WO2013022011A1 - 透明積層フィルム - Google Patents

透明積層フィルム Download PDF

Info

Publication number
WO2013022011A1
WO2013022011A1 PCT/JP2012/070141 JP2012070141W WO2013022011A1 WO 2013022011 A1 WO2013022011 A1 WO 2013022011A1 JP 2012070141 W JP2012070141 W JP 2012070141W WO 2013022011 A1 WO2013022011 A1 WO 2013022011A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
film
transparent laminated
cured layer
film according
Prior art date
Application number
PCT/JP2012/070141
Other languages
English (en)
French (fr)
Other versions
WO2013022011A9 (ja
Inventor
頼安 山本
昇平 木下
修裕 坂田
康隆 篠浦
高木 潤
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to US14/236,819 priority Critical patent/US20140162035A1/en
Priority to CN201280038900.4A priority patent/CN103732391B/zh
Priority to KR1020147006104A priority patent/KR101580066B1/ko
Priority to EP12821769.2A priority patent/EP2743078B1/en
Priority to JP2013528040A priority patent/JP5969480B2/ja
Publication of WO2013022011A1 publication Critical patent/WO2013022011A1/ja
Publication of WO2013022011A9 publication Critical patent/WO2013022011A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/042Coating with two or more layers, where at least one layer of a composition contains a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31533Of polythioether
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]

Definitions

  • the present invention relates to a transparent laminated film that can be used as a base material for solar cells, organic solar cells, flexible displays, organic EL lighting, touch panels, and the like. Specifically, the present invention relates to a transparent laminated film having high transparency and excellent in dimensional stability when heated, for example, when a circuit is formed or various elements are arranged on the film.
  • glass has been used as a substrate material for various display elements such as organic EL and solar cells.
  • the glass has not only had defects such as being easily broken, heavy, and difficult to reduce the thickness, but the glass does not have a sufficient material for reducing the thickness and weight of the display in recent years and making the display flexible. Therefore, a thin and lightweight transparent resin-made film-like substrate has been studied as an alternative material to replace glass.
  • the film when a film-like resin substrate is used, the film is required to have high heat resistance.
  • the film when a circuit such as a TFT is formed on a film, the film is required to have high dimensional stability at around 200 ° C., which is the heat treatment temperature of the TFT, in order not to cause a pattern shift during circuit formation.
  • conventional normal polyester films have insufficient thermal dimensional stability in a high temperature atmosphere of 150 ° C. or higher (specifically, 150 ° C. to 200 ° C.). Therefore, in recent years, a resin film having high thermal dimensional stability is required as a gas barrier processing film or a flexible display substrate film.
  • Patent Document 1 As a means for imparting dimensional stability to a resin film at a high temperature, for example, in Patent Document 1, a thermal relaxation process (also referred to as “annealing process” or “heat setting process”) is added as a final means of the film manufacturing process. A method is disclosed. Patent Documents 2 and 3 disclose methods for forming various coating films on the surface of a film produced by a normal process.
  • Patent Document 4 discloses a composite film having a barrier layer formed on the surface of a coating layer including a polymer substrate and a planarization coating layer. Such composite films have high dimensional stability because the polymer substrate is heat set and thermally stabilized.
  • Patent Document 5 discloses a transparent multilayer sheet including a layer (A layer) having an average linear expansion coefficient of 50 ppm / K or less and a layer (B layer) having a tensile modulus of 1 GPa or less. More specifically, a transparent multilayer sheet composed of three layers of B layer / A layer / B layer is disclosed, and such multilayer sheet has a total light transmittance of 91% and an average linear expansion coefficient of 43 ppm / K. Thus, it is disclosed that it is excellent in transparency and dimensional stability.
  • Patent Document 6 discloses polyimide, polyamide, and the like that have high dimensional stability at high temperatures and high transparency. Since these films are formed by the casting method, since there is almost no orientation, no shrinkage occurs when heating is performed.
  • a transparent resin film conventionally used as a base sheet for a touch panel or the like is subjected to a heat set treatment in order to improve dimensional stability at a high temperature (for example, 200 ° C. or higher). It was common to manufacture. For this reason, the manufacturing process becomes complicated, and the manufacturing cost of the film itself increases.
  • an object of the present invention is to provide a new transparent laminated film that is excellent in transparency and thermal dimensional stability at high temperatures (for example, 200 ° C. or higher) and can be manufactured by a simple manufacturing process in view of the problems of the prior art. It is to provide.
  • the present invention is a laminated film having cured layers on both sides of the base film, and the storage elastic modulus (E ′) by dynamic viscoelasticity measurement in at least one direction of the laminated film at a temperature of 200 ° C.
  • the present invention proposes a transparent laminated film characterized by being larger than the storage elastic modulus (E ′) in at least one direction of the base film and having a total light transmittance of 80% or more of the laminated film.
  • the storage elastic modulus (E ′) in at least one direction of the laminated film at a temperature of 200 ° C. is larger than the storage elastic modulus (E ′) in at least one direction of the base film.
  • the transparent laminated film proposed by the present invention maintains transparency because the cured layers provided on both the front and back sides of the base film can withstand the stress that the base film tends to shrink at high temperatures.
  • the transparent laminated film proposed by the present invention is, for example, a substrate of a display material such as a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display (electronic paper), a touch panel, a color filter, a backlight, or a substrate of a solar cell.
  • a display material such as a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display (electronic paper), a touch panel, a color filter, a backlight, or a substrate of a solar cell.
  • it can be suitably used for a photoelectric element substrate and the like.
  • a transparent laminated film according to an example of an embodiment of the present invention (hereinafter referred to as “the present laminated film”) is a transparent laminated film having cured layers on both front and back sides of the base film. Since this laminated film has a predetermined hardened layer on both the front and back sides of the base film, the hardened layer can counteract the shrinkage stress of the base film in the high-temperature region and can reduce the shrinkage. Therefore, the dimensional stability of the present laminated film against shrinkage at high temperatures can be improved.
  • the laminated film may be laminated by directly superposing cured layers on both the front and back surfaces of the base film, or another layer may be interposed between the base film and the cured layer. For example, an anchor coat layer or the like can be interposed between the base film and the cured layer.
  • the cured layer is a layer formed of a curable resin composition containing a curable resin, it is a layer containing a curable resin composition.
  • a hardened layer has a higher storage elastic modulus (E ′) of the present laminated film at a high temperature (eg, 200 ° C. or higher) than the storage elastic modulus (E ′) of the base film under the same conditions, and is higher than the present laminated film.
  • the “cured layer” of the present laminated film is usually formed by applying and curing the curable resin composition on both the front and back sides of the base film, and hence the name “cured layer”. .
  • the method for forming the cured layer is not limited to such a method.
  • a cured layer may be formed under the conditions shown in FIG. (1)
  • a curable resin composition having a storage elastic modulus (E ′) at a high temperature (for example, 200 ° C. or higher) larger than that of the base film is formed.
  • a curable resin composition having a molecule having a rigid skeleton or a curable resin composition capable of forming a three-dimensional network structure may be used as a material for forming the cured layer.
  • a cured layer filled with fine particles is formed.
  • the total thickness of both surfaces of the cured layer is made larger than the thickness of the base film.
  • the method shown in the above (1) to (3) can be used in any one or a combination of two or more, and the method of (2) from the point of offsetting the shrinkage stress of the base material with particles having high rigidity
  • the two methods (2) and (3), (1) and (2), and the three methods (1) to (3) are adopted. It is more preferable.
  • the curable resin composition for forming the cured layer examples include a composition containing a light curable resin having light transmissivity, such as organic siloxane, urea resin, melamine resin, and acrylic resin, and a transparent polyimide precursor varnish. And the like. Among these, it is preferable to use a composition containing a compound having at least one (meth) acryloyl group in the molecule or a composition containing a transparent polyimide precursor varnish.
  • Examples of such a compound having a (meth) acryloyl group include (meth) acrylate monomers, urethane (meth) acrylate, epoxy (meth) acrylate, polyester (meth) acrylate, polyether (meth) acrylate, polycarbonate (meth) acrylate, (Meth) acrylates such as fluorene (meth) acrylate can be exemplified. From the viewpoint of rapidly proceeding the curing reaction, it is preferable to use an acrylate monomer, a urethane acrylate, and an epoxy acrylate. In addition, these can be used 1 type or in combination of 2 or more types.
  • (meth) acrylate monomers urethane (meth) acrylates, epoxy (meth) acrylates, polyesters (meth) are used to adjust physical properties such as curability, water absorption and hardness of the cured layer.
  • (Meth) acrylate oligomers such as acrylate, polyether (meth) acrylate, and polycarbonate (meth) acrylate can be optionally added to the curable resin composition. These can be used alone or in combination of two or more.
  • curable resin composition for forming a cured layer having the above condition (1) that is, a storage elastic modulus (E ′) at a high temperature (for example, 200 ° C. or more) larger than that of the base film
  • a storage elastic modulus (E ′) at a high temperature for example, 200 ° C. or more
  • skeleton, and the composition containing polyfunctional photocurable resin can be mentioned.
  • Examples of the photocurable resin having a rigid skeleton in the molecule include, for example, a skeleton such as a cyclic aliphatic hydrocarbon, an aromatic hydrocarbon, a cyclic acetal, a cyclic ketone, a siloxane, and a silsesquioxane in the molecule.
  • a photocurable resin having a glass transition temperature (Tg) higher than 200 ° C. can be exemplified.
  • examples of the polyfunctional photocurable resin include trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ditrimethylolpropane tetraacrylate, ditrimethylolpropane tetramethacrylate, pentaerythritol triacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate.
  • Examples thereof include resins having a monomer component of (meth) acrylate having two or more acryloyl groups such as acrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, and dipentaerythritol hexamethacrylate.
  • a polyfunctional photocurable resin By using such a polyfunctional photocurable resin, a cured layer having a three-dimensional network structure can be formed, and the cured layer can maintain a high storage elastic modulus (E ′).
  • curable resins having a fluorene skeleton, which is an aromatic hydrocarbon, in the molecule and curable resins having a silsesquioxane skeleton are extremely high in heat resistance and are quick in curing reaction.
  • the photocurable resin can be used in combination of one or two or more of the resins listed above as necessary.
  • photocurable resins are preferably contained in the cured layer in an amount of 30 to 100% by mass, more preferably 30% by mass or more and 70% by mass or less, and more preferably 35% by mass or more or 50% by mass or less. Even more preferred.
  • curable resin composition as other components than the photocurable resin, other photocurable oligomers / monomers, photoinitiators, sensitizers, crosslinking agents, ultraviolet absorbers, polymerization inhibitors, filling Materials, thermoplastic resins, and the like can be contained as long as physical properties such as curing, transparency, and water absorption are not hindered.
  • a photoinitiator when applying ultraviolet irradiation as an active energy ray, a photoinitiator is essential.
  • the photoinitiator for example, benzoin, acetophenone, thioxanthone, phosphine oxide, peroxide and the like can be used.
  • the photoinitiator include, for example, benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophene, methylorthobenzoylbenzoate, 4-phenylbenzophenone, t-butylanthraquinone, 2-ethylanthraquinone, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl ] Phenyl ⁇ -2-methyl-propan-1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 2-methyl- 4- (methylthio) phenyl] -2-morpholino-1-propan
  • the amount of the photoinitiator is appropriately adjusted according to the curability of the composition.
  • a typical amount of photoinitiator is 1 to 10 parts by mass with respect to 100 parts by mass of the curable resin composition.
  • the said curable resin composition can add and use a solvent if needed.
  • the solvent include ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, esters such as ethyl acetate and butyl acetate, aromatics such as toluene and xylene, and cyclohexanone and isopropanol.
  • the amount of these solvents used is not particularly limited. Usually, it is 0 to 300 parts by mass with respect to 100 parts by mass of the total solid content of the curable resin composition.
  • Examples of the fine particles contained in the cured layer include inorganic fine particles having transparency such as silicon oxide, aluminum oxide, titanium oxide, soda glass, and diamond. Among these, silicon oxide fine particles are preferable from the viewpoints of improving the storage elastic modulus of the cured layer, specific gravity, price, and the like.
  • silicon oxide fine particles have been developed, which are highly dispersible in a photocurable resin and can form a uniform cured film.
  • Specific examples of the silicon oxide fine particles include dried powdered silicon oxide fine particles, colloidal silica (silica sol) dispersed in an organic solvent, and the like.
  • colloidal silica (silica sol) dispersed in an organic solvent from the viewpoint of dispersibility.
  • surface treatment with a silane coupling agent, titanate coupling agent, etc. within a range that does not drastically impair properties such as transparency, solvent resistance, liquid crystal resistance, and heat resistance.
  • the fine particles may be silicon oxide fine particles or silicon oxide fine particles that have been easily dispersed on the surface.
  • fine particles having an average particle diameter in the range of 1 nm to 1000 nm are preferably used.
  • fine particles having an average particle diameter of 200 nm or less are more preferably used from the viewpoint of ensuring transparency.
  • the average particle diameter is the arithmetic average value of the short diameter and long diameter.
  • the refractive index of the fine particles is preferably less than 1.6.
  • fine particles having a refractive index difference of less than 0.2 between the resin in the curable resin composition, in particular, the resin constituting the main component of the curable resin composition and the fine particles (filler) are used. Is preferred.
  • the fine particles those having a relative standard deviation of the particle diameter of 50% or less are particularly suitable.
  • the distance between adjacent particles is reduced, and the fine particles in the hardened layer have a close-packed structure. It is effective to obtain a close filling state.
  • fine particles having a uniform particle size such that the relative standard deviation of the particle size is 50% or less.
  • the content of the fine particles in the entire cured layer is preferably 50% by volume or more, more preferably 55% by volume or more and 90% by volume or less, and more preferably 65% by volume or more or 80% by volume. Hereinafter, among these, it is more preferable that it is 72 volume% or more especially. If the fine particles are contained in the hardened layer in an amount of 50% by volume or more, the fine particles are filled in a state closer to the closest packing, and if the volume is 72% by volume or more, the closest packing is theoretically achieved. By containing the fine particles in such a range, it is possible to reduce the dimensional change due to shrinkage caused by the orientation of the base film during heating by the elastic modulus of the cured layer.
  • the total thickness of the cured layer is preferably larger than 100% of the thickness of the base film, more preferably 100% or more or 400% or less, and particularly 150% or more or 300%. More preferably, it is as follows.
  • Base film examples include polyester resins such as polyethylene terephthalate and polyethylene naphthalate, polyphenylene sulfide resin, polyether sulfone resin, polyetherimide resin, transparent polyimide resin, polycarbonate resin, and cyclic olefin homopolymer. And a film made of a cyclic olefin-based resin such as a cyclic olefin copolymer.
  • the base film has a polyetherimide resin (Tg 234 ° C., melting point). 275 ° C.), polyphenylene sulfide resin (Tg 223 ° C., melting point 280 ° C.), polyether sulfone resin (Tg 225 ° C.), polyethylene naphthalate resin (Tg 155 ° C., melting point 270 ° C.), transparent polyimide resin (Tg 250 ° C. or higher) It is preferred to use a film consisting of A film containing one kind or a combination of two or more kinds of resins can be used.
  • the transparent polyimide resin As the transparent polyimide resin, the cyclic resin contained in the structure of the polyimide resin as well as those obtained by introducing a hexafluoroisopropylidene bond into the main chain of the polyimide resin, fluorinated polyimide in which hydrogen in the polyimide is substituted with fluorine, and the like.
  • fluorinated polyimide in which hydrogen in the polyimide is substituted with fluorine and the like.
  • examples thereof include alicyclic polyimides hydrogenated with saturated organic compounds. For example, those described in JP-A-61-141738, JP-A-2000-292635 and the like can also be used.
  • This laminated film is provided with a predetermined cured layer on both the front and back sides of the base film, so that the base film is transparent and has a heat dimension at a high temperature (for example, 200 ° C. or higher) without performing heat setting.
  • a transparent laminated film excellent in stability can be obtained.
  • the dimensional stability of the base film and the laminated film can be further improved by subjecting the base film to a heat setting process in advance.
  • a biaxially stretched polyester film that has been heat-set to alleviate shrinkage is a preferred example of a substrate film.
  • the base film is preferably heat-treated at a temperature of Tg to Tg + 100 ° C. for 0.1 to 180 minutes, where Tg is the glass transition temperature of the base film.
  • the specific method of the heat setting treatment is not particularly limited as long as it is a method capable of maintaining a necessary temperature and time.
  • a method of storing in an oven or temperature-controlled room set to the required temperature a method of blowing hot air, a method of heating with an infrared heater, a method of irradiating light with a lamp, a direct contact with a hot roll or hot plate
  • a method of imparting a light, a method of irradiating with a microwave, or the like can be used.
  • a heating device can be incorporated in a part of a film production apparatus such as a coater or a slitter, and heating can be performed in the production process.
  • the thickness of the base film is preferably 1 ⁇ m to 200 ⁇ m, more preferably 5 ⁇ m or more or 100 ⁇ m or less. By setting it as such a range, advantages, such as an improvement in light transmittance and high handling performance, can be obtained.
  • the laminated film preferably has a total light transmittance of 80% or more, and more preferably 85% or more.
  • This laminated film has a total light transmittance in such a range, attenuation of light can be suppressed in a lighting or a display, and it becomes brighter.
  • the solar cell member can obtain advantages such as being able to capture more light.
  • This laminated film has a storage elastic modulus (E ′) by dynamic viscoelasticity measurement in at least one direction at a temperature of 200 ° C., for example, the longitudinal direction (MD direction), and at least one direction of the base film in the same condition, for example, the longitudinal direction. It has the characteristic that it is larger than the storage elastic modulus (E ').
  • at least one direction of the laminated film at a temperature of 200 ° C., for example, the storage elastic modulus (E ′) by dynamic viscoelasticity measurement in the longitudinal direction is at least one direction of the base film in the same condition, for example, the storage elastic modulus in the longitudinal direction.
  • E ′ 1.0 times (E ′), more preferably 1.1 times or more. If it is this range, when it heat-processes at high temperature to a film, it will not shrink with respect to the shrinkage stress of a base material, but the form as a film can be maintained.
  • the laminated film preferably has a storage elastic modulus (E ′) measured by dynamic viscoelasticity measurement in at least one direction, for example, the longitudinal direction, at a temperature of 200 ° C. of 1 GPa or more. If it is this range, since the dimensional stability at the time of high temperature is high and it does not become a problem on practical characteristics, it is preferable. In addition, it is preferable that the upper limit of the said storage elastic modulus (E ') value is 100 GPa or less from a viewpoint of post-processing appropriateness.
  • This laminated film has a longitudinal direction (MD direction) and a transverse direction (TD direction) when heated at 220 ° C. for 10 minutes measured according to JIS-C23077.4.6.1 (Shrinkage dimensional change rate: Method A). ) Is preferably less than 1.0%.
  • this laminated film has a shrinkage ratio in such a range, there are advantages in that a dimensional deviation at the time of forming a circuit or an element is reduced, and a higher barrier property can be obtained even when an inorganic barrier layer is laminated.
  • contraction rate of the vertical direction and horizontal direction of this laminated film at 250 degreeC measured on the same conditions is less than 0.5%, and it is especially preferable that it is less than 0.1%. .
  • This laminated film can be produced by applying a curable resin composition or the like on both the front and back sides of the base film and curing it to form a cured layer.
  • Examples of the method for coating the curable resin composition include bar coater coating, Mayer bar coating, air knife coating, gravure coating, reverse gravure coating, offset printing, flexographic printing, screen printing, and dip coating.
  • the method of coating the said curable resin composition on a base film can be mentioned by the above. Also effective is a method in which a cured layer is molded on a glass or polyester film and then the molded cured layer is transferred to a substrate film.
  • the method of curing (crosslinking) the curable resin composition after coating the curable resin composition on the base film may be a method such as thermosetting, ultraviolet curing, or electron beam curing. They can be used in combination. Among them, it is preferable to use an ultraviolet curing method because curing can be achieved relatively easily in a short time.
  • an ultraviolet irradiation device having a xenon lamp, a high-pressure mercury lamp, and a metal halide lamp as a light source is used, and the amount of light and the arrangement of the light sources are adjusted as necessary.
  • the laminated film has an advantage that the dimensional change (thermal dimensional stability) due to the heat treatment is small while maintaining transparency, and thus, for example, a liquid crystal display, an organic light emitting display (OLED), an electrophoretic display, and the like.
  • a liquid crystal display an organic light emitting display (OLED), an electrophoretic display, and the like.
  • Electric paper touch panels, color filters, backlights and other display material substrates, solar cell substrates, photoelectric element substrates, and the like.
  • the present laminated film can be used as a base material for a gas barrier film, and can be used as a barrier film (referred to as “present barrier film”) after being subjected to gas barrier processing.
  • a barrier film referred to as “present barrier film”.
  • the gas barrier layer is cracked or wrinkled, and there is a problem that the function including gas barrier properties cannot be fully exhibited.
  • this barrier film is excellent in that there is no such problem.
  • This barrier film is suitably used for applications requiring gas barrier properties such as organic semiconductor devices such as organic EL, liquid crystal display elements, and solar cells.
  • the gas barrier processing is a processing method in which a gas barrier layer made of a material having high gas barrier properties such as an inorganic substance such as a metal oxide or an organic substance is formed on at least one surface of the laminated film.
  • materials having high gas barrier properties include silicon, aluminum, magnesium, zinc, tin, nickel, titanium, and oxides, carbides, nitrides, oxycarbides, oxynitrides, oxycarbonitrides, diamonds of these. Like carbon or a mixture thereof may be used, but silicon oxide, silicon oxide carbide, silicon oxynitride, silicon oxynitride, aluminum oxide from the point that current does not leak when used in solar cells, etc.
  • Inorganic oxides such as aluminum oxycarbide and aluminum oxynitride, nitrides such as silicon nitride and aluminum nitride, diamond-like carbon, and mixtures thereof are preferred.
  • silicon oxide, silicon oxycarbide, silicon oxynitride, silicon oxycarbonitride, silicon nitride, aluminum oxide, aluminum oxycarbide, aluminum oxynitride, aluminum nitride, and mixtures thereof can maintain high gas barrier properties stably. preferable.
  • any method such as a vapor deposition method and a coating method can be employed.
  • the vapor deposition method is preferable in that a uniform thin film having a high gas barrier property can be obtained.
  • This vapor deposition method includes methods such as physical vapor deposition (PVD) or chemical vapor deposition (CVD).
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Examples of the physical vapor deposition method include vacuum deposition, ion plating, and sputtering.
  • Examples of the chemical vapor deposition method include plasma CVD using plasma, and catalytic chemical vapor deposition (Cat-CVD) in which a material gas is contact pyrolyzed using a heating catalyst.
  • Cat-CVD catalytic chemical vapor deposition
  • the thickness of the gas barrier layer is preferably from 10 to 1000 nm, more preferably from 40 to 800 nm, and even more preferably from 50 to 600 nm, from the viewpoint of stable gas barrier properties and transparency.
  • the gas barrier layer may be a single layer or a multilayer. When the gas barrier layer is a multilayer, each layer may be made of the same material or different materials.
  • the water vapor transmission rate at 90 ° C. of the barrier film is preferably less than 0.1 [g / (m 2 ⁇ day)], more preferably 0.06 [g / (m 2 ⁇ day)] or less, Preferably, it is 0.03 [g / (m 2 ⁇ day)] or less.
  • the method for measuring the water vapor transmission rate is in accordance with various conditions of JISZ0222 “moisture-proof packaging container moisture permeability test method” and JIS Z0208 “moisture-proof packaging material moisture permeability test method (cup method)”, and specifically described in the examples. It is measured by the method.
  • the transparent laminated film according to the first embodiment is a transparent laminated film having a configuration in which cured layers are laminated on both front and back sides of a base film, and the cured layer has a curable resin composition and an average particle size of 200 nm. It is a layer (referred to as “coating layer”) formed by applying and curing a composition containing the following fine particles, and is a transparent laminated film having the following properties (a) and (b).
  • the transparent laminated film according to the first embodiment is a transparent laminated film having extremely excellent transparency and high dimensional stability at high temperatures.
  • various preferable aspects such as the base film, the curable resin composition, and the constituent materials and blending amounts of the fine particles are the same as those described above.
  • the transparent laminated film according to the second embodiment is a transparent laminated film having a configuration in which cured layers are laminated on both sides of the base film, and the total thickness of the cured layers on both sides of the base film is the thickness of the base film.
  • the cured layer is laminated so as to be 150% or more and 400% or less, and is a transparent laminated film having the following properties (c) and (d). (C) In each temperature region of 0 to 50 ° C., 50 to 100 ° C., 100 to 150 ° C.
  • the average value of the linear expansion coefficient in the longitudinal direction (MD direction) and the transverse direction (TD direction) is -30ppm / ° C to 30ppm / ° C (d)
  • Total light transmittance is 80% or more
  • the total thickness of the cured layers on both the front and back sides of the base film is 150% or more and 400% or less of the thickness of the base film.
  • the cured layer exhibits low shrinkage, and the cured layer exhibits low expansion against the expansion stress of the base film caused by heating.
  • the thickness of the entire cured layer is sufficiently larger than the thickness of the base film, the dimensional change of the entire film is very small.
  • the transparent laminated film according to the second embodiment has problems such as shrinkage and expansion of the film as compared with the base film itself such as a biaxially stretched polyester film such as polyethylene terephthalate and a transparent polyimide resin that has been conventionally used.
  • the film having a low linear expansion property can be obtained without causing.
  • the linear expansion coefficient of (c) can be adjusted to a desired range mainly by changing stretching conditions such as stretching temperature and stretching ratio, and heat treatment conditions such as heat treatment temperature and heat treatment time.
  • stretching conditions such as stretching temperature and stretching ratio
  • heat treatment conditions such as heat treatment temperature and heat treatment time.
  • the thermal dimensional change is reduced only by this method, the heat treatment time becomes enormous, which is not preferable from the viewpoint of manufacturing cost. Therefore, in the second embodiment, by disposing a predetermined cured layer on both the front and back sides of the base film, the dimensional change due to shrinkage or expansion generated from the base film at the time of heating can be reduced. It can be reduced by the elastic modulus.
  • the transparent laminated film according to the second embodiment has an average value of linear expansion coefficients in the longitudinal direction (MD direction) and the transverse direction (TD direction) in the temperature range of 200 to 220 ° C. of ⁇ 60 ppm / ° C. or more and 60 ppm / It is preferable that it is below °C. If the average value of the linear expansion coefficient is within such a range, it is preferable because the dimensional change when the transparent laminated film is placed in a high temperature environment is small and there is no problem of warping. For example, when the transparent laminated film according to the second embodiment is used as a gas barrier processing film, the destruction of the gas barrier layer due to a change in thermal dimension is alleviated. Moreover, when this transparent laminated film is used as a film for flexible display substrates, it becomes possible to improve problems such as warpage and disconnection of wiring.
  • the linear expansion coefficient of the transparent laminated film can be measured by any of the following methods. i) It can be measured by thermal mechanical analysis (TMA method) using a thermal stress strain measuring apparatus (manufactured by Seiko Instruments Inc., TMA / SS6100). At this time, the test piece is measured when heated at room temperature (25 ° C.) to 250 ° C. at a temperature rising rate of 3 ° C./min, with a test piece width of 45 mm, a distance between chucks: 15 mm, and a load: 0.1 g. From the dimensional change, the linear expansion coefficient can be obtained. ii) It can be measured using a thermomechanical analyzer (manufactured by Seiko Instruments Inc., TMA-120).
  • test piece width 3 mm
  • chuck distance 10 mm
  • load 0.1 mN
  • heating rate 2 ° C./min.
  • Dimensional change rate of test piece [(150 ° C.
  • the coefficient of linear expansion can be determined as dimensional change between 1 and 200 ° C./(dimensional value at 150 ° C.) / Temperature change amount] ⁇ 10 6 (ppm / ° C.).
  • the base film As in the first embodiment, in the second embodiment, various preferred aspects such as the base film, the curable resin composition and the constituent materials and blending amounts of the fine particles are the same as those described above.
  • the transparent laminated film which concerns on 3rd Embodiment is a transparent laminated film provided with the structure formed by laminating
  • the cured layer has a storage elastic modulus (E ′) a below 20 ° C. lower than the glass transition temperature of the base film, which is smaller than the storage elastic modulus of the base film under the same conditions.
  • the cured layer has a storage elastic modulus (E ′) b at a temperature of 20 ° C.
  • the transparent laminated film according to the third embodiment has a configuration in which a cured layer having specific properties is laminated on the base film, the base film shrinks in a high temperature region where the base film shrinks. Since the hardened layer relaxes the shrinkage against the stress, the dimensional stability against the shrinkage during the heat treatment can be improved.
  • a transparent polyimide resin is applied to a biaxially stretched base film made of polyethylene naphthalate resin.
  • a specific description will be given, taking as an example a film in which a cured layer made of (an alicyclic polyimide resin in which a cyclic unsaturated organic compound is not contained in a polyimide resin) is laminated.
  • the storage elastic modulus of the film in the above (d) and (e) is (E ′), manufactured by IT Measurement Control Co., Ltd. by the dynamic viscoelasticity measurement method described in JIS K-7198 A method.
  • the longitudinal direction which is the longitudinal direction of the film, and the transverse direction perpendicular to the direction are at a vibration frequency of 10 Hz, a strain of 0.1%, and a heating rate of 3 ° C. This is a value obtained by measuring viscoelastic behavior from 0 ° C. to 220 ° C. per minute.
  • the glass transition temperature in the above (d) and (e) is the ratio (E ′ / E ′) of the storage elastic modulus (E ′) and loss elastic modulus (E ′′) measured under the same conditions by the same apparatus. It is a value calculated from the peak value of tan ⁇ indicated by ').
  • FIG. 1 is the figure which showed the dimensional change by the storage elastic modulus (E ') change in each layer and a thermomechanical property test (TMA) regarding the transparent laminated film which concerns on 3rd Embodiment.
  • the biaxially stretched polyethylene naphthalate film (base film) has a sufficiently high storage elastic modulus (E ′) at a temperature lower than the glass transition temperature (155 ° C.) by at least 20 ° C. or more. ) (For example, 7.3 GPa at 25 ° C.).
  • the storage elastic modulus (E ′) decreases at a temperature higher than the glass transition temperature by at least 20 ° C., and the dimensional stability is low at this temperature from the results of the thermomechanical property test (TMA). Can be confirmed. Further, it can be confirmed that the storage elastic modulus (E ′) is lowered at a temperature higher by at least 20 ° C. than the glass transition temperature, and it can be confirmed from the TMA result that shrinkage occurs.
  • the cured layer (transparent polyimide resin layer) of the transparent laminated film according to the third embodiment has a storage elastic modulus (compared to the base film) at a temperature lower than the glass transition temperature of the base film by at least 20 ° C.
  • the storage elastic modulus (E ′) is low, at a temperature higher than the glass transition temperature of the base film by at least 20 ° C., the storage elastic modulus (E ′) is higher than that of the base film, and it can be confirmed from the results of TMA that it expands. .
  • the transparent laminated film according to the third embodiment has a storage elastic modulus behavior in which the base film and the cured layer are opposed to each other, and thereby, the glass transition of the base film from room temperature. (Below the temperature), the dimensional stability of the base film becomes dominant, and in the high temperature range (above the glass transition temperature of the base film), the cured layer expands moderately and suppresses the shrinkage of the base film. A film having high dimensional stability can be obtained in a wide range up to.
  • various preferred aspects such as the base film, the curable resin composition, and the constituent materials and blending amounts of the fine particles are the same as those described above. .
  • the transparent laminated film according to the fourth embodiment is a transparent laminated film having a configuration in which cured layers are laminated on both front and back sides of the base film, and the base film is a biaxially stretched polyester film,
  • the cured layer includes a photocurable resin composition, and is laminated on the base film so that the total thickness of the cured layer is 10 to 150% with respect to the base film, and the following (g) and It is a transparent laminated film having the property (h).
  • the storage elastic modulus (E ′) by dynamic viscoelasticity measurement in the longitudinal direction and the transverse direction of the laminated film at 200 ° C. is 0.35 GPa or more
  • the longitudinal direction and the transverse direction in the range of 150 to 200 ° C. Each linear expansion coefficient of -85 to 85 ppm / ° C
  • the raw material for the biaxially stretched polyester film can be used without any particular limitation.
  • Specific examples include various polyester resins such as polyethylene terephthalate and polyethylene naphthalate. Of these, polyethylene naphthalate is preferably used from the viewpoint of heat resistance.
  • the thickness of the biaxially stretched polyester film varies depending on the application. For example, it is preferably 10 ⁇ m to 50 ⁇ m, more preferably 10 ⁇ m or more and 38 ⁇ m or less, especially 10 ⁇ m or more and 30 ⁇ m or less, and further preferably 12 ⁇ m or more or 25 ⁇ m or less.
  • the biaxially stretched polyester film preferably has a linear expansion coefficient in the range of 50 to 100 ° C. of ⁇ 60 ppm / ° C. to 60 ppm / ° C.
  • the dimensional stability in the range of 50 to 150 ° C. is ⁇ 60 ppm / ° C. to 60 ppm / ° C., but improving the thermal dimensional stability of the biaxially stretched polyester film to such a temperature range is Due to the increase, the dimensional stability in the range of 50 to 100 ° C. is usually ⁇ 60 ppm / ° C.
  • the linear expansion coefficient in the fourth embodiment is a dimensional change in a predetermined temperature range when a thermomechanical analyzer is used and the tensile load is fixed at 0.1 mN and the temperature is raised from room temperature at a rate of 2 ° C./min. It is a value calculated from the value.
  • the biaxially stretched polyester film has been subjected to a heat set treatment for alleviating shrinkage.
  • the heat setting treatment is preferably performed at a temperature of Tg to Tg + 100 ° C. for 0.1 to 180 minutes, where Tg is the glass transition temperature of the biaxially stretched polyester film.
  • the transparent laminated film of the fourth embodiment has a linear expansion coefficient of ⁇ 85 to 85 ppm / ° C. in the longitudinal direction (MD direction) and the transverse direction (TD direction) of the laminated film in the range of 150 to 200 ° C., Preferably it is -70 to 70 ppm / ° C, particularly preferably -65 to 65 ppm / ° C, more preferably -50 to 50 ppm / ° C, more preferably -40 to 40 ppm / ° C, and further preferably -20 to 20 ppm / ° C. .
  • the dimensional change of the transparent laminated film when placed in a high temperature environment is small, and there is no problem in practical characteristics, which is preferable.
  • destruction of the gas barrier layer due to thermal dimensional change is alleviated, and when used as a film for flexible display substrates, it is possible to improve problems such as warping and disconnection of wiring. Become.
  • the processing method for improving the thermal dimensional stability of the polyester film can mainly include changing the stretching conditions such as the stretching temperature and the stretching ratio, and the heat treatment conditions such as the heat treatment temperature and the heat treatment time.
  • the heat treatment time becomes enormous, which is not preferable from the viewpoint of manufacturing cost. Therefore, in the fourth embodiment, by providing a cured layer of the photocurable resin composition on both the front and back sides of the film, it is possible to maintain the elastic modulus of the film at high temperatures and reduce the thermal dimensional change.
  • the storage elastic modulus (E ′) value in the dynamic viscoelasticity measurement in the longitudinal direction and the transverse direction of the transparent laminated film in the fourth embodiment is preferably 0.35 GPa or more at 200 ° C., more preferably 0. .45 GPa or more, more preferably 0.6 Pa or more, and particularly preferably 0.7 GPa or more.
  • a predetermined photocurable resin composition so as to have such physical properties, a film having excellent dimensional stability at high temperatures can be obtained.
  • the value is 10 GPa or less from a viewpoint of post-processing aptitude.
  • the storage elastic modulus (E ′) value of the transparent laminated film in the fourth embodiment can be adjusted by a method such as lamination, addition, and filling of a material having a high elastic modulus.
  • the linear expansion coefficient and the storage elastic modulus (E ′) of the transparent laminated film may be both in the vertical direction and the horizontal direction from the viewpoint of warpage in a high temperature environment. preferable.
  • the average particle size is usually preferably 1 to 1000 nm, more preferably 10 nm or more or 500 nm. It is as follows. These particles contain 20 to 80 parts by mass of inorganic fine particles having an average particle size of 1 nm to 1000 nm when the total solid content in the photocurable resin composition is 100 parts by mass. preferable. If the content is too small, the contribution to improving the elastic modulus is small, and if it is too large, the cured film may be peeled off.
  • the cured layer of the photocurable resin composition is disposed in a total thickness of 10 to 150% with respect to the thickness of the biaxially stretched polyester film as the substrate.
  • the thickness of the cured layer is more preferably 25% or more or 150% or less in total with respect to the thickness of the biaxially stretched polyester film, and more preferably 30% or more and 120%.
  • this is not the case when inorganic fine particles are contained in the photocurable resin composition, and it is possible to have sufficient thermal dimensional stability even in the range of about 10 to 100%.
  • the transparent laminated film of 4th Embodiment has the cured layer of a photocurable resin composition on the front and back both sides of the biaxially stretched polyester film which is a base film. If the hardened layer is provided only on one side, curling occurs, which is not preferable for practical use. By having the hardened layer on both the front and back sides, it becomes possible to suppress the occurrence of curling.
  • the thickness of the cured layers arranged on both sides of the front and back is not particularly limited, but from the viewpoint of reducing curl by giving symmetry to the elastic modulus, the thickness ratio is that of one cured layer and the other cured
  • the layer thickness ratio is preferably 0.5 to 1.5, more preferably 0.75 or more or 1.25 or less.
  • the photocurable resin composition preferably contains a photocurable resin having a fluorene skeleton.
  • the photo-curable resin composition is preferably one that is substantially cured with an integrated ultraviolet light amount of 10 to 1000 mJ / cm 2 .
  • substantially means that the cured layer is cured to the extent that it does not stick to the other surface when the film is wound. If the integrated ultraviolet light amount is within the range, the influence of heat on the substrate can be ignored, and generation of thermal wrinkles on the film can be prevented. Furthermore, efficiency is favorable from the viewpoint of production speed, which is preferable.
  • the transparent laminated film of the fourth embodiment is measured according to JIS-C23307.4.6.1 (shrinkage dimensional change rate: A method), heated at a temperature of 200 ° C. for 10 minutes, and then room temperature (25 ° C.). It is preferable that the shrinkage ratio in the vertical direction and the horizontal direction measured at is less than 1.0%.
  • the transparent laminated film of the fourth embodiment can be used for applications requiring dimensional stability at high temperatures, particularly for packaging films and electronic component films, and by performing gas barrier processing, organic EL It can use suitably also for semiconductor devices, such as a liquid crystal display element, and a solar cell use.
  • preferable aspects such as the base material film, the photocurable resin composition, and the constituent materials and blending amounts of the fine particles are the same as those described above.
  • Example 1 (Preparation of curable resin composition) 14.4 parts by mass of a photocurable bifunctional acrylate monomer / oligomer having a tricyclodecane structure which is a rigid skeleton (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-DCP”, refractive index 1.50), transparent 51.1 parts by mass of fine particles A (manufactured by Admatechs Co., Ltd., trade name “YA010C-SM1”, colloidal silica), 0.44 parts by mass of photocuring agent (manufactured by BASF, 1-hydroxycyclohexyl-phenylketone), and solvent (Arakawa Chemical Industries, Ltd., methyl ethyl ketone) 34.1 parts by mass was uniformly mixed to obtain a curable resin composition for forming a cured layer (hereinafter referred to as “paint A”).
  • the volume fraction of colloidal silica in the cured layer was 63.4% by volume
  • the coating A was applied and cured in the same manner as described above to obtain a transparent laminated film 1 having a cured layer formed on both surfaces. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 1 was evaluated.
  • Example 2 (Preparation of transparent laminated film 2)
  • coating A was applied using a wire bar coater on both sides of film A so that the thickness after curing was 10 ⁇ m, and cured to form a cured layer on both sides.
  • a transparent laminated film 2 was obtained. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 2 was evaluated.
  • Example 3 (Preparation of transparent laminated film 3)
  • a 7 ⁇ m-thick base film Mitsubishi Plastics, trade name “Superio UT-F film”, polyetherimide film, hereinafter referred to as “film B”
  • the coating A was applied and cured using a wire bar coater so that the thickness after curing was 5 ⁇ m, and a transparent laminated film 3 having a cured layer formed on both sides was obtained. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 3 was evaluated.
  • Example 4 (Preparation of transparent laminated film 4)
  • the paint A is applied to both surfaces of the film B using a wire bar coater so that the thickness after curing is 10 ⁇ m, and cured to form a cured layer on both surfaces.
  • a transparent laminated film 4 was obtained. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 4 was evaluated.
  • Example 5 (Preparation of coating layer) 97 parts by mass of a photocurable bifunctional acrylate monomer / oligomer having a rigid skeleton tricyclodecane structure (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-DCP”, refractive index 1.50), and light
  • a curable resin composition for forming a cured layer hereinafter, referred to as “paint B” in which 3 parts by mass of a curing agent (manufactured by BASF, 1-hydroxycyclohexyl-phenyl ketone) is uniformly mixed and does not contain transparent fine particles. Obtained.
  • the volume ratio of the transparent fine particles in the cured layer was 63.4% by volume.
  • the shape of the fine particles C was scaly, the short diameter of the fine particles C was 7 nm, the long diameter was 8000 nm, and the average particle size (arithmetic average value) of the fine particles C was 403 nm.
  • Example 2 In the same procedure as in Example 1, the coating material D was applied to both surfaces of the film A, but the coating film was whitened, cracked and peeled simultaneously with the drying of the coating film. This is probably because the three-dimensional interaction between particles was too large, the coating film became brittle, and the flat surface reflected light, resulting in whitening. In addition, total light transmittance was measured based on the measuring method mentioned later.
  • the storage elastic modulus (E ′) of the film was measured using a dynamic viscoelasticity measuring device “DVA-200” manufactured by IT Measurement Control Co., Ltd. according to the dynamic viscoelasticity measuring method described in JIS K-7198 A method.
  • MD direction which is the longitudinal direction of the film
  • the viscoelastic behavior from 25 ° C. to 250 ° C. was measured at a heating rate of 3 ° C./min at a vibration frequency of 10 Hz and a strain of 0.1%.
  • the storage elastic modulus (E ′) at a temperature of 200 ° C. was determined from the obtained data.
  • the shrinkage rate of the film was changed to 120 ° C to 200 ° C or 220 ° C according to JIS C23077.4.6.1 (shrinkage dimensional change rate: method A), and a strip with a marked line. The dimensional change rate before and after heating was measured and determined. The shrinkage rate was measured in both the longitudinal direction (MD direction), which is the longitudinal direction of the film, and the lateral direction (TD direction) orthogonal thereto.
  • MD direction longitudinal direction
  • TD direction lateral direction
  • the shrinkage rate of the film was measured by the following method. Three strip test pieces having a long side in the film flow direction, a width of 10 mm, and a length of 100 mm were prepared, and marked lines with an interval of 100 mm were written around the center of each test piece. The interval between the marked lines was read with a caliper with an accuracy of 0.01 mm. The test piece was suspended in a constant temperature bath at a predetermined temperature for 10 minutes under no load, taken out, allowed to cool at room temperature for 15 minutes or more, and the interval between the marked lines read earlier was measured. The rate of change in the distance between the marked lines before and after heating was determined and used as the rate of change in size before and after heating.
  • the average particle size of the fine particles was measured using a high resolution scanning electron microscope (SEM) S-4500 manufactured by Hitachi High-Technologies Corporation. Specifically, the sample tilt angle is set to 30 degrees, the acceleration voltage is 5 kV, the soaking distance is 15 mm, the direct magnification is set to 30,000 times, and after acquiring a digital image, 200 particles are randomly collected from the obtained image. The average particle diameter of the fine particles was determined by measuring the particle diameter and obtaining the average.
  • SEM scanning electron microscope
  • High dimensional stability at high temperatures for example, 200 ° C. or higher
  • a transparent laminated film having properties can be obtained.
  • Example 6 (Preparation of curable resin composition) 7.8 parts by mass of photocurable bifunctional acrylate monomer / oligomer having a tricyclodecane structure which is a rigid skeleton (manufactured by Shin-Nakamura Chemical Co., Ltd., trade name “A-DCP”, refractive index 1.50) Transparent fine particles E having a particle diameter of 13 nm (manufactured by Nissan Chemical Industries, Ltd., trade name “MEK-AC-2101”, organic solvent-dispersed colloidal silica dispersion, refractive index 1.46) 92.0 parts by mass and a photocuring agent ( 0.2 part by mass of 1-hydroxycyclohexyl-phenyl ketone (manufactured by BASF) was uniformly mixed to obtain a curable resin composition for forming a cured layer (hereinafter referred to as “paint E”).
  • the volume fraction of colloidal silica in the cured layer of this example was 70% by volume.
  • the coating E prepared above is applied to one side of the film B using a wire bar coater so that the thickness after curing is 10 ⁇ m, and then the solvent is dried by placing it in an oven set at 120 ° C. for 10 minutes.
  • the film was placed in a belt conveyor apparatus with the end of the film fixed, and the coated surface was irradiated with a high-pressure mercury lamp (160 W / cm) to obtain a film having a photocurable cured layer on one side.
  • the coating E was applied and cured in the same manner as described above to obtain a transparent laminated film 6 having a cured layer formed on both surfaces. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 6 was evaluated.
  • Example 7 (Preparation of transparent laminated film 7)
  • the coating E prepared above is applied to one side of the film A using a wire bar coater so that the thickness after curing is 10 ⁇ m, and then the solvent is dried by placing it in an oven set at 120 ° C. for 10 minutes.
  • the film was placed in a belt conveyor apparatus with the end of the film fixed, and the coated surface was irradiated with a high-pressure mercury lamp (160 W / cm) to obtain a film having a photocurable cured layer on one side.
  • coating E is applied and cured in the same manner as described above to obtain a transparent laminated film 7 having a cured layer formed on both surfaces. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 7 was evaluated.
  • Example 8 (Preparation of transparent laminated film 8) In the same procedure as in Example 5, coating layer B prepared above is applied to one side of film B so that the thickness after curing is 5 ⁇ m, and cured layers are formed on both sides. A transparent laminated film 8 was obtained. Based on the measuring method mentioned later, the physical property of the obtained transparent laminated film 8 was evaluated.
  • the storage elastic modulus (E ′) and the total light transmittance were measured according to the same method as in Example 1.
  • the shrinkage rate was measured according to the same method as in Example 1 except that the temperature of the thermostatic chamber was changed from 120 ° C. to 200 ° C., 220 ° C. and 250 ° C., respectively.
  • the fine particles used in the above examples were also measured according to the same method as in Example 1. The respective measurement results are shown in Table 2.
  • Linear expansion coefficient The linear expansion coefficients of the films produced in Examples 6 to 8 and Comparative Examples 6 and 7 were determined by thermal mechanical analysis (TMA method) using a thermal stress strain measuring device (manufactured by Seiko Instruments Inc., TMA / SS6100). It was measured. Measurement conditions are as follows: Specimen width: 45 mm, Chuck distance: 15 mm, Load: 0.1 g, Dimensional change of test piece measured when heating from room temperature to 250 ° C., heating rate: 3 ° C./min. I asked for it.
  • Example 9 (Preparation of curable resin composition) 66.6 parts by mass of a transparent resin (trade name “HBSQ1004-2” thiol silsesquioxane manufactured by Arakawa Chemical Industries, Ltd.) and a photo-curing agent (trade name “HBSQ2001-3” manufactured by Arakawa Chemical Industries, Ltd., many (Functional arylate) 33.3 parts by mass are uniformly mixed, and a curable resin composition for forming a cured layer (storage elastic modulus (E ′) at a temperature of 220 ° C.): 1.1 GPa, storage elasticity at a temperature of 25 ° C. Ratio (E ′) b: 1.3 GPa, hereinafter referred to as “paint F”).
  • a transparent resin trade name “HBSQ1004-2” thiol silsesquioxane manufactured by Arakawa Chemical Industries, Ltd.
  • a photo-curing agent trade name “HBSQ2001-3” manufactured by Arakawa
  • the transparent laminated film 9 in which the hardened layer was formed in both surfaces was obtained by apply
  • the characteristics of the obtained transparent laminated film 9 were evaluated based on the measurement method described later.
  • Example 10 (Preparation of transparent laminated film 10) On one side of film B (Tg: 234.4 ° C., storage elastic modulus (E ′) at temperature 260 ° C. a: 7.5 MPa, storage elastic modulus (E ′) b at temperature 25 ° C.): 2.8 GPa) The thickness after curing of the coating F prepared above (storage elastic modulus (E ′) a at a temperature of 260 ° C.
  • the transparent laminated film 10 in which the hardened layer was formed in both surfaces was obtained by apply
  • the storage elastic modulus (E ′) a below is lower than the storage elastic modulus of the base film under the same condition and is 20 ° C. higher than the glass transition temperature of the base film (E ′).
  • b is larger than the storage elastic modulus of the base film under the same conditions, the contribution of the cured layer with respect to thermal dimensional stability is increased, and high dimensional stability at high temperatures (eg, 200 ° C. or higher) is achieved.
  • the transparent laminated film which has can be obtained.
  • Example 11 (Preparation of photocurable resin composition)
  • Composition EA-HG001 (Osaka Gas Chemical Co., Ltd.) 100 parts by mass, fluorene acrylate 40-60% by mass, 2-butanone (Nacalai Tesque Co., Ltd.) 50 parts by mass, and 1-hydroxycyclohexyl-phenyl 3 parts by mass of ketone (manufactured by BASF) were uniformly mixed to obtain a photocurable resin composition (hereinafter referred to as “paint G”).
  • UV integrated light quantity is measured by using an UV integrated light meter (Ushio Electric, UNIMETER UIT-250, UVD-C365), passing through the belt conveyor device in the same way as curing, and irradiating the sensor with a high-pressure mercury lamp (160 W / cm). And measured.
  • UV integrated light meter Ushio Electric, UNIMETER UIT-250, UVD-C365
  • the transparent laminated film 11 with the cured layer formed on both sides was obtained by applying the coating material G and curing the surface of the film where the cured layer was not formed in the same manner as described above. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 11 was evaluated.
  • Example 12 (Preparation of transparent laminated film 12) A transparent laminated film 12 with a cured layer formed on both sides was obtained in the same manner as in Example 11 except that the coating G was applied using a wire bar coater so that the thickness after curing was 3 ⁇ m. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 12 was evaluated.
  • Example 13 (Preparation of transparent laminated film 13) Composition U-6LPA (made by Shin-Nakamura Chemical Co., Ltd.) 100 parts by mass containing 60 to 70% by mass of urethane acrylate, 100 parts by mass of 2-butanone (produced by Nacalai Tesque Co., Ltd.), and 1-hydroxycyclohexyl-phenyl ketone 3 parts by mass (manufactured by BASF) were uniformly mixed to obtain a photocurable resin composition (hereinafter referred to as “paint H”). And in Example 11, except having used the coating material H instead of the coating material G, it carried out similarly to Example 11, and obtained the transparent laminated film 13 in which the cured layer was formed in both surfaces. The characteristics of the obtained transparent laminated film 13 were evaluated based on the measurement method described later.
  • Example 14 (Preparation of transparent laminated film 14) Instead of the film A, a diamond foil T100 having a thickness of 12 ⁇ m (polyethylene terephthalate (PET) film manufactured by Mitsubishi Plastics, Inc., storage elastic modulus at 200 ° C .: longitudinal direction 0.234 GPa, lateral direction 0.201 GPa, 150 to 200 ° C.
  • the coefficient of linear expansion was: ⁇ 864 ppm / ° C. in the vertical direction, ⁇ 153 ppm / ° C. in the horizontal direction, hereinafter referred to as “film C”), and the thickness of the coating G used in Example 11 after curing was 6 ⁇ m. Except having applied using the wire bar coater, it carried out similarly to Example 11, and obtained the transparent laminated film 14 in which the hardened layer was formed in both surfaces. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 14 was evaluated.
  • PET polyethylene terephthalate
  • Example 15 (Preparation of transparent laminated film 15) 100 parts by mass of a composition EA-HG001 (Osaka Gas Chemical Co., Ltd.) containing 40-60% by mass of fluorene acrylate, Colloidal Silica MEK-ST-L (MEK-dispersed silica manufactured by Nissan Chemical Industries, Ltd.), average particle 500 parts by mass of a diameter of about 50 nm and a solid content of about 30%) and 3 parts by mass of 1-hydroxycyclohexyl-phenyl ketone (Irgacure 184 manufactured by BASF) were uniformly mixed to obtain a photocurable resin composition (hereinafter referred to as “paint I”). ").
  • Example 11 except having used the coating material I instead of the coating material G, it carried out similarly to Example 11 and obtained the transparent laminated film 15 in which the hardened layer was formed in both surfaces. Based on the measuring method mentioned later, the characteristic of the obtained transparent laminated film 15 was evaluated. Although the obtained film contains inorganic fine particles having high heat resistance in the cured layer even though the ratio of the cured layer thickness to the substrate film thickness is equivalent to that of Example 11, the dimensional stability at high temperature is improved. It was a very good film.
  • Example 16 (Preparation of transparent laminated film 16) Instead of film A, Teonex Q51 with a thickness of 25 ⁇ m (polyethylene naphthalate film manufactured by Teijin Limited, storage elastic modulus at 200 ° C .: longitudinal direction 0.266 GPa, lateral direction 0.270 GPa, linear expansion coefficient at 150 to 200 ° C. Wire bar coater so that the thickness of the coating I used in Example 15 after curing is 4 ⁇ m using: longitudinal direction ⁇ 491 ppm / ° C., lateral direction ⁇ 201 ppm / ° C., hereinafter referred to as “film D”).
  • a transparent laminated film 16 having a cured layer formed on both sides was obtained in the same manner as in Example 11 except that the coating was used. The characteristics of the obtained transparent laminated film 16 were evaluated.
  • Example 17 The transparent laminated film 12 obtained in Example 12 was cut into a size of 100 mm in the vertical direction and 10 mm in the horizontal direction, placed in an oven set at 200 ° C. for 10 minutes, taken out of the oven and returned to room temperature, and then used with a vernier caliper. The amount of shrinkage in the vertical direction was measured with an accuracy of 0.1 mm. Similarly, the laminated film is cut into a size of 10 mm in the vertical direction ⁇ 100 mm in the horizontal direction, put in an oven set at 200 ° C. for 10 minutes, taken out of the oven and returned to room temperature, and then the shrinkage in the horizontal direction is reduced to 0 using calipers. Measured with an accuracy of 1 mm. For the thermal shrinkage, the ratio of shrinkage to the original size before shrinkage was expressed as a% value in the vertical and horizontal directions. Table 4 shows the thermal shrinkage of the obtained film.
  • Example 18 (Preparation of transparent laminated film 17) A transparent laminated film 17 having a cured layer formed on both sides was obtained in the same manner as in Example 15 except that the coating I was applied using a wire bar coater so that the thickness after curing was 3 ⁇ m. Table 4 shows the results of evaluating the obtained transparent laminated film 17 in the same manner as in Example 17.
  • Example 19 (Preparation of transparent laminated film 18)
  • the four side edges of the thickness film A cut out to A4 size were fixed to a metal frame, put in an oven set at 200 ° C. for 60 minutes, and heat set. Except having used the taken-out film as a base material, it carried out similarly to Example 18 and obtained the transparent laminated film 18 in which the hardened layer was formed in both surfaces.
  • Table 4 shows the results of evaluating the obtained transparent laminated film 18 in the same manner as in Example 17. Since the shrinkage
  • Example 20 Gas barrier processing was carried out on the transparent laminated film 12 obtained in Example 12. SiO was evaporated by a heating method under a vacuum of 1 ⁇ 10 ⁇ 5 Torr using a vacuum deposition apparatus, and an SiOx inorganic layer having a thickness of about 50 nm was formed on the laminated film to obtain a gas barrier film.
  • the obtained gas barrier film was evaluated for water vapor transmission rate by the following method according to various conditions of JISZ0222 “Testing moisture permeability of moisture-proof packaging container” and JISZ0208 “Testing moisture permeability of moisture-proof packaging material (cup method)” did.
  • the water vapor transmission rate on the fourth day of measurement was 0.055 g / m 2 ⁇ day.
  • the storage elastic modulus (E ′) of the film was measured using a dynamic viscoelasticity measuring device “DVA-200” manufactured by IT Measurement Control Co., Ltd. according to the dynamic viscoelasticity measuring method described in JIS K-7198 A method.
  • MD direction which is the longitudinal direction of the film and the transverse direction (TD direction) perpendicular to the direction
  • the vibration frequency is 10 Hz
  • the strain is 0.1%
  • the heating rate is 25 ° C./min.
  • the viscoelastic behavior up to 250 ° C. was measured, and the storage elastic modulus (E ′) at a temperature of 200 ° C. was determined from the obtained data.
  • the linear expansion coefficient of the film was measured using a thermomechanical analyzer (manufactured by Seiko Instruments Inc., TMA-120). The measurement conditions were as follows: test piece width: 3 mm, chuck distance: 10 mm, load: 0.1 mN, heating from 25 ° C. to 250 ° C., heating rate: 2 ° C./min. Dimensional change ratio of the test piece measured between 200 ° C. and 200 ° C .: [(dimensional change between 150 ° C. and 200 ° C./dimensional value at 150 ° C.) / Temperature change amount] ⁇ 10 6 (ppm / ° C.) Asked.
  • the transparent laminated film of the present invention is used for applications requiring dimensional stability at high temperatures, particularly packaging films, liquid crystal displays, organic light emitting displays (OLED), electrophoretic displays (electronic paper), touch panels, color filters, backs. It can be suitably used as a substrate for a display material such as a light or a film for electronic parts such as a substrate for a solar cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 透明性及び高温における熱寸法安定性に優れ簡易な製造工程を用いて製造することが可能な、透明積層フィルムを提供する。基材フィルムの両面に硬化性樹脂組成物の硬化層を積層した構成の積層フィルムであって、温度200℃における積層フィルムの縦方向の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの貯蔵弾性率(E´)よりも大きく、かつ積層フィルムの全光線透過率が80%以上であることを特徴とする、透明積層フィルムとする。

Description

透明積層フィルム
 本発明は、例えば太陽電池、有機系太陽電池、フレキシブルディスプレイ、有機EL照明、タッチパネルなどの基材として用いることができる透明積層フィルムに関する。詳しくは、高い透明性を備えると共に、例えば回路形成や各種素子を該フィルムに配置する際などに加熱を行った時の寸法安定性に優れた透明積層フィルムに関する。
 照明や表示部材、太陽電池、有機系太陽電池、フレキシブルディスプレイ、有機EL照明などで使用される基板や、フロントシート、バックシートなどには、透明性、軽量性、フレキシブル性のほか、高い耐熱性などの様々な性質が求められる。
 従来、有機ELなどの各種表示素子や、太陽電池などの基板材料として、ガラスが用いられてきた。しかしながら、ガラスは、割れやすい、重い、薄型化困難などの欠点があったばかりか、近年のディスプレイの薄型化及び軽量化や、ディスプレイのフレキシブル化に関してガラスは十分な材質を有していなかった。そのため、ガラスに代わる代替材料として、薄型でかつ軽量の透明樹脂製のフィルム状基板が検討されている。
 このような用途において、フィルム状の樹脂製基板を用いる場合、フィルムには高い耐熱性が求められる。例えば、フィルム上にTFTなどの回路を形成する場合、回路形成時にパターンずれを起こさないために、TFTの熱処理温度である200℃前後での高い寸法安定性がフィルムには求められる。
 しかし、従来の通常のポリエステルフィルムは、150℃以上(具体的には150℃~200℃)の高温雰囲気下における熱寸法安定性が不十分であった。
 そのため、近年、ガスバリア加工用フィルムや、フレキシブルディスプレイ基板用フィルムとして、高い熱寸法安定性を有する樹脂フィルムが求められている。
 高温下における寸法安定性を樹脂フィルムに付与する手段としては、例えば特許文献1において、フィルム製造工程の最終手段として熱弛緩処理(「アニール処理」「ヒートセット処理」とも称される)を付加する方法が開示されている。
 また、特許文献2及び3には、通常の工程によって製造したフィルムの表面に各種塗膜を形成する方法が開示されている。
 特許文献4には、ポリマー基板及び平坦化コーティング層を含むフィルムであって、かかるコーティング層の表面上に形成されたバリア層を有する複合フィルムについて開示されている。かかる複合フィルムは、ポリマー基板がヒートセット及び熱安定化されているので、高い寸法安定性を有する。
 さらに特許文献5には、平均線膨張係数が50ppm/K以下である層(A層)と、引張弾性率が1GPa以下である層(B層)とを備えた透明多層シートについて開示されている。より具体的には、B層/A層/B層の3層からなる透明多層シートなどが開示され、かかる多層シートは、全光線透過率が91%及び平均線膨張係数が43ppm/Kであって、透明性と寸法安定性に優れることが開示されている。
 また、特許文献6には、高温時の寸法安定性が高く、透明性の高いポリイミドやポリアミドなどが開示されている。これらは流延法によって製膜していることから配向が殆ど存在しないため、加熱を行った際の収縮は発生しない。
特開2008-265318号公報 特開2001-277455号公報 特許第2952769号 特表2011-518055号公報 特開2007-298732号公報 特開昭61-141738号公報
 上記特許文献1に記載に記載されているように、従来タッチパネルなどの基材シートとして用いる透明樹脂フィルムは、高温(例えば200℃以上)での寸法安定性を高めるために、ヒートセット処理を施して製造するのが一般的であった。そのため、製造工程が複雑になり、フィルム自体の製造コストが高くなってしまうという課題を抱えていた。
 そこで本発明の目的は、従来技術の問題を鑑み、透明性及び高温(例えば200℃以上)における熱寸法安定性に優れ、しかも簡易な製造工程によって製造することができる、新たな透明積層フィルムを提供することにある。
 本発明は、基材フィルムの表裏両側に硬化層を有する積層フィルムであって、温度200℃における積層フィルムの少なくとも一方向の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの少なくとも一方向の貯蔵弾性率(E´)よりも大きく、かつ積層フィルムの全光線透過率が80%以上であることを特徴とする透明積層フィルムを提案するものである。
 本発明が提案する透明積層フィルムは、温度200℃における積層フィルムの少なくとも一方向の貯蔵弾性率(E´)が、基材フィルムの少なくとも一方向の貯蔵弾性率(E´)よりも大きくような硬化層を、基材フィルムの表裏両側に設けたことにより、従来のようにヒートセット処理を行わなくても、透明性及び高温(例えば200℃以上)における熱寸法安定性に優れた透明積層フィルムを得ることができる。そのため、簡易な製造工程によって、透明性及び高温(例えば200℃以上)における熱寸法安定性に優れた透明積層フィルムを得ることができる。
 このように本発明が提案する透明積層フィルムは、基材フィルムの表裏両側に設けられた硬化層が、高温時に基材フィルムが収縮しようとする応力に耐えることができるので、透明性を維持しつつ、加熱処理による寸法変化(熱寸法安定性)が少ないという利点がある。
 よって、本発明が提案する透明積層フィルムは、例えば液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板や、太陽電池の基板のほか、光電素子基板などに好適に使用することができる。
後述する第3実施形態の一例に係る透明積層フィルムに関し、各層における貯蔵弾性率(E´)変化及び熱機械特性試験(TMA)による寸法変化を示した図である。
 次に、本発明の実施形態の一例について説明する。但し、本発明が下記実施形態に限定されるものではない。
<透明積層フィルム>
 本発明の実施形態の一例に係る透明積層フィルム(以下、「本積層フィルム」と称する。)は、基材フィルムの表裏両側に硬化層を有する透明積層フィルムである。
本積層フィルムは、基材フィルムの表裏両側に所定の硬化層を有するため、高温領域における基材フィルムの収縮応力に当該硬化層が対抗して収縮を緩和することができる。そのため、高温時の収縮に対する本積層フィルムの寸法安定性を向上させることができる。
 本積層フィルムは、基材フィルムの表裏両面に硬化層を直接重ねて積層してもよいし、また、基材フィルムと当該硬化層との間に他の層が介在してもよい。例えば、基材フィルムと当該硬化層との間にアンカーコート層などを介在させることができる。
<硬化層>
 硬化層は、硬化性樹脂を含む硬化性樹脂組成物によって形成された層であるから、硬化性樹脂組成物を含む層である。
かかる硬化層は、高温時(例えば200℃以上)における本積層フィルムの貯蔵弾性率(E´)を、同条件における基材フィルムの貯蔵弾性率(E´)より大きくし、本積層フィルムに高い寸法安定性を付与する役割を持っている。
 なお、本積層フィルムの「硬化層」は、基材フィルムの表裏両側に、硬化性樹脂組成物を塗布し“硬化”させて形成するのが通常であるため、“硬化層”という名称とした。但し、硬化層の形成方法をそのような方法に限定するものではない。
 このように、温度200℃における本積層フィルムの貯蔵弾性率(E´)を、基材フィルムの貯蔵弾性率(E´)よりも大きくするには、例えば、以下の(1)~(3)に示す条件にて硬化層を形成すればよい。
 (1)硬化性樹脂組成物を適宜選択することによって、高温時(例えば200℃以上)の貯蔵弾性率(E´)が基材フィルムよりも大きい硬化層を形成する。
 より具体的には、硬化層を形成する材料として、剛直な骨格を有する分子をもつ硬化性樹脂組成物を用いたり、3次元網目構造を形成できる硬化性樹脂組成物を用いたりすればよい。
 (2)微粒子を充填した硬化層を形成する。
 (3)硬化層の両面の厚み合計を基材フィルムの厚みよりも大きくする。
 上記(1)~(3)に示す方法は、いずれか1つ又は2つ以上を組み合わせて用いることができ、高い剛性を持つ粒子により基材の収縮応力を相殺する点から(2)の手法を採用するのが好ましく、またその効果を増すために(2)及び(3)並びに(1)及び(2)の2つの手法、さらには(1)~(3)の3つの手法を採用することがより好ましい。
(硬化性樹脂組成物)
 硬化層を形成するための硬化性樹脂組成物としては、例えば、有機シロキサン、ユリア樹脂、メラミン樹脂、アクリル樹脂などの光透過性をもつ光硬化性樹脂を含む組成物や、透明ポリイミド前駆体ワニスなどを含む組成物を挙げることができる。これらの中でも、分子内に少なくとも1個の(メタ)アクリロイル基を有する化合物を含有する組成物や、透明ポリイミド前駆体ワニスを含む組成物を用いることが好ましい。
 かかる(メタ)アクリロイル基を有する化合物としては、(メタ)アクリレートモノマーや、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリカーボネート(メタ)アクリレート、フルオレン(メタ)アクリレート等の(メタ)アクリレートを例示することができる。
 迅速に硬化反応を進行させる観点から、アクリレートモノマー、ウレタンアクリレート及びエポキシアクリレートを用いることが好ましい。
 なお、これらは1種又は2種以上を組み合わせて使用することができる。
 上記の他にも、例えば、硬化層の硬化性、吸水性及び硬度などの物性を調整するために、(メタ)アクリレートモノマーや、ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリカーボネート(メタ)アクリレート等の(メタ)アクリレートオリゴマーを、上記硬化性樹脂組成物に対して任意で添加することができる。これらは、1種類又は2種類以上を組み合わせて使用することができる。
 前述の条件(1)、すなわち高温時(例えば200℃以上)の貯蔵弾性率(E´)が基材フィルムよりも大きい硬化層を形成するための硬化性樹脂組成物として、分子中に剛直な骨格を有する光硬化性樹脂を含む組成物と多官能光硬化性樹脂を含む組成物を挙げることができる。
 分子中に剛直な骨格を有する上記光硬化性樹脂としては、例えば環状脂肪族炭化水素、芳香族炭化水素、環状アセタール、環状ケトン、シロキサン、シルセスキオキサンなどの骨格を分子中に有し、且つガラス転移温度(Tg)が200℃よりも高い光硬化性樹脂を挙げることができる。
 他方、上記多官能光硬化性樹脂としては、例えばトリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ジトリメチロールプロパンテトラアクリレート、ジトリメチロールプロパンテトラメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート等のアクリロイル基を2個以上有する(メタ)アクリレートをモノマー成分とする樹脂を挙げることができる。
 このような多官能光硬化性樹脂を用いることで、3次元網目構造を有する硬化層を形成することができ、硬化層が高い貯蔵弾性率(E´)を保持することができる。
 以上の中でも、芳香族炭化水素であるフルオレン骨格を分子中に有する硬化性樹脂や、シルセスキオキサン骨格を有する硬化性樹脂は、耐熱性が非常に高く、さらに硬化反応が迅速である面から好ましい。
 なお、光硬化性樹脂は、必要に応じて上記に挙げた樹脂の中の1種類又は2種類以上を組み合わせて使用することができる。
 これらの光硬化性樹脂は、硬化層中に30~100質量%含まれることが好ましく、中でも30質量%以上或いは70質量%以下、その中でも35質量%以上或いは50質量%以下であるのがより一層好ましい。
 上記の硬化性樹脂組成物には、上記光硬化性樹脂以外の成分として、他の光硬化性のオリゴマー・モノマーや光開始剤、増感剤、架橋剤、紫外線吸収剤、重合禁止剤、充填材、熱可塑性樹脂等を、硬化や透明性、吸水性等の物性に支障とならない範囲で含有することができる。
 特に、活性エネルギー線として紫外線照射を応用する場合は、光開始剤は必須である。該光開始剤としては、例えばベンゾイン系、アセトフェノン系、チオキサントン系、フォスフィンオキシド系及びパーオキシド系等を使用することができる。
 上記の光開始剤の具体例としては、例えばベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェン、メチルオルトベンゾイルベンゾエイト、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、2-メチル-〔4-(メチルチオ)フェニル〕-2-モルホリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、ジエチルチオキサントン、イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、メチルベンゾイルホルメート等を例示することができる。これらは1種を単独で又は2種以上を併用して用いることができる。
 上記光開始剤の量は、組成物の硬化性等に応じて適宜調整される。典型的な光開始剤の量としては、上記硬化性樹脂組成物100質量部に対して1~10質量部である。
 また、上記硬化性樹脂組成物は、必要によって溶剤を添加して使用することができる。溶剤としては、例えばアセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、酢酸ブチル等のエステル類、トルエン、キシレン等の芳香族類、さらにシクロヘキサノン、イソプロパノール等が例示される。
 これら溶剤の使用量は、特に制限されるものではない。通常、硬化性樹脂組成物の固形分全体量100質量部に対して0~300質量部である。
(微粒子)
 前述の条件(2)のように、温度200℃における本積層フィルムの貯蔵弾性率(E´)を、基材フィルムの貯蔵弾性率(E´)よりも大きくする手法の一つとして、基材フィルムの表裏両側に、上記硬化性樹脂組成物に加えて、微粒子(「フィラー」とも称する)を充填した硬化層を形成する方法を挙げることができる。
 硬化層に含有する微粒子としては、例えば酸化ケイ素、酸化アルミニウム、酸化チタン、ソーダガラス、ダイヤモンド等の透明性を有する無機微粒子を挙げることができる。これらの中でも、硬化層の貯蔵弾性率を向上させることができる点、比重や価格等の点から、酸化ケイ素微粒子が好ましい。
 酸化ケイ素微粒子は、表面修飾されたものが多数開発されており、光硬化性樹脂への分散性が高く、均一な硬化膜を形成することができる。酸化ケイ素微粒子の具体例としては、乾燥された粉末状の酸化ケイ素微粒子、有機溶媒に分散されたコロイダルシリカ(シリカゾル)等を挙げることができる。これらの中でも、分散性の点で、有機溶媒に分散されたコロイダルシリカ(シリカゾル)を用いるのが好ましい。
 分散性を向上させる目的であれば、透明性、耐溶剤性、耐液晶性、耐熱性等の特性を極端に損なうことのない範囲で、シランカップリング剤、チタネート系カップリング剤等によって表面処理された酸化ケイ素微粒子や、表面に対して易分散処理をされた酸化ケイ素微粒子であってもよい。
 上記微粒子は、平均粒子径が1nm~1000nmの範囲にある微粒子が好適に用いられる。中でも、透明性を確保する観点から、平均粒子径が200nm以下の微粒子がより好適に用いられる。平均粒子径が、かかる範囲にある微粒子を使用することで、ミー散乱現象によって入射する光に対して散乱現象を起こすことがなく、透明性を確保することができる。なお、上記微粒子の形状が球状でない場合においては、短径と長径の算術平均値をもって平均粒子径とする。
 硬化層に入射する屈折光の量を低減させるためには、微粒子の屈折率が1.6未満であることが好ましい。
 中でも、透明性向上の観点から、硬化性樹脂組成物中の樹脂、特に硬化性樹脂組成物の主成分をなす樹脂と微粒子(フィラー)との屈折率差が0.2未満である微粒子を用いるのが好ましい。
 さらに上記微粒子としては、粒子径の相対標準偏差が50%以下であるものが特に好適である。
 微粒子を硬化層中に高い密度で充填させるには、例えば50体積%以上となるように充填させるには、隣接する粒子の粒子間距離を小さくし、硬化層中の微粒子を最密充填構造に近い充填状態とすることが効果的である。そのためには、粒子径の相対標準偏差が50%以下であるような粒径の揃った微粒子を用いることが好ましい。このような微粒子を用いることにより、高温時の基材フィルムの配向に由来し発生する収縮による寸法変化を低減することができる。
 硬化層全体における上記微粒子の含有率としては、50体積%以上であることが好ましく、中でも55体積%以上或いは90体積%以下であることがより好ましく、さらにその中でも65体積%以上或いは80体積%以下、その中でも特に72体積%以上であることがさらに好ましい。
 上記微粒子を50体積%以上硬化層に含ませると、当該微粒子は最密充填により近い状態で充填されることになり、72体積%以上となると理論的に最密充填となる。
 このような範囲で微粒子を含有することにより、加熱時に基材フィルムの配向などに由来し発生する収縮による寸法変化を硬化層の弾性率によって低減させることが可能となる。
(硬化層の厚み)
 前述の条件(3)のように、温度200℃における本積層フィルムの貯蔵弾性率(E´)を、基材フィルムの貯蔵弾性率(E´)よりも大きくする手法の一つとして、表裏両側の硬化層の厚みの合計を基材フィルムの厚みよりも大きくする方法を挙げることができる。
 表裏両側の硬化層の厚みの合計を基材フィルムの厚みよりも大きくすれば、本積層フィルムの高温時の貯蔵弾性率を高く保持することができ、高い寸法安定性を付与することができる。
 かかる観点から、前記硬化層の厚み合計は、基材フィルムの厚みの100%より大きいことが好ましく、特に100%以上或いは400%以下であることがより一層好ましく、中でも特に150%以上或いは300%以下であることがさらに好ましい。
<基材フィルム>
 本積層フィルムに用いる基材フィルムとしては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエーテルイミド樹脂、透明ポリイミド樹脂、ポリカーボネート樹脂、環状オレフィンホモポリマー、環状オレフィンコポリマー等の環状オレフィン系樹脂などからなるフィルムを挙げることができる。
 これらの中でも、透明であり且つ融点が220℃以上であるか、又はガラス転移温度(Tg)が200℃以上であるという観点から、該基材フィルムには、ポリエーテルイミド樹脂(Tg234℃、融点275℃)、ポリフェニレンサルファイド樹脂(Tg223℃、融点280℃)、ポリエーテルサルフォン樹脂(Tg225℃)、ポリエチレンナフタレート樹脂(Tg155℃、融点270℃)、透明ポリイミド樹脂(Tg250℃以上)などの樹脂からなるフィルムを使用するのが好ましい。
 これらは一種類又は二種類以上の樹脂を組み合わせて含有するフィルムを使用することができる。
 なお、上記透明ポリイミド樹脂として、ポリイミド樹脂の主鎖にヘキサフルオロイソプロピリデン結合を導入したものや、ポリイミド中の水素をフッ素に置換したフッ素化ポリイミドの他、ポリイミド樹脂の構造中に含まれる環状不飽和有機化合物を水添した脂環式ポリイミドなどを挙げることができる。例えば特開昭61-141738号公報、特開2000-292635号公報等に記載されたものを使用することもできる。
(ヒートセット処理)
 本積層フィルムは、基材フィルムの表裏両側に所定の硬化層を設けたことにより、基材フィルムに対してヒートセット処理を行わなくても、透明性及び高温(例えば200℃以上)における熱寸法安定性に優れた透明積層フィルムを得ることができる。しかしながら、収縮を緩和するためのヒートセット処理がなされたフィルムを使用することも可能である。
 基材フィルム上に硬化性樹脂組成物を塗布する前に、予め基材フィルムにヒートセット処理を施すことにより、基材フィルム及び本積層フィルムの寸法安定性をさらに向上させることができる。
 中でも、収縮を緩和するためのヒートセット処理がなされた2軸延伸ポリエステルフィルムは、基材フィルムとして好ましい一例である。
 基材フィルムのヒートセット処理は、該基材フィルムのガラス転移温度をTgとした際、Tg~Tg+100℃の温度で0.1~180分間、該基材フィルムを加熱処理するのが好ましい。
 ヒートセット処理の具体的手法は、必要な温度、時間を維持できる方法であれば特に限定されない。例えば、必要な温度に設定したオーブンや恒温室で保管する方法、熱風を吹き付ける方法、赤外線ヒーターで加熱する方法、ランプで光を照射する方法、熱ロールや熱板と接触させて直接的に熱を付与する方法、マイクロ波を照射する方法などが使用できる。また、取扱が容易な大きさにフィルムを切断してから加熱処理しても、フィルムロールのままで加熱処理してもよい。さらに、必要な時間と温度を得ることができる限りにおいては、コーター、スリッター等のフィルム製造装置の一部分に加熱装置を組み込み、製造過程で加熱を行うこともできる。
(基材フィルムの厚み)
 基材フィルムの厚みは、1μm~200μmであることが好ましく、5μm以上或いは100μm以下であることがさらに好ましい。このような範囲とすることで、光線透過率の向上、ハンドリング性能が高いなどの利点を得ることができる。
<本積層フィルムの物性>
 次に、本積層フィルムが備えることができる各種物性について説明する。
(全光線透過率)
 本積層フィルムは、全光線透過率が80%以上であることが好ましく、85%以上であることがさらに好ましい。本積層フィルムがかかる範囲の全光線透過率を有することで、照明やディスプレイ等では光の減衰を抑えることができ、より明るくなる。また、太陽電池部材としてはより多くの光を取り込めるなどの利点を得ることができる。
(貯蔵弾性率(E´))
 本積層フィルムは、温度200℃における少なくとも一方向、例えば縦方向(MD方向)の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの少なくとも一方向、例えば縦方向の貯蔵弾性率(E´)よりも大きいという特徴を有している。
 中でも、温度200℃における積層フィルムの少なくとも一方向、例えば縦方向の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの少なくとも一方向、例えば縦方向の貯蔵弾性率(E´)の1.0倍を越えることが好ましく、1.1倍以上であることがより好ましい。かかる範囲であれば、高温での熱処理をフィルムに施した際、基材の収縮応力に対して縮まず、フィルムとしての形態を保つことができる。
 また、本積層フィルムは、温度200℃において、少なくとも一方向、例えば縦方向の動的粘弾性測定による貯蔵弾性率(E´)が、1GPa以上であることが好ましい。かかる範囲であれば、高温時での寸法安定性が高く、実用特性上問題となることがないため好ましい。なお、上記貯蔵弾性率(E´)値の上限値は、後加工適正の観点から、100GPa以下であることが好ましい。
(加熱収縮率)
 本積層フィルムは、JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される220℃で10分間加熱した際の縦方向(MD方向)及び横方向(TD方向)の収縮率がいずれも1.0%未満であることが好ましい。本積層フィルムがかかる範囲の収縮率を有することで、回路や素子を形成する際の寸法ズレを少なくし、また無機バリア層を積層させる際にもより高いバリア性を得られる利点を有する。
 また、同条件で測定される250℃での本積層フィルムの縦方向及び横方向の収縮率がいずれも、0.5%未満であることが好ましく、特に0.1%未満であることが好ましい。かかる範囲の収縮率を有することで、上記利点をより向上することが可能となる。
<本積層フィルムの製造方法>
 本積層フィルムは、基材フィルムの表裏両側に、硬化性樹脂組成物などを塗布して硬化させて硬化層を形成することにより製造することができる。
 硬化性樹脂組成物などを塗工する方法としては、例えば、バーコーター塗工、メイヤーバー塗工、エアナイフ塗工、グラビア塗工、リバースグラビア塗工、オフセット印刷、フレキソ印刷、スクリーン印刷、ディップコートなどによって、上記硬化性樹脂組成物を基材フィルムに塗工する方法を挙げることができる。また、ガラスやポリエステルフィルム上で硬化層を成型した後、成型した硬化層を基材フィルムに転写させる方法も有効である。
 以上のように硬化性樹脂組成物を基材フィルムに塗工した後、該硬化性樹脂組成物を硬化(架橋)させる方法としては、熱硬化、紫外線硬化、電子線硬化等の方法を単独又は組み合わせて用いることができる。中でも、短時間かつ比較的容易に硬化達成可能なことから、紫外線硬化による方法を用いることが好ましい。
 紫外線により硬化させる場合、光源としてキセノンランプ、高圧水銀灯、メタルハライドランプを有する紫外線照射装置が使用され、必要に応じて光量、光源の配置などが調整される。
 また高圧水銀灯を使用する場合、80~160W/cmの光量を有したランプ1灯に対して搬送速度5~60m/分で硬化させるのが好ましい。
 一方、電子線により硬化させる場合、100~500eVのエネルギーを有する電子線加速装置の使用が好ましい。
<用途>
 本積層フィルムは、上述のように、透明性を維持しつつ、加熱処理による寸法変化(熱寸法安定性)が少ないという利点を有するため、例えば液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板や、太陽電池の基板のほか、光電素子基板などに好適に使用することができる。
 また、本積層フィルムは、ガスバリアフィルムの基材として使用することができ、ガスバリア加工を施してバリアフィルム(「本バリアフィルム」と称する)として使用することができる。
 従来、ポリエステルフィルムをガスバアリア加工用フィルムとして用いた場合、ガスバリア層にひびが入ったり、シワが生じたりして、ガスバリア性を含む機能を十分に発現することができないなどの問題があった。これに対し、本バリアフィルムはこのような問題が無い点で優れている。
 本バリアフィルムは、有機ELなどの有機半導体デバイスや、液晶表示素子、太陽電池などガスバリア性が求められる用途に好適に用いられる。
 なお、ガスバリア加工は、金属酸化物などの無機物質や有機物などのガスバリア性の高い材料からなるガスバリア層を、本積層フィルムの少なくとも片面に形成する加工方法である。
 この際、ガスバリア性の高い材料としては、例えば珪素、アルミニウム、マグネシウム、亜鉛、錫、ニッケル、チタン、或いはこれらの酸化物、炭化物、窒化物、酸化炭化物、酸化窒化物、酸化炭化窒化物、ダイヤモンドライクカーボン又はこれらの混合物等が挙げられるが、太陽電池等に使用した場合に電流がリークする等の恐れがない点から、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、酸化アルミニウム、酸化炭化アルミニウム及び酸化窒化アルミニウム等の無機酸化物、窒化珪素及び窒化アルミニウム等の窒化物、ダイヤモンドライクカーボン並びにこれらの混合物が好ましい。特に、酸化珪素、酸化炭化珪素、酸化窒化珪素、酸化炭化窒化珪素、窒化珪素、酸化アルミニウム、酸化炭化アルミニウム、酸化窒化アルミニウム、窒化アルミニウム及びこれらの混合物は、高いガスバリア性が安定に維持できる点で好ましい。
 上記材料を用いて本積層フィルムにガスバリア層を形成する手法としては、蒸着法、コーティング法などの方法をいずれも採用可能である。ガスバリア性の高い均一な薄膜を得ることができるという点で蒸着法が好ましい。
 この蒸着法には、物理気相蒸着(PVD)、或いは化学気相蒸着(CVD)等の方法が含まれる。物理気相蒸着法としては、真空蒸着、イオンプレーティング、スパッタリング等が挙げられる。化学気相蒸着法としては、プラズマを利用したプラズマCVD、加熱触媒体を用いて材料ガスを接触熱分解する触媒化学気相成長法(Cat-CVD)等が挙げられる。
 ガスバリア層の厚さは、安定なガスバリア性の発現と透明性の点から、10~1000nmであることが好ましく、40~800nmがより好ましく、50~600nmがさらに好ましい。
 また、ガスバリア層は単層であっても多層であってもよい。ガスバリア層が多層の場合、各層は同じ材料からなっていても、異なる材料からなっていてもよい。
 本バリアフィルムの40℃90%における水蒸気透過率は、好ましくは0.1[g/(m・日)]未満、より好ましくは0.06[g/(m・日)]以下、さらに好ましくは、0.03[g/(m・日)]以下である。
 水蒸気透過率の測定方法は、JISZ0222「防湿包装容器の透湿度試験方法」、JIS Z0208「防湿包装材料の透湿度試験方法(カップ法)」の諸条件に準じ、具体的には実施例に記載の方法で測定される。
<より具体的な実施形態例>
 以下、本発明の好ましい具体的な実施形態の例についてさらに説明する。但し、本発明はこれら実施形態に制限されるものではない。
(第1実施形態)
 第1実施形態に係る透明積層フィルムは、基材フィルムの表裏両側に硬化層を積層してなる構成を備えた透明積層フィルムであり、該硬化層は硬化性樹脂組成物及び平均粒子径が200nm以下の微粒子を含有する組成物を塗布し硬化させることによって形成された層(「塗布層」と称する)であり、以下の(a)及び(b)の性質を有する透明積層フィルムである。
(a)JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、220℃で10分間加熱した際の縦方向及び横方向の収縮率が1%未満
(b)全光線透過率が80%以上
 第1実施形態に係る透明積層フィルムは、極めて優れた透明性と、高温時の高い寸法安定性とを備えた透明積層フィルムである。
 従来から、基材フィルムの寸法安定性を高めるために、基材フィルムに無機微粒子を含有せしめ、加熱時の収縮による寸法変化を改善する図る試みがなされてきた。しかし、無機微粒子を基材フィルムに高密度で充填させると、基材フィルムが脆くなったり、使用する無機微粒子によっては基材フィルムの透明性を低下させたりするなどの問題があった。
 これに対し、上記第1実施形態のように、基材フィルムに、硬化性樹脂組成物及び平均粒子径が200nm以下の微粒子を含有する硬化層(塗布層)を形成することによって、このような問題が生じることなく、透明性と加熱時の収縮に対する寸法安定性を向上することができる。
 なお、第1実施形態において、基材フィルム、硬化性樹脂組成物及び微粒子の構成材料や配合量など、各種好ましい態様は上述したものと同様である。
(第2実施形態)
 第2実施形態に係る透明積層フィルムは、基材フィルムの表裏両側に硬化層を積層してなる構成を備えた透明積層フィルムであり、表裏両側の硬化層の厚み合計が基材フィルムの厚みの150%以上400%以下となるように、硬化層が積層されたものであり、以下の(c)及び(d)の性質を有する、透明積層フィルムである。
(c)0~50℃、50~100℃、100~150℃及び150~200℃の各温度領域において、縦方向(MD方向)及び横方向(TD方向)の線膨張係数の平均値が、-30ppm/℃以上30ppm/℃以下
(d)全光線透過率が80%以上
 第2実施形態に係る透明積層フィルムは、基材フィルムの表裏両側の硬化層の厚みの合計が基材フィルムの厚みの150%以上400%以下であることにより、加熱による基材フィルムの収縮応力に対して硬化層が低収縮性を発揮し、加熱による基材フィルムの膨張応力に対しては硬化層が低膨張性を発揮する。そればかりか、硬化層全体の厚みが基材フィルムの厚みに対して十分に大きいため、フィルム全体としての寸法変化が非常に少なくなる。
 この結果、従来使用されてきたポリエチレンテレフタレートなどの二軸延伸ポリエステルフィルムや透明ポリイミド樹脂等の基材フィルム単体と比べて、第2実施形態に係る透明積層フィルムは、フィルムの収縮、膨張等の問題が生じることなく、低線膨張性を有するフィルムとすることができる。
 なお、上記(c)の線膨張係数は、主に延伸温度や延伸倍率などの延伸条件や、熱処理温度や熱処理時間などの熱処理条件を変化させることにより所望の範囲に調整することができる。但し、この手法のみで熱寸法変化を低減すると、熱処理時間が膨大になってしまうため、製造コストの面から好ましくない。そこで、第2実施形態では、基材フィルムの表裏両側に所定の硬化層を配することにより、加熱時に基材フィルムに由来して発生する収縮或いは膨張による寸法変化を、硬化層の熱安定性と弾性率によって低減させることを可能としている。
 第2実施形態に係る透明積層フィルムは、温度200~220℃の温度領域での縦方向(MD方向)及び横方向(TD方向)の線膨張係数の平均値が、-60ppm/℃以上60ppm/℃以下であることが好ましい。該線膨張係数の平均値がかかる範囲内であれば、透明積層フィルムが高温環境下に置かれた場合の寸法変化分が少なく、反りが発生するなどの問題が無いため好ましい。
 例えば、第2実施形態に係る透明積層フィルムをガスバリア加工用フィルムとして用いた場合、熱寸法変化によるガスバリア層の破壊が緩和されることになる。また、該透明積層フィルムをフレキシブルディスプレイ基板用フィルムとして用いた場合、反りや配線の断線などの問題を改善することが可能となる。
 なお、透明積層フィルムの線膨張係数は、以下のいずれかの方法により測定することができる。
i)熱応力ひずみ測定装置(セイコーインスルメンツ社製、TMA/SS6100)を用い、熱機械分析(TMA法)により測定することができる。この際、試験片幅:45mm、チャック間距離:15mm、荷重:0.1gとし、室温(25℃)~250℃まで、昇温速度:3℃/分で加熱する際に測定される試験片の寸法変化から、線膨張係数を求めることができる。
ii)熱機械分析装置(セイコーインスルメンツ社製、TMA-120)を用いて測定することができる。測定条件は、試験片幅:3mm、チャック間距離:10mm、荷重:0.1mNとして、25℃~250℃まで、昇温速度:2℃/分で加熱する際に、150℃
から200℃の間で測定される試験片の寸法変化量割合:[(150℃
から200℃の間の寸法変化/150℃における寸法値)/温度変化量]×10(ppm/℃)として、線膨張係数を求めることができる。
 なお、第1実施形態と同様に、第2実施形態において、基材フィルム、硬化性樹脂組成物及び微粒子の構成材料や配合量など、各種好ましい態様は上述したものと同様である。
(第3実施形態)
 第3実施形態に係る透明積層フィルムは、基材フィルムの表裏両側に硬化層を積層してなる構成を備えた透明積層フィルムであり、以下の(d)及び(e)の関係を有する硬化層及び基材フィルムを備えた構成からなり、フィルム全体として、以下の(f)の性質を有する透明積層フィルムである。
(d)硬化層は、基材フィルムのガラス転移温度よりも20℃低い温度以下での貯蔵弾性率(E’)aが、同条件下での基材フィルムの貯蔵弾性率より小さい。
(e)硬化層は、基材フィルムのガラス転移温度よりも20℃高い温度以上での貯蔵弾性率(E’)bが、同条件下での基材フィルムの貯蔵弾性率よりも大きい。
(f)JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、220℃で10分間加熱した際の縦方向及び横方向の収縮率が1%未満。
 基材フィルムのみの場合、高温に晒す処理を施すと、成型時に与えられた応力や延伸工程によって引き伸ばされた部位が縮もうとする力が働くため、基材フィルムに収縮が発生してしまうという問題があった。
 これに対し、第3実施形態に係る透明積層フィルムは、基材フィルムに特定の性質を有する硬化層が積層された構成であるため、基材フィルムが収縮する高温領域において、基材フィルムの収縮応力に対抗して、該硬化層が収縮を緩和するため、加熱処理時の収縮に対する寸法安定性を向上させることができる。
 次に、上記(d)及び(e)の条件を満足する硬化層を備えた第3実施形態に係る透明積層フィルムについて、ポリエチレンナフタレート樹脂からなる二軸延伸した基材フィルムに、透明ポリイミド樹脂(具体的には、ポリイミド樹脂に環状不飽和有機化合物が含まれない脂環式ポリイミド樹脂)からなる硬化層を積層させたフィルムを一例とし、具体的に説明する。
 なお、上記(d)及び(e)におけるフィルムの貯蔵弾性率は、(E’)は、JIS K-7198 A法に記載の動的粘弾性測定法により、アイティー計測制御(株)製の動的粘弾性測定装置「DVA-500」を用い、フィルムの長手方向である縦方向と、当該方向と直交する横方向について、振動周波数10Hz、歪み0.1%にて、昇温速度3℃/分で0℃~220℃までの粘弾性挙動を測定することで得られる値である。
 また、上記(d)及び(e)におけるガラス転移温度は、同装置により、同条件で測定される貯蔵弾性率(E’)と損失弾性率(E’’)の比(E’/E’’)で示されるtanδのピーク値より算出される値である。
 図1は、第3実施形態に係る透明積層フィルムに関し、各層における貯蔵弾性率(E´)変化及び熱機械特性試験(TMA)による寸法変化を示した図である。
 この図1に示されるように、二軸延伸したポリエチレンナフタレートフィルム(基材フィルム)は、ガラス転移温度(155℃)より少なくとも20℃以上低い温度以下では、充分に高い貯蔵弾性率(E’)を有していることが確認できる(例えば25℃では7.3GPa)。他方、ガラス転移温度より少なくとも20℃高い温度以上では、貯蔵弾性率(E’)が低下することが確認でき、熱機械特性試験(TMA)の結果からも、この温度では寸法安定性が低いことが確認できる。また、前記ガラス転移温度より少なくとも20℃高い温度以上では、貯蔵弾性率(E’)が低下することが確認でき、TMAの結果からも収縮が発生することが確認できる。
 これに対し、第3実施形態に係る透明積層フィルムの硬化層(透明ポリイミド樹脂層)は、基材フィルムのガラス転移温度より少なくとも20℃低い温度以下では、基材フィルムに比べて貯蔵弾性率(E’)が低いが、基材フィルムのガラス転移温度より少なくとも20℃高い温度以上では、基材フィルムに比べて貯蔵弾性率(E’)が高く、TMAの結果からも膨張することが確認できる。
 このように第3実施形態に係る透明積層フィルムに関しては、基材フィルムと硬化層とが相反する貯蔵弾性率の挙動を有しており、これにより、低温領域(室温から基材フィルムのガラス転移温度未満)では基材フィルムの寸法安定性が支配的となり、高温領域(基材フィルムのガラス転移温度以上)では硬化層が適度に膨張して基材フィルムの収縮を抑え込むため、室温から高温時までの幅広い範囲で寸法安定性の高いフィルムを得ることができる。
 なお、第1及び第2実施形態と同様に、第3実施形態についても、基材フィルム、硬化性樹脂組成物及び微粒子の構成材料や配合量など、各種好ましい態様は上述したものと同様である。
(第4実施形態)
 第4実施形態に係る透明積層フィルムは、基材フィルムの表裏両側に硬化層を積層してなる構成を備えた透明積層フィルムであり、該基材フィルムが2軸延伸ポリエステルフィルムであって、前記硬化層が、光硬化性樹脂組成物を含み、該硬化層の厚み合計が基材フィルムに対して10~150%となるよう基材フィルムに積層されたものであり、以下の(g)及び(h)の性質を有する、透明積層フィルムである。
(g)200℃における積層フィルムの縦方向及び横方向の各々の動的粘弾性測定による貯蔵弾性率(E´)が0.35GPa以上
(h)150~200℃の範囲における縦方向及び横方向の各々の線膨張係数が-85~85ppm/℃
 第4実施形態において、2軸延伸ポリエステルフィルムの原料としては、特に制限なく用いることができる。具体的にはポリエチレンテレフタレート、ポリエチレンナフタレートなど各種ポリエステル樹脂を挙げることができる。上記の内、耐熱性の面から、ポリエチレンナフタレートを用いるのが好ましい。該2軸延伸ポリエステルフィルムの厚さは、用途により異なる。例えば10μm~50μmであるのが好ましく、より好ましくは10μm以上或いは38μm以下であり、中でも10μm以上或いは30μm以下であり、さらに好ましくは12μm以上或いは25μm以下である。
 第4実施形態において、2軸延伸ポリエステルフィルムは、50~100℃の範囲の線膨張係数が-60ppm/℃~60ppm/℃であることが好ましい。かかる寸法安定性を有する基材フィルムを用いることにより、熱寸法安定性を高温領域まで持たせることが容易となる。好ましくは、50~150℃の範囲の寸法安定性が-60ppm/℃~60ppm/℃であることだが、2軸延伸ポリエステルフィルムの熱寸法安定性をかかる温度範囲まで向上させることは、製造コストの上昇を伴うため、通常は50~100℃の範囲の寸法安定性が-60ppm/℃~60ppm/℃である。なお第4実施形態における線膨張係数とは、熱機械分析装置を用い、引っ張り加重0.1mNで固定し、室温から2℃/分の割合で昇温させた場合の所定の温度範囲の寸法変化値から算出した値である。
 第4実施形態において、2軸延伸ポリエステルフィルムは、収縮を緩和するためのヒートセット処理がなされたものであることが好ましい。
 この際、ヒートセット処理は、2軸延伸ポリエステルフィルムのガラス転移温度をTgとした際、Tg~Tg+100℃の温度で0.1~180分処理されたものであることが好ましい。
 第4実施形態の透明積層フィルムは、150~200℃の範囲における、積層フィルムの縦方向(MD方向)及び横方向(TD方向)の各々の線膨張係数が-85~85ppm/℃であり、好ましくは-70~70ppm/℃、特に好ましくは-65~65ppm/℃、より好ましくは-50~50ppm/℃、より好ましくは-40~40ppm/℃、さらに好ましくは-20~20ppm/℃である。かかる範囲内であれば高温環境下に置かれた場合の透明積層フィルムの寸法変化が少なく、実用特性上問題となることが無いため好ましい。例えば、ガスバリア加工用フィルムとして用いた場合は、熱寸法変化によるガスバリア層の破壊が緩和され、フレキシブルディスプレイ基板用フィルムとして用いた場合は、反りや配線の断線などの問題を改善することが可能となる。
 第4実施形態においては、かかる熱寸法安定性を持たせるべく、低温時に線膨張係数が低い基材フィルムに対し、高温時にも同等の強度を維持せしめる構造を配することによって、高温時にも十分な寸法安定性を保持している。
 すなわち、高温時にフィルムが膨張及び収縮せんとする応力に対し、十分に寸法を維持できる高い弾性率を有することで、寸法変化を大きく低減させることが可能となる。一般的にポリエステルフィルムの熱寸法安定性を向上させる加工法としては、主に延伸温度や延伸倍率などの延伸条件や、熱処理温度や熱処理時間などの熱処理条件を変化させることなどを挙げることができるが、この手法のみで200℃付近の熱寸法変化を低減させるためには、熱処理時間が膨大になってしまうため、製造コストの面から好ましくない。
 そこで第4実施形態では、フィルムの表裏両側に光硬化性樹脂組成物の硬化層を配することにより、高温時にフィルムの弾性率を保持させ、熱寸法変化を低減させることを可能としている。
 第4実施形態における透明積層フィルムの縦方向及び横方向の各々の動的粘弾性測定における貯蔵弾性率(E´)値は、200℃において0.35GPa以上であるのが好ましく、より好ましくは0.45GPa以上、更に好ましくは0.6Pa以上、特に好ましくは0.7GPa以上である。かかる物性を有するべく、所定の光硬化性樹脂組成物を塗布することにより、高温における寸法安定性に優れたフィルムを得ることが可能となる。なお、上記貯蔵弾性率(E´)値の上限値については特に制限はないが、後加工適性の観点から、その値は10GPa以下であることが好ましい。
 第4実施形態における透明積層フィルムの貯蔵弾性率(E´)値は、高弾性率を有する材料の積層、添加及び充填等の方法により調整しうる。
 また、かかる透明積層フィルムの前記線膨張係数と貯蔵弾性率(E´)は、高温環境下での反りの発生という観点から、いずれも縦方向及び横方向の両方が前記範囲内にあることが好ましい。
 第4実施形態において、硬化層に充填材として微粒子を用いることは、弾性率を向上させる目的で好ましく、特に無機微粒子は耐熱性が高いため好ましい。
 また微粒子の粒子径は小さすぎると粒子同士の凝集をまねき、大きすぎると硬化膜から剥がれ落ちてしまうため、通常、平均粒子径は1~1000nmであることが好ましく、より好ましくは10nm以上或いは500nm以下である。これらの粒子は、光硬化性樹脂組成物中の固形分全体量を100質量部としたとき、平均粒子径が1nm~1000nmの無機微粒子を前記組成物中に20~80質量部含有するのが好ましい。含有量が少なすぎると、弾性率向上への寄与が少なく、多すぎると硬化膜から剥がれ落ちてしまうおそれがある。
 上記光硬化性樹脂組成物の硬化層は、基材である2軸延伸ポリエステルフィルムの厚みに対して、合計で10~150%の厚みで配する。かかる範囲の厚みより薄いと、高温時において積層フィルムの貯蔵弾性率が保持できず、結果として熱寸法安定性が不十分になってしまう。また、硬化層の厚みがかかる範囲を越えると、積層フィルムが割れやすくなってしまう。
 上記観点から、硬化層の厚みは、2軸延伸ポリエステルフィルムの厚みに対し、合計で25%以上或いは150%以下であるのがより好ましく、中でも30%以上或いは120%であることがさらに好ましく、その中でも40%以上或いは110%以下であることがさらに好ましい。しかしながら、光硬化性樹脂組成物中に無機微粒子を含む場合はこの限りでなく、10~100%の程度の範囲でも十分に熱寸法安定性を有することが可能になる。
 第4実施形態の透明積層フィルムは、光硬化性樹脂組成物の硬化層を、基材フィルムである2軸延伸ポリエステルフィルムの表裏両側に有する。硬化層を片面のみに有すると、カールが発生してしまうため実用上好ましくない。硬化層を表裏両側に有することで、カールの発生を抑えることが可能となる。
 表裏両側に配置される硬化層は、各々の厚みについては特に制限はないが、弾性率に対称性を持たせてカールを軽減させる観点から、その厚み比は、一方の硬化層と他方の硬化層の厚み比(一方の硬化層の厚み/他方の硬化層の厚み)として、0.5~1.5が好ましく、中でも0.75以上或いは1.25以下であるのがより好ましい。
 上記光硬化性樹脂組成物は、フルオレン骨格を有する光硬化性樹脂を含むことが好ましい。
 上記光硬化性樹脂組成物は、10~1000mJ/cmの積算紫外線光量で実質的に硬化されるものであることが好ましい。ここで、「実質的に」とは、フィルムを巻取る際に、硬化層が他の面に張り付かない程度に硬化していることの意である。積算紫外線光量がかかる範囲内であれば、基材への熱の影響を無視することができ、また、フィルムへの熱ジワの発生を防止できる。さらに、生産速度の面から効率が良好であり好ましい。
 第4実施形態の透明積層フィルムは、JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、温度200℃で10分間加熱した後、室温(25℃)にて測定した縦方向及び横方向の収縮率が1.0%未満であることが好ましい。
 このような第4実施形態の透明積層フィルムは、高温での寸法安定性が要求される用途、特に包装用フィルム、電子部品用フィルムに用いることができるほか、ガスバリア加工を行うことで、有機ELなどの半導体デバイスや、液晶表示素子、太陽電池用途にも好適に用いることができる。
 第1~第3実施形態と同様に、第4実施形態についても、基材フィルム、光硬化性樹脂組成物及び微粒子の構成材料や配合量などの好ましい態様は上述したものと同様である。
<用語の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれらの実施例等により何ら制限を受けるものではない。
[実施例1]
(硬化性樹脂組成物の調製)
 剛直な骨格であるトリシクロデカン構造を有する光硬化性2官能アクリレートモノマー・オリゴマー(新中村化学工業株式会社製、商品名「A-DCP」、屈折率1.50)14.4質量部、透明微粒子A(株式会社アドマテックス製、商品名「YA010C-SM1」、コロイダルシリカ)51.1質量部、光硬化剤(BASF製、1-ヒドロキシシクロヘキシル-フェニルケトン)0.44質量部、及び、溶媒(荒川化学工業株式会社製 、メチルエチルケトン)34.1質量部を均一に混合し、硬化層形成用の硬化性樹脂組成物を得た(以下、「塗料A」と称する。)。
 硬化層におけるコロイダルシリカの体積割合は63.4体積%であった。
 また、上記微粒子混合物の平均粒子径は10nmであり、粒子径の相対標準偏差は40.3%であった。
(透明積層フィルム1の作製)
 厚さ12μmの二軸延伸フィルム(帝人株式会社製、商品名「テオネックスQ51」、ポリエチレンナフタレートフィルム、以下「フィルムA」と称する)の片面に、上記で調製した塗料Aを、硬化後の厚みが5μmになるようにワイヤーバーコーターを用いて塗布した後、100℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(160W/cm)を照射し、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に塗料Aを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム1を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム1の特性を評価した。
[実施例2]
(透明積層フィルム2の作製)
 実施例1と同様の手順にて、フィルムAの両面に、硬化後の厚みが10μmになるように、ワイヤーバーコーターを用いて塗料Aを塗布し、硬化させて、両面に硬化層が形成された透明積層フィルム2を得た。後述する測定方法に準拠して、得られた透明積層フィルム2の特性を評価した。
[実施例3]
(透明積層フィルム3の作製)
 実施例1と同様の手順にて、厚さ7μmの基材フィルム(三菱樹脂株式会社製、商品名「スペリオUT-Fフィルム」、ポリエーテルイミドフィルム、以下「フィルムB」と称する)の両面に、硬化後の厚みが5μmになるように、ワイヤーバーコーターを用いて上記塗料Aを塗布して硬化させて、両面に硬化層が形成された透明積層フィルム3を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム3の特性を評価した。
[実施例4]
(透明積層フィルム4の作製)
 実施例3と同様の手順にて、フィルムBの両面に、硬化後の厚みが10μmになるように、ワイヤーバーコーターを用いて上記塗料Aを塗布し、硬化させて、両面に硬化層が形成された透明積層フィルム4を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム4の特性を評価した。
[実施例5]
(塗布層の調製)
 剛直な骨格であるトリシクロデカン構造を有する光硬化性2官能アクリレートモノマー・オリゴマー(新中村化学工業株式会社製、商品名「A-DCP」、屈折率1.50)97質量部、及び、光硬化剤(BASF製、1-ヒドロキシシクロヘキシル-フェニルケトン)3質量部を均一に混合し、透明微粒子を含有しない硬化層形成用の硬化性樹脂組成物(以下、「塗料B」と称する。)を得た。
(透明積層フィルム5の作製)
 フィルムBの片面に、上記で調製した塗料Bを硬化後の厚みが5μmになるように、ワイヤーバーコーターを用いて塗布した後、120℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(160W/cm)を照射し、片面に光硬化性の硬化層を有するフィルムを得た。
前記フィルムの当該硬化層が形成されていない面に対し、上記同様に塗料Bを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム5を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム5の特性を評価した。
[比較例1]
 硬化層を有しないフィルムA単体を実施例1と同様に評価した。
[比較例2]
 硬化層を有しないフィルムB単体を実施例1と同様に評価した。
[比較例3]
 フィルムAの片面に、アクリル系樹脂(第一工業製薬株式会社製、商品名「GX-8801A」、光硬化性ウレタンアクリレート・オリゴマー)を、硬化後の厚みが3μmになるように、ワイヤーバーコーターを用いて塗布した後、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(160W/cm)を照射し、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に前記アクリル系樹脂を塗布して硬化を行うことにより、両面に硬化層が形成された積層フィルムを得た。
 得られた積層フィルムを実施例1と同様に評価した。
[比較例4]
(硬化性樹脂組成物の調製)
 剛直な骨格であるトリシクロデカン構造を有する光硬化性2官能アクリレートモノマー・オリゴマー(新中村化学工業株式会社製、商品名「A-DCP」、屈折率1.50)14.4質量部、透明微粒子A(株式会社アドマテックス製、商品名「YA010C-SM1」、コロイダルシリカ)25.5質量部、透明微粒子B(株式会社アドマテックス製、商品名「SO-C2」、コロイダルシリカ)25.5質量部、光硬化剤(BASF製、1-ヒドロキシシクロヘキシル-フェニルケトン)0.44質量部、溶媒(荒川化学工業株式会社製、メチルエチルケトン)34.1質量部を均一に混合し、硬化層形成用の硬化性樹脂組成物(以下、「塗料C」と称する。)を得た。
 硬化層におけるコロイダルシリカの体積割合は63.4体積%であった。
 なお、上記微粒子混合物の平均粒子径は255.2nmであり、粒子径の相対標準偏差は、72.9%であった。
(積層フィルムの作製)
 実施例1と同様の手順にて、フィルムAの両面に上記塗料Cを塗布し乾燥、硬化させて、両面に硬化層が形成された透明積層フィルムを得た。
 得られた積層フィルムについて、後述する測定方法に準拠して、収縮率及び全光線透過率を測定した。
[比較例5]
(硬化性樹脂組成物の調製)
 剛直な骨格であるトリシクロデカン構造を有する光硬化性2官能アクリレートモノマー・オリゴマー(新中村化学工業株式会社製、商品名「A-DCP」、屈折率1.50)11.6質量部、透明微粒子C(トピー工業株式会社製、商品名「PDM-5B」、鱗片状マイカ)52.8質量部、光硬化剤(BASF製、1-ヒドロキシシクロヘキシル-フェニルケトン)0.36質量部、及び、溶媒(荒川化学工業株式会社製、メチルエチルケトン)34.1質量部を均一に混合し、硬化層形成用の硬化性樹脂組成物(以下、「塗料D」と称する。)を得た。
 硬化層における透明微粒子の体積割合は63.4体積%であった。
 なお、上記微粒子Cの形状は鱗片状であり、微粒子Cの短径は7nm及び長径は8000nmであって、微粒子Cの平均粒子径(算術平均値)は、403nmであった。
 実施例1と同様の手順にて、フィルムAの両面に、上記塗料Dを塗布したが、塗膜の乾燥と同時に塗膜が白化、割れて剥離してしまった。これは粒子同士の立体的な相互作用が大きすぎるため、塗膜が脆化したこと及び平坦面が光を反射したため、白化してしまったと考えられる。なお、後述する測定方法に準拠して、全光線透過率を測定した。
<特性評価及び測定条件1>
 上記実施例1~5及び比較例1~3において作製したフィルムについて、以下に記載の方法に準拠し、貯蔵弾性率(E´)、全光線透過率及び収縮率を測定した。それぞれの結果を表1に示した。
 また、使用した微粒子についても、以下に記載の方法に準拠し、平均粒子径及び相対標準偏差を測定した。それぞれの結果を表1に示した。
 比較例4で作製したフィルムについては、以下に記載の方法に準拠して、収縮率、平均粒子径、相対標準偏差及び全光線透過率を測定した。それぞれの結果を表1に示した。
 なお、比較例5については、フィルムの作製が困難であったため、平均粒子径、相対標準偏差及び全光線透過率のみ測定した。
(貯蔵弾性率(E´)の測定方法)
 フィルムの貯蔵弾性率(E´)は、JIS K-7198 A法に記載の動的粘弾性測定法により、アイティー計測制御(株)製の動的粘弾性測定装置「DVA-200」を用い、フィルムの長手方向である縦方向(MD方向)について、振動周波数10Hz、歪み0.1%にて、昇温速度3℃/分で25℃~250℃までの粘弾性挙動を測定し、得られたデータから温度200℃での貯蔵弾性率(E’)を求めた。
(収縮率の測定方法)
 フィルムの収縮率は、JISC23307.4.6.1(収縮寸法変化率:A法)に準じて、恒温槽の温度を120℃から200℃又は220℃にそれぞれ変更し、標線を記した短冊の加熱前後の寸法変化率を測定し求めた。なお、収縮率は、フィルムの長手方向である縦方向(MD方向)と、これに直交する横方向(TD方向)の両方について測定した。
 具体的には、以下の方法によりフィルムの収縮率を測定した。
 フィルム流れ方向を長辺とし、幅10mm、長さ100mmの短冊形試験片を3個用意し、各々の試験片の中央部を中心として、間隔100mmの標線を記した。標線間の間隔を0.01mmの精度でノギスを用いて読み取った。この試験片を、所定温度の恒温槽に10分間無荷重の状態で懸垂し、取り出した後、室温で、15分以上放冷し、先に読んだ標線間の間隔を測定した。加熱前後の標線間の間隔の変化率を求め、加熱前後の寸法変化率とした。
(全光線透過率の測定)
 フィルムの全光線透過率は、以下の装置を用い、JIS K7105に準拠する方法にて測定した。
 反射・透過率計:株式会社村上色彩技術研究所「HR-100」
(平均粒子径)
 微粒子の平均粒子径は、株式会社日立ハイテクノロジーズ社製高分解能走査型電子顕微鏡(SEM)S-4500を用いて測定した。具体的には、試料の傾斜角を30度、加速電圧5kV、ソーキングディスタンス15mm、直接倍率を30,000倍に設定し、デジタル画像を取得後、得られた画像からランダムに200個の粒子の粒径を実測し、その平均を求めることで微粒子の平均粒子径とした。
(相対標準偏差)
 微粒子の粒子径の相対標準偏差は、上記平均粒子径の計測にて計測した平均粒径及び標準偏差から下記式にて算出した。
 相対標準偏差=標準偏差σ/平均粒径d
Figure JPOXMLDOC01-appb-T000001
(考察1)
 実施例1~5及び比較例1~5の結果から、以下のことa)~d)が明らかとなった。そして、これらの考察から、温度200℃における透明積層フィルムの貯蔵弾性率(E´)が、同条件での基材フィルムの貯蔵弾性率(E´)よりも大きくなるような構成の積層フィルムとすることによって、高温条件下でも高い寸法安定性を維持できることが分かった。
a)基材フィルムの両面に硬化層を積層した構成とし、硬化層の厚み合計を基材フィルムよりも大きくして熱寸法安定性に関しての硬化層の寄与を増大させ、温度200℃における透明積層フィルムの貯蔵弾性率(E´)が、同条件での基材フィルムの貯蔵弾性率(E´)よりも大きくなるような構成とすることで、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
b)基材フィルムの両面に硬化層を積層した構成とし、硬化層中に熱寸法安定性の高い微粒子を含有し、温度200℃における透明積層フィルムの貯蔵弾性率(E´)が、同条件での基材フィルムの貯蔵弾性率(E´)よりも大きくなるような構成とすることで、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
c)基材フィルムの両面に硬化層を積層した構成とし、硬化層中に、粒子径の相対標準偏差が50%以下の微粒子を含有することで、粒子間の距離が短くなり、基材の収縮応力に対してより強い硬化層となり、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
d)基材フィルムの両面に硬化層を積層した構成とし、硬化層を形成する材料として、剛直な骨格を有する樹脂を用い、温度200℃における透明積層フィルムの貯蔵弾性率(E´)が、同条件での基材フィルムの貯蔵弾性率(E´)よりも大きくなるような構成とすることで、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
[実施例6]
(硬化性樹脂組成物の調製)
 剛直な骨格であるトリシクロデカン構造を有する光硬化性2官能アクリレートモノマー・オリゴマー(新中村化学工業株式会社製、商品名「A-DCP」、屈折率1.50)7.8質量部、平均粒子径が13nmの透明微粒子E(日産化学工業株式会社製、商品名「MEK-AC-2101」、有機溶媒分散コロイダルシリカ分散液、屈折率1.46)92.0質量部及び光硬化剤(1-ヒドロキシシクロヘキシル-フェニルケトン(BASF製))0.2質量部を均一に混合し、硬化層形成用の硬化性樹脂組成物(以下、「塗料E」と称する)を得た。
 本実施例の硬化層におけるコロイダルシリカの体積割合は70体積%であった。
(透明積層フィルム6の作製)
 フィルムBの片面に、上記で調製した塗料Eを、硬化後の厚みが10μmになるようにワイヤーバーコーターを用いて塗布した後、120℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(160W/cm)を照射し、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に塗料Eを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム6を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム6の特性を評価した。
[実施例7]
(透明積層フィルム7の作製)
 フィルムAの片面に、上記で調製した塗料Eを、硬化後の厚みが10μmになるようにワイヤーバーコーターを用いて塗布した後、120℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(160W/cm)を照射し、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に塗料Eを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム7を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム7の特性を評価した。
[実施例8]
(透明積層フィルム8の作製)
 実施例5と同様の手順にて、フィルムBの片面に、硬化後の厚みが5μmになるように、上記で調製した塗料Bを、塗布して硬化させることにより、両面に硬化層が形成された透明積層フィルム8を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム8の物性を評価した。
[比較例6]
 硬化層を有しないフィルムB単体を実施例6と同様に評価した。
[比較例7]
 硬化層を有しないフィルムA単体を実施例6と同様に評価した。
<特性評価及び測定条件2>
 上記実施例6~8並びに比較例6及び7において作製したフィルムについて、貯蔵弾性率(E´)、全光線透過率、収縮率及び線膨張係数を測定した。
 線膨張係数については、以下に示す方法に準拠して測定した。
 貯蔵弾性率(E´)及び全光線透過率は、上記実施例1と同様の方法に準拠して測定した。
 収縮率については、恒温槽の温度を120℃から200℃、220℃及び250℃にそれぞれ変更した点を除き、上記実施例1と同様の方法に準拠して測定した。
 また、上記実施例で使用した微粒子についても、上記実施例1と同様の方法に準拠して測定した。
 それぞれの測定結果を表2に示した。
(線膨張係数)
 上記実施例6~8並びに比較例6及び7において作製したフィルムの線膨張係数は、熱応力ひずみ測定装置(セイコーインスルメンツ社製、TMA/SS6100)を用い、熱機械分析(TMA法)により測定した。
 測定条件は、試験片幅:45mm、チャック間距離:15mm、荷重:0.1gとし、室温~250℃まで、昇温速度:3℃/分で加熱する際に測定される試験片の寸法変化から求めた。
Figure JPOXMLDOC01-appb-T000002
(考察2)
 上記実施例6~8並びに比較例6及び7の結果から、以下のことe)、f)が明らかとなった。
e)基材フィルムの両面に硬化層を積層した構成とし、硬化層の厚み合計を基材フィルムの150%以上とすることで、熱寸法安定性に関しての硬化層の寄与が顕著となり、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
f)基材フィルムの両面に硬化層を積層した構成とし、硬化層中に熱寸法安定性の高い微粒子を含有し、微粒子含有率を硬化層全体で50体積%以上とすることで、熱寸法安定性に関しての硬化層の寄与が顕著となり、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
[実施例9]
(硬化性樹脂組成物の調製)
 透明樹脂(荒川化学工業株式会社製、商品名「HBSQ1004-2」チオール系シルセスキオキサン)66.6質量部及び光硬化剤(荒川化学工業株式会社製、商品名「HBSQ2001-3」、多官能アリレート)33.3質量部を均一に混合し、硬化層形成用の硬化性樹脂組成物(温度220℃での貯蔵弾性率(E’)a:1.1GPa、温度25℃での貯蔵弾性率(E’)b:1.3GPa、以下「塗料F」と称する。)を得た。
(透明積層フィルム9の作製)
 フィルムA(Tg:155℃、温度220℃での貯蔵弾性率(E’)a:0.27GPa、温度25℃での貯蔵弾性率(E’)b:7.3GPa))の片面に、上記で調製した塗料Fを、硬化後の厚みが10μmになるようにワイヤーバーコーターを用いて塗布した後、100℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(250mJ/cm)を照射し、更に硬化膜を120℃で15分程度アニールすることで、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に、塗料Fを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム9を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム9の特性を評価した。
[実施例10]
(透明積層フィルム10の作製)
 フィルムB(Tg:234.4℃、温度260℃での貯蔵弾性率(E’)a:7.5MPa、温度25℃での貯蔵弾性率(E’)b:2.8GPa)の片面に、上記で調製した塗料F(温度260℃での貯蔵弾性率(E’)a:1.0GPa、温度25℃での貯蔵弾性率(E’)b:1.3GPa)を、硬化後の厚みが10μmになるようにワイヤーバーコーターを用いて塗布した後、100℃に設定したオーブン中に10分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、塗布面に高圧水銀ランプ(250mJcm-1)を照射し、更に硬化膜を120℃で15分程度アニールすることで、片面に光硬化性の硬化層を有するフィルムを得た。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に、塗料Fを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム10を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム10の特性を評価した。
[比較例8]
 硬化層を有しないフィルムB単体を実施例9と同様に評価した。
[比較例9]
 硬化層を有しないフィルムA単体を実施例9と同様に評価した。
<特性評価及び測定条件3>
 上記実施例9~10及び比較例8~9において作製したフィルムについて、上記実施例1と同様の方法に準拠して、貯蔵弾性率(E´)、光線透過率及び収縮率を測定した。それぞれの測定結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003
(考察3)
 上記実施例9~10、比較例8及び9の結果から、以下のことg)、h)が明らかとなった。
g)基材フィルムの両面に硬化層を積層した構成とし、硬化層を形成する材料として、剛直な骨格を有する樹脂を用いることで、熱寸法安定性に関しての硬化層の寄与が大きくなり、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
h)基材フィルムの両面に硬化層を積層した構成とし、硬化層を形成する材料として、剛直な骨格を有する樹脂を用い、硬化層は、基材フィルムのガラス転移温度よりも20℃低い温度以下での貯蔵弾性率(E’)aが、同条件下での基材フィルムの貯蔵弾性率より小さく、基材フィルムのガラス転移温度よりも20℃高い温度以上での貯蔵弾性率(E’)bが、同条件下での基材フィルムの貯蔵弾性率よりも大きいことで、熱寸法安定性に関しての硬化層の寄与が大きくなり、高温時(例えば200℃以上)の高い寸法安定性を有する透明積層フィルムを得ることができる。
[実施例11]
(光硬化性樹脂組成物の調製)
 フルオレンアクリレートを40~60質量%含む組成物EA-HG001(大阪ガスケミカル(株)製)100質量部、2-ブタノン(ナカライテスク(株)製)50質量部、及び、1-ヒドロキシシクロヘキシル-フェニルケトン(BASF製)3質量部を均一に混合し、光硬化性樹脂組成物を得た(以下、「塗料G」と称する。)。
(透明積層フィルム11の作製)
 フィルムA(200℃における貯蔵弾性率:縦方向0.332GPa、横方向0.305GPa、150~200℃における線膨張係数:縦方向-719ppm/℃、横方向-809ppm/℃)の片面に、上記で調製した塗料Gを、硬化後の厚みが1μmになるようにワイヤーバーコーターを用いて塗布した後、80℃に設定したオーブン中に2分間入れることで溶媒を乾燥、除去し、フィルムの端部を固定した状態でベルトコンベア装置に入れ、高圧水銀ランプ(160W/cm)を用いて、塗布面を335mJ/cmの紫外線積算光量で照射し、片面に光硬化性樹脂組成物の硬化層を有するフィルムを得た。
 紫外線積算光量は、紫外線積算光量計(ウシオ電機製、UNIMETER UIT-250、UVD-C365)を用い、硬化時と同様にベルトコンベア装置に通し、センサー部に高圧水銀ランプ(160W/cm)を照射し測定した。
 前記フィルムの当該硬化層が形成されていない面に対し、上記同様に、塗料Gを塗布して硬化を行うことにより、両面に硬化層が形成された透明積層フィルム11を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム11の特性を評価した。
[実施例12]
(透明積層フィルム12の作製)
 硬化後の厚みが3μmになるようにワイヤーバーコーターを用いて塗料Gを塗布した以外は実施例11と同様に行い、両面に硬化層が形成された透明積層フィルム12を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム12の特性を評価した。
[実施例13]
(透明積層フィルム13の作製)
 ウレタンアクリレートを60~70質量%含む組成物U-6LPA(新中村化学(株)製)100質量部、2-ブタノン(ナカライテスク(株)製)100質量部、及び1-ヒドロキシシクロヘキシル-フェニルケトン(BASF製)3質量部を均一に混合し、光硬化性樹脂組成物(以下、「塗料H」と称する。)を得た。そして、実施例11において、塗料Gの代わりに塗料Hを用いた以外は実施例11と同様にして、両面に硬化層が形成された透明積層フィルム13を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム13の特性を評価した。
[実施例14]
(透明積層フィルム14の作製)
 フィルムAに代えて、厚さ12μmのダイヤホイルT100(三菱樹脂(株)製ポリエチレンテレフタレート(PET)フィルム、200℃における貯蔵弾性率:縦方向0.234GPa、横方向0.201GPa、150~200℃における線膨張係数:縦方向-864ppm/℃、横方向-153ppm/℃、以下、「フィルムC」と称する)を用い、実施例11で用いた塗料Gを硬化後の厚みが6μmになるようにワイヤーバーコーターを用いて塗布した以外は実施例11と同様に行い、両面に硬化層が形成された透明積層フィルム14を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム14の特性を評価した。
[実施例15]
(透明積層フィルム15の作製)
 フルオレンアクリレートを40~60%質量%含む組成物EA-HG001(大阪ガスケミカル(株)製)100質量部、コロダイルシリカMEK-ST-L(日産化学工業(株)製MEK分散シリカ、平均粒子径約50nm、固形分約30%)500質量部、及び、1-ヒドロキシシクロヘキシル-フェニルケトン(BASF製イルガキュア184)3質量部を均一に混合し、光硬化性樹脂組成物(以下、「塗料I」と称する。)を得た。そして、実施例11において、塗料Gの代わりに塗料Iを用いた以外は実施例11と同様に行い、両面に硬化層が形成された透明積層フィルム15を得た。
 後述する測定方法に準拠して、得られた透明積層フィルム15の特性を評価した。
 得られたフィルムは、基材フィルム厚みに対する硬化層厚みの比が実施例11と同等であるにもかかわらず、硬化層中に耐熱性の高い無機微粒子を含むため、高温時の寸法安定性に非常に優れたフィルムとなった。
[実施例16]
(透明積層フィルム16の作製)
 フィルムAに代えて、厚さ25μmのテオネックスQ51(帝人(株)製ポリエチレンナフタレートフィルム、200℃における貯蔵弾性率:縦方向0.266GPa、横方向0.270GPa、150~200℃における線膨張係数:縦方向-491ppm/℃、横方向-201ppm/℃、以下、「フィルムD」と称する。)を用い、実施例15で用いた塗料Iを硬化後の厚みが4μmになるようにワイヤーバーコーターを用いて塗布した以外は実施例11と同様に行い、両面に硬化層が形成された透明積層フィルム16を得た。
 得られた透明積層フィルム16の特性を評価した。
[実施例17]
 実施例12で得られた透明積層フィルム12を、縦方向100mm×横方向10mmの大きさに切り取り、200℃に設定したオーブンに10分間入れ、オーブンから取り出して室温に戻した後、ノギスを用いて縦方向の収縮量を0.1mmの精度で測定した。
 同様に積層フィルムを縦方向10mm×横方向100mmの大きさに切り取り、200℃に設定したオーブンに10分間入れ、オーブンから取り出して室温に戻した後、ノギスを用いて横方向の収縮量を0.1mmの精度で測定した。
 熱収縮率は、縦方向及び横方向について、収縮前の原寸に対する収縮量の比率を%値で表示した。
 得られたフィルムの熱収縮率を表4に示す。
[実施例18]
(透明積層フィルム17の作製)
 塗料Iを硬化後の厚みが3μmになるようにワイヤーバーコーターを用いて塗布した以外は実施例15と同様に行い、両面に硬化層が形成された透明積層フィルム17を得た。
 得られた透明積層フィルム17を実施例17と同様に評価を実施した結果を表4に示す。
[実施例19]
(透明積層フィルム18の作製)
 A4サイズに切り出した厚さフィルムAの4辺端部を金属枠に固定し、200℃に設定したオーブンに60分入れ、ヒートセット処理を行った。取り出したフィルムを基材として用いた以外は実施例18と同様に行い、両面に硬化層が形成された透明積層フィルム18を得た。
 得られた透明積層フィルム18を実施例17と同様に評価を実施した結果を表4に示す。得られたフィルムは基材の収縮が緩和されているため、熱収縮率の非常に低いフィルムとなった。
[実施例20]
 実施例12で得られた透明積層フィルム12上にガスバリア加工を実施した。真空蒸着装置を使用して1×10-5Torrの真空下でSiOを加熱方式で蒸発させ、積層フィルム上に厚さ約50nmのSiOxの無機層を形成しガスバリアフィルムを得た。
 得られたガスバリアフィルムは、JISZ0222「防湿包装容器の透湿度試験方法」、JISZ0208「防湿包装材量の透湿度試験方法(カップ法)」の諸条件に準じ、次の手法で水蒸気透過率を評価した。
(水蒸気透過率)
 厚さ60μmの延伸ポリプロピレンフィルム(東洋紡績(株)製 P1146)の表面に、ウレタン系接着剤(東洋モートン(株)製AD900とCAT-RT85を10:1.5の割合で配合したもの)を塗布し、乾燥し、厚さ約3μmの接着剤層を形成し、この接着剤層上に、上記で形成したガスバリアフィルムの無機層面側をラミネートし、ガスバリア性積層フィルムを得た。
 次に、透湿面積10.0cm×10.0cm角のガスバリア性積層フィルム各2枚用い、吸湿剤として無水塩化カルシウム約20gを入れて四辺を封じた袋を作製した。その袋を温度40℃相対湿度90%の恒温恒湿装置に入れ、72時間以上の間隔でおよそ200日目まで質量測定し、4日目以降の経過時間と袋質量との回帰直線の傾きから水蒸気透過率[g/(m・日)]を算出した。得られた水蒸気透過率は0.055[g/(m・日)]であった。
 以上の測定において、測定4日目における水蒸気透過率は、0.055g/m・dayであった。
<特性評価及び測定条件4>
 上記実施例11~19において作製したフィルムについては、以下に記載の方法に準拠して、貯蔵弾性率(E´)及び線膨張係数を測定した。それぞれの結果を表4に示した。
 また、上記実施例15、16、18及び19で使用した微粒子については、実施例1と同様にして、平均粒子径を測定した。
 さらに、全光線透過率についても、実施例1と同様にして測定した。
(貯蔵弾性率(E´)の測定方法)
 フィルムの貯蔵弾性率(E´)は、JIS K-7198 A法に記載の動的粘弾性測定法により、アイティー計測制御(株)製の動的粘弾性測定装置「DVA-200」を用い、フィルムの長手方向である縦方向(MD方向)と、当該方向と直交する横方向(TD方向)について、振動周波数10Hz、歪み0.1%にて、昇温速度3℃/分で25℃~250℃までの粘弾性挙動を測定し、得られたデータから温度200℃での貯蔵弾性率(E´)を求めた。
(線膨張係数の測定方法)
 フィルムの線膨張係数は、熱機械分析装置(セイコーインスルメンツ社製、TMA-120)を用い測定した。測定条件は、試験片幅:3mm、チャック間距離:10mm、荷重:0.1mNとして、25℃~250℃まで、昇温速度:2℃/分で加熱する際に、150℃
から200℃の間で測定される試験片の寸法変化量割合:[(150℃から200℃の間の寸法変化/150℃における寸法値)/温度変化量]×10(ppm/℃)として求めた。
Figure JPOXMLDOC01-appb-T000004
(考察4)
 上記実施例11~19の結果から、以下のことi)、j)及びk)が明らかとなった。
i)基材厚みに対する硬化層合計厚みが大きくなるにつれ、熱寸法安定性に関しての硬化層の寄与が大きくなり、結果として線膨張係数を抑えることが可能となる。
j)また硬化層中に熱寸法安定性の高い無機粒子を含有することにより、硬化層自体の熱寸法安定性が高くなり、線膨張係数を更に抑えることが可能となる。
k)基材自体を熱処理によって熱寸法安定性を高くすることにより、積層フィルム全体としての熱寸法安定性を更に向上させることが可能となる。
 本発明の透明積層フィルムは、高温での寸法安定性が要求される用途、特に、包装用フィルム、液晶ディスプレイ、有機発光ディスプレイ(OLED)、電気泳動ディスプレイ(電子ペーパー)、タッチパネル、カラーフィルター、バックライトなどのディスプレイ材料の基板や、太陽電池の基板のような電子部品用フィルム等として好適に使用することができる。

Claims (30)

  1.  基材フィルムの表裏両側に硬化層を有する積層フィルムであって、
     温度200℃における積層フィルムの少なくとも一方向の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの少なくとも一方向の貯蔵弾性率(E´)よりも大きく、かつ積層フィルムの全光線透過率が80%以上であることを特徴とする透明積層フィルム。
  2.  前記硬化層の厚み合計が、基材フィルムの厚みよりも大きいことを特徴とする、請求項1記載の透明積層フィルム。
  3.  前記硬化層の厚み合計が、基材フィルムの厚みの150%以上であることを特徴とする、請求項1又は2に記載の透明積層フィルム。
  4.  温度200℃における積層フィルムの少なくとも一方向の動的粘弾性測定による貯蔵弾性率(E´)が、同条件における基材フィルムの貯蔵弾性率(E´)の1.0倍を越える、請求項1~3の何れかに記載の透明積層フィルム。
  5.  温度200℃における積層フィルムの少なくとも一方向の動的粘弾性測定による貯蔵弾性率(E´)が、1GPa以上である、請求項1~4の何れかに記載の透明積層フィルム。
  6.  前記硬化層が、フルオレン骨格を有する光硬化性樹脂を含むことを特徴とする、請求項1~5の何れかに記載の透明積層フィルム。
  7.  前記硬化層が、硬化性樹脂及び平均粒子径が200nm以下の微粒子を含有することを特徴とする、請求項1~6の何れかに記載の透明積層フィルム。
  8.  前記微粒子の含有率が、硬化層全体の50体積%以上であることを特徴とする、請求項7記載の透明積層フィルム。
  9.  前記微粒子と硬化層に含まれる樹脂との屈折率差が0.2未満である、請求項7又は8記載の透明積層フィルム。
  10.  前記微粒子の屈性率が1.6未満である、請求項7~9の何れかに記載の透明積層フィルム。
  11.  前記微粒子は、粒子径の相対標準偏差が50%以下である、請求項7~10の何れかに記載の透明積層フィルム。
  12.  前記微粒子が、コロイダルシリカである、請求項7~11の何れかに記載の透明積層フィルム。
  13.  前記硬化層が、光硬化性アクリル樹脂を含むことを特徴とする、請求項7~12の何れかに記載の透明積層フィルム。
  14.  基材フィルムが、ポリエーテルイミド樹脂、ポリフェニレンサルファイド樹脂、ポリエーテルサルフォン樹脂、ポリエチレンナフタレート樹脂及び透明ポリイミド樹脂からなる群から選ばれるいずれか一種以上の樹脂を含有する、請求項1~13の何れかに記載の透明積層フィルム。
  15.  基材フィルムが、収縮を緩和するためのヒートセット処理がなされた2軸延伸ポリエステルフィルムである、請求項1~14の何れかに記載の透明積層フィルム。
  16.  前記ヒートセット処理が、基材フィルムのガラス転移温度をTgとした際、Tg~Tg+100℃の温度で0.1~180分間、該基材フィルムを加熱する処理であることを特徴とする、請求項15に記載の透明積層フィルム。
  17.  JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、温度220℃で10分間加熱した後、室温(25℃)で測定した縦方向及び横方向の収縮率が1%未満である、請求項1~16の何れかに記載の透明積層フィルム。
  18.  基材フィルムが2軸延伸ポリエステルフィルムからなり、
     硬化層が光硬化性樹脂を含み、該硬化層の厚み合計が基材フィルムに対して10~150%であって、
     温度200℃における積層フィルムの縦方向及び横方向の各々の動的粘弾性測定による貯蔵弾性率(E´)が0.35GPa以上であり、かつ150~200℃の範囲における縦方向及び横方向の各々の線膨張係数が-85~85ppm/℃である、請求項1記載の透明積層フィルム。
  19.  前記積層フィルムの縦方向及び横方向の各々の動的粘弾性測定における貯蔵弾性率(E´)値が、温度200℃において0.45GPa以上であり、かつ温度150~200℃の範囲における縦方向及び横方向の各々の線膨張係数が-65~65ppm/℃である、請求項18記載の透明積層フィルム。
  20.  前記硬化層が、10~1000mJ/cmの紫外線積算光量で実質的に硬化する光硬化性樹脂を含むことを特徴とする、請求項18又は19記載の透明積層フィルム。
  21.  前記2軸延伸ポリエステルフィルムが、ポリエチレンナフタレートからなるものであることを特徴とする、請求項18~20の何れかに記載の透明積層フィルム。
  22.  前記2軸延伸ポリエステルフィルムの厚みが10μm~30μmの範囲である、請求項18~21の何れかに記載の透明積層フィルム。
  23.  前記硬化層が、フルオレン骨格を有する光硬化性樹脂を含むことを特徴とする、請求項18~22の何れかに記載の透明積層フィルム。
  24.  前記硬化層が、組成物中の固形分全体量を100質量部としたとき、組成物中に平均粒子径が1nm~1000nmの無機微粒子を20~80質量部含むことを特徴とする、請求項18~23の何れかに記載の透明積層フィルム。
  25.  温度150~200℃の範囲における、積層フィルムの縦方向及び横方向の線膨張係数が-40~40ppm/℃である、請求項24に記載の透明積層フィルム。
  26.  JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、温度200℃で10分間加熱した後、室温(25℃)にて測定した縦方向及び横方向の収縮率が1.0%未満である、請求項18~25の何れかに記載の透明積層フィルム。
  27.  上記2軸延伸ポリエステルフィルムが、収縮を緩和するためのヒートセット処理がなされたものである、請求項18~26の何れかに記載の透明積層フィルム。
  28.  前記ヒートセット処理が、2軸延伸ポリエステルフィルムのガラス転移温度をTgとした際、Tg~Tg+100℃の温度で0.1~180分間、該2軸延伸ポリエステルフィルムを加熱する処理であることを特徴とする、請求項27に記載の透明積層フィルム。
  29.  JIS-C23307.4.6.1(収縮寸法変化率:A法)に準じて測定される、温度200℃で10分間加熱した後、室温(25℃)にて測定した縦方向及び横方向の収縮率が0.1%未満である、請求項18~28の何れかに記載の透明積層フィルム。
  30.  請求項1~29の何れかに記載の透明積層フィルムを基材として有するバリアフィルム。

     
PCT/JP2012/070141 2011-08-09 2012-08-08 透明積層フィルム WO2013022011A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/236,819 US20140162035A1 (en) 2011-08-09 2012-08-08 Transparent laminated film
CN201280038900.4A CN103732391B (zh) 2011-08-09 2012-08-08 透明层叠膜
KR1020147006104A KR101580066B1 (ko) 2011-08-09 2012-08-08 투명 적층 필름
EP12821769.2A EP2743078B1 (en) 2011-08-09 2012-08-08 Transparent laminated film
JP2013528040A JP5969480B2 (ja) 2011-08-09 2012-08-08 透明積層フィルム

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-173773 2011-08-09
JP2011173773 2011-08-09
JP2011-180645 2011-08-22
JP2011180645 2011-08-22
JP2011-182863 2011-08-24
JP2011-182873 2011-08-24
JP2011182863 2011-08-24
JP2011182873 2011-08-24

Publications (2)

Publication Number Publication Date
WO2013022011A1 true WO2013022011A1 (ja) 2013-02-14
WO2013022011A9 WO2013022011A9 (ja) 2013-04-04

Family

ID=47668517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070141 WO2013022011A1 (ja) 2011-08-09 2012-08-08 透明積層フィルム

Country Status (6)

Country Link
US (1) US20140162035A1 (ja)
EP (1) EP2743078B1 (ja)
JP (2) JP5969480B2 (ja)
KR (1) KR101580066B1 (ja)
CN (1) CN103732391B (ja)
WO (1) WO2013022011A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014170130A (ja) * 2013-03-04 2014-09-18 Fujifilm Corp 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2014205278A (ja) * 2013-04-11 2014-10-30 三菱樹脂株式会社 透明積層フィルム及び透明基板
KR20150114541A (ko) 2013-02-06 2015-10-12 미쓰비시 쥬시 가부시끼가이샤 투명 적층 필름, 투명 도전성 필름 및 가스 배리어성 적층 필름

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6171515B2 (ja) * 2013-04-11 2017-08-02 三菱ケミカル株式会社 透明積層フィルム及び透明基板
WO2015029666A1 (ja) * 2013-08-27 2015-03-05 リンテック株式会社 耐熱積層シートおよびその製造方法
KR20150024674A (ko) * 2013-08-27 2015-03-09 삼성디스플레이 주식회사 하드 코트 윈도우 및 이를 포함하는 터치 패널
JP2015214115A (ja) * 2014-05-13 2015-12-03 三菱樹脂株式会社 透明積層フィルム、透明導電性フィルム及び透明基板
JP6398319B2 (ja) * 2014-05-21 2018-10-03 三菱ケミカル株式会社 積層フィルム及び透明基板
JP6326979B2 (ja) * 2014-06-02 2018-05-23 三菱ケミカル株式会社 積層フィルム及び透明基板
JP2015229336A (ja) * 2014-06-06 2015-12-21 三菱樹脂株式会社 透明積層フィルム、透明導電性フィルム及び透明基板
US9933812B2 (en) * 2014-09-05 2018-04-03 Semiconductor Energy Laboratory Co., Ltd. Display panel, input/output device, and data processor
JP6503674B2 (ja) * 2014-09-30 2019-04-24 東レ株式会社 樹脂積層体、それを用いた有機el素子基板、カラーフィルター基板及びそれらの製造方法ならびにフレキシブル有機elディスプレイ
SG11201702467QA (en) * 2014-09-30 2017-04-27 Toray Industries Support substrate for display, color filter employing same and method for manufacturing same, organic led element and method for manufacturing same, and flexible organic el display
JP6746888B2 (ja) * 2014-09-30 2020-08-26 東レ株式会社 ディスプレイ用支持基板、それを用いたカラーフィルターおよびその製造方法、有機el素子およびその製造方法、ならびにフレキシブル有機elディスプレイ
WO2016208548A1 (ja) * 2015-06-25 2016-12-29 コニカミノルタ株式会社 光学フィルム、およびこれを含む光学積層体
JP7000156B2 (ja) 2015-09-07 2022-02-04 凸版印刷株式会社 波長変換シート用保護フィルム、並びに、波長変換シート及びバックライトユニット
EP3374181A1 (en) * 2015-11-11 2018-09-19 3M Innovative Properties Company Multilayer construction including barrier layer and sealing layer
KR20180114099A (ko) 2016-02-19 2018-10-17 다우 실리콘즈 코포레이션 에이징된 중합체 실세스퀴옥산
TWI728054B (zh) * 2016-03-02 2021-05-21 日商琳得科股份有限公司 硬殼劑以及積層膜
CN106003938B (zh) * 2016-05-23 2018-10-02 深圳市八六三新材料技术有限责任公司 一种高阻隔性聚烯烃纳米复合薄膜及其制备方法
KR102422668B1 (ko) 2017-07-07 2022-07-19 삼성전자주식회사 적층 필름, 및 적층 필름을 포함하는 표시 장치
CN111548519B (zh) 2019-02-11 2023-08-25 Sk新技术株式会社 硬涂膜和包括其的柔性显示面板
JP7194042B2 (ja) * 2019-02-20 2022-12-21 住友化学株式会社 積層体
JP7044952B2 (ja) * 2020-03-16 2022-03-30 日東電工株式会社 光学フィルタ、その製造方法および光学モジュール
CN111846456B (zh) * 2020-08-28 2022-03-25 歌尔科技有限公司 包装盒热塑封工艺及热塑封包装盒

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141738A (ja) 1984-12-12 1986-06-28 Bridgestone Corp 繊維とゴムとの接着方法
JP2952769B1 (ja) 1998-03-30 1999-09-27 株式会社麗光 寸法安定性に優れた耐熱フィルム及びその製造法
JP2000292635A (ja) 1999-04-02 2000-10-20 Reiko Udagawa フッ素化ポリイミド樹脂およびそれらを用いた光導波路
JP2001277455A (ja) 2000-01-24 2001-10-09 Toray Ind Inc 積層ポリエステルフィルム
JP2002275296A (ja) * 2001-01-11 2002-09-25 Teijin Ltd 表面保護フィルム用積層ポリエステルフィルム及び表面保護フィルム
JP2007298732A (ja) 2006-04-28 2007-11-15 Mitsubishi Chemicals Corp 透明多層シート及びそれを用いた光学基板
JP2008100509A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 複合フィルム
JP2008265318A (ja) 2007-03-27 2008-11-06 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用二軸配向ポリエステルフィルム
JP2009258720A (ja) * 2008-03-28 2009-11-05 Fujifilm Corp 透明支持体、光学フィルム、偏光板、および画像表示装置
JP2011518055A (ja) 2008-04-17 2011-06-23 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ コートされ、平坦化されるポリマーフィルム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4027073A (en) * 1974-06-25 1977-05-31 Dow Corning Corporation Pigment-free coating compositions
SE469893B (sv) * 1991-09-20 1993-10-04 Eka Nobel Ab Sätt att behandla en yta av karbonatbaserat material, silikasol för behandling av materialet, sätt att framställa silikasolen samt med silikasolen behandlat material
US5387480A (en) * 1993-03-08 1995-02-07 Dow Corning Corporation High dielectric constant coatings
US6423396B2 (en) * 2000-03-27 2002-07-23 Fuji Photo Film Co., Ltd. Laminated polyester film
JP2002219787A (ja) * 2001-01-24 2002-08-06 Toyobo Co Ltd 光学用被覆フィルム
JP2002341103A (ja) * 2001-05-18 2002-11-27 Lintec Corp 光学用フィルム
JP4082965B2 (ja) * 2002-08-28 2008-04-30 リンテック株式会社 防眩性ハードコートフィルム
JP4855781B2 (ja) * 2005-02-01 2012-01-18 日東電工株式会社 反射防止ハードコートフィルム、光学素子および画像表示装置
JP2008151998A (ja) * 2006-12-18 2008-07-03 Nitto Denko Corp ハードコートフィルムの製造方法、ハードコートフィルム、偏光板および画像表示装置
JP2009138059A (ja) * 2007-12-04 2009-06-25 Canon Inc 成形用材料、それを用いた成形品およびその製造方法
EP2351105A2 (en) * 2008-11-12 2011-08-03 Pythagoras Solar Inc. Light curable photovoltaic cell encapsulant
KR101367050B1 (ko) * 2009-06-01 2014-02-25 미쓰이 가가쿠 토세로 가부시키가이샤 에틸렌계 수지 조성물, 태양 전지 봉지재 및 그것을 이용한 태양 전지 모듈

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141738A (ja) 1984-12-12 1986-06-28 Bridgestone Corp 繊維とゴムとの接着方法
JP2952769B1 (ja) 1998-03-30 1999-09-27 株式会社麗光 寸法安定性に優れた耐熱フィルム及びその製造法
JP2000292635A (ja) 1999-04-02 2000-10-20 Reiko Udagawa フッ素化ポリイミド樹脂およびそれらを用いた光導波路
JP2001277455A (ja) 2000-01-24 2001-10-09 Toray Ind Inc 積層ポリエステルフィルム
JP2002275296A (ja) * 2001-01-11 2002-09-25 Teijin Ltd 表面保護フィルム用積層ポリエステルフィルム及び表面保護フィルム
JP2007298732A (ja) 2006-04-28 2007-11-15 Mitsubishi Chemicals Corp 透明多層シート及びそれを用いた光学基板
JP2008100509A (ja) * 2006-09-22 2008-05-01 Toray Ind Inc 複合フィルム
JP2008265318A (ja) 2007-03-27 2008-11-06 Teijin Dupont Films Japan Ltd フレキシブルディスプレイ基板用二軸配向ポリエステルフィルム
JP2009258720A (ja) * 2008-03-28 2009-11-05 Fujifilm Corp 透明支持体、光学フィルム、偏光板、および画像表示装置
JP2011518055A (ja) 2008-04-17 2011-06-23 デュポン テイジン フィルムズ ユー.エス.リミテッド パートナーシップ コートされ、平坦化されるポリマーフィルム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2743078A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150114541A (ko) 2013-02-06 2015-10-12 미쓰비시 쥬시 가부시끼가이샤 투명 적층 필름, 투명 도전성 필름 및 가스 배리어성 적층 필름
JP2014170130A (ja) * 2013-03-04 2014-09-18 Fujifilm Corp 光学フィルム及びその製造方法、偏光板ならびに液晶表示装置
JP2014205278A (ja) * 2013-04-11 2014-10-30 三菱樹脂株式会社 透明積層フィルム及び透明基板

Also Published As

Publication number Publication date
EP2743078A1 (en) 2014-06-18
WO2013022011A9 (ja) 2013-04-04
CN103732391B (zh) 2015-10-21
JP5969480B2 (ja) 2016-08-17
EP2743078B1 (en) 2018-12-26
JP6073595B2 (ja) 2017-02-01
EP2743078A4 (en) 2015-03-18
JPWO2013022011A1 (ja) 2015-03-05
KR20140046057A (ko) 2014-04-17
JP2013060005A (ja) 2013-04-04
KR101580066B1 (ko) 2015-12-23
US20140162035A1 (en) 2014-06-12
CN103732391A (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP5969480B2 (ja) 透明積層フィルム
KR102161963B1 (ko) 투명 적층 필름, 투명 도전성 필름 및 가스 배리어성 적층 필름
JP6017890B2 (ja) 透明積層フィルム
JP2014151496A (ja) 透明積層フィルム及び透明基板
JP6085186B2 (ja) 透明積層フィルム及び透明基板
TWI625241B (zh) Transparent laminated film
CN112415638A (zh) 层叠薄膜的制造方法
JP6248471B2 (ja) 透明積層フィルム及び透明基板
JP6307908B2 (ja) 透明積層フィルム及び透明基板
JP6163843B2 (ja) 透明積層フィルム及び透明基板
JP6179211B2 (ja) 透明基板用積層フィルム及びこれを用いたディスプレイパネル
JP6171515B2 (ja) 透明積層フィルム及び透明基板
JP6307909B2 (ja) ガスバリア性積層フィルム及び透明基板
JP6398319B2 (ja) 積層フィルム及び透明基板
JP6326979B2 (ja) 積層フィルム及び透明基板
JP6152585B2 (ja) 透明積層フィルム及び透明基板
JP6118676B2 (ja) 透明導電性フィルム
JP2015229336A (ja) 透明積層フィルム、透明導電性フィルム及び透明基板
JP6359782B1 (ja) 透明ハイバリアフイルム、及びそれを使用したハイバイリア積層体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12821769

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528040

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14236819

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147006104

Country of ref document: KR

Kind code of ref document: A