WO2013013599A1 - 阵列基板及其制作方法、液晶面板、显示装置 - Google Patents

阵列基板及其制作方法、液晶面板、显示装置 Download PDF

Info

Publication number
WO2013013599A1
WO2013013599A1 PCT/CN2012/078966 CN2012078966W WO2013013599A1 WO 2013013599 A1 WO2013013599 A1 WO 2013013599A1 CN 2012078966 W CN2012078966 W CN 2012078966W WO 2013013599 A1 WO2013013599 A1 WO 2013013599A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
isolation buffer
metal layer
buffer layer
gate
Prior art date
Application number
PCT/CN2012/078966
Other languages
English (en)
French (fr)
Inventor
郭炜
李禹奉
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to KR1020127028554A priority Critical patent/KR101447342B1/ko
Priority to JP2014520519A priority patent/JP2014527288A/ja
Priority to EP12788105.0A priority patent/EP2736074A4/en
Priority to US13/700,971 priority patent/US8928828B2/en
Publication of WO2013013599A1 publication Critical patent/WO2013013599A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/2855Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by physical means, e.g. sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation

Definitions

  • Embodiments of the present invention relate to an array substrate and a method of fabricating the same, a liquid crystal panel, and a display device. Background technique
  • Common display devices include liquid crystal displays, electronic paper displays, Organic Light-Emitting Diode (OLED) displays, and the like.
  • a gate and a source/drain are used as metal electrodes on the array substrate, and a lower resistance is required.
  • Good adhesion to substrates and other film layers such as a-Si (amorphous silicon), doped amorphous silicon layer
  • no ion diffusion in the a-Si layer and contact resistance with the pixel electrode layer
  • the value is low, easy to etch, and there is no good property such as hillock generation and oxidation resistance during chemical vapor deposition (CVD) film formation.
  • CVD chemical vapor deposition
  • the main materials used for metal electrode wiring are high melting point metals such as chromium Cr, molybdenum Mo, tantalum Ta, and the like.
  • metal aluminum A1 is widely used, but since the hillock phenomenon is easily generated in the process and the A1 ions are easily diffused into the a-Si layer, aluminum alloy metal is used instead of pure aluminum, such as Al-Nd (aluminum-niobium alloy). ), Al-Ce (aluminum-niobium alloy), Al-Nd-Mo (aluminum-niobium-molybdenum), and the like.
  • metal copper Cu having a lower resistivity is used as a metal electrode in the TFT structure.
  • Embodiments of the present invention provide an array substrate, a method of fabricating the same, a liquid crystal panel, and a display device. It is effective for preventing diffusion of metal ions of the metal electrode layer in the TFT structure to, for example, a silicon-based thin film layer for the active layer and increasing adhesion between the metal electrode layer and the substrate.
  • An aspect of the invention provides an array substrate including a substrate and a gate metal layer, an active layer, and a source/drain metal layer formed on the substrate; wherein at least the gate metal layer is in a thickness direction
  • An isolation buffer layer is formed on one side, and/or an isolation buffer layer is formed on at least one side of the source/drain metal layer in the thickness direction; the isolation buffer layer is made of molybdenum oxide.
  • Another aspect of the present invention provides a method of fabricating the above array substrate, comprising: a gate metal layer, an active layer, and a source/drain metal layer on a base substrate; wherein, at least one side of the gate metal layer is formed
  • the gate metal layer has an isolation buffer layer of the same pattern; and/or an isolation buffer layer having the same pattern as the source/drain metal layer is formed on at least one side of the source/drain metal layer; wherein the isolation
  • the buffer layer is made of molybdenum oxide.
  • a liquid crystal panel includes a color filter substrate and an array substrate disposed opposite to each other, and a liquid crystal layer sandwiched between the color filter substrate and the array substrate; wherein the array substrate is configured by using the above Array substrate.
  • Still another aspect of the present invention provides a display device using the above array substrate.
  • the array substrate and the manufacturing method thereof, the liquid crystal panel and the display device provided by the embodiments of the present invention provide a new isolation buffer layer implementation method by using molybdenum oxide as a material for the isolation buffer layer;
  • the buffer layer can not only effectively prevent metal ions of the metal electrode layer in the TFT structure from being diffused to, for example, a silicon-based thin film layer for the active layer, but also can increase the adhesion between the metal electrode layer and the substrate.
  • FIG. 1 is a schematic structural view of an array substrate according to Embodiment 1 of the present invention.
  • FIG. 1 are schematic views showing a process of fabricating the array substrate shown in FIG. 1;
  • FIG. 3 is a schematic structural diagram of an array substrate according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic structural diagram of an array substrate according to Embodiment 5 of the present invention.
  • FIG. 7 is a schematic structural view of an array substrate according to Embodiment 6 of the present invention.
  • FIG. 8 is a schematic structural diagram of an array substrate according to Embodiment 7 of the present invention.
  • Embodiment 8 of the present invention is a schematic structural view of an array substrate according to Embodiment 8 of the present invention.
  • the use of metal Cu as a wire in the fabrication process of the array substrate has the following problems: l.
  • the surface of the Cu is hydrophobic, so it is easy to cause Photoresist (resist) residue; 2.
  • Cu is easily peeled off by Photoresist Stripper Corrosion; 3.
  • Cu has low adhesion to the substrate or insulating film layer, so it is easy to peel off; 4.
  • Cu is easily oxidized, oxide formed on the surface increases resistance; 5.
  • substrate or a-Si film Cu ions are easily diffused to the Si series film during contact, and silicide is formed when the SiNx insulating film is deposited by the CVD process; 6.
  • the etch rate is 4 ; slow; 7.
  • the etchant and etch rate are different between Cu and the added metal or buffer metal, so it is difficult to control the etching process.
  • embodiments of the present invention provide an implementation of a new isolation buffer layer for a metal (e.g., metal Cu) electrode.
  • a metal e.g., metal Cu
  • This embodiment provides an array substrate including a substrate and a gate metal layer, an active layer, and a source/drain metal layer formed on the substrate; wherein at least the gate metal layer (in the thickness direction)
  • An isolation buffer layer is formed on one side, and/or an isolation buffer layer is formed on at least one side of the source/drain metal layer (thickness direction); and, the isolation buffer layer is made of ⁇ (molybdenum oxide) )production.
  • may be molybdenum trioxide (Mo0 3 ), may also be molybdenum dioxide (Mo0 2 ), or a combination of the two.
  • the active layer may include a semiconductor layer and an ohmic contact layer, or the active layer includes only a semiconductor layer, and the specific implementation may be determined in combination with different structures of the array substrate.
  • the array substrate is a bottom gate type TFT structure
  • at least one side of the gate metal layer may include: a side of the gate metal layer adjacent to the substrate and/or a side of the gate metal layer adjacent to the gate insulating layer
  • At least one side of the source/drain metal layer may include: a side of the source/drain metal layer adjacent to the active layer and/or a side of the source/drain metal layer adjacent to the passivation layer.
  • At least one side of the gate metal layer may include: a side of the gate metal layer adjacent to the passivation layer and/or a gate metal layer adjacent to the gate insulating layer One side; at least one side of the source/drain metal layer may include: a side of the source/drain metal layer adjacent to the active layer and/or a side of the source/drain metal layer adjacent to the gate insulating layer.
  • the lattice structure of the ⁇ material oxygen atoms are filled between the grain boundaries of the Mo atoms, so that the lattice structure of the ⁇ material is denser than that of the original Mo metal, and the adhesion to the substrate can be improved.
  • the force is applied, and the metal ions of the gate metal layer and the source/drain metal layer are effectively prevented from diffusing to, for example, a silicon-based thin film layer for the active layer.
  • another embodiment of the present invention further provides a method for fabricating the above array substrate, the method comprising:
  • Step A forming an isolation buffer layer having the same pattern as the gate metal layer on at least one side of the gate metal layer; and/or,
  • Step B forming an isolation buffer layer having the same pattern as the source/drain metal layer on at least one side of the source/drain metal layer;
  • the isolation buffer layer is made of ⁇ material.
  • a new isolation buffer layer implementation is provided by using molybdenum oxide as a material for the isolation buffer layer; moreover, the isolation buffer layer containing molybdenum oxide can not only effectively prevent metal in the TFT structure.
  • the metal ions of the electrode layer are diffused to, for example, a silicon-based thin film layer for the active layer, and the adhesion between the metal electrode layer and the adjacent film layer can be increased.
  • the active layer in the TFT structure can be a conventional semiconductor layer and The combination of ohmic contact layers is exemplified.
  • the gate metal layer and the source/drain metal layer in the TFT structure can be fabricated using, but not limited to, a metal Cu, Al or AlNd alloy.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • an array substrate provided by an embodiment of the present invention includes a base substrate 1 and a gate metal layer 2 , a gate insulating layer 3 , a semiconductor layer 4 , an ohmic contact layer 5 , and a source formed on the base substrate 1 .
  • a first isolation buffer layer 21 is formed between the gate metal layer 2 and the base substrate 1, and a second isolation buffer layer 61 is formed between the ohmic contact layer 5 and the source/drain metal layer 6.
  • the base substrate 1 may be, but not limited to, a glass substrate or a quartz substrate.
  • the gate metal layer 2 and the source/drain metal layer 6 are exemplified by metal Cu in this embodiment, but other suitable metal or alloy materials may also be used.
  • the gate insulating layer 3 is made of a silicon-based material such as Si x Ny (silicon nitride) or Si x Oy (silicon oxide), but is not limited thereto.
  • the semiconductor layer 4 and the ohmic contact layer 5 are combined to form an active layer.
  • the semiconductor layer 4 can be made of a-Si (amorphous silicon) material; the ohmic contact layer 5 is made of N+ a-Si (doped amorphous silicon) material.
  • the passivation layer 7 may be a silicon-based material such as Si x N y or Si x O y or an organic resin material.
  • the pixel electrode 8 can be made of a transparent conductive material such as ITO (indium tin oxide) or IZO (indium oxide).
  • At least one of the first isolation buffer layer 21 and the second isolation buffer layer 61 may be made of ⁇ .
  • the method for fabricating the array substrate includes the following steps.
  • the pattern of the first isolation buffer layer 21 and the pattern of the gate metal layer 2 correspond vertically in the TFT structure of the array substrate, and the pattern shape is kept uniform.
  • the process of depositing a ⁇ film on a base substrate may be in the following manners A: sputtering is performed by a sputtering process using a mixed Ar (argon gas) and a 0 2 metal Mo target to form a single Layer ⁇ film.
  • Method B sputtering a Mo target by a pure Ar gas by a sputtering process, and then performing secondary sputtering on the metal Mo target by using mixed Ar and 02 to form a Mo metal layer and a MoOx film simultaneously.
  • the two-layer structure enables reduction in electrical resistance and improved adhesion characteristics of the isolation buffer layer.
  • Method C forming a metal Mo film on a substrate by a sputtering process, followed by Furnace, bake oven, RTP (Rapid Thermal Processing), RTA (Rapid Thermal Annealing), In a device such as CVD or PVD (Physical Vapor Deposition), a MoOx film is formed by heat treatment in an oxygen-rich environment.
  • Mode D A metal Mo film is formed on the base substrate by a sputtering process, and a MOS process is performed in an oxygen (0 2 or N 2 0 ) environment to form a MoOx film.
  • the process temperature can be controlled between 200 ° C and 700 ° C during heat treatment or lasma treatment.
  • the pattern of the second isolation buffer layer 61 and the pattern of the source/drain metal layer 6 correspond vertically in the TFT structure of the array substrate, and the pattern shape is kept uniform.
  • the manner of forming the MoOx thin film layer is the same as that mentioned in the step S11, and details are not described herein again.
  • the thickness of the passivation layer can be between 1000A and 6000A, in order to avoid the film layer deposition being too thick and the film layer denseness problem and the film layer falling off. If the passivation layer is made of an organic resin material, the thickness of the passivation layer can be between 10,000 A and 40000 A. Here, a larger passivation layer thickness can reduce the coupling capacitance between the pixel electrode and the signal electrode, thereby reducing leakage of the pixel electrode and crosstalk to the signal electrode.
  • the patterning processes mentioned in the present embodiment and subsequent embodiments include processes such as photoresist coating, prebaking, mask exposure, development, etching, and lift-off.
  • the array substrate and the manufacturing method thereof provided by the embodiments of the present invention provide a new isolation buffer layer implementation method by using ⁇ as a material for the isolation buffer layer; moreover, the isolation buffer layer containing molybdenum oxide can not only It is effective to prevent diffusion of metal ions of the metal electrode layer in the TFT structure to, for example, a silicon-based thin film layer for an active layer, and to increase adhesion between the metal electrode layer and the base substrate.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • this embodiment is further improved to obtain another array substrate structure.
  • another array substrate provided by this embodiment includes a base substrate 1 and a gate metal layer 2, a gate insulating layer 3, a semiconductor layer 4, an ohmic contact layer 5, and a source formed on the base substrate 1. / drain metal layer 6, passivation layer 7 and pixel electrode 8.
  • a first isolation buffer layer 21 is formed between the gate metal layer 2 and the base substrate 1, and a second isolation buffer layer 61 is formed between the ohmic contact layer 5 and the source/drain metal layer 6.
  • a third isolation buffer layer 22 is also formed between the gate metal layer 2 and the gate insulating layer 3.
  • the gate metal layer 2 and the source/drain metal layer 6 are selected from the metal Cu in this embodiment, but other metals may also be used.
  • the first isolation buffer layer 21 and/or the second isolation buffer layer 61 may be made of ⁇ .
  • the third isolation buffer layer 22 may be made of metal Mo or ⁇ .
  • a method for fabricating the array substrate shown in FIG. 3 is also provided; the specific implementation process of the method is similar to the fabrication process of the array substrate shown in FIG. 1, and the difference is:
  • step S11 a MoOx film and a Cu metal film, and a metal Mo or MoOx film are sequentially formed on the base substrate 1, and the first isolation buffer layer 21, the gate metal layer 2, and the third isolation buffer layer 22 are formed by a patterning process. picture of.
  • the patterns of the first isolation buffer layer 21, the gate metal layer 2, and the third isolation buffer layer 22 are vertically aligned in the TFT structure of the array substrate, and the pattern shape is kept uniform.
  • the array substrate provided in this embodiment and the manufacturing method thereof are further provided with an isolation buffer layer between the gate metal layer and the gate insulating layer on the basis of the first embodiment, which can further strengthen the between the gate metal layer and the gate insulating layer.
  • the adhesion prevents the gate metal layer from being peeled off from the gate insulating layer while preventing Cu ions in the gate metal layer from diffusing into the gate insulating layer.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • this embodiment is further improved to obtain another array substrate structure.
  • another array substrate provided by this embodiment includes a base substrate 1 and a gate metal layer 2, a gate insulating layer 3, a semiconductor layer 4, an ohmic contact layer 5, and a source formed on the base substrate 1. / drain metal layer 6, passivation layer 7 and pixel electrode 8.
  • a first isolation buffer layer 21 is formed between the gate metal layer 2 and the base substrate 1, and a second isolation buffer layer 61 is formed between the ohmic contact layer 5 and the source/drain metal layer 6, in addition to the source/drain
  • a fourth isolation buffer layer 62 is also formed between the metal layer 6 and the passivation layer 7.
  • the gate metal layer 2 and the source/drain metal layer 6 are selected from the metal Cu in this embodiment, but are not limited thereto.
  • the first isolation buffer layer 21 and/or the second isolation buffer layer 61 may be made of MoOx; the fourth isolation buffer layer 62 may be made of metal Mo or MoOx.
  • a method for fabricating the array substrate shown in FIG. 4 is also provided; the specific implementation process of the method is similar to the fabrication process of the array substrate shown in FIG. 1 , and the difference is: in step S13 a MoOx film and a Cu metal film, and a metal Mo or MoOx film are deposited on the substrate on which the ohmic contact layer is formed, and the second isolation buffer layer 61, the source/drain metal layer 6, and the fourth isolation layer are formed by a patterning process. The pattern of the layer 62.
  • the patterns of the second isolation buffer layer 61, the source/drain metal layer 6, and the fourth isolation buffer layer 62 are vertically aligned in the TFT structure of the array substrate, and the pattern shape is kept uniform.
  • the array substrate provided in this embodiment and the manufacturing method thereof are based on the first embodiment and are in the source/
  • An additional buffer layer is added between the drain metal layer and the passivation layer to further strengthen the adhesion between the source/drain metal layer and the passivation layer to prevent the source/drain metal layer from separating from the passivation layer, and is effective
  • the contact resistance between Cu in the source/drain metal layer and the pixel electrode is improved and the Cu metal is prevented from being oxidized.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the solution in the second embodiment can be combined with the solution in the third embodiment to obtain another new array substrate structure.
  • another new array substrate provided in this embodiment includes a base substrate 1 and a gate metal layer 2, a gate insulating layer 3, a semiconductor layer 4, and an ohmic contact layer formed on the base substrate 1. 5.
  • a first isolation buffer layer 21 is formed between the gate metal layer 2 and the base substrate 1, and a second isolation buffer layer 61 is formed between the ohmic contact layer 5 and the source/drain metal layer 6.
  • a third isolation buffer layer 22 is formed between the gate metal layer 2 and the gate insulating layer 3, and a fourth isolation buffer layer 62 is further formed between the source/drain metal layer 6 and the passivation layer 7. .
  • the gate metal layer 2 and the source/drain metal layer 6 are selected from the metal Cu in this embodiment, but are not limited thereto.
  • the first isolation buffer layer 21 and/or the second isolation buffer layer 61 may be made of ⁇ ; the third isolation buffer layer 22 and/or the fourth isolation buffer layer 62 may Made of metal Mo or ⁇ .
  • the method for fabricating the array substrate shown in FIG. 5 can be combined with the method for fabricating the array substrate provided in the second embodiment and the third embodiment, and details are not described herein again.
  • the array substrate provided in this embodiment and the manufacturing method thereof are further provided with a third isolation buffer layer between the gate metal layer and the gate insulating layer, and a source/drain metal layer and passivation on the basis of the first embodiment.
  • a fourth isolation buffer layer is added between the layers to further stabilize the adhesion between the layers of the TFT structure to prevent detachment between the different layers, and effectively prevent Cu ions in the gate metal layer from diffusing to adjacent ones.
  • the layer structure and effectively improving the contact resistance between the Cu and the pixel electrode in the source/drain metal layer and preventing the Cu metal from being oxidized.
  • the bottom-gate TFT structure is taken as an example to introduce the newly proposed array substrate structure.
  • the solution provided by the present invention can be applied to, but not limited to, an array substrate of a bottom gate type TFT structure, and can of course be applied to an array substrate of a TFT structure such as a top gate type or a double gate type.
  • the top-gate TFT structure to which the isolation buffer layer implementation of the present invention is applied will be briefly described below.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • an active layer 9 As shown in FIG. 6, in the structure of the top gate type TFT array substrate, an active layer 9, a source/drain metal layer 6, a gate insulating layer 3, a gate metal layer 2, and a passivation layer are sequentially formed on the base substrate 1. 7 and pixel electrode 8.
  • the active layer 9 may be a single layer structure including only a semiconductor layer, and may be a two-layer structure including a semiconductor layer and an ohmic contact layer. The specific implementation of the active layer 9 is no longer distinguished in the TFT array substrate structure shown in FIG. 6, but is not limited to a single layer structure.
  • a first isolation buffer layer 21 is formed between the gate metal layer 2 and the gate insulating layer 3, and a second is formed between the active layer 9 and the source/drain metal layer 6.
  • the isolation buffer layer 61; and, the first isolation buffer layer 21 and/or the second isolation buffer layer 61 may be made of ⁇ .
  • the process of fabricating the array substrate shown in FIG. 6 includes: sequentially forming an active layer 9, a source/drain metal layer 6, a gate insulating layer 3, and a gate metal layer 2, and a passivation layer 7 on the base substrate 1.
  • the second isolation buffer layer 61 is formed while the source/drain metal layer 6 is being formed. Specifically, a molybdenum oxide film and a source/drain metal film are formed on the substrate on which the active layer 9 is formed, and a pattern of the second isolation buffer layer 61 and the source/drain metal layer 6 having the same pattern is formed by a patterning process.
  • the first isolation buffer layer 21 is formed while the gate metal layer 2 is formed. Specifically, a molybdenum oxide thin film and a gate metal thin film are sequentially deposited on the substrate on which the gate insulating layer 3 is formed, and a pattern of the first isolation buffer layer 21 and the gate metal layer 2 having the same pattern is formed by a patterning process.
  • the array substrate and the manufacturing method thereof provided by the embodiments of the present invention provide a new isolation buffer layer implementation method by using ⁇ as a material for the isolation buffer layer; moreover, the isolation buffer layer containing molybdenum oxide can not only It is effective to prevent metal ions of the metal electrode layer in the TFT structure from diffusing to, for example, a silicon-based thin film layer for the active layer, and it is possible to increase the adhesion between the metal electrode layer and the adjacent film layer to prevent the metal electrode layer from coming off.
  • the embodiment further improves To another top gate type TFT array substrate structure.
  • the array substrate in this embodiment further has a third isolation buffer layer 22 formed between the gate metal layer 2 and the passivation layer 7 .
  • the third isolation buffer layer 22 may be made of metal Mo or ⁇ .
  • the first isolation buffer layer 21 and the third isolation buffer layer 22 are both formed by the same mask (mask exposure) process as the gate metal layer 2; Specifically, a molybdenum oxide film, a gate metal film, and a metal molybdenum or molybdenum oxide film are sequentially deposited on the substrate on which the gate insulating layer 3 is formed, and the first isolation buffer layer 21 and the gate metal layer 2 are formed by a patterning process. And a pattern of the third isolation buffer layer 22.
  • the array substrate and the manufacturing method thereof provided by the embodiments of the present invention provide a new isolation buffer layer implementation method by using ⁇ as a material for the isolation buffer layer; moreover, the isolation buffer layer containing molybdenum oxide can not only It is effective to prevent metal ions of the metal electrode layer in the TFT structure from diffusing to, for example, a silicon-based thin film layer for the active layer, and it is possible to increase the adhesion between the metal electrode layer and the adjacent film layer to prevent the metal electrode layer from coming off.
  • this embodiment further improves the structure of the top gate type TFT array substrate. specifically,
  • the array substrate in this embodiment has a fourth isolation buffer layer 62 formed between the gate insulating layer 3 and the source/drain metal layer 6,
  • the fourth isolation buffer layer 62 is made of metallic molybdenum or molybdenum oxide.
  • the second isolation buffer layer 61 and the fourth isolation buffer layer 62 can be fabricated by the same mask process as the source/drain metal layer 6; Forming a molybdenum oxide film, a source/drain metal film, and a metal molybdenum or molybdenum oxide film on the base substrate on which the active layer 9 is formed, and forming a second isolation buffer layer 61 having the same pattern by a patterning process, A pattern of the source/drain metal layer 6 and a pattern of the fourth isolation buffer layer 62.
  • the array substrate provided by the embodiment and the manufacturing method thereof can further strengthen the adhesion between the source/drain metal layer and the gate insulating layer to prevent the source/drain metal layer from being separated from the gate insulating layer, and effectively improve the source/drain metal.
  • the solution in the above sixth embodiment can be combined with the solution in the seventh embodiment. In combination, a new array substrate structure is obtained.
  • the array substrate provided in this embodiment is further provided with a third isolation buffer layer 22 between the gate metal layer 2 and the passivation layer 7, in the gate insulation.
  • a fourth isolation buffer layer 62 is formed between the layer 3 and the source/drain metal layer 6; the third isolation buffer layer 22 and the fourth isolation buffer layer 62 are made of metal molybdenum or molybdenum oxide.
  • the method for fabricating the array substrate shown in FIG. 9 can be combined with the method for fabricating the array substrate provided in the sixth embodiment and the seventh embodiment, and details are not described herein again.
  • the array substrate provided by the embodiment and the manufacturing method thereof can further stabilize the adhesion between layers of the TFT structure to prevent detachment between different layers, and effectively prevent Cu ions in the gate metal layer from diffusing to adjacent layers.
  • the structure and effectively improving the contact resistance between the Cu and the pixel electrode in the source/drain metal layer and preventing the Cu metal from being oxidized.
  • a liquid crystal panel which comprises a color film substrate disposed opposite to each other, an array substrate, and a liquid crystal layer sandwiched between the color filter substrate and the array substrate; wherein the array substrate can be The array substrate provided in the above embodiment was used.
  • Also provided in the embodiment of the present invention is a display device in which the array substrate provided in the above embodiment is used.
  • the display device may be, but not limited to, a liquid crystal display device, and may be a display device such as an OLED display device or an electronic book.
  • liquid crystal panel and the display device in the embodiment of the present invention use the array substrate in the above embodiment, the technical effects mentioned in the above embodiments can be achieved as well.
  • the solution provided in the embodiments of the present invention is applicable not only to various display devices using TFT array substrates but also to X-ray detector devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Ceramic Engineering (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

提供一种阵列基板及其制作方法、包括阵列基板的液晶面板及显示装置。阵列基板包括基板(1)以及形成在基板(1)上的栅金属层(2)、有源层和源/漏金属层(6);在栅金属层(2)的至少一侧形成有隔离缓冲层(21,22),和/或在源/漏金属层(6)的至少一侧形成有隔离缓冲层(61,62);隔离缓冲层(21,22,61,62)由氧化钼制成。由氧化钼制成的隔离缓冲层不仅可以防止TFT结构中金属电极层的金属离子扩散至用于有源层的例如硅系薄膜层,而且可以增加金属电极层与基板之间的附着力。

Description

阵列基板及其制作方法、 液晶面板、 显示装置 技术领域
本发明的实施例涉及一种阵列基板及其制作方法、液晶面板及显示装置。 背景技术
常见的显示装置包括液晶显示器、 电子纸显示器、 有机发光二极管 ( Organic Light-Emitting Diode, OLED )显示器等。
以液晶显示器为例, 液晶显示器的作为像素开关元件的薄膜场效应晶体 管( Thin Film Transistor, TFT )结构中, 栅极和源 /漏极作为阵列基板上的金 属电极, 需要具有较低的电阻、 与基板和其他膜层(比如 a-Si (非晶硅) 、 掺杂非晶硅层)有较好的粘附性、 不会在 a-Si层产生离子扩散、 与像素电极 层的接触电阻值低、 易于刻蚀、在化学气相沉积( Chemical Vapor Deposition, CVD )成膜过程中没有小丘(hillock )产生、 不易氧化等良好的特性。
在薄膜晶体管液晶显示器(TFT-LCD )产业化初期, 金属电极配线使用 的主要材料是高熔点的金属, 如铬 Cr、 钼 Mo、 钽 Ta等。
随着液晶面板尺寸的增大, 需要降低金属电极的电阻。 因此, 金属铝 A1 被广泛使用, 但是由于在工艺过程中容易发生 hillock现象以及 A1离子容易 扩散至 a-Si层中,所以改用铝合金金属来代替纯铝,比如 Al-Nd(铝钕合金)、 Al-Ce (铝铈合金) 、 Al-Nd-Mo (铝钕钼)等。
随着液晶面板的尺寸变得更大及高速驱动和高分辨率(4k*2k ) 的要求, 电阻率更低的金属铜 Cu开始被使用作为 TFT结构中的金属电极。
在实现上述液晶显示器的 TFT结构的过程中,发明人发现现有技术中至 少存在如下问题: 1 ) Cu与基板之间的粘结性很低, 因此容易剥离; 2 ) Cu 与 a-Si或 N+a-Si薄膜层接触时, Cu离子容易扩散至 Si系列薄膜, 进而影响 TFT结构的导通性能。 发明内容
本发明的实施例提供一种阵列基板及其制作方法、液晶面板及显示装置, 用以有效防止 TFT 结构中金属电极层的金属离子扩散至用于有源层的例如 硅系薄膜层以及增加金属电极层与基板之间的附着力。
本发明的一个方面提供了一种阵列基板, 包括基板以及形成在所述基板 上的栅金属层、 有源层和源 /漏金属层; 其中, 在所述栅金属层在厚度方向上 的至少一侧形成有隔离緩冲层, 和 /或在所述源 /漏金属层在厚度方向上的至 少一侧形成有隔离緩冲层; 所述隔离緩冲层由氧化钼制成。
本发明的另一个方面提供了一种制作上述阵列基板的方法, 包括: 在基 底基板上的栅金属层、 有源层和源 /漏金属层; 其中, 在栅金属层的至少一侧 形成与该栅金属层具有相同图案的隔离緩冲层; 和 /或, 在源 /漏金属层的至 少一侧形成与所述源 /漏金属层具有相同图案的隔离緩冲层; 其中, 所述隔离 緩冲层由氧化钼制成。
本发明的再一个方面提供了一种液晶面板, 包括相对设置的彩膜基板和 阵列基板以及夹置在该彩膜基板和阵列基板之间的液晶层; 其中, 所述阵列 基板釆用上述的阵列基板。
本发明的再一个方面提供了一种显示装置, 该显示装置釆用上述的阵列 基板。
本发明实施例提供的阵列基板及其制作方法、 液晶面板及显示装置, 利 用氧化钼作为隔离緩冲层的制作材料,提供了一种新的隔离緩冲层实现方式; 包含有氧化钼的隔离緩冲层不只可以使有效防止 TFT 结构中金属电极层的 金属离子扩散至用于有源层的例如硅系薄膜层, 而且可以增加金属电极层与 基板之间的附着力。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 而非对本发明的限制。
图 1为本发明实施例一中的阵列基板的结构示意图;
图 2A〜图 2D为图 1中所示阵列基板的制作过程示意图;
图 3为本发明实施例二中的阵列基板的结构示意图;
图 4为本发明实施例三中的阵列基板的结构示意图; 图 5为本发明实施例四中的阵列基板的结构示意图;
图 6为本发明实施例五中的阵列基板的结构示意图;
图 7为本发明实施例六中的阵列基板的结构示意图;
图 8为本发明实施例七中的阵列基板的结构示意图;
图 9为本发明实施例八中的阵列基板的结构示意图;
附图标记: 1-基板; 2-栅金属层; 21-第一隔离緩冲层; 22-第三隔离緩冲 层; 3-栅绝缘层; 4-半导体层; 5-欧姆接触层; 6-源 /漏金属层; 61-第二隔离 緩冲层; 62-第四隔离緩冲层; 7-钝化层; 8-像素电极; 9-有源层。 具体实施方式
目前在阵列基板的制作过程中使用金属 Cu作为导线有以下几个问题: l . Cu表面具有疏水性, 因此容易造成 Photoresist (光刻胶)残留; 2. Cu容易 被 Photoresist Stripper (光刻胶剥离液)腐蚀; 3. Cu与基板或绝缘薄膜层的 粘结性很低, 因此容易剥离; 4.Cu容易发生氧化, 表面上形成的氧化物会增 加电阻; 5. 与基板或 a-Si薄膜接触时 Cu离子容易扩散至 Si系列薄膜,且利 用 CVD工艺沉积 SiNx绝缘薄膜时形成硅化物; 6. 利用过氧化氢系列的主氧 化剂时难以控制分解反应,而利用环氧乙烯系列的主氧化剂时刻蚀速度 4艮慢; 7. Cu与添加金属或者緩冲金属之间,所需刻蚀剂和刻蚀率不同, 因此难以控 制刻蚀工艺。
针对上述问题, 本发明实施例提供了一种新的金属(例如金属 Cu )电极 的隔离緩冲层的实现方式。
该实施例提供了一种阵列基板, 其包括基板以及形成在所述基板上的栅 金属层、 有源层和源 /漏金属层; 其中, 在所述栅金属层(厚度方向上)的至 少一侧形成有隔离緩冲层, 和 /或, 在所述源 /漏金属层 (厚度方向上) 的至 少一侧形成有隔离緩冲层; 而且, 所述隔离緩冲层由 Μοθχ (氧化钼 )制成。 例如, Μοθχ可以是三氧化钼 (Mo03 ), 也可以是二氧化钼 (Mo02 ), 或二 者的组合。
在上述阵列基板中, 所述有源层可以包括半导体层和欧姆接触层, 或者 所述有源层仅包括半导体层, 其具体实现可以结合阵列基板的不同结构而确 定。 如果上述阵列基板釆用底栅型 TFT结构,则所述栅金属层的至少一侧可 以包括: 栅金属层与基板相邻的一侧和 /或栅金属层与栅绝缘层相邻的一侧; 所述源 /漏金属层的至少一侧可以包括: 源 /漏金属层与有源层相邻的一侧和 / 或源 /漏金属层与钝化层相邻的一侧。
如果上述阵列基板釆用顶栅型 TFT结构,则所述栅金属层的至少一侧可 以包括: 栅金属层与钝化层相邻的一侧和 /或栅金属层与栅绝缘层相邻的一 侧; 所述源 /漏金属层的至少一侧可以包括: 源 /漏金属层与有源层相邻的一 侧和 /或源 /漏金属层与栅绝缘层相邻的一侧。
在 Μοθχ材料的晶格结构中,氧原子填充到 Mo原子晶界之间,使 Μοθχ 材料的晶格结构相比于原来的 Mo金属的晶格结构显得更加致密, 能够提高 与基板之间的附着力, 并有效地防止栅金属层、 源 /漏金属层的金属离子扩散 至用于有源层的例如硅系薄膜层。
相应地,本发明的另一实施例中还提供了一种制作上述阵列基板的方法, 该方法包括:
步骤 A、 在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离 緩冲层; 和 /或,
步骤 B、在源 /漏金属层的至少一侧形成与所述源 /漏金属层具有相同图案 的隔离緩冲层;
其中, 所述隔离緩冲层由 Μοθχ材料制成。
在上述方案中, 利用氧化钼作为隔离緩冲层的制作材料, 提供了一种新 的隔离緩冲层实现方式; 而且, 包含有氧化钼的隔离緩冲层不只可以使有效 防止 TFT 结构中金属电极层的金属离子扩散至用于有源层的例如硅系薄膜 层, 而且可以增加金属电极层与相邻膜层之间的附着力。
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
在以下的实施例中,以底栅型和顶栅型的 TFT结构为例来介绍本发明实 施例中提供的阵列基板的具体结构实现,且 TFT结构中的有源层可以传统的 半导体层与欧姆接触层的组合为例。 为了降低配线电阻, 本发明实施例中的 TFT结构中的栅金属层和源 /漏金属层可以釆用但不限于金属 Cu、 A1或 AlNd 合金等来制作。
实施例一:
如图 1所示, 本发明实施例提供的一种阵列基板, 包括基底基板 1以及 形成在该基底基板 1上的栅金属层 2、 栅绝缘层 3、 半导体层 4、 欧姆接触层 5、 源 /漏金属层 6、 钝化层 7和像素电极 8。 在栅金属层 2和基底基板 1之间 形成有第一隔离緩冲层 21 , 在欧姆接触层 5和源 /漏金属层 6之间形成有第 二隔离緩冲层 61。
基底基板 1可以是但不限于玻璃基板或者石英基板。
栅金属层 2和源 /漏金属层 6在本实施例中以金属 Cu为例, 但是也可以 釆用其他适当的金属或合金材料。
栅绝缘层 3釆用 SixNy (氮化硅)或者 SixOy (氧化硅)等硅系材料, 但 不限于此。
半导体层 4和欧姆接触层 5组合形成有源层。 半导体层 4可以釆用 a-Si (非晶硅)材料制作; 欧姆接触层 5釆用 N+ a-Si (掺杂非晶硅)材料制作。
钝化层 7可以釆用 SixNy或者 SixOy等硅系材料或者有机树脂材料。
像素电极 8可以釆用 ITO (氧化铟锡)或 IZO (氧化铟辞)等透明导电 材料。
所述第一隔离緩冲层 21 和所述第二隔离緩冲层 61 中至少之一可以由 Μοθχ制作而成。
相应地,在本实施例中还提供了一种制作图 1中所示的阵列基板的方法。 参见图 2A-图 2D所示, 所述阵列基板的制作方法包括如下步骤。
S 11、在基底基板 1上依次沉积 Μοθχ薄膜和 Cu金属薄膜, 并通过构图 工艺形成第一隔离緩冲层 21和栅金属层 2的图案(如图 2A所示)。
第一隔离緩冲层 21的图案和栅金属层 2的图案在阵列基板的 TFT结构 中上下对应, 图案形状保持统一。
例如, 在基底基板上沉积 Μοθχ薄膜的过程可以有以下几种实现方式之 方式 A: 通过溅射工艺, 利用混合的 Ar (氩气 )和 02对金属 Mo靶材 进行溅射, 以形成单层的 Μοθχ薄膜。 方式 B: 通过溅射工艺, 先利用纯 Ar气对 Mo靶材进行溅射, 后利用混 合的 Ar和 02对金属 Mo靶材进行二次溅射, 形成同时包含 Mo金属层和 MoOx薄膜的双层结构, 从而实现降低电阻和提高隔离緩冲层的附着特性。
方式 C: 通过溅射工艺在基板上形成金属 Mo薄膜, 之后在 Furnace (熔 炉)、 bake oven (烘焙箱)、 RTP ( Rapid Thermal Processing, 快速热处理)、 RTA ( Rapid Thermal Annealing, 快速热退火)、 CVD或 PVD ( Physical Vapor Deposition, 物理气相沉积)等设备中, 通过富氧环境热处理后形成 MoOx 膜。
方式 D: 通过溅射工艺在基底基板上形成金属 Mo薄膜, 在 plasma (等 离子体 )设备中, 在氧( 02或 N20 )环境下进行 lasma处理后形成 MoOx 膜。
在上述方式 A和方式 B的实现过程中, Ar和 02的混合气体中 02所占 的比例 (体积比)最好在 50%以下。
在上述方式 C和方式 D的实现过程中, 进行热处理时或进行 lasma处 理时, 可以将工艺温度控制在 200°C~700°C之间。
S12、 在形成有栅金属层的基底基板上沉积栅绝缘层材料、 半导体层材 料和欧姆接触层材料, 并通过构图工艺形成栅绝缘层 3、 半导体层 4和欧姆 接触层 5的图案 (如图 2B所示 )。
S 13、在形成有欧姆接触层的基底基板上沉积 MoOx薄膜和 Cu金属薄膜, 并通过构图工艺形成第二隔离緩冲层 61和源 /漏金属层 6的图案(如图 2C所 示)。
第二隔离緩冲层 61的图案和源 /漏金属层 6的图案在阵列基板的 TFT结 构中上下对应, 图案形状保持统一。
在该步骤中, 形成 MoOx薄膜层的方式与步骤 S11中提到的实现方式一 样, 此处不再赘述。
S14、 在形成有源 /漏金属层的基底基板上沉积钝化层材料, 并通过构图 工艺形成钝化层 7的图案(如图 2D所示);
如果钝化层釆用 SixNy和 /或 SixOy, 则钝化层的厚度可在 1000A 6000A 之间,以避免膜层沉积太厚而出现膜层致密性问题进而导致膜层脱落等不良; 如果钝化层釆用有机树脂材料, 则钝化层的厚度可在 10000A 40000A之间, 此处釆用较大的钝化层厚度可以降低像素电极和信号电极之间的耦合电容, 从而减小像素电极的漏电以及对信号电极的串扰。
S15、 在形成有钝化层的基底基板上沉积像素电极材料, 并通过构图工 艺形成像素电极 8的图案(如图 1所示)。
在本实施例及后续实施例中所提及的构图工艺, 包括光刻胶涂覆、前烘、 掩模曝光、 显影、 刻蚀和剥离等工艺。
上述制作阵列基板的工艺流程是以 5 Mask工艺为例来对本发明提供的 方案进行介绍的, 当然本发明提供的方案也可以适用于 4 Mask工艺; 其中, 可以利用半曝光工艺将上述步骤 S12和 S13在同一次掩膜曝光过程中完成, 具体过程此处不再赘述。
本发明实施例提供的阵列基板及其制作方法, 利用 Μοθχ作为隔离緩冲 层的制作材料, 提供了一种新的隔离緩冲层实现方式; 而且, 包含有氧化钼 的隔离緩冲层不只可以有效防止 TFT 结构中金属电极层的金属离子扩散至 用于有源层的例如硅系薄膜层, 而且可以增加金属电极层与基底基板之间的 附着力。
实施例二:
在实施例一所提供的阵列基板的基础上, 本实施例对其做进一步改进得 到另一种阵列基板结构。
如图 3所示, 本实施例提供的另一种阵列基板, 包括基底基板 1以及形 成在该基底基板 1上的栅金属层 2、栅绝缘层 3、半导体层 4、欧姆接触层 5、 源 /漏金属层 6、 钝化层 7和像素电极 8。 在栅金属层 2和基底基板 1之间形 成有第一隔离緩冲层 21 , 在欧姆接触层 5和源 /漏金属层 6之间形成有第二 隔离緩冲层 61。
在所述栅金属层 2和栅绝缘层 3之间还形成有第三隔离緩冲层 22。
所述栅金属层 2和源 /漏金属层 6在本实施例中选用金属 Cu, 但也可釆 用其他金属。
所述第一隔离緩冲层 21和 /或所述第二隔离緩冲层 61可以由 Μοθχ制作 而成。 所述第三隔离緩冲层 22可以由金属 Mo或者 Μοθχ制作而成。
在本实施例中, 同样提供了一种制作图 3所示的阵列基板的方法; 该方 法的具体实现过程与图 1所示的阵列基板的制作过程类似,其不同之处在于: 在步骤 Sll中, 在基底基板 1上依次 MoOx薄膜和 Cu金属薄膜、 以及金属 Mo或者 MoOx薄膜, 并通过构图工艺形成第一隔离緩冲层 21、 栅金属层 2 和第三隔离緩冲层 22的图案。
第一隔离緩冲层 21、 栅金属层 2和第三隔离緩冲层 22的图案在阵列基 板的 TFT结构中上下对应, 图案形状保持统一。
本实施例提供的阵列基板及其制作方法, 在实施例一的基础上又在栅金 属层和栅绝缘层之间增设一层隔离緩冲层, 可以进一步加强栅金属层与栅绝 缘层之间的附着力以防栅金属层与栅绝缘层剥离,同时防止栅金属层中的 Cu 离子扩散到栅绝缘层中。
实施例三:
在实施例一所提供的阵列基板的基础上, 本实施例对其做进一步改进得 到另一阵列基板结构。
如图 4所示, 本实施例提供的另一种阵列基板, 包括基底基板 1以及形 成在该基底基板 1上的栅金属层 2、栅绝缘层 3、半导体层 4、欧姆接触层 5、 源 /漏金属层 6、 钝化层 7和像素电极 8。 在栅金属层 2和基底基板 1之间形 成有第一隔离緩冲层 21 , 在欧姆接触层 5和源 /漏金属层 6之间形成有第二 隔离緩冲层 61 , 此外在源 /漏金属层 6和钝化层 7之间还形成有第四隔离緩 冲层 62。
所述栅金属层 2和源 /漏金属层 6在本实施例中选用金属 Cu, 但不限于 此。
所述第一隔离緩冲层 21和 /或所述第二隔离緩冲层 61可以由 MoOx制作 而成; 所述第四隔离緩冲层 62可以由金属 Mo或者 MoOx制作而成。
在本实施例中, 还提供了一种制作图 4所示的阵列基板的方法; 该方法 的具体实现过程与图 1所示的阵列基板的制作过程类似, 其不同之处在于: 在步骤 S13中, 在形成有欧姆接触层的基板上沉积 MoOx薄膜和 Cu金属薄 膜、以及金属 Mo或者 MoOx薄膜,并通过构图工艺形成第二隔离緩冲层 61、 源 /漏金属层 6和第四隔离緩冲层 62的图案。
第二隔离緩冲层 61、 源 /漏金属层 6和第四隔离緩冲层 62的图案在阵列 基板的 TFT结构中上下对应, 图案形状保持统一。
本实施例提供的阵列基板及其制作方法, 在实施例一的基础上又在源 / 漏金属层和钝化层之间增设一层隔离緩冲层,可以进一步加强源 /漏金属层与 钝化层之间的附着力以防源 /漏金属层与钝化层发生脱离, 并有效改善源 /漏 金属层中的 Cu与像素电极之间的接触电阻并防止 Cu金属被氧化。
实施例四:
在本实施例中, 可以将上述实施例二中的方案与实施例三中的方案相结 合, 得到又一种新的阵列基板结构。
如图 5所示, 本实施例中提供的又一种新的阵列基板, 包括基底基板 1 以及形成在该基底基板 1上的栅金属层 2、 栅绝缘层 3、 半导体层 4、 欧姆接 触层 5、 源 /漏金属层 6、 钝化层 7和像素电极 8。 在栅金属层 2和基底基板 1 之间形成有第一隔离緩冲层 21 , 在欧姆接触层 5和源 /漏金属层 6之间形成 有第二隔离緩冲层 61。 此外, 在所述栅金属层 2和栅绝缘层 3之间形成有第 三隔离緩冲层 22, 在源 /漏金属层 6和钝化层 7之间还形成有第四隔离緩冲 层 62。
所述栅金属层 2和源 /漏金属层 6在本实施例中选用金属 Cu, 但不限于 此。
所述第一隔离緩冲层 21和 /或所述第二隔离緩冲层 61可以由 Μοθχ制作 而成; 所述第三隔离緩冲层 22和 /或所述第四隔离緩冲层 62可以由金属 Mo 或者 Μοθχ制作而成。
制作图 5所示的阵列基板的方法可以结合实施例二和实施例三中所提供 的阵列基板制作方法, 此处不再赘述。
本实施例提供的阵列基板及其制作方法, 在实施例一的基础上还在栅金 属层和栅绝缘层之间增设一层第三隔离緩冲层、以及在源 /漏金属层和钝化层 之间增设一层第四隔离緩冲层,可以进一步稳固 TFT结构各层之间的附着力 以防不同层之间出现脱离现象, 并有效防止栅金属层中的 Cu 离子扩散到相 邻的层结构中, 以及有效改善源 /漏金属层中的 Cu与像素电极之间的接触电 阻并防止 Cu金属被氧化。
在上述实施例一至实施例四中,均是以底栅型 TFT结构为例来介绍本发 明中新提出的阵列基板结构。 不过, 本发明所提供的方案可以适用于但不限 于底栅型 TFT结构的阵列基板, 当然还可以适用于顶栅型或者双栅型等 TFT 结构的阵列基板。 下面就应用本发明所提供的隔离緩冲层实现方案的顶栅型 TFT 结构进 行简单地介绍。
实施例五:
如图 6所示, 在顶栅型 TFT阵列基板的结构中, 在基底基板 1上依次形 成有有源层 9、 源 /漏金属层 6、 栅绝缘层 3、 栅金属层 2、 钝化层 7和像素电 极 8。 有源层 9可以是仅包含半导体层的单层结构, 可以是包含半导体层和 欧姆接触层的双层结构。 在图 6所示的 TFT阵列基板结构中不再对有源层 9 的具体实现方式进行区分, 但并不限于单层结构。
在上述顶栅型 TFT阵列基板结构中,栅金属层 2和栅绝缘层 3之间形成 有第一隔离緩冲层 21 , 在有源层 9和源 /漏金属层 6之间形成有第二隔离緩 冲层 61 ; 而且, 所述第一隔离緩冲层 21和 /或所述第二隔离緩冲层 61可以 由 Μοθχ制作而成。
相应地, 制作图 6所示的阵列基板的过程包括: 在基底基板 1上依次形 成有源层 9、 源 /漏金属层 6、 栅绝缘层 3和栅金属层 2, 以及钝化层 7和像 素电极 8。
在制作源 /漏金属层 6的同时, 制作所述第二隔离緩冲层 61。 具体地, 在形成有有源层 9的基板上形成氧化钼薄膜和源 /漏金属薄膜,并通过构图工 艺形成具有相同图案的第二隔离緩冲层 61和源 /漏金属层 6的图案。
在制作栅金属层 2的同时, 制作所述第一隔离緩冲层 21。 具体地, 在形 成有栅绝缘层 3的基板上依次沉积氧化钼薄膜和栅金属薄膜, 并通过构图工 艺形成具有相同图案的第一隔离緩冲层 21和栅金属层 2的图案。
在上述阵列基板制作过程中, 沉积形成 Μοθχ薄膜的过程与实施例一类 似, 此处不再赘述。
本发明实施例提供的阵列基板及其制作方法, 利用 Μοθχ作为隔离緩冲 层的制作材料, 提供了一种新的隔离緩冲层实现方式; 而且, 包含有氧化钼 的隔离緩冲层不只可以有效防止 TFT 结构中金属电极层的金属离子扩散至 用于有源层的例如硅系薄膜层, 而且可以增加金属电极层与相邻膜层之间的 附着力以防金属电极层出现脱离。
实施例六:
在实施例五所提供的阵列基板的基础上, 本实施例对其做进一步改进得 到另一顶栅型 TFT阵列基板结构。
如图 7所示,本实施例中的阵列基板除了实施例五中所描述的结构之夕卜, 在栅金属层 2和钝化层 7之间还形成有第三隔离緩冲层 22,该第三隔离緩冲 层 22可以是由金属 Mo或者 Μοθχ制成。
相应地, 在制作图 7所示的阵列基板的过程中, 第一隔离緩冲层 21、 第 三隔离緩冲层 22均与栅金属层 2利用同一次 mask (掩模曝光)工艺进行制 作; 具体地, 在形成有栅绝缘层 3的基板上依次沉积氧化钼薄膜、 栅金属薄 膜、 以及金属钼或者氧化钼薄膜, 并通过构图工艺形成第一隔离緩冲层 21、 所述栅金属层 2以及第三隔离緩冲层 22的图案。
本发明实施例提供的阵列基板及其制作方法, 利用 Μοθχ作为隔离緩冲 层的制作材料, 提供了一种新的隔离緩冲层实现方式; 而且, 包含有氧化钼 的隔离緩冲层不只可以有效防止 TFT 结构中金属电极层的金属离子扩散至 用于有源层的例如硅系薄膜层, 而且可以增加金属电极层与相邻膜层之间的 附着力以防金属电极层出现脱离。
实施例七:
在实施例五所提供的阵列基板的基础上, 本实施例对其做进一步改进得 到又一顶栅型 TFT阵列基板结构。 具体地,
如图 8所示,本实施例中的阵列基板除了实施例五中所描述的结构之夕卜, 在栅绝缘层 3和源 /漏金属层 6之间形成有第四隔离緩冲层 62, 该第四隔离 緩冲层 62由金属钼或氧化钼制成。
相应地, 在制作图 8所示的阵列基板的过程中, 第二隔离緩冲层 61、 第 四隔离緩冲层 62均可与源 /漏金属层 6通过同一次 mask工艺进行制作;具体 地, 在形成有有源层 9的基底基板上形成氧化钼薄膜、 源 /漏金属薄膜、 以及 金属钼或者氧化钼薄膜, 并通过构图工艺形成具有相同图案的第二隔离緩冲 层 61、 所述源 /漏金属层 6的图案和所述第四隔离緩冲层 62的图案。
本实施例提供的阵列基板及其制作方法,可以进一步加强源 /漏金属层与 栅绝缘层之间的附着力以防源 /漏金属层与栅绝缘层发生脱离,并有效改善源 /漏金属层中的 Cu与像素电极之间的接触电阻并防止 Cu金属被氧化。
实施例八:
在本实施例中, 可以将上述实施例六中的方案与实施例七中的方案相结 合, 得到再一种新的阵列基板结构。
如图 9所示, 本实施例中提供的阵列基板除了具备实施例五所描述的结 构外, 在栅金属层 2和钝化层 7之间还形成有第三隔离緩冲层 22, 在栅绝缘 层 3和源 /漏金属层 6之间形成有第四隔离緩冲层 62; 所述第三隔离緩冲层 22和第四隔离緩冲层 62由金属钼或氧化钼制成。
制作图 9所示的阵列基板的方法可以结合实施例六和实施例七中所提供 的阵列基板制作方法, 此处不再赘述。
本实施例提供的阵列基板及其制作方法,可以进一步稳固 TFT结构各层 之间的附着力以防不同层之间出现脱离现象, 并有效防止栅金属层中的 Cu 离子扩散到相邻的层结构中, 以及有效改善源 /漏金属层中的 Cu与像素电极 之间的接触电阻并防止 Cu金属被氧化。
在本发明实施例中还提供了一种液晶面板, 该液晶面板包括相对设置的 彩膜基板、 阵列基板和夹置在彩膜基板和阵列基板之间的液晶层; 其中所述 阵列基板可以釆用上述实施例中提供的阵列基板。
在本发明实施例中还提供了一种显示装置, 该显示装置中釆用的是上述 实施例中提供的阵列基板。
上述显示装置可以是但不限于是液晶显示装置, 此外还可以是 OLED显 示装置、 电子书等显示装置。
由于本发明实施例中的液晶面板和显示装置釆用了上述实施例中的阵列 基板, 因此同样可以达到上述实施例中所提到的技术效果。
本发明实施例中提供的方案不仅适用于釆用 TFT 阵列基板的多种显示 装置, 而且还适用于 X射线探测器装置中。
以上所述仅为本发明的具体实施方式, 但本发明的保护范围并不局限于 此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应以权利要求的保护范围为准。

Claims

权利要求书
1、一种阵列基板,包括基底基板以及形成在所述基底基板上的栅金属层、 有源层和源 /漏金属层;
其中, 在所述栅金属层在厚度方向上的至少一侧形成有隔离緩冲层, 和 / 或在所述源 /漏金属层在厚度方向上的至少一侧形成有隔离緩冲层;
所述隔离緩冲层由氧化钼制成。
2、根据权利要求 1所述的阵列基板, 其中, 所述阵列基板釆用底栅型结 构, 在所述栅金属层和所述有源层之间还形成有栅绝缘层;
所述栅金属层的至少一侧形成有隔离緩冲层包括: 所述栅金属层与所述 基底基板之间形成有第一隔离緩冲层; 或者, 所述栅金属层与所述基底基板 之间形成有第一隔离緩冲层, 且所述栅金属层和所述栅绝缘层之间形成有第 三隔离緩冲层;
其中, 所述第一隔离緩冲层由氧化钼制成, 所述第三隔离緩冲层由金属 钼或氧 钼制成。
3、根据权利要求 1所述的阵列基板, 其中, 所述阵列基板釆用顶栅型结 构; 该阵列基板还包括: 形成在所述栅金属层和所述有源层之间的栅绝缘层 和形成在所述栅金属层上方的钝化层;
所述栅金属层的至少一侧形成有隔离緩冲层包括: 所述栅金属层与所述 栅绝缘层之间形成有第一隔离緩冲层; 或者, 所述栅金属层与所述栅绝缘层 之间形成有第一隔离緩冲层, 且所述栅金属层和所述钝化层之间形成有第三 隔离緩冲层;
其中, 所述第一隔离緩冲层由氧化钼制成, 所述第三隔离緩冲层由金属 钼或氧 钼制成。
4、根据权利要求 1或 2所述的阵列基板, 其中, 所述阵列基板釆用底栅 型结构, 在所述源 /漏金属层的上方还形成有钝化层;
所述源 /漏金属层的至少一侧形成有隔离緩冲层包括:在所述有源层和所 述源 /漏金属层之间形成有由氧化钼制成的第二隔离緩冲层; 或者, 在所述有 源层和所述源 /漏金属层之间形成有由氧化钼制成的第二隔离緩冲层,且在所 述钝化层和所述源 /漏金属层之间形成有第四隔离緩冲层,该第四隔离緩冲层 由金属钼或氧化钼制成。
5、根据权利要求 1或 3所述的阵列基板, 其中, 所述阵列基板釆用顶栅 型结构, 在栅金属层和所述源 /漏金属层之间形成有栅绝缘层;
所述源 /漏金属层的至少一侧形成有隔离緩冲层包括:在所述有源层和所 述源 /漏金属层之间形成有由氧化钼制成的第二隔离緩冲层; 或者, 在所述有 源层和所述源 /漏金属层之间形成有由氧化钼制成的第二隔离緩冲层,且在所 述栅绝缘层和所述源 /漏金属层之间形成有第四隔离緩冲层,该第四隔离緩冲 层由金属钼或氧化钼制成。
6、 根据权利要求 1-5任一所述的阵列基板, 其中, 所述栅金属层和源 / 漏金属层至少之一由金属 Cu或 Cu合金形成。
7、 一种用于制作权利要求 1-6任一项所述的阵列基板的方法, 包括: 在基底基板上的栅金属层、 有源层和源 /漏金属层;
其中, 在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离緩 冲层; 和 /或, 在源 /漏金属层的至少一侧形成与所述源 /漏金属层具有相同图 案的隔离緩冲层; 其中, 所述隔离緩冲层由氧化钼制成。
8、 根据权利要求 7所述的方法, 其中, 所述阵列基板釆用底栅型结构; 在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离緩冲层包括: 在所述基底基板上依次沉积氧化钼薄膜和栅金属薄膜, 并通过构图工艺 形成第一隔离緩冲层和所述栅金属层的图案。
9、 根据权利要求 7所述的方法, 其中, 所述阵列基板釆用底栅型结构; 所在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离緩冲层包 括: 在所述基底基板上依次沉积氧化钼薄膜、 栅金属薄膜、 以及金属钼或者 氧化钼薄膜, 并通过构图工艺形成第一隔离緩冲层、 所述栅金属层以及第三 隔离緩冲层的图案。
10、根据权利要求 7所述的方法, 其中, 所述阵列基板釆用顶栅型结构; 所述在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离緩冲层包 括: 在形成有栅绝缘层的基底基板上依次沉积氧化钼薄膜和栅金属薄膜, 并 通过构图工艺形成第一隔离緩冲层和所述栅金属层的图案。
11、根据权利要求 7所述的方法, 其中, 所述阵列基板釆用顶栅型结构; 所述在栅金属层的至少一侧形成与该栅金属层具有相同图案的隔离緩冲层包 括: 在形成有栅绝缘层的基底基板上依次沉积氧化钼薄膜、 栅金属薄膜、 以 及金属钼或者氧化钼薄膜, 并通过构图工艺形成第一隔离緩冲层、 所述栅金 属层以及第三隔离緩冲层的图案。
12、 根据权利要求 7-11 任一所述的方法, 其中, 所述在源 /漏金属层的 至少一侧形成与所述源 /漏金属层具有相同图案的隔离緩冲层包括:
在形成有有源层的基底基板上形成氧化钼薄膜和源 /漏金属薄膜 ,并通过 构图工艺形成所述第二隔离緩冲层和所述源 /漏金属层的图案。
13、 根据权利要求 7-11 任一所述的方法, 其中, 所述在源 /漏金属层的 至少一侧形成与所述源 /漏金属层具有相同图案的隔离緩冲层包括:
在形成有有源层的基底基板上形成氧化钼薄膜、 源 /漏金属薄膜、 以及金 属钼或者氧化钼薄膜, 并通过构图工艺形成所述第二隔离緩冲层、 所述源 / 漏金属层的图案和所述第四隔离緩冲层的图案。
14、根据权利要求 6至 13中任一项所述的方法, 其中, 所述氧化钼薄膜 通过以下方式之一制作:
a. 通过溅射工艺, 利用混合的 Ar和 02对金属 Mo靶材进行溅射以形成 单层的 Μοθχ薄膜; 或者,
b. 通过溅射工艺, 先利用纯 Ar气对钼靶材进行溅射, 后利用混合的 Ar 和 02对金属 Mo靶材进行二次溅射,形成同时包含 Mo金属层和 Μοθχ薄膜 的双层结构; 或者,
c 通过溅射工艺在基底基板上形成金属 Mo薄膜, 之后在富氧环境中进 行热处理形成 Μοθχ膜; 或者,
d. 通过溅射工艺在基底基板上形成金属 Mo薄膜, 之后在富氧环境中进 行等离子处理形成 Μοθχ膜。
15、 一种液晶面板, 包括相对设置的彩膜基板和阵列基板以及夹置在该 彩膜基板和阵列基板之间的液晶层;
其中,所述阵列基板釆用上述权利要求 1至 6中任一项所述的阵列基板。
16、 一种显示装置, 其特征在于, 该显示装置釆用权利要求 15中所述的 液晶面板。
PCT/CN2012/078966 2011-07-22 2012-07-20 阵列基板及其制作方法、液晶面板、显示装置 WO2013013599A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127028554A KR101447342B1 (ko) 2011-07-22 2012-07-20 어레이 기판 및 그 제조 방법, 액정 패널, 디스플레이
JP2014520519A JP2014527288A (ja) 2011-07-22 2012-07-20 アレイ基板、及びその製造方法、液晶パネル、ディスプレー
EP12788105.0A EP2736074A4 (en) 2011-07-22 2012-07-20 ARRAY SUBSTRATE, MANUFACTURING METHOD, LIQUID CRYSTAL PANEL AND DISPLAY DEVICE
US13/700,971 US8928828B2 (en) 2011-07-22 2012-07-20 Array substrate, manufacturing method thereof, liquid crystal panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110207503.2 2011-07-22
CN2011102075032A CN102629609A (zh) 2011-07-22 2011-07-22 阵列基板及其制作方法、液晶面板、显示装置

Publications (1)

Publication Number Publication Date
WO2013013599A1 true WO2013013599A1 (zh) 2013-01-31

Family

ID=46587832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/078966 WO2013013599A1 (zh) 2011-07-22 2012-07-20 阵列基板及其制作方法、液晶面板、显示装置

Country Status (6)

Country Link
US (1) US8928828B2 (zh)
EP (1) EP2736074A4 (zh)
JP (1) JP2014527288A (zh)
KR (1) KR101447342B1 (zh)
CN (1) CN102629609A (zh)
WO (1) WO2013013599A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579165A (zh) * 2017-08-30 2018-01-12 京东方科技集团股份有限公司 一种封装基板及其制作方法、显示面板及显示装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103018990B (zh) * 2012-12-14 2015-12-02 京东方科技集团股份有限公司 一种阵列基板和其制备方法、及液晶显示装置
CN103489900B (zh) * 2013-09-04 2016-05-04 京东方科技集团股份有限公司 一种阻挡层及其制备方法、薄膜晶体管、阵列基板
CN103531594B (zh) * 2013-10-30 2016-08-24 京东方科技集团股份有限公司 一种阵列基板和显示器件
US9887291B2 (en) * 2014-03-19 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, display module including the display device, and electronic device including the semiconductor device, the display device, or the display module
CN103943639B (zh) * 2014-04-15 2016-08-17 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN103943638A (zh) * 2014-04-15 2014-07-23 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104076983B (zh) * 2014-06-25 2019-01-08 深圳市正星光电技术有限公司 一种触摸屏的保护玻璃、触摸屏、显示器及方法
CN104332474B (zh) * 2014-09-02 2017-10-31 重庆京东方光电科技有限公司 一种阵列基板及其制作方法和显示装置
CN104393005B (zh) * 2014-11-24 2017-06-30 京东方科技集团股份有限公司 显示基板及其制作方法、显示装置
CN104465670B (zh) * 2014-12-12 2018-01-23 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
CN104714336B (zh) * 2015-03-30 2017-08-25 深圳市华星光电技术有限公司 显示面板及显示装置
CN104867985A (zh) * 2015-05-18 2015-08-26 京东方科技集团股份有限公司 一种薄膜晶体管、其制备方法、阵列基板及显示装置
KR102395900B1 (ko) 2015-06-26 2022-05-09 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN105140232A (zh) * 2015-07-24 2015-12-09 深圳市华星光电技术有限公司 一种阵列基板的制作方法
KR102436641B1 (ko) * 2015-10-23 2022-08-26 삼성디스플레이 주식회사 표시 장치 및 그 제조방법
KR102477984B1 (ko) * 2015-12-11 2022-12-15 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
JP2017143108A (ja) * 2016-02-08 2017-08-17 株式会社ジャパンディスプレイ 薄膜トランジスタ及び薄膜トランジスタの製造方法
CN106023825B (zh) * 2016-06-22 2021-02-19 联想(北京)有限公司 一种显示屏幕、显示屏幕的制作方法及电子设备
CN106990592A (zh) 2017-03-14 2017-07-28 惠科股份有限公司 一种显示面板及其制造方法
CN107195641B (zh) * 2017-06-30 2020-05-05 上海天马有机发光显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN107946322A (zh) * 2017-12-15 2018-04-20 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
CN108172611A (zh) * 2017-12-28 2018-06-15 深圳市华星光电技术有限公司 薄膜晶体管及其制作方法、阵列基板、金属膜的制作方法
KR102547313B1 (ko) 2018-04-26 2023-06-23 삼성디스플레이 주식회사 배선 기판, 이를 포함하는 표시 장치 및 배선 기판의 제조 방법
CN109285872A (zh) * 2018-10-18 2019-01-29 武汉华星光电半导体显示技术有限公司 有机自发光二极管显示面板及其制作方法
CN109979946B (zh) 2019-03-15 2021-06-11 惠科股份有限公司 一种阵列基板及其制造方法和显示面板
CN110690170A (zh) * 2019-10-23 2020-01-14 成都中电熊猫显示科技有限公司 阵列基板的制作方法、阵列基板及显示面板
CN111244114B (zh) 2020-02-10 2023-10-17 Tcl华星光电技术有限公司 显示面板
CN111403337A (zh) * 2020-03-31 2020-07-10 成都中电熊猫显示科技有限公司 阵列基板、显示面板及阵列基板的制作方法
CN112466931A (zh) 2020-11-27 2021-03-09 Tcl华星光电技术有限公司 电极结构及其制备方法、薄膜晶体管
CN113345837A (zh) * 2021-05-26 2021-09-03 深圳市华星光电半导体显示技术有限公司 一种显示面板的制作方法及显示面板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178656A1 (en) * 2001-12-12 2003-09-25 Oh-Nam Kwon Manufacturing method of electro line for liquid crystal display device
CN1909248A (zh) * 2005-08-02 2007-02-07 中华映管股份有限公司 薄膜晶体管及其制造方法
CN1934687A (zh) * 2004-03-25 2007-03-21 株式会社半导体能源研究所 用于制造薄膜晶体管的方法
CN101075579A (zh) * 2007-06-15 2007-11-21 友达光电股份有限公司 导线结构、像素结构、显示面板、光电装置及其形成方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1009007B (zh) 1989-02-15 1990-08-01 航空航天工业部第621研究所 熔铸有色金属及合金用的防护涂料
JP3091026B2 (ja) * 1992-09-11 2000-09-25 三菱電機株式会社 集積回路の配線
US6949417B1 (en) * 1997-03-05 2005-09-27 Lg. Philips Lcd Co., Ltd. Liquid crystal display and method of manufacturing the same
US6956236B1 (en) * 1998-12-14 2005-10-18 Lg. Phillips Lcd Co., Ltd. Wiring, TFT substrate using the same and LCD
TWI255957B (en) * 1999-03-26 2006-06-01 Hitachi Ltd Liquid crystal display device and method of manufacturing the same
KR20070001169A (ko) * 2004-03-05 2007-01-03 이데미쓰 고산 가부시키가이샤 반투명ㆍ반사 전극 기판, 그의 제조 방법, 및 이러한반투과ㆍ반반사 전극 기판을 이용한 액정 표시 장치
JP4713192B2 (ja) * 2004-03-25 2011-06-29 株式会社半導体エネルギー研究所 薄膜トランジスタの作製方法
US7372070B2 (en) * 2004-05-12 2008-05-13 Matsushita Electric Industrial Co., Ltd. Organic field effect transistor and method of manufacturing the same
US7554260B2 (en) * 2004-07-09 2009-06-30 Semiconductor Energy Laboratory Co., Ltd. Display device provided with a conductive film connection between a wiring component and a metal electrode film
US8040469B2 (en) * 2004-09-10 2011-10-18 Semiconductor Energy Laboratory Co., Ltd. Display device, method for manufacturing the same and apparatus for manufacturing the same
KR101150994B1 (ko) * 2004-11-11 2012-06-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
US7968382B2 (en) 2007-02-02 2011-06-28 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
TWI369556B (en) * 2007-03-27 2012-08-01 Sony Corp Electro-optic device
KR101338115B1 (ko) * 2008-04-28 2013-12-06 엘지디스플레이 주식회사 저저항 배선구조 및 이를 이용한 액정표시장치의 제조방법
TWI413260B (zh) * 2008-07-31 2013-10-21 Semiconductor Energy Lab 半導體裝置及其製造方法
EP2256814B1 (en) * 2009-05-29 2019-01-16 Semiconductor Energy Laboratory Co, Ltd. Oxide semiconductor device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030178656A1 (en) * 2001-12-12 2003-09-25 Oh-Nam Kwon Manufacturing method of electro line for liquid crystal display device
CN1934687A (zh) * 2004-03-25 2007-03-21 株式会社半导体能源研究所 用于制造薄膜晶体管的方法
CN1909248A (zh) * 2005-08-02 2007-02-07 中华映管股份有限公司 薄膜晶体管及其制造方法
CN101075579A (zh) * 2007-06-15 2007-11-21 友达光电股份有限公司 导线结构、像素结构、显示面板、光电装置及其形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2736074A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107579165A (zh) * 2017-08-30 2018-01-12 京东方科技集团股份有限公司 一种封装基板及其制作方法、显示面板及显示装置
CN107579165B (zh) * 2017-08-30 2024-04-05 京东方科技集团股份有限公司 一种封装基板及其制作方法、显示面板及显示装置

Also Published As

Publication number Publication date
EP2736074A1 (en) 2014-05-28
KR101447342B1 (ko) 2014-10-06
US20130107155A1 (en) 2013-05-02
KR20130033368A (ko) 2013-04-03
CN102629609A (zh) 2012-08-08
EP2736074A4 (en) 2015-02-18
JP2014527288A (ja) 2014-10-09
US8928828B2 (en) 2015-01-06

Similar Documents

Publication Publication Date Title
WO2013013599A1 (zh) 阵列基板及其制作方法、液晶面板、显示装置
JP5000290B2 (ja) Tft基板及びtft基板の製造方法
CN104282769B (zh) 薄膜晶体管的制备方法、阵列基板的制备方法
JP6398000B2 (ja) 薄膜トランジスタアレイ基板
JP2007258675A (ja) Tft基板及び反射型tft基板並びにそれらの製造方法
JP2007157916A (ja) Tft基板及びtft基板の製造方法
JP2007212699A (ja) 反射型tft基板及び反射型tft基板の製造方法
WO2014146380A1 (zh) 一种薄膜晶体管及其制作方法、阵列基板和显示装置
JP2013232619A (ja) 表示装置、アレイ基板、薄膜トランジスタ及びその製造方法
WO2014206035A1 (zh) 阵列基板及其制作方法、显示面板和显示装置
JP2008098447A (ja) 薄膜トランジスタ及びその製法
WO2013139120A1 (zh) 氧化物薄膜晶体管及制作方法、阵列基板、显示装置
WO2018113214A1 (zh) 薄膜晶体管及其制作方法、显示基板、显示装置
WO2013097554A1 (zh) Tft阵列基板的制造方法
WO2015096342A1 (zh) 氧化物薄膜晶体管及其制备方法、阵列基板及显示装置
WO2015165174A1 (zh) 一种薄膜晶体管及其制作方法、显示基板、显示装置
WO2015043220A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2014117512A1 (zh) 一种薄膜晶体管、薄膜晶体管驱动背板的制备方法及薄膜晶体管驱动背板
CN103956386A (zh) 薄膜晶体管及制备方法、阵列基板及制备方法和显示装置
WO2013139135A1 (zh) 阵列基板及其制作方法、显示装置
WO2016123979A1 (zh) 薄膜晶体管及其制备方法、阵列基板和显示装置
WO2006080116A1 (ja) 薄膜トランジスタ及びその製造方法並びに薄膜トランジスタ基板及びその製造方法並びに該薄膜トランジスタを用いた液晶表示装置及び有機el表示装置並びに透明導電積層基板
US20160181290A1 (en) Thin film transistor and fabricating method thereof, and display device
TW201618168A (zh) 顯示面板之製備方法
CN107275343B (zh) 底栅型tft基板的制作方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014520519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20127028554

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012788105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13700971

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12788105

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE