WO2013031331A1 - ナトリウム電池用正極活物質及びその製造方法 - Google Patents

ナトリウム電池用正極活物質及びその製造方法 Download PDF

Info

Publication number
WO2013031331A1
WO2013031331A1 PCT/JP2012/065096 JP2012065096W WO2013031331A1 WO 2013031331 A1 WO2013031331 A1 WO 2013031331A1 JP 2012065096 W JP2012065096 W JP 2012065096W WO 2013031331 A1 WO2013031331 A1 WO 2013031331A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
containing compound
sodium
Prior art date
Application number
PCT/JP2012/065096
Other languages
English (en)
French (fr)
Inventor
雅文 野瀬
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to KR1020167003988A priority Critical patent/KR101691774B1/ko
Priority to JP2013531134A priority patent/JP5673836B2/ja
Priority to CN201280041525.9A priority patent/CN103765640B/zh
Priority to RU2014106754/04A priority patent/RU2566085C1/ru
Priority to US14/241,188 priority patent/US9660253B2/en
Priority to CA2846472A priority patent/CA2846472C/en
Priority to AU2012303284A priority patent/AU2012303284B2/en
Priority to BR112014004630-1A priority patent/BR112014004630B1/pt
Priority to EP12827894.2A priority patent/EP2752925B1/en
Priority to KR1020147005138A priority patent/KR101795845B1/ko
Publication of WO2013031331A1 publication Critical patent/WO2013031331A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This invention relates to the positive electrode active material for sodium batteries, and its manufacturing method.
  • a lithium metal composite oxide having a layered structure such as lithium nickelate or lithium cobaltate is generally used as a positive electrode active material, and lithium ion can be occluded / released as a negative electrode active material.
  • Carbon materials, lithium metals, lithium alloys and the like are used.
  • an electrolyte solution in which a lithium salt is dissolved, a solid electrolyte containing lithium, or the like is used.
  • Lithium batteries are excellent in energy density and output as described above. On the other hand, the price of lithium has increased along with the expansion of demand for lithium batteries, and the amount of lithium reserves has been limited. It has become a bottleneck in the process.
  • Patent Document 1 describes Ma x Mb y P 2 O 7 (Ma represents Na, Li, Ca, or Mg, Mb represents a transition metal that is tetravalent or more and stably exists, and 0 ⁇ x ⁇ 4. , 0.5 ⁇ y ⁇ 3 and 6 ⁇ z ⁇ 14).
  • MoP 2 O 7 MoP 2 O 7 that is actually manufactured and evaluated in the examples.
  • Patent Document 1 when MoP 2 O 7 produced and evaluated in the example of Patent Document 1 is used as the positive electrode active material of a sodium battery, there is a problem that the operating potential is low. Further, as described in Non-Patent Documents 1 to 4, currently common positive electrode active materials for sodium batteries have a high operating potential of about 3.5V.
  • Patent Document 2 describes Li 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) as an active material for lithium batteries. 5 describes that LiCoO 2 exhibits a potential of about 4V.
  • Patent Document 1 since MoP 2 O 7 actually produced and evaluated in Patent Document 1 does not contain Na, when used as a positive electrode active material of a sodium battery, the operation of the sodium battery is caused by insertion of Na ions (discharge). Reaction). Therefore, it is necessary to use an active material containing Na in advance as the negative electrode active material to be combined.
  • a Na-containing negative electrode active material that operates in a low potential region and can secure a sufficient electromotive force has not been reported at present, and there is a problem that it is difficult to put into practical use.
  • the present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a positive electrode active material for sodium batteries that has a high operating potential and can be charged and discharged at a high potential, and a method for producing the same. .
  • the positive electrode active material for sodium batteries of the present invention is represented by the following general formula (1).
  • General formula (1) Na x M y (AO 4) z (P 2 O 7) w
  • M is at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn
  • A is Al, Si, P, S
  • It is at least one selected from the group consisting of Ti, V and W, x satisfies 4 ⁇ x ⁇ 2, y satisfies 4 ⁇ y ⁇ 1, z satisfies 4 ⁇ z ⁇ 0, and w is 1 ⁇ w ⁇ 0 is satisfied, and at least one of z and w is 1 or more.
  • the positive electrode active material for sodium batteries of the present invention has a high operating potential and realizes a high energy density of sodium batteries.
  • the M is preferably divalent before charging. It is because it becomes possible to operate at a high potential by being in a highly oxidized state of 3 or more during charging.
  • the positive electrode active material for a sodium battery of the present invention preferably has a crystal structure belonging to the space group Pn2 1 a.
  • all of the Na ions in the crystal structure are arranged in any one of the a-axis, b-axis, and c-axis, which is very advantageous for Na ion conduction. This is because.
  • the M is at least one selected from the group consisting of Mn, Co, and Ni, and a part thereof , Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn, which may be substituted with at least one selected from the group consisting of M and the like.
  • the positive electrode active material for a sodium battery in such a form easily takes a crystal structure belonging to the space group Pn2 1 a and is excellent in Na ion conductivity.
  • M is Ni
  • a part of Ni is Ti, V, Cr, Mn, Fe, Co.
  • Cu and Zn may be substituted with at least one selected from the group consisting of.
  • the A is at least one selected from the group consisting of Si, P and S, and a part thereof Is selected from the group consisting of Al, Si, P, S, Ti, V, and W, and may be substituted with at least one different from A.
  • the positive electrode active material for a sodium battery in such a form easily takes a crystal structure belonging to the space group Pn2 1 a and is excellent in Na ion conductivity.
  • A is P, and a part of P is Al, Si, S, Ti, V and W. The thing which may be substituted by at least 1 sort (s) chosen from the group which consists of is mentioned.
  • the positive electrode active material for sodium batteries of the present invention for example, a compound represented by the general formula Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ), a general formula Na 4 Mn 3 (PO 4 ) 2 compound represented by (P 2 O 7), the general formula Na 4 Co 3 (PO 4) 2 compound represented by (P 2 O 7), the general formula Na 4 Co (3-a) Mn a (PO 4) 2 A compound represented by (P 2 O 7 ) (a satisfies 0.3 ⁇ a ⁇ 0.8), the general formula Na 4 Co (3-bc) Mn b Ni c (PO 4 ) 2 (P 2 O 7 ) (b satisfies 0.3 ⁇ b ⁇ 1.0, and c satisfies 0.3 ⁇ c ⁇ 1.0).
  • the method for producing a positive electrode active material for a sodium battery of the present invention is a method for producing the positive electrode active material for a sodium battery of the present invention, A calcining step of calcining a raw material mixture containing at least an Na-containing compound, an M-containing compound containing M, an A-containing compound containing A, and a P-containing compound at 150 to 500 ° C. in an air atmosphere; After the preliminary firing, a final firing step of firing the obtained temporary fired product at 500 to 800 ° C. in an air atmosphere; It is characterized by including.
  • the manufacturing method of the positive electrode active material for sodium batteries of this invention includes the grinding
  • the present invention it is possible to provide a positive electrode active material for a sodium battery that has a high operating potential and can be charged and discharged at a high potential. Therefore, by using the positive electrode active material for sodium battery of the present invention, it is possible to increase the energy density of the sodium battery.
  • FIG. 3 is an XRD pattern of a positive electrode active material synthesized in Example 1.
  • FIG. 3 The result of the CV measurement which used Na metal as a counter electrode about the positive electrode using the positive electrode active material synthesize
  • 3 is an XRD pattern of a positive electrode active material synthesized in Example 2.
  • 3 shows the charge / discharge characteristics (relationship between capacity density and potential) of a positive electrode using the positive electrode active material synthesized in Example 2.
  • 3 is an XRD pattern of a positive electrode active material synthesized in Example 3.
  • FIG. 3 shows the charge / discharge characteristics (relationship between capacity density and potential) of a positive electrode using the positive electrode active material synthesized in Example 3.
  • the cycle characteristics (relationship between the number of cycles and charge / discharge capacity density) of the positive electrode using the positive electrode active material synthesized in Example 3 are shown.
  • 3 shows the charge / discharge characteristics (relationship between capacity density and potential) of a positive electrode using the positive electrode active material synthesized in Example 3.
  • 3 shows the results of evaluation of the charge / discharge characteristics of the positive electrode using the positive electrode active material synthesized in Examples 4 to 8.
  • 3 shows discharge curves of a positive electrode using the positive electrode active material synthesized in Examples 4 to 8. The cycle characteristics of the positive electrode using the positive electrode active material synthesized in Examples 4 to 8 are shown.
  • 3 shows the results of evaluation of the charge / discharge characteristics of the positive electrode using the positive electrode active material synthesized in Examples 9 to 12.
  • the positive electrode active material for a sodium battery of the present invention (hereinafter sometimes simply referred to as a positive electrode active material) and the production method thereof will be described in detail.
  • the positive electrode active material for sodium batteries of the present invention is represented by the following general formula (1).
  • General formula (1) Na x M y (AO 4) z (P 2 O 7) w
  • M is at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn
  • A is Al, Si, P, S
  • It is at least one selected from the group consisting of Ti, V and W, x satisfies 4 ⁇ x ⁇ 2, y satisfies 4 ⁇ y ⁇ 1, z satisfies 4 ⁇ z ⁇ 0, and w is 1 ⁇ w ⁇ 0 is satisfied, and at least one of z and w is 1 or more.
  • the conventional positive electrode active material for a sodium battery has a low operating potential of about 3.5 V or less, and a sodium battery having a sufficient energy density has not been realized.
  • the operating potential tends to decrease greatly.
  • LiCoO 2 exhibits a potential of about 4 V
  • the average of Na (x) CoO 2 The potential is about 2.9 V, which is significantly lower than that of LiCoO 2 .
  • Na ions have a larger ionic radius than Li ions, it has been considered that Na ions are difficult to move when Li in the Li-containing active material is replaced with Na.
  • it is a general knowledge that in a lithium battery active material simply replacing lithium with sodium does not yield a useful high-potential-operated sodium battery active material. It was.
  • a compound represented by Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) can be used as a positive electrode active material of a sodium battery. It has been found that it operates in an ultrahigh potential region such as 4.9V.
  • the potential range of 4.6 to 4.9 V is a potential range where the decomposition of the electrolytic solution used in combination with the positive electrode active material can be suppressed. Therefore, by using the positive electrode active material of the present invention, the potential range is stable over a long period of time. A sodium battery exhibiting battery characteristics can be obtained.
  • the present inventor has obtained a compound represented by Na 4 Mn 3 (PO 4 ) 2 (P 2 O 7 ), a compound represented by Na 4 Co 3 (PO 4 ) 2 (P 2 O 7 ), Na 4 Co represented by (3-a) Mn a ( PO 4) compounds represented by 2 (P 2 O 7), Na 4 Co (3-b-c) Mn c Ni c (PO 4) 2 (P 2 O 7)
  • Each of these compounds can also be used as a positive electrode active material for sodium batteries and has been found to operate in a high potential region exceeding 4V.
  • the positive electrode active material of the present invention can exhibit high potential operability even in a relatively low temperature range of 25 ° C.
  • the general formula (1) Na x M y ( AO 4) z (P 2 O 7) compounds represented by w, said Na 4 Ni 3 (PO 4) similar to 2 (P 2 O 7) or the like, sodium batteries As a positive electrode active material, it can operate in a high potential region.
  • M is an electrochemically active divalent or higher-valent transition metal and has an ionic radius close to Ni or Ni.
  • A is easy to take a tetrahedral structure like P or P similarly.
  • the tetrahedral structure is a structure in which one A covalently bonded to these four oxygen atoms is contained in a tetrahedral void having four oxygen atoms as apexes.
  • (AO 4 ) and (P 2 O 7 ) that are polyanion parts at least one of z representing the composition ratio of (AO 4 ) in the positive electrode active material and w representing the composition ratio of (P 2 O 7 ) Is 1 or more, it is considered that the positive electrode active material obtained operates in a high potential region due to the inductive effect on the MO bond by at least one of (AO 4 ) and (P 2 O 7 ).
  • the inductive effect means that the A—O bond constituting (AO 4 ) and the P—O bond constituting (P 2 O 7 ) have high covalent bonds, so that the M—O bond electrons are converted into A—O bonds and P— As a result of being pulled to the -O bond side, the covalent bond between M and O is reduced, and the energy gap of the mixed orbitals is reduced. As a result, the redox level of M is lowered and the energy difference from sodium is increased. That is, the redox potential of sodium increases.
  • the M may be at least one metal species selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn. In this state, it is preferably divalent. This is because when M is a metal species that is divalent in a state before charging, it can operate at a high potential by being in a highly oxidized state of trivalent or higher during charging.
  • Mn, Co, and Ni are particularly preferable. This is because Mn, Co, and Ni are divalent in a state before charging, and Mn and Co can form a crystal structure similar to Ni.
  • Mn, Co, and Ni are divalent in a state before charging, and Mn and Co can form a crystal structure similar to Ni.
  • Mn, Co, and Ni are partly selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn (ie, Mn, Co, and Ni). It may be substituted with at least one different from at least one selected from Ni).
  • Ni when M is Ni, a positive electrode active material having high electron conductivity can be obtained.
  • the redox element that is, the element that transmits and receives electrons is Ni
  • the Ni ion oxide has a general olivine type crystal structure due to the desorption of Na ions during charging.
  • the valence of Ni ions is larger than the valence of 2 to 3 (for example, Na 4 Ni 3 (PO 4 ) 2 In the case of (P 2 O 7 ), it is considered that the number of electrons changes to about 3.3 and more electrons move.
  • Ni may be substituted with at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Cu, and Zn.
  • M Mn
  • An active material can be obtained. Since the operating potential is relatively low, decomposition degradation of the electrolytic solution can be further suppressed.
  • M Mn
  • a part of Mn may be substituted with at least one selected from the group consisting of Ti, V, Cr, Fe, Co, Ni, Cu and Zn.
  • M when M is Co, when a part of Co is substituted with Mn, more excellent capacity characteristics can be exhibited as compared with the case where M is only Co. This is considered to be because by replacing a part of the Co 2+ site with Mn 2+ , the substituted Mn 2+ can compensate for not only Mn 2 + / 3 + but also Mn 3 + / 4 + .
  • a part of Co and Mn may be substituted with at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn.
  • M is Co in the above formula (1)
  • Mn and Ni when a part of Co is substituted with Mn and Ni, the M is compared with a case where Co is partially substituted with Mn. , May exhibit a higher working potential. This is because the substituted Mn 2+ can compensate for not only Mn 2 + / 3 + but also Mn 3 + / 4 + , and Ni in which charge compensation (Ni 2+ ⁇ Ni 3+ ) proceeds in a higher potential region compared to Co. This is considered to replace Co.
  • a part of Co, Mn and Ni may be substituted with at least one selected from the group consisting of Ti, V, Cr, Mn, Fe, Co, Ni, Cu and Zn.
  • the A may be at least one selected from the group consisting of Al, Si, P, S, Ti, V and W, but selected from the group consisting of Si, P and S. It is preferable that it is at least one kind. This is because Si, P, and S are particularly easy to form a tetrahedral structure, and Si and S can form a crystal structure similar to P. Among these, A is preferably P. Incidentally, a part of these Si, P, and S is selected from the group consisting of Al, Si, P, S, Ti, V, and W. At least one selected from A (that is, Si, P, and S) It may be substituted with at least one species different from the species.
  • x satisfies 4 ⁇ x ⁇ 2
  • y satisfies 4 ⁇ y ⁇ 1
  • z satisfies 4 ⁇ z ⁇
  • w satisfies 1 ⁇ w ⁇ 0, and z and w
  • particularly preferable positive electrode active materials include compounds represented by Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ).
  • Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) contains Ni as a redox element and has (PO 4 ) and (P 2 O 7 ) as a polyanion part. In addition to such high electronic conductivity, it has high potential operability due to a high inductive effect.
  • Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) has a crystal structure belonging to the space group Pn2 1 a.
  • FIGS. 1 to 3 show the crystal structure (Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 )) belonging to the space group Pn2 1 a as seen from the a-axis direction (FIG. 1), from the b-axis direction.
  • the figure (FIG. 2) seen and the figure (FIG. 3) seen from c-axis direction are shown.
  • the crystal structure belonging to the space group Pn2 1 a is shown by taking Na 4 Ni 3 (PO 4 ) 2 (P 2 O 7 ) as an example, but in FIGS.
  • M for example, Co or Mn
  • the positive electrode active material of the present invention preferably has a crystal structure belonging to the space group Pn2 1 a.
  • particularly preferable positive electrode active materials include compounds represented by the general formula Na 4 Mn 3 (PO 4 ) 2 (P 2 O 7 ), and a general formula Na 4 Co 3 (PO 4).
  • ) 2 compound represented by P 2 O 7
  • These compounds are all have a crystal structure belonging to space group Pn2 1 a shown in FIGS.
  • Na 4 Mn 3 (PO 4 ) 2 (P 2 O 7 ) containing Mn as a redox element has improved reversibility and stability of the crystal structure and suppressed deterioration of the electrolyte. High cycle characteristics can be expressed.
  • the general formula Na 4 Co 3 (PO 4 ) 2 (P 2 O 7 ) containing Co as a redox element is improved in reversibility and stability of the crystal structure, electrolyte solution By suppressing deterioration of the resin and increasing the reversible capacity, excellent cycle characteristics and capacity characteristics can be exhibited.
  • Na 4 Co (3- a) Mn a (PO 4) 2 (P 2 O 7) is already as described above, by charge compensation with Mn, more excellent capacity characteristics can be exhibited as compared with Na 4 Co 3 (PO 4 ) 2 (P 2 O 7 ).
  • O 7 ) is Na 4 Co (3-a) Mn a (PO 4 ) 2 (P 2 ) due to the charge compensation effect in the high potential region due to Ni in addition to the charge compensation effect due to Mn. Compared to O 7 ), a higher working potential can be developed.
  • b representing the substitution amount of Mn
  • the method for producing the positive electrode active material of the present invention is not particularly limited, but a preferable method includes the method for producing the positive electrode active material of the present invention described below.
  • the method for producing a positive electrode active material for a sodium battery according to the present invention comprises: A method for producing a positive electrode active material for a sodium battery according to the present invention, A calcining step of calcining a raw material mixture containing at least an Na-containing compound, an M-containing compound containing M, an A-containing compound containing A, and a P-containing compound at 150 to 500 ° C. in an air atmosphere; After the preliminary firing, a final firing step of firing the obtained temporary fired product at 500 to 800 ° C. in an air atmosphere; It is characterized by including.
  • the raw material mixture is first temporarily calcined at 150 to 500 ° C., lower than that in the main firing step, and then main calcined at 500 to 800 ° C., whereby the reaction proceeds uniformly and the single-phase positive electrode active material is activated. Substances can be synthesized.
  • the pre-baking step is a step of baking a raw material mixture including at least a Na-containing compound, an M-containing compound, an A-containing compound, and a P-containing compound at 150 to 500 ° C. in an air atmosphere.
  • Na-containing compound, M-containing compound, A-containing compounds, and P-containing compound the positive electrode active material Na x M y (AO 4) z (P 2 O 7) is a raw material of w, respectively, Na source, M source, A source and P source.
  • the Na-containing compound, M-containing compound, A-containing compound and P-containing compound are not particularly limited, and can be appropriately selected. Each compound may be used individually by 1 type, or may be used in combination of 2 or more type. One compound may contain two or more of Na, M, A and P. When M and A contain a common atom, the M-containing compound and the A-containing compound may be the same compound, and when A is P, the A-containing compound and the P-containing compound are The same compound may be used.
  • Na-containing compound that is the Na source examples include Na 2 CO 3 , Na 2 O, Na 2 O 2 , Na 3 PO 4 , Na 4 P 2 O 7, and CH 3 COONa.
  • M-containing compound as the M source examples include Ti-containing compounds such as TiO 2 and Ti 2 O 3 , V-containing compounds such as V 2 O 3 , V 2 O 5 , and NH 4 VO 3 , Cr
  • the containing compound examples include Cr 2 O 3 and Cr (NO 3 ) 3.
  • Mn-containing compound examples include MnCO 3 and (CH 3 COO) 2 Mn.
  • Fe-containing compound examples include FeO, Fe 2 O 3 , and Fe.
  • Co-containing compounds such as CoCO 3 , (CH 3 COO) 2 Co, CoO, and Co 2 O 3 , and the like
  • Ni-containing compounds such as (CH 3 COO) 2 Ni, NiCO 3 , and NiO etc.
  • Cu-containing compounds include (CH 3 COO) 2 Cu, and CuO or the like, as Zn-containing compound, (CH 3 COO) 2 Zn , and, ZnO and the like
  • Examples of the A-containing compound as the A source include Al (NO 3 ) 3 , Al 2 O 3 , and Al (OH) 3 as the Al-containing compound, SiO 2 and SiO, etc. as the Si-containing compound, P Examples of the compound containing NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , H 3 PO 4 , Na 2 P 2 O 7, and Na 3 PO 4, such as S-containing compounds (NH 4 ) 2 SO 4 , Na 2 SO 4 and H 2 SO 4, etc. Ti-containing compounds such as TiO 2 and Ti 2 O 3 , V-containing compounds such as V 2 O 3 , V 2 O 5 , NH 4 VO 3, etc. W containing Examples of the compound include WO 3 and Na 2 WO 4 .
  • P-containing compounds that are P sources include NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , H 3 PO 4 , Na 4 P 2 O 7, and Na 3 PO 4 .
  • Raw material mixture, the Na-containing compound, M-containing compound, the mixing ratio of the A-containing compounds and P-containing compounds, synthesized Na x M y (AO 4) z (P 2 O 7) x in w, y, z, And w may be set as appropriate.
  • the preparation method of a raw material mixture is not specifically limited, Arbitrary mixing methods, stirring methods, etc. are employable.
  • the size of the particles of each compound is not particularly limited, but in order to make the reaction proceed uniformly, it is preferable that the contact area between the particles is large. Therefore, each compound is pulverized before calcination. It is preferable. That is, it is preferable to provide a pulverization step for pulverizing the Na-containing compound, the M-containing compound, the A-containing compound, and the P-containing compound in the raw material mixture before temporary firing. In the pulverization step, compound pulverization may be performed simultaneously for a plurality of compounds or for each compound.
  • the pulverization method in the pulverization step is not particularly limited, and any method can be adopted, and a method that combines mixing, stirring, and pulverization of the raw material mixture can also be employed.
  • a ball mill, a bead mill, and the like can be mixed and stirred while pulverizing the raw material mixture.
  • the calcination temperature is lower than that in the main calcination step and may be in the range of 150 to 500 ° C., but is preferably 180 to 450 ° C., more preferably 250 to 350 ° C.
  • the calcination time is not particularly limited and may be set as appropriate. For example, it may be about 1 to 5 hours.
  • the air atmosphere that is the atmosphere of the pre-baking step means an oxygen-containing gas atmosphere.
  • the main baking step is a step of baking the pre-baked product obtained in the pre-baking step at 500 to 800 ° C. in an air atmosphere.
  • the firing temperature in the main firing step is preferably 550 to 750 ° C.
  • the main baking time is not particularly limited and may be set as appropriate. For example, it may be about 1 to 30 hours.
  • the air atmosphere that is the atmosphere of the main baking step is the same as the air atmosphere of the temporary baking step.
  • the manufacturing method of the positive electrode active material of this invention is not limited to the said method.
  • it can be manufactured by the following method. That is, first, an Na-containing compound as a Na source, an M-containing compound as an M source, an A-containing compound as an A source, and a P-containing compound as a P source are dissolved in an acidic solution together with a gelling agent. Heat to prepare gel. Next, the obtained gel is baked in an air atmosphere.
  • the Na-containing compound, the M-containing compound, the A-containing compound, and the P-containing compound may be appropriately selected as long as they can be dissolved in an acidic solution.
  • Each compound may be used individually by 1 type, or may be used in combination of 2 or more type.
  • One compound may contain two or more of Na, M, A and P.
  • M and A contain a common atom
  • the M-containing compound and the A-containing compound may be the same compound
  • a is P the A-containing compound and the P-containing compound are The same compound may be used.
  • examples of the Na-containing compound include Na 4 P 2 O 7 , CH 3 COONa, Na 2 CO 3 , Na 2 O, and Na 2 O 2 .
  • M-containing compounds include Ti-containing compounds such as Ti (NO 3 ) 4 , TiO 2 , and Ti 2 O 3 , V-containing compounds such as V 2 O 3 and V 2 O 5 , and Cr-containing compounds. , Cr (NO 3 ) 3, etc., as Mn-containing compounds, (CH 3 COO) 2 Mn, and MnCO 3, etc., Fe-containing compounds such as Fe (NO 3 ) 3 , FeC 2 O 4 , and (CH 3 COO) 3 Fe and the like, Co-containing compounds such as (CH 3 COO) 2 Co, CoCO 3 , Co 2 O 3 , and CoO, and Ni-containing compounds such as (CH 3 COO) 2 Ni, NiO, and NiCO 3 , Cu
  • the containing compound include (CH 3 COO) 2 Cu
  • examples of the Zn-containing compound include (CH 3 COO) 2 Zn.
  • Examples of the A-containing compound include Al (NO 3 ) 3 as the Al-containing compound, Si (OCH 2 CH 3 ) 4 as the Si-containing compound, NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , H 3 PO 4, etc., S-containing compounds such as H 2 SO 4 and Na 2 SO 4, etc.
  • Ti containing compounds such as Ti (NO 3 ) 4 , TiO 2 , Ti 2 O 3 etc.
  • V-containing compound include V 2 O 3 and V 2 O 5
  • examples of the W-containing compound include WO 3 and Na 2 WO 4 .
  • Examples of the P-containing compound include NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , and H 3 PO 4 .
  • the mixing ratio of the Na-containing compound, the M-containing compound, the A-containing compound, and the P-containing compound depends on x, y, z, and w in Na x M y (AO 4 ) z (P 2 O 7 ) w to be synthesized. Can be set as appropriate.
  • gelling agent examples include glycolic acid.
  • an acidic solution examples include nitric acid aqueous solution etc. are mentioned, for example.
  • the heating temperature at the time of gel preparation is not particularly limited as long as the above-mentioned compounds can be dissolved in an acidic solution to prepare a gel, and can be set to 60 to 120 ° C., for example.
  • the firing temperature of the gel can be, for example, 500 to 800 ° C., and preferably 550 to 750 ° C.
  • the air atmosphere at the time of gel baking is the same as the air atmosphere in the preliminary baking step.
  • the positive electrode active material provided by the present invention can be suitably used as a positive electrode active material for sodium batteries.
  • the sodium battery may be a primary battery or a secondary battery.
  • a sodium battery using the positive electrode active material provided by the present invention will be described taking a sodium secondary battery as an example.
  • FIG. 4 is a schematic cross-sectional view showing one embodiment of a sodium secondary battery.
  • the sodium secondary battery 8 usually has a structure in which the electrolyte layer 3 is interposed between the negative electrode 1 and the positive electrode 2.
  • the negative electrode 1 includes a negative electrode active material layer 4 containing a negative electrode active material, and a negative electrode current collector 5 that collects current from the negative electrode active material layer 4.
  • the positive electrode 2 includes a positive electrode active material layer 6 containing a positive electrode active material and a positive electrode current collector 7 that collects current from the positive electrode active material layer 6.
  • Each configuration will be described below.
  • the negative electrode contains a negative electrode active material capable of releasing and capturing sodium ions.
  • the negative electrode usually has a negative electrode active material layer containing at least a negative electrode active material, and further includes a negative electrode current collector that collects current from the negative electrode active material layer as necessary.
  • the negative electrode active material examples include hard carbon, Na metal, tin, and the like.
  • the negative electrode active material layer may contain only the negative electrode active material, but may contain a binder, a conductive material, an electrolyte and the like in addition to the negative electrode active material.
  • a negative electrode layer containing only the negative electrode active material can be obtained.
  • the negative electrode active material is in a powder form, a negative electrode layer containing a binder in addition to the negative electrode active material can be obtained.
  • binder examples include polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and the like.
  • conductive material examples include carbon materials such as carbon black, activated carbon, carbon carbon fiber (eg, carbon nanotube, carbon nanofiber, etc.), graphite, and the like.
  • the positive electrode contains a positive electrode active material capable of releasing and capturing sodium ions.
  • the positive electrode usually has a positive electrode active material layer containing at least a positive electrode active material, and further includes a positive electrode current collector that collects the positive electrode active material layer as necessary.
  • the positive electrode active material As the positive electrode active material, the positive electrode active material of the present invention or the positive electrode active material manufactured by the manufacturing method of the present invention can be used. Similar to the negative electrode active material layer, the positive electrode active material layer may contain only the positive electrode active material, but contains a conductive material, a binder, an electrolyte, an electrode catalyst, etc. in addition to the positive electrode active material. You may do. About the electroconductive material and binder in a positive electrode active material, since the material similar to a negative electrode active material layer can be used, description here is abbreviate
  • the negative electrode active material layer and the positive electrode active material layer can be prepared by, for example, slurry containing each material by any coating method such as a dip coating method, a spray coating method, a roll coating method, a doctor blade method, a gravure coating method, and a screen printing method.
  • the electrode active material layer can be formed by coating, drying, and rolling as necessary.
  • the positive electrode current collector and the negative electrode current collector are not particularly limited in material, structure, and shape as long as the materials have desired electronic conductivity and do not cause an alloying reaction with sodium ions in the battery environment.
  • the material for the positive electrode current collector include metal materials such as stainless steel, nickel, aluminum, iron, titanium, and copper, carbon materials such as carbon fiber and carbon paper, and high electron conductive ceramic materials such as titanium nitride. It is done.
  • the battery case may have a function as a positive electrode current collector.
  • Examples of the material for the negative electrode current collector include copper, stainless steel, nickel, and aluminum.
  • the battery case may have a function as a negative electrode current collector.
  • the shape of the positive electrode current collector and the negative electrode current collector include a plate shape, a foil shape, and a mesh shape, and a mesh shape is preferable.
  • the electrolyte layer contains at least an electrolyte that enables conduction of sodium ions between the positive electrode and the negative electrode.
  • the electrolyte only needs to have sodium ion conductivity, and examples thereof include an electrolyte, a gel electrolyte obtained by gelling the electrolyte using a polymer, a solid electrolyte, and the like.
  • Examples of the electrolytic solution having sodium ion conductivity include an electrolytic solution in which a sodium salt is dissolved in an aqueous solvent or a non-aqueous solvent.
  • the non-aqueous solvent is not particularly limited, and examples thereof include cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC), cyclic esters such as ⁇ -butyrolactone (GBL), and dimethyl carbonate. Examples thereof include chain carbonates such as (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC). These nonaqueous solvents may be used alone or in combination of two or more. Further, a nitrile compound in which a CN group is bonded to the end of the chain saturated hydrocarbon compound may be used by mixing with a non-aqueous solvent.
  • cyclic carbonates such as propylene carbonate (PC), ethylene carbonate (EC), and fluoroethylene carbonate (FEC)
  • cyclic esters such as ⁇ -butyrolactone (GBL)
  • dimethyl carbonate examples thereof include chain carbonates such as (DMC), diethyl carbonate (
  • a nitrile compound By adding a nitrile compound to a non-aqueous solvent electrolyte, a stable non-aqueous solvent electrolyte that does not decompose can be obtained even in a high potential region where the positive electrode active material for a sodium battery of the present invention operates. it can.
  • the sodium salt is not particularly limited, for example, NaPF 6, NaBF 4, NaClO 4, NaCF 3 SO 3, (CF 3 SO 2) 2 NNa, NaN (FSO 2), NaC (CF 3 SO 2) 3 , etc. Is mentioned. These sodium salts may be used individually by 1 type, and may be used in combination of 2 or more type. NaPF 6 which is stable even in a high potential region is particularly preferable. In the non-aqueous electrolyte, the concentration of sodium salt is not particularly limited.
  • the non-aqueous electrolyte can be used after adding a polymer to gel.
  • the gelation method of the nonaqueous electrolyte include, for example, a polymer such as polyethylene oxide (PEO), polyacrylonitrile (PAN), polyvinylidene fluoride (PVdF), or polymethyl methacrylate (PMMA). The method of adding is mentioned.
  • the electrolyte When an electrolytic solution is used as the electrolyte, it is possible to ensure insulation between the positive electrode and the negative electrode by disposing a separator that is an insulating porous body between the positive electrode and the negative electrode and impregnating the separator with the electrolytic solution.
  • a separator examples include porous membranes such as polyethylene porous membrane and polypropylene porous membrane; and nonwoven fabrics such as resin nonwoven fabric and glass fiber nonwoven fabric.
  • a battery case that accommodates the negative electrode, the electrolyte layer, and the positive electrode for example, a battery case having a general shape such as a coin shape, a flat plate shape, a cylindrical shape, or a laminate shape can be used.
  • a separator made of an insulating material between the positive electrode and the negative electrode can be provided. Examples of such a separator include porous membranes such as polyethylene porous membrane and polypropylene porous membrane; and nonwoven fabrics such as resin nonwoven fabric and glass fiber nonwoven fabric.
  • the current collector of each electrode can be provided with a terminal serving as a connection portion with the outside.
  • the upper diagram is an XRD pattern of the synthesized product
  • the lower diagram is an XRD pattern of Na 4 Ni 3 (PO 4 ) 2 P 2 O 7 (ICSD No. 01-087-0977) in the ICSD database.
  • the obtained composite was Na 4 Ni 3 (PO 4 ) 2 P 2 O 7
  • the obtained composite Na 4 Ni 3 (PO 4 ) 2 P 2 O 7
  • the obtained composite Na 4 Ni 3 (PO 4 ) 2 P 2 O 7
  • the obtained composite Na 4 Ni 3 (PO 4 ) 2 P 2 O 7
  • the obtained composite has a crystal structure belonging to the space group Pn2 1 a.
  • Example 1 As shown in FIG. 6, in both the first and second cycles, an oxidation reaction corresponding to charging and a reduction reaction peak corresponding to discharging were confirmed in an ultrahigh potential region of 4.6 to 4.9 V. That is, it was confirmed that the composite obtained in Example 1 can be used as a positive electrode active material of a sodium secondary battery and operates at a high potential. Moreover, the above high potential operability was exhibited in a low temperature range of 25 ° C.
  • the obtained composite was Na 4 Mn 3 (PO 4 ) 2 P 2 O 7 . Further, it was confirmed that the obtained composite (Na 4 Mn 3 (PO 4 ) 2 P 2 O 7 ) has a crystal structure belonging to the space group Pn2 1 a shown in FIGS.
  • a coin-type evaluation cell was produced in the same manner as in Example 1 except that diethyl carbonate (DEC) was used instead of dimethyl carbonate (DMC).
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • Example 2 As shown in FIG. 8, after 10 cycles, it is possible to charge and discharge in the same potential region as the first cycle, and to maintain the discharge capacity density (capacity maintenance rate 96%, reversible capacity 18 mAh / g). Was confirmed. That is, it was found that the positive electrode active material of Example 2 can be charged and discharged in a potential region where the electrolyte solution is stable, and is excellent in cycle characteristics.
  • FIG. 10 shows the relationship between the capacity density and the potential in the first cycle and the 50th cycle.
  • FIG. 11 shows the relationship between the number of cycles, the charge capacity density, and the discharge capacity density.
  • FIG. 12 shows a charge curve and a discharge curve at the 10th cycle. -Potential range: 3.0V-4.8V ⁇ Current density: 1700 mA / g ⁇ Temperature: 25 °C
  • Example 3 As shown in FIG. 10, after 50 cycles, it was possible to charge and discharge in the same potential region as in the first cycle, and an increase in reversible capacity was confirmed as compared with Examples 1 and 2. Further, as shown in FIG. 11, it was confirmed that the capacity density could be maintained even after 50 cycles. That is, it was found that the positive electrode active material of Example 3 had a high reversible capacity (about 90 mAh / g) in a potential region where the electrolyte solution was stable, and was excellent in cycle characteristics. Further, as shown in FIG. 12, a reversible capacity of about 82 mAh / g was exhibited even at an extremely high current density of 1700 mAh / g.
  • the positive electrode active material of Example 3 has a high battery capacity because the capacity decrease is small despite the current density being 100 times that of the charge / discharge cycle test at a current density of 17 mA / g. It is considered to be an advantageous material for input / output.
  • the crystal structures of the composites of Examples 4 to 8 obtained by firing were analyzed using an X-ray diffractometer (XRD). The results are shown in Table 2.
  • the composites obtained in Examples 4 to 8 were Na 4 Co 3 (PO 4 ) 2 P 2 O 7 (Example 4) and Na 4 Co 2.7 Mn 0.3 (PO 4 ) 2 P, respectively.
  • 2 O 7 (Example 5) Na 4 Co 2.4 Mn 0.6 (PO 4 ) 2 P 2 O 7 (Example 6), Na 4 Co 2.2 Mn 0.8 (PO 4 ) 2 P It was confirmed that they were 2 O 7 (Example 7) and Na 4 Co 2.1 Mn 0.9 (PO 4 ) 2 P 2 O 7 (Example 8). It was also confirmed that the composites obtained in Examples 4 to 8 had a crystal structure belonging to the space group Pn2 1 a shown in FIGS.
  • Positive electrode active materials Na 4 Co 3.0 (PO 4 ) 2 P 2 O 7 (Example 4), Na 4 Co 2.7 Mn 0.3 (PO 4 ) 2 obtained in Examples 4 to 8 above.
  • P 2 O 7 (Example 5), Na 4 Co 2.4 Mn 0.6 (PO 4 ) 2 P 2 O 7 (Example 6), Na 4 Co 2.2 Mn 0.8 (PO 4 ) 2 P 2 O 7 (Example 7), Na 4 Co 2.1 Mn 0.9 (PO 4 ) 2 P 2 O 7 (Example 8)) were respectively combined with a positive electrode active material, a conductive additive, and a binder.
  • a slurry was prepared by dispersing in N-methyl-2-pyrrolidone (dispersant). Each of the above slurries was applied onto an aluminum foil (current collector), dried and rolled to produce a positive electrode in which the current collector and the positive electrode active material layer were laminated.
  • FIG. 13 shows the relationship between the capacity density at the third cycle and the potential (discharge curve and charge curve).
  • (a) is the result of Example 4
  • (b) is the result of Example 5
  • (c) is the result of Example 6,
  • FIG. 14 shows the discharge curves of the third cycle of Examples 4 to 8.
  • (a) to (e) correspond to (a) to (e) in FIG.
  • FIG. 15 shows the cycle characteristics (relationship between the number of cycles and the discharge capacity density) of Examples 4 to 8.
  • the crystal structures of the composites of Examples 9 to 12 obtained by firing were analyzed by an X-ray diffractometer (XRD). The results are shown in Table 4.
  • the composites obtained in Examples 9 to 12 were respectively Na 4 Co 3 (PO 4 ) 2 P 2 O 7 (Example 9), Na 4 Co 2.4 Mn 0.3 Ni 0.3 (PO 4) 2 P 2 O 7 (example 10), Na 4 Co 1.0 Mn 1.0 Ni 1.0 (PO 4) 2 P 2 O 7 ( example 11), Na 4 Co 0.6 Mn 1 .2 Mn 1.2 (PO 4 ) 2 P 2 O 7 (Example 12) was confirmed. It was also confirmed that the composites obtained in Examples 9 to 12 had a crystal structure belonging to the space group Pn2 1 a shown in FIGS.
  • Positive electrode active materials Na 4 Co 3.0 (PO 4 ) 2 P 2 O 7 (Example 9), Na 4 Co 2.4 Mn 0.3 Ni 0.3 ( PO 4 ) 2 P 2 O 7 (Example 10), Na 4 Co 1.0 Mn 1.0 Ni 1.0 (PO 4 ) 2 P 2 O 7 (Example 11), Na 4 Co 0.6 Mn 1.2 Mn 1.2 (PO 4 ) 2 P 2 O 7 (Example 12)
  • FIG. 16 shows the relationship between the capacity density and potential at the third cycle (discharge curve and charge curve).
  • (a) is the result of Example 9
  • (b) is the result of Example 10
  • (c) is the result of Example 11
  • (d) is the result of Example 12.
  • all of Examples 9 to 11 showed a very excellent discharge capacity of 90 to 95 mAh / g in a high potential region of 3.0 to 4.8 V.
  • Example 12 exhibited a discharge capacity of 35 mAh / g in a high potential region of 3.0 to 4.8V.
  • the Co 2+ site of Na 4 Co 3.0 (PO 4 ) 2 P 2 O 7 is represented by the general formula Na 4 Co (3-bc) Mn b Ni c (PO 4 ) 2 (P 2 O 7 Example 10 and 11 in which 0.3 ⁇ b ⁇ 1.0 and 0.3 ⁇ c ⁇ 1.0 were substituted with Mn 2+ and Ni 2+ in Example 9 (Na 4 Co 3) 0.0 (PO 4 ) 2 P 2 O 7 ), both capacitance characteristics and voltage characteristics were improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Materials Engineering (AREA)

Abstract

作動電位が高く、高電位で充放電が可能なナトリウム電池用正極活物質及びその製造方法を提供する。 下記一般式(1)で表わされることを特徴とする、ナトリウム電池用の正極活物質及びその製造方法。 一般式(1) Na(AO(P (式(1)中、Mは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種であり、Aは、Al、Si、P、S、Ti、V及びWよりなる群から選ばれる少なくとも1種であり、xは4≧x≧2を満たし、yは4≧y≧1を満たし、zは4≧z≧0を満たし、wは1≧w≧0を満たし、z及びwの少なくとも一方は1以上である。)

Description

ナトリウム電池用正極活物質及びその製造方法
 本発明は、ナトリウム電池用正極活物質及びその製造方法に関する。
 近年、パソコン、ビデオカメラ、携帯電話等の情報関連機器や通信機器等の急速な普及に伴い、その電源として利用される電池の開発が重要視されている。また、自動車産業界においても、電気自動車やハイブリッド自動車用の高出力且つ高容量の電池の開発が進められている。各種電池の中でも、エネルギー密度と出力が高いことから、リチウム電池が注目されている。
 リチウム電池において、一般的には、正極活物質として、ニッケル酸リチウムやコバルト酸リチウム等の層状構造を有するリチウム金属複合酸化物が用いられ、負極活物質としては、リチウムイオンの吸蔵・放出が可能な炭素材料、リチウム金属、リチウム合金等が用いられている。また、正極と負極との間に介在する電解質には、リチウム塩を溶解させた電解液や、リチウムを含有する固体電解質等が用いられている。
 リチウム電池は、上記したようにエネルギー密度や出力に優れる一方、リチウム電池の需要拡大に伴いリチウムの価格が上昇していることや、リチウムの埋蔵量が限られていること等が、量産や大型化のボトルネックとなっている。
 そこで、資源埋蔵量が豊富で低コストであるナトリウムを、リチウムの代わりに用いたナトリム電池の研究も進められている(例えば、特許文献1、非特許文献1~4)。
 例えば、特許文献1には、MaMb(MaはNa、Li、Ca、又はMgを表わし、Mbは4価以上で安定に存在する遷移金属を表わし、0≦x≦4、0.5≦y≦3、6≦z≦14である)で表わされる非水電解質二次電池用正極活物質が開示されている。特許文献1において、実施例で実際に作製、評価されているのは、MoPである。
特開2004-158348号公報 特開2005-183395号公報
Abstract #389、218th ECS Meeting、2010 The Electrochemical Society LiBD-5 2011-Electrode materials-Arcachon、 France 12-17 Juin 2011 Electrochemistry Communications、12(2010)、355-358 NATURE MATERIALS DOI;10.1038/NMAT2920 リチウム二次電池 小久見善八編著 オーム社 第77頁
 しかしながら、特許文献1の実施例で作製、評価されているMoPをナトリウム電池の正極活物質として用いた場合、作動電位が低いという問題がある。また、非特許文献1~4に記載されているように、現在一般的なナトリウム電池用の正極活物質は、作動電位が高くても3.5V程度である。
 尚、ナトリウム電池用の正極活物質ではないが、リチウム電池の活物質として、特許文献2には、LiNi(PO(P)が記載されており、非特許文献5には、LiCoOが4V程度の電位を示すことが記載されている。
 また、特許文献1において実際に作製、評価されているMoPは、Naを含有していないため、ナトリウム電池の正極活物質として用いる場合、ナトリウム電池の作動は、Naイオンの挿入(放電反応)から開始する必要がある。そのため、組み合わせる負極活物質としては、予めNaを含有した活物質を用いる必要がある。しかしながら、低電位域で作動し、充分な起電力を確保できるNa含有負極活物質は現時点で報告はなく、実用化が難しいという問題もある。
 本発明は上記実情を鑑みて成し遂げられたものであり、本発明の目的は、作動電位が高く、高電位で充放電が可能なナトリウム電池用正極活物質及びその製造方法を提供することである。
 本発明のナトリウム電池用正極活物質は、下記一般式(1)で表わされることを特徴とする。
 一般式(1)
  Na(AO(P
 (式(1)中、Mは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種であり、Aは、Al、Si、P、S、Ti、V及びWよりなる群から選ばれる少なくとも1種であり、xは4≧x≧2を満たし、yは4≧y≧1を満たし、zは4≧z≧0を満たし、wは1≧w≧0を満たし、z及びwの少なくとも一方は1以上である。)
 本発明のナトリウム電池用正極活物質は、作動電位が高く、ナトリウム電池の高エネルギー密度化を実現するものである。
 前記式(1)中、前記Mは、充電前において2価であることが好ましい。充電時に3価以上の高酸化状態となることで、高電位で作動可能になるであるからである。
 本発明のナトリウム電池用正極活物質は、空間群Pn2aに帰属する結晶構造を有することが好ましい。空間群Pn2aに帰属する結晶構造を有する場合、結晶構造内のNaイオンの全てが、a軸、b軸、及びc軸のいずれかの方向に配列し、Naイオンの伝導に非常に有利であるためである。
 本発明のナトリウム電池用正極活物質の好ましい具体的な形態として、前記式(1)中、前記Mが、Mn、Co、及びNiより成る群から選ばれる少なくとも1種であり、その一部が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる、該Mと異なる少なくとも1種で置換されていてもよいものが挙げられる。このような形態のナトリウム電池用正極活物質は、空間群Pn2aに帰属する結晶構造をとりやすく、Naイオン伝導性に優れる。
 本発明のナトリウム電池用正極活物質のより好ましい具体的な形態として、前記式(1)中、前記Mが、Niであり、Niの一部が、Ti、V、Cr、Mn、Fe、Co、Cu及びZnよりなる群から選ばれる少なくとも1種で置換されていてもよいものが挙げられる。
 また、本発明のナトリウム電池用正極活物質の好ましい具体的な形態として、前記式(1)中、前記Aが、Si、P及びSより成る群から選ばれる少なくとも1種であり、その一部が、Al、Si、P、S、Ti、V及びWより成る群から選ばれる、該Aと異なる少なくとも1種で置換されていてもよいものが挙げられる。このような形態のナトリウム電池用正極活物質は、空間群Pn2aに帰属する結晶構造をとりやすく、Naイオン伝導性に優れる。
 本発明のナトリウム電池用正極活物質のより好ましい具体的な形態として、前記式(1)中、前記Aは、Pであり、Pの一部が、Al、Si、S、Ti、V及びWよりなる群から選ばれる少なくとも1種で置換されていてもよいものが挙げられる。
 本発明のナトリウム電池用正極活物質の具体例としては、例えば、一般式NaNi(PO(P)で表わされる化合物、一般式NaMn(PO(P)で表わされる化合物、一般式NaCo(PO(P)で表わされる化合物、一般式NaCo(3-a)Mn(PO(P)(aは、0.3≦a≦0.8を満たす)で表わされる化合物、一般式NaCo(3-b-c)MnNi(PO(P)(bは、0.3≦b≦1.0を満たし、cは0.3≦c≦1.0を満たす)で表わされる化合物等が挙げられる。
 本発明のナトリウム電池用正極活物質の製造方法は、上記本発明のナトリウム電池用正極活物質の製造方法であって、
 少なくとも、Na含有化合物、前記Mを含むM含有化合物、前記Aを含むA含有化合物、及び、P含有化合物を含む原料混合物を、大気雰囲気下、150~500℃で焼成する仮焼成工程と、
 前記仮焼成後、得られた仮焼成物を、大気雰囲気下、500~800℃で焼成する本焼成工程と、
を含むことを特徴とするものである。
 本発明のナトリウム電池用正極活物質の製造方法は、前記仮焼成工程の前に、前記Na含有化合物、前記M含有化合物、前記A含有化合物、及び、前記P含有化合物を粉砕する粉砕工程を含んでいてもよい。
 本発明によれば、作動電位が高く、高電位で充放電が可能なナトリウム電池用正極活物質を提供することができる。従って、本発明のナトリウム電池用正極活物質を用いることによって、ナトリウム電池の高エネルギー密度化が可能である。
空間群Pn2aの結晶構造を、a軸方向から見た図である。 空間群Pn2aの結晶構造を、b軸方向から見た図である。 空間群Pn2aの結晶構造を、c軸方向から見た図である。 ナトリウム電池の一形態例を示す断面模式図である。 実施例1で合成した正極活物質のXRDパターンである。 実施例1で合成した正極活物質を用いた正極について、Na金属を対極としたCV測定の結果を示すものである。 実施例2で合成した正極活物質のXRDパターンである。 実施例2で合成した正極活物質を用いた正極の充放電特性(容量密度と電位の関係)を示すものである。 実施例3で合成した正極活物質のXRDパターンである。 実施例3で合成した正極活物質を用いた正極の充放電特性(容量密度と電位との関係)を示すものである。 実施例3で合成した正極活物質を用いた正極のサイクル特性(サイクル数と充放電容量密度との関係)を示すものである。 実施例3で合成した正極活物質を用いた正極の充放電特性(容量密度と電位との関係)を示すものである。 実施例4~8で合成した正極活物質を用いた正極の充放電特性評価の結果を示すものである。 実施例4~8で合成した正極活物質を用いた正極の放電曲線を示すものである。 実施例4~8で合成した正極活物質を用いた正極のサイクル特性を示すものである。 実施例9~12で合成した正極活物質を用いた正極の充放電特性評価の結果を示すものである。
 以下、本発明のナトリウム電池用正極活物質(以下、単に正極活物質ということがある)及びその製造方法について詳しく説明する。
[ナトリウム電池用正極活物質]
 本発明のナトリウム電池用正極活物質は、下記一般式(1)で表わされることを特徴とするものである。
 一般式(1)
  Na(AO(P
 (式(1)中、Mは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種であり、Aは、Al、Si、P、S、Ti、V及びWよりなる群から選ばれる少なくとも1種であり、xは4≧x≧2を満たし、yは4≧y≧1を満たし、zは4≧z≧0を満たし、wは1≧w≧0を満たし、z及びwの少なくとも一方は1以上である。)
 上述したように、従来の一般的なナトリウム電池用の正極活物質は、作動電位が3.5V以下程度と低く、充分なエネルギー密度を有するナトリウム電池は実現されていない。
 また、リチウム電池用活物質のLiをNaに置き換えた場合、その作動電位は大きく低下するという傾向がある。例えば、上記非特許文献5に記載されているように、LiCoOが4V程度の電位を示すのに対して、上記非特許文献4に記載されているように、Na(x)CoOの平均電位は2.9V程度であり、LiCoOに比べて大きく低下する。
 また、従来、NaイオンがLiイオンと比較してイオン半径が大きいために、Li含有活物質のLiをNaに置換した場合、Naイオンが動きにくくなると考えられてきた。
 以上のような理由から、リチウム電池用の活物質において、単にリチウムをナトリウムに置換しても、有用な高電位作動型のナトリウム電池用活物質は得られないというのが一般的な知見であった。
 しかしながら、本発明者が鋭意検討したところ、NaNi(PO(P)で表わされる化合物が、ナトリウム電池の正極活物質として使用可能であり、さらに、4.6~4.9Vのような超高電位域で作動することを見い出した。しかも、4.6~4.9Vという電位域は、正極活物質と組み合わせて用いる電解液の分解が抑制できる電位域であるため、本発明の正極活物質を用いることで、長期間にわたって安定した電池特性を発現するナトリウム電池を得ることができる。また、本発明者は、NaMn(PO(P)で表わされる化合物、NaCo(PO(P)で表わされる化合物、NaCo(3-a)Mn(PO(P)で表わされる化合物、NaCo(3-b-c)MnNi(PO(P)で表わされる化合物も、それぞれ、ナトリウム電池の正極活物質として使用可能であり、4Vを超える高電位域で作動することを見出した。
 その上、本発明の正極活物質は、25℃という比較的低温域においても、高電位作動性を発現することができる。
 上記一般式(1)Na(AO(Pで表わされる化合物は、上記NaNi(PO(P)等と同様、ナトリウム電池の正極活物質として、高電位域で作動することができる。その理由は次のように考えられる。
 すなわち、一般式(1)において、Mは、電気化学的に活性な2価以上の遷移金属であり、Ni又はNiに近いイオン半径を有するものである。
 また、一般式(1)において、Aは、P、又は、Pと同様、四面体構造をとりやすいものである。ここで四面体構造とは、4つの酸素原子を頂点とする四面体の空隙に、これら4つの酸素原子と共有結合した1つのAが入った構造である。
 また、ポリアニオン部である(AO)及び(P)については、正極活物質における(AO)の組成比を表わすz及び(P)の組成比を表わすwの少なくとも一方が1以上であれば、(AO)及び(P)の少なくとも一方による、M-O結合に対するinductive効果により、得られる正極活物質は高電位域で作動すると考えられる。inductive効果とは、(AO)を構成するA-O結合及び(P)を構成するP-O結合の高い共有結合性により、M-O結合の電子がA-O結合及びP-O結合側に引っ張られ、M-O間の共有結合性が低下し、混性軌道のエネルギーギャップが小さくなる結果、Mの酸化還元準位が下がり、ナトリウムとのエネルギー差が大きくなって対ナトリウムの酸化還元電位が高くなる、というものである。
 以下、本発明の正極活物質の構成について、詳しく説明する。
 本発明の正極活物質において、前記Mは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種の金属種であればよく、中でも、充電前の状態において、2価であることが好ましい。Mが、充電前の状態において2価である金属種の場合、充電時に3価以上の高酸化状態となることで、高電位で作動可能であるからである。
 また、前記Mのうち、特に、Mn、Co、及びNiより成る群から選ばれる少なくとも1種が好ましい。Mn、Co及びNiは、充電前の状態において2価であり、また、Mn及びCoは、Niと同様の結晶構造を形成しうるからである。尚、上記一般式(1)Na(AO(Pにおいて、前記Mが、Ni、Mn又はCoのいずれかであり、その他の構成(x、y、z、及びwの値、並びにA)が同じである場合、同じ結晶構造を有することが確認された。
 尚、これらMn、Co、及びNiは、その一部が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる、該M(すなわち、Mn、Co、及びNiから選ばれる少なくとも1種)と異なる少なくとも1種で置換されていてもよい。
 上記式(1)において前記MがNiである場合、高電子伝導性を有する正極活物質を得ることができる。これは、レドックス元素、すなわち、電子の授受を行う元素がNiである場合、充電時にNaイオンの脱離に伴い、一般的なオリビン型の結晶構造を有するNi複合酸化物では、Niイオンの価数が2価から3価に変化するのに対して、本発明の正極活物質では、Niイオンの価数が2価から3価より大きな価数(例えば、NaNi(PO(P)の場合、約3.3価)に変化し、より多くの電子が移動するためと考えられる。尚、Niは、Ti、V、Cr、Mn、Fe、Co、Cu及びZnよりなる群から選ばれる少なくとも1種で置換されていてもよい。
 また、上記式(1)において前記MがMnである場合、M=Niの場合と比較して、充放電時における結晶構造の可逆性と安定性が高く、また、作動電位が比較的低い正極活物質を得ることができる。作動電位が比較的低いことによって、電解液の分解劣化をより抑制することができる。このように、前記MがMnである場合、M=Niの場合と比較して、結晶構造の可逆性と安定性の向上及び電解液の劣化抑制により、高いサイクル特性を発現しうる。尚、Mnは、その一部が、Ti、V、Cr、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種で置換されていてもよい。
 また、上記式(1)において前記MがCoである場合、M=Niの場合と比較して、充放電時における結晶構造の可逆性と安定性が高く、また、作動電位が比較的低い正極活物質を得ることができる。作動電位が比較的低いことによって、電解液の分解劣化をより抑制することができる。しかも、前記MがCoである場合、結晶構造の可逆性と安定性の向上及び電解液の劣化抑制の効果が加わり、正極活物質は大きな可逆容量を示しうる。このように、前記MがCoである場合、M=Niの場合と比較して、優れたサイクル特性及び容量特性を発現しうる。
 尚、Coは、その一部が、Ti、V、Cr、Mn、Fe、Ni、Cu及びZnよりなる群から選ばれる、少なくとも1種で置換されていてもよい。
 上記式(1)において前記MがCoである場合にCoの一部をMnで置換した場合、前記MがCoのみである場合と比較して、さらに優れた容量特性を発現しうる。これは、Co2+のサイトの一部をMn2+で置換することによって、置換されたMn2+がMn2+/3+だけでなく、Mn3+/4+まで電荷補償できるためと考えられる。尚、Co及びMnは、その一部が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる、少なくとも1種で置換されていてもよい。
 また、上記式(1)において前記MがCoである場合にCoの一部をMn及びNiで置換した場合、前記Mが、その一部がMnで置換されたCoである場合と比較して、さらに高い作動電位を示しうる。これは、置換されたMn2+がMn2+/3+だけでなく、Mn3+/4+まで電荷補償できると共に、Coと比較して高電位領域で電荷補償(Ni2+→Ni3+)が進行するNiでCoを置換するためと考えられる。尚、Co、Mn及びNiは、その一部が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる、少なくとも1種で置換されていてもよい。
 本発明の正極活物質において、前記Aは、Al、Si、P、S、Ti、V及びWよりなる群から選ばれる少なくとも1種であればよいが、Si、P及びSより成る群から選ばれる少なくとも1種であることが好ましい。Si、P及びSは、特に4面体構造を形成しやすく、Si及びSは、Pと同様の結晶構造を形成しうるからである。中でも、前記AはPであることが好ましい。尚、これらSi、P及びSは、その一部が、Al、Si、P、S、Ti、V及びWより成る群から選ばれる、該A(すなわち、Si、P及びSから選ばれる少なくとも1種)と異なる少なくとも1種で置換されていてもよい。
 式(1)において、xは4≧x≧2を満たし、yは4≧y≧1を満たし、zは4≧z≧0を満たし、wは1≧w≧0を満たし、z及びwの少なくとも一方は1以上であればよい。
 z及びwが共に1以上の場合、ポリアニオン部が、AO四面体と、AO四面体と1つの酸素を共有したPと、を含むため、M-O結合に対するinductive効果が高くなり、その結果、より高電位な正極活物質が得られるため好ましい。
 本発明において、特に好ましい正極活物質の具体的なものとしては、NaNi(PO(P)で表わされる化合物が挙げられる。NaNi(PO(P)は、レドックス元素としてNiを含み、また、ポリアニオン部として、(PO)及び(P)を有していることから、上記したような高い電子伝導性を有すると共に、高いinductive効果による高電位作動性を有している。
 さらに、NaNi(PO(P)は、空間群Pn2aに帰属する結晶構造を有している。図1~3に空間群Pn2aに帰属する結晶構造(NaNi(PO(P))を、a軸方向から見た図(図1)、b軸方向から見た図(図2)、及びc軸方向から見た図(図3)を示す。尚、図1~3では、NaNi(PO(P)を例に、空間群Pn2aに帰属する結晶構造を示したが、図1~3において、Niを上記Mのその他の金属種(例えば、CoやMn)に置き換えることによって、空間群Pn2aに帰属する結晶構造を有するその他の正極活物質の結晶構造が示される。
 図1~3からわかるように、空間群Pn2aに帰属する結晶構造において、結晶構造中の全てのNaイオンが、a軸、b軸及びc軸のいずれかの方向に配列しており、Naイオンの移動性が非常に高い。すなわち、空間群Pn2aに帰属する結晶構造は、Naイオンの伝導に非常に有利であり、Naイオンの挿入・脱離がスムーズに進行する。
 以上のような理由から、本発明の正極活物質は、空間群Pn2aに帰属する結晶構造を有することが好ましい。
 本発明において、特に好ましい正極活物質の具体的なものとしては、さらに、一般式NaMn(PO(P)で表わされる化合物、一般式NaCo(PO(P)で表わされる化合物、一般式NaCo(3-a)Mn(PO(P)で表わされる化合物、及び一般式NaCo(3-b-c)MnNi(PO(P)で表わされる化合物が挙げられる。これら化合物は、いずれも、図1~図3に示される空間群Pn2aに帰属する結晶構造を有している。
 レドックス元素(前記M)としてMnを含むNaMn(PO(P)は、既述したように、結晶構造の可逆性と安定性の向上及び電解液の劣化抑制により、高いサイクル特性を発現しうる。
 また、レドックス元素(前記M)としてCoを含む一般式NaCo(PO(P)は、既述したように、結晶構造の可逆性と安定性の向上、電解液の劣化抑制、及び可逆容量増大により、優れたサイクル特性及び容量特性を発現しうる。
 また、レドックス元素(前記M)としてCoを含み、該Coの一部がMnで置換されている、NaCo(3-a)Mn(PO(P)は、既述したように、Mnによる電荷補償によって、NaCo(PO(P)と比較して、さらに優れた容量特性を発現しうる。
 一般式NaCo(3-a)Mn(PO(P)において、Mnの置換量を表わすaは、3未満の数であればよいが、0.01≦a≦0.8の範囲内であることが好ましく、特に0.3≦a≦0.8の範囲であることが好ましく、中でもa=0.6であることが好ましい。
 また、レドックス元素(前記M)としてCoを含み、該Coの一部がMn及びNiで置換されている、NaCo(3-b-c)MnNi(PO(P)は、既述したように、Mnによる電荷補償効果に加えて、Niによる高い電位領域での電荷補償効果によって、NaCo(3-a)Mn(PO(P)と比較して、高い作動電位を発現しうる。
 一般式NaCo(3-b-c)MnNi(PO(P)において、Mnの置換量を表わすb及びNiの置換量を表わすcは、その和(b+c)が3未満の数であればよいが、0.01≦b≦1.0且つ0.01≦c≦1.0の範囲内であることが好ましく、特に0.3≦b≦1.0且つ0.3≦c≦1.0の範囲であることが好ましい。
[正極活物質の製造方法]
 本発明の正極活物質を製造する方法は特に限定されないが、好ましい方法として、以下に説明する本発明の正極活物質の製造方法が挙げられる。
 本発明のナトリウム電池用正極活物質の製造方法は、
 上記本発明のナトリウム電池用正極活物質の製造方法であって、
 少なくとも、Na含有化合物、前記Mを含むM含有化合物、前記Aを含むA含有化合物、及び、P含有化合物を含む原料混合物を、大気雰囲気下、150~500℃で焼成する仮焼成工程と、
 前記仮焼成後、得られた仮焼成物を、大気雰囲気下、500~800℃で焼成する本焼成工程と、
を含むことを特徴とするものである。
 上記のように、原料混合物を、まず、本焼成工程よりも低い150~500℃で仮焼成した後、500~800℃で本焼成することによって、反応が均一に進行し、単相の正極活物質を合成することができる。
 以下、本発明の正極活物質の製造方法の各工程について説明する。
 (仮焼成工程)
 仮焼成工程は、Na含有化合物、M含有化合物、A含有化合物、及び、P含有化合物を少なくとも含む原料混合物を、大気雰囲気下、150~500℃で焼成する工程である。
 Na含有化合物、M含有化合物、A含有化合物、及びP含有化合物は、正極活物質Na(AO(Pの原料であり、それぞれ、Na源、M源、A源及びP源となるものである。
 Na含有化合物、M含有化合物、A含有化合物及びP含有化合物は特に限定されず、適宜選択することができる。各化合物は、1種を単独で用いてもよいし、或いは、2種以上を組み合わせて用いてもよい。また、1つの化合物が、Na、M、A及びPのうちの2種以上を含むものであってもよい。また、MとAが共通する原子を含む場合には、M含有化合物とA含有化合物とが同じ化合物であってもよいし、AがPの場合には、A含有化合物とP含有化合物とが同じ化合物であってもよい。
 Na源であるNa含有化合物としては、例えば、NaCO、NaO、Na、NaPO、Na及びCHCOONa等が挙げられる。
 M源であるM含有化合物としては、例えば、Ti含有化合物として、TiO、及びTi等、V含有化合物として、V、V、及びNHVO等、Cr含有化合物として、Cr、及びCr(NO等、Mn含有化合物として、MnCO、及び(CHCOO)Mn等、Fe含有化合物として、FeO、Fe、及びFe(NO等、Co含有化合物として、CoCO、(CHCOO)Co、CoO、及びCo等、Ni含有化合物として、(CHCOO)Ni、NiCO、及びNiO等、Cu含有化合物として、(CHCOO)Cu、及びCuO等、Zn含有化合物として、(CHCOO)Zn、及び、ZnO等が挙げられる。
 A源であるA含有化合物としては、例えば、Al含有化合物として、Al(NO、Al、及びAl(OH)等、Si含有化合物として、SiO、及びSiO等、P含有化合物として、NHPO、(NHHPO、HPO、Na及びNaPO等、S含有化合物として、(NHSO、NaSO及びHSO等、Ti含有化合物として、TiO、及びTi等、V含有化合物として、V、V、及びNHVO等、W含有化合物として、WO、及びNaWO等が挙げられる。
 P源であるP含有化合物として、NHPO、(NHHPO、HPO、Na及びNaPO等が挙げられる。
 原料混合物中、上記Na含有化合物、M含有化合物、A含有化合物及びP含有化合物の混合割合は、合成するNa(AO(Pにおけるx、y、z、及びwに応じて、適宜設定すればよい。典型的には、原料混合物中におけるNa、M、A及びPの割合(mol比)が、Na:M:A:P=x:y:z:2wとなるように、各化合物を混合すればよい。
 原料混合物の調製方法は特に限定されず、任意の混合方法、攪拌方法等を採用することができる。
 原料混合物中、各化合物の粒子のサイズは特に限定されないが、反応を均一に進行させるためには、粒子間の接触面積が大きい方が好ましいことから、各化合物を仮焼成前に粉砕しておくことが好ましい。すなわち、仮焼成前に、原料混合物中のNa含有化合物、M含有化合物、A含有化合物及びP含有化合物を粉砕する粉砕工程を設けることが好ましい。粉砕工程において、化合物の粉砕は、複数の化合物を同時に行ってもよいし、各化合物ごとに行ってもよい。また、粉砕工程における粉砕方法は特に限定されず、任意の方法を採用することができ、原料混合物の混合や攪拌と粉砕とを兼ねる方法を採用することもできる。例えば、ボールミル、ビーズミル等は、原料混合物を粉砕しながら、混合、攪拌することもできる。
 仮焼成の温度は、本焼成工程よりも低く、150~500℃の範囲内であればよいが、好ましくは180~450℃、より好ましくは250~350℃である。仮焼成時間は、特に限定されず、適宜設定すればよいが、例えば、1~5時間程度とすることができる。
 仮焼成工程の雰囲気である大気雰囲気とは、酸素含有ガス雰囲気を意味する。
 (本焼成工程)
 本焼成工程は、仮焼成工程で得られた仮焼成物を、大気雰囲気下、500~800℃で焼成する工程である。
 本焼成工程における焼成温度は、好ましくは550~750℃である。本焼成時間は、特に限定されず、適宜設定すればよいが、例えば、1~30時間程度とすることができる。
 本焼成工程の雰囲気である大気雰囲気とは、仮焼成工程の大気雰囲気と同様である。
(その他製造方法)
 尚、本発明の正極活物質の製造方法は、上記方法に限定されない。例えば、以下の方法によって製造することも可能である。すなわち、まず、Na源であるNa含有化合物、M源であるM含有化合物、A源であるA含有化合物、及び、P源であるP含有化合物を、ゲル化剤と共に、酸性溶液中に溶解、加熱し、ゲルを調製する。次に、得られたゲルを、大気雰囲気下、焼成する方法である。
 本方法において、Na含有化合物、M含有化合物、A含有化合物、及び、P含有化合物としては、酸性溶液に溶解可能であればよく、適宜選択することができる。各化合物は、1種を単独で用いてもよいし、或いは、2種以上を組み合わせて用いてもよい。また、1つの化合物が、Na、M、A及びPのうちの2種以上を含むものであってもよい。また、MとAが共通する原子を含む場合には、M含有化合物とA含有化合物とが同じ化合物であってもよいし、AがPの場合には、A含有化合物とP含有化合物とが同じ化合物であってもよい。
 具体的には、Na含有化合物として、例えば、Na、CHCOONa、NaCO、NaO、及びNa等が挙げられる。
 M含有化合物としては、例えば、Ti含有化合物として、Ti(NO、TiO、及びTi等、V含有化合物として、V及びV等、Cr含有化合物として、Cr(NO等、Mn含有化合物として、(CHCOO)Mn、及びMnCO等、Fe含有化合物として、Fe(NO、FeC、及び(CHCOO)Fe等、Co含有化合物として、(CHCOO)Co、CoCO、Co、及びCoO等、Ni含有化合物として、(CHCOO)Ni、NiO、及びNiCO等、Cu含有化合物として、(CHCOO)Cu等、Zn含有化合物として、(CHCOO)Zn等が挙げられる。
 A含有化合物としては、例えば、Al含有化合物として、Al(NO等、Si含有化合物として、Si(OCHCH等、P含有化合物として、NHPO、(NHHPO、及びHPO等、S含有化合物として、HSO及びNaSO等、Ti含有化合物として、Ti(NO、TiO、及びTi等、V含有化合物として、V、及びV等、W含有化合物として、WO、及びNaWO等が挙げられる。
 P含有化合物として、例えば、NHPO、(NHHPO、及びHPO等が挙げられる。
 上記Na含有化合物、M含有化合物、A含有化合物及びP含有化合物の混合割合は、合成するNa(AO(Pにおけるx、y、z、及びwに応じて、適宜設定すればよい。典型的には、原料混合物中におけるNa、M、A及びPの割合(mol比)が、Na:M:A:P=x:y:z:2wとなるように、各化合物を混合すればよい。
 ゲル化剤としては、例えば、グリコール酸等が挙げられる。また、酸性溶液としては、例えば、硝酸水溶液等が挙げられる。
 ゲル調製時の上記加熱温度は、上記各化合物を酸性溶液に溶解させ、ゲルを調製することができればよく、例えば、60~120℃とすることができる。
 ゲルの焼成温度は、例えば、500~800℃とすることができ、好ましくは550~750℃である。ゲル焼成時の大気雰囲気とは、上記仮焼成工程の大気雰囲気と同様である。
[ナトリウム電池]
 本発明により提供される正極活物質は、ナトリウム電池の正極活物質として好適に使用することができる。ナトリウム電池は一次電池でも二次電池でもよい。以下、ナトリウム二次電池を例に、本発明により提供される正極活物質を用いたナトリウム電池について説明する。
 図4にナトリウム二次電池の一形態例を示す断面模式図を示す。図4に示すように、ナトリウム二次電池8は、通常、負極1と正極2との間に電解質層3が介在するように配置された構造を有している。負極1は、負極活物質を含有する負極活物質層4と、負極活物質層4の集電を行う負極集電体5を有している。正極2は、正極活物質を含有する正極活物質層6と、正極活物質層6の集電を行う正極集電体7を有している。
 以下、各構成について説明する。
 負極は、ナトリウムイオンを放出・取り込み可能な負極活物質を含有する。負極は、通常、負極活物質を少なくとも含む負極活物質層を有し、必要に応じて、負極活物質層の集電を行う負極集電体をさらに備える。
 負極活物質としては、例えば、ハードカーボン、Na金属、スズ等が挙げられる。
 負極活物質層は、負極活物質のみを含有するものであってもよいが、負極活物質の他に結着剤、導電性材料、電解質等を含有するものであってもよい。例えば、負極活物質が板状、箔状等である場合は、負極活物質のみを含有する負極層とすることができる。一方、負極活物質が粉末状である場合は、負極活物質に加えて結着剤を含有する負極層とすることができる。
 結着剤としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、スチレンブタジエンゴム(SBR)等が挙げられる。導電性材料としては、例えば、カーボンブラック、活性炭、カーボン炭素繊維(例えばカーボンナノチューブ、カーボンナノファイバー等)、グラファイト等の炭素材料等を挙げることができる。
 正極は、ナトリウムイオンを放出・取り込み可能な正極活物質を含有する。正極は、通常、正極活物質を少なくとも含む正極活物質層を有し、必要に応じて、正極活物質層の集電を行う正極集電体をさらに備える。
 正極活物質として、上記本発明の正極活物質や本発明の製造方法により製造された正極活物質を用いることができる。
 負極活物質層と同様、正極活物質層は、正極活物質のみを含有するものであってもよいが、正極活物質の他に導電性材料や、結着剤、電解質、電極触媒等を含有するものであってもよい。正極活物質における導電性材料、結着剤については、負極活物質層と同様の材料を用いることができるため、ここでの説明は省略する。
 負極活物質層及び正極活物質層は、例えば、各材料を含むスラリーを、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の任意の塗布方法により塗布、乾燥し、必要に応じて、圧延することで電極活物質層を形成することができる。
 正極集電体及び負極集電体としては、所望の電子伝導性を有し、且つ、電池内環境下においてナトリウムイオンと合金化反応を起こさない材料であれば、その材料、構造や形状に特に限定はない。
 正極集電体の材料としては、例えば、ステンレス、ニッケル、アルミニウム、鉄、チタン、銅等の金属材料、カーボンファイバー、カーボンペーパー等のカーボン材料、窒化チタン等の高電子伝導性セラミックス材料等が挙げられる。電池ケースが正極集電体としての機能を兼ね備えていてもよい。
 負極集電体の材料としては、銅、ステンレス、ニッケル、アルミニウム等が挙げられる。電池ケースが負極集電体としての機能を有していてもよい。
 正極集電体及び負極集電体の形状としては、例えば、板状、箔状、メッシュ状等が挙げられ、中でもメッシュ状が好ましい。
 電解質層は、正極と負極との間のナトリウムイオンの伝導を可能とする電解質を少なくとも含有する。
 電解質としては、ナトリウムイオン伝導性を有していればよく、例えば、電解液、電解液をポリマー等を用いてゲル化したゲル状電解質、固体電解質等が挙げられる。
 ナトリウムイオン伝導性を有する電解液としては、例えば、ナトリウム塩を、水系溶媒又は非水溶媒に溶解した電解液が挙げられる。
 非水溶媒としては、特に限定されず、例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、及びフルオロエチレンカーボネート(FEC)等の環状カーボネート、γ-ブチロラクトン(GBL)等の環状エステル、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、及びエチルメチルカーボネート(EMC)等の鎖状カーボネート等が挙げられる。これら非水溶媒は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、鎖状飽和炭化水素化合物の末端にCN基が結合したニトリル系化合物を、非水溶媒に混合して用いてもよい。ニトリル系化合物を非水溶媒系電解液に添加することで、本発明のナトリウム電池用正極活物質が作動するような高電位領域においても、分解しない安定な非水溶媒系電解液を得ることができる。
 ナトリウム塩としては、特に限定されず、例えば、NaPF、NaBF、NaClO、NaCFSO、(CFSONNa、NaN(FSO)、NaC(CFSO等が挙げられる。これらナトリウム塩は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。高電位領域においても安定なNaPFが特に好ましい。
 非水電解液において、ナトリウム塩の濃度は特に限定されない。
 非水系電解液は、ポリマーを添加してゲル化して用いることもできる。非水電解液のゲル化の方法としては、例えば、非水系電解液に、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)、ポリビニリデンフルオライド(PVdF)またはポリメチルメタクリレート(PMMA)等のポリマーを添加する方法が挙げられる。
 電解質として電解液を用いる場合、正極と負極との間に、絶縁性多孔質体であるセパレータを配置し、該セパレータに電解液を含浸させることで、正極と負極との絶縁を確保することができる。セパレータとしては、例えばポリエチレン多孔膜、ポリプロピレン多孔膜等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 負極、電解質層及び正極を収容する電池ケースとしては、例えば、コイン型、平板型、円筒型、ラミネート型等の一般的な形状を有するものを用いることができる。
 正極、電解質層、負極の順番で配置されている積層体を、繰り返し何層も重ねる構造を取る電池の場合には、安全性の観点から、正極および負極の間に、絶縁性材料からなるセパレータを備えることができる。このようなセパレータとしては、例えばポリエチレン多孔膜、ポリプロピレン多孔膜等の多孔膜;および樹脂不織布、ガラス繊維不織布等の不織布等を挙げることができる。
 また、各電極の集電体には、それぞれ、外部との接続部となる端子を設けることができる。
[実施例1]
(ナトリウム電池用正極活物質の合成)
 NaCO(Na含有化合物)、(CHCOO)Ni(Ni含有化合物)、及びNHPO(P含有化合物)を、Na:Ni:P=4:3:4(mol比)となるように混合した。混合物をボールミルを用いて粉砕した後、大気雰囲気下、300℃で仮焼成を行い、さらに、700℃、15時間で本焼成を行った。
 本焼成によって得られた合成物の結晶構造を、X線回折装置(XRD)により分析した。結果を図5に示す。図5において、上図は、合成物のXRDパターンであり、下図は、ICSDデータベースのNaNi(PO(ICSD No.01-087-0977)のXRDパターンである。図5より、得られた合成物は、NaNi(POであることが確認できた。また、得られた合成物(NaNi(PO)が、空間群Pn2aに帰属する結晶構造を有することが確認された。
(ナトリウム電池用正極活物質の評価)
<正極の作製>
 上記実施例1で得られたNaNi(PO(正極活物質)、炭素(導電助剤)、及びPVdF(結着剤)を、75:20:5(重量比)となるように混合し、N-メチル-2-ピロリドン(分散剤)中に分散させてスラリーを調製した。
 上記スラリーをアルミニウム箔(集電体)上に塗布し、乾燥及び圧延し、集電体と正極活物質層とが積層した正極を作製した。
<評価用セルの作製>
 まず、箔状のナトリウム金属を打ち抜き、対極を得た。
 一方、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とを1:1(体積比)で混合した混合溶媒に、ナトリウム塩(NaPF)を添加し、ナトリウム塩濃度が1.0mol/dmの非水溶媒系電解液を得た。
 上記にて作製した正極、ポリプロピレン製多孔質膜とポリエチレン製多孔質膜とポリプロピレン製多孔質膜とがこの順序で積層した多孔質膜(セパレータ)、及び対極を、この順序で積層した。このとき、正極活物質層がセパレータ側となるように正極を積層した。
 上記積層体のセパレータに上記非水溶媒系電解液を含浸させ、コイン型の評価用セルを作製した。
<評価方法>
 上記評価用セルを用いて、サイクリックボルタンメトリ-(CV)を下記条件にて行った。結果を図6に示す。
 ・電位範囲:OCV(開回路電圧)-4.9V
 ・走査速度:0.2mV/s
 ・温度:25℃
 図6に示すように、1サイクル目及び2サイクル目共に、充電に相当する酸化反応及び放電に相当する還元反応のピークが、4.6~4.9Vという超高電位領域に確認された。すなわち、実施例1で得られた合成物が、ナトリウム二次電池の正極活物質として使用可能であり、且つ、高電位で作動することが確認された。しかも、25℃という低温域で、上記のような高電位作動性を示した。
[実施例2]
(ナトリウム電池用正極活物質の合成)
 Na(Na含有化合物兼P含有化合物)、(CHCOO)Mn(Mn含有化合物)、及びNHPO(P含有化合物)を、Na:Mn:P=4:3:4(mol比)となるように、グリコール酸(ゲル化剤)と共に、酸性溶液(硝酸水溶液)中に添加、溶解し、80℃で攪拌した。得られたゲルを、大気雰囲気下、700℃で15時間、焼成した。
 焼成によって得られた合成物の結晶構造を、X線回折装置(XRD)により分析した。結果を図7に示す。図7より、得られた合成物は、NaMn(POであることが確認できた。また、得られた合成物(NaMn(PO)が、図1~3に示した空間群Pn2aに帰属する結晶構造を有することが確認された。
(ナトリウム電池用正極活物質の評価)
<正極の作製>
 上記実施例2で得られたNaMn(PO(正極活物質)、炭素(導電助剤)、及びPVdF(結着剤)を、75:20:5(重量比)となるように混合し、N-メチル-2-ピロリドン(分散剤)中に分散させてスラリーを調製した。
 上記スラリーをアルミニウム箔(集電体)上に塗布し、乾燥及び圧延し、集電体と正極活物質層とが積層した正極を作製した。
<評価用セルの作製>
 ジメチルカーボネート(DMC)の代わりにジエチルカーボネート(DEC)を用いたこと以外は、実施例1と同様にして、コイン型の評価用セルを作製した。
<評価方法>
 上記評価用セルの充放電サイクルを下記条件にて10サイクル行い、充放電特性を評価した。1サイクル目及び10サイクル目の容量密度と電位との関係を図8に示す。
 ・電位範囲:2.5V-4.1V
 ・電流密度:8.5mA/g
 ・温度:25℃
 図8に示すように、10サイクル後も、1サイクル目と同様の電位領域で充放電することが可能であると共に、放電容量密度も維持(容量維持率96%、可逆容量18mAh/g)できることが確認された。すなわち、実施例2の正極活物質は、電解液が安定な電位領域で充放電可能であり、さらに、サイクル特性に優れることがわかった。
[実施例3]
(ナトリウム電池用正極活物質の合成)
 Na(Na含有化合物兼P含有化合物)、(CHCOO)Co(Co含有化合物)、及びNHPO(P含有化合物)を、Na:Co:P=4:3:4(mol比)となるように、グリコール酸(ゲル化剤)と共に、酸性溶液(硝酸水溶液)中に添加、溶解し、80℃で攪拌した。得られたゲルを、大気雰囲気下、700℃で15時間、焼成した。
 焼成によって得られた合成物の結晶構造を、X線回折装置(XRD)により分析した。結果を図9に示す。図9より、得られた合成物は、NaCo(POであることが確認できた。また、得られた合成物(NaCo(PO)が、図1~3に示した空間群Pn2aに帰属する結晶構造を有することが確認された。
(ナトリウム電池用正極活物質の評価)
<正極の作製>
 上記実施例3で得られたNaCo(PO(正極活物質)、炭素(導電助剤)、及びPVdF(結着剤)を、75:20:5(重量比)となるように混合し、N-メチル-2-ピロリドン(分散剤)中に分散させてスラリーを調製した。
 上記スラリーをアルミニウム箔(集電体)上に塗布し、乾燥及び圧延し、集電体と正極活物質層とが積層した正極を作製した。
<評価用セルの作製>
 実施例2と同様にして、コイン型の評価用セルを作製した。
<評価方法>
 上記評価用セルの充放電サイクルを下記条件にて50サイクル行い、充放電特性を評価した。1サイクル目及び50サイクル目の容量密度と電位との関係を図10に示す。また、サイクル数と、充電容量密度及び放電容量密度との関係を図11に示す。
 ・電位範囲:3.0V-4.7V
 ・電流密度:17mA/g
 ・温度:25℃
 また、上記評価用セルの充放電サイクルを下記条件にて行い、充放電特性を評価した。10サイクル目の充電曲線及び放電曲線を図12に示す。
 ・電位範囲:3.0V-4.8V
 ・電流密度:1700mA/g
 ・温度:25℃
 図10に示すように、50サイクル後も、1サイクル目と同様の電位領域で充放電することが可能であると共に、実施例1及び2と比較して、可逆容量の増大が確認された。また、図11に示すように、50サイクル後も、容量密度が維持できることが確認された。すなわち、実施例3の正極活物質は、電解液が安定な電位領域で高い可逆容量(約90mAh/g)を有し、さらに、サイクル特性に優れることがわかった。また、図12に示すように、1700mAh/gという極めて高い電流密度でも、82mAh/g程度の可逆容量を示した。すなわち、電流密度17mA/gでの上記充放電サイクル試験に対して、電流密度が100倍になったにも関わらず、容量低下が少ないことから、実施例3の正極活物質は、電池の高出入力化に有利な材料と考えられる。
[実施例4~8]
(ナトリウム電池用正極活物質の合成)
 Na(Na含有化合物兼P含有化合物)、(CHCOO)Co(Co含有化合物)、(CHCOO)Mn(Mn含有化合物)、及びNHPO(P含有化合物)を、Na、Co、Mn及びPの比率が表1に示すモル比となるように、表1の仕込み量で、グリコール酸(ゲル化剤)と共に酸性溶液(硝酸水溶液)中に添加、溶解し、80℃で攪拌した。得られたゲルを、大気雰囲気下、700℃で15時間、焼成した。
Figure JPOXMLDOC01-appb-T000001
 焼成によって得られた実施例4~8の合成物の結晶構造を、X線回折装置(XRD)により分析した。結果を表2に示す。
 実施例4~8で得られた合成物は、それぞれ、NaCo(PO(実施例4)、NaCo2.7Mn0.3(PO(実施例5)、NaCo2.4Mn0.6(PO(実施例6)、NaCo2.2Mn0.8(PO(実施例7)、NaCo2.1Mn0.9(PO(実施例8)であることが確認できた。また、実施例4~8で得られた合成物が、図1~3に示した空間群Pn2aに帰属する結晶構造を有することが確認された。
Figure JPOXMLDOC01-appb-T000002
(ナトリウム電池用正極活物質の評価)
<正極の作製>
 上記実施例4~8で得られた正極活物質(NaCo3.0(PO(実施例4)、NaCo2.7Mn0.3(PO(実施例5)、NaCo2.4Mn0.6(PO(実施例6)、NaCo2.2Mn0.8(PO(実施例7)、NaCo2.1Mn0.9(PO(実施例8))を、それぞれ、正極活物質と、導電助剤と、結着剤との重量比が、75(正極活物質):20(導電助剤):5(結着剤)となるように、炭素(導電助剤)及びPVdF(結着剤)と混合し、N-メチル-2-ピロリドン(分散剤)中に分散させてスラリーを調製した。
 上記スラリーを、それぞれ、アルミニウム箔(集電体)上に塗布し、乾燥及び圧延し、集電体と正極活物質層とが積層した正極を作製した。
<評価用セルの作製>
 実施例4~8の正極活物質を含む上記正極を用いて、実施例2と同様にして、コイン型の評価用セルを作製した。
<評価方法>
 上記評価用セルの充放電サイクルを下記条件にて3サイクル行い、充放電特性を評価した。
 ・電位範囲:実施例4;3.0V-4.7V、実施例5-8;3.0V-4.8V
 ・電流密度:17mA/g
 ・温度:25℃
 図13に、3サイクル目の容量密度と電位との関係(放電曲線及び充電曲線)を示す。尚、図13中、(a)は実施例4、(b)は実施例5、(c)は実施例6、(d):実施例7、(e):実施例8の結果である。
 また、図14に、実施例4~8の3サイクル目の放電曲線を示す。尚、図14中、(a)~(e)は、図13中の(a)~(e)に対応している。
 また、図15に、実施例4~8のサイクル特性(サイクル数と放電容量密度の関係)を示す。
 図13及び図14に示すように、実施例4~8のいずれも、3.0~4.8Vという高電位領域において、90~103mAh/gという非常に優れた放電容量を示した。
 特に、NaCo3.0(POのCo2+のサイトを、一般式NaCo(3-a)Mn(PO(P)において0.3≦a≦0.8の割合で、Mn2+に置換した実施例5~7は、実施例4(NaCo3.0(PO)と比較して、容量特性及び電圧特性共に向上した。これは、Co2+のMn2+による置換の割合が上記範囲(0.3≦a≦0.8)である場合、置換されたMn2+が、Mn2+/3+だけでなく、4.7V以上の電位領域でMn3+/4+まで電荷補償することができることによる寄与が大きいためと考えられる。
 尚、一般式NaCo(3-a)Mn(PO(P)においてa=0.9の割合で、Co2+をMn2+に置換した実施例8は、Mn2+により、正極活物質の電子伝導性が低下したために、電池抵抗が増大し、実施例4(NaCo3.0(PO)と比較して、容量特性及び電圧特性が共に低下したと考えられる。
 また、図15に示すように、実施例4~8のいずれも、3サイクルにわたって、約85~103mAh/gという高容量を維持し、サイクル特性も良好であることが確認された。
 尚、実施例3の結果と実施例2の結果との対比から、M=Mnである正極活物質は、M=Coである正極活物質と比較して、容量特性に劣り、また作動電位が低いことがわかる。そのため、Coの一部をMnに置換することによって特性低下を招くと考えるのが一般的見解であるといえる。従って、上記実施例5~7のように、一般式NaCo(3-a)Mn(PO(P)において0.3≦a≦0.8の割合で、Co2+をMn2+に置換することによって、容量特性及び作動電位を共に向上できることは予想外の効果である。
[実施例9~12]
(ナトリウム電池用正極活物質の合成)
 Na(Na含有化合物兼P含有化合物)、(CHCOO)Co(Co含有化合物)、(CHCOO)Mn(Mn含有化合物)、(CHCOO)Ni(Ni含有化合物)、及びNHPO(P含有化合物)を、Na、Co、Mn、Ni及びPの比率が表3に示すモル比となるように、表3の仕込み量で、グリコール酸(ゲル化剤)と共に酸性溶液(硝酸水溶液)中に添加、溶解し、80℃で攪拌した。得られたゲルを、大気雰囲気下、700℃で15時間、焼成した。
Figure JPOXMLDOC01-appb-T000003
 焼成によって得られた実施例9~12の合成物の結晶構造を、X線回折装置(XRD)により分析した。結果を表4に示す。
 実施例9~12で得られた合成物は、それぞれ、NaCo(PO(実施例9)、NaCo2.4Mn0.3Ni0.3(PO(実施例10)、NaCo1.0Mn1.0Ni1.0(PO(実施例11)、NaCo0.6Mn1.2Mn1.2(PO(実施例12)であることが確認できた。また、実施例9~12で得られた合成物が、図1~3に示した空間群Pn2aに帰属する結晶構造を有することが確認された。
Figure JPOXMLDOC01-appb-T000004
(ナトリウム電池用正極活物質の評価)
<正極の作製>
 上記実施例9~12で得られた正極活物質(NaCo3.0(PO(実施例9)、NaCo2.4Mn0.3Ni0.3(PO(実施例10)、NaCo1.0Mn1.0Ni1.0(PO(実施例11)、NaCo0.6Mn1.2Mn1.2(PO(実施例12))を、それぞれ、正極活物質と、導電助剤と、結着剤との重量比が、75(正極活物質):20(導電助剤):5(結着剤)となるように、炭素(導電助剤)及びPVdF(結着剤)と混合し、N-メチル-2-ピロリドン(分散剤)中に分散させてスラリーを調製した。
 上記スラリーを、それぞれ、アルミニウム箔(集電体)上に塗布し、乾燥及び圧延し、集電体と正極活物質層とが積層した正極を作製した。
<評価用セルの作製>
 実施例9~12の正極活物質を含む上記正極を用いて、実施例2と同様にして、コイン型の評価用セルを作製した。
<評価方法>
 上記評価用セルの充放電サイクルを下記条件にて3サイクル行い、充放電特性を評価した。
 ・電位範囲:実施例9;3.0V-4.7V、実施例10-12;3.0V-4.8V
 ・電流密度:17mA/g
 ・温度:25℃
 図16に、3サイクル目の容量密度と電位との関係(放電曲線及び充電曲線)を示す。尚、図16中、(a)は実施例9、(b)は実施例10、(c)は実施例11、(d):実施例12の結果である。
 図16に示すように、実施例9~11のいずれも、3.0~4.8Vという高電位領域において、90~95mAh/gという非常に優れた放電容量を示した。実施例12については、3.0~4.8Vという高電位領域において、35mAh/gという放電容量を示した。
 特に、NaCo3.0(POのCo2+のサイトを、一般式NaCo(3-b-c)MnNi(PO(P)において0.3≦b≦1.0、且つ、0.3≦c≦1.0の割合で、Mn2+及びNi2+に置換した実施例10及び11は、実施例9(NaCo3.0(PO)と比較して、容量特性及び電圧特性共に向上した。これは、Co2+のMn2+及びNi2+による置換の割合が上記範囲(0.3≦b≦1.0、0.3≦c≦1.0)である場合、置換されたMn2+が、Mn2+/3+だけでなく、4.7V以上の電位領域でMn3+/4+まで電荷補償することができ、さらには、置換されたNi2+が高電位でNi3+になり、Ni2+/3+の電荷補償が高電位で進行するためと考えられる。
 尚、一般式NaCo(3-a)Mn(PO(P)においてa(Mnの割合)=0.9の割合で、Co2+をMn2+に置換した実施例8は、実施例5~7と比較して、容量特性及び電圧特性の低下が見られた。これに対して、Coの一部を、Mnに加えてNiで置換することによって、実施例11のようにb(Mnの割合)=1.0であっても、容量特性及び電圧特性が向上することが確認された。これらの結果から、Co2+のMn2+による置換は、活物質の電子伝導性の低下をもたらすと考えられるが、Co2+を、Mn2+で置換すると共に、比較的電子伝導性の高いNi2+でも置換することで、Mn2+による活物質の電子伝導性低下を抑制することができると推測できる。
 また、上記実施例3の結果と実施例1及び実施例2の結果との対比から、M=Niである正極活物質及びM=Mnである正極活物質は、M=Coである正極活物質と比較して、容量特性に劣ることがわかる。そのため、Coの一部をMnやNiに置換することによって特性低下を招くと考えるのが一般的見解であるといえる。従って、上記実施例10~11のように、NaCo(3-b-c)MnNi(PO(P)において0.3≦b≦1.0、且つ、0.3≦c≦1.0の割合で、Co2+をMn2+及びNi2+に置換することによって、容量特性及び作動電位を共に向上できることは予想外の効果である。
 1…負極
 2…正極
 3…電解質層
 4…負極活物質層
 5…負極集電体
 6…正極活物質層
 7…正極集電体
 8…ナトリウム二次電池

Claims (14)

  1.  下記一般式(1)で表わされることを特徴とする、ナトリウム電池用の正極活物質。
     一般式(1)
      Na(AO(P
     (式(1)中、Mは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる少なくとも1種であり、Aは、Al、Si、P、S、Ti、V及びWよりなる群から選ばれる少なくとも1種であり、xは4≧x≧2を満たし、yは4≧y≧1を満たし、zは4≧z≧0を満たし、wは1≧w≧0を満たし、z及びwの少なくとも一方は1以上である。)
  2.  前記式(1)中、前記Mが充電前において2価である、請求の範囲第1項に記載のナトリウム電池用正極活物質。
  3.  空間群Pn2aに帰属する結晶構造を有する、請求の範囲第1項又は第2項のいずれかに記載のナトリウム電池用正極活物質。
  4.  前記式(1)中、前記Mは、Mn、Co、及びNiより成る群から選ばれる少なくとも1種であり、その一部が、Ti、V、Cr、Mn、Fe、Co、Ni、Cu及びZnよりなる群から選ばれる、該Mと異なる少なくとも1種で置換されていてもよい、請求の範囲第1項乃至第3項のいずれかに記載のナトリウム電池用正極活物質。
  5.  前記式(1)中、前記Mは、Niであり、Niの一部が、Ti、V、Cr、Mn、Fe、Co、Cu及びZnよりなる群から選ばれる少なくとも1種で置換されていてもよい、請求の範囲第1項乃至第4項のいずれかに記載のナトリウム電池用正極活物質。
  6.  前記式(1)中、前記Aは、Si、P及びSより成る群から選ばれる少なくとも1種であり、その一部が、Al、Si、P、S、Ti、V及びWより成る群から選ばれる、該Aと異なる少なくとも1種で置換されていてもよい、請求の範囲第1項乃至第5項のいずれかに記載のナトリウム電池用正極活物質。
  7.  前記式(1)中、前記Aは、Pであり、Pの一部が、Al、Si、S、Ti、V及びWよりなる群から選ばれる少なくとも1種で置換されていてもよい、請求の範囲第1項乃至第6項のいずれかに記載のナトリウム電池用正極活物質。
  8.  一般式NaNi(PO(P)で表わされる、請求の範囲第1項乃至第7項のいずれかに記載のナトリウム電池用正極活物質。
  9.  一般式NaMn(PO(P)で表わされる、請求の範囲第1項乃至第7項のいずれかに記載のナトリウム電池用正極活物質。
  10.  一般式NaCo(PO(P)で表わされる、請求の範囲第1項乃至第7項のいずれかに記載のナトリウム電池用正極活物質。
  11.  一般式NaCo(3-a)Mn(PO(P)(aは、0.3≦a≦0.8を満たす)で表わされる、請求の範囲第1項乃至第7項のいずれかに記載のナトリウム電池用正極活物質。
  12.  一般式NaCo(3-b-c)MnNi(PO(P)(bは、0.3≦b≦1.0を満たし、cは0.3≦c≦1.0を満たす)で表わされる、請求の範囲第1項乃至第7項のいずれかに記載のナトリウム電池用正極活物質。
  13.  請求の範囲第1項乃至第12項のいずれかに記載のナトリウム電池用正極活物質の製造方法であって、
     少なくとも、Na含有化合物、前記Mを含むM含有化合物、前記Aを含むA含有化合物、及び、P含有化合物を含む原料混合物を、大気雰囲気下、150~500℃で焼成する仮焼成工程と、
     前記仮焼成後、得られた仮焼成物を、大気雰囲気下、500~800℃で焼成する本焼成工程と、
    を含むことを特徴とする、ナトリウム電池用正極活物質の製造方法。
  14.  前記仮焼成工程の前に、前記Na含有化合物、前記M含有化合物、前記A含有化合物、及び、前記P含有化合物を粉砕する粉砕工程を含む、請求の範囲第13項に記載のナトリウム電池用正極活物質の製造方法。
PCT/JP2012/065096 2011-08-29 2012-06-13 ナトリウム電池用正極活物質及びその製造方法 WO2013031331A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020167003988A KR101691774B1 (ko) 2011-08-29 2012-06-13 나트륨 전지용 정극 활물질 및 그 제조 방법
JP2013531134A JP5673836B2 (ja) 2011-08-29 2012-06-13 ナトリウム電池用正極活物質及びその製造方法
CN201280041525.9A CN103765640B (zh) 2011-08-29 2012-06-13 钠电池用正极活性物质及其制造方法
RU2014106754/04A RU2566085C1 (ru) 2011-08-29 2012-06-13 Активный материал для положительного электрода натриевого аккумулятора и способ его получения
US14/241,188 US9660253B2 (en) 2011-08-29 2012-06-13 Positive electrode active material for sodium battery, and method of producing the same
CA2846472A CA2846472C (en) 2011-08-29 2012-06-13 Positive electrode active material for sodium battery, and method of producing the same
AU2012303284A AU2012303284B2 (en) 2011-08-29 2012-06-13 Positive electrode active material for sodium batteries and method for producing same
BR112014004630-1A BR112014004630B1 (pt) 2011-08-29 2012-06-13 material ativo de eletrodo positivo para bateria de sódio e método de fabricação desse
EP12827894.2A EP2752925B1 (en) 2011-08-29 2012-06-13 Use of a positive electrode material in a sodium battery, and sodium battery comprising said positive electrode active material
KR1020147005138A KR101795845B1 (ko) 2011-08-29 2012-06-13 나트륨 전지용 정극 활물질 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-186131 2011-08-29
JP2011186131 2011-08-29

Publications (1)

Publication Number Publication Date
WO2013031331A1 true WO2013031331A1 (ja) 2013-03-07

Family

ID=47755845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065096 WO2013031331A1 (ja) 2011-08-29 2012-06-13 ナトリウム電池用正極活物質及びその製造方法

Country Status (10)

Country Link
US (1) US9660253B2 (ja)
EP (1) EP2752925B1 (ja)
JP (1) JP5673836B2 (ja)
KR (2) KR101795845B1 (ja)
CN (1) CN103765640B (ja)
AU (1) AU2012303284B2 (ja)
BR (1) BR112014004630B1 (ja)
CA (1) CA2846472C (ja)
RU (1) RU2566085C1 (ja)
WO (1) WO2013031331A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187160A1 (ja) * 2012-06-12 2013-12-19 トヨタ自動車株式会社 ナトリウム電池用正極材料及びその製造方法
JP2014535126A (ja) * 2011-09-30 2014-12-25 ファラディオン リミテッド 凝縮ポリアニオン電極
JP2015018621A (ja) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 ナトリウム電池用正極活物質およびその製造方法
JP2015026483A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 ナトリウム電池用正極及びナトリウム電池
WO2015023017A1 (ko) * 2013-08-16 2015-02-19 에스케이이노베이션 주식회사 이차전지용 양극 활물질
JPWO2013035222A1 (ja) * 2011-09-09 2015-03-23 株式会社日立製作所 二次電池用正極材料およびそれを用いた二次電池
WO2015059998A1 (ja) * 2013-10-24 2015-04-30 トヨタ自動車株式会社 ナトリウム電池用正極活物質及びナトリウム電池
KR101546877B1 (ko) 2013-06-12 2015-08-25 한국과학기술원 나트륨 이온 전지의 양극물질, 그 제조방법 및 이를 포함하는 나트륨 이온 전지
JP2016046138A (ja) * 2014-08-25 2016-04-04 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質及びその製造方法
EP2919304A4 (en) * 2012-11-08 2016-04-06 Toyota Motor Co Ltd ACTIVE MATERIAL FOR POSITIVE ELECTRODE AND HYBRIDION BATTERY
JP2016085890A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
JP2016085888A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
JP2016085887A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
WO2017073457A1 (ja) * 2015-10-28 2017-05-04 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
US9660253B2 (en) 2011-08-29 2017-05-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
WO2018181461A1 (ja) * 2017-03-29 2018-10-04 住友化学株式会社 ナトリウム二次電池用電極活物質、ナトリウム二次電池用電極、ナトリウム二次電池及び複合金属酸化物の製造方法
RU2718878C1 (ru) * 2019-03-28 2020-04-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Соединение для электродного материала металл-ионных аккумуляторов, электродный материал на его основе, электрод и аккумулятор на основе электродного материала
CN114334483A (zh) * 2021-12-31 2022-04-12 陕西师范大学 用于超级电容器的具有分级结构的锰基混合磷酸盐@四氧化三锰复合材料
WO2023120414A1 (ja) * 2021-12-24 2023-06-29 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105702931A (zh) * 2016-03-22 2016-06-22 陈波 一种还原氧化石墨烯-TiO2-Cr2O3复合材料在钠离子电池中的应用
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
WO2018003071A1 (ja) * 2016-06-30 2018-01-04 富士通株式会社 二次電池用正極材料、及びその製造方法、並びにリチウムイオン二次電池
RU2642425C1 (ru) * 2016-11-15 2018-01-25 Общество с ограниченной ответственностью "Общество с ограниченной ответственностью "Литиевые нанотехнологии для энергетики" СПОСОБ СИНТЕЗА АКТИВНОГО КОМПОНЕНТА КАТОДНОЙ МАССЫ НА ОСНОВЕ LiFePO4 И КАТОДНАЯ МАССА, СОДЕРЖАЩАЯ АКТИВНЫЙ КОМПОНЕНТ
JP7212318B2 (ja) 2017-04-27 2023-01-25 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
CN107017395B (zh) * 2017-05-22 2020-04-21 中南大学 一种具有三明治结构的碳包覆焦磷酸锰钠@还原氧化石墨烯复合材料及其制备方法和应用
CN107017398B (zh) * 2017-06-01 2019-06-11 中南大学 一种焦磷酸钒钠/碳复合正极材料、制备及其应用
CN110521036A (zh) * 2017-06-27 2019-11-29 日本电气硝子株式会社 钠离子二次电池用正极活性物质
JP6988584B2 (ja) * 2018-03-06 2022-01-05 トヨタ自動車株式会社 正極、非水電解質二次電池、および正極の製造方法
JP7115439B2 (ja) * 2018-09-14 2022-08-09 トヨタ自動車株式会社 二次電池システムおよび二次電池の内部状態推定方法
CN110299528B (zh) * 2019-07-02 2020-12-25 中南大学 氟化磷酸焦磷酸铁钠@c@rgo复合材料及其制备和在钠离子电池中的应用
CN111224085B (zh) * 2020-01-14 2022-07-12 中南大学 一种氮掺杂碳包覆的磷酸铬锰钠@介孔碳复合材料及其制备方法和在钠离子电池中的应用
CN111261870B (zh) * 2020-01-29 2021-10-29 桂林理工大学 一种NASICON结构Na4CrMn(PO4)3材料的制备方法及其应用
CN111446429B (zh) * 2020-03-27 2021-12-21 珠海冠宇电池股份有限公司 一种聚多阴离子正极材料及其制备方法和用途
CN114361421A (zh) * 2022-01-08 2022-04-15 温州大学碳中和技术创新研究院 一种聚阴离子型高电压钠离子电池正极材料及其制备方法
CN114613997A (zh) * 2022-03-09 2022-06-10 武汉理工大学 一种磷酸锰钛铬钠自支撑电极材料及其制备方法与应用
CN115893366A (zh) * 2023-01-12 2023-04-04 中南大学 一种高电压钠离子电池正极材料碳复合钴基混合磷酸钠盐的制备方法
CN116053470B (zh) * 2023-04-03 2023-06-20 中南大学 一种铁基复合正极活性材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158348A (ja) 2002-11-07 2004-06-03 Seimi Chem Co Ltd 非水電解質二次電池用正極活物質
JP2005183395A (ja) 2003-12-18 2005-07-07 Commissariat A L'energie Atomique 高電位および高リチウム挿入容量の両方を示すリチウム貯蔵電池
JP2010015782A (ja) * 2008-07-02 2010-01-21 Kyushu Univ 全固体電池
JP2010018472A (ja) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd 遷移金属リン酸塩、それを用いたナトリウム二次電池用正極および該正極を用いた二次電池
JP2011054562A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd アルカリ金属複合遷移金属酸化物の判別方法
JP2011134550A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 電極の製造方法、電極ペーストの製造方法およびナトリウム二次電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BG39778A1 (ja) * 1984-10-30 1986-08-15 Mohhev
US6068949A (en) 1995-04-13 2000-05-30 Rentech, Inc. Alkali metal ion battery electrode material
US6200704B1 (en) * 1998-09-01 2001-03-13 Polyplus Battery Company, Inc. High capacity/high discharge rate rechargeable positive electrode
KR100814540B1 (ko) 2001-04-06 2008-03-17 발렌스 테크놀로지, 인코포레이티드 나트륨 이온 배터리
US7348100B2 (en) 2003-10-21 2008-03-25 Valence Technology, Inc. Product and method for the processing of precursors for lithium phosphate active materials
CN100336247C (zh) 2004-03-30 2007-09-05 中国科学院物理研究所 一种锂离子电池的磷酸盐正极材料的制备方法
CN1630126A (zh) 2004-10-11 2005-06-22 湘潭大学 钠离子电池及其制备方法
JP2008130265A (ja) 2006-11-17 2008-06-05 Kyushu Univ 表面コートフッ化金属電極活物質
KR101159085B1 (ko) 2006-11-17 2012-06-22 고쿠리쓰다이가쿠호진 규슈다이가쿠 비수 전해질 이차 전지용 정극 활물질, 및 비수 전해질 이차 전지용 정극 활물질의 제조 방법
EP1968141A1 (en) 2007-02-24 2008-09-10 Ngk Insulators, Ltd. Secondary battery
JP2008260666A (ja) * 2007-04-13 2008-10-30 Kyushu Univ ナトリウム二次電池用活物質およびその製造方法
JP4595987B2 (ja) 2007-10-25 2010-12-08 トヨタ自動車株式会社 正極活物質
CN102089239A (zh) * 2008-07-09 2011-06-08 住友化学株式会社 过渡金属磷酸盐、其制备方法、正极以及钠二次电池
JP5359442B2 (ja) 2009-03-25 2013-12-04 住友化学株式会社 ナトリウムイオン電池
JP5540281B2 (ja) 2009-05-01 2014-07-02 国立大学法人九州大学 非水電解質二次電池用正極の製造方法及びそれを用いた非水電解質二次電池
WO2011038499A1 (en) 2009-10-02 2011-04-07 Linda Faye Nazar Sodium metal phosphate olivines for sodium-ion batteries
US20120199785A1 (en) 2009-10-08 2012-08-09 Sumitomo Chemical Company, Limited Transition metal phosphate, and sodium secondary battery
US8900746B2 (en) * 2009-10-13 2014-12-02 Kabushiki Kaisha Toyota Chuo Kenkyusho Aqueous secondary battery
CN103765640B (zh) 2011-08-29 2016-11-23 丰田自动车株式会社 钠电池用正极活性物质及其制造方法
GB2495279A (en) 2011-09-30 2013-04-10 Faradion Ltd A condensed polyanion electrode material
CN102509789A (zh) 2011-10-17 2012-06-20 中南大学 一种制备含钠锂离子电池正极材料掺氟磷酸钒钠的方法
US9537146B2 (en) 2012-06-12 2017-01-03 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
JP5527385B2 (ja) 2012-11-08 2014-06-18 トヨタ自動車株式会社 正極活物質およびハイブリッドイオン電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158348A (ja) 2002-11-07 2004-06-03 Seimi Chem Co Ltd 非水電解質二次電池用正極活物質
JP2005183395A (ja) 2003-12-18 2005-07-07 Commissariat A L'energie Atomique 高電位および高リチウム挿入容量の両方を示すリチウム貯蔵電池
JP2010015782A (ja) * 2008-07-02 2010-01-21 Kyushu Univ 全固体電池
JP2010018472A (ja) * 2008-07-09 2010-01-28 Sumitomo Chemical Co Ltd 遷移金属リン酸塩、それを用いたナトリウム二次電池用正極および該正極を用いた二次電池
JP2011054562A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd アルカリ金属複合遷移金属酸化物の判別方法
JP2011134550A (ja) * 2009-12-24 2011-07-07 Sumitomo Chemical Co Ltd 電極の製造方法、電極ペーストの製造方法およびナトリウム二次電池

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
"218th ECS Meeting", 2010, THE ELECTROCHEMICAL SOCIETY
"Richiumu niji-denchi (Lithium secondary batteries", pages: 77
ELECTROCHEMISTRY COMMUNICATIONS, vol. 12, 2010, pages 355 - 358
LIBD-5 2011 - ELECTRODE MATERIALS, 12 June 2011 (2011-06-12)
NATURE MATERIALS
See also references of EP2752925A4

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9660253B2 (en) 2011-08-29 2017-05-23 Toyota Jidosha Kabushiki Kaisha Positive electrode active material for sodium battery, and method of producing the same
JPWO2013035222A1 (ja) * 2011-09-09 2015-03-23 株式会社日立製作所 二次電池用正極材料およびそれを用いた二次電池
JP2014535126A (ja) * 2011-09-30 2014-12-25 ファラディオン リミテッド 凝縮ポリアニオン電極
US9608269B2 (en) 2011-09-30 2017-03-28 Faradion Ltd. Condensed polyanion electrode
EP2860800A4 (en) * 2012-06-12 2015-09-09 Toyota Motor Co Ltd POSITIVE ELECTRODE MATERIAL FOR SODIUM BATTERIES AND METHOD FOR MANUFACTURING THE SAME
US9537146B2 (en) 2012-06-12 2017-01-03 Toyota Jidosha Kabushiki Kaisha Positive electrode material for sodium batteries and method for producing same
WO2013187160A1 (ja) * 2012-06-12 2013-12-19 トヨタ自動車株式会社 ナトリウム電池用正極材料及びその製造方法
EP2919304A4 (en) * 2012-11-08 2016-04-06 Toyota Motor Co Ltd ACTIVE MATERIAL FOR POSITIVE ELECTRODE AND HYBRIDION BATTERY
KR101546877B1 (ko) 2013-06-12 2015-08-25 한국과학기술원 나트륨 이온 전지의 양극물질, 그 제조방법 및 이를 포함하는 나트륨 이온 전지
JP2015018621A (ja) * 2013-07-09 2015-01-29 トヨタ自動車株式会社 ナトリウム電池用正極活物質およびその製造方法
JP2015026483A (ja) * 2013-07-25 2015-02-05 トヨタ自動車株式会社 ナトリウム電池用正極及びナトリウム電池
JP2016534509A (ja) * 2013-08-16 2016-11-04 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. 二次電池用正極活物質
WO2015023017A1 (ko) * 2013-08-16 2015-02-19 에스케이이노베이션 주식회사 이차전지용 양극 활물질
US10026520B2 (en) 2013-08-16 2018-07-17 Sk Innovation Co., Ltd. Positive electrode active material for secondary battery
GB2533536B (en) * 2013-10-24 2021-05-19 Toyota Motor Co Ltd Cathode active material for sodium batteries, and sodium battery
GB2533536A (en) * 2013-10-24 2016-06-22 Toyota Motor Co Ltd Positive electrode active material for sodium batteries, and sodium battery
CN105684198A (zh) * 2013-10-24 2016-06-15 丰田自动车株式会社 钠电池用正极活性物质和钠电池
CN105684198B (zh) * 2013-10-24 2018-08-03 丰田自动车株式会社 钠电池用正极活性物质和钠电池
JPWO2015059998A1 (ja) * 2013-10-24 2017-03-09 トヨタ自動車株式会社 ナトリウム電池用正極活物質及びナトリウム電池
WO2015059998A1 (ja) * 2013-10-24 2015-04-30 トヨタ自動車株式会社 ナトリウム電池用正極活物質及びナトリウム電池
US9716274B2 (en) 2013-10-24 2017-07-25 Toyota Jidosha Kabushiki Kaisha Cathode active material for sodium batteries, and sodium battery
JP2016046138A (ja) * 2014-08-25 2016-04-04 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質及びその製造方法
JP2016085890A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
JP2016085887A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
JP2016085888A (ja) * 2014-10-27 2016-05-19 トヨタ自動車株式会社 ナトリウムイオン二次電池
CN108352530A (zh) * 2015-10-28 2018-07-31 日本电气硝子株式会社 钠离子二次电池用正极活性物质
JPWO2017073457A1 (ja) * 2015-10-28 2018-08-16 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
JP7075760B2 (ja) 2015-10-28 2022-05-26 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
WO2017073457A1 (ja) * 2015-10-28 2017-05-04 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
US11289703B2 (en) 2015-10-28 2022-03-29 Nippon Electric Glass Co., Ltd. Positive electrode active material for sodium-ion secondary cell
JPWO2018181461A1 (ja) * 2017-03-29 2020-02-06 住友化学株式会社 ナトリウム二次電池用電極活物質、ナトリウム二次電池用電極、ナトリウム二次電池及び複合金属酸化物の製造方法
US11233236B2 (en) 2017-03-29 2022-01-25 Sumitomo Chemical Company, Limited Electrode active material for sodium secondary battery, electrode for sodium secondary battery, sodium secondary battery and method for producing composite metal oxide
WO2018181461A1 (ja) * 2017-03-29 2018-10-04 住友化学株式会社 ナトリウム二次電池用電極活物質、ナトリウム二次電池用電極、ナトリウム二次電池及び複合金属酸化物の製造方法
JP7122300B2 (ja) 2017-03-29 2022-08-19 住友化学株式会社 ナトリウム二次電池用電極活物質、ナトリウム二次電池用電極、ナトリウム二次電池及び複合金属酸化物の製造方法
RU2718878C1 (ru) * 2019-03-28 2020-04-15 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Соединение для электродного материала металл-ионных аккумуляторов, электродный материал на его основе, электрод и аккумулятор на основе электродного материала
WO2023120414A1 (ja) * 2021-12-24 2023-06-29 日本電気硝子株式会社 ナトリウムイオン二次電池用正極活物質
CN114334483A (zh) * 2021-12-31 2022-04-12 陕西师范大学 用于超级电容器的具有分级结构的锰基混合磷酸盐@四氧化三锰复合材料

Also Published As

Publication number Publication date
US9660253B2 (en) 2017-05-23
RU2566085C1 (ru) 2015-10-20
CA2846472C (en) 2016-08-16
KR20160025630A (ko) 2016-03-08
CN103765640A (zh) 2014-04-30
KR101795845B1 (ko) 2017-11-08
KR20140041911A (ko) 2014-04-04
AU2012303284A1 (en) 2014-03-13
EP2752925A1 (en) 2014-07-09
BR112014004630A2 (pt) 2017-03-14
JP5673836B2 (ja) 2015-02-18
BR112014004630B1 (pt) 2021-04-20
EP2752925B1 (en) 2019-01-16
CA2846472A1 (en) 2013-03-07
US20140197358A1 (en) 2014-07-17
AU2012303284B2 (en) 2015-07-23
EP2752925A4 (en) 2015-08-12
KR101691774B1 (ko) 2016-12-30
JPWO2013031331A1 (ja) 2015-03-23
RU2014106754A (ru) 2015-10-10
CN103765640B (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
JP5673836B2 (ja) ナトリウム電池用正極活物質及びその製造方法
KR101703405B1 (ko) 나트륨 전지용 정극 재료 및 그 제조 방법
EP2919304B1 (en) Positive electrode active material and hybrid ion battery
JP6172288B2 (ja) ナトリウム電池用正極活物質及びナトリウム電池
JPWO2012002327A1 (ja) 正極活物質、正極及び非水系二次電池
EP3627607B1 (en) Electrode material for zinc secondary batteries
JP2015026483A (ja) ナトリウム電池用正極及びナトリウム電池
JP5910730B2 (ja) 活物質、およびそれを用いた電極、ならびにリチウムイオン二次電池
JP2015018621A (ja) ナトリウム電池用正極活物質およびその製造方法
JP2015026485A (ja) ナトリウム電池用負極活物質及びナトリウム電池
JP2016025067A (ja) ナトリウム二次電池の充放電方法
WO2013054585A1 (ja) 二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013531134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2846472

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20147005138

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241188

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012303284

Country of ref document: AU

Date of ref document: 20120613

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014106754

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014004630

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014004630

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140226