WO2013002130A1 - 積層フィルムおよびそれを用いた自動車用窓ガラス - Google Patents

積層フィルムおよびそれを用いた自動車用窓ガラス Download PDF

Info

Publication number
WO2013002130A1
WO2013002130A1 PCT/JP2012/065950 JP2012065950W WO2013002130A1 WO 2013002130 A1 WO2013002130 A1 WO 2013002130A1 JP 2012065950 W JP2012065950 W JP 2012065950W WO 2013002130 A1 WO2013002130 A1 WO 2013002130A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
laminated film
film
laminated
transmittance
Prior art date
Application number
PCT/JP2012/065950
Other languages
English (en)
French (fr)
Inventor
宇都孝行
長田俊一
合田亘
松尾雄二
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP12804037.5A priority Critical patent/EP2724856B1/en
Priority to KR1020137027553A priority patent/KR101983629B1/ko
Priority to US14/124,031 priority patent/US9452590B2/en
Priority to JP2012530006A priority patent/JP5867393B2/ja
Priority to CN201280029966.7A priority patent/CN103608173B/zh
Publication of WO2013002130A1 publication Critical patent/WO2013002130A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10779Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/001Double glazing for vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/007Sunglare reduction by coatings, interposed foils in laminar windows, or permanent screens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/281Interference filters designed for the infrared light
    • G02B5/282Interference filters designed for the infrared light reflecting for infrared and transparent for visible light, e.g. heat reflectors, laser protection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • G02B5/287Interference filters comprising deposited thin solid films comprising at least one layer of organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/055 or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/42Alternating layers, e.g. ABAB(C), AABBAABB(C)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • B32B2307/734Dimensional stability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/08Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree

Definitions

  • the present invention relates to a laminated film, and more particularly to a laminated film suitably used for automobiles, trains, and building window glass.
  • a heat ray absorbing material contained in an intermediate film used in glass or laminated glass is known (for example, Patent Document 1).
  • the heat ray absorbing material converts sunlight incident from the outside into heat energy, there is a problem that the heat is radiated into the room and the heat ray cutting efficiency is lowered.
  • the glass temperature partially increases by absorbing the heat rays, and the glass body may be damaged due to the difference from the outside air temperature.
  • heat ray reflective glass is also known in which a heat ray reflective film is formed on glass or a film having a heat ray reflective function is inserted into laminated glass.
  • incident light including infrared rays is reflected to the outside, it does not flow into the room as light and heat, and heat rays can be blocked more effectively.
  • breakage of glass can also be suppressed.
  • the metal film has a problem that although it reflects heat rays, it has a non-uniform reflection even in visible light, and the reflection intensity varies depending on the wavelength, so that the glass is colored. Further, since the visible light region and the near infrared region cannot be selectively reflected, it is difficult to improve the heat ray cutting performance while maintaining the visible light transmittance. Furthermore, since the metal film has a property of blocking radio waves, a device such as a mobile phone may become unusable.
  • thermoelectric layer thickness a laminated glass sandwiching a polymer multilayer laminated film in which polymers having different refractive indexes are alternately laminated. Since such a polymer multilayer laminated film can selectively select the wavelength to be reflected by controlling the layer thickness, it can selectively reflect light in the near-infrared region, while maintaining visible light transmittance. The heat ray cutting performance can be improved. In addition, since it does not include metal or other materials that block radio waves, it has excellent radio wave permeability.
  • the wavelength of light that can be reflected shifts to the lower wavelength side and the color changes as the incident angle of light with respect to the film surface increases. Therefore, in order to obtain a heat ray reflective glass having no color change, it is necessary to provide a reflection band of light when viewed from the front in the near infrared region far from the visible light region, and the heat ray cutting performance cannot be improved. There was a problem. Furthermore, since only a part of sunlight can be reflected in the near-infrared region where such a multilayer laminated film can mainly reflect light, the heat ray cutting performance is not necessarily sufficient.
  • JP 2010-17854 A Japanese Patent No. 3901911 Japanese Patent No. 4310312
  • the present invention has been made in view of the above-described problems of the prior art, and an object thereof is to provide a laminated film having a heat ray cutting performance superior to that of a conventional polymer multilayer laminated film and in which color change due to viewing angle is suppressed. .
  • the present invention is intended to provide a laminated film including the following configuration. Various improved aspects thereof are also provided.
  • the present invention includes a configuration in which 50 or more layers of two or more thermoplastic resins having different optical properties are alternately laminated, and an average reflectance at a wavelength of 900 to 1200 nm is 70% or more, and the incident angle 12 with white light incident at ° for white light incident at an incident angle of 45 ° and a difference between the difference .DELTA.a * and b * values of the a * value thereof transmitted light [Delta] b * is 10 or less, and the wavelength 400
  • the gist of the present invention is a laminated film characterized by having a band with a transmittance of 80% or less at ⁇ 800 nm of 50 nm or more.
  • the present invention even when a reflection band is provided on the lower wavelength side than before, since the color change due to the viewing angle is small, it has excellent visibility and heat ray cutting performance superior to conventional polymer multilayer laminated films. A laminated film can be obtained. Moreover, when it uses as a window of a motor vehicle, a train, and a building, the indoor temperature rise by sunlight can be suppressed.
  • FIG. 3 is a cross-sectional view of a resin flow path cut at NN ′. This is an example of the relationship between the order of layers in the laminated film of the present invention and the layer thickness (layer thickness distribution), and is an example of a laminated film having three inclined structures based on the concept of ⁇ / 4 design.
  • the laminated film of the present invention needs to be made of a thermoplastic resin.
  • Thermoplastic resins are generally cheaper than thermosetting resins and photocurable resins, and can be easily and continuously formed into sheets by known melt extrusion, so that a laminated film can be obtained at low cost. Is possible.
  • thermoplastic resins having at least different optical properties need to be alternately laminated.
  • different optical properties means that the refractive index is different by 0.01 or more in either of two orthogonal directions arbitrarily selected in the plane of the film and a direction perpendicular to the plane.
  • alternately laminated means that layers made of different resins are laminated in a regular arrangement in the thickness direction, for example, two thermoplastic resins A and B having different optical properties. If each layer is expressed as an A layer and a B layer, the layers are stacked as A (BA) n (n is a natural number).
  • interference reflection that can reflect the light of the designed wavelength from the relationship between the refractive index difference of each layer and the layer thickness. It becomes. Further, when the number of layers to be laminated is less than 50, high reflectivity cannot be obtained over a sufficient band in the infrared region, and sufficient heat ray cutting performance cannot be obtained. Moreover, the above-mentioned interference reflection can achieve a high reflectance with respect to light of a wider wavelength band as the number of layers increases, and a laminated film having a high heat ray cutting performance can be obtained.
  • thermoplastic resin used in the present invention includes chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), polyacetal, and ring-opening metathesis polymerization of norbornenes, addition polymerization, and addition copolymerization with other olefins.
  • chain polyolefins such as polyethylene, polypropylene, poly (4-methylpentene-1), polyacetal, and ring-opening metathesis polymerization of norbornenes, addition polymerization, and addition copolymerization with other olefins.
  • Biodegradable polymers such as alicyclic polyolefin, polylactic acid, polybutyl succinate, etc., polyamides such as nylon 6, nylon 11, nylon 12, nylon 66, aramid, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride , Polyvinyl alcohol, polyvinyl butyral, ethylene vinyl acetate copolymer, polyacetal, polyglycolic acid, polystyrene, styrene copolymer polymethyl methacrylate, polycarbonate, polypropylene terephthalate, polyethylene terephthalate Polyester such as rate, polybutylene terephthalate, polyethylene-2,6-naphthalate, polyethersulfone, polyetheretherketone, modified polyphenylene ether, polyphenylene sulfide, polyetherimide, polyimide, polyarylate, tetrafluoroethylene resin, 3 A fluoroethylene resin, a trifluorinated ethylene resin
  • polyester a polyester obtained by polymerization from a monomer mainly comprising an aromatic dicarboxylic acid or an aliphatic dicarboxylic acid and a diol is preferred.
  • aromatic dicarboxylic acid for example, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyl
  • aliphatic dicarboxylic acid examples include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof.
  • terephthalic acid and 2,6 naphthalenedicarboxylic acid exhibiting a high refractive index are preferable.
  • These acid components may be used alone or in combination of two or more thereof, and further may be partially copolymerized with oxyacids such as hydroxybenzoic acid.
  • diol component examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, and 1,5-pentanediol. 1,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4- Hydroxyethoxyphenyl) propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
  • thermoplastic resin of the present invention is, for example, among the above polyesters, polyethylene terephthalate and its polymer, polyethylene naphthalate and its copolymer, polybutylene terephthalate and its copolymer, polybutylene naphthalate and its copolymer, Furthermore, it is preferable to use polyhexamethylene terephthalate and its copolymer, polyhexamethylene naphthalate and its copolymer, and the like.
  • the difference in the in-plane average refractive index of each layer composed of at least two thermoplastic resins among the thermoplastic resins having different optical properties is 0.03 or more. More preferably, it is 0.05 or more, More preferably, it is 0.1 or more.
  • the difference in the in-plane average refractive index is smaller than 0.03, sufficient reflectivity cannot be obtained, so that the heat ray cutting performance may be insufficient.
  • at least one thermoplastic resin is crystalline and at least one thermoplastic resin is amorphous. In this case, it is possible to easily provide a refractive index difference in the stretching and heat treatment steps in film production.
  • the absolute value of the difference in SP value of each thermoplastic resin is 1.0 or less.
  • the polymers having different optical properties are preferably composed of a combination provided with the same basic skeleton.
  • the basic skeleton here is a repeating unit constituting the resin.
  • polyethylene terephthalate is used as one thermoplastic resin, it is the same as polyethylene terephthalate from the viewpoint of easily realizing a highly accurate laminated structure. It is preferable to contain ethylene terephthalate, which is the basic skeleton.
  • the thermoplastic resins having different optical properties are resins containing the same basic skeleton, the lamination accuracy is high, and delamination at the lamination interface is less likely to occur.
  • thermoplastic resins having different optical properties used in the laminated film of the present invention is a combination of thermoplastic resins in which the difference in glass transition temperature between the thermoplastic resins is 20 ° C. or less.
  • the difference in glass transition temperature is larger than 20 ° C., the thickness uniformity when the laminated film is formed becomes poor and the appearance of metallic luster becomes poor.
  • problems such as overstretching tend to occur.
  • the glass transition temperature of a crystalline resin is lower than the glass transition temperature of an amorphous resin among two or more types of thermoplastic resins having different optical properties.
  • the orientation of the amorphous resin can be suppressed when compared with the crystalline resin, and the refractive index can be easily adjusted when the laminated resin is stretched at an appropriate stretching temperature to orient and crystallize the crystalline resin. A difference can be provided.
  • At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate
  • at least one thermoplastic resin is derived from spiroglycol. It is preferable that it is polyester comprising polyester.
  • the polyester derived from spiroglycol is a polyester using spiroglycol as a diol component, a copolymer with other ester structural units, a polyester using spiroglycol as a single diol component, or other polyesters.
  • Spiroglycol-derived polyesters are preferred because they have a small glass transition temperature difference from polyethylene terephthalate or polyethylene naphthalate, and are therefore difficult to be over-stretched during molding and also difficult to delaminate.
  • at least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate
  • at least one thermoplastic resin is preferably a polyester using spiroglycol and cyclohexanedicarboxylic acid.
  • the polyester is obtained using spiroglycol and cyclohexanedicarboxylic acid, the difference in the in-plane refractive index from polyethylene terephthalate or polyethylene naphthalate is increased, so that high reflectance is easily obtained.
  • the glass transition temperature difference with polyethylene terephthalate or polyethylene naphthalate is small and the adhesiveness is excellent, it is difficult to be over-stretched at the time of molding and is also difficult to delaminate.
  • At least one thermoplastic resin comprises polyethylene terephthalate or polyethylene naphthalate
  • at least one thermoplastic resin is a polyester derived from cyclohexanedimethanol.
  • the polyester derived from cyclohexanedimethanol is a polyester using cyclohexanedimethanol as a diol component, a copolymer with another ester structural unit, a polyester using cyclohexanedimethanol as a single diol component, or those Is a polyester blended with other polyester resins, and preferably cyclohexanedimethanol residues occupy more than half of all diol residues in the polyester resin.
  • Polyester derived from cyclohexanedimethanol is preferable because it has a small glass transition temperature difference from polyethylene terephthalate or polyethylene naphthalate, and thus is less likely to be over-stretched during molding and is also difficult to delaminate.
  • at least one thermoplastic resin is an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less. In this way, while having high reflection performance, the change in optical characteristics due to heating and aging is particularly small, and peeling between layers is less likely to occur.
  • the cyclohexanedimethanol group has a cis or trans isomer as a geometric isomer, and a chair type or a boat type as a conformational isomer.
  • the change in optical characteristics due to thermal history is even less, and blurring during film formation hardly occurs.
  • the average reflectance at a wavelength of 900 to 1200 nm needs to be 70% or more.
  • the reflectance is the reflectance of reflected light when white light is incident at an incident angle of 12 °.
  • White light here is light that has a continuous intensity distribution in a wide range of visible light, such as sunlight or a halogen lamp, and can be recognized as an achromatic color.
  • the C * value, a * value, and b * value calculated in the specification of the present invention are defined as those due to light from a halogen lamp (tungsten).
  • Sunlight has an intensity distribution mainly in the visible light region, and the intensity distribution tends to decrease as the wavelength increases.
  • the heat ray cutting performance can be improved by cutting the light in the visible light region, but the transparency is also lowered and is not suitable for use in many cases. Therefore, the heat ray cutting performance can be improved efficiently by increasing the average reflectance at a wavelength of 900 to 1200 nm (about 18% of the intensity of total sunlight) slightly larger than the visible light region.
  • the average reflectance at a wavelength of 900 to 1200 nm is less than 70%, the heat ray cutting performance is not sufficient, and it is difficult to develop into applications that require high heat ray cutting performance.
  • the average reflectance at a wavelength of 900 to 1200 nm is 80% or more, and more preferably the average reflectance at a wavelength of 900 to 1200 nm is 90% or more.
  • the average reflectance at a wavelength of 900 to 1200 nm increases, high heat ray cutting performance can be imparted.
  • it can be achieved by increasing the number of layers of the laminated film or the refractive index difference of alternately laminated thermoplastic resins. It is.
  • the preferred number of layers is that the total number of the two or more thermoplastic resins is 200 or more, and the average reflection at a wavelength of 900 to 1200 nm. It becomes easy for the rate to be 70% or more. Further, when the average reflectance at a wavelength of 900 to 1200 nm is 80% or more, it is preferably 400 layers or more, and in order to obtain 90% or more, it is preferably 500 layers or more.
  • the laminated film of the present invention preferably has a sum of optical thicknesses of adjacent layers of 400 to 650 nm for a majority of the layers.
  • the optical thickness ( ⁇ m) here is the product of the layer thickness ( ⁇ m) of each layer and the refractive index ( ⁇ ) of the resin constituting the layer, and the sum of the optical thicknesses of adjacent layers is the interference reflection in the laminated film. This is a factor that determines the wavelength generated. Interference reflection by a layer having a sum of optical thicknesses of adjacent layers of 400 to 650 nm occurs in a wavelength range of about 800 to 1300 nm, so the average reflectance at a wavelength of 900 to 1200 nm is set to 70% or more.
  • the reflectance increases as the difference in the number of layers and the refractive index of adjacent layers increases, and in a laminated film in which the sum of optical thicknesses of adjacent layers is 400 to 650 nm for the majority of layers, It becomes easy to efficiently improve the reflectance at 900 to 1200 nm.
  • the number of layers required to make the average reflectance at a wavelength of 900 to 1200 nm 70% or less decreases, and if the difference in refractive index is 0.3 or more. Even when the number of layers is about 50, sufficient reflectance can be provided.
  • the white light incident at an incident angle of 12 ° and the white light incident at an incident angle of 45 ° have a transmitted light a * value difference ⁇ a * and b * value difference ⁇ b * , respectively. It must be 10 or less.
  • the reflection band changes and the color changes depending on the film thickness and the incident angle of light. .
  • window glass that needs to be able to be seen with a stable color at various angles, but for white light incident at an incident angle of 12 ° of transmitted light and white light incident at an incident angle of 45 °
  • a * value difference ⁇ a * and b * value difference ⁇ b * is 10 or less, respectively, a stable color should be obtained regardless of a slight difference in film thickness or light incident angle. It is suitable for use in window glass. More preferably, the difference ⁇ b * between ⁇ a * and b * values is 5 or less.
  • the difference of the difference .DELTA.a * and b * values of the a * value thereof transmitted light for white light incident angle and incident at an angle 12 ° white light is incident at 60 ° [Delta] b * is 10 or less, respectively Is preferred.
  • the difference of the a * values ⁇ a * and the difference of the b * values ⁇ b * of the transmitted light are 10 or less, respectively.
  • the change in color is suppressed even when viewed from a larger angle with respect to the film surface, it can be used more suitably.
  • a method for achieving this there is a method of using absorption in a specific region together with the visible light region described later, a reflection of light having a uniform reflectance in the entire visible light region, or a part of the visible light region. For example, providing reflection.
  • the laminated film of the present invention it is necessary to provide a band with a transmittance of 80% or less at a wavelength of 400 to 800 nm of 50 nm or more.
  • the transmittance in the present invention is the transmittance of linearly transmitted white light incident at an incident angle of 12 °.
  • the reflection band changes and the color changes depending on the film thickness and the incident angle of light. .
  • the wavelength band for providing interference reflection of the laminated film is not 900 to 1200 nm
  • reflection occurs in the visible light region due to primary interference reflection or higher order interference reflection
  • the band changes depending on the angle with respect to the film surface.
  • the color change occurred and became an obstacle to the improvement of the heat ray cutting performance.
  • by controlling the transmittance with a coloring component or the like in a region where the band changes depending on the angle with respect to the film surface it becomes possible to obtain a film having a stable color regardless of the change in the angle of the reflected light, and an incident angle of 12 °.
  • the transmittance is 50% or less at a wavelength of 400 to 800 nm, more preferably the transmittance is 30% or less, and more preferably, from the contribution of light reflection with respect to the factor of the decrease in transmittance. Also, the contribution of light absorption is large. In this case, it is possible to obtain a high effect of suppressing color change.
  • sunlight has a large intensity distribution particularly in the visible light region having a wavelength of 400 to 800 nm, and occupies about 54% of the intensity of the total sunlight.
  • the effect of improving the heat ray cutting performance can be obtained by reducing the transmittance of a part of the band at a wavelength of 400 to 800 nm.
  • the transmittance When the transmittance is reduced by absorbing light, a part of the absorbed light is converted into heat and flows as heat, so the heat shielding efficiency is slightly lowered, whereas the transmittance is reflected by reflection of light.
  • the transmittance When is reduced, it is also possible to improve the heat shielding performance without causing conversion of light into heat.
  • the transmittance decreases, so the visible light transmittance also decreases, and sufficient transparency is required for applications that require transparency, such as vehicle windows and building window glass. In some cases, the lower limit of the transmittance is determined in consideration of the bandwidth.
  • a band having a transmittance of 80% or less at a wavelength of 600 to 800 nm is provided at 50 nm or more.
  • the wavelength is 600 to 800 nm. In this case, it is possible to suppress the influence of color shift due to the interference reflection that has been shifted, and the white light incident at an incident angle of 12 ° and the incident angle of 45 °.
  • the visible light intensity distribution in the visible light region is 18%, and the wavelength of 500 to 600 nm is extremely small compared to 76% of the visible light intensity distribution. Even when the transmittance of 600 to 800 nm is lowered, the degree of reduction of the visible light transmittance is reduced.
  • the ratio of the effect of improving the heat ray cutting performance to the decrease in visible light transmittance is relatively larger than that in the near-infrared region, and only the transmittance at a wavelength of 600 to 800 nm is controlled to suppress the visible light transmittance by 1%. Therefore, the solar transmittance can be reduced by 1.3%, and only the transmittance at a wavelength of 500 to 600 nm can be controlled to suppress the visible light transmittance by 1% without reducing the transparency. The effect that heat ray cut performance can be improved efficiently is also acquired.
  • the light reduction contribution is greater than the light reflection contribution to the factor of the decrease in transmittance, and more preferably, the region having a transmittance of 50% or less at a wavelength of 600 to 800 nm is provided at 50 nm or more. Further, it is more preferable that a region where the transmittance is 30% or less at a wavelength of 600 to 800 nm is provided at 50 nm or more. Even if the interference reflection provided in the near-infrared region has shifted by a low wavelength depending on the viewing angle with respect to the film surface, the transmittance in this region is reduced. In addition to making it possible to reduce the change in transmittance and suppress the change in color, it is possible to provide heat ray cutting performance.
  • the band in which the transmittance is 80% or less at a wavelength of 600 to 800 nm is 100 nm or more, more preferably, the transmittance is 80% or less in a 150 nm band between wavelengths 650 to 800 nm. is there. In this way, since the width of the band where the transmittance is 50% or less is widened, even when the film is viewed from a position where the angle with respect to the film surface is larger, there is no change in color.
  • the intensity distribution of visible light transmittance decreases as the wavelength changes from 600 nm to 800 nm
  • the presence of a band having a transmittance of 80% or less in a band larger than the wavelength of 650 nm can suppress the change in color. It is possible to achieve both high transparency and high heat ray cut performance.
  • the transmittance at a wavelength of 400 to 450 nm is 80% or less.
  • high-order interference reflection occurs in addition to the primary interference reflection from which the strongest light can be obtained.
  • the intensity of the third order interference reflection is large and occurs at a wavelength of about 1/3 of the band where the first order interference reflection occurs. For this reason, when primary interference reflection occurs in a band of wavelength 1200 nm or more, tertiary reflection occurs at a wavelength of 400 nm or more.
  • the angle of the incident light with respect to the film surface is shifted to a low wavelength, but by providing absorption in this band, the low-wavelength shift phenomenon occurs. It becomes possible to suppress changes in color.
  • the wavelength range of 400 to 450 nm is also 1% of the visible light intensity distribution, and the wavelength range of 500 to 600 nm is extremely small compared to 76% of the visible light intensity distribution. Therefore, it is possible to suppress a decrease in visible light transmittance.
  • the ratio of the effect of improving the heat ray cutting performance to the decrease in the visible light transmittance is relatively larger than that in the near infrared region, and only the transmittance at a wavelength of 400 to 450 nm is controlled to suppress the visible light transmittance by 1%. Therefore, the solar radiation transmittance can be reduced by 8.9%, and the transparency is not lowered as compared with 0.2% when the visible light transmittance is suppressed by 1% by controlling only the transmittance at a wavelength of 500 to 600 nm. The effect that heat ray cut performance can be improved efficiently is also acquired.
  • the transmittance at a wavelength of 400 to 450 nm is 80% or less, the primary interference reflection band provided in the near infrared region can be expanded to a wavelength of 1300 to 1400 nm.
  • the transmittance at a wavelength of 400 to 450 nm is preferably 50% or less, more preferably 30% or less. The smaller the transmittance in this wavelength range is, the more the change in color with the angle to the film surface can be suppressed.
  • the contribution of light absorption is larger than the contribution of light reflection for the factor of the decrease in transmittance. If the light transmittance is reduced by absorption, the color becomes stable because there is no band change due to a change in angle with respect to the film surface.
  • At least one layer containing a coloring component having an average transmittance at a wavelength of 400 to 450 nm or a wavelength of 600 to 800 nm is smaller than the average transmittance at a wavelength of 450 to 600 nm. It is preferable to provide more than one layer. Of course, both the average transmittance at a wavelength of 400 to 450 nm and the average transmittance at a wavelength of 600 to 800 nm may be smaller than the average transmittance at a wavelength of 450 to 600 nm.
  • the coloring component has the above properties is determined by the following method. First, when the coloring component is specified, the transmittance in the wavelength region of 400 to 800 nm of the single layer film of the thermoplastic resin A or the thermoplastic resin B containing the coloring component is measured, and the average at the wavelength of 400 to 450 nm is measured. This can be determined by determining the transmittance, the average transmittance at a wavelength of 600 to 800 nm, and the average transmittance at a wavelength of 450 to 600 nm.
  • the transmittance in the wavelength region of 400 to 800 nm is measured, the average transmittance in the wavelength region of 400 to 450 nm is defined as the average transmittance A1, and in the wavelength region of 450 to 600 nm.
  • the average transmittance is defined as average transmittance A2, and the average transmittance in the wavelength range of 600 to 800 nm is defined as average transmittance A3.
  • the reflectance in the wavelength region of 400 to 800 nm is measured, the average reflectance in the wavelength region of 400 to 450 nm is defined as the average reflectance B1, and the wavelength of 450 to 600 nm is measured.
  • the average reflectance in the wavelength range is defined as average reflectance B2, and the average reflectance in the wavelength range of 600 to 800 nm is defined as average reflectance B3.
  • the reflectance in the wavelength region of 400 to 800 nm is measured, the average reflectance in the wavelength region of 400 to 450 nm is defined as the average reflectance C1, and the wavelength is 450 to 600 nm.
  • the average reflectance in the wavelength range is defined as the average reflectance C2 and the average reflectance in the wavelength range of 600 to 800 nm is defined as the average reflectance C3.
  • the relationship between the average transmittance at a wavelength of 400 to 450 nm or a wavelength of 600 to 800 nm and the average transmittance at a wavelength of 450 to 600 nm is determined.
  • the average reflectance B1 is compared with the average reflectance C1. If the average reflectance B1 is larger than the average reflectance C1, the average reflectance B1 is added to the average transmittance A1 to obtain an “average transmittance after correction” having a wavelength of 400 to 450 nm. Further, the average reflectance B2 is added to the average transmittance A2, and this is used as the “average transmittance after correction” at a wavelength of 450 to 600 nm.
  • the average reflectance C1 is larger than the average reflectance B1
  • the average reflectance C1 is added to the average transmittance A1, and this is used as the “average transmittance after correction” having a wavelength of 400 to 450 nm.
  • the average reflectance C2 is added to the average transmittance A2, and this is used as the “average transmittance after correction” at a wavelength of 450 to 600 nm.
  • the average transmittance at a wavelength of 400 to 450 nm is a wavelength of 450 to 600 nm. It is judged whether it is smaller than the average transmittance.
  • the average reflectance C3 is larger than the average reflectance B3, the average reflectance C3 is added to the average transmittance A3, and this is set as the “average transmittance after correction” at a wavelength of 600 to 800 nm. Further, the average reflectance C2 is added to the average transmittance A2, and this is used as the “average transmittance after correction” at a wavelength of 450 to 600 nm.
  • the average transmittance at a wavelength of 600 to 800 nm is a wavelength of 450 to 600 nm. It is judged whether it is smaller than the average transmittance.
  • a coloring component whose average transmittance at a wavelength of 400 to 450 nm or a wavelength of 600 to 800 nm is 10% or more lower than the average transmittance at a wavelength of 450 to 600 nm.
  • the layer containing the coloring component is not particularly specified, and may be contained in either or both of the thermoplastic resin A and the thermoplastic resin B, or the thermoplastic resin A and the thermoplastic resin.
  • a colored layer may be separately provided on one side or both sides of the laminate in which B is alternately laminated.
  • the laminated film of the present invention preferably has a reflection band of 50 nm or more with a reflectance of 30% or more at a wavelength of 400 to 800 nm.
  • the reflectance referred to in the present invention is the reflectance of white light incident at an incident angle of 12 °.
  • a reflection band having a reflectance of 50% or more at a wavelength of 400 to 800 nm is provided at 50 nm or more, and higher heat ray cutting performance can be exhibited.
  • white light incident at an incident angle of 12 ° has a C * value of light reflected in the wavelength range of less than 40 because it can be suitably used in applications where transparency is required.
  • a method for providing a reflection band having a reflectance of 30% or more at a wavelength of 400 to 800 nm to 50 nm or more a layer thickness in which the primary interference wavelength becomes a desired band as in the case of providing reflection at a wavelength of 900 to 1200 nm.
  • the average reflectance at a wavelength of 1200 to 1400 nm is 30% or more, and the average reflectance at a wavelength of 400 to 450 nm measured from at least one surface of the film is 30% or less. preferable.
  • the reflection band widens, the proportion of heat rays that can be cut increases, so that the heat ray cutting performance can be improved.
  • the target Although the reflectance in the reflection band (1200 to 1400 nm) increases, reflection called third-order reflection occurs even at a wavelength of about 1/3 of the target reflection wavelength. Therefore, strong interference reflection occurs even in the reflection band of wavelength 400 to 450 nm, which is one third of the wavelength of 1200 to 1400 nm.
  • the average reflectance at a wavelength of 1200 to 1400 nm is 50% or more
  • the average reflectance at a wavelength of 400 to 450 nm is 30% or more.
  • the interference reflection band is shifted to the lower wavelength side, and as a result, the third-order reflection band is also shifted to the lower wavelength side, which may be outside the visible light region.
  • the third-order reflection cannot be detected by human eyes. That is, the third-order reflected light may or may not appear as blue depending on the incident angle of the light beam.
  • the color may change depending on the angle, or reflection may occur due to reflection of visible light.
  • the average reflectance at a wavelength of 1200 to 1400 nm is preferably 30% or more, and at least the average reflectance at a wavelength of 400 to 450 nm measured from one surface of the film is preferably 30% or less.
  • the average reflectance at a wavelength of 1200 to 1400 nm is 50% or more, more preferably 70% or more.
  • the achievement method for this purpose is to increase the number of thermoplastic resin layers that are alternately laminated.
  • the average reflectance at a wavelength of 1200 to 1400 nm should be 30% or more. Becomes easier.
  • the total number of layers is 600 or more, more preferably 800 or more.
  • the average reflectance at a wavelength of 400 to 450 nm is 20% or less. This is because when the average reflectance at a wavelength of 400 to 450 nm is lowered, the color and reflection of reflected light can be further suppressed.
  • the maximum reflectance at a wavelength of 500 to 700 nm is preferably 15% or less.
  • the maximum reflectance at a wavelength of 500 to 700 nm although the heat ray cutting performance is improved, the visible light transmittance is reduced more than that effect, and therefore, it may not be preferable for use in applications requiring transparency.
  • the maximum reflectance at a wavelength of 500 to 700 nm may be 15% or less, a laminated film having a sufficiently high visible light transmittance can be obtained.
  • the reflection at the wavelength of 500 to 700 nm may increase, which may cause problems such as reflection on the film surface. If the maximum reflection at the wavelength of 500 to 700 nm is 15% or less, reflection is suppressed. It is also possible to do.
  • the minimum transmittance at a wavelength of 500 to 700 nm is 85% or more. By suppressing not only the reflection but also the decrease in transmittance due to absorption, it becomes possible to obtain a laminated film with higher transparency.
  • the coloring component means a component that absorbs light having a wavelength of 400 to 800 nm.
  • the coloring component does not cause a change in the light absorption band due to the difference in the incident angle of the transmittance. Therefore, it is possible to suppress a change in color due to a change in viewing angle.
  • the amount of the coloring component is preferably such that the visible light transmittance is 70% or more. In this case, it is possible to obtain a film that achieves both high heat ray cutting performance, transparency, and stability of color at an angle to the film surface.
  • Such a coloring component is not particularly limited as long as it absorbs light having a wavelength of 400 to 800 nm, and known pigments and dyes can be used.
  • a pigment is used from the viewpoint of heat resistance and weather resistance.
  • the laminated film of the present invention since it is exposed to a high temperature for a long time in the production process of the laminated film and the subsequent processing process to glass, etc. In some cases, problems such as product contamination and deterioration over time during long-term use may occur. By using pigments that have better heat resistance and weather resistance than dyes, these problems can be suppressed. Become.
  • an organic pigment since it becomes easy to disperse
  • organic pigments examples include phthalocyanine pigments, azo pigments, anthraquinone pigments, thioindigo pigments, berinone pigments, perylene pigments, quinacridone pigments, dioxazine pigments, isoinodrinone pigments, quinophthalone pigments, isoonodrine pigments, nitroso pigments, arizan lake pigments, metals
  • organic pigments include complex salt azomethine pigments, aniline black, and alkali blue.
  • thermoplastic resin containing the coloring component is preferably an amorphous resin.
  • one thermoplastic resin is a crystalline resin and the other resin is an amorphous resin.
  • the laminated film of the present invention is often stretched uniaxially or biaxially. In this case, if a coloring component is added to the crystalline resin, the coloring component cannot follow the deformation caused by the stretching of the crystalline resin in the stretching process, causing the aggregation of the coloring component and the formation of voids. May cause reduction.
  • the stretchability of the coloring component in the stretching process can be improved, and the amorphous resin is kept at a relatively low temperature by heat treatment as described below. Since it can be re-melted with, the aggregation of colored components and the formation of voids can be suppressed.
  • the average reflectance at a wavelength of 1200 to 1400 nm is 30% or more and the average reflectance at a wavelength of 400 to 450 nm is 30% or less. It is.
  • a coloring component so that the average reflectance at a wavelength of 1200 to 1400 nm is 30% or more and the average reflectance at a wavelength of 400 to 450 nm is 30% or less.
  • the light having the wavelength is absorbed by the colored component when passing through the laminated film.
  • reflected light generated by interference reflection can also be absorbed, so that the average reflectance at a wavelength of 400 to 450 nm can be reduced.
  • a more preferable form is to use a coloring component that absorbs light having a wavelength of 650 to 800 nm in combination.
  • a coloring component that absorbs light having a wavelength of 400 to 450 nm When a colored component that absorbs light having a wavelength of 400 to 450 nm is used, there is an effect of suppressing the average reflectance of reflected light having a wavelength of 400 to 450 nm, but at the same time, transmitted light may exhibit a yellow color.
  • the color of transmitted light may be a problem.
  • the color tone of the transmitted light is changed to a more generally preferred green color by the color mixing effect of yellow and blue. Or achromatic colors.
  • the amount of the coloring component added should be designed as appropriate.
  • the internal haze of the laminated film is preferably 3% or less.
  • the internal haze as used herein is a value obtained when haze measurement is performed without the influence of surface reflection. Specifically, 1,2,3,4-tetrahydronaphthalenetetralin (liquid) is contained in a quartz cell. It is the haze value when the film is put in the liquid and measured after filling. Vehicles such as automobiles and trains and window glass of buildings are required to have high transparency, and the haze is preferably low. A film having a small internal haze can be suitably applied to applications requiring such high transparency.
  • the internal haze of the laminated film is more preferably 1% or less, and further preferably 0.5% or less.
  • Examples of the achievement method include the use of an organic pigment as described above, and the inclusion of a coloring component in the amorphous resin.
  • the melting point of the coloring component contained in the laminated film is 300 ° C. or lower.
  • a polyester resin typified by polyethylene terephthalate is used as the thermoplastic resin, but a general polyester resin can be stably extruded up to about 300 ° C., and the melting point of the coloring component is 300. This is because the internal haze can be easily suppressed by melting the coloring component in the extruder if the temperature is not higher than ° C.
  • the melting point of the coloring component satisfies the following relational expression.
  • AT is the melting point (° C.) of the coloring component
  • HT is the melting point (° C.) of the thermoplastic resin having the highest melting point among the thermoplastic resins contained in the laminated film.
  • the laminated film of the present invention preferably contains a coloring component as described above, but at least one surface of the laminated film in which two or more kinds of thermoplastic resins having different optical properties are alternately laminated is colored. It is also preferable that a layer is provided, and that the colored layer contains a coloring component.
  • the coloring component is included in the thermoplastic resin constituting the laminated film, it is possible to obtain a laminated film containing the colored component in the same production process of the laminated film as when not containing the colored component. Since it can be advantageous in terms of surface and mechanical properties, surface characteristics, and processing characteristics that are almost the same as when there is no coloring component, it can be applied to commercialize products such as vehicles and window glass for buildings. There is an advantage that there is no big difference.
  • the selection range of the coloring component is wide.
  • the light incident from the surface where the colored layer is not provided is reflected by interference within the laminated film without being affected by the colored component, so that the reflection is high. Efficiency can be maintained.
  • the method of providing such a colored layer is not particularly limited, and examples thereof include a method of providing by coextrusion, a method of providing by coating and printing, and the like.
  • a laminated film can be obtained by a process almost the same as the case without a colored layer as in the case where the thermoplastic resin constituting the laminated film contains a colored component, and the colored layer can be provided at a low cost. Is possible.
  • the resin is not particularly restricted, and therefore, it is suitable for obtaining a laminated film having excellent dispersibility of colored components and high transparency.
  • a resin is preferably used as the binder of the coloring component in the colored layer, but any resin may be used as long as it functions as a binder, and it may be a thermoplastic resin or a thermo / photo-curable resin.
  • a resin having transparency is preferable, for example, polyester resin, acrylic resin, fluorine resin, silicon resin, melamine resin, vinyl chloride resin, vinyl butyral resin, cellulose resin, and polyamide resin.
  • acrylic resins that are particularly inexpensive and excellent in light stability are preferable.
  • the colored layer A is provided on one surface of the laminated film, and the colored layer B is provided on the other surface, and the absorptance Abs at a wavelength W of the colored layer A and the colored layer B.
  • W preferably satisfies the following formulas 1 and 2.
  • the absorptance here refers to the ratio of the intensity absorbed by the colored layer A or the colored layer B when the intensity of light corresponding to the wavelength of light incident at an incident angle of 12 ° is taken as 100.
  • a colored layer having a low absorptance at a wavelength of 450 nm is a colored layer A
  • the other colored layer is a colored layer B.
  • the color of the transmitted light of the laminated film, the color of the reflected light of the laminated film, and the color of the two types of light are problematic.
  • the acceptable color may be different, and in particular, in applications that touch the human eye, such as a vehicle or a window glass of a building, a reddish color is not preferable.
  • the intensity of reflected light in the vicinity of a wavelength of 700 nm can be controlled, in a laminated film in which interference reflection occurs in the near infrared region (900 to 1200 nm) when viewed at an incident angle of 0 ° with respect to the film surface, the film Even when the reflection band of the interference reflection shifts by a low wavelength when viewed at a large incident angle (60 ° or more) with respect to the surface, the interference reflection is weakened by the effect of the absorption layer provided in the vicinity of the wavelength of 700 nm. It can be stabilized.
  • the transmittance of the transmitted light at a wavelength of 450 nm in the absorption of the colored layer B is By suppressing it, it becomes possible to provide stable color of transmitted light and high heat ray cutting performance.
  • the colored layer A has an absorptivity at a wavelength of 450 nm of 10% or less
  • the colored layer B has an absorptivity at a wavelength of 450 nm of 30% or more.
  • the absorption rate of the colored layer A at a wavelength of 700 nm is 30% or more, and the absorption rate of the colored layer B is 10% or less.
  • the light absorptance at a wavelength of 450 nm or 700 nm is large in one colored layer and high in the other colored layer, so that a desired effect can be easily obtained more efficiently.
  • Abs A (450) ⁇ Abs B (450) Formula 1 Abs A (700)> Abs B (700) Equation 2.
  • the laminated film of the present invention preferably contains 10 pairs (pairs) or more of layers having a sum of optical thicknesses of adjacent layers of 600 to 700 nm.
  • a pair refers to a pair of two adjacent layers.
  • the sum of the optical thicknesses of adjacent layers is 600 to 700 nm, it is possible to introduce primary interference reflection in a wavelength range of about 1200 to about 1400 nm, and to provide a reflection band in a high range. It becomes possible to improve the heat ray cutting performance.
  • the sum of the optical thicknesses of adjacent layers is provided at 600 to 700 nm, it is possible to introduce third-order interference reflection at about 400 to 450 nm.
  • the distribution of visible light is much smaller than in the 500-700 nm wavelength band, so it is possible to improve the heat ray cutting performance while suppressing the decrease in visible light transmittance. It becomes.
  • the number of layers having a sum of optical thicknesses of adjacent layers of 600 to 700 nm is 10 pairs or more, it is possible to impart interference reflection that is preferable for obtaining the above-described effect.
  • a pair of layers having a sum of optical thicknesses of adjacent layers of 600 to 700 nm is continuously included, and more preferably 100 pairs are continuously included.
  • the presence of successive layer pairs in which the sum of the optical thicknesses of adjacent layers is 600 to 700 nm makes it possible to impart interference reflection more efficiently and increase the number of such layer pairs. Accordingly, it is possible to increase the intensity of interference reflection.
  • the average reflectivity of primary interference reflection at wavelengths of 1200 to 1400 nm is also 70% or more, and the third order at wavelengths of 400 to 450 nm. It becomes easy to set the average reflectance of interference reflection to 30% or more.
  • the laminated film of the present invention includes a coloring component containing 10 pairs or more of layers having a sum of optical thicknesses of adjacent layers of 600 to 700 nm and having an average transmittance at a wavelength of 400 to 450 nm smaller than an average transmittance at a wavelength of 450 to 600 nm. It is also preferable that at least one layer is provided.
  • the effect of improving the heat ray cutting performance can be obtained.
  • the third-order interference reflection occurs at the wavelength of 400 to 450 nm.
  • at least one layer containing a coloring component having an average transmittance at a wavelength of 400 to 450 nm smaller than the average transmittance at a wavelength of 450 to 600 nm is provided, thereby coloring reflected light due to third-order interference reflection. Absorption can be suppressed by the component, and the average reflectance at a wavelength of 400 to 450 nm measured from at least one surface of the film can be easily set to 30% or less.
  • the solar reflectance is preferably 30% or more. More preferably, it is 40% or more.
  • the solar reflectance here is the solar reflectance defined in JIS A 5759.
  • the solar reflectance is 30% or more, it is possible to impart high heat ray cutting performance while suppressing breakage of glass due to absorption of heat rays. This can be achieved, for example, by setting the average reflectance at a wavelength of 400 to 700 nm to 15% or more and less than 40% and the average reflectance at a wavelength of 900 to 1200 nm to 70% or more.
  • the solar reflectance is 30% or more and the visible light transmittance is 70% or more, and more preferably, the solar reflectance is 40% or more and the visible light transmittance is 70% or more. Most preferably, the solar reflectance is 50% or more and the visible light transmittance is 70% or more.
  • the visible light transmittance referred to herein is a T VIS defined by ISO 9050. It goes without saying that the heat ray cutting performance improves as the solar reflectance increases, but it is also applicable to those where high transparency is required, such as automobile windshields, because the visible light transmittance is 70% or more. It is possible.
  • the average reflectance at a wavelength of 400 to 700 nm is preferably 15% or more and less than 40%.
  • Sunlight has a large intensity distribution, particularly in the visible light region with a wavelength of 400 to 700 nm, and occupies about 44% of the intensity of total sunlight. For this reason, when the average reflectance at a wavelength of 400 to 700 nm is less than 15%, the visible light transmittance is improved and a laminated film without coloring is obtained, but conversely, the performance of reflecting sunlight in the visible light region is inferior. Therefore, the heat ray cutting performance has a limit.
  • the heat ray cutting performance can be improved, which is preferable. Since it occupies about 81% of the intensity of all visible light at a wavelength of 400 to 700 nm, the reflectance in the region increases, that is, the transmittance decreases, so that it is transparent like the window glass of automobiles, trains, and buildings. In applications that require high light transmittance, the visible light transmittance is insufficient, and cannot be used as a window glass.
  • the average reflectance at a wavelength of 400 to 700 nm needs to be less than 40%.
  • the average reflectance at a wavelength of 400 to 700 nm is 15% or more and less than 40%, high heat ray cutting performance can be imparted while maintaining sufficient transparency.
  • the average reflectance at a wavelength of 400 to 700 nm is 20% or more and less than 40%, and more preferably the average reflectance at a wavelength of 400 to 700 nm is 25% or more and less than 35%.
  • the difference between the maximum reflectance and the minimum reflectance at 100 nm continuous within a wavelength of 400 to 700 nm is less than 10%.
  • a slight difference in reflectance at each wavelength causes a difference in color.
  • the reflection wavelength changes depending on the slight difference in the incident angle of light and the film thickness, and the color changes depending on the slight difference in reflectance.
  • the color change due to the incident angle of light is smaller.
  • the difference between the maximum reflectance and the minimum reflectance at 100 nm that is continuous within a wavelength range of 400 to 700 nm is less than 10%, it is possible to suppress changes in color due to film thickness and light incident angle.
  • the film is suitable for use.
  • the difference between the maximum reflectance and the minimum reflectance at 100 nm that is continuous at least in the wavelength range of 400 to 700 nm is less than 5%.
  • the color difference due to the difference in the film thickness or the difference in the incident angle of light The difference can hardly be confirmed.
  • the difference between the maximum reflectance and the minimum reflectance in the entire region at a wavelength of 400 to 700 nm is less than 10%.
  • the laminated film of the present invention includes at least one component laminated element (Ln) in which two or more thermoplastic resins having different optical properties that reflect light having a wavelength of 900 to 1400 nm are alternately laminated, and has a wavelength. It is preferable to include at least one component laminated element (Lv) in which two or more kinds of thermoplastic resins having different optical properties that reflect light of 400 to 700 nm are alternately laminated.
  • the component laminated element here refers to a group of layers that reflect light of a primary reflection wavelength or reflection band according to design.
  • the number of layers contained in the constituent laminated element Ln is a laminated film larger than the number of layers contained in the constituent laminated element Lv.
  • the reflectance at a wavelength of 900 to 1400 nm can be achieved rather than the reflectance at a wavelength of 400 to 700 nm, and the wavelength at a wavelength of 400 to 700 nm can be achieved.
  • the average reflectance is 15% or more and less than 40%, and the average reflectance at a wavelength of 900 to 1200 nm can be 70% or more.
  • the thickness of the film can be improved because it can improve the stability of the color according to the change of the angle with respect to the film surface without increasing the thickness of the film unnecessarily, and can improve the heat ray cutting performance. It becomes possible to suppress the deterioration of handling properties accompanying the increase and the occurrence of molding defects in the laminated glass forming process.
  • the reflectance at the component laminated element Ln having a large in-plane average refractive index difference is larger, and the average reflectance at a wavelength of 400 to 700 nm is 15% or more and less than 40%,
  • the average reflectance at a wavelength of 900 to 1200 nm can be 70% or more.
  • the physical properties of the laminated film can be controlled by using different thermoplastic resins, and a film more suitable for the laminated glass forming process can be obtained.
  • a layer thickness distribution corresponding to each constituent laminated element can be provided by a laminating apparatus including a feed block described later.
  • an adhesive layer exists between the constituent laminated element Ln and the constituent laminated element Ln.
  • the laminated film of the present invention tends to have a large number of layers in order to reflect a very wide band of light. As the number of layers increases, disorder of the layer thickness is likely to occur during the flow in the laminating apparatus, and it may be difficult to obtain a laminated film having a desired layer thickness distribution.
  • the construction of the laminating apparatus becomes complicated or large when trying to obtain a film in one laminating apparatus.
  • the cost of the manufacturing apparatus, the manufacturing space, and the reduction in stacking accuracy may occur.
  • different films are pasted together via an adhesive layer, it becomes possible to obtain a laminated film that is easily laminated with high precision using a smaller apparatus, and a laminated film having a desired heat ray cutting performance is obtained. .
  • the laminated film of the present invention in particular, layers (A layer) made of thermoplastic resin A and layers (B layer) made of thermoplastic resin B having different optical properties from thermoplastic resin A are alternately laminated.
  • the reflectance is determined according to the following formula 3.
  • the laminated film used for this purpose is designed so that the optical thickness ratio (k) defined by the following formula 4 is 1, so that light with a wavelength of 900 to 1400 nm is reflected. Secondary reflection of the designed component stack element Ln is suppressed.
  • the optical thickness ratio (k) is 1.25 or more.
  • the layer having a large optical thickness is made of an amorphous thermoplastic resin. In this case, while imparting high heat ray cutting performance, it is possible to suppress the stress at the time of stretching that occurs in the curved surface portion of the window glass in the laminated glass process, and it is possible to suppress molding defects in the laminated glass process. .
  • na In-plane average refractive index of the A layer
  • nb In-plane average refractive index of the B layer da: Layer thickness (nm) of the A layer db: Layer thickness of layer B (nm)
  • main reflection wavelength (primary reflection wavelength)
  • k Ratio of optical thickness
  • a laminated glass in which an intermediate film is sandwiched between two sheets of glass may be used from the viewpoint of safety.
  • a laminated film sandwiched between two intermediate films is used instead of an ordinary laminated glass intermediate film.
  • a process of thermocompression bonding of two sheets of glass and a laminated film through an intermediate film is generally performed in the range of 100 to 140 ° C.
  • wrinkles may occur in the film as a result of heat shrinkage, which may cause defective molding.
  • the heat shrinkage rate when heated at 140 ° C.
  • the 5% stress when stretched at 140 ° C. is 10 MPa or less.
  • the laminated glass forming step it is possible to flexibly follow the curved surface portion of the glass, so that a high-quality laminated glass can be obtained. This is achieved by increasing the layer thickness of the ratio of layers including amorphous thermoplastic resin when using thermoplastic resins with different optical properties. it can. As the ratio of the amorphous thermoplastic resin becomes larger than that of the crystalline thermoplastic resin, the stress generated in the thermocompression bonding process can be suppressed.
  • thermoplastic resins A and B are prepared in the form of pellets.
  • the pellets are dried in hot air or under vacuum as necessary, and then supplied to a separate extruder.
  • the resin melted by heating to a temperature equal to or higher than the melting point is made uniform in the amount of resin extruded by a gear pump or the like, and foreign matter or denatured resin is removed through a filter or the like.
  • thermoplastic resin A or thermoplastic resin B it can be used as pellets in which a coloring component is kneaded with thermoplastic resin A or thermoplastic resin B.
  • a coloring component is kneaded with thermoplastic resin A or thermoplastic resin B.
  • thermoplastic resin containing a coloring component can be blended with the thermoplastic resin A or the thermoplastic resin B and supplied to the extruder.
  • the following steps are laminated films containing the coloring component in the same steps as when the coloring component is not included. Can be obtained.
  • a general coloring component master pellet may be applicable, and the content of the coloring component may be blended at any time. Since it can be controlled, it is advantageous in terms of cost and controllability.
  • thermoplastic resins A and B sent out from different flow paths using these two or more extruders are then fed into the laminating apparatus.
  • a laminating apparatus a multi-manifold die, a feed block, a static mixer, or the like can be used.
  • a feed block that contains.
  • the laminated structure of the laminated film used in the present invention can be easily realized by the same method as described in JP-A 2007-307893, paragraphs [0053] to [0063].
  • the gap and length of the slit plate are different because of design values that determine the layer thickness.
  • X indicates the film width direction
  • Y indicates the film thickness direction.
  • the laminating apparatus 7 has the same three slit plates as the apparatus described in Japanese Patent Application Laid-Open No. 2007-307893.
  • An example of the layer thickness distribution of the laminated structure obtained by the laminating apparatus 7 is shown in FIG.
  • the laminated structure is formed by the inclined structure 11 and the slit plate 72 of the layer thickness by the resin laminate flow formed by the slit plate 71.
  • the inclined structure 12 of the layer thickness by the laminated flow of the formed resin and the inclined structure 13 of the layer thickness by the laminated flow of the resin formed by the slit plate 73 are provided.
  • a thick film layer 20 having a thickness of 1 ⁇ m or more is provided on the outermost layer.
  • the inclined structure formed from one slit plate is composed of a layer thickness distribution 21 of the resin A and a layer thickness distribution 22 of the resin B, and the ratio of the layer thicknesses is the resin A and the resin B of the two extruders. It can be easily adjusted by the ratio of the amount of extrusion.
  • the ratio of the layer thickness is determined by the ratio of the total thickness of the thermoplastic resin A layer excluding the thick film layer and the total thickness of the thermoplastic resin B layer.
  • each layer thickness is calculated
  • the absolute value of the layer thickness can be adjusted.
  • the average layer thickness here is an average of the layer thicknesses of the adjacent A layer and B layer. For example, in the layer thickness distribution of 601 layers, B1, A1, B2, A2, B3,..., A299, B300 and the respective layers in the remaining 599 thin film layers excluding the outermost two thick film layers. Are arranged, the average layer thickness distribution is the layer thickness distribution obtained by sequentially plotting the average of Bm and Am (m is an integer), such as the average of B1 and A1, and the average of B2 and A2. Become.
  • the resin flow having a laminated structure flowing out from each slit plate constituting the laminating apparatus 7 flows out from the outlets 11L, 12L and 13L of the laminating apparatus as shown in FIG. Then, rearrangement is performed in the cross-sectional shapes of 11M, 12M, and 13M shown in FIG. Next, the length in the film width direction of the cross section of the flow path is widened inside the connecting pipe 9 and flows into the base 10, and further widened by the manifold and extruded from the lip of the base 10 into a sheet in a molten state. Then, it is cooled and solidified on the casting drum to obtain an unstretched film.
  • the value obtained by dividing the film width direction length 17 of the base lip, which is the widening ratio inside the base, by the length 15 in the film width direction at the inlet of the base is set to 5 or less, so that lamination by widening is performed.
  • a polarizing reflector which is a multilayer laminated film that suppresses disturbance and has a uniform reflectance and reflection band in the film width direction, is obtained. More preferably, the widening ratio is 3 or less.
  • Biaxial stretching refers to stretching in the longitudinal direction and the width direction. Stretching may be performed sequentially in two directions or simultaneously in two directions. Further, re-stretching may be performed in the longitudinal direction and / or the width direction. In particular, in the present invention, it is preferable to use simultaneous biaxial stretching from the viewpoint of suppressing in-plane orientation difference and suppressing surface scratches.
  • stretching in the longitudinal direction refers to stretching for imparting molecular orientation in the longitudinal direction to the film, and is usually performed by a difference in peripheral speed of the roll, and this stretching may be performed in one step. Alternatively, a plurality of roll pairs may be used in multiple stages.
  • the stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and 2 to 7 times is particularly preferable when polyethylene terephthalate is used as one of the resins constituting the laminated film.
  • the stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 100 ° C.
  • the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
  • the laminated film of the present invention there are many cases where laminated glass for use as a window glass of a vehicle or a building is often used.
  • easy adhesion is imparted.
  • the coating for providing easy-adhesiveness is made on both surfaces.
  • a coloring component in the easily adhesive coating.
  • the coloring component in the easy-adhesive coating, the colored layer can be formed and the easy-adhesive property can be imparted at the same time, and the coloring component is added in the same process as the production process of the laminated film not containing the coloring component. Since it can be given, it is advantageous in terms of cost.
  • the stretching in the width direction refers to stretching for imparting the orientation in the width direction to the film.
  • the film is stretched in the width direction using a tenter while being conveyed while holding both ends of the film with clips.
  • the stretching ratio varies depending on the type of resin, but usually 2 to 15 times is preferable, and 2 to 7 times is particularly preferable when polyethylene terephthalate is used as one of the resins constituting the laminated film.
  • the stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
  • the biaxially stretched film is preferably subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up. Moreover, you may use a relaxation process etc. together in the case of annealing from heat processing as needed.
  • the temperature at which the heat treatment is performed here is preferably lower than the melting point of either the thermoplastic resin A or the thermoplastic resin B and higher than the other melting point.
  • the difference in refractive index between the highly crystallized thermoplastic resin and the molten thermoplastic resin can be increased. It is possible to obtain a laminated film having high reflectance and heat shielding performance.
  • the thermoplastic resin containing a coloring component can be melted by heat treatment, formation of voids and the like can be suppressed, and a highly transparent film with reduced haze can be obtained.
  • the resulting cast film is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then, such as slipperiness, easy adhesion, antistatic properties, etc.
  • the function may be imparted by in-line coating.
  • the cast film is guided to a simultaneous biaxial tenter, conveyed while holding both ends of the film with clips, and stretched in the longitudinal direction and the width direction simultaneously and / or stepwise.
  • simultaneous biaxial stretching machines there are pantograph method, screw method, drive motor method, linear motor method, but it is possible to change the stretching ratio arbitrarily and drive motor method that can perform relaxation treatment at any place or A linear motor system is preferred.
  • the stretching ratio varies depending on the type of resin, it is usually preferably 6 to 50 times as the area ratio. When polyethylene terephthalate is used as one of the resins constituting the laminated film, the area ratio is 8 to 30 times. Is particularly preferably used.
  • the stretching temperature is preferably from the glass transition temperature of the resin constituting the laminated film to the glass transition temperature + 120 ° C.
  • the film thus biaxially stretched is preferably subsequently subjected to a heat treatment not less than the stretching temperature and not more than the melting point in the tenter in order to impart flatness and dimensional stability.
  • a relaxation treatment in the longitudinal direction immediately before and / or immediately after entering the heat treatment zone. After being heat-treated in this way, it is gradually cooled down uniformly, then cooled to room temperature and wound up.
  • a relaxation treatment is performed in the longitudinal direction.
  • the first relaxation treatment under the heat treatment temperature and the second relaxation treatment at 100 ° C. or less as the relaxation treatment after the heat treatment.
  • the first relaxation treatment is 5% or less
  • the first and second relaxation treatments are 10% or less in total.
  • the thermal shrinkage rate can be reduced in a state where the optical characteristics are maintained without causing unnecessary wrinkles or slack in the film.
  • the laminated film of the present invention it can be provided on the laminated film from which a colored layer containing a coloring component is obtained by thermo / photo-curable coating or printing.
  • the method is not limited and can be performed by an existing method.
  • the laminated glass thus obtained has high transparency, is stable in color regardless of the angle to the film or glass surface, and has excellent heat ray cutting properties, so that it is particularly used for automobiles, trains, buildings, etc. It is suitable for cut glass.
  • the layer structure of the film was determined by observation with a transmission electron microscope (TEM) for a sample obtained by cutting a cross section using a microtome. That is, using a transmission electron microscope H-7100FA type (manufactured by Hitachi, Ltd.), the cross section of the film was magnified 10,000 to 40,000 times under the condition of an acceleration voltage of 75 kV, a cross-sectional photograph was taken, the layer configuration and the thickness of each layer was measured. In some cases, in order to obtain high contrast, a staining technique using RuO 4 or OsO 4 was used.
  • TEM transmission electron microscope
  • the data of the position (nm) and the brightness was adopted in the sampling step 6 (decimation 6), and then numerical processing of a three-point moving average was performed. Furthermore, the obtained data whose brightness changes periodically is differentiated, and the maximum and minimum values of the differential curve are read by a VBA (Visual Basic for Applications) program.
  • the layer thickness was calculated as the layer thickness. This operation was performed for each photograph, and the layer thicknesses of all layers were calculated. Of the obtained layer thickness, a layer having a thickness of 1 ⁇ m or more was defined as a thick film layer.
  • the thin film layer was a layer having a thickness of 500 nm or less.
  • the XYZ value and the XYZ value under the C light source are obtained by using the obtained transmittance at the angle of 45 ° and the angle of 12 ° measured in the item (3), the spectral distribution of the C light source, and the color matching function of the XYZ system.
  • C * value, a * value, and b * value were calculated.
  • the difference from each angle of 12 ° and angle of 45 ° was defined as ⁇ a * value and ⁇ b * value.
  • Heat shrinkage rate (%) 100 ⁇ (AB) / A Equation (8).
  • the 5% stress was measured using an Instron type tensile tester according to the method defined in JIS-K7127 (1999). The elongation is set to a high value in either the film longitudinal direction or the width direction. The measurement was performed under the following conditions.
  • Measuring device “Tensilon AMF / RTA-100” automatic tensile strength measuring device manufactured by Orientec Co., Ltd. Sample size: width 10mm x test length 50mm Tensile speed: 300 mm / min Measurement environment: temperature 100 ° C.
  • thermoplastic resin (9) Melting point of thermoplastic resin
  • the melting point of the thermoplastic resin was determined according to JIS-K-7121: 1987 using EXSTAR DSC 6220 manufactured by Seiko Instruments Inc. The measurement conditions are as follows. 5 mg of a thermoplastic resin was weighed with an electronic balance, and sandwiched between aluminum packings was used as a sample, and the sample was heated from 25 ° C. to 300 ° C. at 20 ° C./min using SC6220.
  • thermoplastic resin A and a thermoplastic resin B were prepared as two types of thermoplastic resins having different optical characteristics.
  • thermoplastic resin A polyethylene terephthalate (PET) having an intrinsic viscosity of 0.65 was used.
  • PET polyethylene terephthalate
  • This resin A was a crystalline resin and had an in-plane average refractive index of 1.66 and a melting point of 256 ° C. after film formation.
  • thermoplastic resin B ethylene terephthalate (PE / SPG ⁇ T / CHDC) copolymerized with 25 mol% spiroglycol and 30 mol% cyclohexanedicarboxylic acid was used.
  • the intrinsic viscosity of the resin B was an amorphous resin of 0.72, and the in-plane average refractive index after film formation was 1.55. Further, in the thermoplastic resin B, as a coloring component, RUMOGEN 788 (coloring component 1) manufactured by BASF was kneaded in a ratio of 0.2 wt% with a twin screw extruder to form a pellet.
  • the coloring component 1 used here melts at 300 ° C., the average transmittance at a wavelength of 400 to 450 nm is smaller than the average transmittance at a wavelength of 450 to 600 nm, and the average transmittance at a wavelength of 600 to 800 nm.
  • the coloring component was smaller than the average transmittance at a wavelength of 450 to 600 nm.
  • a 601 layer laminating apparatus having three slit plates with 201 slits was joined to form a laminated body in which 601 layers were alternately laminated in the thickness direction.
  • the method for forming a laminate was carried out according to the description in paragraphs [0053] to [0056] of JP-A-2007-307893. Since there are layers formed by overlapping the A layers, the number of gaps in the slit plate is 603. Here, all the slit lengths are constant, and only the slit gap is changed to make the layer thickness distribution an inclined structure.
  • the obtained laminated body was 301 layers of the thermoplastic resin A and 300 layers of the thermoplastic resin B, and had an inclined structure laminated alternately in the thickness direction.
  • the target layer thickness distribution pattern calculated from the gap between the slit plates of the laminating apparatus is shown in FIG. The slit gap was adjusted so that the thick film layer had a thickness 20 times that of the adjacent layer. Moreover, the value obtained by dividing the film width direction length 17 of the base lip, which is the widening ratio inside the base, by the length 15 in the film width direction at the inlet of the base was set to 2.5.
  • the obtained cast film was heated in a roll group set at 75 ° C., and then stretched 3.3 times in the longitudinal direction while rapidly heating from both sides of the film with a radiation heater between 100 mm in the stretch section length, and then temporarily Cooled down. Subsequently, both sides of this uniaxially stretched film were subjected to corona discharge treatment in air, the wetting tension of the base film was set to 55 mN / m, and the treated surface (polyester resin having a glass transition temperature of 18 ° C.) / (Glass transition) Polyester resin having a temperature of 82 ° C.) / Laminate-forming film coating liquid composed of silica particles having an average particle diameter of 100 nm was applied to form a transparent, easy-sliding, and easy-adhesion layer.
  • This uniaxially stretched film was led to a tenter, preheated with hot air at 100 ° C., and stretched 3.5 times in the transverse direction at a temperature of 110 ° C.
  • the stretched film is directly heat-treated with hot air at 240 ° C. in the tenter, followed by 2% relaxation treatment in the width direction under the same temperature condition, and further 5% relaxation in the width direction after quenching to 100 degrees.
  • a wound laminated film was obtained.
  • the obtained film was a laminated film having a main reflection band mainly at 800 to 1100 nm.
  • a laminated film having a main reflection band at 1100 to 1400 nm was obtained by the same method. These two films were dry-laminated through an adhesive layer formed by applying urethane adhesive to a thickness of 7 ⁇ m using a die-type dry laminator to obtain a single laminated film.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection of 300 to 470 nm. Also, light absorption was noticeable at 600 to 800 nm.
  • this film had a relatively small difference in color of transmitted light at an angle of 12 ° and an angle of 45 °. The results are shown in Table 1.
  • the average transmittance after correction of the wavelength 450 to 600 nm of the obtained laminated film is 97%
  • the average transmittance after correction of the wavelength 400 to 450 nm is 88%
  • the average transmission after correction of the wavelength 600 to 800 nm was 54%.
  • Example 2 A laminated film was obtained in the same manner as in Example 1 except that a 401-layer laminating apparatus having a configuration using two slit plates having 201 slits was used as the laminating apparatus.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection of 300 to 470 nm. Also, light absorption was noticeable at 600 to 800 nm.
  • the reflectance was small compared with Example 1, and the heat ray cut performance was falling. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was small. The results are shown in Table 1.
  • thermoplastic resin B polyethylene terephthalate (CHDM copolymerized PET) obtained by copolymerizing 30 mol% of cyclohexanedimethanol with 70 mol% of ethylene glycol [PETG GN001 made by Eastman] was used, and coloring component 1 was further added to thermoplastic resin B.
  • a laminated film was obtained in the same manner as in Example 1 except that 0.2 wt% kneaded pellets were used.
  • the CHDM copolymerized PET used here was an amorphous resin having an in-plane average refractive index of 1.575 after film formation.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection of 300 to 470 nm.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the film thickness was adjusted so that the main reflection band was 800 to 1200 nm.
  • the obtained film had a main reflection band at 800 to 1200 nm, but had no reflection band at a wavelength of 400 to 800 nm. Also, light absorption was noticeable at 600 to 800 nm.
  • this film has a slightly narrower reflection band in the near-infrared region than that of Example 1, in addition to exhibiting high heat ray blocking performance by providing absorption at 600 to 800 nm, the film has an angle of 12 ° and an angle of 45 °. The difference in color of transmitted light was also relatively small. The results are shown in Table 1.
  • Example 5 A laminated film was obtained in the same manner as in Example 1 except that the content of the coloring component 1 was 0.1 wt%.
  • the obtained film had a main reflection band at 800 to 1200 nm, but had no reflection band at a wavelength of 400 to 800 nm. Further, although light absorption was noticeable at 600 to 800 nm, the transmittance was higher than that of Example 4, and the heat ray cutting performance was slightly lowered. Further, the difference in transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 6 A laminated film was obtained in the same manner as in Example 1 using the thermoplastic resin B containing no coloring component. On one surface of the resulting laminated film, a colored layer having a thickness of 5 ⁇ m made of an acrylic resin (IRG-205, manufactured by Nippon Shokubai Co., Ltd.), which is an amorphous resin containing 2% by weight of coloring component 1, is provided by coating. Got. The obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection at ⁇ 470 nm. Also, light absorption was noticeable at 600 to 800 nm.
  • an acrylic resin IRG-205, manufactured by Nippon Shokubai Co., Ltd.
  • This film has a high and wide reflection band in the near-infrared region and exhibits high heat ray reflection performance by providing absorption at 600 to 800 nm.
  • the film has a color of transmitted light at angles of 12 ° and 45 °. The difference was relatively small. Further, it was more transparent than Example 1. The results are shown in Table 1.
  • Example 7 A laminated film was obtained in the same manner as in Example 1 using the thermoplastic resin B containing no coloring component. On one surface of the obtained film, an acrylic resin containing 2 wt% of Nippon Kayaku YELLOW2G (coloring component 2) (a colored layer having a thickness of 5 ⁇ m made of IRG-205 made by Nippon Shokubai Co., Ltd.) was provided by coating.
  • the coloring component 2 used here melts at 300 ° C., the average transmittance at a wavelength of 400 to 450 nm is smaller than the average transmittance at a wavelength of 450 to 600 nm, and the average transmittance at a wavelength of 600 to 800 nm.
  • the obtained film had a main reflection band at 800 to 1400 nm and third-order reflection at ⁇ 470 nm.
  • the absorption of light was remarkably observed at 400 to 450 nm, which was high in the near infrared region.
  • it showed high heat ray reflection performance by having a wide reflection band and having absorption at 400 to 450 nm, and the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° could hardly be confirmed.
  • the visible light transmittance was slightly higher than that of the sample.
  • the average transmittance of the obtained laminated film after correction at a wavelength of 450 to 600 nm is 89%, the average transmittance after correction at a wavelength of 400 to 450 nm is 22%, and the average transmission after correction at a wavelength of 600 to 800 nm.
  • the rate was 99%.
  • Example 8 A laminated film was obtained in the same manner as in Example 1 except that thermoplastic resin B kneaded with 4% DIC L-50 (coloring component 3) was used as the coloring component.
  • the coloring component 3 used here does not completely melt at 310 ° C., the average transmittance at a wavelength of 400 to 450 nm is larger than the average transmittance at a wavelength of 450 to 600 nm, and the wavelength of 600 to 800 nm.
  • the coloring component had a smaller average transmittance than the average transmittance at a wavelength of 450 to 600 nm.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection of 300 to 470 nm.
  • the average transmittance of the obtained laminated film after correction at a wavelength of 450 to 600 nm is 87%, the average transmittance after correction at a wavelength of 400 to 450 nm is 92%, and the average transmission after correction at a wavelength of 600 to 800 nm.
  • the rate was 69%.
  • Example 9 Acrylic resin (IRG-205) containing 2 wt% of coloring component 1 on one surface of the laminated film Example 1 using the thermoplastic resin B containing no coloring component in the same manner as in Example 1.
  • a colored layer A of 5 ⁇ m thickness (made by Nippon Shokubai Co., Ltd.) and an acrylic resin (IRG-205 (made by Nippon Shokubai Co., Ltd.) containing 2 wt% of the colored component 2 on the other surface are coated with
  • the film thus obtained was a film having a main reflection band at 800 to 1400 nm and a third order reflection at 300 to 470 nm, and 400 to 450 nm.
  • the film showed significant absorption of light at 600 to 800 nm, which has a high and wide reflection band in the near-infrared region and has a wavelength of 400 to 450 nm.
  • the difference in the color of the reflected light could hardly be confirmed.
  • Table 1 the absorptance in wavelength 450nm and wavelength 700nm of the colored layer A and the colored layer B was as follows.
  • Example 10 In the same manner as in Example 1, a 1202 layer laminated film having a reflection band of 800 to 1400 nm was obtained (constituent laminated element Ln). Further, the PET resin shown in Example 1 was used as the thermoplastic resin A, and the resin obtained by kneading the CHDM copolymerized PET and PET resin shown in Example 3 at a ratio of 1: 1 as the thermoplastic resin B was used. In the same manner as described above, a 1202 layer laminated film having a reflection band of 400 to 800 nm was obtained (component laminated element Lv).
  • the resin after blend kneading of the CHDM copolymerized PET and PET resin used here had an in-plane average refractive index of 1.610 after film formation.
  • These two laminated films were dry laminated in the same manner as in Example 1 to obtain 2404 laminated films.
  • the obtained film was a film having a strong reflection in the main reflection band of 800 to 1400 nm, a weak and uniform reflection in the wavelength band of 400 to 800 nm, and a tertiary reflection at 300 to 470 nm. .
  • light absorption was noticeable at 600 to 800 nm.
  • This film has a high and wide reflection band in the near infrared region, and uniform reflection in the visible region. In addition to exhibiting high heat ray reflection performance, this film transmits light at an angle of 12 ° and an angle of 45 °. The color difference was also relatively small.
  • Table 1 The results are shown in Table 1.
  • Example 11 In the same manner as in Example 1, a 1202 layer laminated film having a reflection band of 800 to 1400 nm was obtained (constituent laminated element Ln). Further, using a 601 layer laminating apparatus having a configuration using three slit plates with 201 slits designed to have a layer thickness distribution different from that of the laminating apparatus used to create the constituent laminating element Ln, Using a thermoplastic resin not containing a coloring component, a 601-layer laminated film having a reflection band of 400 to 800 nm was obtained in the same manner as in Example 1 (constituent laminated element Lv). These two laminated films were dry laminated in the same manner as in Example 1 to obtain 1803 laminated films.
  • the obtained film was a film having a strong reflection in the main reflection band of 800 to 1400 nm, a weak and uniform reflection in the wavelength band of 400 to 800 nm, and a tertiary reflection at 300 to 470 nm. . Also, light absorption was noticeable at 600 to 800 nm.
  • This film has a high and wide reflection band in the near infrared region, and uniform reflection in the visible region. In addition to exhibiting high heat ray reflection performance, this film transmits light at an angle of 12 ° and an angle of 45 °. The color difference was also relatively small. The results are shown in Table 1.
  • Example 12 A laminated film was obtained in the same manner as in Example 1 except that the thermoplastic resin A containing 0.2 wt% of the coloring component 1 and the thermoplastic resin B containing no coloring component were used as the thermoplastic resin.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection at ⁇ 470 nm. Also, light absorption was noticeable at 600 to 800 nm. In addition to exhibiting high heat ray reflection performance with a high and wide reflection band in the near infrared region, this film had a relatively small difference in color of transmitted light at an angle of 12 ° and an angle of 45 °. On the other hand, the internal haze of 0.4% in Example 1 increased to 4.0% and was slightly low in transparency. The results are shown in Table 1.
  • Example 13 A 601-layer laminated film having a reflection band of 800 to 1200 nm was used in the same manner as in Example 1 except that a thermoplastic resin B kneaded with 2.0 wt% of a pigment master (TYL / coloring component 4) manufactured by Dainichi Seika Kogyo was used as the coloring component. Got. However, two laminated films are not dry laminated here.
  • the coloring component 4 used here is in a molten state at 300 ° C., the average transmittance at a wavelength of 400 to 450 nm is smaller than the average transmittance at a wavelength of 450 to 600 nm, and the average transmittance at a wavelength of 600 to 800 nm.
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Also, absorption of light was observed at 400 to 450 nm.
  • This film has improved heat ray blocking performance by providing absorption at 400 to 450 nm as compared with Comparative Example 4, and the difference in color of transmitted light at angles of 12 ° and 45 ° is relatively small. there were. The results are shown in Table 1.
  • the average transmittance after correction of the wavelength 450 to 600 nm of the obtained laminated film is 88%
  • the average transmittance after correction of the wavelength 400 to 450 nm is 65%
  • the average transmission after correction of the wavelength 600 to 800 nm was 99%.
  • Example 14 A 601-layer laminated film having a reflection band of 800 to 1200 nm was obtained in the same manner as in Example 13 except that the content of the coloring component 4 was 8.0 wt%.
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Further, remarkable light absorption was observed at 400 to 450 nm.
  • the heat ray blocking performance was further improved as compared with Example 13, but yellow coloring was conspicuous. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 15 A 601-layer laminated film having a reflection band of 800 to 1200 nm was used in the same manner as in Example 13 except that thermoplastic resin B in which 3.0% by weight of a pigment master (TGL / coloring component 5) manufactured by Dainichi Seika Kogyo was used as the coloring component.
  • the coloring component 5 used here is in a molten state at 300 ° C., the average transmittance at a wavelength of 400 to 450 nm is the same as the average transmittance at a wavelength of 450 to 600 nm, and the average at a wavelength of 600 to 800 nm.
  • the colored component had a transmittance smaller than the average transmittance at a wavelength of 450 to 600 nm.
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Light absorption was also observed at 600 to 800 nm.
  • This film has improved heat ray blocking performance by providing absorption at 600 to 800 nm as compared with Comparative Example 4, and the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° is relatively small. there were. The results are shown in Table 1.
  • the average transmittance of the obtained laminated film after correction at a wavelength of 450 to 600 nm is 99%, the average transmittance after correction at a wavelength of 400 to 450 nm is 99%, and the average transmission after correction at a wavelength of 600 to 800 nm.
  • the rate was 88%.
  • Example 16 A 601-layer laminated film having a reflection band of 800 to 1200 nm was obtained in the same manner as in Example 15 except that the content of the coloring component 4 was 13.0 wt%.
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Light absorption was also observed at 600 to 800 nm. Although this film showed further improvement in the heat ray blocking performance as compared with Example 15, it was slightly bluish but weak in coloring. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 17 A 601-layer laminated film having a reflection band of 800 to 1200 nm was obtained in the same manner as in Example 13 except that 5 wt% of coloring component 4 and 3 wt% of coloring component 5 were used as the coloring components.
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Light absorption was also observed at 400 to 450 nm and 600 to 800 nm.
  • the heat ray blocking performance was further improved as compared with Comparative Example 4, and although the film was slightly greenish, the degree of coloring was weak. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 18 A 1201 layer laminated film having a reflection band of 800 to 1400 nm was obtained in the same manner as in Example 1 except that 5 wt% of coloring component 4 and 3 wt% of coloring component 5 were used as the coloring components.
  • the obtained film had a main reflection band of 800 to 1400 nm, but the reflectance at 400 to 800 nm was sufficiently small. Light absorption was also observed at 400 to 450 nm and 600 to 800 nm.
  • This film was further improved in the heat ray blocking performance as compared with Example 1, and was slightly greenish but weak in coloration. In particular, the color of the reflected light was almost achromatic, and there was no change in the color. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 19 A 1201 layer laminated film having a reflection band of 800 to 1400 nm was obtained in the same manner as in Example 1 except that 3 wt% of coloring component 4 and 3 wt% of coloring component 5 were used as the coloring components.
  • the obtained film had a main reflection band of 800 to 1400 nm, but the reflectance at 400 to 800 nm was sufficiently small. Light absorption was also observed at 400 to 450 nm and 600 to 800 nm. This film was further improved in the heat ray blocking performance as compared with Example 1, and was slightly greenish but weak in coloration.
  • the color of the reflected light is almost achromatic, and the change in color is smaller than that in the working example 18, but the change in the color is small compared to the first example. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 20 A 801-layer laminated film having a reflection band of 800 to 1400 nm was obtained in the same manner as in Example 2 except that 5 wt% of coloring component 4 and 3 wt% of coloring component 5 were used as coloring components.
  • the obtained film had a main reflection band of 800 to 1400 nm, but the reflectance at 400 to 800 nm was sufficiently small. Light absorption was also observed at 400 to 450 nm and 600 to 800 nm.
  • This film showed further improvement in the heat ray blocking performance as compared with Example 2, and the film was slightly greenish but the degree of coloring was weak. In particular, the color of the reflected light was almost achromatic, and there was no change in the color. Further, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was relatively small. The results are shown in Table 1.
  • Example 21 A 601-layer laminated film having a reflection band of 800 to 1200 nm was obtained in the same manner as in Example 13, except that thermoplastic resin B kneaded with 4.0 wt% of Sumika Color's coloring master (EMBPET / coloring component 6) was used as the coloring component. Obtained. Further, the coloring component 6 used here is in a molten state at 300 ° C., the average transmittance at a wavelength of 400 to 450 nm is larger than the average transmittance at a wavelength of 450 to 600 nm, and the average transmittance at a wavelength of 600 to 800 nm. It was a colored component having a rate smaller than the average transmittance at a wavelength of 450 to 600 nm.
  • EMBPET / coloring component 6 Sumika Color's coloring master
  • the obtained film had a main reflection band at 800 to 1200 nm, but did not have a reflection band at 400 to 800 nm. Light absorption was also observed at 600 to 800 nm.
  • This film has improved heat ray blocking performance by providing absorption at 600 to 800 nm as compared with Comparative Example 4, and the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° is relatively small. there were. The results are shown in Table 1.
  • the average transmittance of the obtained laminated film after correction at a wavelength of 450 to 600 nm is 94%
  • the average transmittance after correction at a wavelength of 400 to 450 nm is 84%
  • the average transmission after correction at a wavelength of 600 to 800 nm was 67%.
  • Example 1 (Comparative Example 1) Using the PET resin shown in Example 1 in which coloring component 1 was kneaded in a ratio of 0.2 wt% with a twin-screw extruder, and using the method of Example 1 without using a laminating apparatus, cast film, stretching, heat treatment To obtain a film. Although the obtained film was slightly bluish, no change in color was felt on the film surface. However, the heat ray cutting performance was extremely low. The results are shown in Table 1.
  • Example 2 A 1202 layer laminated film was obtained in the same manner as in Example 1 except that the thermoplastic resins A and B containing no coloring component were used.
  • the obtained film had a main reflection band of 800 to 1400 nm and a third-order reflection at ⁇ 470 nm.
  • this film had a high and wide reflection band in the near-infrared region, it had a high transmittance at a wavelength of 600 to 800 nm as compared with Example 1, and was slightly inferior in heat ray reflection performance. Further, a difference in the color of transmitted light was observed at an angle of 12 ° and an angle of 45 °. The results are shown in Table 1.
  • Comparative Example 3 A laminated film was obtained in the same manner as in Comparative Example 2 except that the film thickness was adjusted so that the reflection band was 700 to 1200 nm.
  • the obtained film had a main reflection band at 700 to 1200 nm, but had no reflection band at a wavelength of 400 to 700 nm.
  • this film had a transmittance of approximately the same wavelength of 600 to 800 nm as compared with Example 4, the difference in color of transmitted light at an angle of 12 ° and an angle of 45 ° was remarkable.
  • Table 1 The results are shown in Table 1.
  • Example 4 A 601-layer laminated film was obtained in the same manner as in Example 13 except that the thermoplastic resins A and B containing no coloring component were used.
  • the obtained film had a main reflection band at 800 to 1200 nm, but had no reflection band at a wavelength of 400 to 800 nm. Although this film had a relatively small difference in color of transmitted light at an angle of 12 ° and an angle of 45 °, it was inferior in heat ray cutting performance.
  • Table 1 Comparative Example 5
  • Using the laminating apparatus of Example 1 a 601-layer laminated film having a reflection band of 800 to 1200 nm and a 601-layer laminated film having a reflection band of 310 to 450 nm were obtained.
  • the present invention relates to a heat ray cut film capable of cutting heat rays caused by sunlight or the like. More specifically, the present invention relates to a heat ray cut film that can change the color of the eye with a small angle and can cut the heat ray with high efficiency, and is suitable for use as a window glass for automobiles, trains, buildings, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Optical Filters (AREA)

Abstract

【課題】 光の入射角度やフィルム厚みのわずかな違いによる色目の変化を抑制しつつも従来のポリマー多層積層フィルムよりも優れた熱線カット性能を備えた積層フィルムを提供する。 【解決手段】異なる光学的性質を有する2種以上の熱可塑性樹脂が交互にそれぞれ50層以上積層された構成を含み、かつ波長900~1200nmでの平均反射率が70%以上であり、かつ透過光の入射角度12°と入射角度45°でのa*値の差Δa* およびb*値の差Δb* が10以下であり、かつ波長400~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることを特徴とする積層フィルムとする。

Description

積層フィルムおよびそれを用いた自動車用窓ガラス
 本発明は、積層フィルムに関し、特に自動車や電車、建物の窓ガラスに好適に用いられる積層フィルムに関する。
 近年、環境保護による二酸化炭素排出規制を受けて、夏場の外部、特に太陽光による熱の流入を抑制できる熱線カットガラスが自動車や電車などの乗り物、建物の窓ガラスとして注目されている。
 このような熱線カットガラスの一例として、ガラス中や合わせガラスに用いられる中間膜中に熱線吸収材を含有させたものが知られている(たとえば、特許文献1)。しかし、熱線吸収材は外部から入射される太陽光を熱エネルギーに変換するためその熱が室内へと放射されて熱線カット効率が低下する問題がある。加えて、熱線を吸収することで部分的にガラス温度が上昇し、外気温との差によりガラス本体が破損する場合もある。
 一方、ガラス上に熱線反射膜を形成したり、熱線反射機能を備えたフィルムを合わせガラス中に挿入した熱線反射ガラスも知られている。この場合、赤外線をはじめとする入射光は外部へ反射されるため、室内には、光・熱として流入しなくなり、より効果的に熱線を遮断することができる。また、熱線によるガラス温度の上昇も抑えられるために、ガラスの破損を抑制することもできる。
 このような熱線反射ガラスの代表例として金属膜をガラス表面上にスパッタ法などにより形成する方法がある(たとえば特許文献2)。しかし、金属膜は、熱線は反射するものの可視光にも不均一な反射をもち、さらにその反射強度が波長によって異なるためにガラスに色付きを生じるという問題がある。また、可視光領域と近赤外線領域を選択的に反射できないために可視光線透過率を維持しつつ熱線カット性能を向上させることが難しい。さらに、金属膜は電波を遮断する性質を備えるため、携帯電話など機器が使えなくなることもある。
 また、熱線反射ガラスのその他の例として、屈折率の異なるポリマーが交互に積層されたポリマー多層積層フィルムを挟みこんだ合わせガラスが知られている(たとえば特許文献3)。かかるポリマー多層積層フィルムは、その層厚みを制御して、反射する波長を選択的に選択できるため、近赤外領域の光を選択的に反射することができ、可視光線透過率を維持しつつ熱線カット性能を向上させることができる。また、金属など電波を遮断するものを含まないために、優れた電波透過性を保持したものとなる。しかし、このような多層積層フィルムを用いる場合においては、フィルム面に対する光の入射角度が大きくなるにしたがい反射できる光の波長が低波長側へとシフトし色目が変化する。そのため、色変化のない熱線反射ガラスを得るためには、正面から見たときの光の反射帯域を可視光領域より離れた近赤外領域に設ける必要があり、熱線カット性能を高めることができないという問題があった。また、さらに、このような多層積層フィルムが主に光を反射できる近赤外線領域では太陽光のほんの一部しか反射できないため、熱線カット性能としては必ずしも十分とはいえないものであった。
特開2010-17854号公報 特許第3901911号公報 特許第4310312号公報
 本発明は、上記した従来技術の問題点に鑑み、従来のポリマー多層積層フィルムよりも優れた熱線カット性能を備え、かつ見る角度による色変化が抑制された積層フィルムを提供することを課題とする。
 係る課題を解決するため、本発明は、以下に記載の構成を含む積層フィルムとすることを本旨とする。また、その種々の改良された態様も提供するものである。
 すなわち、本発明は、異なる光学的性質を有する2種以上の熱可塑性樹脂が交互にそれぞれ50層以上積層された構成を含み、かつ波長900~1200nmでの平均反射率が70%以上であり、かつ入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δa およびb値の差Δbが10以下であり、かつ波長400~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることを特徴とする積層フィルム、であることを本旨とする。
 本発明によって、従来よりも低波長側に反射帯域を設けた場合においても見る角度による色変化が少ないために、視認性に優れかつ従来のポリマー多層積層フィルムよりも優れた熱線カット性能を備えた積層フィルムを得ることが可能となる。また、自動車や電車、建物の窓として用いた場合にも、太陽光による室内の温度上昇を抑制することができるものとなる。
本発明の積層フィルムの製造方法の一例を説明する説明図であり、(a)は装置の概略正面図、(b)、(c)、(d)はそれぞれL-L’、M-M’、N-N’で切った樹脂流路の断面図である。 本発明の積層フィルムの層の並び順-層厚みの関係(層厚み分布)の例であり、λ/4設計の思想に基づく傾斜構造を3個備えた積層フィルムの例である。
 以下に本発明の実施の形態について図面に基づいて詳細に述べるが、本発明は以下の実施例を含む実施の形態に限定して解釈されるものではなく、発明の目的を達成できて、かつ、発明の要旨を逸脱しない範囲内においての種々の変更は当然あり得る。
 本発明の積層フィルムは、熱可塑性樹脂からなる必要がある。熱可塑性樹脂は一般的に熱硬化性樹脂や光硬化性樹脂と比べて安価であり、かつ公知の溶融押出により簡便かつ連続的にシート化することができることから、低コストで積層フィルムを得ることが可能となる。
 また、本発明の積層フィルムにおいては、少なくとも異なる光学的性質を有する2種以上の熱可塑性樹脂が交互にそれぞれ50層以上積層されてなる必要がある。ここでいう異なる光学的性質とは、フィルムの面内で任意に選択される直交する2方向および該面に垂直な方向のいずれかにおいて、屈折率が0.01以上異なることをいう。また、ここでいう交互に積層されてなるとは、異なる樹脂からなる層が厚み方向に規則的な配列で積層されていることをいい、たとえば異なる光学的性質を有する2つの熱可塑性樹脂A、Bからなる場合、各々の層をA層,B層と表現すれば、A(BA)n(nは自然数)のように積層されたものである。このように光学的性質の異なる樹脂が交互に積層されることにより、各層の屈折率の差と層厚みとの関係より設計した波長の光を反射させることが出来る干渉反射を発現させることが可能となる。また、積層する層数がそれぞれ50層未満の場合には、赤外領域において十分な帯域に渡り高い反射率を得られず充分な熱線カット性能が得ることができない。また、前述の干渉反射は、層数が増えるほどより広い波長帯域の光に対して高い反射率を達成できるようになり、高い熱線カット性能を備えた積層フィルムが得られるようになる。また、層数に上限はないものの、層数が増えるに従い製造装置の大型化に伴う製造コストの増加や、フィルム厚みが厚くなることでのハンドリング性の悪化が生じ、特にフィルム厚みが厚くなることでは合わせガラス化の工程での工程不良の原因ともなりうるために、現実的には10000層程度が実用範囲となる。
 本発明に用いる熱可塑性樹脂は、ポリエチレン、ポリプロピレン、ポリ(4-メチルペンテン-1)、ポリアセタールなどの鎖状ポリオレフィン、ノルボルネン類の開環メタセシス重合,付加重合,他のオレフィン類との付加共重合体である脂環族ポリオレフィン、ポリ乳酸、ポリブチルサクシネートなどの生分解性ポリマー、ナイロン6、ナイロン11、ナイロン12、ナイロン66などのポリアミド、アラミド、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリビニルブチラール、エチレン酢酸ビニルコポリマー、ポリアセタール、ポリグルコール酸、ポリスチレン、スチレン共重合ポリメタクリル酸メチル、ポリカーボーネート、ポリプロピレンテレフタレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートなどのポリエステル、ポリエーテルサルフォン、ポリエーテルエーテルケトン、変性ポリフェニレンエーテル、ポリフェニレンサルファイド、ポリエーテルイミド、ポリイミド、ポリアリレート、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、ポリフッ化ビニリデンなどを用いることができる。この中で、強度・耐熱性・透明性および汎用性の観点から、特にポリエステルを用いることがより好ましい。これらは、共重合体であっても、2種以上の樹脂の混合物であってもよい。
 このポリエステルとしては、芳香族ジカルボン酸または脂肪族ジカルボン酸とジオールを主たる構成成分とする単量体からの重合により得られるポリエステルが好ましい。ここで、芳香族ジカルボン酸として、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4′-ジフェニルジカルボン酸、4,4′-ジフェニルエーテルジカルボン酸、4,4′-ジフェニルスルホンジカルボン酸などを挙げることができる。脂肪族ジカルボン酸としては、例えば、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸とそれらのエステル誘導体などが挙げられる。中でも高い屈折率を発現するテレフタル酸と2,6ナフタレンジカルボン酸が好ましい。これらの酸成分は1種のみ用いてもよく、2種以上併用してもよく、さらには、ヒドロキシ安息香酸等のオキシ酸などを一部共重合してもよい。
 また、ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルベート、スピログリコールなどを挙げることができる。中でもエチレングリコールが好ましく用いられる。これらのジオール成分は1種のみ用いてもよく、2種以上併用してもよい。
 本発明の熱可塑性樹脂が、例えば、上記ポリエステルのうち、ポリエチレンテレフタレートおよびその重合体、ポリエチレンナフタレートおよびその共重合体、ポリブチレンテレフタレートおよびその共重合体、ポリブチレンナフタレートおよびその共重合体、さらにはポリヘキサメチレンテレフタレートおよびその共重合体、ポリヘキサメチレンナフタレートおよびその共重合体などを用いることが好ましい。
 本発明の積層フィルムにおいては、異なる光学的性質を有する熱可塑性樹脂のうち、少なくとも2つの熱可塑性樹脂からなる各層の面内平均屈折率の差が0.03以上であることが好ましい。より好ましくは0.05以上であり、さらに好ましくは0.1以上である。面内平均屈折率の差が0.03より小さい場合には、十分な反射率が得られないために熱線カット性能が不足する場合がある。この達成方法としては、少なくとも一つの熱可塑性樹脂が結晶性であり、かつ少なくとも一つの熱可塑性樹脂が非晶性であることである。この場合、フィルムの製造における延伸、熱処理工程において容易に屈折率差を設けることが可能となる。
 本発明の積層フィルムに用いる異なる光学的性質を有する各熱可塑性樹脂の好ましい組み合わせとしては、各熱可塑性樹脂のSP値の差の絶対値が、1.0以下であることが第一に好ましい。SP値の差の絶対値が1.0以下であると層間剥離が生じにくくなる。より好ましくは、異なる光学的性質を有するポリマーは同一の基本骨格を供えた組み合わせからなることが好ましい。ここでいう基本骨格とは、樹脂を構成する繰り返し単位のことであり、たとえば、一方の熱可塑性樹脂としてポリエチレンテレフタレートを用いる場合は、高精度な積層構造が実現しやすい観点から、ポリエチレンテレフタレートと同一の基本骨格であるエチレンテレフタレートを含むことが好ましい。異なる光学的性質を有する熱可塑性樹脂が同一の基本骨格を含む樹脂であると、積層精度が高く、さらに積層界面での層間剥離が生じにくくなるものである。
 また、本発明の積層フィルムに用いる異なる光学的性質を有する各熱可塑性樹脂の好ましい組み合わせとしては、各熱可塑性樹脂のガラス転移温度差が20℃以下である熱可塑性樹脂の組合せである。ガラス転移温度の差が20℃より大きい場合には積層フィルムを製膜する際の厚み均一性が不良となり、金属光沢の外観不良となる。また、積層フィルムを成形する際にも、過延伸が発生するなどの問題が生じやすいためである。また、異なる光学的性質を有する2種類以上の熱可塑性樹脂のうち、結晶性樹脂のガラス転移温度が非晶性樹脂のガラス転移温度よりも低いこともまた好ましい。この場合、積層フィルムにおいて結晶性樹脂を配向・結晶化させるのに適当な延伸温度で延伸したときに、結晶性樹脂と比べて非晶性樹脂の配向を抑制することができ、容易に屈折率差を設けることが可能となる。
 上記の条件を満たすための樹脂の組合せの一例として、本発明の積層フィルムでは、少なくとも一つの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり、少なくとも一つの熱可塑性樹脂がスピログリコール由来のポリエステルを含んでなるポリエステルであることが好ましい。スピログリコール由来のポリエステルとは、スピログリコールをジオール成分として用いたポリエステルであって、他のエステル構造単位との共重合体、スピログリコールを単一のジオール成分として用いたポリエステル、またはそれらを他のポリエステル樹脂とブレンドし好ましくスピログリコール残基がポリエステル樹脂中の全ジオール残基の半数以上を占めるポリエステルのことを言う。スピログリコール由来のポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になりにくく、かつ層間剥離もしにくいために好ましい。より好ましくは、少なくともひとつの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり、少なくともひとつの熱可塑性樹脂がスピログリコールとシクロヘキサンジカルボン酸とが用いられたポリエステルであることが好ましい。スピログリコールとシクロヘキサンジカルボン酸とを用いて得たポリエステルであると、ポリエチレンテレフタレートやポリエチレンナフタレートとの面内屈折率差が大きくなるため、高い反射率が得られやすくなる。また、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さく、接着性にも優れるため、成形時に過延伸になりにくく、かつ層間剥離もしにくい。
 また、本発明の積層フィルムにおいては、少なくとも一つの熱可塑性樹脂がポリエチレンテレフタレートまたはポリエチレンナフタレートを含んでなり、少なくとも一つの熱可塑性樹脂がシクロヘキサンジメタノール由来のポリエステルであることも好ましい。シクロヘキサンジメタノール由来のポリエステルとは、シクロヘキサンジメタノールをジオール成分として用いたポリエステルであって、他のエステル構造単位との共重合体、シクロヘキサンジメタノールを単一のジオール成分として用いたポリエステル、またはそれらを他のポリエステル樹脂とブレンドし好ましくシクロヘキサンジメタノール残基がポリエステル樹脂中の全ジオール残基の半数以上を占めるポリエステルのことを言う。シクロヘキサンジメタノール由来のポリエステルは、ポリエチレンテレフタレートやポリエチレンナフタレートとのガラス転移温度差が小さいため、成形時に過延伸になることがなりにくく、かつ層間剥離もしにくいために好ましい。より好ましくは、少なくともひとつの熱可塑性樹脂がシクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体である。このようにすることにより、高い反射性能を有しながら、特に加熱や経時による光学的特性の変化が小さく、層間での剥離も生じにくくなる。シクロヘキサンジメタノールの共重合量が15mol%以上60mol%以下であるエチレンテレフタレート重縮合体は、ポリエチレンテレフタレートと非常に強く接着する。また、そのシクロヘキサンジメタノール基は幾何異性体としてシス体あるいはトランス体があり、また配座異性体としてイス型あるいはボート型もあるので、ポリエチレンテレフタレートと共延伸しても配向結晶化しにくく、高反射率で、熱履歴による光学特性の変化もさらに少なく、製膜時のやぶれも生じにくいものである。
 本発明の積層フィルムにおいては、波長900~1200nmでの平均反射率が70%以上であることが必要である。ここでいう反射率とは、白色光を入射角度12°で入射させたときの反射光の反射率とする。ここでいう白色光とは、太陽光やハロゲンランプのように可視光領域の広い範囲において連続して強度分布を備え、無彩色として認識できる光である。また、本発明の明細書中で算出したC値、a値、b値としては、ハロゲンランプ(タングステン)の光によるものとして規定される。太陽光は可視光領域に主に強度分布を備えており、波長が大きくなるにつれてその強度分布は小さくなる傾向にある。一方で、透明性の求められる用途においては、可視光領域の光をカットすることで熱線カット性能を向上できるものの、透明性も低下し使用に適さない場合も多い。そこで、可視光領域よりもやや大きな波長900~1200nm(全太陽光の強度の約18%)での平均反射率を高めることにより効率的に熱線カット性能を向上させることができるものである。波長900~1200nmでの平均反射率が70%未満の場合、その熱線カット性能が十分でなく、高い熱線カット性能を求められる用途への展開は難しくなる。好ましくは、波長900~1200nmでの平均反射率が80%以上であり、より好ましくは波長900~1200nmでの平均反射率が90%以上である。波長900~1200nmでの平均反射率が大きくなるに従い、高い熱線カット性能を付与することが可能となる。波長900~1200nmでの平均反射率が70%以上となる積層フィルムを得るためには、積層フィルムの層数もしくは交互に積層される熱可塑性樹脂の屈折率差を大きくすることで達成されるものである。交互に積層される熱可塑性樹脂の屈折率差にもよるが、たとえば好ましい層数としては前記2種以上の熱可塑性樹脂の全層数が200層以上であり、波長900~1200nmでの平均反射率が70%以上とすることが容易になる。また、波長900~1200nmでの平均反射率を80%以上とする場合には400層以上、90%以上とするためには500層以上とすることが好ましい。
 このような積層フィルムを得るためには、本発明の積層フィルムは過半数の層について隣接する層の光学厚みの和が400~650nmであることが好ましい。ここでいう光学厚み(μm)とは、各層における層厚み(μm)と層を構成する樹脂の屈折率(-)の積であり、隣接する層の光学厚みの和は積層フィルムにおいて干渉反射が生じる波長を決める要素となる。隣接する層の光学厚みの和が400~650nmであるような層による干渉反射は約800~1300nmの波長範囲に生じるようになるため、波長900~1200nmでの平均反射率を70%以上とすることが容易となる。また、反射率は、層数や隣接する層の屈折率の差が大きくなるほど高くなるものであり、過半数の層について隣接する層の光学厚みの和が400~650nmである積層フィルムにおいては、波長900~1200nmでの反射率を効率的に向上させることが容易になる。
 例えば、熱可塑性樹脂Aとしてポリエチレンテレフタレート(屈折率1.66)を用い、熱可塑性樹脂Bとしてスピログリコールとシクロヘキサンジカルボン酸を共重合したポリエチレンテレフタレート(屈折率1.55)を用いた場合に、波長900~1200nmでの平均反射率を70%以上とするためには、隣接する層の光学厚みの和が400~650nmとなる層の数を約200層以上とすることが必要となる。また、その場合の各層の厚みの範囲は、約120~220nmとなる。
 なお、樹脂の屈折率の差が大きくなるに従い、波長900~1200nmでの平均反射率を70%以上とするために必要な層数は少なくなり、屈折率の差が0.3以上であれば、層数が約50層程度でも十分な反射率を付与できるようになる。
 本発明の積層フィルムにおいては、入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δb がそれぞれ10以下であることが必要である。上述のとおり、本発明のように屈折率が異なる樹脂を交互に積層して得られる干渉反射の原理に基づく積層フィルムにおいては、フィルム厚みや光の入射角度によって反射帯域が変化し色目が変化する。そのため、様々な角度において安定した色目で見ることができる必要のある窓ガラスには問題となるが、透過光の入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δb がそれぞれ10以下である場合、少々のフィルム厚みの違いや光の入射角度に違いによらず、安定した色目とすることができ、窓ガラスに用いるのに好適なものとなる。より好ましくはΔaおよびb値の差Δb がそれぞれ5以下である。このようにa値の差Δaおよびb値の差Δbが小さくなるにつれ、見る角度による色目の変化が抑制され、より窓ガラスなどに好適なフィルムとなるものである。また、入射角度12°で入射した白色光と入射角度が60°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δbがそれぞれ10以下であることが好ましい。さらに入射角度12°で入射した白色光と入射角度が75°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δbがそれぞれ10以下であることが好ましい。この場合、フィルム面に対してより大きな角度から見ても色目の変化が抑制されるために、より好適に使用できるものとなる。この達成方法としては、後述にある可視光領域に特定の領域において吸収を併用する方法や、可視光領域全般において均質な反射率の光の反射を備えてなること、可視光領域の一部に反射を設けることなどが挙げられる。
 本発明の積層フィルムにおいては、波長400~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることが必要である。本発明でいう透過率とは、入射角度12°で入射された白色光の直線透過光の透過率とする。上述のとおり、本発明のように屈折率が異なる樹脂を交互に積層して得られる干渉反射の原理に基づく積層フィルムにおいては、フィルム厚みや光の入射角度によって反射帯域が変化し色目が変化する。そのため、積層フィルムの干渉反射を設ける波長帯域を900~1200nmとしない場合、一次の干渉反射もしくは高次の干渉反射のため可視光領域に反射が生じ、かつフィルム面に対する角度で帯域が変化することで色目の変化が生じ、熱線カット性能の向上の障害となっていた。しかし、フィルム面に対する角度で帯域が変化する領域に着色成分などで透過率を制御することにより、反射光の角度の変化によらず色目の安定したフィルムを得ることが可能となり、入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δb をそれぞれ10以下とすることが容易となる。好ましくは波長400~800nmにおいて透過率50%以下である場合であり、より好ましくは透過率が30%以下である場合であり、さらに好ましくは、透過率の減少の要因について光の反射の寄与よりも光の吸収による寄与が大きいことである。この場合、高い色目変化の抑制効果を得ることが可能となる。また、太陽光は、特に波長400~800nmの可視光領域に大きな強度分布を備えており、全太陽光の強度の約54%を占める。そのため、波長400~800nmにおける一部の帯域の透過率を低下させることにより、熱線カット性能の向上効果も得ることができる。光の吸収により透過率を減少させた場合には、吸収された光の一部が熱に変換されて熱として流入するために遮熱効率がやや低くなるのに対して、光の反射により透過率を減少させた場合には、光の熱への変換が生じることなく、遮熱性能を高めることも可能である。透過率の下限は特にないものの、帯域によっては透過率が低下することにより可視光線透過率も低下し、乗り物や建物の窓ガラスのように透明性の求められる用途に対して十分な透明性を付与できない場合もあるため、帯域との兼ね合いで透過率の下限は決定される。
 本発明の積層フィルムにおいて、波長600~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることは特に好ましい。上述のとおり近赤外線領域に設けられた干渉反射がフィルム面に対して大きな角度から見た場合に生じる低波長シフトにより可視光領域(特に600~800nm)にシフトした場合においても、波長600~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることにより、シフトしてきた干渉反射による色目の影響を抑制することができ、入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δb をそれぞれ10以下とすることが容易となる。また、波長600~800nmの帯域においては可視光領域の中での可視光線の強度分布が18%であり、波長500~600nmは可視光線の強度分布の76%と比較して極めて小さいため、波長600~800nmの透過率を低下させた場合においても可視光線透過率の低下の程度は小さくなる。また、可視光線透過率の低下に対する熱線カット性能の向上の効果の割合が近赤外線領域よりも比較的大きく、さらに波長600~800nmの透過率のみ制御をして可視光線透過率を1%抑制することで日射透過率を1.3%低下でき、波長500~600nmの透過率のみを制御して可視光線透過率を1%抑制した場合の0.2%と対比して透明度を低下させることなく熱線カット性能を効率的に向上できるという効果も得られる。好ましくは、透過率の減少の要因について光の反射の寄与よりも光の吸収による寄与が大きいことであり、より好ましくは波長600~800nmにおいて透過率が50%以下となる領域を50nm以上備えていることが好ましく、また、波長600~800nmにおいて透過率が30%以下であるとなる領域を50nm以上備えていることがさらに好ましい。この領域における透過率が小さくなることで、フィルム面に対する見る角度によって近赤外線領領域に設けられた干渉反射が低波長シフトしてきた場合でも。透過率の変化を小さくすることができ、色目の変化をほとんど抑制できるようになることに加えて、熱線カット性能も付与することが可能となる。また、波長600~800nmにおいて透過率が80%以下となる帯域が100nm以上であることもまた好ましく、より好ましくは波長650~800nmの間の150nmの帯域で透過率が80%以下となることである。このように透過率が50%以下となる帯域の幅が広くなることで、よりフィルム面に対する角度が大きなところからフィルムを見た場合においても、色目の変化が生じることはなくなる。また、波長600nmから波長800nmに変化するにつれて可視光線透過率の強度分布が低下するため、波長650nmよりも大きな帯域に透過率80%以下となる帯域が存在することで、色目の変化の抑制と高い透明性、高い熱線カット性を両立できるようになるものである。
 同様に、本発明の積層フィルムにおいては、波長400~450nmにおける透過率が80%以下であることもまた好ましい。本発明の積層フィルムのように干渉反射を用いる場合には、最も強い強度の光が得られる一次の干渉反射の他に高次の干渉反射が生じる。特に三次の干渉反射の強度は大きく、一次の干渉反射の生じる帯域の約1/3の波長において生じる。このため、一次の干渉反射が波長1200nm以上の帯域で生じる場合、三次の反射が波長400nm以上で生じるようになる。この高次の干渉反射においても、一次の干渉反射と同様に入射光のフィルム面に対する角度が大きくなることで低波長シフトするが、この帯域に吸収を備えることにより、こうした低波長シフト現象により生じる色目の変化を抑制できるようになる。また、波長600~800nmの範囲における場合と同様に、波長400~450nmもまた可視光線の強度分布が1%であり、波長500~600nmは可視光線の強度分布の76%と比較して極めて小さいために、可視光線透過率の低下を抑制できるものである。また、可視光線透過率の低下に対する熱線カット性能の向上の効果の割合が近赤外線領域よりも比較的大きく、さらに波長400~450nmの透過率のみを制御して可視光線透過率を1%抑制することで日射透過率を8.9%低下でき、波長500~600nmの透過率のみを制御して可視光線透過率を1%抑制した場合の0.2%と対比して透明度を低下させることなく熱線カット性能を効率的に向上できるという効果も得られる。このように波長400~450nmの透過率が80%以下である場合には、近赤外線領域に設ける一次の干渉反射の帯域を波長1300~1400nmに拡張できるようになる。その結果、一次の干渉反射による熱線カット性能の向上と、高次の干渉反射による熱線カット性能の向上を同時にはかることができるようになるため、より効率的に熱線カット性能を向上させることができるようになる。好ましくは波長400~450nmにおける透過率が50%以下であり、より好ましくは透過率30%以下であることである。この波長範囲での透過率を小さくするほど、フィルム面に対する角度に伴う色目の変化を抑制できるようになる。また、好ましくは、透過率の減少の要因について光の反射の寄与よりも光の吸収による寄与が大きいことである。吸収による光の透過率の減少であれば、フィルム面に対する角度の変化による帯域の変化がないため色目が安定するようになる。
 上述に示す光学特性のフィルムを得るための手法として、波長400~450nmまたは波長600~800nmにおける平均透過率が、波長450~600nmにおける平均透過率よりも小さい着色成分を、含有する層を少なくとも1層以上備えてなることが好ましい。もちろん、波長400~450nmにおける平均透過率および波長600~800nmにおける平均透過率の両方が、波長450~600nmにおける平均透過率よりも小さくてもよい。
 着色成分が、上記の性質を有するかは、以下の方法によって判断される。まず、着色成分が特定される場合には、着色成分を含有した熱可塑性樹脂Aまたは熱可塑性樹脂Bの単層フィルムの400~800nmの波長域の透過率を計測し、波長400~450nmにおける平均透過率、波長600~800nmにおける平均透過率、波長450~600nmにおける平均透過率を求めることで判断することができる。
 一方で、着色成分を特定できない場合においては、以下の方法に基づいて得られる「補正後の平均透過率」から判断するものとする。
 はじめに、着色成分を含有する積層フィルムについて、400~800nmの波長域の透過率を計測し、波長400~450nmの波長域における平均透過率を平均透過率A1とし、波長450~600nmの波長域における平均透過率を平均透過率A2とし、波長600~800nmの波長域における平均透過率を平均透過率A3とする。
 ついで、積層フィルムの一方の表面から光線を入射し、400~800nmの波長域の反射率を計測し、波長400~450nmの波長域における平均反射率を平均反射率B1とし、波長450~600nmの波長域における平均反射率を平均反射率B2とし、波長600~800nmの波長域における平均反射率を平均反射率B3とする。
 ついで、積層フィルムのもう一方の表面から光線を入射し、400~800nmの波長域の反射率を計測すし、波長400~450nmの波長域における平均反射率を平均反射率C1とし、波長450~600nmの波長域における平均反射率を平均反射率C2とし、波長600~800nmの波長域における平均反射率を平均反射率C3とする。
 次に、以下の(1)および(2)の方法に基づいて、波長400~450nmまたは波長600~800nmにおける平均透過率と、波長450~600nmにおける平均透過率の関係を判断する。
 (1)波長400~450nmの平均透過率と波長450~600nmの平均透過率の関係 平均反射率B1と平均反射率C1とを比較する。平均反射率B1が平均反射率C1よりも大きければ、平均透過率A1に平均反射率B1を加えて、これを波長400~450nmの「補正後の平均透過率」とする。また、平均透過率A2に平均反射率B2を加えて、これを波長450~600nmの「補正後の平均透過率」とする。
 一方、平均反射率C1が平均反射率B1よりも大きければ、平均透過率A1に平均反射率C1を加えて、これを波長400~450nmの「補正後の平均透過率」とする。また、平均透過率A2に平均反射率C2を加えて、これを波長450~600nmの「補正後の平均透過率」とする。
 上記の波長400~450nmの「補正後の平均透過率」と、波長450~600nmの「補正後の平均透過率」とを比較して、波長400~450nmにおける平均透過率が、波長450~600nmにおける平均透過率よりも小さいかを判断する。
 (2)波長600~800nmの平均透過率と波長450~600nmの平均透過率の関係
 平均反射率B3と平均反射率C3とを比較する。平均反射率B3が平均反射率C3よりも大きければ、平均透過率A3に平均反射率B3を加えて、これを波長600~800nmの「補正後の平均透過率」とする。また、平均透過率A2に平均反射率B2を加えて、これを波長450~600nmの「補正後の平均透過率」とする。
 一方、平均反射率C3が平均反射率B3よりも大きければ、平均透過率A3に平均反射率C3を加えて、これを波長600~800nmの「補正後の平均透過率」とする。また、平均透過率A2に平均反射率C2を加えて、これを波長450~600nmの「補正後の平均透過率」とする。
 上記の波長600~800nmの「補正後の平均透過率」と、波長450~600nmの「補正後の平均透過率」とを比較して、波長600~800nmにおける平均透過率が、波長450~600nmにおける平均透過率よりも小さいかを判断する。
 本発明では、波長400~450nmまたは波長600~800nmにおける平均透過率が、波長450~600nmにおける平均透過率よりも10%以上低い着色成分を含有する層を少なくとも1層以上備えてなることが好ましい。波長400~450nmまたは波長600~800nmにおける平均透過率が、波長450~600nmにおける平均透過率よりも小さくなるに従い、可視光線透過率への影響を抑えつつフィルム面に対する角度に伴う色目の変化を抑制できるようになる。
 また、着色成分を含有する層は特に特定されるものではなく、熱可塑性樹脂Aと熱可塑性樹脂Bのいずれかまたは両方の樹脂中に含有してもよいし、熱可塑性樹脂Aと熱可塑性樹脂Bが交互に積層された積層体の片側または両側に着色層を別に設けても良い。
 本発明の積層フィルムにおいては、波長400~800nmにおいて反射率が30%以上となる反射帯域を50nm以上備えてなることが好ましい。本発明でいう反射率とは、入射角度12°で入射された白色光の反射率とする。この波長範囲に反射帯域を設けることにより、効率的に太陽光を反射できるようになり高い熱線カット性能を付与できるようになる。好ましくは、波長400~800nmにおいて反射率が50%以上となる反射帯域を50nm以上備えてなることであり、より高い熱線カット性能を示すことが可能となる。また、入射角度12°で入射した白色光について当該波長範囲で反射される光のC値が40未満であると透明性の求められる用途においても好適に使用できるようになるため好ましい。波長400~800nmにおいて反射率が30%以上となる反射帯域を50nm以上設けるための方法としては、波長900~1200nmに反射を設けるときと同様に1次の干渉波長が所望の帯域となる層厚みの層を設ける方法以外にも、波長800nm以上に設計された一次の干渉反射に伴って生じる高次の干渉反射を用いる方法がある。特に後者の場合、一次の干渉反射による熱線カット性能の向上と、高次の干渉反射による熱線カット性能の向上を同時にはかることができるようになるため、より効率的に熱線カット性能を向上させることができるようになり好ましい。
 本発明の積層フィルムにおいては、波長1200~1400nmでの平均反射率が30%以上であり、かつ少なくともフィルムの一方の面から計測した波長400~450nmでの平均反射率が30%以下であるが好ましい。反射帯域が広がるにつれて、カットできる熱線の割合が大きくなるために熱線カット性能を高めることができるものである。一方で、本発明に代表されるλ/4設計と呼ばれる交互に積層する層の光学厚みを、目的の反射波長(1200~1400nm)の1/4として、干渉反射をもたらす手法においては、目的の反射帯域(1200~1400nm)での反射率は高くなるものの、目的とする反射波長の約1/3の波長においても3次の反射と呼ばれる反射が発生する。そのため、波長1200~1400nmの1/3の波長にあたる波長400~450nmの反射帯域においても強い干渉反射が生じる。例えば、波長1200~1400nmでの平均反射率を50%以上となるようにフィルムを設計すると、波長400~450nmにおける平均反射率が30%以上となるものである。そして、波長400~450nmの光が反射されると、反射光は青色を呈するようになる。そのため、そのようなフィルムを自動車や電車などの乗り物または建物などの窓ガラスに用いると、色目の点で好ましくないことがある。
 加えて、光線の入射角度によっては、干渉反射帯域が低波長側にシフトし、その結果として、3次の反射帯域も低波長側にシフトし、可視光領域の外になることがある。そして、このような場合には、人の目で3次の反射を感知できない。つまり、光線の入射角度によって、3次の反射光が青色として見えたり、見えなかったりするのである。そのようなフィルムを自動車や電車などの乗り物または建物などの窓ガラスに用いると、角度によって色目が変化したり、可視光の反射に伴う写りこみなどが発生し、好ましくないことがある。
 そこで、本発明では、波長1200~1400nmでの平均反射率が30%以上であり、かつ少なくともフィルムの一方の面から計測した波長400~450nmでの平均反射率が30%以下とするが好ましい。これにより、可視光の反射による色づきや写りこみを抑制できるようになるためである。好ましくは、波長1200~1400nmでの平均反射率が50%以上であり、より好ましくは70%以上である。波長1200~1400nmの平均反射率が高くなるほど、熱線カット性能が向上するため、自動車、電車などの乗り物や建物の窓ガラスに適したものとなる。このための達成方法は、交互に積層される熱可塑性樹脂の層数を増やすことであり、全層数が400層以上であれば波長1200~1400nmでの平均反射率を30%以上とすることが容易になる。好ましくは、全層数が600層以上であり、さらに好ましくは800層以上である。また、波長400~450nmでの平均反射率が20%以下であることも好ましい。波長400~450nmでの平均反射率が低くなることで、反射光の色目や写りこみなどをより抑制できるためである。このための達成方法は後述のとおり、着色成分による反射光の吸収効果を活用する方法などがある。
 本発明の積層フィルムにおいては、波長500~700nmにおける最大反射率が15%以下であることが好ましい。波長500~700nmにおいては、熱線カット性能は向上するものの、その効果を上回る可視光線透過率の低下がみられるため、特に透明性の求められる用途に用いるには好ましくない場合が生じる。波長500~700nmにおける最大反射率を15%以下とすることにより、十分に高い可視光線透過率の積層フィルムを得ることが可能となる。また、波長500~700nmにおける反射率が大きくなることで、フィルム面への写り込みなどの問題が生じる場合があるが、波長500~700nmにおける最大反射率が15%以下であれば写り込みを抑制することも可能となる。好ましくは、波長500~700nmにおける最少透過率が85%以上であることが好ましい。反射のみでなく、吸収による透過率の低下も抑制できることにより、より透明性の高い積層フィルムを得ることが可能となる。
 本発明の積層フィルムにおいて、少なくとも一方の熱可塑性樹脂中に着色成分を含んでなることが好ましい。ここでいう着色成分とは、波長400~800nmの光を吸収する成分のことをいう。このような着色成分を含んでなることにより、当該着色成分に由来しての着色があるものの、積層フィルムとは異なり着色成分は透過率の入射角度の違いによる光の吸収帯域の変化を生じないため、見る角度がかわることによる色目の変化を抑制することができるようになる。着色成分を用いる量としては、可視光線透過率が70%以上となるような量であることが好ましい。この場合、高い熱線カット性能と、透明性、フィルム面に対する角度での色目の安定性を両立したフィルムを得ることが可能となる。
 このような着色成分は波長400~800nmの光を吸収するものであれば特に限定されるものではなく、既知の顔料、染料などを用いることができる。好ましくは、耐熱性、耐候性の観点から顔料を用いることである。本発明の積層フィルムにおいては、積層フィルムの製造工程やその後のガラスなどへの加工工程において高温に長い時間さらされるために、耐熱性に乏しいものでは色の変化や表面へのブリードアウトに伴う装置、製品の汚染などの問題や、長期使用時の経時劣化などの問題が生じる場合があるが、染料よりも耐熱性、耐候性に優れた顔料を用いることで、これらの問題を抑制できるようになる。また、本発明の積層フィルムの用途である乗り物や建物などの窓ガラスにおいては、透明度、特にヘイズが小さいことが求められることが多いため、有機顔料を用いることもまた好ましい。有機顔料を用いることにより、無機顔料と比較して積層フィルムの素材となる樹脂に分散しやすくなるため、高透明、低ヘイズの積層フィルムを得ることが容易となる。このような有機顔料の例としては、フタロシアニン顔料、アゾ顔料、アントラキノン顔料、チオインジゴ顔料、ベリノン顔料、ペリレン顔料、キナクリドン顔料、ジオキサジン顔料、イソイノドリノン顔料、キノフタロン顔料、イソオノドリン顔料、ニトロソ顔料、アリザンレーキ顔料、金属錯塩アゾメチン顔料、アニリンブラック、アルカリブルー等が挙げられる。
 また、上記の着色成分が含まれる熱可塑性樹脂は非晶性樹脂であることが好ましい。本発明の積層フィルムは、上述のとおり高い熱線反射性能を得るために、一方の熱可塑性樹脂が結晶性樹脂あり、他方の樹脂が非晶性樹脂であることが好ましいものである。また、後述のとおり本発明の積層フィルムでは1軸もしくは2軸に延伸される場合も多い。この場合、結晶性樹脂に着色成分を添加すると、延伸工程において着色成分が結晶性樹脂の延伸による変形に追従できず、着色成分の凝集やボイドの形成などを生じ、ヘイズの上昇や透明性の低下をもたらすことがある。一方、非晶性樹脂に着色成分を添加した場合には、延伸工程での着色成分の延伸追従性を改善することができ、また後述のとおり熱処理をすることにより非晶性樹脂は比較的低温にて再溶融させることもできることから、着色成分の凝集やボイドの形成を抑制できるようになる。
 また、前述のとおり、波長1200~1400nmでの平均反射率が30%以上であり、かつ波長400~450nmでの平均反射率が30%以下とするためにも着色成分を含んでなることが有効である。例えば、波長400~450nmの光を吸収する着色成分を、積層フィルムを構成する少なくとも一つの樹脂中に含ませることにより、積層フィルム内を透過する際に、当該波長の光が着色成分により吸収され、結果として干渉反射により生じる反射光も吸収できるため、波長400~450nmでの平均反射率を低下させることが可能になるものである。また、さらに好ましい形態は、波長650~800nmの光を吸収する着色成分を併用することである。波長400~450nmの光を吸収する着色成分を用いた場合には、波長400~450nmの反射光の平均反射率を抑制する効果はあるものの、同時に透過光は黄色を呈することがある自動車や電車などの乗り物や建物の窓ガラスにそのようなフィルムを用いた場合には、透過光の色目が問題になることがある。そこで、透過光が青色を呈する波長領域である650~800nmの光を吸収する着色成分を併用した場合、黄色と青色の混色効果により、透過光の色調を、より一般的に好まれる緑色にせしめたり、無彩色にせしめたりすることが可能となる。なお、上記の着色成分の添加量などは、適宜設計されるべきものである。
 本発明の積層フィルムにおいては、積層フィルムの内部ヘイズが3%以下であるが好ましい。ここでいう内部ヘイズとは、表面反射の影響を除いてヘイズ測定を行ったときの値であり、具体的には、石英セル中に1,2,3,4-テトラヒドロナフタレンテトラリン(液体)を満たした上で、その液中にフィルムを入れて測定したときのヘイズ値である。自動車や電車などの乗り物や建物の窓ガラスには高い透明度と求められ、ヘイズは低いほうが好ましい。内部ヘイズが小さいフィルムは、このような高い透明度が求められる用途に、好適に適用することができる。積層フィルムの内部ヘイズは1%以下であることがより好ましく、さらに好ましくは0.5%以下である。内部ヘイズが低いほど透明度の求められる用途に適するものとなり、特に内部ヘイズが0.5%以下であれば、高い透明度、低ヘイズの求められる自動車や電車などのフロントガラスにも適用できるものとなる。その達成方法としては、前述のとおり有機顔料を用いることや、非晶性樹脂中に着色成分を含有させるなどの方法が挙げられる。
 また、本発明の積層フィルムにおいては、前記積層フィルムに含まれる着色成分の融点が、300℃以下であることが好ましい。本発明では、熱可塑性樹脂としてポリエチレンテレフタレートに代表されるポリエステル樹脂が用いられるが、一般的なポリエステル樹脂は300℃程度まで安定して押出成形することが可能であり、かつ着色成分の融点が300℃以下であれば、押出機内で着色成分を溶融させることで内部ヘイズを抑制することが容易となるためである。
 また、着色成分の融点は、以下の関係式を満足することが好ましい。
AT≦HT+50℃
ここで、ATは着色成分の融点(℃)、HTは積層フィルムに含まれる熱可塑性樹脂の中で最も高い融点を有する熱可塑性樹脂の融点(℃)である。かかる関係式を満足することにより、積層フィルムに用いる熱可塑性樹脂中に着色成分を含有させた際に、押出樹内で熱可塑性樹脂同様に着色成分が溶融状態となるため、熱可塑性樹脂中への分散状態がよりよくなるためにフィルムの内部ヘイズを抑制することが容易となる。
 本発明の積層フィルムにおいては、上述のとおり着色成分を含んでなることが好ましいが、異なる光学的性質を有する2種類以上の熱可塑性樹脂が交互に積層された積層フィルムの少なくとも一方の表面に着色層を備えてなり、該着色層に着色成分を含んでなることもまた好ましい。着色成分を積層フィルムを構成する熱可塑性樹脂中に含有させる場合には、着色成分を含まない場合と同様の積層フィルムの製造工程で着色成分を含んだ積層フィルムを得ることが可能となるためコスト面で有利である点や、着色成分のない場合とほぼ同様の機械的物性・表面特性・加工特性とすることができるために、乗り物や建物用の窓ガラスなどの製品化に向けた適用性に大きな違いがないというメリットがある。また、着色成分の選択の幅も広い。積層フィルムの一方の表面にのみ着色層を設けた場合、着色層を設けていない面から入射された光は着色成分の影響を受けることなく光が積層フィルム内で干渉反射されるため、高い反射効率を維持することができる。
 このような着色層を設ける方法としては、特に限定されるものではなく、共押出によって設ける方法や、コーティング、印刷により設ける方法などが挙げられる。共押出による場合、積層フィルムを構成する熱可塑性樹脂に着色成分を含む場合と同様に着色層のない場合とほぼ同様のプロセスで積層フィルムを得ることができ、低コストで着色層を設けることが可能である。一方、コーティングや印刷により着色層を設ける場合、特に樹脂の制約がなくなることから、着色成分の分散性に優れ、透明度の高い積層フィルムを得るのに好適である。この場合、着色層における着色成分のバインダーとしては樹脂が好ましく用いられるが、バインダーとして機能すればどのような樹脂を用いても良く、熱可塑性樹脂でも、熱・光硬化性樹脂でもよい。また、透明性を有している樹脂が好ましく、例えば、ポリエステル樹脂、アクリル樹脂、フッ素系樹脂、シリコン系樹脂、メラミン系樹脂、塩化ビニル樹脂、ビニルブチラール樹脂、セルロール系樹脂、およびポリアミド樹脂などが挙げられるが、これらの中でも、特に安価で光安定性に優れるアクリル樹脂が好ましい。
 本発明の積層フィルムにおいては、前記積層フィルムの一方の面上に着色層A、他方の面上に着色層Bが設けられてなり、かつ着色層Aおよび着色層Bの波長Wにおける吸収率Abs(W)が下記式1および式2を満たすことが好ましい。ここでいう吸収率とは、入射角度12°で入射された光線について当該波長に対応する光の強度を100としたときに着色層Aまたは着色層Bで吸収された強度の割合を示す。また、本発明においては、フィルムの表面に設けられた着色層のうち、波長450nmにおける吸収率の小さい着色層を着色層A、他方の着色層を着色層Bとする。本発明の積層フィルムで色目を見る場合、積層フィルムの透過光の色目と、積層フィルムの反射光の色目と2種類の光の色目が問題となる。用途によっては、許容される色目が異なる場合があり、特に、乗り物や建物の窓ガラスなどの人目に触れる用途においては、赤味のある色目は好ましくない。下記式2を満たすことにより、着色層A側から入射された光のうち波長700nm近傍の光の大部分は着色層Aにて吸収されるため、結果として波長700nm近傍の光の反射光の強度が弱められ、青みを帯びるようになる。また、波長700nm近傍の反射光の強度を制御できるようになるため、フィルム面に対して0°の入射角度でみたときに近赤外線領域(900~1200nm)に干渉反射が生じる積層フィルムにおいて、フィルム面に対して大きな入射角度(60°以上)でみたときに干渉反射の反射帯域が低波長シフトしたときにも、波長700nm近傍に設けられた吸収層の効果により干渉反射が弱められ、色目を安定化させることが可能となる。一方、下記式1を満たす場合、比較的許容される干渉色となる波長450nm近傍の光を効率的に反射することに加えて、着色層Bの吸収での波長450nmの透過光の透過率を抑制することにより、透過光の色目の安定と高い熱線カット性能を付与できるようになる。より好ましくは、着色層Aは波長450nmの吸収率が10%以下でかつ着色層Bの波長450nmの吸収率が30%以上であることである。また、着色層Aの波長700nmの吸収率が30%以上であり、かつ着色層Bの吸収率が10%以下である。このように、波長450nmまたは波長700nmにおける光の吸収率が一方の着色層で大きく他方の着色層で高くなることにより、より効率的に所望する効果が得られやすくなる。
 また、前述のとおり波長1200~1400nmの光を反射させるようにフィルム設計した場合、原理的に波長400~450nmの光も反射されるものであるが、別の用途やフィルム設計によっては、青色の反射色が好ましくない場合もある。このような場合、下記式1または2を満たすことが好ましい。式1を満たすことによって、着色層B側から入射された光のうち波長450nm近傍の光の大部分は着色層Bにて吸収されるため、結果として波長450nm近傍の光の反射光の強度が弱められ、反射光の色調を無彩色とでき、かつ、入射角度により反射帯域の低波長シフトに伴う色目の変化も抑制できるようになるためである。一方、下記式2を満たすことによって、波長700nm近傍の光を効率的に反射でき、加えて、着色層Aの吸収での波長700nmの透過光の透過率が干渉反射の低波長シフトによって変化することを抑制することにより、透過光の色目の安定と高い熱線カット性能を付与できるようになる。
  Abs(450)<Abs(450)   式1
  Abs(700)>Abs(700)   式2。
 本発明の積層フィルムにおいては、隣接する層の光学厚みの和が600~700nmである層を10ペア(対)以上含むことが好ましい。ペアとは隣接する2層の対を指す。隣接する層の光学厚みの和が600~700nmである場合、波長約1200~約1400nmの範囲に一次の干渉反射を導入することが可能となり、高範囲に反射帯域を設けることが可能となるため、熱線カット性能を高めることが可能となる。加えて、隣接する層の光学厚みの和を600~700nmに設けた場合、三次の干渉反射を約400~450nmに導入することが可能となる。波長400~450nmの帯域では、可視光線の分布の割合が波長500~700nmの帯域と比較して大幅に少ないために、可視光線透過率の低下を抑制しつつ熱線カット性能を向上させることが可能となる。また、隣接する層の光学厚みの和が600~700nmである層が10ペア以上であれば、上述の効果を得るのに好ましい干渉反射を付与することが可能となる。好ましくは、隣接する層の光学厚みの和が600~700nmである層の対が連続して10ペア以上含むことであり、さらに好ましくは、連続して100ペア以上含むことである。隣接する層の光学厚みの和が600~700nmである層の対が連続して存在することにより、より効率的に干渉反射を付与することが可能となり、そのような層の対の数が増えるにしたがい、干渉反射の強度を高めることも可能となる。連続する100ペア以上で隣接する層の光学厚みの和が600~700nmとなることで、波長1200~1400nmでの一次の干渉反射の平均反射率も70%以上、波長400~450nmでの三次の干渉反射の平均反射率を30%以上とすることが容易となる。
 さらに、波長1200~1400nmでの平均反射率を30%以上とし、かつ少なくともフィルムの一方の面から計測した波長400~450nmでの平均反射率を30%以下とするために、本発明の積層フィルムにおいては、隣接する層の光学厚みの和が600~700nmである層を10ペア以上含み、かつ波長400~450nmにおける平均透過率が波長450~600nmにおける平均透過率よりも小さい着色成分を含有する層を少なくとも1層以上備えてなることも好ましい。上述のとおり波長約1200~約1400nmの範囲に一次の干渉反射を導入することによって、熱線カット性能の向上効果を得られるものの、一方で、波長400~450nmに3次の干渉反射が生じる。ここで、波長400~450nmにおける平均透過率が波長450~600nmにおける平均透過率よりも小さい着色成分を含有する層を少なくとも1層以上備えてなることにより、3次の干渉反射による反射光を着色成分により吸収抑制することができ、少なくともフィルムの一方の面から計測した波長400~450nmでの平均反射率を30%以下とすることが容易となる。
 本発明の積層フィルムにおいては、日射反射率が30%以上であることが好ましい。より好ましくは40%以上である。ここでいう日射反射率とは、JIS A 5759にて規定される日射反射率である。日射反射率が30%以上であることにより、熱線の吸収に伴うガラスの破損を抑制しつつ、高い熱線カット性能を付与することが可能となる。これは、例えば、波長400~700nmでの平均反射率を15%以上40%未満、かつ波長900~1200nmでの平均反射率を70%以上とすることにより達成することができる。より好ましくは、日射反射率が30%以上でかつ可視光線透過率が70%以上あることであり、さらに好ましくは、日射反射率が40%以上でかつ可視光線透過率が70%以上である。最も好ましくは、日射反射率が50%以上でかつ可視光線透過率が70%以上である。
ここでいう可視光線透過率とは、ISO9050で規定されるTVISである。日射反射率が高くなるに従い熱線カット性能が向上することはいうまでもないが、可視光線透過率が70%以上であることにより自動車のフロントガラスのように高い透明性が求められるものにも適用可能となるものである。これを達成するためには、特に波長400~700nmの反射率を30%以上40%以下に制御することや、後述の設計手法による波長1200nm以上に反射性能を付与することにより達成可能であり、そのためには、隣接する光学厚みの和が600~700nmである層を10層以上含むことが好ましい。
 本発明の積層フィルムにおいては、波長400~700nmでの平均反射率が15%以上40%未満であることが好ましい。太陽光は、特に波長400~700nmの可視光領域に大きな強度分布を備えており、全太陽光の強度の約44%を占める。このため、波長400~700nmでの平均反射率が15%未満の場合、可視光線の透過率は向上し色づきのない積層フィルムが得られるものの、逆に可視光領域太陽光を反射する性能に劣るためにその熱線カット性能には限界がある。また、吸収により太陽光の透過を抑制する場合、吸収された光の一部が熱として流入するが、反射により太陽光の透過を抑制する場合には吸収の場合の熱の流入がないために、熱線カット性能を高めることができ好ましいものとなる。波長400~700nmでは全可視光線の強度の約81%を占めるため、該領域での反射率が大きくなる、すなわち透過率が低下することにより、自動車や電車、建物の窓ガラスのように透明性が求められる用途においては、可視光線透過率が十分でなくなり、窓ガラスとして用いることが出来なくなる。そこで、十分な可視光線透過率を保持するためには、波長400~700nmでの平均反射率が40%未満である必要がある。波長400~700nmでの平均反射率が15%以上40%未満の場合、十分な透明性を保持しつつ、高い熱線カット性能を付与することが可能となる。好ましくは、波長400~700nmでの平均反射率が20%以上40%未満であり、より好ましくは波長400~700nmでの平均反射率が25%以上35%未満である。この場合、自動車のフロントガラスなどの非常に高い透明性が求められる用途においても使用できる透明性を保持しつつ、高い熱線カット性能を付与することが可能となる。波長400~700nmでの平均反射率が15%以上の積層フィルムを得るためには、波長400~700nmの全部もしくは一部に干渉反射を導入することにより達成できるものである。
 本発明の積層フィルムにおいては、波長400~700nmの中で連続する100nmにおける最大反射率と最小反射率の差が10%未満であることが好ましい。波長400~700nmの可視光領域においては、各波長におけるわずかな反射率の違いで色目に違いを生じる。また、本発明のような積層フィルムにおいては、反射波長は光の入射角度やフィルム厚みのわずかな違いによっても変化し、そのわずかな反射率の違いでも色目が変化するものである。特に、窓ガラス用途では、様々な角度にあるものを視認する必要があるために、より光の入射角度による色目の変化が少ないことが求められるものである。波長400~700nmの中で連続する100nmにおける最大反射率と最小反射率の差が10%未満の場合においては、フィルム厚みや光の入射角度による色目の変化を抑制できるものであり、特に窓ガラス用途に用いるのに好適なフィルムとなる。好ましくは、波長400~700nmの中で少なくとも連続する100nmにおける最大反射率と最小反射率の差が5%未満であり、この場合には、フィルム厚みの違いや光の入射角度の違いによる色目の違いはほとんど確認できなくなる。また、別の好ましい形態として、波長400~700nmでの全域における最大反射率と最小反射率の差が10%未満である。この場合には、可視光領域全域でほぼ均一な反射率を示すために、フィルムの色付きそのものを抑制できるものであり、フィルム厚みの違いや光の入射角度によらずほぼ色づきのないフィルムとなる。このような積層フィルムを得るためには、後述のとおり複数個の傾斜構造を備えた層厚み分布からなる積層フィルムを用いて波長400~700nmの光を反射できるようにすることで達成できる。
 本発明の積層フィルムにおいては、波長900~1400nmの光を反射する異なる光学的性質を有する2種類以上の熱可塑性樹脂が交互に積層された構成積層要素(Ln)を少なくとも一つ備え、かつ波長400~700nmの光を反射する異なる光学的性質を有する2種類以上の熱可塑性樹脂が交互に積層された構成積層要素(Lv)を少なくとも一つ備えることが好ましい。ここでいう構成積層要素とは、設計に係る一次の反射波長若しくは反射帯域の光を反射する層の群を示すものとする。このような構成積層要素(Ln、Lv)を備えることにより、波長400~700nmおよび波長900~1400nmでの光を反射できるようになる。
 より好ましい積層フィルムの形態として、構成積層要素Lnに含まれる層数が、構成積層要素Lvに含まれる層数よりも多い積層フィルムとなる。この場合、例えば各構成積層要素が同一の樹脂の組合せからなる場合に、波長400~700nmでの反射率よりも波長900~1400nmでの反射率を達成できるようになり、波長400~700nmでの平均反射率が15%以上40%未満であり、かつ波長900~1200nmでの平均反射率が70%以上を達成できる。この場合の利点の一つとしては、フィルムの厚みを不要に厚くすることなくフィルム面に対する角度の変化にともなう色目の安定性を向上させたり、熱線カット性能を高めることができるため、フィルムの厚み増加に伴うハンドリング性の低下や合わせガラス化工程における成型不良の発生を抑制することが可能となる。
 また、好ましい積層フィルムの形態として、構成積層要素Lnを構成する各層の面内平均屈折率差が、構成積層要素Lvを構成する各層の面内平均屈折率差よりも0.01以上大きい積層フィルムが挙げられる。このとき、同一の層数であれば面内平均屈折率差が大きい構成積層要素Lnでの反射率のほうが大きくなり、波長400~700nmでの平均反射率が15%以上40%未満であり、かつ波長900~1200nmでの平均反射率が70%以上を達成できる。この場合の利点としては、異なる熱可塑性樹脂を用いることにより積層フィルムの物性を制御することができ、より合わせガラス化工程に適したフィルムとすることが可能となる。
 上述のような構成積層要素を設けるための方法としては、後述のフィードブロックを含む積層装置にて各構成積層要素に対応する層厚み分布を設けることができる。しかし、本発明の積層フィルムにおいては、構成積層要素Lnおよび構成積層要素Lnとの間に接着層が存在することも好ましい。本発明の積層フィルムにおいては、非常に広い帯域の光を反射することができるようにするために、多数の層数となりがちである。層数が増えるに従い、積層装置内での流動中に層厚みの乱れが生じやすくなり、所望する層厚み分布を備えた積層フィルムを得ることが難しくなり場合がある。また、構成積層要素Lnと構成積層要素Lvを異なる熱可塑性樹脂の組合せからなる場合においては、ひとつの積層装置内でフィルムを得ようとしたときに積層装置の構成が複雑になったり、大型化する傾向があり、製造装置のコストや製造スペース、積層精度の低下などが生じる場合がある。しかし、異なるフィルムが接着層を介して貼りあわされてなると、より小型の装置で簡便に高精度に積層された積層フィルムを得ることができるようになり、所望する熱線カット性能の積層フィルムとなる。
 本発明の積層フィルムにおいて、特に熱可塑性樹脂Aからなる層(A層)と熱可塑性樹脂Aとは異なる光学的性質を有する熱可塑性樹脂Bからなる層(B層)が交互に積層されてなる場合には、下記式3に従い反射率が決定される。通常、本目的で使用される積層フィルムにおいては、下記式4にて規定される光学厚みの比(k)が1となるように設計することにより、波長900~1400nmの光を反射するように設計された構成積層要素Lnの二次の反射が抑制される。しかし、本発明の積層フィルムにおいては、光学厚みの比(k)を1.25以上とすることもまた好ましい。この場合、意図的に二次の反射を導入することにより、波長900~1400nmの光を反射する層を用いて波長450~700nmの光を反射させることが可能となり、三次の反射により400~500nmの光を反射させることが可能となる。この結果、より少ない層数においても高い熱線カット性能を付与することが可能となる。より好ましくは、光学厚みが大きい層が非晶性の熱可塑性樹脂からなることである。この場合、高い熱線カット性能を付与しつつも、合わせガラス工程で窓ガラスの曲面部で生じる延伸時の応力を抑制することができ、合わせガラス工程での成型不良を抑制することが可能となる。
 2×(na・da+nb・db)=λ     式3
 |(na・da)/(nb・db)|=k   式4
   na:A層の面内平均屈折率
   nb:B層の面内平均屈折率
   da:A層の層厚み(nm)
   db:B層の層厚み(nm)
   λ:主反射波長(1次反射波長)
   k:光学厚みの比
 本発明の積層フィルムにおいては、140℃にて30分加熱したときの熱収縮率が±1%以内であることであることが好ましい。本発明の積層フィルムが用いられる用途である乗り物や建物の窓ガラスにおいては、安全性の観点で中間膜を2枚のガラスで挟み込んだ合わせガラスが用いられることがある。このような合わせガラスに本発明の積層フィルムを用いる場合には、通常の合わせガラスの中間膜の代わりに2枚の中間膜の間に積層フィルムを挟み込んだものが用いられる。この合わせガラスを作製する工程においては、一般的に100~140℃の範囲において中間膜を介して2枚のガラスと積層フィルムを熱圧着させる工程が行われているが、このとき、熱収縮率が大きい積層フィルムを用いると、熱収縮の結果としてフィルム中にしわが入り成形不良の原因となる場合がある。140℃にて30分加熱した時の熱収縮率が±1%以内である場合、上記の合わせガラス化の工程においても、しわなどの外観不良のない合わせガラスを得ることが可能となる。この達成方法として、後述の製膜工程における熱処理後のフィルムの弛緩処理の方法により達成できる。
 また、本発明の積層フィルムにおいては、140℃で伸長時の5%応力が10MPa以下であることが好ましい。この場合、上述の合わせガラス化工程において、ガラスの曲面部位にも柔軟に追従できるため、品位のよい合わせガラスが得られるようになる。この達成方法としては、異なる光学物性の熱可塑性樹脂を用いる場合に、非晶性の熱可塑性樹脂を含め、かつ非晶性の熱可塑性樹脂からなる層の比率の層厚みが大きくすることにより達成できる。結晶性の熱可塑性樹脂よりも非晶性の熱可塑性樹脂の比率が大きくなるにしたがって、熱圧着工程で生じる応力を抑制できるようになる。
 次に、本発明の積層フィルムの好ましい製造方法を熱可塑性樹脂A,Bからなる積層フィルムを例にとり、より具体的に以下に説明する。しかし、本発明は係る記載に限定して解釈されるものではない。
 2種類の熱可塑性樹脂AおよびBをペレットなどの形態で用意する。ペレットは、必要に応じて、熱風中あるいは真空下で乾燥された後、別々の押出機に供給される。押出機内において、融点以上に加熱溶融された樹脂は、ギヤポンプ等で樹脂の押出量を均一化され、フィルター等を介して異物や変性した樹脂などを取り除かれる。
 また、熱可塑性樹脂Aまたは熱可塑性樹脂Bに着色成分を混練したペレットとして用いることもできる。この場合、以後の工程は着色成分を含まないときと同様の工程にて着色成分を含んだ積層フィルムを得ることができ、また、事前に混練したペレットを用いることにより、着色成分が熱可塑性樹脂中に分散させることも可能となる。また、着色成分を含んだ熱可塑性樹脂を熱可塑性樹脂Aまたは熱可塑性樹脂Bとブレンドして押出機に供給することもできる。この場合も着色成分を含んだ熱可塑性樹脂Aまたは熱可塑性樹脂Bのペレットを準備した場合と同様に、以後の工程は着色成分を含まないときと同様の工程にて着色成分を含んだ積層フィルムを得ることができる。また、熱可塑性樹脂Aや熱可塑性樹脂B中に着色成分を混練する場合と比較して、一般的な着色成分マスターペレットを適用できる場合もあり、また、着色成分の含有量もブレンド比率で随時制御できることから、コスト、制御性の面で有利である。
 これらの2台以上の押出機を用いて異なる流路から送り出された熱可塑性樹脂AおよびBは、次に積層装置に送り込まれる。積層装置としては、マルチマニホールドダイやフィードブロックやスタティックミキサー等を用いることができるが、特に、本発明の構成を効率よく得るためには、多数の微細スリットを有する部材を少なくとも別個に2個以上含むフィードブロックを用いることが好ましい。
 本発明に用いる積層フィルムの積層構造は、特開2007-307893号公報の〔0053〕~〔0063〕段に記載の内容と同様の方法により簡便に実現できる。但し、スリットプレートの間隙、長さは層厚みを決定する設計値のため異なる。以下に、図1を参照して積層構造を造る過程を説明する。図1のXはフィルム幅方向を示し、Yはフィルム厚み方向を示すものである。
 積層装置7は、前記特開2007-307893号公報に説明される装置と同様の3つのスリット板を有している。係る積層装置7によって得られる積層構造の層厚み分布の例を図2に示す。横軸に層の並び順18、縦軸に各層の厚み(nm)19をとると、積層構造は、スリット板71によって形成された樹脂積層流による層厚みの傾斜構造11、スリット板72によって形成された樹脂の積層流による層厚みの傾斜構造12、スリット板73によって形成された樹脂の積層流による層厚みの傾斜構造13の3つの傾斜構造を有している。また、少なくとも1つの傾斜構造は、他の何れかの傾斜構造と向きが反対であることが好ましい。さらに、樹脂流の不安定現象によるフローマークを抑える観点から、最表層には厚み1μm以上の厚膜層20を設けている。また、1つのスリット板から形成される傾斜構造は、樹脂Aの層厚み分布21と樹脂Bの層厚み分布22からなり、その層厚みの比は、2台の押出機の樹脂Aおよび樹脂Bの押出量の比により容易に調整することができる。層厚みの比は、厚膜層を除く、熱可塑性樹脂A層の全ての厚み和と熱可塑性樹脂Bの層の全ての厚み和の比で求められる。各層厚みは、積層断面を透過型電子顕微鏡で観察することで求められる。また、全体厚みを調整することで、各層厚みも比例して変化するため、層厚みの絶対値を調整することができる。また、ここでの平均層厚みとは、隣接するA層とB層の層厚みの平均である。例えば、601層の層厚み分布においては、最表層の2層の厚膜層を除いた残り599層の薄膜層において、B1,A1,B2,A2,B3・・・・・A299,B300と各層が配列しているとき、平均層厚みの分布とは、B1とA1の平均、B2とA2の平均というようにBm,Am(mは整数)の平均を順次プロットして得られる層厚み分布となる。
 積層装置7を構成する各々のスリット板から流れ出た積層構造を有した樹脂流は、図1(b)に示したように積層装置の流出口11L、12L、13Lから流れ出て、次いで合流器8にて、図1(c)に示した11M、12M、13Mの断面形状で再配置される。次いで、接続管9内部にて、流路断面のフィルム幅方向の長さが拡幅されて口金10へ流入されて、さらにマニホールドにて拡幅されて口金10のリップから溶融状態でシート状に押し出されてキャスティングドラム上に冷却固化されて未延伸フィルムを得ることができる。ここで、口金内部での拡幅比である口金リップのフィルム幅方向長さ17を口金の流入口部でのフィルム幅方向の長さ15で割った値を5以下とすることにより、拡幅による積層乱れを抑制し、かつフィルム幅方向で反射率および反射帯域が均一な多層積層フィルムである偏光反射体が得られる。より好ましくは、拡幅比は3以下である。
 このようにして得られたキャスティングフィルムは、必要に応じて二軸延伸することが好ましい。二軸延伸とは、長手方向および幅方向に延伸することをいう。延伸は、逐次に二方向に延伸しても良いし、同時に二方向に延伸してもよい。また、さらに長手方向および/または幅方向に再延伸を行ってもよい。特に本発明では、面内の配向差を抑制できる点や、表面傷を抑制する観点から、同時二軸延伸を用いることが好ましい。
 逐次二軸延伸の場合についてまず説明する。ここで、長手方向への延伸とは、フィルムに長手方向の分子配向を与えるための延伸を言い、通常は、ロールの周速差により施され、この延伸は1段階で行ってもよく、また、複数本のロール対を使用して多段階に行っても良い。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+100℃が好ましい。
 このようにして得られた一軸延伸されたフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 特に、本発明の積層フィルムにおいては、乗り物や建物の窓ガラスとして用いるための合わせガラス化を行うことも多いが、ここで中間膜との密着性を向上させるために易接着性を付与することもまた好ましい。また、易接着性を付与するためのコーティングは両面になされていることが好ましい。
 また、易接着性のコーティング中に着色成分を備えることも好ましい。易接着性のコーティング中に着色成分を備えることにより、着色層の形成と易接着性の付与を同時に行うことができ、かつ着色成分を含まない積層フィルムの製造工程と同様の工程で着色成分を付与することができるために、コスト面でも有利である。
 また、幅方向の延伸とは、フィルムに幅方向の配向を与えるための延伸を言い、通常は、テンターを用いて、フィルムの両端をクリップで把持しながら搬送して、幅方向に延伸する。延伸の倍率としては樹脂の種類により異なるが、通常、2~15倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、2~7倍が特に好ましく用いられる。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、テンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に弛緩処理などを併用してもよい。
 また、ここでの熱処理を行う温度は、熱可塑性樹脂Aまたは熱可塑性樹脂Bのいずれかの融点より低く、他方の融点よりも高い温度であることが好ましい。この場合、一方、熱可塑性樹脂を支持体として他方の熱可塑性樹脂を溶融させることが可能となり、高く結晶配向化した熱可塑性樹脂と溶融した熱可塑性樹脂との間の屈折率差を大きくできるため、反射率や遮熱性能の高い積層フィルムを得ることが可能である。また、着色成分を含んだ熱可塑性樹脂を熱処理にて溶融させることができれば、ボイドなどの形成を抑制することができ、ヘイズを抑えた透明性の高いフィルムを得ることも可能となる。
 同時二軸延伸の場合について次に説明する。同時二軸延伸の場合には、得られたキャストフィルムに、必要に応じてコロナ処理やフレーム処理、プラズマ処理などの表面処理を施した後、易滑性、易接着性、帯電防止性などの機能をインラインコーティングにより付与してもよい。
 次に、キャストフィルムを、同時二軸テンターへ導き、フィルムの両端をクリップで把持しながら搬送して、長手方向と幅方向に同時および/または段階的に延伸する。同時二軸延伸機としては、パンタグラフ方式、スクリュー方式、駆動モーター方式、リニアモーター方式があるが、任意に延伸倍率を変更可能であり、任意の場所で弛緩処理を行うことができる駆動モーター方式もしくはリニアモーター方式が好ましい。延伸の倍率としては樹脂の種類により異なるが、通常、面積倍率として6~50倍が好ましく、積層フィルムを構成する樹脂のいずれかにポリエチレンテレフタレートを用いた場合には、面積倍率として8~30倍が特に好ましく用いられる。特に同時二軸延伸の場合には、面内の配向差を抑制するために、長手方向と幅方向の延伸倍率を同一とするとともに、延伸速度もほぼ等しくなるようにすることが好ましい。また、延伸温度としては積層フィルムを構成する樹脂のガラス転移温度~ガラス転移温度+120℃が好ましい。
 こうして二軸延伸されたフィルムは、平面性、寸法安定性を付与するために、引き続きテンター内で延伸温度以上融点以下の熱処理を行うのが好ましい。この熱処理の際に、幅方向での主配向軸の分布を抑制するため、熱処理ゾーンに入る直前および/あるいは直後に瞬時に長手方向に弛緩処理することが好ましい。このようにして熱処理された後、均一に徐冷後、室温まで冷やして巻き取られる。また、必要に応じて、熱処理から徐冷の際に長手方向および/あるいは幅方向に弛緩処理を行っても良い。熱処理ゾーンに入る直前および/あるいは直後に瞬時に長手方向に弛緩処理する。
 特に、発明の積層フィルムにおいては、熱収縮率を低減するために、熱処理後の弛緩処理として、熱処理温度下での第1弛緩処理と100℃以下での第2弛緩処理を実施することが好ましい。この場合、光学特性に大きな影響を与えることなくフィルムの緊張状態を効果的に緩和することができ、特に150℃以下の温度条件における熱収縮率を抑制できるようになる。好ましくは、第1の弛緩処理が5%以下であり、かつ第1と第2の弛緩処理が合計で10%以下であることである。この場合、フィルムに不要なしわや弛みが生じることなく光学特性を保持した状態で熱収縮率を低減できるようになる。
 また、本発明の積層フィルムにおいては、着色成分を含んだ着色層を得られた積層フィルム上に熱・光硬化性コーティングや印刷により設けることもできる。特にその方法は限定されるものでなく、既存の方法にてできるものである。
 次に、このようにして得られた積層フィルムの合わせガラス化工程の一例を以下に説明する。ガラスに適したサイズにカット合わせガラスとし、一方のガラス上に、ポリビニルブチラールやエチレンー酢酸ビニル共重合樹脂に代表されるような中間膜として用いる樹脂フィルム、カットした積層フィルム、樹脂フィルム、他方のガラスを配置したのり、120℃雰囲気下で1時間程度加熱して仮圧着する。続いて、140℃、1.5MPaまで加圧、加熱した状態で30分保持することに本接着し、合わせガラスを得るものである。
 このようにして得られた合わせガラスは、透明度が高く、フィルムまたはガラス面に対する角度によらず色目の安定しており、熱線カット性にも優れるために、特に自動車や電車、建物などに用いる熱線カットガラスに好適なものである。
 以下、本発明の積層フィルムの実施例を用いて説明する。
[物性の測定方法ならびに効果の評価方法]
 特性値の評価方法ならびに効果の評価方法は次の通りである。
 (1)層厚み、積層数、積層構造
 フィルムの層構成は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。すなわち、透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧75kVの条件でフィルムの断面を10000~40000倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、場合によっては、コントラストを高く得るために、RuOやOsOなどを使用した染色技術を用いた。
 (2)層厚みの算出方法
 (1)項で得られた約4万倍のTEM写真画像を、CanonScanD123Uを用いて画像サイズ720dpiで取り込んだ。画像をビットマップファイル(BMP)もしくは、圧縮画像ファイル(JPEG)でパーソナルコンピューターに保存し、次に、画像処理ソフト Image-Pro Plus ver.4(販売元 プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を、数値データとして読み取った。表計算ソフト(Excel2000)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ6(間引き6)でデータ採用した後に、3点移動平均の数値処理を施した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(Visual Basic for Applications)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合うこれらの間隔を1層の層厚みとして層厚みを算出した。この操作を写真毎に行い、全ての層の層厚みを算出した。得られた層厚みのうち、1μm以上の厚みの層を厚膜層とした。また、薄膜層は500nm以下の厚みの層とした。
 (3)反射率・透過率測定
 日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の12°正反射付属装置P/N134-0104を取り付け、入射角度φ=12度における波長250~2600nmの絶対透過率及び反射率を測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルをフィルム幅方向中央部から5cm×5cmで切り出し測定した。これらの結果から、表1に示す特定波長帯域の平均または最大透過率、反射率を求めた。また、得られた反射率、透過率の値を用い、JIS A 5759 6.3.3、6.3.5に記載の方法をにて、日射反射率、可視光線透過率を算出した。
 (4)C 値、a値、b 値の算出
 日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の角度可変透過付属装置を取り付け、入射角度φ=45度における波長250~2600nmの絶対透過率を測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルをフィルム幅方向中央部から5cm×10cmで切り出し測定した。得られた角度45°および(3)項にて測定した角度12°での透過率とC光源の分光分布とXYZ系の等色関数を用いてC光源下でのXYZ値、およびXYZ値を用いてC 値、a 値、b 値を算出した。得られたa値、b 値について、各々の角度12°および角度45°との差をΔa 値、Δb 値とした。
 (5)熱可塑性樹脂A,Bの屈折率
 JIS K7142(1996)A法に従って測定した。
 (6)熱収縮率
 サンプルをフィルム幅方向中央部から長手方向150mm×幅方向10mmに切り出した。このサンプル片を、23℃、60%RHの雰囲気に30分間おき、その雰囲気下で、フィルム長手方向に約100mmの間隔で2つの印をつけ、Nikon社製万能投影機(Model V-16A)を用いて、その印の間隔を測定し、その値をAとした。次に、サンプルを、3g重の荷重状態で150℃の雰囲気中で30分間放置し、次いで、23℃・60%RHの雰囲気中で1時間冷却、調湿後、先につけた印の間隔を測定し、これをBとした。このとき、下記式(8)より、熱収縮率を求めた。フィルム長手方向(MD)、幅方向(TD)それぞれについて、n数は3とし、その平均値を採用した。
  熱収縮率(%)=100×(A-B)/A  ・・・式(8)  。
 (7)5%応力
 JIS-K7127(1999年)に規定された方法に従って、インストロンタイプの引張試験機を用いて測定した。なお、伸度はフィルム長手方向、幅方向いずれかの高い値とする。測定は下記の条件とした。
  測定装置:オリエンテック(株)製フィルム強伸度自動測定装置“テンシロンAMF/RTAー100”
  試料サイズ:幅10mm×試長間50mm
  引張り速度:300mm/分
  測定環境:温度100℃   。
 (8)内部ヘイズ
 フィルム幅方向中央部から4cm×3.5cmの寸法に切り出したものをサンプルとした。装置はヘイズメータ(スガ試験機製HGM-2DP(C光用))を用いて、サンプルを石英セル内に入れ、1,2,3,4-テトラヒドロナフタレンテトラリンに浸した状態で測定した。この場合のキャリブレーションは、溶液と石英セルのみで実施した。
 (9)熱可塑性樹脂の融点
 セイコーインスツルメント(株)製EXSTAR DSC6220を用いて、JIS-K-7121:1987に準じて、熱可塑性樹脂の融点を求めた。測定条件は次のとおりである。熱可塑性樹脂を電子天秤で5mg計量し、アルミパッキンで挟み込みんだものをサンプルとし、当該サンプルをSC6220を用いて、25℃から300℃まで20℃/分で昇温した。
 (実施例1)
 光学特性の異なる2種類の熱可塑性樹脂として、熱可塑性樹脂Aと熱可塑性樹脂Bを準備した。熱可塑性樹脂Aとして、固有粘度が0.65のポリエチレンテレフタレート(PET)を用いた。この樹脂Aは結晶性樹脂であり、フィルム化した後の面内平均屈折率は1.66、融点256℃であった。また熱可塑性樹脂Bとしてスピログリコール25mol%、シクロヘキサンジカルボン酸30mol%共重合したエチレンテレフタレート(PE/SPG・T/CHDC)を用いた。なお、この樹脂Bの固有粘度は0.72の非晶性樹脂で、フィルム化した後の面内平均屈折率は1.55であった。また、熱可塑性樹脂B中には、着色成分として、BASF社製RUMOGEN788(着色成分1)を0.2wt%の割合で2軸押出機にて混練しペレット状とした。なお、ここで用いた着色成分1は300℃にて融解するものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率よりも小さく、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも小さい着色成分であった。準備した熱可塑性樹脂AおよびBをそれぞれ、2台の単軸押出機に投入し、280℃で溶融させて、混練した。次いで、それぞれ、FSSタイプのリーフディスクフィルタを5枚介した後、ギアポンプにて、フィルムの厚膜層を除いた光学厚みの比が熱可塑性樹脂A/熱可塑性樹脂B=1になるように計量しながら、スリット数201個のスリットプレートを3枚用いた構成である601層積層装置にて合流させて、厚み方向に交互に601層積層された積層体とした。積層体とする方法は、特開2007-307893号公報〔0053〕~〔0056〕段の記載に従って行った。なお、A層同士を重ね合わせて形成する層があるため、スリットプレート内の間隙数は、603個となる。ここでは、スリット長さは全て一定として、スリット間隙のみ変化させることにより、層厚み分布を傾斜構造とした。得られた積層体は、熱可塑性樹脂Aが301層、熱可塑性樹脂Bが300層であり、厚み方向に交互に積層された傾斜構造を有していた。積層装置のスリットプレートの間隙から算出される狙いの層厚み分布パターンは、図2とした。また、厚膜層は、隣接層の20倍の厚みとなるようにスリット間隙を調整した。また、口金内部での拡幅比である口金リップのフィルム幅方向長さ17を口金の流入口部でのフィルム幅方向の長さ15で割った値を2.5となるようにした。
 得られたキャストフィルムを、75℃に設定したロール群で加熱した後、延伸区間長100mmの間で、フィルム両面からラジエーションヒーターにより急速加熱しながら、縦方向に3.3倍延伸し、その後一旦冷却した。つづいて、この一軸延伸フィルムの両面に空気中でコロナ放電処理を施し、基材フィルムの濡れ張力を55mN/mとし、その処理面に(ガラス転移温度が18℃のポリエステル樹脂)/(ガラス転移温度が82℃のポリエステル樹脂)/平均粒径100nmのシリカ粒子からなる積層形成膜塗液を塗布し、透明・易滑・易接着層を形成した。
 この一軸延伸フィルムをテンターに導き、100℃の熱風で予熱後、110℃の温度で横方向に3.5倍延伸した。延伸したフィルムは、そのまま、テンター内で240℃の熱風にて熱処理を行い、続いて同温度条件で幅方向に2%の弛緩処理を、さらに100度まで急冷した後に幅方向に5%の弛緩処理を施し、その後、巻き取り積層フィルムを得た。得られたフィルムは、おもに800~1100nmに主となる反射帯域を備えた積層フィルムであった。
 また、同様の方法にておもに1100~1400nmに主となる反射帯域を備えた積層フィルムを得た。これらの2枚のフィルムについて、ウレタン系接着剤をダイ方式のドライラミネータを用いて7μm塗布して形成した接着層を介してドライラミネートし、1枚の積層フィルムとした。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は97%であり、波長400~450nmの補正後の平均透過率は88%、波長600~800nmの補正後の平均透過率は54%であった。
 (実施例2)
 積層装置として、スリット数201個のスリットプレートを2枚用いた構成である401層積層装置を用いた以外は、実施例1と同様に積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。その反射率は実施例1と比較して小さく、熱線カット性能が低下していた。また、角度12°と角度45°における透過光の色目の違いも小さいものであった。結果を表1に示す。
 (実施例3)
 熱可塑性樹脂Bとしてエチレングリコール70mol%に対してシクロヘキサンジメタノールを30mol%共重合したポリエチレンテレフタレート(CHDM共重合PET)[イーストマン製 PETG GN001]を用い、さらに熱可塑性樹脂B中に着色成分1を0.2wt%混練したペレットを用いた以外は、実施例1と同様に方法にて積層フィルムを得た。ここで用いたCHDM共重合PETは、フィルム化した後の面内平均屈折率が1.575となる非晶性の樹脂であった。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。その反射率および熱線カット性能は実施例1より小さく実施例2よりも高いものであった。また、角度12°と角度45°における透過光の色目の違いも小さいものであった。結果を表1に示す。
 (実施例4)
 主となる反射帯域が800~1200nmとなるようにフィルム厚みを調整した以外は、実施例1と同様にして積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、波長400~800nmには反射帯域を備えていないものであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、実施例1と比較して近赤外線領域の反射帯域がやや狭いものの、600~800nmに吸収を備えることで高い熱線遮断性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例5)
 着色成分1の含有量を0.1wt%とした以外は、実施例1と同様にして積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、波長400~800nmには反射帯域を備えていないものであった。また、600~800nmにおいて光の吸収が顕著にみられるものであったが、その透過率の程度は実施例4よりも高くなっており、若干熱線カット性能は低下していた。また、角度12°と角度45°における透過光の違いも比較的小さいものであった。結果を表1に示す。
 (実施例6)
 着色成分を含まない熱可塑性樹脂Bを用い、実施例1と同様の方法にて積層フィルムを得た。得られた積層フィルムの一方の面に、着色成分1を2wt%含んだ非晶性樹脂であるアクリル樹脂(日本触媒製IRG―205)からなる厚み5μmの着色層をコーティングにて設けて積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ600~800nmに吸収を備えることで高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。また、実施例1と比較してより透明性の高いものであった。結果を表1に示す。
 (実施例7)
 着色成分を含まない熱可塑性樹脂Bを用い、実施例1と同様の方法にて積層フィルムを得た。得られたフィルムの一方の面に、日本化薬製YELLOW2G(着色成分2)を2wt%含んだアクリル樹脂(日本触媒製IRG―205からなる厚み5μmの着色層をコーティングにて設けて積層フィルムを得た。なお、ここで用いた着色成分2は300℃にて融解するものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率よりも小さく、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも大きい着色成分であった。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ~470nmにも三次の反射を備えたフィルムであった。また、400~450nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ400~450nmに吸収を備えることで高い熱線反射性能を示した。また、角度12°と角度45°における透過光の色目の違いはほぼ確認できず、実施例1と比較して高い可視光線透過率、若干黄色の着色が見られるものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は89%であり、波長400~450nmの補正後の平均透過率は22%、波長600~800nmの補正後の平均透過率は99%であった。
 (実施例8)
 着色成分としてDIC製L-50(着色成分3)を4%混練した熱可塑性樹脂Bを用いた以外は、実施例1と同様の方法にて積層フィルムを得た。なお、ここで用いた着色成分3は、310℃では完全に溶融状態とはならないものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率よりも大きく、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも小さい着色成分であった。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、550~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ550~800nmに吸収を備えることで高い熱線反射性能を示し、また、角度12°と角度45°における透過光の色目の違いはほぼ確認できないものであったが、可視光線透過率はやや低いものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は87%であり、波長400~450nmの補正後の平均透過率は92%、波長600~800nmの補正後の平均透過率は69%であった。
 (実施例9)
 着色成分を含まない熱可塑性樹脂Bを用い、実施例1と同様の方法にて積層フィルム
実施例1で得られたフィルムの一方の面に着色成分1を2wt%含んだアクリル樹脂(IRG―205(日本触媒製)からなる厚み5μmの着色層Aを、他方の面に着色成分2を2wt%含んだアクリル樹脂(IRG―205(日本触媒製)からなる厚み5μmの着色層Bをコーティングにて設けて積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ300~470nmにも3次の反射を備えたフィルムであった。また、400~450nmおよび600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ400~450nmおよび600~800nmに吸収を備えることで高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光に加えて反射光の色目の違いはほぼ確認できないものであった。結果を表1に示す。また、着色層Aと着色層Bの波長450nmおよび波長700nmにおける吸収率は以下のとおりであった。
  AbsA(450):5%
  AbsB(450):58%
  AbsA(700):66%
  AbsB(700):0% 。
 (実施例10)
 実施例1と同様の方法にて、反射帯域800~1400nmの1202層積層フィルムを得た(構成積層要素Ln)。また、熱可塑性樹脂Aとして実施例1に示すPET樹脂を、熱可塑性樹脂Bとして、実施例3に示すCHDM共重合PETとPET樹脂を1:1の割合で混練した樹脂を用い、実施例1と同様の方法にて、反射帯域400~800nmの1202層積層フィルムを得た(構成積層要素Lv)。ここで用いたCHDM共重合PETとPET樹脂のブレンド混練後の樹脂は、フィルム化した後の面内平均屈折率が1.610となるものであった。これらの2枚の積層フィルムを実施例1と同様にドライラミネートすることにより、2404層の積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに強い反射を、波長帯域400~800nmに弱く均一な反射を備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ可視領域にも均一な反射を備えることから高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例11)
 実施例1と同様の方法にて、反射帯域800~1400nmの1202層積層フィルムを得た(構成積層要素Ln)。また、構成積層要素Lnを作成するのに用いた積層装置とは異なる層厚み分布となるように設計されたスリット数201個のスリットプレートを3枚用いた構成である601層積層装置を用い、着色成分を含まない熱可塑性樹脂を用いて実施例1と同様の方法で、反射帯域400~800nmの601層積層フィルムを得た(構成積層要素Lv)。これらの2枚の積層フィルムを実施例1と同様にドライラミネートすることにより、1803層の積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに強い反射を、波長帯域400~800nmに弱く均一な反射を備えており、かつ300~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち、かつ可視領域にも均一な反射を備えることから高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例12)
 熱可塑性樹脂として、着色成分1を0.2wt%含んだ熱可塑性樹脂Aと、着色成分を含まない熱可塑性樹脂Bを用いた以外には、実施例1と同様に積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ~470nmにも三次の反射を備えたフィルムであった。また、600~800nmにおいて光の吸収が顕著にみられるものであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域をもち高い熱線反射性能を示すことに加えて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。一方で、内部ヘイズが実施例1では0.4%であったものが、4.0%に上昇し、やや透明性の低いものであった。結果を表1に示す。
 (実施例13)
 着色成分として大日精化工業製顔料マスター(TYL・着色成分4)を2.0wt%混練した熱可塑性樹脂Bを用いた以外は実施例1と同様にして反射帯域800~1200nmの601層積層フィルムを得た。ただし、ここでは2枚の積層フィルムをドライラミネートしていない。また、ここで用いた着色成分4は300℃にて溶融状態となるものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率よりも小さく、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも大きい着色成分であった。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、400~450nmにおいても光の吸収がみられるものであった。このフィルムは、比較例4と比較して400~450nmに吸収を備えることで熱線遮断性能の向上がみられて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は88%であり、波長400~450nmの補正後の平均透過率は65%、波長600~800nmの補正後の平均透過率は99%であった。
 (実施例14)
 着色成分4の含有量を8.0wt%とした以外は実施例13と同様にして反射帯域800~1200nmの601層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、400~450nmにおいても顕著な光の吸収がみられるものであった。このフィルムは、実施例13と比較して熱線遮断性能のさらなる向上がみられるが、黄色の着色が目立つものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例15)
 着色成分として大日精化工業製顔料マスター(TGL・着色成分5)を3.0wt%混練した熱可塑性樹脂Bを用いた以外は実施例13と同様にして反射帯域800~1200nmの601層積層フィルムを得た。また、ここで用いた着色成分5は300℃にて溶融状態となるものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率と同じであり、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも小さい着色成分であった。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、600~800nmにおいても光の吸収がみられるものであった。このフィルムは、比較例4と比較して600~800nmに吸収を備えることで熱線遮断性能の向上がみられて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は99%であり、波長400~450nmの補正後の平均透過率は99%、波長600~800nmの補正後の平均透過率は88%であった。
 (実施例16)
 着色成分4の含有量を13.0wt%とした以外は実施例15と同様にして反射帯域800~1200nmの601層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、600~800nmにおいても光の吸収がみられるものであった。このフィルムは、実施例15と比較して熱線遮断性能のさらなる向上がみられるが、やや青みがかるものの着色の程度は弱いものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例17)
 着色成分として着色成分4を5wt%、着色成分5を3wt%を用いた以外は実施例13と同様にして反射帯域800~1200nmの601層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、400~450nmおよび600~800nmにおいても光の吸収がみられるものであった。このフィルムは、比較例4と比較して熱線遮断性能のさらなる向上がみられ、やや緑みがかるものの着色の程度は弱いものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例18)
 着色成分として着色成分4を5wt%、着色成分5を3wt%を用いた以外は実施例1と同様にして反射帯域800~1400nmの1201層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えるが、400~800nmでの反射率は十分に小さいものであった。
また、400~450nmおよび600~800nmにおいても光の吸収がみられるものであった。このフィルムは、実施例1と比較して熱線遮断性能のさらなる向上がみられ、やや緑みがかるものの着色の程度は弱いものであった。特に、反射光の色目はほぼ無彩色となっており、色目の変化もないものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例19)
 着色成分として着色成分4を3wt%、着色成分5を3wt%用いた以外は実施例1と同様にして反射帯域800~1400nmの1201層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えるが、400~800nmでの反射率は十分に小さいものであった。
また、400~450nmおよび600~800nmにおいても光の吸収がみられるものであった。このフィルムは、実施例1と比較して熱線遮断性能のさらなる向上がみられ、やや緑みがかるものの着色の程度は弱いものであった。特に、反射光の色目はほぼ無彩色となっており、実施零18よりは色面の変化は見られるものの、実施例1と比較すると色目の変化は小さいものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例20)
 着色成分として着色成分4を5wt%、着色成分5を3wt%用いた以外は実施例2と同様にして反射帯域800~1400nmの801層積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えるが、400~800nmでの反射率は十分に小さいものであった。
また、400~450nmおよび600~800nmにおいても光の吸収がみられるものであった。このフィルムは、実施例2と比較して熱線遮断性能のさらなる向上がみられ、やや緑みがかるものの着色の程度は弱いものであった。特に、反射光の色目はほぼ無彩色となっており、色目の変化もないものであった。また、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 (実施例21)
 着色成分として住化カラー製着色マスター(EMBPET・着色成分6)を4.0wt%混練した熱可塑性樹脂Bを用いた以外は実施例13と同様にして反射帯域800~1200nmの601層積層フィルムを得た。また、ここで用いた着色成分6は300℃にて溶融状態となるものであり、波長400~450nmの平均透過率が波長450~600nmの平均透過率よりも大きく、波長600~800nmの平均透過率が波長450~600nmの平均透過率よりも小さい着色成分であった。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、400~800nmには反射帯域を備えていないものであった。また、600~800nmにおいても光の吸収がみられるものであった。このフィルムは、比較例4と比較して600~800nmに吸収を備えることで熱線遮断性能の向上がみられて、角度12°と角度45°における透過光の色目の違いも比較的小さいものであった。結果を表1に示す。
 なお、得られた積層フィルムの波長450~600nmの補正後の平均透過率は94%であり、波長400~450nmの補正後の平均透過率は84%、波長600~800nmの補正後の平均透過率は67%であった。
 (比較例1)
 着色成分1を0.2wt%の割合で2軸押出機にて混練した実施例1に示すPET樹脂を用いたことと、積層装置を用いずに実施例1の方法でキャストフィルム、延伸、熱処理を行いフィルムを得た。得られたフィルムはやや青みがかっているものの、フィルム面に
対して色目の変化は感じられないものであった。ただし、熱線カット性能は極めて低いものであった。結果を表1に示す。
 (比較例2)
 着色成分を含まない熱可塑性樹脂A、Bを用いた以外は、実施例1と同様に1202層の積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1400nmに備えており、かつ~470nmにも三次の反射を備えたフィルムであった。このフィルムは、近赤外線領域に高くかつ広い反射帯域を備えるものの、実施例1と比較して波長600~800nmにおける透過率が高く、やや熱線反射性能に劣るものであった。また、角度12°と角度45°における透過光の色目の違いがみられた。結果を表1に示す。
 (比較例3)
 反射帯域700~1200nmとなるようにフィルム厚みを調整した以外は、比較例2と同様にして積層フィルムを得た。得られたフィルムは主となる反射帯域を700~1200nmに備えるが、波長400~700nmには反射帯域を備えていないものであった。このフィルムは、実施例4と比較してほぼ同等の波長600~800nmの透過率となるものの、角度12°と角度45°における透過光の色目の違いが顕著にみられるものであった。結果を表1に示す。
 (比較例4)
 着色成分を含まない熱可塑性樹脂A、Bを用いた以外は、実施例13と同様に601層の積層フィルムを得た。得られたフィルムは主となる反射帯域を800~1200nmに備えるが、波長400~800nmには反射帯域を備えていないものであった。このフィルムは、角度12°と角度45°における透過光の色目の違いも比較的小さいものの熱線カット性能では劣るものであった。結果を表1に示す
 (比較例5)
実施例1の積層装置を用い、反射帯域800~1200nmの601層積層フィルムと反射帯域310~450nmの601層積層フィルムを得た。これらの2枚の積層フィルムを、実施例1と同様にドライラミネートし、1202層積層フィルムとした。得られたフィルムは主となる反射帯域を310~450nmおよび800~1200nmに備えるが、波長450~800nmには反射帯域を備えていないものであった。角度12°と角度45°における透過光の色目の違いが顕著にみられるものであった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明は、太陽光などからもたらされる熱線をカットできる熱線カットフィルムに関するものである。さらに詳しくは、角度による色目の変化が小さく、高い効率で熱線をカットできる熱線カットフィルムに関するものであり、自動車、電車、建物などの窓ガラス用途として好適なものである。
7 :積層装置
71:スリットプレート
72:スリットプレート
73:スリットプレート
8 :合流器
9 :接続管
10:口金
11:スリットプレート71によって形成された層厚みの傾斜構造
12:スリットプレート72によって形成された層厚みの傾斜構造
13:スリットプレート73によって形成された層厚みの傾斜構造
11L:スリットプレート71の流出口からの樹脂流路
12L:スリットプレート72の流出口からの樹脂流路
13L:スリットプレート73の流出口からの樹脂流路
11M:スリットプレート71の流出口に連通し、合流器によって配置された樹脂流路
12M:スリットプレート72の流出口に連通し、合流器によって配置された樹脂流路
13M:スリットプレート73の流出口に連通し、合流器によって配置された樹脂流路
14 :樹脂流路の幅方向長さ
15 :口金の流入口部でのフィルム幅方向の長さ
16 :口金流入口部での流路の断面
17 :口金リップのフィルム幅方向長さ
18 :層の並び順
19 :層厚み
20 :厚膜層の厚みを示す点
21 :熱可塑性樹脂Aの層厚み分布
22 :熱可塑性樹脂Bの層厚み分布

Claims (21)

  1. 異なる光学的性質を有する2種以上の熱可塑性樹脂が交互にそれぞれ50層以上積層された構成を含み、かつ波長900~1200nmでの平均反射率が70%以上であり、かつ入射角度12°で入射した白色光と入射角度45°で入射した白色光についてそれらの透過光のa値の差Δaおよびb値の差Δb がそれぞれ10以下であり、かつ波長400~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることを特徴とする積層フィルム。
  2. 波長600~800nmにおいて透過率が80%以下となる帯域を50nm以上備えてなることを特徴とする請求項1に記載の積層フィルム。
  3. 波長400~450nmにおいて透過率が80%以下であることを特徴とする請求項1に記載の積層フィルム。
  4. 異なる光学的性質を有する2種類以上の熱可塑性樹脂が交互にそれぞれ50層以上積層された構成を含む積層フィルムであって、かつ過半数の層について隣接する層の光学厚みの和が400~650nmであって、かつ波長400~450nmまたは波長600~800nmにおける平均透過率が波長450~600nmにおける平均透過率よりも小さい着色成分を含有する層を少なくとも1層以上備えてなることを特徴とする請求項2または3に記載の積層フィルム。
  5. 波長400~800nmにおいて反射率が30%以上となる反射帯域を50nm以上備えてなることを特徴とする請求項1~4のいずれかに記載の積層フィルム。
  6. 波長1200~1400nmでの平均反射率が30%以上であり、かつ少なくともフィルムの一方の面から計測した波長400~450nmでの平均反射率が30%以下であることを特徴とする請求項1~5のいずれかに記載の積層フィルム。
  7. さらに隣接する層の光学厚みの和が600~700nmである層を10ペア以上含み、かつ波長400~450nmにおける平均透過率が波長450~600nmにおける平均透過率よりも小さい着色成分を含有する層を少なくとも1層以上備えてなることを特徴とする請求項6に記載の積層フィルム。
  8. 波長500~700nmにおける最大反射率が15%以下であることを特徴とする請求項1~7のいずれかに記載の積層フィルム。
  9. 少なくとも一方の熱可塑性樹脂中に着色成分を含んでなり、かつ着色成分の含まれる熱可塑性樹脂が非晶性樹脂であることを特徴とする請求項1~8のいずれかに記載の積層フィルム。
  10. 前記積層フィルムの内部ヘイズが3%以下であることを特徴とする請求項1~9のいずれかに記載の積層フィルム。
  11. 前記積層フィルムに含まれる着色成分の融点が300℃以下であることを特徴とする請求項1~10のいずれかに記載の積層フィルム。
  12. 請求項1~11のいずれかに記載の積層フィルムの少なくとも一方の表面に着色層を備えた積層フィルム。
  13. 請求項1~12のいずれかに記載の積層フィルムの一方の面上に着色層A、他方の面上に着色層Bが設けられてなり、かつ着色層Aおよび着色層Bの波長Wにおける吸収率Abs(W)が下記式1および式2を満たすことを特徴とする請求項10に記載の積層フィルム。
      AbsA(450)<AbsB(450)   (式1)    
      AbsA(700)>AbsB(700)   (式2)
  14. 日射反射率が30%以上であることを特徴とする請求項1~13のいずれかに記載の積層フィルム。
  15. 波長400~700nmでの平均反射率が15%以上40%未満であることを特徴とする請求項1~14のいずれかに記載の積層フィルム。
  16. 前記積層フィルムの波長400~700nmの中で連続する100nmにおける最大反射率と最小反射率の差が10%未満であることを特徴とする請求項1~15のいずれかに記載の積層フィルム。
  17. 波長900~1400nmの光を反射する異なる光学的性質を有する2種以上の熱可塑性樹脂が交互に積層された構成積層要素Lnと、波長400~700nmの光を反射する異なる光学的性質を有する2種以上の熱可塑性樹脂が交互に積層された構成積層要素Lvとを有し、該構成積層要素Lnにおける熱可塑性樹脂の層数が、構成積層要素Lvにおける熱可塑性樹脂の層数よりも多いことを特徴とする請求項1~16のいずれかに記載の積層フィルム。
  18. 前記積層フィルムが波長900~1400nmの光を反射する構成積層要素(Ln)を少なくとも一つ備え、波長400~700nmの光を反射する構成積層要素(Lv)を少なくとも一つ備え、かつ、構成積層要素Lnを構成する各層の面内平均屈折率差が、構成積層要素Lvを構成する各層の面内平均屈折率差よりも0.01以上大きいことを特徴とする請求項1~16のいずれかに記載の積層フィルム。
  19. 140℃にて30分加熱したときの熱収縮率が±1%以内であることを特徴とする請求項1~18のいずれかに記載の積層フィルム。
  20. 140℃で伸長時の5%応力が10MPa以下であることを特徴とする請求項1~19のいずれかに記載の積層フィルム。
  21. 請求項1~20のいずれかに記載の積層フィルムを備えてなる自動車用窓ガラス。
PCT/JP2012/065950 2011-06-27 2012-06-22 積層フィルムおよびそれを用いた自動車用窓ガラス WO2013002130A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12804037.5A EP2724856B1 (en) 2011-06-27 2012-06-22 Laminate film and automotive window glass using same
KR1020137027553A KR101983629B1 (ko) 2011-06-27 2012-06-22 적층 필름 및 그것을 사용한 자동차용 창유리
US14/124,031 US9452590B2 (en) 2011-06-27 2012-06-22 Laminate film and automotive window glass using same
JP2012530006A JP5867393B2 (ja) 2011-06-27 2012-06-22 積層フィルムおよびそれを用いた自動車用窓ガラス
CN201280029966.7A CN103608173B (zh) 2011-06-27 2012-06-22 层合膜及使用其的汽车用窗玻璃

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-141587 2011-06-27
JP2011141587 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002130A1 true WO2013002130A1 (ja) 2013-01-03

Family

ID=47424026

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065950 WO2013002130A1 (ja) 2011-06-27 2012-06-22 積層フィルムおよびそれを用いた自動車用窓ガラス

Country Status (6)

Country Link
US (1) US9452590B2 (ja)
EP (1) EP2724856B1 (ja)
JP (1) JP5867393B2 (ja)
KR (1) KR101983629B1 (ja)
CN (1) CN103608173B (ja)
WO (1) WO2013002130A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223794A (ja) * 2013-04-18 2014-12-04 東レ株式会社 ウインドウフィルム
JP2014228837A (ja) * 2013-05-27 2014-12-08 帝人デュポンフィルム株式会社 二軸延伸積層ポリエステルフィルム
JP2017129861A (ja) * 2016-01-18 2017-07-27 東レ株式会社 ヘッドアップディスプレイ
WO2018083953A1 (ja) 2016-11-07 2018-05-11 東レ株式会社 光源ユニット
JP2020095261A (ja) * 2018-11-29 2020-06-18 東レ株式会社 フィルム

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137288A1 (ja) 2012-03-16 2013-09-19 東レ株式会社 多層積層フィルム
JP5987573B2 (ja) 2012-09-12 2016-09-07 セイコーエプソン株式会社 光学モジュール、電子機器、及び駆動方法
KR102041525B1 (ko) * 2012-11-20 2019-11-07 삼성디스플레이 주식회사 연신 성능 시험장치
JP6666719B2 (ja) * 2014-02-25 2020-03-18 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス用中間膜の製造方法及び合わせガラス
US10815145B2 (en) * 2016-03-31 2020-10-27 Corning Incorporated High index glass and devices incorporating such
JPWO2020116586A1 (ja) * 2018-12-05 2021-10-21 日本板硝子株式会社 自動車用合わせガラス
CN113874762A (zh) * 2019-05-23 2021-12-31 3M创新有限公司 多层光学膜
CN115793316B (zh) * 2022-11-30 2024-05-14 京东方科技集团股份有限公司 热辐射调控模组、热辐射调控装置及车辆

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509271A (ja) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー カラーシフトフィルム
JP2003515754A (ja) * 1999-11-22 2003-05-07 スリーエム イノベイティブ プロパティズ カンパニー 多層光学体
WO2005040868A1 (ja) * 2003-10-27 2005-05-06 Teijin Dupont Films Japan Limited 近赤外線遮蔽フィルム
WO2005095097A1 (ja) * 2004-03-31 2005-10-13 Toray Industries, Inc. 積層フィルム
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
JP2007176154A (ja) * 2005-11-29 2007-07-12 Toray Ind Inc 積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP2008200924A (ja) * 2007-02-19 2008-09-04 Toray Ind Inc 積層フィルム
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5360659A (en) * 1993-05-24 1994-11-01 The Dow Chemical Company Two component infrared reflecting film
WO2005022212A1 (ja) * 2003-09-01 2005-03-10 Dai Nippon Printing Co., Ltd. プラズマディスプレイ用反射防止フィルム
US7851050B2 (en) * 2003-10-14 2010-12-14 Toray Industries, Inc. Laminated film
TWI409170B (zh) 2004-03-11 2013-09-21 Teijin Dupont Films Japan Ltd Anti - reflective multilayer laminated film
CN100548664C (zh) * 2004-03-31 2009-10-14 东丽株式会社 层压薄膜
CN101243023B (zh) * 2005-08-16 2012-07-18 旭硝子株式会社 车窗用夹层玻璃
US7520608B2 (en) * 2006-03-20 2009-04-21 High Performance Optics, Inc. Color balanced ophthalmic system with selective light inhibition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509271A (ja) * 1998-01-13 2002-03-26 ミネソタ マイニング アンド マニュファクチャリング カンパニー カラーシフトフィルム
JP2003515754A (ja) * 1999-11-22 2003-05-07 スリーエム イノベイティブ プロパティズ カンパニー 多層光学体
JP3901911B2 (ja) 2000-04-28 2007-04-04 帝人株式会社 透明積層フィルム
WO2005040868A1 (ja) * 2003-10-27 2005-05-06 Teijin Dupont Films Japan Limited 近赤外線遮蔽フィルム
JP4310312B2 (ja) 2003-10-27 2009-08-05 帝人デュポンフィルム株式会社 近赤外線遮蔽フィルム
WO2005095097A1 (ja) * 2004-03-31 2005-10-13 Toray Industries, Inc. 積層フィルム
JP2007176154A (ja) * 2005-11-29 2007-07-12 Toray Ind Inc 積層フィルム
JP2007307893A (ja) 2006-04-20 2007-11-29 Toray Ind Inc マット調フィルムおよび成形品
JP2008200924A (ja) * 2007-02-19 2008-09-04 Toray Ind Inc 積層フィルム
JP2010017854A (ja) 2008-07-08 2010-01-28 Bridgestone Corp 機能性フィルム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIS K7142, 1996
JIS-K7127, 1999

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014223794A (ja) * 2013-04-18 2014-12-04 東レ株式会社 ウインドウフィルム
JP2014228837A (ja) * 2013-05-27 2014-12-08 帝人デュポンフィルム株式会社 二軸延伸積層ポリエステルフィルム
JP2017129861A (ja) * 2016-01-18 2017-07-27 東レ株式会社 ヘッドアップディスプレイ
WO2018083953A1 (ja) 2016-11-07 2018-05-11 東レ株式会社 光源ユニット
US10732332B2 (en) 2016-11-07 2020-08-04 Toray Industries, Inc. Light source unit
JP2020095261A (ja) * 2018-11-29 2020-06-18 東レ株式会社 フィルム
JP7342651B2 (ja) 2018-11-29 2023-09-12 東レ株式会社 フィルム

Also Published As

Publication number Publication date
EP2724856B1 (en) 2020-11-25
EP2724856A1 (en) 2014-04-30
EP2724856A4 (en) 2015-01-21
CN103608173A (zh) 2014-02-26
US20140127485A1 (en) 2014-05-08
JPWO2013002130A1 (ja) 2015-02-23
JP5867393B2 (ja) 2016-02-24
KR20140024327A (ko) 2014-02-28
CN103608173B (zh) 2015-09-02
US9452590B2 (en) 2016-09-27
KR101983629B1 (ko) 2019-05-29

Similar Documents

Publication Publication Date Title
JP5867393B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP6007903B2 (ja) 多層積層フィルム
JP5807466B2 (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP2012030563A (ja) 積層フィルムおよびそれを用いた自動車用窓ガラス
JP6427925B2 (ja) ウインドウフィルム
JP7006270B2 (ja) フィルムおよび積層体
WO2016021345A1 (ja) 多層積層フィルム
JP6225495B2 (ja) 多層積層フィルムおよびこれを用いたガラス窓部材
JP2012173374A (ja) 熱線反射部材
JP2018205615A (ja) フィルム
JP2018127607A (ja) フィルム
JP4967486B2 (ja) 延伸フィルムならびにその成型品
JP2017132255A (ja) 積層フィルムおよびその製造方法
JP2019139228A (ja) フィルム及びその製造方法
JP2021143308A (ja) 熱可塑性樹脂フィルム
JP7259207B2 (ja) フィルム
JP2019014836A (ja) フィルム
JP7342651B2 (ja) フィルム
JP2018054800A (ja) 熱可塑性樹脂フィルム
JP2023177790A (ja) 多層積層フィルム
JP2017043083A (ja) 積層ポリエステルフィルム
JP2016064643A (ja) 二軸延伸積層フィルムおよびその製造方法
JP2024055291A (ja) 積層フィルム
JP2022163716A (ja) 積層フィルム
JP2024072399A (ja) 積層ポリエステルフィルム

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012530006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137027553

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14124031

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE