WO2013035843A1 - Ga2O3系半導体素子 - Google Patents

Ga2O3系半導体素子 Download PDF

Info

Publication number
WO2013035843A1
WO2013035843A1 PCT/JP2012/072899 JP2012072899W WO2013035843A1 WO 2013035843 A1 WO2013035843 A1 WO 2013035843A1 JP 2012072899 W JP2012072899 W JP 2012072899W WO 2013035843 A1 WO2013035843 A1 WO 2013035843A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal film
type
region
contact region
Prior art date
Application number
PCT/JP2012/072899
Other languages
English (en)
French (fr)
Inventor
公平 佐々木
東脇 正高
藤田 静雄
Original Assignee
株式会社タムラ製作所
独立行政法人情報通信研究機構
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タムラ製作所, 独立行政法人情報通信研究機構, 国立大学法人京都大学 filed Critical 株式会社タムラ製作所
Priority to US14/343,652 priority Critical patent/US20140217470A1/en
Priority to JP2013532671A priority patent/JP6142358B2/ja
Publication of WO2013035843A1 publication Critical patent/WO2013035843A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7824Lateral DMOS transistors, i.e. LDMOS transistors with a substrate comprising an insulating layer, e.g. SOI-LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78618Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure
    • H01L29/78621Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile
    • H01L29/78624Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device characterised by the drain or the source properties, e.g. the doping structure, the composition, the sectional shape or the contact structure with LDD structure or an extension or an offset region or characterised by the doping profile the source and the drain regions being asymmetrical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22

Definitions

  • the present invention relates to a Ga 2 O 3 based semiconductor element.
  • ⁇ -Al 2 O 3 is ⁇ -Ga 2 O 3 based semiconductor device which uses a ⁇ -Ga 2 O 3 crystal film formed on a substrate (For example, refer nonpatent literature 1).
  • an object of the present invention is to provide a high quality Ga 2 O 3 based semiconductor device.
  • One embodiment of the present invention provides Ga 2 O 3 -based semiconductor elements [1] to [4] in order to achieve the above object.
  • the ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film, the first contact region, and the second contact region are n-type, and the ⁇ - (Al x Ga 1-x )
  • the Ga 2 O 3 semiconductor device according to [1] including a p-type or high-resistance body region surrounding the first contact region in the 2 O 3 single crystal film.
  • the ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film is a high-resistance region containing no dopant, and the first contact region and the second contact region are n-type.
  • FIG. 1 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the first embodiment.
  • FIG. 2 is a configuration diagram of an example of an MBE apparatus used for forming an ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film.
  • FIG. 3 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the second embodiment.
  • FIG. 4 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the third embodiment.
  • a high-quality ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film is formed on an ⁇ -Al 2 O 3 substrate using a homoepitaxial growth method.
  • a high-quality Ga 2 O 3 based semiconductor element can be formed using a quality ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film.
  • FIG. 1 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the first embodiment.
  • the Ga 2 O 3 -based MISFET 10 includes an n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 formed on an ⁇ -Al 2 O 3 substrate 2 and an n-type ⁇ - (Al x Ga).
  • the source electrode 12 and the drain electrode 13 formed on the 2 O 3 single crystal film 3 and the source electrode 12 and the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3
  • the gate electrode 11 is located above the region of the body region 17 between the source electrode 12 and the drain electrode 13.
  • the Ga 2 O 3 MISFET 10 functions as a normally-off transistor.
  • a voltage equal to or higher than the threshold value is applied to the gate electrode 11, a channel is formed in a region of the body region 17 below the gate electrode 11, and current flows from the source electrode 12 to the drain electrode 13.
  • the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 is formed of ⁇ - (Al x Ga 1 -x ) 2 O 3 (0 ⁇ 0) formed on the ⁇ -Al 2 O 3 substrate 2. It is a single crystal film of x ⁇ 1).
  • the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 is made of Sn, Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, C, Si, Ge.
  • N-type dopants such as Pb, Mn, As, Sb, Bi, F, Cl, Br, and I.
  • the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 includes an n-type dopant having a concentration of 1 ⁇ 10 15 / cm 3 or more and 1 ⁇ 10 19 / cm 3 or less, for example.
  • the thickness of the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 is, for example, 0.01 to 10 ⁇ m.
  • an undoped ⁇ -Ga 2 O 3 single crystal film is provided between the ⁇ -Al 2 O 3 substrate 2 and the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3. May be formed.
  • an undoped ⁇ -Ga 2 O 3 single crystal film is formed on the ⁇ -Al 2 O 3 substrate 2 by epitaxial growth, and an n-type ⁇ - (Al x Ga 1) is formed on the undoped ⁇ -Ga 2 O 3 single crystal film.
  • -x ) 2 O 3 single crystal film 3 is formed by epitaxial growth.
  • the gate electrode 11, the source electrode 12, and the drain electrode 13 are, for example, metals such as Au, Al, Ti, Sn, Ge, In, Ni, Co, Pt, W, Mo, Cr, Cu, and Pb, and these metals. It consists of conductive compounds, such as an alloy containing 2 or more of these, or ITO. Moreover, you may have the two-layer structure which consists of two different metals, for example, Al / Ti, Au / Ni, Au / Co.
  • ⁇ - (Al y Ga 1-y ) 2 O 3 has the same crystal structure as ⁇ -Al 2 O 3 crystal, and can form a good semiconductor insulating film interface with few interface states, Gate characteristics are better than when other insulating films are used.
  • the contact regions 14 and 15 are regions where the concentration of the n-type dopant formed in the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 is high, and the source electrode 12 and the drain region 13 respectively. Is connected.
  • the n-type dopant mainly contained in the contact regions 14 and 15 and the n-type dopant contained in the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 may be the same or different. It may be.
  • the contact regions 14 and 15 include, for example, an n-type dopant having a concentration of 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • the concentration of the n-type dopant in the contact region 15 may be the same as that of the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3. That is, a region where no n-type dopant is additionally implanted into the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3 can be used as the contact region 15.
  • the body region 17 includes Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe, Co, Ni, Pd, Cu, Ag, Au, Zn, and Cd.
  • P-type dopants such as Hg, Tl, Pb, N, and P.
  • the body region 17 is a p-type region or a high-resistance region having i-type properties due to charge compensation.
  • MBE molecular beam epitaxy
  • FIG. 2 is a configuration diagram of an example of an MBE apparatus used for forming an ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film.
  • the MBE apparatus 100 includes a vacuum chamber 107, is supported on the vacuum chamber 107, ⁇ -Al 2 O 3 and the substrate holder 101 for holding a substrate 2, ⁇ -Al 2 O 3 substrate held on the substrate holder 101 Heating device 102 for heating 2, a plurality of cells 103 (103 a, 103 b, 103 c) provided for each atom or molecule constituting the thin film, and a heater 104 (104 a, 104 a, 104) for heating the plurality of cells 103 104b, 104c), a gas supply pipe 105 for supplying an oxygen-based gas into the vacuum chamber 107, and a vacuum pump 106 for discharging the air in the vacuum chamber 107.
  • the substrate holder 101 is configured to be rotatable by a motor (not shown) via a shaft 110.
  • the first cell 103a is filled with a Ga raw material of an ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film such as Ga powder. As for the purity of Ga of this powder, it is desirable that it is 6N or more.
  • the second cell 103b is filled with n-type dopant raw material powder to be doped as a donor.
  • the third cell 103c is filled with an Al raw material of an ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film such as Al powder. Shutters are provided in openings of the first cell 103a, the second cell 103b, and the third cell 103c.
  • the ⁇ -Al 2 O 3 substrate 2 is attached to the substrate holder 101 of the MBE apparatus 100.
  • the vacuum pump 106 is operated and the pressure in the vacuum chamber 107 is reduced to about 10 ⁇ 10 Torr.
  • the ⁇ -Al 2 O 3 substrate 2 is heated by the heating device 102.
  • the heating of the ⁇ -Al 2 O 3 substrate 2 is performed by radiant heat of the heat source of the graphite heater of the heating device 102 is thermally conducted to the alpha-Al 2 O 3 substrate 2 through the substrate holder 101.
  • an oxygen-based gas is supplied from the gas supply pipe 105 into the vacuum chamber 107.
  • the first heater 104a and the first heater 104a are rotated while the substrate holder 101 is rotated.
  • the first cell 103a, the second cell 103b, and the second cell 103c are heated by the second heater 104b and the third heater 104c, and Ga, Al, and n-type dopants are evaporated to form ⁇ - Irradiate the surface of the Al 2 O 3 substrate 2.
  • an ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal is epitaxially grown on the main surface of the ⁇ -Al 2 O 3 substrate 2 while adding an n-type dopant such as Sn to form an n-type ⁇ - ( The Al x Ga 1-x ) 2 O 3 single crystal film 3 is formed.
  • an n-type dopant such as Sn
  • Ti, Zr, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, C, Si, Ge, Pb, Mn, As, Sb, Bi, or the like can be used, and F, Cl, Br, I, or the like can be used when substituting the oxygen site.
  • the addition concentration of the n-type dopant can be controlled by the temperature of the second cell 103b.
  • the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 may be formed by a PLD (Pulsed Laser Deposition) method, a CVD (Chemical Vapor Deposition) method, or the like.
  • the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 is coated with a p-type dopant such as Mg. Is ion-implanted to form the body region 17.
  • a p-type dopant such as Mg. Is ion-implanted to form the body region 17.
  • the ions to be implanted are not limited to Mg.
  • H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, Fe Co, Ni, Pd, Cu, Ag, Au, Zn, Cd, Hg, Tl, or Pb can be used.
  • N or P can be used.
  • an annealing process is performed to recover the damage caused by the implantation.
  • the formation method of the body region 17 is not limited to the ion implantation method, and a thermal diffusion method may be used.
  • a metal such as Mg is brought into contact with the region where the body region 17 of the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 is to be formed, and heat treatment is performed, whereby n-type ⁇ - (Al A dopant such as Mg is diffused in the x Ga 1-x ) 2 O 3 single crystal film 3.
  • contact regions 14 and 15 are formed by ion-implanting an n-type dopant such as Sn into the body region 17 of the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 3.
  • the ions to be implanted are not limited to Sn.
  • Ti, ZR, Hf, V, Nb, Ta, Mo, W, Ru, Rh, Ir, C, Si, Ge , Pb, Mn, As, Sb, or Bi can be used.
  • F, Cl, Br, or I can be used.
  • the implantation concentration is, for example, 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • the implantation depth may be 30 nm or more.
  • the surface of the implantation region is etched by about 10 nm with hydrofluoric acid. Etching may be performed using sulfuric acid, nitric acid, hydrochloric acid, or the like.
  • annealing treatment is performed at 800 ° C. or more for 30 minutes or more in a nitrogen atmosphere to recover implantation damage.
  • the treatment temperature may be 800 ° C. or more and 950 ° C. or less, and the treatment time may be 30 minutes or more.
  • the method for forming the contact regions 14 and 15 is not limited to ion implantation, and a thermal diffusion method may be used.
  • a metal such as Sn is brought into contact with the region where the contact regions 14 and 15 of the n-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 3 are to be formed, and heat treatment is performed, thereby performing n-type ⁇ A dopant such as Sn is diffused in the-(Al x Ga 1 -x ) 2 O 3 single crystal film 3.
  • the gate insulating film 16 the gate electrode 11, the source electrode 12, and the drain electrode 13 are formed.
  • FIG. 3 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the second embodiment.
  • the Ga 2 O 3 -based MISFET 20 includes an undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4 formed on the ⁇ -Al 2 O 3 substrate 2 and an undoped ⁇ - (Al x Ga 1- x ) A source electrode 22 and a drain electrode 23 formed on the 2 O 3 single crystal film 4, and a source electrode 22 and a drain electrode 23 in the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4. And the gate insulating film 26 on the region between the contact region 24 and the contact region 25 of the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4. And a gate electrode 21 formed through the gate electrode 21.
  • the Ga 2 O 3 MISFET 20 functions as a normally-off transistor.
  • a voltage equal to or higher than the threshold value is applied to the gate electrode 21, a channel is formed in a region under the gate electrode 21 of the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4. Current will flow to the.
  • the gate electrode 21, the source electrode 22, the drain electrode 23, and the gate insulating film 26 are made of the same material as the gate electrode 11, the source electrode 12, the drain electrode 13, and the gate insulating film 16 in the first embodiment.
  • the undoped ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 4 is a high-resistance ⁇ - (Al x Ga 1-x ) 2 O 3 (0 ⁇ x ⁇ 1) single crystal containing no dopant. It is a membrane. Although it may have weak conductivity due to crystal defects or the like, since the electric resistance is sufficiently high, no current flows from the source electrode 22 to the drain electrode 23 without applying a voltage to the gate electrode 21.
  • the thickness of the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4 is, for example, 0.01 to 10 ⁇ m.
  • the method of forming the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4 is, for example, the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film of the first embodiment.
  • the step of injecting an n-type dopant from the forming method 3 is omitted.
  • the contact regions 24 and 25 are regions where the concentration of the n-type dopant formed in the undoped ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 4 is high, and the source electrode 22 and the drain region 23 are formed respectively. Connected.
  • the contact regions 24 and 25 include, for example, an n-type dopant having a concentration of 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • a p-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film is formed instead of the undoped ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 4. This is different from the second embodiment. The description of the same points as in the second embodiment will be omitted or simplified.
  • FIG. 4 is a cross-sectional view of a Ga 2 O 3 -based MISFET according to the third embodiment.
  • the Ga 2 O 3 -based MISFET 30 includes a p-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 5 formed on the ⁇ -Al 2 O 3 substrate 2 and a p-type ⁇ - (Al x Ga).
  • the Ga 2 O 3 MISFET 30 functions as a normally-off transistor.
  • a voltage equal to or higher than the threshold is applied to the gate electrode 21, a channel is formed in a region under the gate electrode 21 of the p-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 5, and the source electrode 22 to the drain electrode An electric current flows to 23.
  • the p-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 5 is composed of Mg, H, Li, Na, K, Rb, Cs, Fr, Be, Ca, Sr, Ba, Ra, Mn, and Fe.
  • the p-type ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film 5 includes, for example, a p-type dopant having a concentration of 1 ⁇ 10 15 / cm 3 or more and 1 ⁇ 10 19 / cm 3 or less.
  • the thickness of the p-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 5 is, for example, 0.01 to 10 ⁇ m.
  • the method for forming the p-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 5 is, for example, the n-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal of the first embodiment.
  • the step of injecting the n-type dopant in the method of forming the film 3 is replaced with the step of injecting the p-type dopant.
  • the contact regions 34 and 35 are regions having a high concentration of n-type dopant formed in the p-type ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film 5, and are respectively a source electrode 22 and a drain region 23. Is connected.
  • the contact regions 34 and 35 include, for example, an n-type dopant having a concentration of 1 ⁇ 10 18 / cm 3 or more and 5 ⁇ 10 19 / cm 3 or less.
  • a high-quality ⁇ - (Al x Ga 1-x ) 2 O 3 single crystal film is formed using a homoepitaxial growth method, and the ⁇ - (Al x Ga 1-x ) 2 O
  • a high-quality Ga 2 O 3 based semiconductor element can be formed using the three single crystal films.
  • these Ga 2 O 3 based semiconductor elements have excellent operating performance because a high-quality ⁇ - (Al x Ga 1 -x ) 2 O 3 single crystal film is used as the channel layer.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the invention.
  • the Ga 2 O 3 based semiconductor element has been described as an n-type semiconductor element, but it may be a p-type semiconductor element.
  • the conductivity type (n-type or p-type) of each member is reversed.
  • the constituent elements of the above-described embodiment can be arbitrarily combined without departing from the spirit of the invention.
  • a high quality Ga 2 O 3 based semiconductor device is provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 高品質のGa23系半導体素子を提供する。 一実施の形態として、α-Al23基板2上に直接、又は他の層を介して形成されたα-(AlxGa1-x23単結晶(0≦x<1)からなるn型α-(AlxGa1-x23単結晶膜3と、n型α-(AlxGa1-x23単結晶膜3上に形成されたソース電極12及びドレイン電極13と、n型α-(AlxGa1-x23単結晶膜3中に形成され、ソース電極12及びドレイン電極13にそれぞれ接続されたコンタクト領域14、15と、n型α-(AlxGa1-x23単結晶膜3のコンタクト領域14とコンタクト領域15との間の領域上にゲート絶縁膜16を介して形成されたゲート電極11と、を含むGa23系MISFET10を提供する。

Description

Ga2O3系半導体素子
 本発明は、Ga23系半導体素子に関する。
 従来のGa23系半導体素子として、α-Al23(サファイア)基板上に形成されたβ-Ga23結晶膜を用いたβ-Ga23系半導体素子が知られている(例えば、非特許文献1参照)。
K. Matsuzaki et al. Appl. Phys. Lett. 88, 092106, 2006.
 しかしながら、単斜晶系のβ-Ga23結晶膜をコランダム構造のα-Al23基板上に成長させることは困難であり、高品質なβ-Ga23結晶膜を得ることはできない。このため、α-Al23基板上のβ-Ga23結晶膜を用いて高品質のGa23系半導体素子を形成することは困難である。
 したがって、本発明の目的は、高品質のGa23系半導体素子を提供することにある。
 本発明の一態様は、上記目的を達成するために、[1]~[4]のGa23系半導体素子を提供する。
[1]α-Al23基板上に直接、又は他の層を介して形成されたα-(AlxGa1-x23単結晶(0≦x<1)からなるα-(AlxGa1-x23単結晶膜と、前記α-(AlxGa1-x23単結晶膜上に形成されたソース電極及びドレイン電極と、前記α-(AlxGa1-x23単結晶膜中に形成され、前記ソース電極及び前記ドレイン電極にそれぞれ接続された第1のコンタクト領域及び第2のコンタクト領域と、前記α-(AlxGa1-x23単結晶膜の前記第1のコンタクト領域と前記第2のコンタクト領域との間の領域上にゲート絶縁膜を介して形成されたゲート電極と、を含むGa23系半導体素子。
[2]前記α-(AlxGa1-x23単結晶膜、第1のコンタクト領域、及び第2のコンタクト領域はn型であり、前記α-(AlxGa1-x23単結晶膜中の第1のコンタクト領域を囲むp型又は高抵抗のボディ領域を含む、前記[1]に記載のGa23系半導体素子。
[3]前記α-(AlxGa1-x23単結晶膜は、ドーパントを含まない高抵抗の領域であり、第1のコンタクト領域、及び第2のコンタクト領域はn型である、前記[1]に記載のGa23系半導体素子。
[4]前記α-(AlxGa1-x23単結晶膜はp型であり、第1のコンタクト領域、及び第2のコンタクト領域はn型である、前記[1]に記載のGa23系半導体素子。
 本発明によれば、高品質のGa23系半導体素子を提供することができる。
図1は、第1の実施の形態に係るGa23系MISFETの断面図である。 図2は、α-(AlxGa1-x23単結晶膜の形成に用いられるMBE装置の一例の構成図である。 図3は、第2の実施の形態に係るGa23系MISFETの断面図である。 図4は、第3の実施の形態に係るGa23系MISFETの断面図である。
 本発明の実施の形態によれば、ホモエピタキシャル成長法を用いて高品質なα-(AlxGa1-x23単結晶膜をα-Al23基板上に形成し、その高品質のα-(AlxGa1-x23単結晶膜を用いて、高品質のGa23系半導体素子を形成することができる。以下、その実施の形態の例について詳細に説明する。
〔第1の実施の形態〕
 第1の実施の形態では、Ga23系半導体素子としてのプレーナゲート構造を有するGa23系MISFET(Metal Insulator Semiconductor Field Effect Transistor)について説明する。
(Ga23系半導体素子の構成)
 図1は、第1の実施の形態に係るGa23系MISFETの断面図である。Ga23系MISFET10は、α-Al23基板2上に形成されたn型α-(AlxGa1-x23単結晶膜3と、n型α-(AlxGa1-x23単結晶膜3上に形成されたソース電極12及びドレイン電極13と、n型α-(AlxGa1-x23単結晶膜3中にソース電極12及びドレイン電極13の下にそれぞれ形成されたコンタクト領域14、15と、n型α-(AlxGa1-x23単結晶膜3のコンタクト領域14とコンタクト領域15の間の領域上にゲート絶縁膜16を介して形成されたゲート電極11と、コンタクト領域14を囲むボディ領域17とを含む。
 ゲート電極11は、ボディ領域17のソース電極12とドレイン電極13との間の領域の上方に位置する。
 Ga23系MISFET10は、ノーマリーオフ型のトランジスタとして機能する。ゲート電極11に閾値以上の電圧を印加すると、ボディ領域17のゲート電極11下の領域にチャネルが形成され、ソース電極12からドレイン電極13へ電流が流れるようになる。
 n型α-(AlxGa1-x23単結晶膜3は、α-Al23基板2上に形成されたα-(AlxGa1-x23(0≦x<1)の単結晶膜である。n型α-(AlxGa1-x23単結晶膜3は、Sn、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi、F、Cl、Br、I等のn型ドーパントを含む。n型α-(AlxGa1-x23単結晶膜3は、例えば、1×1015/cm3以上、1×1019/cm3以下の濃度のn型ドーパントを含む。また、n型α-(AlxGa1-x23単結晶膜3の厚さは、例えば、0.01~10μmである。
 なお、α-Al23基板2とn型α-(AlxGa1-x23単結晶膜3との間に、アンドープβ-Ga23単結晶膜等の他の膜が形成されてもよい。この場合、α-Al23基板2上にアンドープβ-Ga23単結晶膜がエピタキシャル成長により形成され、アンドープβ-Ga23単結晶膜上にn型α-(AlxGa1-x23単結晶膜3がエピタキシャル成長により形成される。
 ゲート電極11、ソース電極12、及びドレイン電極13は、例えば、Au、Al、Ti、Sn、Ge、In、Ni、Co、Pt、W、Mo、Cr、Cu、Pb等の金属、これらの金属のうちの2つ以上を含む合金、又はITO等の導電性化合物からなる。また、異なる2つの金属からなる2層構造、例えばAl/Ti、Au/Ni、Au/Co、を有してもよい。
 ゲート絶縁膜16は、SiO2、AlN、SiN、α-(AlyGa1-y23(0<y≦1)等の材料からなる。中でも、α-(AlyGa1-y23はα-Al23結晶と結晶構造が一致しており、界面準位の少ない良好な半導体絶縁膜界面を形成することができ、他の絶縁膜を用いたときよりもゲート特性が良好になる。
 コンタクト領域14、15は、n型α-(AlxGa1-x23単結晶膜3中に形成されたn型ドーパントの濃度が高い領域であり、それぞれソース電極12及びドレイン領域13が接続される。コンタクト領域14、15に主に含まれるn型ドーパントとn型α-(AlxGa1-x23単結晶膜3に含まれるn型ドーパントは、同じであってもよいし、異なっていてもよい。コンタクト領域14、15は、例えば、1×1018/cm3以上、5×1019/cm3以下の濃度のn型ドーパントを含む。
 また、コンタクト領域15のn型ドーパントの濃度は、n型α-(AlxGa1-x23単結晶膜3と同じであってもよい。すなわち、n型α-(AlxGa1-x23単結晶膜3にn型ドーパントを追加で注入しない領域をコンタクト領域15として用いることができる。
 ボディ領域17は、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等のp型ドーパントを含む。ボディ領域17は、p型の領域、又は電荷補償によりi型のような性質を有する高抵抗領域である。
(Ga23系MISFETの製造方法)
 α-(AlxGa1-x23単結晶膜の製造方法の一例として、分子線エピタキシー(MBE;Molecular Beam Epitaxy)法による方法を以下に説明する。MBE法は、単体あるいは化合物の固体をセルと呼ばれる蒸発源で加熱し、加熱により生成された蒸気を分子線として基板表面に供給する結晶成長方法である。
 図2は、α-(AlxGa1-x23単結晶膜の形成に用いられるMBE装置の一例の構成図である。このMBE装置100は、真空槽107と、この真空槽107内に支持され、α-Al23基板2を保持する基板ホルダ101と、基板ホルダ101に保持されたα-Al23基板2を加熱するための加熱装置102と、薄膜を構成する原子又は分子ごとに設けられた複数のセル103(103a、103b、103c)と、複数のセル103を加熱するためのヒータ104(104a、104b、104c)と、真空槽107内に酸素系ガスを供給するガス供給パイプ105と、真空槽107内の空気を排出するための真空ポンプ106とを備えている。基板ホルダ101は、シャフト110を介して図示しないモータにより回転可能に構成されている。
 第1のセル103aには、Ga粉末等のα-(AlxGa1-x23単結晶膜のGa原料が充填されている。この粉末のGaの純度は、6N以上であることが望ましい。第2のセル103bには、ドナーとしてドーピングされるn型ドーパントの原料の粉末が充填されている。第3のセル103cには、Al粉末等のα-(AlxGa1-x23単結晶膜のAl原料が充填されている。第1のセル103a、第2のセル103b、及び第3のセル103cの開口部にはシャッターが設けられている。
 まず、α-Al23基板2をMBE装置100の基板ホルダ101に取り付ける。次に、真空ポンプ106を作動させ、真空槽107内の気圧を10-10Torr程度まで減圧する。そして、加熱装置102によってα-Al23基板2を加熱する。なお、α-Al23基板2の加熱は、加熱装置102の黒鉛ヒータ等の発熱源の輻射熱が基板ホルダ101を介してα-Al23基板2に熱伝導することにより行われる。
 α-Al23基板2が所定の温度に加熱された後、ガス供給パイプ105から真空槽107内に、酸素系ガスを供給する。
 真空槽107内に酸素系ガスを供給した後、真空槽107内のガス圧が安定するのに必要な時間(例えば5分間)経過後、基板ホルダ101を回転させながら第1のヒータ104a、第2のヒータ104b、及び第3のヒータ104cにより第1のセル103a、第2のセル103b、及び第2のセル103cを加熱し、Ga、Al、n型ドーパントを蒸発させて分子線としてα-Al23基板2の表面に照射する。
 これにより、α-Al23基板2の主面上にα-(AlxGa1-x23単結晶がSn等のn型ドーパントを添加されながらエピタキシャル成長し、n型α-(AlxGa1-x23単結晶膜3が形成される。なお、Sn以外のn型ドーパントとして、Ga又はAlサイトを置換する場合は、Ti、Zr、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、Bi等を用いることができ、酸素サイトを置換する場合は、F、Cl、Br、I等を用いることができる。n型ドーパントの添加濃度は、第2のセル103bの温度により制御することができる。
 なお、n型α-(AlxGa1-x23単結晶膜3は、PLD(Pulsed Laser Deposition)法、CVD(Chemical Vapor Deposition)法等により形成されてもよい。
 n型α-(AlxGa1-x23単結晶膜3を形成した後、n型α-(AlxGa1-x23単結晶膜3にMg等のp型ドーパントをイオン注入することにより、ボディ領域17を形成する。なお、注入するイオンはMgに限られず、例えば、Ga又はAlサイトを置換する場合は、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、又はPbを用いることができる。また、酸素サイトを置換する場合は、N又はPを用いることができる。p型ドーパントの注入後、アニール処理を行い、注入によるダメージを回復させる。
 なお、ボディ領域17の形成方法はイオン注入法に限られず、熱拡散法を用いてもよい。この場合n型α-(AlxGa1-x23単結晶膜3のボディ領域17を形成したい領域上にMg等の金属を接触させ、熱処理を施すことによりn型α-(AlxGa1-x23単結晶膜3中にMg等のドーパントを拡散させる。
 次に、n型α-(AlxGa1-x23単結晶膜3のボディ領域17内にSn等のn型ドーパントをイオン注入することにより、コンタクト領域14、15を形成する。なお、注入するイオンはSnに限られず、例えば、Ga又はAlサイトを置換する場合は、Ti、ZR、Hf、V、Nb、Ta、Mo、W、Ru、Rh、Ir、C、Si、Ge、Pb、Mn、As、Sb、又はBiを用いることができる。また、酸素サイトを置換する場合は、F、Cl、Br、又はIを用いることができる。
 注入濃度は、例えば、1×1018/cm3以上5×1019/cm3以下である。注入深さは、30nm以上であればよい。注入後、注入領域の表面をフッ酸にて10nm程度エッチングする。硫酸や硝酸、塩酸などを用いてエッチングしてもよい。その後、窒素雰囲気下で800℃以上30min以上のアニール処理を施し、注入ダメージを回復させる。アニール処理を酸素雰囲気で行う場合は、処理温度を800℃以上950℃以下、処理時間を30min以上とすればよい。
 なお、コンタクト領域14、15の形成方法はイオン注入に限られず、熱拡散法を用いてもよい。この場合、n型α-(AlxGa1-x23単結晶膜3のコンタクト領域14、15を形成したい領域上にSn等の金属を接触させ、熱処理を施すことによりn型α-(AlxGa1-x23単結晶膜3中にSn等のドーパントを拡散させる。
 その後、ゲート絶縁膜16、ゲート電極11、ソース電極12、及びドレイン電極13を形成する。
〔第2の実施の形態〕
 図3は、第2の実施の形態に係るGa23系MISFETの断面図である。Ga23系MISFET20は、α-Al23基板2上に形成されたアンドープα-(AlxGa1-x23単結晶膜4と、アンドープα-(AlxGa1-x23単結晶膜4上に形成されたソース電極22及びドレイン電極23と、アンドープα-(AlxGa1-x23単結晶膜4中のソース電極22及びドレイン電極23の下にそれぞれ形成されたコンタクト領域24、25と、アンドープα-(AlxGa1-x23単結晶膜4のコンタクト領域24とコンタクト領域25の間の領域上にゲート絶縁膜26を介して形成されたゲート電極21とを含む。
 Ga23系MISFET20は、ノーマリーオフ型のトランジスタとして機能する。ゲート電極21に閾値以上の電圧を印加すると、アンドープα-(AlxGa1-x23単結晶膜4のゲート電極21下の領域にチャネルが形成され、ソース電極22からドレイン電極23へ電流が流れるようになる。
 ゲート電極21、ソース電極22、ドレイン電極23、及びゲート絶縁膜26は、第1の実施の形態のゲート電極11、ソース電極12、ドレイン電極13、及びゲート絶縁膜16と同様の材料からなる。
 アンドープα-(AlxGa1-x23単結晶膜4は、ドーパントを含まない高抵抗のα-(AlxGa1-x23(0≦x<1)の単結晶膜である。結晶欠陥等により弱い導電性を有する場合もあるが、電気抵抗が十分高いため、ゲート電極21に電圧を印加することなくソース電極22からドレイン電極23へ電流が流れることはない。アンドープα-(AlxGa1-x23単結晶膜4の厚さは、例えば、0.01~10μmである。
 アンドープα-(AlxGa1-x23単結晶膜4の形成方法は、例えば、第1の実施の形態のn型α-(AlxGa1-x23単結晶膜3の形成方法からn型ドーパントを注入する工程を省いたものである。
 コンタクト領域24、25は、アンドープα-(AlxGa1-x23単結晶膜4中に形成されたn型ドーパントの濃度が高い領域であり、それぞれソース電極22及びドレイン領域23が接続される。コンタクト領域24、25は、例えば、1×1018/cm3以上、5×1019/cm3以下の濃度のn型ドーパントを含む。
〔第3の実施の形態〕
 第3の実施の形態は、アンドープα-(AlxGa1-x23単結晶膜4の代わりにp型α-(AlxGa1-x23単結晶膜が形成される点において第2の実施の形態と異なる。第2の実施の形態と同様の点については、説明を省略又は簡略化する。
 図4は、第3の実施の形態に係るGa23系MISFETの断面図である。Ga23系MISFET30は、α-Al23基板2上に形成されたp型α-(AlxGa1-x23単結晶膜5と、p型α-(AlxGa1-x23単結晶膜5上に形成されたソース電極22及びドレイン電極23と、p型α-(AlxGa1-x23単結晶膜5中のソース電極22及びドレイン電極23の下にそれぞれ形成されたコンタクト領域34、35と、p型α-(AlxGa1-x23単結晶膜5のコンタクト領域34とコンタクト領域35の間の領域上にゲート絶縁膜26を介して形成されたゲート電極21とを含む。
 Ga23系MISFET30は、ノーマリーオフ型のトランジスタとして機能する。ゲート電極21に閾値以上の電圧を印加すると、p型α-(AlxGa1-x23単結晶膜5のゲート電極21下の領域にチャネルが形成され、ソース電極22からドレイン電極23へ電流が流れるようになる。
 p型α-(AlxGa1-x23単結晶膜5は、Mg、H、Li、Na、K、Rb、Cs、Fr、Be、Ca、Sr、Ba、Ra、Mn、Fe、Co、Ni、Pd、Cu、Ag、Au、Zn、Cd、Hg、Tl、Pb、N、P等のp型ドーパントを含むα-(AlxGa1-x23(0≦x<1)の単結晶膜である。p型α-(AlxGa1-x23単結晶膜5は、例えば、1×1015/cm3以上、1×1019/cm3以下の濃度のp型ドーパントを含む。また、p型α-(AlxGa1-x23単結晶膜5の厚さは、例えば、0.01~10μmである。
 p型α-(AlxGa1-x23単結晶膜5の形成方法は、例えば、第1の実施の形態のn型α-(AlxGa1-x23単結晶膜3の形成方法におけるn型ドーパントを注入する工程をp型ドーパントを注入する工程に替えたものである。
 コンタクト領域34、35は、p型α-(AlxGa1-x23単結晶膜5中に形成されたn型ドーパントの濃度が高い領域であり、それぞれソース電極22及びドレイン領域23が接続される。コンタクト領域34、35は、例えば、1×1018/cm3以上、5×1019/cm3以下の濃度のn型ドーパントを含む。
(実施の形態の効果)
 本実施の形態によれば、ホモエピタキシャル成長法を用いて高品質なα-(AlxGa1-x23単結晶膜を形成し、そのα-(AlxGa1-x23単結晶膜を用いて、高品質のGa23系半導体素子を形成することができる。また、これらのGa23系半導体素子は、高品質なα-(AlxGa1-x23単結晶膜をチャネル層として用いるため、優れた動作性能を有する。
 なお、本発明は、上記実施の形態に限定されず、発明の主旨を逸脱しない範囲内において種々変形実施が可能である。例えば、上記実施の形態において、Ga23系半導体素子をn型半導体素子として説明したが、p型半導体素子であってもよい。この場合、各部材の導電型(n型又はp型)が全て逆になる。また、発明の主旨を逸脱しない範囲内において上記実施の形態の構成要素を任意に組み合わせることができる。
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。
 高品質のGa23系半導体素子を提供する。
2…α-Al23基板、 3…n型α-(AlxGa1-x23単結晶膜、 4…アンドープα-(AlxGa1-x23単結晶膜、 5…p型α-(AlxGa1-x23単結晶膜、 10、20、30…Ga23系MISFET、 11、21…ゲート電極、 12、22…ソース電極、 13、23…ドレイン電極、 14、15、24、25、34、35…コンタクト領域、 16、26…ゲート絶縁膜、 17…ボディ領域

Claims (4)

  1.  α-Al23基板上に直接、又は他の層を介して形成されたα-(AlxGa1-x23単結晶(0≦x<1)からなるα-(AlxGa1-x23単結晶膜と、
     前記α-(AlxGa1-x23単結晶膜上に形成されたソース電極及びドレイン電極と、
     前記α-(AlxGa1-x23単結晶膜中に形成され、前記ソース電極及び前記ドレイン電極にそれぞれ接続された第1のコンタクト領域及び第2のコンタクト領域と、
     前記α-(AlxGa1-x23単結晶膜の前記第1のコンタクト領域と前記第2のコンタクト領域との間の領域上にゲート絶縁膜を介して形成されたゲート電極と、
     を含むGa23系半導体素子。
  2.  前記α-(AlxGa1-x23単結晶膜、第1のコンタクト領域、及び第2のコンタクト領域はn型であり、
     前記α-(AlxGa1-x23単結晶膜中の第1のコンタクト領域を囲むp型又は高抵抗のボディ領域を含む、
     請求項1に記載のGa23系半導体素子。
  3.  前記α-(AlxGa1-x23単結晶膜は、ドーパントを含まない高抵抗の領域であり、
     第1のコンタクト領域、及び第2のコンタクト領域はn型である、
     請求項1に記載のGa23系半導体素子。
  4.  前記α-(AlxGa1-x23単結晶膜はp型であり、
     第1のコンタクト領域、及び第2のコンタクト領域はn型である、
     請求項1に記載のGa23系半導体素子。
PCT/JP2012/072899 2011-09-08 2012-09-07 Ga2O3系半導体素子 WO2013035843A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/343,652 US20140217470A1 (en) 2011-09-08 2012-09-07 Ga2O3 SEMICONDUCTOR ELEMENT
JP2013532671A JP6142358B2 (ja) 2011-09-08 2012-09-07 Ga2O3系半導体素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-196437 2011-09-08
JP2011196437 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035843A1 true WO2013035843A1 (ja) 2013-03-14

Family

ID=47832282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072899 WO2013035843A1 (ja) 2011-09-08 2012-09-07 Ga2O3系半導体素子

Country Status (3)

Country Link
US (1) US20140217470A1 (ja)
JP (1) JP6142358B2 (ja)
WO (1) WO2013035843A1 (ja)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343224B1 (ja) * 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
JP2014072517A (ja) * 2013-06-21 2014-04-21 Roca Kk 半導体装置及びその製造方法、結晶及びその製造方法
WO2014132970A1 (ja) * 2013-03-01 2014-09-04 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
WO2014203623A1 (ja) * 2013-06-17 2014-12-24 株式会社タムラ製作所 Ga2O3系半導体素子
JP2015017027A (ja) * 2013-10-17 2015-01-29 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015144240A (ja) * 2013-12-26 2015-08-06 株式会社リコー p型酸化物半導体、p型酸化物半導体製造用組成物、p型酸化物半導体の製造方法、半導体素子、表示素子、画像表示装置、及びシステム
EP2927934A1 (en) * 2014-03-31 2015-10-07 Flosfia Inc. Crystalline multilayer structure and semiconductor device
EP2942803A1 (en) * 2014-05-08 2015-11-11 Flosfia Inc. Crystalline multilayer structure and semiconductor device
JP2015199649A (ja) * 2014-03-31 2015-11-12 株式会社Flosfia 結晶性積層構造体、半導体装置
EP2966691A1 (en) * 2014-07-11 2016-01-13 Ricoh Company, Ltd. Coating liquid for producing n-type oxide semiconductor, field-effect-transistor, display element, image display device, and system
JP2016008156A (ja) * 2014-06-25 2016-01-18 日本電信電話株式会社 酸化ガリウム結晶膜形成方法
JP2016157878A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2016157879A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2016201540A (ja) * 2015-04-10 2016-12-01 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
JPWO2015005202A1 (ja) * 2013-07-09 2017-03-02 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2017069424A (ja) * 2015-09-30 2017-04-06 株式会社Flosfia 結晶性半導体膜および半導体装置
CN107331607A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种氧化镓基底场效应晶体管及其制备方法
JP2018186246A (ja) * 2017-04-27 2018-11-22 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
JP2019033271A (ja) * 2014-07-22 2019-02-28 株式会社Flosfia 剥離方法、結晶性半導体膜および半導体装置
JP2020047948A (ja) * 2015-02-25 2020-03-26 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2020057805A (ja) * 2019-12-16 2020-04-09 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2020074363A (ja) * 2014-11-26 2020-05-14 株式会社Flosfia 結晶性積層構造体
KR20200142482A (ko) * 2020-08-13 2020-12-22 한국세라믹기술원 도펀트 활성화 기술을 이용한 전력반도체용 갈륨옥사이드 박막 제조 방법
US10943981B2 (en) 2017-08-24 2021-03-09 Flosfia Inc. Semiconductor device
WO2021044489A1 (ja) 2019-09-02 2021-03-11 日本碍子株式会社 半導体膜
WO2021044644A1 (ja) * 2019-09-02 2021-03-11 株式会社デンソー 成膜方法、及び、半導体装置の製造方法
JPWO2020013259A1 (ja) * 2018-07-12 2021-07-15 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
WO2022124404A1 (ja) 2020-12-11 2022-06-16 株式会社Flosfia 半導体装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828568B1 (ja) 2014-08-29 2015-12-09 株式会社タムラ製作所 半導体素子及びその製造方法
JP5907465B2 (ja) 2014-08-29 2016-04-26 株式会社タムラ製作所 半導体素子及び結晶積層構造体
US10804362B2 (en) * 2016-08-31 2020-10-13 Flosfia Inc. Crystalline oxide semiconductor film, crystalline oxide semiconductor device, and crystalline oxide semiconductor system
US11152208B2 (en) * 2016-09-15 2021-10-19 Flosfia Inc. Semiconductor film, method of forming semiconductor film, complex compound for doping, and method of doping
JP7391290B2 (ja) 2016-11-07 2023-12-05 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
JP7166522B2 (ja) * 2017-08-21 2022-11-08 株式会社Flosfia 結晶膜の製造方法
JP7248961B2 (ja) 2017-08-24 2023-03-30 株式会社Flosfia 半導体装置
CN112334606A (zh) * 2018-06-26 2021-02-05 株式会社Flosfia 结晶性氧化物膜
TW202006945A (zh) * 2018-07-12 2020-02-01 日商Flosfia股份有限公司 半導體裝置和半導體系統
TW202013735A (zh) * 2018-07-12 2020-04-01 日商Flosfia股份有限公司 半導體裝置和半導體系統
US20200083332A1 (en) * 2018-09-05 2020-03-12 Industrial Technology Research Institute Semiconductor device and method for fabricating the same
JP7315136B2 (ja) * 2018-12-26 2023-07-26 株式会社Flosfia 結晶性酸化物半導体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818009A (ja) * 1994-07-04 1996-01-19 Nippondenso Co Ltd 半導体装置
JP2005223274A (ja) * 2004-02-09 2005-08-18 Advanced Lcd Technologies Development Center Co Ltd 薄膜半導体素子
JP2009004817A (ja) * 2008-10-03 2009-01-08 Casio Comput Co Ltd Cmosトランジスタ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199774A (en) * 1978-09-18 1980-04-22 The Board Of Trustees Of The Leland Stanford Junior University Monolithic semiconductor switching device
US4968637A (en) * 1989-05-31 1990-11-06 Raytheon Company Method of manufacture TiW alignment mark and implant mask
GB2331841A (en) * 1997-11-28 1999-06-02 Secr Defence Field effect transistor
JP2000216392A (ja) * 1999-01-26 2000-08-04 Matsushita Electric Works Ltd 半導体装置およびその製造方法
US6949423B1 (en) * 2003-11-26 2005-09-27 Oakvale Technology MOSFET-fused nonvolatile read-only memory cell (MOFROM)
WO2011013364A1 (ja) * 2009-07-28 2011-02-03 パナソニック株式会社 半導体素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0818009A (ja) * 1994-07-04 1996-01-19 Nippondenso Co Ltd 半導体装置
JP2005223274A (ja) * 2004-02-09 2005-08-18 Advanced Lcd Technologies Development Center Co Ltd 薄膜半導体素子
JP2009004817A (ja) * 2008-10-03 2009-01-08 Casio Comput Co Ltd Cmosトランジスタ

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DAISUKE SHINOHARA ET AL.: "Heteroepitaxy of Corundum-Structured alpha-Ga2O3 Thin Films on alpha-Al2O3 Substrates by Ultrasonic Mist Chemical Vapor Deposition", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 47, no. 9, 25 September 2008 (2008-09-25), pages 7311 - 7313, XP055137290, DOI: doi:10.1143/JJAP.47.7311 *
TAKAYOSHI OSHIMA ET AL.: "beta-Al2xGa2-2xO3 Thin Film Growth by Molecular Beam Epitaxy", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 48, no. 7, July 2009 (2009-07-01), pages 070202, XP001549646 *

Cited By (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343224B1 (ja) * 2012-09-28 2013-11-13 Roca株式会社 半導体装置および結晶
WO2014050793A1 (ja) * 2012-09-28 2014-04-03 Roca株式会社 半導体装置又は結晶、および、半導体装置又は結晶の製造方法
US9711590B2 (en) 2012-09-28 2017-07-18 Flosfia, Inc. Semiconductor device, or crystal
WO2014132970A1 (ja) * 2013-03-01 2014-09-04 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
JP2015026796A (ja) * 2013-03-01 2015-02-05 株式会社タムラ製作所 Ga2O3系単結晶体のドナー濃度制御方法、及びオーミックコンタクト形成方法
US9611567B2 (en) 2013-03-01 2017-04-04 Tamura Corporation Method for controlling donor concentration in Ga2O3-based and method for forming ohmic contact
WO2014203623A1 (ja) * 2013-06-17 2014-12-24 株式会社タムラ製作所 Ga2O3系半導体素子
JP2015002293A (ja) * 2013-06-17 2015-01-05 株式会社タムラ製作所 Ga2O3系半導体素子
JP2014072517A (ja) * 2013-06-21 2014-04-21 Roca Kk 半導体装置及びその製造方法、結晶及びその製造方法
JPWO2015005202A1 (ja) * 2013-07-09 2017-03-02 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015017027A (ja) * 2013-10-17 2015-01-29 株式会社Flosfia 半導体装置及びその製造方法、並びに結晶及びその製造方法
JP2015144240A (ja) * 2013-12-26 2015-08-06 株式会社リコー p型酸化物半導体、p型酸化物半導体製造用組成物、p型酸化物半導体の製造方法、半導体素子、表示素子、画像表示装置、及びシステム
CN105849914A (zh) * 2013-12-26 2016-08-10 株式会社理光 p-型氧化物半导体、用于制造p-型氧化物半导体的组合物、p-型氧化物半导体的制造方法、半导体元件、显示元件、图像显示装置和系统
EP3087614B1 (en) * 2013-12-26 2021-02-17 Ricoh Company, Ltd. P-type oxide semiconductor, composition for producing p-type oxide semiconductor, method for producing p-type oxide semiconductor, semiconductor element, display element, image display device, and system
US10090388B2 (en) 2014-03-31 2018-10-02 Flosfia Inc. Crystalline multilayer structure and semiconductor device
JP2018203613A (ja) * 2014-03-31 2018-12-27 株式会社Flosfia 結晶性酸化物薄膜、半導体装置
CN110176493A (zh) * 2014-03-31 2019-08-27 株式会社Flosfia 结晶性层叠结构体,半导体装置
CN110164961A (zh) * 2014-03-31 2019-08-23 株式会社Flosfia 结晶性层叠结构体,半导体装置
CN110112220A (zh) * 2014-03-31 2019-08-09 株式会社Flosfia 结晶性层叠结构体,半导体装置
EP2927934A1 (en) * 2014-03-31 2015-10-07 Flosfia Inc. Crystalline multilayer structure and semiconductor device
US10204978B2 (en) 2014-03-31 2019-02-12 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
JP2018203614A (ja) * 2014-03-31 2018-12-27 株式会社Flosfia 結晶性酸化物半導体薄膜、半導体装置
US10535728B2 (en) 2014-03-31 2020-01-14 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
US10109707B2 (en) 2014-03-31 2018-10-23 Flosfia Inc. Crystalline multilayer oxide thin films structure in semiconductor device
US11038026B2 (en) 2014-03-31 2021-06-15 Flosfia Inc. Crystalline multilayer structure and semiconductor device
TWI625413B (zh) * 2014-03-31 2018-06-01 Flosfia股份有限公司 結晶性氧化物半導體薄膜
JP2015199648A (ja) * 2014-03-31 2015-11-12 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2015199649A (ja) * 2014-03-31 2015-11-12 株式会社Flosfia 結晶性積層構造体、半導体装置
CN110164961B (zh) * 2014-03-31 2020-09-08 株式会社Flosfia 结晶性层叠结构体,半导体装置
JP2015228495A (ja) * 2014-05-08 2015-12-17 株式会社Flosfia 結晶性積層構造体、半導体装置
CN110047907B (zh) * 2014-05-08 2024-03-15 株式会社Flosfia 结晶性层叠结构体、半导体装置
CN105097957A (zh) * 2014-05-08 2015-11-25 Flosfia株式会社 结晶性层叠结构体、半导体装置
CN110047907A (zh) * 2014-05-08 2019-07-23 Flosfia株式会社 结晶性层叠结构体、半导体装置
EP2942803A1 (en) * 2014-05-08 2015-11-11 Flosfia Inc. Crystalline multilayer structure and semiconductor device
CN110620145A (zh) * 2014-05-08 2019-12-27 株式会社Flosfia 结晶性层叠结构体、半导体装置
TWI607511B (zh) * 2014-05-08 2017-12-01 Flosfia Inc Crystalline multilayer structure, semiconductor device
US9379190B2 (en) 2014-05-08 2016-06-28 Flosfia, Inc. Crystalline multilayer structure and semiconductor device
JP2019142764A (ja) * 2014-05-08 2019-08-29 株式会社Flosfia 結晶性積層構造体、半導体装置
JP2016008156A (ja) * 2014-06-25 2016-01-18 日本電信電話株式会社 酸化ガリウム結晶膜形成方法
EP2966691A1 (en) * 2014-07-11 2016-01-13 Ricoh Company, Ltd. Coating liquid for producing n-type oxide semiconductor, field-effect-transistor, display element, image display device, and system
JP2016028412A (ja) * 2014-07-11 2016-02-25 株式会社リコー n型酸化物半導体製造用塗布液、電界効果型トランジスタ、表示素子、画像表示装置、及びシステム
KR102267890B1 (ko) * 2014-07-11 2021-06-23 가부시키가이샤 리코 N형 산화물 반도체 제조용 도포액, 전계 효과 트랜지스터, 표시 소자, 화상 표시 장치, 및 시스템
KR20180089885A (ko) * 2014-07-11 2018-08-09 가부시키가이샤 리코 N형 산화물 반도체 제조용 도포액, 전계 효과 트랜지스터, 표시 소자, 화상 표시 장치, 및 시스템
CN105261649A (zh) * 2014-07-11 2016-01-20 株式会社理光 涂布液、场效应晶体管、显示元件、图像显示装置和系统
US20160013215A1 (en) * 2014-07-11 2016-01-14 Naoyuki Ueda Coating liquid for producing n-type oxide semiconductor, field-effect transistor, display element, image display device, and system
JP2019033271A (ja) * 2014-07-22 2019-02-28 株式会社Flosfia 剥離方法、結晶性半導体膜および半導体装置
JP7352226B2 (ja) 2014-07-22 2023-09-28 株式会社Flosfia 結晶性半導体膜および半導体装置
JP2019057716A (ja) * 2014-07-22 2019-04-11 株式会社Flosfia 半導体装置
JP7064724B2 (ja) 2014-07-22 2022-05-11 株式会社Flosfia 半導体装置
JP7048864B2 (ja) 2014-07-22 2022-04-06 株式会社Flosfia 半導体装置
US11069781B2 (en) 2014-07-22 2021-07-20 Flosfia Inc. Crystalline semiconductor film, plate-like body and semiconductor device
US10439028B2 (en) 2014-07-22 2019-10-08 Flosfia, Inc. Crystalline semiconductor film, plate-like body and semiconductor device
JP7126085B2 (ja) 2014-07-22 2022-08-26 株式会社Flosfia 半導体装置
JP2020074443A (ja) * 2014-07-22 2020-05-14 株式会社Flosfia 結晶性半導体膜および半導体装置
JP2020107899A (ja) * 2014-07-22 2020-07-09 株式会社Flosfia 半導体装置
JP2020113773A (ja) * 2014-07-22 2020-07-27 株式会社Flosfia 半導体装置
JP2020115543A (ja) * 2014-07-22 2020-07-30 株式会社Flosfia 半導体装置
US11682702B2 (en) 2014-07-22 2023-06-20 Flosfia Inc. Crystalline semiconductor film, plate-like body and semiconductor device
JP2020074363A (ja) * 2014-11-26 2020-05-14 株式会社Flosfia 結晶性積層構造体
JP7344426B2 (ja) 2014-11-26 2023-09-14 株式会社Flosfia 結晶性積層構造体
JP2020047948A (ja) * 2015-02-25 2020-03-26 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2016157879A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2016157878A (ja) * 2015-02-25 2016-09-01 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2016201540A (ja) * 2015-04-10 2016-12-01 株式会社Flosfia 結晶性酸化物半導体膜および半導体装置
JP2017069424A (ja) * 2015-09-30 2017-04-06 株式会社Flosfia 結晶性半導体膜および半導体装置
JP7008293B2 (ja) 2017-04-27 2022-01-25 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
US11563092B2 (en) 2017-04-27 2023-01-24 National Institute Of Information And Communications Technology GA2O3-based semiconductor device
JP2018186246A (ja) * 2017-04-27 2018-11-22 国立研究開発法人情報通信研究機構 Ga2O3系半導体素子
CN110622319A (zh) * 2017-04-27 2019-12-27 株式会社田村制作所 Ga2O3系半导体元件
CN107331607A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种氧化镓基底场效应晶体管及其制备方法
US10943981B2 (en) 2017-08-24 2021-03-09 Flosfia Inc. Semiconductor device
JP7457366B2 (ja) 2018-07-12 2024-03-28 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JPWO2020013259A1 (ja) * 2018-07-12 2021-07-15 株式会社Flosfia 半導体装置および半導体装置を含む半導体システム
JPWO2021044644A1 (ja) * 2019-09-02 2021-03-11
WO2021044644A1 (ja) * 2019-09-02 2021-03-11 株式会社デンソー 成膜方法、及び、半導体装置の製造方法
JP7295540B2 (ja) 2019-09-02 2023-06-21 株式会社デンソー 成膜方法、及び、半導体装置の製造方法
WO2021044489A1 (ja) 2019-09-02 2021-03-11 日本碍子株式会社 半導体膜
JP7016489B2 (ja) 2019-12-16 2022-02-07 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
JP2020057805A (ja) * 2019-12-16 2020-04-09 株式会社Flosfia 結晶性酸化物半導体膜、半導体装置
KR102201924B1 (ko) * 2020-08-13 2021-01-11 한국세라믹기술원 도펀트 활성화 기술을 이용한 전력반도체용 갈륨옥사이드 박막 제조 방법
KR20200142482A (ko) * 2020-08-13 2020-12-22 한국세라믹기술원 도펀트 활성화 기술을 이용한 전력반도체용 갈륨옥사이드 박막 제조 방법
WO2022124404A1 (ja) 2020-12-11 2022-06-16 株式会社Flosfia 半導体装置

Also Published As

Publication number Publication date
JPWO2013035843A1 (ja) 2015-03-23
US20140217470A1 (en) 2014-08-07
JP6142358B2 (ja) 2017-06-07

Similar Documents

Publication Publication Date Title
JP6142358B2 (ja) Ga2O3系半導体素子
JP5948581B2 (ja) Ga2O3系半導体素子
JP6108366B2 (ja) Ga2O3系半導体素子
JP5807282B2 (ja) Ga2O3系半導体素子
JP5975466B2 (ja) Ga2O3系半導体素子
JP5952360B2 (ja) Ga含有酸化物層成長用β−Ga2O3系単結晶基板
JP3811624B2 (ja) 半導体装置
WO2013035841A1 (ja) Ga2O3系HEMT
JP6216978B2 (ja) Ga2O3系半導体素子
JP2013056804A (ja) β−Ga2O3系単結晶膜の製造方法及び結晶積層構造体
Sasaki et al. Ga 2 O 3 semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532671

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14343652

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829351

Country of ref document: EP

Kind code of ref document: A1