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
さらに、本発明の電源システムの充放電制御方法は、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、複数の電池セル21を直列に接続してなる複数の電池ユニット2と、前記複数の電池ユニット2を並列に接続して前記外部電源3に接続する接続ユニット1とを備え、前記外部電源3から各電池ユニット2に電力を供給して、前記電池セル21を充電とすると共に、前記外部電源3から駆動対象機器40に出力される電圧が低下する状態で、前記電池ユニット2から駆動対象機器40に電力を供給するようにしてなる電源システムの充放電を制御する方法である。前記外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、前記電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、前記電力供給ライン5に接続されて、前記接続ユニット1を接続する接続ライン6と、前記接続ライン6上に設けられ、前記電力供給ライン5の電圧が所定値以下になるとオフとなる外部接続スイッチ7とを備えている。前記接続ユニット1は、前記複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を前記並列ライン8に接続する接続部9と、前記接続部9の接続状態を制御する制御部10とを備えており、前記並列ライン8は、前記外部電源3の接続ライン6に接続されており、前記接続部9は、前記並列ライン8と前記電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、前記第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、前記第一スイッチ11と並列に接続され、かつ前記並列ライン8から該電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、前記第二スイッチ12と並列に接続され、かつ該電池ユニット2から前記並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。さらに、電源システムの充放電制御方法は、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をONとして、各電池ユニット2を均等化しながらプリチャージする工程と、各電池ユニット2を均等化しながらプリチャージする工程の後、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、前記電池ユニット2を満充電させる工程と、各電池ユニット2が満充電されると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとして、前記電池ユニット2の充電を停止する工程と、前記外部電源3の出力電圧が低下すると、前記制御部10が、各接続部9の前記第一スイッチ11をON、前記第二スイッチ12をON、前記第三スイッチ13をOFFとして、各電池ユニット2から前記外部電源3の電力供給ライン5に電力を供給する工程と、各電池ユニット2から前記電力供給ライン5に電力を供給する状態で、前記電力供給ライン5の電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニット2からの放電を停止する工程と、各電池ユニット2からの放電を停止する状態で、前記電池ユニット2のセル電圧が所定値以下になると、前記制御部10が、各接続部9の前記第一スイッチ11をOFF、前記第二スイッチ12をOFF、前記第三スイッチ13をOFFとする工程とで複数の電池ユニット2を充放電する。
これにより、並列接続された複数の電池ユニットを均等化しながら充電させることができる。とくに、電圧差のある電池ユニットを均等化しながらプリチャージした後、満充電することで、充電状態のばらつきを抑制しながら満充電して、放電時に電力が電池ユニット間で授受される事態を回避できる。また、均等化しながらプリチャージする工程では、各電池ユニットをプリチャージした後、通常の充電工程に切り換えて満充電させるので、電池ユニットの充電に多くの電力を割くことで駆動対象機器への電力供給が不安定となる事態も回避でき、駆動対象機器の動作を継続しつつ電池ユニットの充電を並行して行うホットスタンバイも可能となる。
図1は、本発明の一実施の形態に係る電源システムを示すブロック図である。 図2は、図1に示す電源システムにおける充放電の過程を示すフローチャートである。 図3は、図1に示す電源システムのバランス充電モードにおける制御状態を示すブロック図である。 図4は、図1に示す電源システムの均等化モードにおける制御状態を示すブロック図である。 図5は、接続ユニットに電圧が高い電池ユニットが接続された状態における均等化を示す図である。 図6は、接続ユニットに電圧が低い電池ユニットが接続された状態における均等化を示す図である。 図7は、図1に示す電源システムの通常充電モード(通常放電モード)における制御状態を示すブロック図である。 図8は、図1に示す電源システムの満充電モード(予備放電モード)における制御状態を示すブロック図である。 図9は、図1に示す電源システムの再充電モード(予備放電モード)における制御状態を示すブロック図である。 図10は、図1に示す電源システムの放電停止モードにおける制御状態を示すブロック図である。 図11は、図1に示す電源システムが複数の電池ユニットを充放電する工程を示すフローチャート図である。 図12は、図1に示す電源システムが複数の電池ユニットを充放電する工程を示すフローチャート図である。
(実施の形態1)
以下、本発明の実施の形態を図面に基づいて説明する。ただし、以下に示す実施の形態は、本発明の技術思想を具体化するための電源システム及び電源システムの充放電制御方法を例示するものであって、本発明は電源システム及び電源システムの充放電制御方法を以下のものに特定しない。なお、特許請求の範囲に示される部材を、実施の形態の部材に特定するものでは決してない。特に実施の形態に記載されている構成部材の寸法、材質、形状、その相対的配置等は特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。
本発明の電源システムは、多数の二次電池を備えるバックアップ用電源であって、たとえば、携帯電話の基地局や信号機などに設置されて、停電時等の非常時に電源として使用される。この電源システムは、商用電源から正常に電力が供給される状態にあっては、商用電源から供給される交流電力を、所定の電圧の直流電力に変換して駆動対象機器である負荷に供給し、また、内蔵される二次電池を充電し、停電時等の非常時において、商用電源の出力が低下する状態では、内蔵する二次電池から駆動対象機器となる負荷に電力を供給して駆動対象機器を駆動する。
図1に示す電源システムは、外部の商用電源30に接続されて、商用電源30から供給される電力を変換して駆動対象機器40に供給する外部電源3と、直列に接続された複数の電池セル21を備える複数の電池ユニット2と、複数の電池ユニット2を並列に接続して外部電源3に接続する接続ユニット1とを備えている。この電源システムは、外部電源3から出力される電力を駆動対象機器40に供給して駆動対象機器40を動作状態としながら、外部電源3から各電池ユニット2に供給される電力で電池セル21を充電する。また、電源システムは、外部電源3から駆動対象機器40に出力される電圧が所定値以下に低下する状態では、電池ユニット2から駆動対象機器40に電力を供給して駆動対象機器40を駆動する。
図の電源システムは、6組の電池ユニット2を接続ユニット1に接続している。このように、複数の電池ユニット2を並列に接続する電源システムは、電源システム全体の容量を大きくして、駆動対象機器40に電力を供給できる時間を長くできる。さらに、電源システムは、接続ユニット1に接続される電池ユニット2を、メンテナンスや故障等により交換し、あるいは、用途に応じて数を増減することもできる。したがって、電源システムは、接続ユニットに接続される複数の電池ユニットの数を6組には限定せず、2〜5組とすることも、7組以上とすることもできる。
(外部電源3)
外部電源3は、商用電源30から供給される交流を直流に変換して出力し、この直流電力を駆動対象機器40に供給する。図1に示す外部電源3は、商用電源30から供給される交流を、駆動対象機器40を駆動する所定の出力電圧の直流に変換する電源回路4と、この電源回路4の出力側に接続されて、外部の駆動対象機器40に電力を供給する電力供給ライン5と、電源回路4の出力側において、電力供給ライン5に接続された接続ライン6と、接続ライン6上に設けられた外部接続スイッチ7とを備えている。
電源回路4は、商用電源30の交流を、所定の電圧の直流に変換して出力する回路で、たとえば、AC/DCコンバータが使用できる。AC/DCコンバータである電源回路4は、たとえば、100V〜250Vの商用電源30の交流を、40V〜56Vの直流に変換して出力する。電源回路4の出力は、駆動対象機器40を動作させる電力を考慮して特定される。図に示す電源回路4は、出力電圧を50〜53Vとして、駆動対象機器40を動作できる出力としている。この電源回路4は、商用電源30が停電しない状態では、電力供給ライン5を介して駆動対象機器40に電力を供給する。さらに、図に示す外部電源3は、電源回路4の出力電圧をコントロールするコントローラー31を備えている。このコントローラー31は、通信回線32を介して接続ユニット1に接続されており、接続ユニット1から入力される要求信号に応じて電源回路4の出力電圧をコントロールする。この電源システムは、電池ユニット2の充電状態において、電池ユニット2の充電電圧が最適な電圧となるように電源回路4の出力電圧をコントロールして、複数の電池ユニット2を理想的に充電できる。ただ、外部電源は、必ずしも外部電源の出力電圧をコントローラーで調整できる構造とする必要はない。この外部電源は、電源回路から一定の電圧を出力する。このような電源回路としては、リチウムイオン電池の充電に利用される、最大の電流、最大の電圧を規制した定電流(MAX電流0.5〜1C程度)・定電圧(MAX4.2V/セル程度)の電源回路を利用することができる。
図1の外部電源3は、電源回路4の出力側に、駆動対象機器40に接続される電力供給ライン5を接続している。また、外部電源3は、電源回路4の出力側において、電力供給ライン5を分岐させて接続ライン6を接続しており、この接続ライン6に接続ユニット1を接続している。さらに、外部電源3は、電力供給ライン5と接続ユニット1との接続状態をコントロールするために、接続ライン6上に外部接続スイッチ7を設けている。この外部接続スイッチ7は、FETやトランジスタ等の半導体スイッチング素子、あるいは、コンタクタやリレー等が使用できる。外部接続スイッチ7は、ON状態において、電力供給ライン5と接続ユニット1とを接続して充電電流や放電電流を許容し、OFF状態においては、電力供給ライン5と接続ユニット1とを遮断して充電電流や放電電流を遮断する。
接続ライン6に設けられた外部接続スイッチ7は、外部電源3に内蔵されたコントローラー31でON/OFFに制御される。このコントローラー31は、図示しないが、電力供給ライン5から動作電力が供給される。コントローラー31は、たとえば、電力供給ライン5から供給される電力をDC/DCコンバータで降圧して動作電力が供給される。このコントローラー31は、電力供給ライン5の電圧が所定値以下になって、動作電力が供給されなくなると停止する。外部接続スイッチ7は、電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値(たとえば42V)以下になると、コントローラー31が停止してOFFとなる。コントローラー31は、外部電源3の動作状態において、すなわち、商用電源30が停電しない状態においては、電源回路4から電力供給ライン5に出力される電力で駆動され、外部電源3の非動作状態、たとえば、商用電源30が停電する状態等においては、接続ライン6とON状態の外部接続スイッチ7を介して接続ユニット1から電力供給ライン5に供給される電力で駆動される。さらに、コントローラー31は、通信回線32を介して接続ユニット1から入力される各種の電圧データに基づいて外部接続スイッチ7のON/OFFを制御する。
コントローラー31は、接続ユニット1から入力される各電池ユニット2の電圧が所定の範囲内にあって、正常に充放電される状態では外部接続スイッチ7をONに保持し、いずれかの電池ユニット2の電圧が最低電圧以下になると外部接続スイッチ7をOFFに切り換え、接続ユニット1を電力供給ライン5から遮断して電池ユニット2の過放電を防止する。さらに、コントローラー31は、接続ユニット1から入力される各電池ユニット2の電池情報等から異常を検出し、あるいは、接続ユニット1から異常信号が入力されると、外部接続スイッチ7をOFFに切り換えて接続ユニット1を電力供給ライン5から遮断することもできる。ただ、コントローラーは、通信回線を介して接続ユニットから入力される制御信号に基づいて外部接続スイッチのON/OFFを切り換えることもできる。このコントローラーは、接続ユニットに制御されて、外部接続スイッチのON/OFFを切り換える。
ここで、外部電源3の非動作状態、たとえば、商用電源30が停電する状態等においては、接続ユニット1から電力供給ライン5に電力が供給され、これらの電力である電力供給ライン5の電力によりコントローラー31が駆動され、外部接続スイッチ7がONを維持する。このため、外部電源3の動作状態となるまで、すなわち、商用電源30の停電が復旧するまでは外部接続スイッチ7はONに切り換えられることはない。外部電源3が動作状態となって電力供給ライン5に電力が出力されると、コントローラー31が駆動されて、外部接続スイッチ7がONに切り換えられる。ただ、コントローラーは、電力供給ラインから電力が供給されない状態において、通信回線を介して接続ユニットから動作電力を供給して駆動することもできる。さらに、図示しないが、外部電源は、コントローラーの電源ラインにコンデンサー等の予備電源を接続して、電力供給ラインの電圧低下時においても、予備電源から一時的に電力供給することで、コントローラーの停止を遅延することもできる。
電力供給ライン5は、外部接続スイッチ7のON状態では、電源回路4の出力側と接続ユニット1の出力側の両方に接続される。したがって、電源回路4の出力電圧と接続ユニット1の出力電圧は、ほぼ等しく設定されている。この構造の電源システムは、停電により電源回路4の出力電圧が低下する状態では、ON状態の外部接続スイッチ7を介して、接続ユニット1から電力供給ライン5に電力が供給されて、駆動対象機器40に電力が供給され、また、接続ユニット1の出力電圧が低下する状態では、ON状態の外部接続スイッチ7を介して、電力供給ライン5から接続ユニット1に電力が供給されて、接続ユニット1に接続された複数の電池ユニット2を充電する。したがって、この電源システムは、外部接続スイッチ7をON状態として、接続ユニット1の出力側を電力供給ライン5に常に接続した状態とすることで、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、電源回路4の出力電圧が、接続ユニット1の出力側より低下する状態、または、所定値(例えば、駆動対象機器の最低動作電圧)以下に低下する状態では、速やかに電力供給ライン5に電力を供給できる。
ただ、電源システムは、商用電源の停電や電源回路の故障等で電源回路の出力電圧が低下したことを検出する機構を備えることもできる。この電源システムは、電池ユニットの充電時を除く通常時においては、外部接続スイッチをOFF状態とし、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定値以下に低下したことを検出すると、外部接続スイッチをONに切り換えて、接続ユニットから電力供給ラインに電力を供給することができる。
(電池ユニット2)
電池ユニット2は、複数の電池セル21を直列に接続してなる電池ブロック20と、この電池ブロック20を構成する電池セル21の状態を検出する検出回路22とを備えている。電池ブロック20は、好ましくは、複数の電池セル21を直列と並列に接続している。複数の電池セル21を直列と並列に接続してなる電池ブロック20は、出力電圧を高くしながら充放電の電流を大きくできる。電池ブロック20は、複数の電池セル21を直列に接続して、電池ユニット2の出力電圧を、外部電源3の電源回路4の出力電圧にほぼ等しくしている。電源回路4の出力は、電力供給ライン5に接続される駆動対象機器40を動作できる電圧に設定されるので、電池ユニット2の出力もこの電圧に設定される。電池ユニット2の出力電圧は、たとえば、40V〜56Vであって、約52Vに設定している。
電池セル21には、リチウムイオン電池やニッケル水素電池を使用する。ただ、電池セルには、ポリマー電池やニッケルカドミウム電池のように充電できる全ての電池を使用できる。電池セル21をリチウムイオン電池とする電池ブロック20においては、13個の電池セル21を直列に接続して出力電圧を約52Vにできる。電池セル21をニッケル水素電池とする電池ブロック20においては、43〜45個の電池セル21を直列に接続して出力電圧を51V〜54Vにできる。さらに、電池ブロック20は、並列に接続する電池セル21の数を多くして電流容量を大きくできる。電池ブロック20は、たとえば2.5kWの電力を、2時間〜6時間連続して電力供給ライン5に出力できるように、直列と並列に接続する電池セル21の個数を調整する。
検出回路22は、電池ブロック20を構成する各電池セル21の状態を検出し、検出された電池情報を接続ユニット1に伝送する。検出回路22は、所定のサンプリング周期で、電池セル21のセル電圧、電池ブロック20の出力電圧、電池ブロック20に流れる充放電電流、電池温度等の電池情報を検出し、検出した電池情報をデジタル信号に変換して接続ユニット1に出力する。
(接続ユニット1)
接続ユニット1は、複数の電池ユニット2を並列に接続しており、これらの電池ユニット2の充電及び放電をコントロールすると共に、並列に接続された複数の電池ユニット2を均等化する。図1に示す接続ユニット1は、複数の電池ユニット2を並列に接続する並列ライン8と、各電池ユニット2を並列ライン8に接続する接続部9と、各接続部9の接続状態を制御する制御部10とを備えている。接続ユニット1は、各接続部9の接続状態を制御部10で制御して、複数の電池ユニット2の充放電を制御し、また、並列ライン8に接続された複数の電池ユニット2を均等化する。
(並列ライン8)
並列ライン8は、複数の電池ユニット2の出力に接続されて、複数の電池ユニット2を並列に接続している。さらに、並列ライン8は、外部電源3の接続ライン6に接続されている。接続ライン6に接続される並列ライン8は、コントローラー31でON/OFFに制御される外部接続スイッチ7を介して外部電源3の電力供給ライン5に接続される。したがって、並列ライン8は、外部接続スイッチ7のON状態で電力供給ライン5に接続され、外部接続スイッチ7のOFF状態で電力供給ライン5から遮断される。電力供給ライン5に接続された並列ライン8は、電池ユニット2から出力される電力を電力供給ライン5に供給し、また、電力供給ライン5から供給される電力を電池ユニット2に供給して各電池ユニット2を充電する。
さらに、外部接続スイッチ7をOFF状態として、並列ライン8が電力供給ライン5から遮断された状態として、並列に接続された複数の電池ユニット2を均等化することができる。電力供給ライン5から遮断された状態で、並列ライン8を介して並列に接続される複数の電池ユニット2は、その電圧差によって充放電が行われて均等化される。すなわち、並列ライン8に対して電圧の高い電池ユニット2では、並列ライン8に対して放電が行われ、並列ライン8に対して電圧の低い電池ユニット2では、並列ライン8から供給される電力で充電されて均等化される。
(接続部9)
接続部9は、各電池ユニット2と並列ライン8との間に配置されており、制御部10にコントロールされて各電池ユニット2と並列ライン8との接続状態を特定する。図1に示す接続部9は、並列ライン8と各電池ユニット2の間に直列に接続された第一スイッチ11と第二スイッチ12の直列回路と、第二スイッチ12と並列に接続された、電流制限抵抗14と第三スイッチ13の直列回路からなるサブ接続回路15と、第一スイッチ11と並列に接続され、かつ並列ライン8から電池ユニット2に通電する方向に整流作用を有する第一整流素子16と、第二スイッチ12と並列に接続され、かつ電池ユニット2から並列ライン8に通電する方向に整流作用を有する第二整流素子17とを備えている。
第一スイッチ11と第二スイッチ12は、電池ユニット2の充電時や放電時において、電池ユニット2を並列ライン8に接続するスイッチである。図に示す第一スイッチ11と第二スイッチ12は、互いに直列に接続されており、各電池ユニット2と並列ライン8との間に各々接続されている。第一スイッチ11と第二スイッチ12は、制御部10でON/OFFに制御されるスイッチで、たとえば、半導体スイッチング素子とすることができる。半導体スイッチング素子である第一スイッチ11及び第二スイッチ12は、たとえば、FETとし、あるいはトランジスタとすることができる。ただ、第一スイッチと第二スイッチには、コンタクタやリレーも使用できる。
サブ接続回路15は、第二スイッチ12に並列に接続されており、電流制限抵抗14と第三スイッチ13との直列回路で構成されている。サブ接続回路15は、第二スイッチ12をOFFとし、第三スイッチ13をONとする状態で、並列ライン8から電池ユニット2に通電される電流、すなわち充電電流を許容すると共に、電池ユニット2に通電される充電電流を電流制限抵抗14で制限している。
並列ライン8に接続される複数の電池ユニット2を充電する状態において、電流制限抵抗14は、並列ライン8から電池ユニット2に流れる過大な電流を小さく制限しながら充電する。複数の電池ユニット2を並列に接続する電源システムは、電池ユニット2を交換し、あるいは電池ユニット2の個数を増加するときに、別の新たな電池ユニット2を並列ライン8に接続する必要がある。このとき、新たに接続される電池ユニット2の電圧は、必ずしも並列ライン8の電圧と同一とはならない。電池ユニット2の電圧と並列ライン8の電圧の差は、接続する電池ユニット2に大きな電流を流すおそれがある。電流制限抵抗14はこの電流を制限して、電池ユニット2への突入電流を抑制する。
さらに、複数の電池ユニット2を外部電源3から供給される電力で充電する状態において、電力供給ライン5から各電池ユニット2に供給される電力が大きくなると、電力供給ライン5から駆動対象機器40に供給される電力が低下して、駆動対象機器40を駆動できなくなるおそれがある。したがって、外部電源3の出力で電池ユニット2を充電する状態においては、各電池ユニット2が所定の残容量まで充電されて、各電池ユニット2の電圧が所定の電圧に上昇するまでは、電池ユニット2の充電電流を制限して充電を抑制することが望ましい。この場合においても、サブ接続回路15を介して各電池ユニット2の充電を行うことで、各電池ユニット2に流れる充電電流を制限しながら複数の電池ユニット2を充電して、電力供給ライン5から駆動対象機器40に供給される電力が低下するのを防止する。
電流制限抵抗14は、電気抵抗を大きくして、電池ユニット2に流れる電流を小さくできる。ただ、電流制限抵抗14は、電気抵抗を大きくするとジュール熱による発熱量が増加し、また、電池ユニット2を所定の電圧まで充電し、あるいは複数の電池ユニットを均等化する時間が長くなる。したがって、電流制限抵抗14の電気抵抗は、複数の電池ユニット2の電圧を速やかに所定の電圧まで充電しながら、各電池ユニット2を速やかに均等化でき、さらに、通電による発熱量を少なくできる電気抵抗に設定される。電流制限抵抗14の電気抵抗は、電池ユニット2の電圧によって最適値が異なるが、電池ユニット2の電圧を52Vとして、例えば1Ω〜10Ω、好ましくは1Ω〜5Ω、さらに好ましくは1Ω〜3Ωに設定される。
第三スイッチ13は、制御部10でON/OFFに制御されるスイッチで、FETやトランジスタ等の半導体スイッチング素子である。ただ、第三スイッチには、リレーやコンタクタも使用できる。
第一整流素子16は、第一スイッチ11と並列に接続されており、並列ライン8から電池ユニット2に通電する方向に整流作用を有している。図に示す第一整流素子16はダイオードであって、並列ライン8から電池ユニット2への通電を許容する向きに接続しており、電池ユニット2を充電する方向に流れる電流を許容している。
また、第二整流素子17は、第二スイッチ12と並列に接続されており、電池ユニット2から並列ライン8に通電する方向に整流作用を有している。図に示す第二整流素子17はダイオードであって、電池ユニット2から並列ライン8への通電を許容する向きに接続しており、電池ユニット2から放電される電流を許容している。
ここで、第一スイッチ11や第二スイッチ12をFETとする構造においては、このような整流素子として、FETに内蔵された寄生ダイオードとすることができる。この構造は、予めFETに備えられた寄生ダイオードを利用して整流作用を実現することで、システム構成を簡素化できる。また、第三スイッチが寄生ダイオードを有するFETの場合は、第三スイッチの寄生ダイオードと第二整流素子の方向が同じ方向となるように接続する。
(制御部10)
制御部10は、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13のON/OFFを制御して、複数の電池ユニット2の充電状態と放電状態とを最適な状態にコントロールする。とくに、充電状態においては、複数の電池ユニット2を均等化しながら充電する。この制御部10は、半導体スイッチング素子からなるスイッチについては、半導体スイッチング素子をオンオフに制御する制御信号を出力して各スイッチを制御し、また、リレーやコンタクタからなるスイッチについては、励磁コイルの通電を制御して各スイッチをオンオフに切り換える。
制御部10は、各電池ユニット2に内蔵された検出回路22から入力される電池情報に基づいて、各電池ユニット2の充電及び放電を最適な状態にコントロールし、また、複数の電池ユニット2を均等化する。図の制御部10は、検出回路22から入力される電池セル21のセル電圧や電池ブロック20の出力電圧に基づいて、電池ユニット2の均等化や充放電をコントロールしている。たとえば、リチウムイオン電池やニッケル水素電池からなる電池セル21は、電池電圧から電池の残容量を判定できる。このため、セル電池や出力電圧から電池の残容量を判定しながら、電池ユニット2の均等化や充放電をコントロールできる。この方法は、最も簡単に電池状態を判定しながら、複数の電池ユニット2を均等化し、また充放電できる。ただ、電源システムは、各電池セルや電池ブロックの残容量を、充放電電流の積算値から検出回路で演算し、検出回路から入力される残容量と制御部に記憶される所定の閾値とを制御部で比較しながら各電池ユニットの均等化や充放電を制御することもできる。
さらに、図1に示す接続ユニット1は、電流検出部25を備えており、この電流検出部25で、並列ライン8から接続ライン6に流れる電流を検出しながら、複数の電池ユニット2の充放電を最適な状態にコントロールしている。図に示す電流検出部25は、並列ライン8と接続ライン6との間に直列に接続された電流検出抵抗26と、この電流検出抵抗26の両端の電圧を検出して並列ライン8と接続ライン6の間に流れる充電電流や放電電流を検出する検出回路27とを備えている。電流検出部25は、並列ライン8と接続ライン6の間に流れる充放電の電流値を検出して制御部10に入力する。
さらに、制御部10は、通信回線32を介して外部電源3のコントローラー31に接続されており、各電池ユニット2の電圧データや電池情報、充放電の電流値等の各種データをコントローラー31に伝送している。コントローラー31は、制御部10から入力される各種のデータ信号に基づいて外部接続スイッチ7をON/OFFに制御する。さらに、制御部10は、電池ユニット2や電池セル21の異常を検出すると異常信号をコントローラー31に伝送し、外部接続スイッチ7をOFFに切り換えるように制御することもできる。さらに、制御部10は、外部接続スイッチ7をON/OFFに切り換える制御信号を出力し、この制御信号でコントローラー31を制御して外部接続スイッチ7のON/OFFを制御することもできる。さらに、商用電源30の停電等により非動作状態にあった外部電源3が動作状態に復帰する状態においては、制御部10は、コントローラー31から伝送される復帰信号により、外部電源3が動作状態に復帰したことを検出できる。
制御部10は、以下の図2に示すように、複数のモードを切り換えながら、複数の電池ユニット2を充電し、また、放電する。図3ないし図10は、図2に示す各モードにおいて、外部電源3のコントローラー31が外部接続スイッチ7をON/OFFに切り換え、制御部10が、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13をON/OFFにコントロールする状態を示している。この制御部10は、各電池ユニット2に内蔵された検出回路22から入力される各電池ユニット2の電池情報、たとえば、出力電圧やセル電圧から複数の電池ユニット2の電池状態を判定し、外部電源3のコントローラー31に各種信号を伝送して外部接続スイッチ7のON/OFFをコントロールする共に、各接続部9に設けた第一スイッチ11、第二スイッチ12、及び第三スイッチ13のON/OFFをコントロールして、複数の電池ユニット2の充放電状態を最適なモードに切り換える。
[電池ユニット検出モード]
この工程において、制御部10は、複数の電池ユニット2の接続状態を検出する。制御部10は、接続ユニット1に接続された電池ユニット2を識別信号から認識する。各電池ユニット2の識別信号は、各電池ユニット2に内蔵された検出回路22から入力される。制御部10は、電池ユニット2から入力される識別信号から、接続されている電池ユニット2の個数や、一部の電池ユニット2が外され、あるいは、新たに別の電池ユニット2が接続されたかどうか等の接続状態を判定する。
[バランス充電モード]
この工程において、電源システムは、外部電源3の電力供給ライン5から供給される電力でもって各電池ユニット2の電池セル21をプリチャージする。
さらに、このバランス充電モードにおいて、外部電源3は、電源回路4の出力を調整して電池ユニット2への大きな突入電流を抑制することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とすることができる。ここで、バランス充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2をプリチャージする第一充電電圧は、たとえば48Vとし、あるいは、出力電圧が最大の電池ユニット2の電池ブロック20の電圧よりも0.5V高い電圧とすることができる。
後述するように、放電停止後、さらに、停電状態が継続すると、内部回路での電力消費、セルの自己放電等により、いずれかの電池セル21の電圧が、所定値(約3V/セル)以下になると、その電池セル21の検出回路22より、信号が出力され、制御部10に入力される。この状態で、制御部10は、第一スイッチ11、第二スイッチ12、及び第三スイッチ13をすべてOFFとし、すべての電池ユニット2のマイコン等からなる検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させることで、全ての検出回路22をシャットダウン(駆動停止)させる。これにより、各電池ブロック20が並列ライン8から分離された状態となり、電池セル21の自己放電の差等により、各電池ブロック20の電圧に差異が生じる。
このバランス充電モードにおいては、停電が解消して商用電源30が復帰し、これをコントローラー31が検知して、図3に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5から接続ユニット1に充電電力を供給できる状態とし、電力供給ライン5から駆動電力を供給された制御部10は、各接続部9の第一スイッチ11をOFF、第二スイッチ12をOFF、第三スイッチ13をONとして、外部電源3の電力供給ライン5から供給される電力でもって各電池ユニット2の電池セル21をプリチャージする。検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vが供給されることより、検出回路22が駆動する。
ここで、電源回路4の電圧は、所定電圧約48Vに設定され充電される。そして、電力供給ライン5の所定の電圧約48Vと各電池ブロック20の電圧との差が、全て、所定電圧差(例えば、約1.2V)以下になると、バランス充電モードが終了したとして、第一スイッチ11をON、第二スイッチ12を0N、第三スイッチ13をOFFとし、電源回路4の電圧を、所定電圧(例えば、約52.6V)に設定して、通常充電モードとして、充電する。
バランス充電モードにおいては、図3に示すように、各接続部9の第一スイッチ11をOFF、第二スイッチ12をOFFとするが、外部電源3から供給される電力は、第一整流素子16と、サブ接続回路15、すなわちON状態の第三スイッチ13と電流制限抵抗14の直列回路とを介して各電池ユニット2に供給されて電池セル21を充電する。これにより、各電池ユニット2は、並列接続された状態で、電流制限抵抗14を介して充電されるので、各電池ユニット2の電圧が等しくなる状態で充電される。
また、別の実施例として、各電池ユニット2間の電圧差が所定の第一電圧差よりも小さくなるように均等化しながら、全ての電池ユニット2の出力電圧が所定の第一設定電圧以上になるようにプリチャージすることもできる。このバランス充電モードでは、全ての電池ユニット2間の電圧差が第一電圧差未満となるまで、すなわち、出力電圧が最大の電池ユニット2と出力電圧が最小の電池ユニット2との電圧差が第一電圧差未満となるまで均等化する。ここで、電池ユニット2の出力電圧を52Vとする場合、制御部10は、たとえば、電池ユニット2間の電圧差(Vd)が1.2V未満となるように均等化する。
以上の状態では、各電池ユニット2は、電流制限抵抗14により充電電流が抑制された状態で充電される。これにより、各電池ユニット2の充電に多くの電力を割くことなく、外部電源3から駆動対象機器40への電力供給が不安定となるのを回避して、駆動対象機器40の動作を継続しながら、電池ユニット2の充電を並行して行うことができる。したがって、第一設定電圧は、サブ接続回路15を介することなく電池ユニット2を充電する状態においても、外部電源3から駆動対象機器40に安定して動作電力を供給できる電圧であって、好ましくは40V〜50V、たとえば42.5Vとすることができる。また、図3に示す接続状態においては、外部電源3の電力供給ライン5の電圧が低下しても、第一スイッチ11をOFF状態とするので、電池ユニット2からの放電が阻止されて、電池ユニット2が過放電され、あるいは、放電によって電池ユニット2間の電圧差が拡大するのを防止できる。
以上のように、バランス充電モードでは、全ての電池ユニット2を同じ電圧で充電するので、電圧差がある電池ユニット2を充電する状態においては、出力電圧の低い電池ユニット2が優先的に充電される。このため、複数の電池ユニット2の電圧差を低減させながら、すなわち、電圧差のある電池ユニット2を均等化しながら充電できる。また、外部電源3の電力供給ライン5から供給される電力が、第一整流素子16とON状態の第三スイッチ13と電流制限抵抗14とを介して各電池ユニット2に供給されるので、電池ユニット2は、充電電流が電流制限抵抗14で制限されながらプリチャージされる。このため、電圧が低い電池ユニット2においても、大きな突入電流が流れるのを有効に防止しながら、安全かつ安定して充電されて均等化される。
以上のバランス充電モードは、接続ユニット1に接続された複数の電池ユニット2に所定の電圧差がある場合において、これらの電池ユニット2を均等化しながらプリチャージする工程であって、たとえば、電源システムの起動時や、一部の電池ユニットの取り外し時、新たな電池ユニットの接続時、電池ユニットの放電後における充電開始時、或いは、最初に電池ユニット2を充電するとき等にモード移行して複数の電池ユニットを均等化しながらプリチャージする。
[均等化モード]
さらに、バランス充電モードにおいて、各電池ユニット2間の電圧差が前述の第一電圧差よりも大きな第二電圧差以上の場合には、図2の鎖線の矢印で示すように、均等化モードに移行して、各電池ユニット2をプリチャージすることなく、接続ユニット1を電力供給ライン5から遮断した状態で均等化することもできる。
この工程において、電源システムは、電池ユニット2間の電圧差が第二電圧差よりも小さくなるように、各電池ユニット2間の電圧差を低減させる均等化を行う。この均等化モードでは、全ての電池ユニット2間の電圧差が第二電圧差未満となるまで、電池ユニット2の均等化を行うことができる。ここで、電池ユニット2の出力電圧を52Vとし、第一電圧差を1.2Vとする場合、第二電圧差は、1.2V以上であって、たとえば2.0Vとすることができる。
この均等化モードでは、図4に示すように、コントローラー31が制御部10からの信号で外部接続スイッチ7をOFFとして接続ユニット1を電源供給ライン5から遮断し、制御部10が、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとして、各電池ユニット2間の電圧差を低減させる。図4に示す接続状態では、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとするので、他の電池ユニット2よりも出力電圧が高い電池ユニット2の出力は、図4の鎖線の矢印で示すように、第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に出力されて、出力電圧の低い電池ユニット2に供給される。また、他の電池ユニット2よりも出力電圧が低い電池ユニット2においては、図4の矢印で示すように、出力電圧が高い電池ユニット2から供給される電力が、ON状態の第一スイッチ11と、サブ接続回路15、すなわちON状態の第三スイッチ13と電流制限抵抗14の直列回路とを介して供給されることにより、充電電流を電流制限抵抗14で制限しながら充電される。このため、電圧差が大きな電池ユニット2間においても、大きな突入電流が流れるのを有効に防止しながら、安全かつ安定して充放電されて均等化される。
以上の均等化モードは、接続ユニット1に接続された複数の電池ユニット2に所定の電圧差がある場合において、これらの電池ユニット2を均等化する工程として、たとえば、電源システムの起動時や、一部の電池ユニットの取り外し時、新たな電池ユニットの接続時、電池ユニットの放電後における充電開始時等にモード移行して複数の電池ユニットを均等化することができる。
ここで、図5と図6は、均等化モードにおいて複数の電池ユニット2が均等化される例であって、接続ユニット1に新たに別の電池ユニット2’が接続される状態を示している。図5は、接続ユニット1の並列ライン8よりも出力電圧が高い電池ユニット2’が接続される状態における均等化を示している。この場合、図5の矢印で示すように、新たに接続される電池ユニット2’から出力される電流は、第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に通電されて、出力電圧の低い他の電池ユニット2に供給される。すなわち、新たに接続された電池ユニット2’の出力は、この電池ユニット2’が接続される接続部9’の電流制限抵抗14に通電されることなく第二整流素子17を介して通電される。このため、新たな電池ユニット2’から出力される電流が、接続部9’の電流制限抵抗14に通電されて、ジュール熱によって発熱するのを確実に阻止できる。これにより、新たに接続される電池ユニット2’の電力は、接続部9’の電流制限抵抗14で無駄に消費されることなく他の電池ユニット2に有効に利用される。とくに、新たに接続される電池ユニット2’と並列ライン8との間に大きな電圧差があると、この電池ユニット2’からは大きな電流が流れるおそれがあるが、この電流は、図5の矢印で示すように、他の複数の電池ユニット2に分流されるので、各接続部9に流れる電流を低減させて、各々の電流制限抵抗14における発熱量を低減できる。
また、図6は、接続ユニット1の並列ライン8よりも出力電圧が低い電池ユニット2’が接続される状態における均等化を示している。この場合、図6の矢印で示すように、新たに接続される電池ユニット2’には、並列ライン8を介して、他の複数の電池ユニット2から電力が供給される。他の電池ユニット2から出力される電流は、各接続部9の第二整流素子17と、ON状態の第一スイッチ11とを介して並列ライン8に通電されて、出力電圧の低い電池ユニット2’に供給される。すなわち、他の電池ユニット2の出力は、各接続部9の電流制限抵抗14に通電されることなく第二整流素子17を介して通電される。このため、他の電池ユニット2から出力される電流が、各接続部9の電流制限抵抗14に通電されてジュール熱によって発熱するのを確実に阻止する。これにより、他の電池ユニット2の電力は、接続部9の電流制限抵抗14で無駄に消費されることなく新たに接続された電池ユニット2’に有効に利用される。また、新たな電池ユニット2’と並列ライン8の間には電圧差があるので、電池ユニット2’には大きな電流が流れるおそれがあるが、この電流は接続部9’の流制限抵抗14で制限されるので、電池ユニット2’への大きな突入電流は阻止される。とくに、新たに接続される電池ユニット2’は、通常はある程度の残容量まで充電されているので、接続ユニット1に既に接続されている他の電池ユニット2との電圧差が異常に大きくなることはなく、電流制限抵抗14の発熱量も低減できる。
[通常充電モード]
バランス充電モードが終了すると、電源システムは、この工程において、各接続部9の第二スイッチ12をON、第三スイッチ13をOFFとし、外部電源3から供給される電力を電流制限抵抗14で制限することなく、各電池ユニット2に供給して電池セル21を満充電する。
この通常充電モードにおいて、図7に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5から接続ユニット1に充電電力を供給できる状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとして、各電池ユニット2の電池セル21を、外部電源3の電力供給ライン5から供給される電力でもって充電する。図7に示す接続状態では、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとするので、外部電源3から供給される電力は、図7の矢印で示すように、ON状態の第一スイッチ11と、ON状態の第二スイッチ12とを介して低抵抗な状態で各電池ユニット2に供給されて電池セル21を充電する。このため、電池ユニット2は、充電電流が抑制されることなく、外部電源3から供給される電力で理想的に充電される。また、各電池ユニット2は、前工程であるバランス充電モードによって充電されているので、複数の電池ユニット2を充電する状態においても、電力供給ライン5の電圧を低下させることなく、すなわち、外部電源3から駆動対象機器40への電力供給が不安定となるのを回避して、駆動対象機器40の動作を継続しながら、電池ユニット2の充電を並行して行うことができる。
とくに、この通常充電モードにおいて、外部電源3は、複数の電池ユニット2を効率よく充電するために、電源回路4の出力を調整することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とする。ここで、通常充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2を充電する第二充電電圧は、たとえば52.6Vとすることができる。
また、バランス充電モードから通常充電モードへの移行に際しては、好ましくは、コントローラー31が、制御部10からの信号で外部接続スイッチ7を一旦OFFに切り換え、制御部10が、各接続部9の第一スイッチ11をOFFからONに、各接続部9の第二スイッチ12をOFFからONに、各接続部9の第三スイッチ13をONからOFFにそれぞれ切り換えた後、コントローラー31が外部接続スイッチ7を再びONに切り換えることができる。この制御によると、外部接続スイッチ7をOFFにした状態で、各接続部9の第一スイッチ11と第二スイッチ12を順番にOFFからONに切り換えるので、一部の電池ユニット2のみがON状態の第一スイッチ11と第二スイッチ12を介して電力供給ライン5に接続された状態となって、この電池ユニット2に過電流が流れるのを確実に防止できる。
さらに、通常充電モードにおいて、制御部10は、電池ユニット2や電池セル21の過充電保護を行うこともできる。たとえば、制御部10は、充電状態にある複数の電池ユニット2のうち、いずれかの電池ユニット2の電圧が最大ユニット電圧(たとえば53.3V)以上になると、過充電と判定して、この電池ユニット2の充電を停止して保護する。また、制御部10は、充電状態にある電池ユニット2を構成する電池セル21のうち、いずれかの電池セル21の電圧が最大セル電圧を超えると、過充電と判定して、この電池セル21を備える電池ユニット2の充電を停止して保護する。たとえば、複数のリチウムイオン電池からなる電池セル21を13直に接続してなる電池ユニット2においては、いずれかの電池セル21の電圧が最大セル電圧である4.1V以上になると、過充電と判定して、この電池セル21を備える電池ユニット2の充電を停止して保護する。
なお、この通常充電モードは、電池ユニット2が満充電されるまで継続されるが、電池ユニット2の満充電は、以下のようにして判定される。たとえば、電池ユニット2を構成する電池セル21をリチウムイオン電池とする場合、リチウムイオン電池は満充電されると充電電流が低下するので、充電電流が所定の電流値よりも低下することを検出して各電池セル21が満充電されたことを検出する。この電源システムは、たとえば、いずれかの電池セル21のセル電圧(Vs)が満充電判定電圧(たとえば3.9V)以上であって、かつ、充電電流(Ic)が満充電判定電流(たとえば300mA)未満となると、電池セル21が満充電されたと判定することができる。すなわち、制御部10は、いずれかの電池セル21について、
セル電圧(Vs)≧3.9V、かつ、0mA<充電電流(Ic)<300mA
となると、電池セル21が満充電されたと判定することができる。いずれかの電池セル21が満充電と判定されると、この電池セル21を備える電池ユニット2は満充電されたと判定して充電が停止される。ただし、何らかの原因で、充電もしくは放電が禁止されている電池セルを含む電池ユニットに関しては、満充電の対象とはせず、また、いずれの電池セルも、満充電判定電圧である3.9V以上を満たしていない電池ユニットに関しても満充電と判定することなく充電を継続することができる。そして、各電池ユニット2が上記の満充電条件を満たすと、その電池ユニット2の充電を停止する。つまり、第二スイッチ12をオフにして、充電を停止する。
[満充電モード]
通常充電モードにおいて、全ての電池ユニット2の電池セル21が満充電されると、電源システムは、この工程において、全ての接続部9の第二スイッチ12をOFFに切り換えて待機状態とする。
この満充電モードにおいては、図8に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5と接続ユニット1の並列ライン8とを接続された状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとして、電池ユニット2から電力供給ライン5への放電が可能な待機状態とする。この満充電モードは、並列ライン8を外部電源3の電力供給ライン5に接続する外部接続スイッチ7をON状態に保持する待機状態とするので、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、電源回路4の出力電圧が所定値以下に低下する状態で速やかに電池ユニット2から電力供給ライン5に電力を供給できる。
さらに、電源システムは、満充電モードが長時間にわたって継続されると、自己放電や回路の消費電力等によって、各電池セル21の残容量が減少する。したがって、この満充電モードにおいて、いずれかの電池セル21の残容量が満充電状態から所定の割合(たとえば10%)低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧(たとえば、リチウムイオン電池においては3.85V)以下になると、充電を再開することができる。
[再充電モード]
満充電モードにおいて、いずれかの電池ユニット2の再充電が必要と判定されると、電源システムは、この工程において、各接続部9の第三スイッチ13をOFFからONに切り換えて再充電を開始する。
この再充電モードにおいては、図9に示すように、コントローラー31が外部接続スイッチ7をONとして、電源供給ライン5と接続ユニット1の並列ライン8とを接続された状態とし、制御部10は、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をONとして、外部電源3から供給される電力を電流制限抵抗14で制限しながら各電池ユニット2に供給して電池セル21をプリチャージする。これにより、再充電される電池ユニット2に大きな突入電流が流れるのが有効に防止される。
また、この再充電モードにおいて、外部電源3は、電池ユニット2への充電電流を抑制しながらプリチャージするために、電源回路4の出力を調整することができる。電源回路4は、コントローラー31で制御されて、電池ユニット2の充電電圧となる出力電圧を最適な電圧とする。ここで、再充電モードにおける外部電源3の出力電圧、すなわち、電池ユニット2をプリチャージする第三充電電圧は、たとえば52.1Vとすることができる。
再充電モードにおいて、制御部10は、再充電される電池ユニット2のプリチャージが終了したかどうかを判定する。プリチャージの終了は、たとえば、全ての電池セル21のセル電圧が所定の電圧(たとえば、3.9V)以上になったかどうかで判定し、あるいは、プリチャージ時間が所定の時間を経過したかどうかで判定することができる。電池ユニット2のプリチャージが終了すると、通常充電モードに移行して、各電池ユニット2の電池セル21を満充電する。
なお、以上の再充電モードは省略することができる。この場合、満充電モードにおいていずれかの電池ユニットに再充電の必要があると判定されると、通常充電モードに移行して再充電することができる。
[予備放電モード]
電源システムは、満充電モード又は再充電モードにおいて、商用電源30の停電等により外部電源3の電源回路4の出力電圧が低下するとき、例えば、所定値以下、または、接続ユニット1の出力電圧以下に低下すると、予備放電モードに移行して、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。この予備放電モードにおいては、図8及び図9の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。
ここで、満充電モードでは、図8に示すように、外部接続スイッチ7をONとし、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとしている。また、再充電モードでは、図9に示すように、外部接続スイッチ7をONとし、各接続部9の第一スイッチ11をON、第二スイッチ12をOFF、第三スイッチ13をOFFとしている。このため、これらの満充電モード又は再充電モードにおいて、電源回路4の出力電圧が所定値以下に低下すると、各電池ユニット2の電力は、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、ON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。したがって、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が所定値以下に低下する状態で速やかに電力供給ライン5に電力を供給できる。
予備放電モードにおいて、電池ユニット2から電力供給ライン5への電力供給が開始されると、電流検出部25で放電電流が検出される。電流検出部25は、図1に示すように、並列ライン8から接続ライン6に流れる電流を検出し、検出された電流値を制御部10に入力する。制御部10は、電流検出部25から放電電流の電流値を示す信号が入力されることで、電池ユニット2から電力供給ライン5への電力供給が開始されたことを検出して、第二スイッチ12をONとして、大電流が流れるように、予備放電モードから通常放電モードに移行させる。この制御では、電流検出部25が放電電流を検出する状態で、制御部10が各接続部9のスイッチを切り換えて、予備放電モードから通常放電モードに切り換えるので、電池ユニット2の放電状態を確認しながら通常放電モードに切り換えできる。
ただ、電源システムが、電源回路の出力電圧の低下を検出する機構を備える場合は、この予備放電モードを省略することもできる。この電源システムは、満充電モード又は再充電モードにおいて、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定の電圧以下に低下したことを検出すると、通常放電モードに移行して電力供給ラインに電力を供給することができる。
[通常放電モード]
この工程において、電源システムは、制御回路10が各接続部9の第二スイッチ12をON、第三スイッチ13をOFFに切り換えて、複数の電池ユニット2から電力供給ライン5に電力を供給する。この通常放電モードにおいては、図7の鎖線の矢印で示すように、各電池ユニット2の電力が、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給されて、複数の電池ユニット2から放電される。以上の通常放電モードにおいては、ON状態の第二スイッチ12とON状態の第一スイッチ11を介して各電池ユニット2から放電するので、低抵抗な状態で安定して放電できる。
さらに、通常放電モードにおいて、制御部10は、電池ユニット2や電池セル21の過放電保護を行うこともできる。たとえば、制御部10は、放電状態にある複数の電池ユニット2のうち、いずれかの電池ユニット2の電圧が最小ユニット電圧(たとえば39.0V)以下になると、過放電と判定して、この電池ユニット2の放電を停止して保護する。また、制御部10は、放電状態にある電池ユニット2を構成する電池セル21のうち、いずれかの電池セル21の電圧が最小セル電圧以下になると、過放電と判定して、この電池セル21を備える電池ユニット2の放電を停止して保護する。たとえば、複数のリチウムイオン電池からなる電池セル21を13直に接続してなる電池ユニット2においては、いずれかの電池セル21の電圧が最小セル電圧である3.0V以下になると、過放電と判定して、この電池セル21を備える電池ユニット2の放電を停止して保護する。
さらに、通常放電モードにおいて、商用電源30の停電が復旧すると、外部電源3の電源回路4の出力電圧が所定値以上になり、電源回路4の電圧を、所定電圧(例えば、約52.6V)に設定して、通常充電モードとして充電する。電源システムは、通常充電モードに移行して、電力供給ライン5から供給される電力で複数の電池ユニット2が充電される。ここで、通常放電モードでは、図7に示すように、外部接続スイッチ7がON状態にあり、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとしている。このため、この通常放電モードにおいて、電源回路4の出力電圧が所定値以上に復帰すると、図7の矢印で示すように、外部電源3の電力供給ライン5から供給される電力は、ON状態の外部接続スイッチ7を介して並列ライン8に供給されると共に、ON状態の第一スイッチ11と、ON状態の第二スイッチ12を介して各電池ユニット2に供給される。したがって、商用電源30や外部電源3の電圧上昇を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が復帰する状態で、速やかに電力供給ライン5から電池ユニット2に電力を供給できる。
さらに、電源システムは、前述の通常充電モードにおいて、商用電源30の停電等により外部電源3の電源回路4の出力電圧が低下すると、通常放電モードに移行して、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。ここで、通常充電モードでは、図7に示すように、外部接続スイッチ7がON状態にあり、各接続部9の第一スイッチ11をON、第二スイッチ12をON、第三スイッチ13をOFFとしている。このため、この通常充電モードにおいて、外部電源3の電源回路4の出力電圧が低下すると、図7の鎖線の矢印で示すように、各電池ユニット2の電力は、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、ON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。したがって、商用電源30や外部電源3の電圧低下を検出する機構を設けることなく、また、制御部10で接続部9を切り換えることなく、電源回路4の出力電圧が低下する状態で速やかに電池ユニット2から電力供給ライン5に電力を供給できる。
[放電停止モード]
通常放電モードにおいて、電池ユニット2が放電されて放電停止電圧以下になると、電源システムは、この工程において、放電停止モードに移行させて電池ユニット2の放電を停止する。この放電停止モードでは、電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値の放電停止電圧(たとえば42V)になると、図10に示すように、コントローラー31が、外部接続スイッチ7をOFFに切り換え、電池ユニット2からの放電を停止する。そして、いずれかの電池セル21の電圧が、所定値(約3V/セル)まで低下する前に、停電が解消されるなら、コントローラー31が、外部接続スイッチ7をONに切り換え、通常充電モードに移行する。
また、放電停止モードにおいて、コントローラー31は、制御部10からの信号に基づいて外部接続スイッチ7をOFFに切り換えることもできる。この状態で接続ユニット1の並列ライン8が電力供給ライン5から遮断されて、電池ユニット2から電力供給ライン5への電力供給が停止される。
[駆動停止モード]
放電停止モードにおいて電池ユニット2からの放電が停止された後、さらに、停電状態が継続すると、内部回路での電力消費、セルの自己放電等により、いずれかの電池セル21の電圧が、所定値(約3V/セル)以下になると、その電池セル21の検出回路22より、信号が出力され、制御部10に入力される。この状態で、制御部10は、図1に示すように、第一スイッチ11、第二スイッチ12、及び第三スイッチ13をすべてOFFとし、さらに、すべての電池ユニット2のマイコン等からなる検出回路22と制御部10との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させることで、全ての検出回路22をシャットダウン(駆動停止)させる。これにより、各電池ブロック20が並列ライン8から分離された状態となり、電池セル21の自己放電の差等により、各電池ブロック20の電圧に差異が生じる。
さらに、駆動停止モードにおいて、商用電源30の停電が復旧して外部電源3の電源回路の出力電圧が所定値以上に復帰すると、電源システムは、バランス充電モードに移行して電池ユニット2の充電を開始する。外部電源3の電源回路4の出力電圧が所定値以上に復帰すると、電力供給ライン5から制御部10に電力が供給され、制御部10が起動状態となり、第一スイッチ11、第二スイッチ12、及び第三スイッチ13が動作して、バランス充電モードに移行する。
また、バランス充電モードにおいては、前述のように、複数の電池ユニット2が均等化されながらプリチャージされる。ここで、駆動停止モードが継続されて時間が経過すると、各電池ユニット2の電圧が低下して、各電池ユニット2の電圧にバラツキが生じるときがある。この場合においても、バランス充電モードに移行して均等化しながらプリチャージすることでばらつきが解消される。
さらに、接続ユニット1の制御部10は、各電池ユニット2に流れる電流の過電流を検出して保護することもできる。制御部10は、電池ユニット2の充電状態や放電状態において、各電池ユニット2に流れる充電電流や放電電流の検出値を、各電池ユニット2に内蔵される検出回路22から入力される信号から検出する。制御部10は、各電池ユニット2から入力される充放電の電流値が所定の検出時間にわたって所定の上限電流値を超えると、過電流と判定してこの電池ユニット2の充放電を停止して保護する。ここで、制御部10が各電池ユニット2を過電流と判定する上限電流値は、たとえば27A〜33Aとし、検出時間は0.5秒〜1.5秒とすることができる。制御部10は、過電流が検出された電池ユニット2に接続された接続部9の全てのスイッチをOFFに切り換えて、この電池ユニット2の充放電を停止する。
さらに、接続ユニット1の制御部10は、並列ライン8に流れる電流の過電流を検出して保護することもできる。接続ユニット1は、電池ユニット2の充電状態や放電状態において、並列ライン8に流れる充電電流や放電電流を電流検出部25で検出する。制御部10は、電流検出部25で検出される電流値が所定の検出時間にわたって所定の上限電流値を超えると、過電流と判定して全ての電池ユニット2の充放電を停止して保護する。ここで、制御部10が、並列ライン8に流れる電流の過電流を判定する上限電流値は、たとえば、108A〜132Aとし、検出時間は0.25秒〜0.75秒とすることができる。制御部10は、並列ライン8の過電流を検出すると、通信回線32を介してコントローラー31に異常信号を伝送し、コントローラー31が外部接続スイッチ7をOFFに切り換えて全ての電池ユニット2の充放電を停止する。
さらにまた、接続ユニット1の制御部10は、電池ユニット2の検出回路22で検出される電池温度によって電池ユニット2の充放電状態をコントロールすることもできる。たとえば、いずれかの電池ユニット2の電池温度が異常な温度範囲になると、制御部10は、この電池ユニット2に接続された接続部9を遮断して、この電池ユニット2の充放電を停止する。
以上の電源システムは、図11と図12に示す以下のフローチャートで、外部電源3から供給される電力で複数の電池ユニット2を充電すると共に、外部電源3の出力電圧が所定値以下に低下する状態では、複数の電池ユニット2から放電して電力供給ライン5に電力を供給する。
[n=1のステップ]
このステップにおいて、制御部10は、各電池ユニット2の検出回路22から入力される識別信号から複数の電池ユニット2の接続状態を検出する。制御部10は、各電池ユニット2から入力される識別信号から、接続されている電池ユニット2の個数や、一部の電池ユニット2が外され、あるいは、新たに別の電池ユニット2が接続されたかどうか等の接続状態を判定する。さらに、制御部10は、複数の電池ユニット2の接続状態に基づいて、許容される最大電流値等を決定する。
[n=2のステップ](バランス充電モード)
このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2を均等化しながらプリチャージする。(図3参照)
さらに、このバランス充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第一充電電圧に制御する。ここで、この第一充電電圧は、たとえば、48Vとし、あるいは、最も出力電圧の高い電池ユニットの最大電圧Vmaxよりも0.5V大きな電圧(Vmax+0.5V)とすることができる。
外部接続スイッチ……ON
第一スイッチ…………OFF
第二スイッチ…………OFF
第三スイッチ…………ON
[n=3のステップ]
このステップにおいて、制御部10は、電力供給ライン5の電圧と各電池ブロック20の電圧との差が、所定の電圧差(例えば、約1.2V)よりも小さいかどうかを判定する。電力供給ライン5の電圧と各電池ブロック20の電圧との差が1.2V以上の場合は、n=2のステップに戻って、バランス充電モードを継続する。電力供給ライン5の電圧と各電池ブロック20の電圧との差が1.2V未満になると、n=4のステップに進んで、通常充電モードに移行する。
[n=4のステップ](通常充電モード)
このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2を満充電する。(図7参照)
さらに、この通常充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第二充電電圧に制御する。ここで、この第二充電電圧は、たとえば、52.6Vとすることができる。
外部接続スイッチ……ON
第一スイッチ…………ON
第二スイッチ…………ON
第三スイッチ…………OFF
[n=5のステップ]
通常充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=15のステップに進んで通常放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=6のステップ]
このステップにおいて、制御部10は、いずれかの電池ユニット2が満充電されたかどうかを判定する。電池ユニット2が満充電されるまで、n=4のステップに戻って通常充電モードを継続する。いずれかの電池ユニット2が満充電されると、n=7のステップに進んで満充電モードに移行する。
[n=7のステップ](満充電モード)
このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して待機状態とする。(図8参照)
外部接続スイッチ……ON
第一スイッチ…………ON
第二スイッチ…………OFF
第三スイッチ…………OFF
[n=8のステップ]
満充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=13のステップに進んで予備放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=9のステップ]
このステップにおいて、制御部10は、待機状態にある電池ユニット2の残容量が低下し、再充電の必要があるかどうかを判定する。いずれかの電池セル21の残容量が満充電状態から所定の割合(たとえば10%)低下し、あるいは、いずれかの電池セル21のセル電圧が充電再開電圧(たとえば、3.85V)以下になると、n=10のステップに進んで再充電を開始する。
[n=10のステップ](再充電モード)
このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して複数の電池ユニット2をプリチャージする。(図9参照)
さらに、この再充電モードにおいて、コントローラー31は、電源回路4の出力電圧を第三充電電圧に制御する。ここで、この第三充電電圧は、第二充電電圧よりも低く設定され、たとえば、52.1Vとすることができる。
外部接続スイッチ……ON
第一スイッチ…………ON
第二スイッチ…………OFF
第三スイッチ…………ON
なお、なお、再充電モードは省略することもできる。この場合は、再充電の必要があると判定されると、通常充電モードに移行して再充電することができる。
[n=11のステップ]
再充電モードにおいて、商用電源30の停電等により、外部電源3の出力電圧が設定値以下に低下すると、n=13のステップに進んで予備放電モードに移行し、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。
[n=12のステップ]
このステップにおいて、制御部10は、再充電モードにおけるプリチャージが終了したかどうかを判定する。ここで、プリチャージの終了は、全ての電池セル21のセル電圧が所定の電圧(たとえば、3.9V)以上になったかどうかで判定し、あるいは、プリチャージ時間が所定の時間を経過したかどうかで判定することができる。プリチャージが終了するまで、n=10のステップに戻って再充電モードを継続し、プリチャージが終了すると、n=4のステップに進んで通常充電モードに移行する。
[n=13のステップ](予備放電モード)
このステップにおいて、各スイッチは、以下のようにON/OFFが保持されて、複数の電池ユニット2から外部電源3の電力供給ライン5に電力を供給する。(図8及び図9参照)
外部接続スイッチ……ON
第一スイッチ…………ON
第二スイッチ…………OFF
第三スイッチ…………ON/OFF
予備放電モードにおいては、図8及び図9の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、第二整流素子17とON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。これにより、停電等の理由により電源回路4の出力電圧が低下すると、直ちに電池ユニット2から電力供給ライン5への電力供給が開始される。
ただ、電源システムが、電源回路の出力電圧の低下を検出する機構を備える場合は、この予備放電モードを省略することもできる。この電源システムは、満充電モード又は再充電モードにおいて、商用電源の停電、あるいは電源回路の故障等によって電源回路の出力電圧が所定値以下に低下したことを検出すると、以下のn=15の制御を行って、通常放電モードに移行して電力供給ラインに電力を供給することができる。
[n=14のステップ]
このステップでは、電流検出部25によって、並列ライン8から接続ライン6に流れる放電電流が検出されたかどうかを判定する。接続ライン6への放電電流が検出されると、n=15のステップに進んで通常放電モードに移行する。
[n=15のステップ](通常放電モード)
このステップにおいて、コントローラー31と制御部10は、以下のように各スイッチのON/OFFを制御して放電状態を継続する。(図7参照)
外部接続スイッチ……ON
第一スイッチ…………ON
第二スイッチ…………ON
第三スイッチ…………OFF
通常放電モードにおいては、図7の鎖線の矢印で示すように、各電池ユニット2から放電される電力が、ON状態の第二スイッチ12と、ON状態の第一スイッチ11を介して並列ライン8に供給されると共に、並列ライン8の電力がON状態の外部接続スイッチ7を介して外部電源3の電力供給ライン5に供給される。
[n=16のステップ]
通常放電モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=4のステップにジャンプし、通常充電モードに移行して電池ユニット2の充電を開始する。
[n=17のステップ]
このステップにおいて、制御部10は、全ての電池ユニット2の出力電圧(Vy)が放電停止電圧以下になったかどうかを判定する。この放電停止電圧は、駆動対象機器40の最低動作電圧に相当する電圧であって、たとえば、42Vとする。全ての電池ユニット2の出力電圧が放電停止電圧よりも大きい場合は、n=15のステップに戻って通常充電モードを継続する。いずれかの電池ユニット2の出力電圧が放電停止電圧以下になると、n=18のステップに進んで放電停止モードに移行する。
[n=18のステップ](放電停止モード)
電力供給ライン5の電圧が、駆動対象機器40の最低動作電圧に相当する所定値である放電停止電圧(例えば42V)以下になると、コントローラー31は、外部接続スイッチ7をOFFに切り換える。この状態で並列ライン8が電力供給ライン5から遮断されて、電池ユニット2から電力供給ライン5への電力供給が停止される。(図10参照)
[n=19のステップ]
放電停止モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=4のステップにジャンプし、通常充電モードに移行して電池ユニット2の充電を開始する。
[n=20のステップ]
このステップにおいて、制御部10は、いずれかの電池セル21の電圧が、所定値(約3V/セル)まで低下したかどうかを判定する。全ての電池セル21の電圧が、所定値(約3V/セル)よりも大きい場合は、n=18のステップに戻って放電停止モードを継続する。いずれかの電池セル21の電圧が所定値(約3V/セル)以下になると、n=21のステップに進んで駆動停止モードに移行する。
[n=21のステップ](駆動停止モード)
このステップにおいて、制御部10は、全てのスイッチをOFFとし、全ての電池ユニット2が並列ライン8から切り離された状態とする。(図1参照)
第一スイッチ…………OFF
第二スイッチ…………OFF
第三スイッチ…………OFF
さらに、制御回路10は、電池ユニット2のマイコン等からなる検出回路22との間の通信線28に乗せている駆動電力(駆動電圧)12Vを停止させて、全ての検出回路22をシャットダウン(駆動停止)させる。
[n=22のステップ]
駆動停止モードにおいて、商用電源30の停電が復旧して、外部電源3の出力電圧が所定値以上に復帰すると、n=2のステップにジャンプし、バランス充電モードに移行して電池ユニット2の充電を開始する。外部電源3の電力供給ライン5の電圧が設定値以上に復帰しない状態では、n=21のステップに戻って駆動停止モードを継続する。
なお、以上のフローチャートには記載されないが、各モードにおいて、いずれかの電池ユニット2が接続ユニット1から取り外され、あるいは新たな電池ユニット2が接続ユニット1に接続されたことが検出されると、n=1のステップに戻って、電池ユニット2の接続状態の認識から再スタートすることができる。これにより、ホットスタンバイ状態での電池ユニットの脱着を可能としつつ、電池ユニットの脱着時における信頼性を向上できる。
本発明に係る電源システムは、商用電源の停電時等において、携帯電話の基地局や信号機などに電力を供給するバックアップ用電源として好適に使用できる。とくに、多数の電池セルを備える複数の電池ユニットを並列に接続して出力を大きくしながら、商用電源から供給される電力で充電し、また商用電源の出力低下時には放電できる電源システムとして好適に利用できる。
1…接続ユニット
2…電池ユニット 2’…電池ユニット
3…外部電源
4…電源回路
5…電力供給ライン
6…接続ライン
7…外部接続スイッチ
8…並列ライン
9…接続部 9’…接続部
10…制御部
11…第一スイッチ
12…第二スイッチ
13…第三スイッチ
14…電流制限抵抗
15…サブ接続回路
16…第一整流素子
17…第二整流素子
20…電池ブロック
21…電池セル
22…検出回路
25…電流検出部
26…電流検出抵抗
27…検出回路
28…通信線
30…商用電源
31…コントローラー
32…通信回線
40…駆動対象機器

Claims (16)

  1. 外部の商用電源に接続されて、商用電源から供給される電力を変換して駆動対象機器に供給する外部電源と、
    直列に接続された複数の電池セルを備える複数の電池ユニットと、
    前記複数の電池ユニットを並列に接続して前記外部電源に接続する接続ユニットとを備え、
    前記外部電源から各電池ユニットに電力を供給して、前記電池セルを充電すると共に、前記外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから駆動対象機器に電力を供給するようにしてなる電源システムであって、
    前記外部電源は、
    商用電源から供給される交流を、駆動対象機器を駆動する所定の出力電圧の直流に変換する電源回路と、
    前記電源回路の出力側に接続されて、外部の駆動対象機器に電力を供給する電力供給ラインと、
    前記電力供給ラインに接続されて、前記接続ユニットを接続する接続ラインと、
    前記接続ライン上に設けられ、前記電力供給ラインの電圧が所定値以下になるとオフとなる外部接続スイッチと、
    を備えており、
    前記接続ユニットは、
    前記複数の電池ユニットを並列に接続する並列ラインと、
    各電池ユニットを前記並列ラインに接続する接続部と、
    前記接続部の接続状態を制御する制御部と、
    を備えており、
    前記並列ラインは、前記外部電源の接続ラインに接続されており、
    前記接続部は、
    前記並列ラインと各電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
    前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
    前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
    前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
    前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
    前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
    各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
    前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
    前記通常放電モードにおいて、前記電力供給ラインの電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する放電停止モードと
    前記放電停止モードにおいて、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  2. 請求項1に記載の電源システムであって、
    前記満充電モードにおいて、前記電池ユニットのいずれかの電池セルの残容量が満充電状態から所定の割合低下し、あるいは、いずれかの電池セルのセル電圧が充電再開電圧以下になると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットをプリチャージする再充電モードに移行して該電池ユニットを再充電することを特徴とする電源システム。
  3. 請求項1または2に記載の電源システムであって、
    前記満充電モード又は前記再充電モードにおいて、前記外部電源の出力電圧が低下すると、
    各電池ユニットの電力が、前記第二整流素子とON状態の前記第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される予備放電モードによって複数の電池ユニットから放電することを特徴とする電源システム。
  4. 請求項3に記載の電源システムであって、
    前記接続ユニットが、前記外部電源の接続ラインへの通電状態を検出する電流検出部を備えており、
    前記予備放電モードにおいて、前記電流検出部が前記接続ラインへの放電電流を検出すると、
    前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとし、各電池ユニットの電力が、ON状態の第二スイッチとON状態の第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される通常放電モードに移行して複数の電池ユニットから放電することを特徴とする電源システム。
  5. 請求項1から4のいずれかに記載の電源システムであって、
    前記通常充電モードにおいて、前記外部電源の出力電圧が低下すると、
    各電池ユニットの電力が、ON状態の前記第二スイッチとON状態の前記第一スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記外部接続スイッチを介して前記外部電源の電力供給ラインに供給される通常放電モードに移行して複数の電池ユニットから放電することを特徴とする電源システム。
  6. 請求項1から5のいずれかに記載の電源システムであって、
    前記通常放電モードにおいて、前記外部電源の出力電圧が復帰すると、
    前記外部電源の電力供給ラインから供給される電力がON状態の前記外部接続スイッチを介して前記並列ラインに供給されると共に、該並列ラインの電力がON状態の前記第一スイッチとON状態の前記第二スイッチを介して各電池ユニットに供給される通常充電モードに移行して複数の電池ユニットを充電することを特徴とする電源システム。
  7. 請求項1から6のいずれかに記載の電源システムであって、
    前記バランス充電モードにおいて、各電池ユニット間の電圧差が所定の第二電圧差以上の場合に、
    前記外部接続スイッチが前記制御部からの信号でOFFに制御され、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニット間で電圧差を低減させる均等化モードに移行して複数の電池ユニットを均等化することを特徴とする電源システム。
  8. 請求項1から7のいずれかに記載の電源システムであって、
    前記バランス充電モードにおいて、前記電力供給ラインの電圧と各電池ブロックの電圧との差が所定の電圧差以下になると
    前記外部接続スイッチが前記制御部からの信号でOFFに切り換えられ、前記制御部が、各接続部の前記第一スイッチをOFFからONに、各接続部の前記第二スイッチをOFFからONに、各接続部の前記第三スイッチをONからOFFに切り換えた後、前記外部接続スイッチが前記制御部からの信号でをONに切り換えられて前記通常充電モードに移行することを特徴とする電源システム。
  9. 請求項1から8のいずれかに記載の電源システムであって、
    前記駆動停止モードにおいて、前記外部電源の出力電圧が復帰すると、
    前記外部接続スイッチがONに制御され、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして前記バランス充電モードに移行して各電池ユニットを充電することを特徴とする電源システム。
  10. 請求項1から9のいずれかに記載の電源システムであって、
    前記外部電源が、前記電源回路の出力電圧を切り換えながら前記電池ユニットを充電することを特徴とする電源システム。
  11. 請求項1から10のいずれかに記載の電源システムであって、
    前記第一整流素子及び/又は第二整流素子が、ダイオードであることを特徴とする電源システム。
  12. 請求項1から11のいずれかに記載の電源システムであって、
    前記第一スイッチ及び/又は第二スイッチがトランジスタであることを特徴とする電源システム。
  13. 請求項1から12のいずれかに記載の電源システムであって、
    前記第一スイッチ及び/又は第二スイッチがFETであり、
    前記第一整流素子及び/又は第二整流素子が、前記FETに内蔵された寄生ダイオードであることを特徴とする電源システム。
  14. 直列に接続された複数の電池セルを備える複数の電池ユニットと、
    前記複数の電池ユニットを並列に接続して外部に出力する接続ユニットとを備え、
    前記接続ユニットが、商用電源から供給される電力を直流に変換して駆動対象機器に出力する外部電源の電力供給ラインに接続されて、この電力供給ラインから供給される電力で、前記電池ユニットの電池セルを充電すると共に、外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから電力供給ラインに電力を供給するようにしてなる電源システムであって、
    前記接続ユニットは、
    前記複数の電池ユニットを並列に接続する並列ラインと、
    各電池ユニットを前記並列ラインに接続する接続部と、
    前記接続部の接続状態を制御する制御部と、
    を備えており、
    前記並列ラインは、電力供給ラインの電圧が所定値以下になるとオフになる外部接続スイッチを介して外部電源の電力供給ラインに接続されており、
    前記接続部は、
    前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
    前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
    前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
    前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
    前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
    前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
    各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
    前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
    前記通常放電モードにおいて、前記電力供給ラインの電圧が前記所定値以下になると、外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する放電停止モードと、
    前記放電停止モードにおいて、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  15. 直列に接続された複数の電池セルを備える複数の電池ユニットと、
    前記複数の電池ユニットを並列に接続して外部に出力する接続ユニットとを備え、
    前記接続ユニットが、商用電源から供給される電力を直流に変換して駆動対象機器に出力する外部電源の電力供給ラインに接続されて、この電力供給ラインから供給される電力で、前記電池ユニットの電池セルを充電すると共に、外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから電力供給ラインに電力を供給するようにしてなる電源システムであって、
    前記接続ユニットは、
    前記複数の電池ユニットを並列に接続する並列ラインと、
    各電池ユニットを前記並列ラインに接続する接続部と、
    前記接続部の接続状態を制御する制御部と、
    を備えており、
    前記並列ラインは、外部電源の電力供給ラインに接続されており、
    前記接続部は、
    前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
    前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
    前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
    前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えており、
    前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージするバランス充電モードと
    前記バランス充電モードの後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる通常充電モードと、
    各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する満充電モードと、
    前記満充電モードにおいて、前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する通常放電モードと、
    前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする駆動停止モードと
    を切り換えて複数の電池ユニットを充放電することを特徴とする電源システム。
  16. 外部の商用電源に接続されて、商用電源から供給される電力を変換して駆動対象機器に供給する外部電源と、
    直列に接続された複数の電池セルを備える複数の電池ユニットと、
    前記複数の電池ユニットを並列に接続して前記外部電源に接続する接続ユニットとを備え、
    前記外部電源から各電池ユニットに電力を供給して、前記電池セルを充電とすると共に、前記外部電源から駆動対象機器に出力される電圧が低下する状態で、前記電池ユニットから駆動対象機器に電力を供給するようにしており、
    前記外部電源は、
    商用電源から供給される交流を、駆動対象機器を駆動する所定の出力電圧の直流に変換する電源回路と、
    前記電源回路の出力側に接続されて、外部の駆動対象機器に電力を供給する電力供給ラインと、
    前記電力供給ラインに接続されて、前記接続ユニットを接続する接続ラインと、
    前記接続ライン上に設けられ、前記電力供給ラインの電圧が所定値以下になるとオフとなる外部接続スイッチと、
    を備えており、
    前記接続ユニットは、
    前記複数の電池ユニットを並列に接続する並列ラインと、
    各電池ユニットを前記並列ラインに接続する接続部と、
    前記接続部の接続状態を制御する制御部と、
    を備えており、
    前記並列ラインは、前記外部電源の接続ラインに接続されており、
    前記接続部は、
    前記並列ラインと前記電池ユニットの間に直列に接続された第一スイッチと第二スイッチの直列回路と、
    前記第二スイッチと並列に接続された、電流制限抵抗と第三スイッチの直列回路からなるサブ接続回路と、
    前記第一スイッチと並列に接続され、かつ前記並列ラインから該電池ユニットに通電する方向に整流作用を有する第一整流素子と、
    前記第二スイッチと並列に接続され、かつ該電池ユニットから前記並列ラインに通電する方向に整流作用を有する第二整流素子と
    を備えてなる電源システムの充放電制御方法であって、
    前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをONとして、各電池ユニットを均等化しながらプリチャージする工程と
    各電池ユニットを均等化しながらプリチャージする工程の後、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、前記電池ユニットを満充電させる工程と、
    各電池ユニットが満充電されると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをOFF、前記第三スイッチをOFFとして、前記電池ユニットの充電を停止する工程と、
    前記外部電源の出力電圧が低下すると、前記制御部が、各接続部の前記第一スイッチをON、前記第二スイッチをON、前記第三スイッチをOFFとして、各電池ユニットから前記外部電源の電力供給ラインに電力を供給する工程と、
    各電池ユニットから前記電力供給ラインに電力を供給する状態で、前記電力供給ラインの電圧が前記所定値以下になると、前記外部接続スイッチがOFFに制御されて、各電池ユニットからの放電を停止する工程と
    各電池ユニットからの放電を停止する状態で、前記電池ユニットのセル電圧が所定値以下になると、前記制御部が、各接続部の前記第一スイッチをOFF、前記第二スイッチをOFF、前記第三スイッチをOFFとする工程と
    で複数の電池ユニットを充放電することを特徴とする電源システムの充放電制御方法。
JP2014530036A 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法 Active JP5615995B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014530036A JP5615995B1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013074115 2013-03-29
JP2013074115 2013-03-29
PCT/JP2014/001503 WO2014156041A1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法
JP2014530036A JP5615995B1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法

Publications (2)

Publication Number Publication Date
JP5615995B1 true JP5615995B1 (ja) 2014-10-29
JPWO2014156041A1 JPWO2014156041A1 (ja) 2017-02-16

Family

ID=51623058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014530036A Active JP5615995B1 (ja) 2013-03-29 2014-03-17 電源システム及び電源システムの充放電制御方法

Country Status (3)

Country Link
JP (1) JP5615995B1 (ja)
CN (1) CN104247198B (ja)
WO (1) WO2014156041A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106774761A (zh) * 2016-11-25 2017-05-31 郑州云海信息技术有限公司 一种供电装置及其供电方法、服务器
US9887572B2 (en) 2015-06-30 2018-02-06 Kabushiki Kaisha Toshiba Battery pack and control method for controlling output of battery pack for connecting external load
KR20180048068A (ko) * 2016-11-02 2018-05-10 삼성에스디아이 주식회사 배터리 팩
EP3309920A3 (en) * 2016-10-14 2018-05-30 Contemporary Amperex Technology Co., Limited Method for hot-plugging, control device for hot-plugging, method and device for voltage balance
JP2019185866A (ja) * 2018-04-02 2019-10-24 トヨタ自動車株式会社 複数電池の評価装置
EP3598605A1 (en) * 2018-07-19 2020-01-22 Yazaki Corporation Battery system
US10673255B2 (en) 2017-03-14 2020-06-02 Kabushiki Kaisha Toshiba Battery pack and computer-implement battery pack control method
CN112848969A (zh) * 2019-11-27 2021-05-28 光阳工业股份有限公司 电动车辆的电池并联控制方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6488631B2 (ja) * 2014-10-20 2019-03-27 株式会社豊田自動織機 給電路遮断装置及び給電路遮断方法
JP2017525323A (ja) * 2015-06-30 2017-08-31 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 充電制御回路、充電装置、充電システムおよび充電制御方法
CN107706964A (zh) * 2015-08-03 2018-02-16 成都宇能通能源开发有限公司 一种电池组并联工作方法
CN107658919A (zh) * 2015-08-03 2018-02-02 成都宇能通能源开发有限公司 一种电池组并联电路
CN106816652B (zh) * 2015-11-27 2019-08-13 比亚迪股份有限公司 电池系统及其启动控制方法
US20170366019A1 (en) * 2016-06-16 2017-12-21 EcoReco Global Corporation Battery Switching System and Method Thereof
CN108242842B (zh) * 2016-12-26 2021-06-29 山东兆宇电子股份有限公司 一种不同类型蓄电池组并联的管理装置及其方法
CN106655393A (zh) * 2017-01-05 2017-05-10 奇酷互联网络科技(深圳)有限公司 充电装置和移动终端
CN107069928B (zh) * 2017-03-28 2024-04-16 浙江特康电子科技有限公司 一种用于多电池包割草机的主开关控制电路
JP6958046B2 (ja) * 2017-07-11 2021-11-02 株式会社ジェイ・エム・エス 点滴監視装置
US11233419B2 (en) * 2017-08-10 2022-01-25 Zoox, Inc. Smart battery circuit
JP6789910B2 (ja) * 2017-10-18 2020-11-25 株式会社東芝 電池ユニットおよび電池ユニットの制御方法
KR102308299B1 (ko) 2017-11-06 2021-10-01 주식회사 엘지에너지솔루션 셀 모듈 균등화 및 프리차지 장치 및 방법
CN110198058A (zh) * 2018-02-27 2019-09-03 加百裕工业股份有限公司 并联电池系统及方法
CN108512269A (zh) * 2018-03-14 2018-09-07 深圳市爱克斯达电子有限公司 一种电池并联平衡装置及充放电控制方法
CN110323818A (zh) * 2018-03-30 2019-10-11 加百裕工业股份有限公司 并联电池系统及方法
WO2020026664A1 (ja) * 2018-07-30 2020-02-06 工機ホールディングス株式会社 充電装置
JP6898904B2 (ja) * 2018-10-31 2021-07-07 株式会社豊田中央研究所 電源装置
JP7022346B2 (ja) * 2018-11-28 2022-02-18 トヨタ自動車株式会社 電源システム
JP7100804B2 (ja) * 2018-11-28 2022-07-14 トヨタ自動車株式会社 電源システム
JP7129008B2 (ja) * 2018-11-29 2022-09-01 トヨタ自動車株式会社 電源システム
JP7025716B2 (ja) * 2018-11-29 2022-02-25 トヨタ自動車株式会社 電源システム
JP7054453B2 (ja) * 2018-11-29 2022-04-14 トヨタ自動車株式会社 電源システム
CN110098608A (zh) * 2019-03-12 2019-08-06 国网山西省电力公司晋中供电公司 变电站分布式直流电源系统
JP7227808B2 (ja) * 2019-03-19 2023-02-22 本田技研工業株式会社 予測装置、二次電池、予測方法およびプログラム
CN210224193U (zh) * 2019-06-28 2020-03-31 北京石头世纪科技股份有限公司 一种可充电电池组及手持真空吸尘设备
CN111293754B (zh) * 2020-03-20 2021-11-09 Oppo广东移动通信有限公司 充电系统、方法、电子设备和计算机可读存储介质
JP7157101B2 (ja) * 2020-06-19 2022-10-19 矢崎総業株式会社 電池制御ユニット及び電池システム
US11901749B2 (en) * 2020-09-09 2024-02-13 Microsoft Technology Licensing, Llc Balanced discharge in multi-battery system
CN112491130B (zh) * 2020-11-20 2023-03-31 贵州电网有限责任公司 一种直流充电机电气闭锁装置
JP7353261B2 (ja) 2020-12-23 2023-09-29 プライムプラネットエナジー&ソリューションズ株式会社 バッテリー制御装置およびモバイルバッテリー
JP7353260B2 (ja) 2020-12-23 2023-09-29 プライムプラネットエナジー&ソリューションズ株式会社 バッテリー制御装置およびモバイルバッテリー
CN112886153A (zh) * 2021-01-20 2021-06-01 宁波中科孚奇能源科技有限公司 一种储能电池模块、储能电池簇与储能电池系统
EP4358351A1 (en) * 2021-06-15 2024-04-24 FDK Corporation Power supply system and electricity storage device
CN113541258A (zh) * 2021-07-21 2021-10-22 研祥智能科技股份有限公司 充放电装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043723A1 (ja) * 2010-10-01 2012-04-05 三洋電機株式会社 電源装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124700A (en) * 1995-08-10 2000-09-26 Sony Corporation Charging method, charging equipment, and integrated circuit
US6850039B2 (en) * 2003-05-02 2005-02-01 O2Micro International Limited Battery pack and a battery charging/discharging circuit incorporating the same
CN101425678B (zh) * 2007-10-30 2011-11-23 比亚迪股份有限公司 电池保护方法和系统
JP5274046B2 (ja) * 2008-02-21 2013-08-28 三洋電機株式会社 車両用の電源装置
JP5937011B2 (ja) * 2010-10-19 2016-06-22 三洋電機株式会社 電源装置及びこれを用いた車両並びに蓄電装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043723A1 (ja) * 2010-10-01 2012-04-05 三洋電機株式会社 電源装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887572B2 (en) 2015-06-30 2018-02-06 Kabushiki Kaisha Toshiba Battery pack and control method for controlling output of battery pack for connecting external load
EP3309920A3 (en) * 2016-10-14 2018-05-30 Contemporary Amperex Technology Co., Limited Method for hot-plugging, control device for hot-plugging, method and device for voltage balance
US10491033B2 (en) 2016-10-14 2019-11-26 Contemporary Amperex Technology Co., Limited Method for hot-plugging, control device for hot-plugging, method and device for voltage balance
KR102311510B1 (ko) * 2016-11-02 2021-10-08 삼성에스디아이 주식회사 배터리 팩
KR20180048068A (ko) * 2016-11-02 2018-05-10 삼성에스디아이 주식회사 배터리 팩
CN106774761A (zh) * 2016-11-25 2017-05-31 郑州云海信息技术有限公司 一种供电装置及其供电方法、服务器
US10673255B2 (en) 2017-03-14 2020-06-02 Kabushiki Kaisha Toshiba Battery pack and computer-implement battery pack control method
JP2019185866A (ja) * 2018-04-02 2019-10-24 トヨタ自動車株式会社 複数電池の評価装置
JP7106946B2 (ja) 2018-04-02 2022-07-27 トヨタ自動車株式会社 複数電池の評価装置
EP3598605A1 (en) * 2018-07-19 2020-01-22 Yazaki Corporation Battery system
US11081899B2 (en) 2018-07-19 2021-08-03 Yazaki Corporation Battery system
CN110739735A (zh) * 2018-07-19 2020-01-31 矢崎总业株式会社 电池系统
CN112848969A (zh) * 2019-11-27 2021-05-28 光阳工业股份有限公司 电动车辆的电池并联控制方法

Also Published As

Publication number Publication date
JPWO2014156041A1 (ja) 2017-02-16
WO2014156041A1 (ja) 2014-10-02
CN104247198A (zh) 2014-12-24
CN104247198B (zh) 2017-07-28

Similar Documents

Publication Publication Date Title
JP5615995B1 (ja) 電源システム及び電源システムの充放電制御方法
JP6026226B2 (ja) 蓄電システム及び電源システム
EP2882065B1 (en) Battery charging management system of automated guided vehicle and battery charging management method
US8581557B2 (en) Direct-current power source apparatus
US8193773B2 (en) Electronic system for a battery
US9118198B2 (en) Balancing of battery cells connected in parallel
KR20120015895A (ko) 2차 전지 관리 장치
US10199844B2 (en) Power-supplying device
JP4763660B2 (ja) 電源システム
JP5664310B2 (ja) 直流電源装置
US20170338678A1 (en) Vehicle electrical power system for jumpstarting
JP4015126B2 (ja) 直流電力供給システム
JP2009071922A (ja) 直流バックアップ電源装置およびその制御方法
JP2009148110A (ja) 充放電器とこれを用いた電源装置
JP6214131B2 (ja) 組電池充電システムおよび組電池充電方法
CN108886249B (zh) 蓄电池装置、蓄电池装置的控制方法及记录介质
KR20220015402A (ko) 에너지 하베스팅하고 재충전 가능한 에너지 저장 디바이스를 충전하기 위한 방법 및 디바이스
JP5488085B2 (ja) 直流電源装置
KR101546046B1 (ko) 전동카트의 배터리 방전 방지장치 및 방법
JP2009118683A (ja) 充電器とその充電方法および電源システム
EP4266539A1 (en) Power supply device
JP2010022086A (ja) 直流電源システム
CN113054734A (zh) 备份电源
KR20130096211A (ko) 2차 전지 관리 장치
WO2016075616A2 (en) Aid module for electrically starting an internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5615995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250