JP6531745B2 - 電源装置及び電源装置の制御方法 - Google Patents

電源装置及び電源装置の制御方法 Download PDF

Info

Publication number
JP6531745B2
JP6531745B2 JP2016210653A JP2016210653A JP6531745B2 JP 6531745 B2 JP6531745 B2 JP 6531745B2 JP 2016210653 A JP2016210653 A JP 2016210653A JP 2016210653 A JP2016210653 A JP 2016210653A JP 6531745 B2 JP6531745 B2 JP 6531745B2
Authority
JP
Japan
Prior art keywords
battery
battery circuit
switching element
circuit module
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016210653A
Other languages
English (en)
Other versions
JP2018074709A (ja
Inventor
成晶 後藤
成晶 後藤
敬祐 石川
敬祐 石川
修二 戸村
修二 戸村
直樹 柳沢
直樹 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2016210653A priority Critical patent/JP6531745B2/ja
Priority to US16/343,880 priority patent/US11011982B2/en
Priority to CN201780065835.7A priority patent/CN109863662B/zh
Priority to EP17864990.1A priority patent/EP3513480B1/en
Priority to PCT/JP2017/038731 priority patent/WO2018079664A1/en
Publication of JP2018074709A publication Critical patent/JP2018074709A/ja
Application granted granted Critical
Publication of JP6531745B2 publication Critical patent/JP6531745B2/ja
Priority to US17/234,274 priority patent/US11451140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/102Parallel operation of dc sources being switching converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

本発明は、複数の電池回路モジュールを備えた電源装置及び電源装置の制御方法に関する。
様々な電源装置が知られており、例えば、ハイブリッド車両や電動車両における走行モータの駆動に用いられる電源装置では、電池の電圧を昇圧コンバータで昇圧してインバータに入力している。
特に、特許文献1には、バッテリ等の電池からの直流電圧をスイッチング素子のスイッチングによりDC/DC変換して、走行モータに出力するDC/DCコンバータと、DC/DCコンバータの損失特性に基づいてスイッチング素子のスイッチング周波数を設定する周波数設定手段と、この設定された周波数に基づきスイッチング素子をスイッチング制御する制御手段とを備えた電源装置が記載されている。この電源装置によれば、DC/DCコンバータの損失を小さくするスイッチング周波数を設定することにより、DC/DCコンバータを効率良く駆動することができる。
特開2003−116280号公報
特許文献1に記載の電源装置において、スイッチング素子やDC/DCコンバータに用いられる昇圧用リアクトルは、必要とされる電流容量や出力電圧に応じて設計される。また、それを収納する筐体も、使用する部品の大きさに応じて設計される。このため、スイッチング素子や昇圧用リアクトル、また、これらに関係する周辺部品等は、必要とされる電流容量や出力電圧に基づいて毎回、設計する必要がある。
すなわち、電源装置は、求められる仕様(必要とされる電流容量や出力電圧)に基づいて毎回新たに設計する必要があり汎用性が低かった。また、昇圧のためのDC/DCコンバータが必要である。
そこで、本発明では、構成が簡素であり、所望の出力電圧に応じて容易に対応することができる電源装置を提供することを目的とする。
本発明の電源装置は、電池と、前記電池の電圧を出力する出力端子と、前記出力端子に接続されるとともに前記電池に並列接続された第1のスイッチング素子と、前記電池と前記第1のスイッチング素子との間において前記電池に直列接続され、前記第1のスイッチング素子のオン時にオフする第2のスイッチング素子とを備えた電池回路モジュールと、複数の前記電池回路モジュールを、前記出力端子を介して直列接続した電池回路モジュール群と、前記電池回路モジュールの前記第1のスイッチング素子及び前記第2のスイッチング素子をオンオフ駆動するゲート信号を、前記電池回路モジュール群の各電池回路モジュールに対して一定時間毎にそれぞれ出力する制御回路と、を備えたことを特徴とする。
また、前記制御回路は、複数の前記電池回路モジュールに対応してそれぞれ設けられ、前記電池回路モジュール群において隣接する電池回路モジュール間で、前記ゲート信号を一定時間遅延させて伝達する遅延回路を備えることを特徴とする。
また、前記制御回路は、前記電池回路モジュールが故障した場合に、故障した当該電池回路モジュールを除外して、故障していない正常な前記電池回路モジュールにゲート信号を入力することを特徴とする。また、前記制御回路は、前記ゲート信号を入力していない前記電池回路モジュールに対して、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにすることを特徴とする。また、前記制御回路は、前記一定時間を長くまたは短く調整することを特徴とする。
さらに、本発明の電源装置の制御方法は、電池と、前記電池の電圧を出力する出力端子と、前記出力端子に接続されるとともに前記電池に並列接続された第1のスイッチング素子と、前記電池と前記第1のスイッチング素子との間において前記電池に直列接続され、前記第1のスイッチング素子のオン時にオフする第2のスイッチング素子とを備えた電池回路モジュールと、複数の前記電池回路モジュールを、前記出力端子を介して直列接続した電池回路モジュール群と、を備えた電源装置の制御方法であって、前記電池回路モジュールの前記第1のスイッチング素子及び前記第2のスイッチング素子をオンオフ駆動するゲート信号を、前記電池回路モジュール群の各電池回路モジュールに対して一定時間毎にそれぞれ出力することを特徴とする。
本発明によれば、構成が簡素であり、所望の出力電圧に応じて容易に対応することができる、すなわち、汎用性が高い電源装置を得ることができる。
第1の実施形態における電源装置の概略ブロック図である。 電池回路モジュールの概略構成図である。 電池回路モジュールの動作を説明するタイムチャートである。 電池回路モジュールの動作説明図であり、(a)は第1のスイッチング素子がON、第2のスイッチング素子がOFFした状態を示し、(b)は第1のスイッチング素子がOFF、第2のスイッチング素子がONした状態を示す。 電源装置全体の動作を説明するタイムチャートである。 第2の実施形態における電源装置の概略ブロック図である。 電池回路モジュールの変形例を説明する概略構成図である。
第1の実施形態における電源装置1について説明する。図1は、電源装置1のブロック図を示している。図1に示すように、電源装置1は、複数の電池回路モジュール10a,10b,10c,・・・と、電池回路モジュール10a,10b,10c,・・・にゲート信号を出力して電池回路モジュール10a,10b,10c,・・・をONOFF駆動する制御回路11とを備えている。
電池回路モジュール10a,10b,10c,・・・は直列接続されており、電池回路モジュール群100を構成している。電池回路モジュール10a,10b,10c,・・・の構成は同様であるので、電池回路モジュール10aの構成及び駆動について説明する。なお、制御回路11の詳細及び制御回路11による電源装置1の制御については後述する。
電池回路モジュール10aは、複数の電池セルが直列接続された電池Bと、電池Bの電圧を出力する出力端子OTと、出力端子OTに接続されるとともに電池Bに並列接続された第1のスイッチング素子S1と、電池Bと第1のスイッチング素子S1との間において電池Bに直列接続された第2のスイッチング素子S2と、電池Bと第2のスイッチング素子S2との間に配設されたチョークコイルLと、電池Bに並列接続されたコンデンサCとを備えている。
第1のスイッチング素子S1及び第2のスイッチング素子S2は、電界効果トランジスタとしてのMOS−FETである。第1のスイッチング素子S1及び第2のスイッチング素子S2は、制御回路11からのゲート信号によってスイッチング動作される。なお、スイッチング動作可能な素子であれば、MOS−FET以外のスイッチング素子を使用することもできる。
また、ここでは電池Bとして二次電池を使用しているので、内部抵抗損失の増加による電池Bの劣化を抑制するため、電池B、チョークコイルL及びコンデンサCによってRLCフィルタを形成して電流の平準化を図っている。
次に、電池回路モジュール10aの動作について図2、3を参照して説明する。図2は、電池回路モジュール10aの概略動作図を、図3は電池回路モジュール10aの動作に関するタイムチャートをそれぞれ示している。また、図3において、符号D1は、電池回路モジュール10aを駆動するゲート信号の矩形波を、符号D2は、第1のスイッチング素子S1のONOFF状態を示す矩形波を、符号D3は、第2のスイッチング素子S2のONOFF状態を示す矩形波を、符号D4は、電池回路モジュール10aにより出力される電圧Vmodの特性をそれぞれ示している。
電池回路モジュール10aの初期状態、すなわち、ゲート信号が出力されていない状態では、第1のスイッチング素子S1はON状態、第2のスイッチング素子S2はOFF状態となっている。そして、制御回路11からゲート信号が電池回路モジュール10aに入力されると、電池回路モジュール10aはPWM制御によってスイッチング動作する。このスイッチング動作は、第1のスイッチング素子S1と第2のスイッチング素子S2とが交互にONOFFすることによって行われる。
図3の符号D1で示すように、制御回路11からゲート信号が出力されると、このゲート信号に応じて、電池回路モジュール10aの第1のスイッチング素子S1及び第2のスイッチング素子S2が駆動される。第1のスイッチング素子S1は、ゲート信号の立ち上がりに応じて、ON状態からOFF状態に切り替わる。また、第1のスイッチング素子S1は、ゲート信号の立ち下がりから僅かな時間(デッドタイムdt)遅れて、OFF状態からON状態に切り替わる(符号D2参照)。
一方、第2のスイッチング素子S2は、ゲート信号の立ち上がりから僅かな時間(デッドタイムdt)遅れて、OFF状態からON状態に切り替わる。また、第2のスイッチング素子S2は、ゲート信号の立ち下がりと同時に、ON状態からOFF状態に切り替わる(符号D3参照)。このように、第1のスイッチング素子S1と第2のスイッチング素子S2とは交互にONOFF動作する。
なお、第1のスイッチング素子S1がゲート信号の立ち下がり時に僅かな時間(デッドタイムdt)遅れて動作することと、第2のスイッチング素子S2がゲート信号の立ち上がり時に僅かな時間(デッドタイムdt)遅れて動作することは、第1のスイッチング素子S1と第2のスイッチング素子S2とが同時に動作することを防止するためである。すなわち、第1のスイッチング素子S1と第2のスイッチング素子S2とが同時にONして短絡することを防止している。この動作を遅らせているデッドタイムdtは、例えば、100nsに設定しているが、適宜設定することができる。なお、デッドタイムdt中はダイオードを還流し、その還流したダイオードと並列にあるスイッチング素子がONしたときと同じ状態になる。
そして、この動作によって、電池回路モジュール10aは、図3の符号D4で示すように、ゲート信号がOFF時(すなわち、第1のスイッチング素子S1がON、第2のスイッチング素子S2がOFF)では、コンデンサCが電池回路モジュール10aの出力端子OTから切り離されて出力端子OTには電圧が出力されない。この状態を、図4(a)に示す。図4(a)に示すように、電池回路モジュール10aの電池B(コンデンサC)をバイパス(スルー状態)している。
また、ゲート信号がON時(すなわち、第1のスイッチング素子S1がOFF、第2のスイッチング素子S2がON)では、コンデンサCが電池回路モジュール10aの出力端子OTに接続されて出力端子OTに電圧が出力される。この状態を、図4(b)に示す。図4(b)に示すように、電池回路モジュール10aにおけるコンデンサCを介して電圧Vmodが出力端子OTに出力されている。
図1に戻り、制御回路11による電源装置1の制御について説明する。制御回路11は、電池回路モジュール群100の全体を制御する。すなわち、電池回路モジュール10a,10b,10c,・・・の動作をそれぞれ制御して電源装置1としての出力電圧を制御する。
制御回路11は、矩形波のゲート信号を出力するゲート回路12と、ゲート回路12から出力されるゲート信号を、電池回路モジュール10a,10b,10c,・・・に遅延させて順次出力する遅延回路13a,13b,13c,・・・とを備えている。
ゲート回路12は、電池回路モジュール群100において直列接続されている電池回路モジュール10a,10b,10c,・・・のうちの最上流側の電池回路モジュール10aに接続されている。
遅延回路13a,13b,13c,・・・は、電池回路モジュール10a,10b,10c,・・・に対応してそれぞれ設けられている。遅延回路13aは、ゲート回路12からのゲート信号を、一定時間遅延させて隣接する電池回路モジュール10bに出力するとともに、遅延回路13bに出力する。この結果、ゲート回路12から出力されたゲート信号は、電池回路モジュール10a,10b,10c,・・・に順次遅延されて伝達される。
なお、遅延回路13a,13b,13c,・・・は、電気的な回路構成としては制御回路11に含まれるものであるが、ハード構成としては電池回路モジュール10a,10b,10c,・・・と一体化して構成することが好ましい。図1において、例えば、破線Mで示すように、遅延回路13bと電池回路モジュール10bとを一体化(モジュール化)して構成する。
図1において、ゲート回路12から最上流側の電池回路モジュール10aにゲート信号を出力すると、電池回路モジュール10aが駆動されて、図4(a)、(b)に示すように、電池回路モジュール10aにおける電圧が出力端子OTに出力される。また、ゲート回路12からのゲート信号は、遅延回路13aに入力されて、一定時間遅延された後、隣接する電池回路モジュール10bに入力される。このゲート信号により電池回路モジュール10bが駆動する。
一方、遅延回路13aからのゲート信号は、遅延回路13bにも入力されて、遅延回路13aと同様に、一定時間遅延されて、次に隣接する電池回路モジュール10cに入力される。以下、同様に、ゲート信号は遅延されて下流側の電池回路モジュールにそれぞれ入力される。そして、電池回路モジュール10a,10b,10c,・・・は、順次駆動されて、電池回路モジュール10a,10b,10c,・・・の電圧が各出力端子OTに順次出力される。
電池回路モジュール10a,10b,10c,・・・が順次駆動される状態を図5に示す。図5に示すように、ゲート信号に応じて、電池回路モジュール10a,10b,10c,・・・が、一定の遅延時間を持って上流側から下流側に次々と駆動されている。図5において、符号E1は、電池回路モジュール10a,10b,10c,・・・の第1のスイッチング素子S1がOFF、第2のスイッチング素子S2がONして、電池回路モジュール10a,10b,10c,・・・が出力端子OTから電圧を出力している状態(接続状態)を示している。また、符号E2は、電池回路モジュール10a,10b,10c,・・・の第1のスイッチング素子S1がON、第2のスイッチング素子S2がOFFして、電池回路モジュール10a,10b,10c,・・・が出力端子OTから電圧を出力していない状態(スルー状態)を示す。このように、電池回路モジュール10a,10b,10c,・・・は、一定の遅延時間を持って順次駆動される。
図5を参照して、ゲート信号やゲート信号の遅延時間の設定について説明する。ゲート信号の周期Fは、電池回路モジュール10a,10b,10c,・・・の遅延時間を合計することによって設定される。このため、遅延時間を長く設定すると、ゲート信号の周波数は低周波になる。逆に、遅延時間を短く設定すると、ゲート信号の周波数は高周波になる。また、ゲート信号を遅延する遅延時間は、電源装置1に求められる仕様に応じて適宜設定することができる。
ゲート信号の周期FにおけるON時比率G1、すなわち、周期FのうちのON時間の比率は、電源装置1の出力電圧/電池回路モジュール10a,10b,10c,・・・の合計電圧(電池回路モジュール電池電圧×電池回路モジュール数)により算出することができる。すなわち、ON時比率G1=電源装置出力電圧/(電池回路モジュール電池電圧×電池回路モジュール数)となる。なお、厳密には、デッドタイムdtだけON時比率がずれてしまうので、チョッパ回路で一般的に行われているようにフィードバックまたはフィードフォワードでON時比率の補正を行う。
電池回路モジュール10a,10b,10c,・・・の合計電圧は、上述したように、電池回路モジュール電池電圧×接続状態の電池回路モジュール数によって表すことができる。電源装置1の出力電圧が、一つの電池回路モジュール10aの電池電圧で割り切れる値であれば、電池回路モジュール10aが通過(スルー状態)から接続に切り替わる瞬間に、他の電池回路モジュールが接続から通過(スルー状態)に切り替わるので、電池回路モジュール群100の全体の出力電圧に変動はない。
しかし、電源装置1の出力電圧が、電池回路モジュール10aの電池電圧で割り切れない値であれば、電源装置1の出力電圧と、電池回路モジュール10a,10b,10c,・・・の合計電圧とは整合しない。換言すると、電源装置1の出力電圧(電池回路モジュール群100の全体の出力電圧)が変動してしまう。ただし、このときの変動振幅は1つの電池回路モジュール分の電圧であり、また、この変動周期は、ゲート信号の周期F/電池回路モジュール数となる。ここでは、数十個の電池回路モジュールを直列接続しているので、電池回路モジュール全体の寄生インダクタンスは大きな値となっており、この電圧変動はフィルタされて結果的には電源装置1の出力電圧を得ることができる。
次に、具体例について説明する。図5において、例えば、電源装置1としての所望の出力電圧が400V、電池回路モジュール10aの電池電圧が15V、電池回路モジュール10a,10b,10c,・・・数が40個、遅延時間が200nsであるとする。なお、この場合は、電源装置1の出力電圧(400V)が、電池回路モジュール10aの電池電圧(15V)で割り切れない場合に相当する。
これらの数値に基づくと、ゲート信号の周期Fは、遅延時間×電池回路モジュール数により算出されるので、200ns×40個=8μsとなり、ゲート信号は125kHz相当の矩形波になる。また、ゲート信号のON時比率G1は、電源装置出力電圧/(電池回路モジュール電池電圧×電池回路モジュール数)により算出されるので、ON時比率G1は、400V/(15V×40個)≒0.67となる。
これらの数値に基づいて、電池回路モジュール10a,10b,10c,・・・を順次駆動すると、電源装置1として、図5中、符号H1で示す矩形波状の出力特性が得られる。この出力特性は、390Vと405Vとの間で変動する電圧出力特性となる。すなわち、ゲート信号の周期F/電池回路モジュール数により算出される周期で変動する出力特性となり、8μs/40個=200ns(5MHz相当)で変動する出力特性となる。この変動は、電池回路モジュール10a,10b,10c,・・・の配線による寄生インダクタンスでフィルタリングされるので、符号H2で示すように、電源装置1としては、400Vの電圧が出力される。
そして、最上流側の電池回路モジュール10aのコンデンサCには、接続状態の場合に電流が流れるため、図5中符号J1で示すように、コンデンサ電流波形は矩形波になる。
電池BとコンデンサCはRLCフィルタを形成しているので、電源装置1にはフィルタリングされて平準化された電流が出力される(図5中、符号J2参照)。
このように、全ての電池回路モジュール10a,10b,10c,・・・において電流波形は同様であり、また、全ての電池回路モジュール10a,10b,10c,・・・から均等に電流を出力することができる。
以上説明したように、電池回路モジュール群100を駆動する場合、最上流側の電池回路モジュール10aに出力したゲート信号を、下流側の電池回路モジュール10bに一定時間遅延して出力して、さらに、このゲート信号を一定時間遅延して下流側の電池回路モジュールに順次伝達するので、電池回路モジュール10a,10b,10c,・・・は、一定時間遅延しながら順次電圧をそれぞれ出力する。そして、これらの電圧が合計されることによって、電源装置1としての電圧が出力されることになり、所望の電圧を得ることができる。このため、昇圧回路が必要なくなり、電源装置1の構成を簡素化することができ、小型化、低コスト化することができる。また、構成が簡素化されるので、損失が発生する部分が減少して昇圧効率が向上する。さらに、複数の電池回路モジュール10a,10b,10c,・・・から略均等に電圧を出力しているので、特定の電池回路モジュールに駆動が集中することもなく、電源装置1の内部抵抗損失を低減することができる。
また、ON時比率G1を調整することによって、所望の電圧に容易に対応することができ、電源装置1としての汎用性を向上することができる。特に、電池回路モジュール10a,10b,10c,・・・に故障が発生して、使用困難な電池回路モジュールが発生した場合でも、その故障した電池回路モジュールを除外して、正常な電池回路モジュールを使用して、ゲート信号の周期F、ON時比率G1、遅延時間を再設定することによって、所望の電圧を得ることができる。すなわち、電池回路モジュール10a,10b,10c,・・・に故障が発生しても所望の電圧の出力を継続することができる。
さらに、ゲート信号を遅延する遅延時間を長く設定することによって、ゲート信号の周波数が低周波になるので、第1のスイッチング素子S1及び第2のスイッチング素子S2のスイッチング周波数も低くなり、スイッチング損失を低減することができ、電力変換効率を向上することができる。逆に、ゲート信号を遅延する遅延時間を短くすることによって、ゲート信号の周波数が高周波になるので、電圧変動の周波数が高くなり、フィルタリングが容易になって、安定した電圧を得ることができる。また、電流変動をRLCフィルタによって平準化することも容易になる。このように、ゲート信号を遅延する遅延時間を調整することによって、求められる仕様、性能に応じた電源装置1を提供することができる。
次に第2の実施形態について図6を参照して説明する。図6に示すように、電源装置2は、第1の実施形態における電池回路モジュール10a,10b,10c,・・・及び電池回路モジュール群100を備えている。電池回路モジュール群100には、電池回路モジュール10a,10b,10c,・・・の駆動を制御する制御回路20が接続されている。すなわち、制御回路20は、全ての電池回路モジュール10a,10b,10c,・・・に接続されている。
制御回路20は、電池回路モジュール10a,10b,10c,・・・を駆動するゲート信号を出力するゲート回路21を備えており、ゲート回路21によるゲート信号を、電池回路モジュール10a,10b,10c,・・・に対して個別に出力する。また、制御回路20は、電池回路モジュール10a,10b,10c,・・・に対して、ゲート信号を一定時間毎にそれぞれ出力する。すなわち、制御回路20は、電池回路モジュール10a,10b,10c,・・・に対して、電池回路モジュール10a,10b,10c,・・・の配置位置にとらわれず、任意の順序で電池回路モジュール10a,10b,10c,・・・を一定時間毎に順次駆動する。例えば、最初に、電池回路モジュール10cにゲート信号を出力して電池回路モジュール10cを駆動し、その一定時間後に、電池回路モジュール10aにゲート信号を出力して電池回路モジュール10aを駆動する。このように、電池回路モジュール10c,10a,・・・を順次駆動する。
このため、第2の実施形態における電源装置2では、第1の実施形態における電源装置1に対して、遅延回路13a,13b,13c,・・・を備えていないので、その分構成を簡略化することができ、コストを抑制することができる。
次に、電池回路モジュール10aの構成の変形例について説明する。図7に示すように、電池回路モジュール30aの構成として、図1に示す電池回路モジュール10aのチョークコイルLと電池Bとの配置位置(接続位置)を入れ替えてもよい。また、第2のスイッチング素子S2を、第1のスイッチング素子S1に対して出力端子OTの反対側に配置してもよい。すなわち、第1のスイッチング素子S1と第2のスイッチング素子S2とのスイッチング動作により電池B(コンデンサC)の電圧を出力端子OTに出力できるのであれば、電池回路モジュール30aにおける各素子、電気部品の配置を適宜変更することができる。
また、電池Bの電圧出力特性が優れている場合、すなわち、電源電流がコンデンサ電流と一致して、出力波形が矩形波となっても電源回路において問題がないときには、RLCフィルタを省略してもよい。また、電池回路モジュール10a,10b,10c,・・・の配線による寄生インダクタンスを利用していたが、配線による寄生インダクタンスを利用する代わりに、必要なインダクタンス値を担保するためにインダクタンス部品を実装してもよい。
さらに、第1の実施形態では、ゲート回路12からのゲート信号を、遅延回路13aに出力する前に、電池回路モジュール10aに出力していたが、図1において、ゲート信号を、遅延回路13aで遅延した後に電池回路モジュール10aに出力してもよい。この場合、遅延回路13aから出力される遅延されたゲート信号が、電池回路モジュール10a及び遅延回路13bにそれぞれ出力される。遅延回路13b,13c,・・・においても同様の制御を行う。この制御によっても、電池回路モジュール10a,10b,10c,・・・を一定時間遅延しながら順次駆動することができる。
1,2 電源装置、10a,10b,10c,30a 電池回路モジュール、11,20 制御回路、12,21 ゲート回路、13a,13b,13c 遅延回路、100 電池回路モジュール群、B 電池、C コンデンサ、L チョークコイル、OT 出力端子、S1 第1のスイッチング素子、S2 第2のスイッチング素子。

Claims (5)

  1. 電池と、前記電池の電圧を出力する出力端子と、前記出力端子に接続されるとともに前記電池に並列接続された第1のスイッチング素子と、前記電池と前記第1のスイッチング素子との間において前記電池に直列接続され、前記第1のスイッチング素子のオン時にオフする第2のスイッチング素子と、前記電池に並列に接続されたコンデンサと、を備えた電池回路モジュールと、
    複数の前記電池回路モジュールを、前記出力端子を介して直列接続した電池回路モジュール群と、
    前記電池回路モジュールの前記第1のスイッチング素子及び前記第2のスイッチング素子をオンオフ駆動するゲート信号を、前記電池回路モジュール群の各電池回路モジュールに対して一定時間毎にそれぞれ出力する制御回路と、
    を備え、
    前記制御回路は、複数の前記電池回路モジュールに対応してそれぞれ設けられ、前記電池回路モジュール群において隣接する電池回路モジュール間で、前記ゲート信号を一定時間遅延させて伝達する遅延回路を備え、前記ゲート信号の周期は前記電池回路モジュールの各々の遅延回路における遅延時間の合計値として、複数の前記電池回路モジュールの合計電圧を出力することを特徴とする電源装置。
  2. 請求項1に記載の電源装置であって、
    前記制御回路は、
    前記電池回路モジュールが故障した場合に、故障した当該電池回路モジュールを除外して、故障していない正常な前記電池回路モジュールにゲート信号を入力する
    ことを特徴とする電源装置。
  3. 請求項2に記載の電源装置であって、
    前記制御回路は、
    前記ゲート信号を入力していない前記電池回路モジュールに対して、前記第1のスイッチング素子をオンにし、前記第2のスイッチング素子をオフにする
    ことを特徴とする電源装置。
  4. 請求項1から3のいずれか一項に記載の電源装置であって、
    前記制御回路は、前記一定時間を長くまたは短く調整することを特徴とする電源装置。
  5. 電池と、前記電池の電圧を出力する出力端子と、前記出力端子に接続されるとともに前記電池に並列接続された第1のスイッチング素子と、前記電池と前記第1のスイッチング素子との間において前記電池に直列接続され、前記第1のスイッチング素子のオン時にオフする第2のスイッチング素子と、前記電池に並列に接続されたコンデンサと、を備えた電池回路モジュールと、
    複数の前記電池回路モジュールを、前記出力端子を介して直列接続した電池回路モジュール群と、
    を備えた電源装置の制御方法であって、
    前記電池回路モジュールの前記第1のスイッチング素子及び前記第2のスイッチング素子をオンオフ駆動するゲート信号を、前記電池回路モジュール群の各電池回路モジュールに対して一定時間毎にそれぞれ出力し、
    前記電池回路モジュール群において隣接する電池回路モジュール間で、前記ゲート信号の周期は前記電池回路モジュールの各々の遅延回路における遅延時間の合計値として、前記ゲート信号を一定時間遅延させて伝達させることで複数の前記電池回路モジュールを同時に順に選択して、選択された前記電池回路モジュールの合計電圧を出力することを特徴とする電源装置の制御方法。
JP2016210653A 2016-10-27 2016-10-27 電源装置及び電源装置の制御方法 Active JP6531745B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2016210653A JP6531745B2 (ja) 2016-10-27 2016-10-27 電源装置及び電源装置の制御方法
US16/343,880 US11011982B2 (en) 2016-10-27 2017-10-26 Power supply device and control method for power supply device
CN201780065835.7A CN109863662B (zh) 2016-10-27 2017-10-26 电源装置和用于电源装置的控制方法
EP17864990.1A EP3513480B1 (en) 2016-10-27 2017-10-26 Power supply device and control method for power supply device
PCT/JP2017/038731 WO2018079664A1 (en) 2016-10-27 2017-10-26 Power supply device and control method for power supply device
US17/234,274 US11451140B2 (en) 2016-10-27 2021-04-19 Power supply device and control method for power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016210653A JP6531745B2 (ja) 2016-10-27 2016-10-27 電源装置及び電源装置の制御方法

Publications (2)

Publication Number Publication Date
JP2018074709A JP2018074709A (ja) 2018-05-10
JP6531745B2 true JP6531745B2 (ja) 2019-06-19

Family

ID=62024931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016210653A Active JP6531745B2 (ja) 2016-10-27 2016-10-27 電源装置及び電源装置の制御方法

Country Status (5)

Country Link
US (2) US11011982B2 (ja)
EP (1) EP3513480B1 (ja)
JP (1) JP6531745B2 (ja)
CN (1) CN109863662B (ja)
WO (1) WO2018079664A1 (ja)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3571753B1 (en) * 2017-01-23 2024-04-24 Rafael Advanced Defense Systems Ltd. System for balancing a series of cells
JP7056005B2 (ja) 2017-03-31 2022-04-19 株式会社豊田中央研究所 電源装置
JP7046776B2 (ja) * 2018-10-05 2022-04-04 株式会社豊田中央研究所 電源装置
JP6867987B2 (ja) 2018-10-09 2021-05-12 株式会社豊田中央研究所 電源装置の満充電容量推定装置
JP6898904B2 (ja) 2018-10-31 2021-07-07 株式会社豊田中央研究所 電源装置
JP6960898B2 (ja) 2018-10-31 2021-11-05 株式会社豊田中央研究所 電源装置
JP2020072549A (ja) * 2018-10-31 2020-05-07 株式会社豊田中央研究所 電源装置
JP7077204B2 (ja) 2018-10-31 2022-05-30 株式会社豊田中央研究所 電源装置
JP7328750B2 (ja) 2018-10-31 2023-08-17 株式会社豊田中央研究所 電源装置
JP6960897B2 (ja) 2018-10-31 2021-11-05 株式会社豊田中央研究所 電源装置
JP7100804B2 (ja) 2018-11-28 2022-07-14 トヨタ自動車株式会社 電源システム
JP7216889B2 (ja) 2018-11-28 2023-02-02 トヨタ自動車株式会社 電源システム
JP7121908B2 (ja) 2018-11-28 2022-08-19 トヨタ自動車株式会社 電源システム
JP7145391B2 (ja) 2018-11-28 2022-10-03 トヨタ自動車株式会社 電源システム
JP7022346B2 (ja) 2018-11-28 2022-02-18 トヨタ自動車株式会社 電源システム
JP7089673B2 (ja) * 2018-11-29 2022-06-23 トヨタ自動車株式会社 電源システム
JP7025716B2 (ja) 2018-11-29 2022-02-25 トヨタ自動車株式会社 電源システム
JP7054453B2 (ja) 2018-11-29 2022-04-14 トヨタ自動車株式会社 電源システム
JP7129008B2 (ja) 2018-11-29 2022-09-01 トヨタ自動車株式会社 電源システム
JP7145392B2 (ja) * 2018-11-29 2022-10-03 トヨタ自動車株式会社 電源システム
TWI684316B (zh) * 2018-12-11 2020-02-01 國立中山大學 串聯電池開關模組及其模式切換方法及儲能系統
JP7318227B2 (ja) * 2019-02-12 2023-08-01 株式会社豊田中央研究所 電源装置
JP7168541B2 (ja) * 2019-10-16 2022-11-09 株式会社豊田中央研究所 水電解システム
CN110970969B (zh) * 2019-11-01 2021-10-15 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) 一种电动船用锂离子动力电池轮休平衡拓扑及控制方法
JP7079236B2 (ja) * 2019-12-25 2022-06-01 株式会社豊田中央研究所 電源装置
JP7428112B2 (ja) * 2020-10-20 2024-02-06 トヨタ自動車株式会社 電源装置
JP7514778B2 (ja) 2021-02-05 2024-07-11 株式会社豊田中央研究所 電源システム
JP7501421B2 (ja) 2021-03-26 2024-06-18 トヨタ自動車株式会社 電源システム、及び制御装置
CN113629987A (zh) * 2021-08-03 2021-11-09 深圳市康佳壹视界商业显示有限公司 Led屏电气控制系统
JP7435560B2 (ja) 2021-08-18 2024-02-21 トヨタ自動車株式会社 電源システム
JP7464019B2 (ja) 2021-08-24 2024-04-09 トヨタ自動車株式会社 電源システム
JP7464020B2 (ja) 2021-08-24 2024-04-09 トヨタ自動車株式会社 電源システム
JP7480760B2 (ja) 2021-08-24 2024-05-10 トヨタ自動車株式会社 電源システム、及びエネルギーマネジメント方法
JP7480762B2 (ja) 2021-08-25 2024-05-10 トヨタ自動車株式会社 電源システム
JP7480761B2 (ja) 2021-08-25 2024-05-10 トヨタ自動車株式会社 電源システム
JP2023031439A (ja) 2021-08-25 2023-03-09 トヨタ自動車株式会社 電源システム
JP7474276B2 (ja) 2022-03-11 2024-04-24 株式会社豊田中央研究所 電源システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563780A (en) * 1993-12-08 1996-10-08 International Power Systems, Inc. Power conversion array applying small sequentially switched converters in parallel
US5793628A (en) * 1997-04-30 1998-08-11 Hewlett-Packard Company Multi-phase pulse-width-modulation power converter
US6310783B1 (en) * 2000-03-29 2001-10-30 Powerware Corporation Modular method and apparatus for building an uninterruptible power system (UPS)
US6265846B1 (en) * 2000-10-03 2001-07-24 International Business Machines Corporation Active bypass circuit for extending energy capacity and operational life of a multi-cell battery
JP3791767B2 (ja) * 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路
JP3692993B2 (ja) 2001-10-04 2005-09-07 トヨタ自動車株式会社 駆動装置および動力出力装置
US8872474B2 (en) * 2006-02-09 2014-10-28 Karl F. Scheucher Fail safe serviceable high voltage battery pack
JP2008251070A (ja) * 2007-03-29 2008-10-16 Hitachi Ltd 半導体記憶装置
JP2009159726A (ja) * 2007-12-26 2009-07-16 Honda Motor Co Ltd 放電制御装置
US20090251100A1 (en) * 2008-04-02 2009-10-08 Pratt & Whitney Rocketdyne, Inc. Stackable battery module
US9035626B2 (en) * 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
EP2678932A2 (en) 2011-04-15 2014-01-01 Siemens Aktiengesellschaft Multilevel converter and method of starting up a multilevel converter
JP5851151B2 (ja) * 2011-08-09 2016-02-03 株式会社東芝 蓄電装置およびその制御方法
WO2013138380A2 (en) * 2012-03-13 2013-09-19 Maxwell Technologies, Inc. Capacitor and battery combination
JP5605401B2 (ja) * 2012-07-20 2014-10-15 トヨタ自動車株式会社 蓄電システムおよび制御方法
US9525290B2 (en) 2013-10-25 2016-12-20 Saft Bypassable battery modules
US9407148B2 (en) * 2014-03-31 2016-08-02 Monolithic Power Systems, Inc. Multi-phase SMPS with loop phase clocks and control method thereof
KR101554192B1 (ko) * 2014-07-14 2015-09-18 경북대학교 산학협력단 양방향 dc-dc 컨버터, 이의 소프트 스위칭 방법 및 이 방법을 수행하기 위한 기록 매체
CN104270085A (zh) * 2014-09-29 2015-01-07 苏州克兰兹电子科技有限公司 一种太阳能光伏发电系统中的dc/dc变换电路
CN104518672B (zh) * 2014-11-21 2017-06-06 深圳市航天新源科技有限公司 一种磁集成与零端口电流纹波的三端口变换器
US9806633B2 (en) 2015-02-06 2017-10-31 Indian Institute Of Technology Bombay Modular multilevel current source and voltage source converters to increase number of output current levels and output voltage levels
GB2537616B (en) * 2015-04-20 2019-04-10 Upgrade Tech Engineering Ltd Battery system comprising a control system

Also Published As

Publication number Publication date
EP3513480B1 (en) 2023-03-08
CN109863662A (zh) 2019-06-07
EP3513480A4 (en) 2019-10-02
US11011982B2 (en) 2021-05-18
WO2018079664A1 (en) 2018-05-03
CN109863662B (zh) 2023-03-24
US20190267896A1 (en) 2019-08-29
US11451140B2 (en) 2022-09-20
EP3513480A1 (en) 2019-07-24
JP2018074709A (ja) 2018-05-10
US20210249951A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP6531745B2 (ja) 電源装置及び電源装置の制御方法
JP6812889B2 (ja) 電源装置
JP6805933B2 (ja) 電源装置
US9024599B2 (en) Multi-phase DC-DC power converter
KR20120035930A (ko) 차지 펌프 회로 및 그 동작 제어 방법
CN111130162B (zh) 电源设备
EP2860866A1 (en) Solar photovoltaic power conversion system and method of operating the same
KR102271514B1 (ko) 전원 장치
JP2014007920A (ja) フルブリッジ電力変換装置
JP6960897B2 (ja) 電源装置
JP2020072545A (ja) 電源装置
JP6825460B2 (ja) 電源装置
JP2014230302A (ja) 電力変換装置
JP2019126205A (ja) 電源装置及び電源装置の制御方法
US9882469B2 (en) Booster apparatus for a direct current voltage generator
JP7079134B2 (ja) 電源装置及び電源装置の制御方法
JP7141308B2 (ja) 電源装置
JP7318227B2 (ja) 電源装置
KR101356385B1 (ko) 전력변환장치 및 전력변환장치 제어 방법
JP2018130001A (ja) 電力変換回路及びその制御方法
JP2017216798A (ja) 電圧変換回路及びその制御方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170315

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190207

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190207

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190219

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190506

R150 Certificate of patent or registration of utility model

Ref document number: 6531745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150