WO2016021345A1 - 多層積層フィルム - Google Patents
多層積層フィルム Download PDFInfo
- Publication number
- WO2016021345A1 WO2016021345A1 PCT/JP2015/069219 JP2015069219W WO2016021345A1 WO 2016021345 A1 WO2016021345 A1 WO 2016021345A1 JP 2015069219 W JP2015069219 W JP 2015069219W WO 2016021345 A1 WO2016021345 A1 WO 2016021345A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester
- laminated film
- ton
- mol
- multilayer laminated
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/181—Acids containing aromatic rings
- C08G63/185—Acids containing aromatic rings containing two or more aromatic rings
- C08G63/187—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings
- C08G63/189—Acids containing aromatic rings containing two or more aromatic rings containing condensed aromatic rings containing a naphthalene ring
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/20—Filters
- G02B5/26—Reflecting filters
Definitions
- the present invention relates to a multilayer laminated film in which light of a specific wavelength band is selectively reflected by the difference in refractive index between layers and the thickness of each layer.
- the multilayer laminated film using light interference has a metallic gloss tone (Patent Documents 1 and 2), a near-infrared reflective function (Patent Document 3), and a polarized light reflecting film having a polarized light reflecting characteristic.
- a dichroic filter, a monochromatic filter, and the like are known. These have an interference reflection function by alternately laminating two kinds of resins having different refractive indexes.
- resins having significantly different refractive indexes For example, in Patent Document 4, polyethylene-2,6-naphthalenedicarboxylate (hereinafter, PEN) is used for a layer having a high refractive index.
- PEN polyethylene-2,6-naphthalenedicarboxylate
- PEN exhibits a very high refractive index by being biaxially oriented, it has a drawback of being easily cleaved in the thickness direction.
- a film is torn or a surface is thinly scratched and peeled off with a tape, it is a quality problem that delamination easily occurs due to cleavage.
- polyester A is PEN, delamination occurs unless the composition of polyester B is 80 mol% or more PEN. Therefore, there is a problem that the cost becomes high (Patent Document 5).
- the heat ray reflective film having a near-infrared reflective function is used for applications that shield solar radiant heat such as automobiles and building material window glass and solar cell modules. Since a service life of 10 years or more outdoors is required, high hydrolysis resistance is required, but conventional heat ray reflective films have insufficient hydrolysis resistance.
- the object of the present invention is to eliminate these conventional drawbacks and improve the interlayer adhesion when PEN is used as the resin constituting one layer in the multilayer laminated film in which the A layer and the B layer are alternately laminated. And it makes it a subject to improve the durability of a film significantly.
- the present invention has the following configuration. That is, [I] Polyester having a refractive index lower than the refractive index of the polyester constituting the A layer, the A layer comprising a polyester A whose main repeating unit is ethylene-2,6-naphthalate, and the main repeating unit comprising an ethylene terephthalate A multilayer laminated film in which at least 201 layers of B layers composed of B are alternately laminated, and polyester A satisfies the following requirements.
- the amount of carboxylic acid end groups is 5 eq / t or more and 20 eq / t or less.
- the alkali metal phosphate is in a molar ratio of 1.3 mol / ton or more and 3.0 mol / ton or less, and phosphoric acid in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal phosphate. contains.
- Intrinsic viscosity is 0.55 or more and 0.63 or less.
- the average reflectance in the wavelength range of 850 nm to 1400 nm is 60% or more, and the average reflectance in the visible light region of wavelength 400 nm to 700 nm is at least less than 30%.
- Multi-layer laminated film [III] The multilayer laminated film according to [I] or [II], wherein the tear strength is 4 N / mm 2 or more.
- the amount of carboxylic acid end groups is 5 eq / ton or more and 20 eq / ton or less.
- the alkali metal phosphate is in a molar ratio of 1.3 mol / ton or more and 3.0 mol / ton or less, and phosphoric acid in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal phosphate. contains.
- polyester A contains 0.01 to 50 mol / ton or less of a phosphorus compound other than phosphoric acid and alkali metal phosphate, according to any one of [I] to [IV] Multi-layer laminated film.
- Polyester A is an alkali metal compound selected from at least one of Na, Li and K, a divalent metal compound selected from at least one of Mg, Ca, Mn and Co, and Sb, Ti and Ge.
- a metal compound having a polymerization catalyst ability selected from at least one kind is contained in a total amount of metal elements of 30 ppm to 500 ppm, and a phosphorus compound is contained in an amount of 30 ppm to 150 ppm in terms of phosphorus element [I] -The multilayer laminated film according to any one of [VI].
- [IX] crosscut of 1 mm 2 was placed 100 on the film surface, after stressed paste 100kPa a Nichiban Co.
- [XI] A characteristic of [I] to [X], wherein the film has a breaking elongation of 50% or more when treated under conditions of a temperature of 125 ° C., a relative humidity of 100% RH, and 24 hours
- the multilayer laminated film in any one.
- Polyester A is a resin composition containing a naphthalenedicarboxylic acid residue of 90 mol% or more as a dicarboxylic acid component and an ethylene glycol residue of 50 mol% or more as a diol component, and the carbon number as a constituent component in the A layer
- the present invention it is possible to obtain a multilayer laminated film having transparency, a broadband near-infrared reflection function, and excellent interlayer adhesion and outdoor durability.
- the multilayer laminated film of the present invention has a refractive index lower than the refractive index of the A layer composed of polyester A whose main repeating unit is ethylene-2,6-naphthalate and the polyester constituting the A layer whose main repeating unit is composed of ethylene terephthalate.
- the “main” repeating unit represents 50 mol% or more of all the dicarboxylic acid component and diol component repeating units.
- Polyester B is made of polyethylene terephthalate having terephthalic acid as a dicarboxylic acid component and ethylene glycol as a diol component as main repeating units.
- “mainly” means that the dicarboxylic acid and the diol are composed of 75 mol% or more of terephthalic acid and ethylene glycol, respectively.
- Polyester B may be a homopolyester or a copolyester.
- aromatic dicarboxylic acid of the copolyester for example, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′- Examples thereof include diphenyl dicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-diphenyl sulfone dicarboxylic acid and the like.
- aliphatic dicarboxylic acid examples include adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid, cyclohexanedicarboxylic acid and ester derivatives thereof.
- diol component examples include 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1, 6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis (4-hydroxyethoxyphenyl) ) Propane, isosorbate, spiroglycol and the like. Of these, ethylene glycol is preferably used. These diol components may be used alone or in combination of two or more.
- polyester B is preferably a polyester comprising at least cyclohexanedimethanol.
- the polyester comprising cyclohexanedimethanol refers to a copolyester obtained by copolymerizing cyclohexanedimethanol, a homopolyester, or a polyester obtained by blending them. Polyesters containing cyclohexanedimethanol are preferred because the difference between the polyethylene naphthalate and the glass transition temperature is small, so that they are less likely to be overstretched during molding and are also difficult to delaminate.
- the polyester comprising cyclohexanedimethanol is an ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less.
- the ethylene terephthalate polycondensate having a copolymerization amount of cyclohexanedimethanol of 15 mol% or more and 60 mol% or less adheres very strongly to polyethylene naphthalate.
- the cyclohexanedimethanol group has a cis or trans isomer as a geometric isomer, and a chair type or a boat type as a conformational isomer.
- the change in optical characteristics due to thermal history is even less, and blurring during film formation hardly occurs.
- the polyester B is an amorphous polyester.
- amorphous as used herein means that the heat of fusion is 5 J / g or less.
- the polyester B does not contain ethylene-2,6-naphthalate.
- ethylene-2,6-naphthalate is contained, the tear resistance is lowered, and the interlayer adhesion is also lowered, which is not preferable.
- the polyester B constituting the B layer is mixed with the polyester A constituting the A layer of the multilayer laminated film of the present invention as a minor component, or the polyester A constituting the A layer is blended with the polyester B constituting the B layer as a minor component. It is also preferable to mix as.
- the mixing ratio is preferably in the range of 5% by weight to 30% by weight, but the difference in refractive index between the layers is also approximated, and the reflectance tends to decrease. Therefore, it is more preferably 15% by weight or less.
- the polyester A of the present invention has a carboxylic acid end group amount of 5 eq / ton or more and 20 / ton or less, and an alkali metal phosphate containing 1.3 mol / ton or more and 3.0 mol / ton or less and phosphoric acid. Is contained in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal phosphate.
- the adhesion between the layers is improved, and the interlayer has a peel strength of 3.5 N / mm. No peeling occurs.
- the peel strength of 3.5 N / mm represents peel strength when a Nichiban cello tape (registered trademark) is pressure-bonded to a polyester film and then peeled at a speed of 500 mm / min.
- the carboxylic acid terminal group amount, the phosphoric acid alkali metal salt, and the phosphoric acid content of the polyester A satisfy the above ranges, the durability of the polyester A is greatly improved.
- polyester resin composition of the present invention needs to contain 1.3 mol / ton or more and 3.0 mol / ton or less of alkali metal phosphate from the viewpoint of hydrolysis resistance, and further 1.5 mol / ton. It is preferable that it is ton or more and 2.0 mol / ton or less.
- the hydrolysis resistance in the long term may be insufficient.
- content of alkali metal phosphate exceeds 3.0 mol / ton, it will become easy to turn into a foreign material.
- the alkali metal phosphate in the present invention include sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, potassium dihydrogen phosphate, dipotassium hydrogen phosphate, tripotassium phosphate, lithium dihydrogen phosphate. , Dilithium hydrogen phosphate, and trilithium phosphate. Among them, sodium dihydrogen phosphate and potassium dihydrogen phosphate are preferable from the viewpoint of long-term hydrolysis resistance.
- the content of phosphoric acid in the present invention is required from the viewpoint of long-term hydrolysis resistance to be 0.4 to 1.5 times in molar ratio with respect to the alkali metal phosphate, Is preferably 0.5 times or more and 1.4 times or less, and more preferably 0.8 times or more and 1.4 times or less. If it is less than 0.4 times or more than 1.5 times, the buffering effect cannot be exerted on protons in the polyester composition, and the long-term hydrolysis resistance is lowered. It tends to indirectly reduce the hydrolysis resistance of the product.
- the intrinsic viscosity of the polyester A of the present invention is 0.55 or more and 0.63 or less.
- the intrinsic viscosity of the polyester A is 0.63 or less, shear failure of the A layer is suppressed, and as a result, delamination hardly occurs. If the intrinsic viscosity is less than 0.55, the melt viscosity is lowered and the lamination accuracy is deteriorated.
- the range of 0.58 or more and 0.62 or less is preferable in terms of both delamination and lamination accuracy.
- the average reflectance in the wavelength range of 850 nm to 1400 nm is preferably 60% or more, and the average reflectance in the visible light region of wavelength 400 nm to 700 nm is preferably at least less than 30%.
- the average reflectance at a wavelength of 400 to 700 nm is more preferably 20% or less. Thereby, the coloring of the reflected light and transmitted light accompanying reflection of visible light can be suppressed, and the film is suitable for applications requiring high transparency.
- the average reflectance in the wavelength range of 850 nm to 1400 nm is preferably 60% or more, more preferably 80% or more. As the average reflectance in the wavelength range of 850 nm to 1400 nm is higher, the near infrared light is reflected, so that it is suitable for a use for shielding solar radiant heat (use for heat ray reflection).
- a method for reflecting a specific wavelength and transmitting a specific wavelength is generally a method ( ⁇ / 4 configuration) in which the thickness of each of the A layer and the B layer is set to an optical thickness that is 1 ⁇ 4 of the near-infrared reflection wavelength. Has been used.
- this ⁇ / 4 configuration is used, the primary wavelength is reflected and the secondary (1/2 wavelength of the primary wavelength) wavelength is transmitted. Therefore, if the layer thickness of the multilayer laminated film is designed so as to reflect 800 nm to 1200 nm, a near-infrared reflective multilayer laminated film that transmits visible light of 400 nm to 700 nm can be obtained.
- the primary wavelength X is obtained from the following equation.
- na is the in-plane refractive index of the A layer
- da is the layer thickness of the A layer
- nb is the in-plane refractive index of the B layer
- db is the layer thickness of the B layer (in this application, the in-plane refractive index is simply referred to as a refractive index).
- the layer thickness distribution is such that the primary reflection wavelength of the formula (1) does not fall within the wavelength range of 400 to 700 nm, ⁇ /
- the fourth-layer third-order reflection wavelength may be a layer thickness distribution that does not exceed 400 nm, and the optical thickness ratio X of the ⁇ / 4 configuration may be close to 1.0.
- equivalent film theory is used as a method for attenuating the reflection of the second and subsequent wavelengths.
- a layer in which a plurality of high-refractive index layers and low-refractive index layers are combined is substantially optically intermediate between the high-refractive index layer and the low-refractive index layer.
- a layered product ABABAB ... of A layer and B layer is regarded as one layer like (ABA) (BAB) ..., and the second and subsequent layers are adjusted by adjusting the layer thickness of the three layers. Since the difference in refractive index approaches, the reflection at a wavelength of can be reduced (a layer structure based on this equivalent film theory is called an equivalent film structure).
- the optical thicknesses of the A layer and the B layer are (1A7B1A), (1B7A1B), (1A7B1A), (1B7A1B), and so on (where 7B is the A layer where the optical thickness of the B layer is adjacent) 7 of 7A means that the optical thickness of the A layer is 7 times the optical thickness of the adjacent B layer, and the A layer represented by 1A and 1B It is the most effective equivalent film configuration that the B layer has the same optical thickness.
- Another method is to apply an AR (antireflection) treatment to the surface of the multilayer laminated film.
- the method for adjusting the reflectance in the desired wavelength range is the in-plane refractive index difference between layer A and layer B, the number of layers, the layer thickness distribution, and the film forming conditions (for example, the stretching ratio, stretching speed, stretching temperature, heat treatment temperature, heat treatment time). ) Adjustment and the like. It is preferable to use a resin in which the A layer is made of polyethylene naphthalate having the highest refractive index among the polyesters and the B layer is made mainly of amorphous polyester. Since the reflectivity increases and the number of stacked layers can be reduced, the in-plane refractive index difference between the A layer and the B layer is preferably 0.02 or more, more preferably 0.04 or more, and further preferably 0.08 or more.
- At least one thermoplastic resin is crystalline, and at least one thermoplastic resin is amorphous or 30 ° C. or higher than the melting point of the crystalline thermoplastic resin. It has a low melting point. In this case, it is possible to easily provide a refractive index difference in the stretching and heat treatment steps in film production.
- the multilayer laminated film of the present invention preferably has a tear strength of 4 N / mm 2 or more.
- tear strength 4 N / mm 2 or more.
- PEN in which the main repeating unit of polyester A is ethylene-2,6-naphthalate is highly oriented in the plane direction due to the molecular structure, and has a poor bonding force in the direction perpendicular to the plane.
- the amount of carboxylic acid end groups of polyester A is 5 eq / t or more and 20 eq / t or less
- the alkali metal phosphate is 1.3 mol / ton or more and 3.0 mol / ton or less
- phosphoric acid is phosphorous.
- Polyester B of the present invention has a carboxylic acid end group amount of 5 eq / t or more and 20 eq / t or less, and an alkali metal phosphate is 1.3 mol / ton or more and 3.0 mol / ton or less, and phosphoric acid. Is preferably contained in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal phosphate. With such a configuration, the interlayer adhesion between the A layer and the B layer is further improved, and delamination does not occur with respect to a peeling force of 5 N / mm.
- This 5 N / mm peel strength represents the peel strength when Sumitomo 3M Scotch Tape (registered trademark) is pressure-bonded with a rubber roller and then peeled 90 ° at a speed of 500 mm / min. Moreover, since the hydrolysis of the polyester B is also suppressed, the adhesion after the high temperature and high humidity test is considerably improved. Polyester B preferably does not contain ethylene-2,6-naphthalate from the viewpoint of not reducing interlayer adhesion. However, even when ethylene-2,6-naphthalate is included, the above-described structure can suppress a decrease in interlayer adhesion.
- the polyester A of the present invention preferably contains a phosphorous compound other than phosphoric acid and alkali metal phosphate, in an amount of 0.01 mol / ton to 50 mol / ton.
- Durability can be further improved by using phosphoric acid and a phosphorus compound other than the alkali metal phosphate as a heat-resistant stabilizer while suppressing protons in the polyester with phosphoric acid and alkali metal phosphate. If it is less than 0.01 mol / ton, the degree of improvement in durability cannot be increased, and if it is 50 mol / ton or more, the mechanical properties of the polyester resin are likely to be lowered or bleed out.
- the polymerization catalyst is deactivated, the polymerization reaction is delayed, and the amount of terminal carboxylic acid (also referred to as COOH end group) increases, so that the hydrolysis resistance of the product tends to be indirectly reduced, It is not preferable.
- the phosphorus compound used in combination may be any phosphoric acid, phosphorous acid-derived OH terminal, or any compound that does not have these metal salts.
- the polyester A of the present invention preferably contains 0.01 to 1.0 mol% of a trifunctional or higher functional crosslinking component as a copolymerization component.
- a trifunctional or higher functional crosslinking component as a copolymerization component.
- the polyfunctional component include trimethyl trimellitic acid, trimellitic acid, pyromellitic acid, butanetetracarboxylic acid, polyvalent carboxylic acids such as trimer acid obtained by trimerization of long-chain aliphatic carboxylic acids, and anhydrides thereof.
- polyhydric alcohols such as esters, glycerin, and pentaerythritol, polyhydric hydroxycarboxylic acids such as citric acid, and anhydrides and esters thereof.
- a trifunctional copolymer component is an elongation retention rate, This is preferable from the viewpoint of suppressing gel foreign substances during polymerization.
- the addition amount is preferably 1.0 mol% or less of either the carboxylic acid component or the glycol component. If it is larger than 1.0 mol%, gelled foreign substances are generated, the viscosity increases rapidly during polycondensation, and chip formation becomes difficult, which is not preferable.
- a more preferable addition amount is 0.1 mol% or more and 0.5 mol% or less.
- the polyester A of the present invention comprises an alkali metal compound selected from at least one of Na, Li and K, a divalent metal compound selected from at least one of Mg, Ca, Mn and Co, and Sb, Ti and Ge. It is preferable to contain a metal compound having a polymerization catalyst ability selected from at least one kind in a total amount of metal elements of 30 ppm to 500 ppm and a phosphorus compound in a range of 30 ppm to 150 ppm in terms of phosphorus element.
- the total amount of metal elements is 30 ppm or more and 500 ppm or less
- the phosphorus compound is 30 ppm or more and 150 ppm or less in terms of phosphorus element, it is easy to adjust the amount of carboxylic acid groups to 5 eq / ton or more and 20 eq / ton or less. It is preferable from the viewpoint of heat resistance.
- the multilayer laminated film of the present invention 100 crosscuts of 1 mm 2 are put on the film surface, a cellophane tape manufactured by Nichiban Co., Ltd. is applied on the film, and a stress of 100 kPa is applied, and then at a speed of 10 mm / second in the 90 degree direction. It is preferable that peeling does not occur when peeling. When delamination occurs in the cellophane tape, the film cannot be used practically. Put 100 crosscut of 1 mm 2 to the film surface, after stressed paste 100kPa a Nichiban Co.
- Polyester A has a carboxylic acid end group amount of 5 eq / ton or more and 20 eq / ton or less, and an alkali metal phosphate is added in an amount of 1.3 mol / ton or more and 3.0 mol / ton or less, and phosphorous.
- the acid is contained in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal phosphate, and the intrinsic viscosity is 0.55 to 0.63. This is because the interlayer adhesion between the A layer and the B layer is increased.
- Polyester B has a carboxylic acid end group amount of 5 to 20 eq / ton, and an alkali metal phosphate of 1.3 mol / ton to 3.0 mol / ton and phosphoric acid to phosphoric acid. By containing it in a molar ratio of 0.4 to 1.5 times with respect to the alkali metal salt, the interlayer adhesion between the A layer and the B layer is further increased. Even when the treatment is performed under conditions of time, almost no peeling occurs.
- the breaking elongation of the film is preferably 50% or more.
- the polyester A of the present invention is a resin composition containing a naphthalenedicarboxylic acid residue of 80 mol% or more as a dicarboxylic acid component and an ethylene glycol residue of 50 mol% or more as a diol component.
- Diols and aliphatic diols include ethylene glycol, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentadiol, diethylene glycol, poly (trimethylene oxide) glycol, poly (Tetramethylene oxide) glycol, polyalkylene glycol, 2,2-bis (4′- ⁇ -hydroxyethoxyphenyl) propane, isosorbate, 1,4-cyclohexanedimethanol, spiroglycol, and ester-forming derivatives thereof. Can be mentioned.
- dicarboxylic acid component examples include isophthalic acid, phthalic acid, naphthalenedicarboxylic acid (1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid), 4,4′-diphenyldicarboxylic acid, Examples include 4,4′-diphenylsulfone dicarboxylic acid, adipic acid, sebacic acid, dimer acid, cyclohexanedicarboxylic acid and ester-forming derivatives thereof.
- the resin C may be a combination of two or more.
- a form containing at least terephthalic acid as the dicarboxylic acid and 1,4-butanediol and poly (tetramethylene oxide) glycol as the diol component is also preferable.
- the resin C is particularly preferably a diol having 4 or more carbon atoms, and polybutylene terephthalate (also referred to as PBT) using 1,4-butanediol as the diol component and terephthalic acid as the dicarboxylic acid is preferable. It is also preferable to copolymerize an amorphous component such as poly (tetramethylene oxide) glycol as the diol component.
- the resin C preferably has a glass transition point (hereinafter also referred to as Tg) of 20 ° C. or lower.
- Tg glass transition point
- the resin C preferably has a glass transition point (hereinafter also referred to as Tg) of 20 ° C. or lower.
- Aliphatic polyethers include poly (ethylene oxide) glycol, poly (propylene oxide) glycol, poly (trimethylene oxide) glycol, poly (tetramethylene oxide) glycol, poly (hexamethylene oxide) glycol, and a combination of ethylene oxide and propylene oxide. And a polymer, an ethylene oxide addition polymer of poly (propylene oxide) glycol, a copolymer glycol of ethylene oxide and tetrahydrofuran, and the like.
- the aliphatic polyester include poly ( ⁇ -caprolactone), polyenantlactone, polycaprylolactone, polybutylene adipate, and polyethylene adipate.
- an ethylene oxide adduct of poly (tetramethylene oxide) glycol or poly (propylene oxide) glycol it is particularly preferable to use an ethylene oxide adduct of poly (tetramethylene oxide) glycol or poly (propylene oxide) glycol.
- poly (tetramethylene oxide) glycol or poly (propylene oxide) glycol it is particularly preferable to use an ethylene oxide adduct of poly (tetramethylene oxide) glycol or poly (propylene oxide) glycol.
- the practical range is ⁇ 50 ° C. or higher from the viewpoint of heat resistance.
- the internal haze can be reduced because the resin C is more compatible with the resin A than when another resin is used as the resin C. And it can be set as the laminated
- polyester resin A whose main repeating unit is ethylene-2,6-naphthalate, dicarboxylic acid component as terephthalic acid, diol component as It is composed of polyester resin B containing polyester obtained by polymerization from ethylene glycol and 1,4-cyclohexanedimethanol, and resin C containing polybutylene terephthalate.
- polyester resin B containing polyester obtained by polymerization from ethylene glycol and 1,4-cyclohexanedimethanol
- resin C containing polybutylene terephthalate.
- the laminate of the A layer made of the crystalline polyester resin A and the B layer made of the amorphous polyester resin B does not have sufficient adhesion between the A layer and the B layer.
- adhesion based on JIS K5400 Even when the test is performed, peeling is likely to occur.
- the peeling of the resin such as the A layer and the B layer is because the high refractive index, Young's modulus, Tg, surface energy, and SP value of the crystalline polyester resin A are different from the amorphous polyester resin B so far.
- the present inventors repeatedly investigated a single film of the polyester resin A, and paid attention to the fact that the tear strength of the polyester resin A is lower than that of other polyesters such as PET. It was discovered that the adhesion of the laminated film can be greatly improved by improving the tear strength of the film.
- the tear strength is improved by adding a small amount of the resin C to the polyester resin A
- the interlayer adhesion of the laminated film is improved by adding the resin C.
- Conventional methods for improving the adhesion of the laminated film include a method in which the component of the B layer is added to the A layer, the component of the A layer is added to the B layer, or a crosslinking agent is added.
- a crosslinking agent is added.
- the technique of adding a small amount of the resin C to the crystalline polyester resin A it is possible to suppress an increase in the internal noise without substantially changing the refractive index.
- the tear strength of a single film of crystalline polyester resin A is improved by adding a small amount (for example, 1% by weight) of resin C. This is because the polymer phase of resin C dispersed in layer A becomes resistance to tearing. It is considered that the tear strength is improved.
- the thickness of the multilayer laminated film of the present invention is preferably 20 ⁇ m to 300 ⁇ m. If it is less than 20 ⁇ m, the film may be weak and handling properties may deteriorate. On the other hand, if it is 300 ⁇ m or more, the film may be too stiff to deteriorate the moldability.
- the multilayer laminated film of the present invention has an easy adhesion layer, a hard coat layer, an abrasion resistant layer, a scratch prevention layer, an antireflection layer, a color correction layer, an ultraviolet ray absorption layer, a heat ray absorption layer, a printing layer, a gas barrier on the film surface.
- a functional layer such as a layer or an adhesive layer is preferably formed.
- the molded product and window member using the multilayer laminated film of the present invention are generally laminated under a sticking pressure, and heat-pressure molding is a preferred method.
- Examples of the molded article and window member using the multilayer laminated film of the present invention include a laminate with a film or a hard transparent support.
- Examples of the support that can be used for the molded article include a resin support, a support made of metal, glass, or ceramic. The surface of the support may be flat or curved, and can take any shape.
- the resin include acrylic resins such as polycarbonate, cyclic polyolefin, polyarylate, polyethylene terephthalate, and polymethyl methacrylate, ABS, and triacetyl cellulose.
- the support is preferably transparent, and the thickness of the support is preferably 0.5 mm to 5 mm.
- Adhesives used for laminating include vinyl acetate resin, vinyl chloride / vinyl acetate copolymer, ethylene / vinyl acetate copolymer, polyvinyl alcohol, polyvinyl butyral, polyvinyl acetal, polyvinyl ether, nitrile rubber, styrene / budadiene rubber Type, natural rubber type, chloroprene rubber type, polyamide type, epoxy resin type, polyurethane type, acrylic resin type, cellulose type, polyvinyl chloride, polyacrylic acid ester, polyisobutylene and the like.
- a tackiness modifier e.g., a plasticizer, a heat stabilizer, antioxidant, a ultraviolet absorber, an antistatic agent, a lubricant, a coloring agent, a crosslinking agent, etc.
- functions such as adhesion between the support and the multilayer laminated film, designability of the molded product, durability, weather resistance, impact resistance, and the like can be enhanced by the adhesive.
- coloring agents azo pigments, polycyclic pigments, lake pigments, nitro pigments, nitroso pigments, aniline black, alkali blue, phthalocyanine pigments, cyanine pigments, azo pigments.
- Examples include dyes, anthraquinone dyes, quinophthalone dyes, methine dyes, condensed polycyclic dyes, reactive dyes, cationic dyes, lanthanum hexaboride, indium tin oxide, antimony tin oxide, and cesium tungsten oxide.
- the thickness of the adhesive layer is preferably 10 ⁇ m to 1 mm.
- Examples of the molding method include roll lamination, extrusion lamination, hot melt lamination, thermal lamination, press lamination, vacuum lamination, and autoclave lamination. Roll lamination is a method in which an adhesive is applied between a multilayer laminated film and a film or a support and laminated, and then a molded product is formed between two rolls.
- Extrusion lamination is a method in which a multilayer laminated film and an adhesive in a molten state are each extruded from a die into a film shape and laminated on a film or a support, and a molded product is formed between two rolls.
- Hot melt lamination is a molding method in which a multilayer laminated film and a film or a support are laminated by applying an adhesive melted by heat.
- Thermal lamination is a molding method in which a multilayer laminated film, an adhesive, and a film or a support are pressed and laminated while being heated with a heating roll.
- Press lamination is a molding method in which a multilayer laminated film, an adhesive, and a film or a support are heated and pressed and laminated by a press machine.
- Vacuum lamination is a molding method in which a multilayer laminated film, an adhesive, a film or a support is heated, the inside of the apparatus is evacuated, and pressed to be laminated.
- Autoclave lamination is a molding method in which a multilayer laminated film, an adhesive, a film or a support are heated, and then the interior of the apparatus is pressurized with a gas or the like for lamination.
- the laminated structure of 200 layers or more in the multilayer laminated film of the present invention can be produced by the following method.
- Polyester resin is supplied from two extruders A and B corresponding to the A layer, and the polymer from each flow path is a multi-manifold type feed block and a square that are known laminating devices.
- Laminate 200 layers or more by using a mixer or using only a comb type feed block, then melt extrude the melt into a sheet using a T-type die, etc., and then cool and solidify on a casting drum And a method for obtaining an unstretched film.
- a method for improving the stacking accuracy of the A layer and the B layer methods described in Japanese Patent Application Laid-Open No. 2007-307893, Japanese Patent No. 4619910, and Japanese Patent No. 4816419 are preferable. If necessary, it is also preferable to dry the polyester used for the A layer and the polyester used for the B layer.
- biaxial stretching is preferably performed by a known sequential biaxial stretching method or simultaneous biaxial stretching method.
- the known sequential biaxial stretching method may be carried out by a method of stretching in the width direction after stretching in the longitudinal direction, a method of stretching in the longitudinal direction after stretching in the width direction, and stretching in the longitudinal direction and stretching in the width direction. You may carry out combining several times.
- biaxial stretching is performed in the range from the glass transition temperature higher than layer A or layer B to 50 ° C. or lower, and the heat treatment is performed at a temperature higher than the stretching temperature.
- the temperature is lower than the higher melting point.
- the unstretched film cast on the cooling roll is 100 ° C. or more and 170 ° C. or less with a longitudinal stretching machine, and preferably 110 ° C. or more and 150 ° C. or less from the viewpoint of thickness unevenness. Stretching is performed using the speed change between the longitudinal stretching machine rolls under the conditions of not less than 6 times and not more than 6 times, preferably not less than 3 times and not more than 4 times.
- the uniaxially stretched film thus obtained is subjected to surface treatment such as corona treatment, flame treatment, and plasma treatment as necessary, and then functions such as slipperiness, easy adhesion, and antistatic properties are provided. It may be applied by in-line coating.
- the film is stretched by a horizontal stretching machine at a temperature of 100 ° C. or higher and 170 ° C. or lower, preferably 110 ° C. or higher and 150 ° C. or lower, 2 or more and 6 or less, preferably 3 or more and 4 or less.
- a known tenter method is used as the stretching method in the width direction. That is, the film is conveyed while being gripped by both ends of the film, and stretched in the width direction by widening the clip interval at both ends of the film.
- the unstretched film cast on the cooling roll is guided to a simultaneous biaxial tenter, and conveyed while holding both ends of the film with clips, and stretched simultaneously and / or stepwise in the longitudinal direction and the width direction. Stretching in the longitudinal direction is achieved by increasing the distance between the clips of the tenter and in the width direction by increasing the distance between the rails on which the clips run.
- the tenter clip subjected to stretching and heat treatment in the present invention is preferably driven by a linear motor system.
- the linear motor method is excellent in that the stretching ratio can be freely changed because the degree of freedom of each clip is high.
- the stretching temperature and the stretching ratio are similar to the conditions for sequential biaxial stretching. That is, the stretching temperature is 100 ° C. or more and 150 ° C. or less, and the stretching magnification is 4 to 36 times, preferably 9 to 16 times as the area magnification.
- heat treatment is performed with a heat treatment machine.
- the heat treatment is generally performed in a transverse stretching machine (tenter). After the transverse stretching, heat treatment is performed at a temperature of 160 ° C. or higher and 240 ° C. or lower, relax 0% or higher and 10% or lower, preferably 0% or higher and 5% or lower. Relaxing may be performed only in the width direction, only in the longitudinal direction, or both in the width direction and the longitudinal direction.
- the heat treatment temperature after stretching is preferably not higher than the melting point of at least one thermoplastic resin and not lower than at least one melting point of the remaining thermoplastic resin.
- one thermoplastic resin maintains a high orientation state, the orientation of the other thermoplastic resin is relaxed, so that a difference in refractive index between these resins can be easily provided.
- the multilayer laminated film of the present invention will be described with reference to specific examples. Even when a thermoplastic resin other than the polyester resin specifically exemplified below is used, the multilayer laminated film of the present invention can be obtained in the same manner by taking into account the description of the present specification including the following examples. it can. [Methods for measuring physical properties and methods for evaluating effects]
- the physical property value evaluation method and the effect evaluation method are as follows.
- This file was opened using 4 (distributor Planetron Co., Ltd.) and image analysis was performed.
- image analysis the relationship between the thickness in the thickness direction and the average brightness of the area sandwiched between the two lines in the width direction was read as numerical data in the vertical thick profile mode.
- spreadsheet software Excel2000
- the data of position (nm) and brightness was adopted in sampling step 2 (decimation 2), and then numerical processing of 4-point moving average was performed.
- the data obtained by periodically changing the brightness is differentiated, and the maximum value and the minimum value of the differential curve are read by a VBA (Visual Basic For Applications) program.
- the layer thickness was calculated as the layer thickness of one layer. This operation was performed for each photograph, and the layer thicknesses of all layers were calculated.
- In-plane refractive index A casting film (unstretched film) having a thickness of 100 ⁇ m was prepared under the same conditions as for the multilayer laminated film, and Abbe refractometer NAR-4T manufactured by Atago Co., Ltd., using sodium D-line as a light source . Sampling was performed from the center in the width direction of the film, the refractive index in the film forming direction (MD) and the direction perpendicular to the film forming direction (width direction, TD) was measured, and the in-plane refractive index (MD + TD) / 2 was obtained.
- IV Intrinsic viscosity Measurement was performed at 25 ° C. using an o-chlorophenol solvent.
- Quantification of alkali metal content in polymer Quantification was performed by atomic absorption spectrometry (manufactured by Hitachi, Ltd .: polarized Zeeman atomic absorption photometer 180-8, frame: acetylene-air).
- Carboxylic acid terminal amount Measured by the method of Malice. (Document M. J. Malice, F. Huizinga. Anal. Chim. Acta, 22363 (1960)). (9) Tear strength Measured with a light load tear tester manufactured by Toyo Seiki. The test piece size was 63.5 mm ⁇ 50 mm, the MD direction and the TD direction were each measured by n number 3, and the average value (MD + TD) / 2 was obtained. The tear strength (N / mm) is represented by a value obtained by dividing the obtained tear force (N) by the film thickness (mm).
- Adhesiveness and Adhesiveness after High Temperature and High Humidity Test 100 pieces of 1 mm 2 crosscuts are put on the film surface, and Nichiban Co., Ltd. cellotape (registered trademark) “No405” is pasted thereon, 1.5 kg After being pressed with a rubber roller under a load of / cm 2 , it was peeled off in the 90 ° direction. The peeling direction was performed three times each in the MD direction and the TD direction. At that time, the average value of the number of films remaining without peeling from the squares was defined as the remaining number, and four-stage evaluation was performed based on the remaining number (A: 100, B : 50 to 99, C: 0 to 49).
- the peeling force at this time is 3.5 N / mm.
- Scotch tape registered trademark “super transparent type S” manufactured by 3M Co., Ltd., which has higher adhesion, was evaluated by the same method, and the evaluation when the remaining number was 100 was S. did.
- the peeling force at this time is 5 N / mm.
- B can be used for some applications, A can be used for most applications, and S can be used for all applications.
- the sample was left at room temperature for 24 hours, and the same adhesion test was performed.
- the evaluation criteria are the same as above.
- a Young's modulus multilayer laminated film was cut into a strip shape having a length of 150 mm and a width of 10 mm to prepare a sample.
- a tensile testing machine Orientec Tensilon UCT-100
- an initial tensile chuck distance was set to 50 mm
- a tensile speed was set to 300 mm / min.
- the measurement was carried out in an atmosphere at a room temperature of 23 ° C. and a relative humidity of 65%, and the Young's modulus was obtained from the obtained load-strain curve.
- the measurement was performed 5 times each in the longitudinal direction and the width direction, and the average value was obtained.
- the sample was dissolved by microwave decomposition using 60% nitric acid and 40% hydrogen fluoride, further diluted to an appropriate concentration with pure water, and subjected to ICP emission spectroscopic analysis.
- Microwave decomposition was performed using a microwave sample pretreatment apparatus ETHOS1 and TFM high-pressure decomposition vessel HPV-100 manufactured by Milestone General Co., Ltd.
- the ICP emission spectroscopic analysis was performed using an ICP emission spectroscopic analyzer VISTA-PRO manufactured by Varian Technologies Japan Limited. Moreover, it diluted with acetonitrile to the solution obtained by said method, and the polymer which settled was isolate
- the phosphoric acid content was measured using an atomic absorption spectrophotometer SPCA-6210 manufactured by Shimadzu.
- the second step after completion of the transesterification reaction, 0.004 part by weight of triethylphosphonoacetate (equivalent to 0.2 mol / ton) was added, and after 5 minutes, 0.019 part by weight of phosphoric acid (equivalent to 1.9 mol / ton) ) And 0.027 parts by weight of sodium dihydrogen phosphate dihydrate (equivalent to 1.7 mol / ton) were added to an ethylene glycol solution (pH 5.0) dissolved in 0.5 parts by weight of ethylene glycol.
- the polymerization reaction was carried out at a final temperature of 285 ° C.
- polyethylene naphthalate having an intrinsic viscosity of 0.52 and COOH end groups of 18 eq / ton.
- the obtained polyethylene naphthalate was dried and crystallized at 160 ° C. for 6 hours, and then subjected to solid-phase polymerization at 230 ° C. and a vacuum degree of 0.3 Torr.
- PET1 Metal for producing PET1
- the preparation process in the first step was the same as that of PEN1, except that the composition was 100 parts by weight of dimethyl terephthalate, 64.5 parts by weight of ethylene glycol, 0.06 parts by weight of magnesium acetate, and 0.03 parts by weight of antimony trioxide.
- PET1 was prepared.
- PETG1 Metal for producing PETG1
- the composition of PEN1 was changed except that the charged composition in the first step was 100 parts by weight of dimethyl terephthalate, 64.5 parts by weight of 1,4-cyclohexanedimethanol, 0.06 parts by weight of magnesium acetate, and 0.03 parts by weight of antimony trioxide.
- PETG1 was prepared in the same manner as the production method.
- PET (hereinafter referred to as PETG, product number: GN001, manufactured by Eastman Chemical Co., Ltd.) in which PEN1 and polyester B were copolymerized with 33 mol% of cyclohexanedimethanol was used.
- PEN1 was a crystalline polyester
- PETG was an amorphous polyester.
- Polyester A and polyester B were each melted at 290 ° C. in an extruder, and after passing through five FSS type leaf disk filters, after passing through a gear pump and a filter, they were merged in a 201-layer feed block. .
- the merged polyesters A and B are laminated in the feed block so that the thickness of each layer is substantially constant from the surface side to the opposite surface side, and the polyester A is 101 layers and the polyester B is 100 layers.
- the structure was made.
- the thickness of each layer was adjusted by the shape of fine slits (formed with a processing accuracy of 0.01 mm) provided in the flow path of each layer in the feed block. Both surface layer portions were made of polyester A.
- the shape of the feed block and the discharge amount were adjusted so that the thickness ratio of the adjacent A layer and B layer (A layer thickness / B layer thickness) was 1.1.
- a laminate composed of a total of 201 layers thus obtained was supplied to a T-die and formed into a sheet shape, and then the surface temperature was kept at 25 ° C. while applying an electrostatic application voltage of 8 kV with a wire.
- the film was rapidly cooled and solidified on a casting drum to obtain an unstretched film.
- This unstretched film was longitudinally stretched at a longitudinal stretching temperature of 130 ° C. and a stretching ratio of 3.3 times, and then cooled once.
- the layer thickness distribution of the laminated film obtained through the following steps is shown in FIG.
- the slit is designed so that it becomes like this.
- a biaxially stretched film having a thickness of 125 ⁇ m was obtained in the same manner as in Example 1.
- Table 1 the obtained film was excellent in average reflectance at a wavelength of 850 nm to 1400 nm and excellent in transparency in the visible light region.
- Example 3 PEN2 was produced in the same manner as in the production method of PEN1 except that sodium dihydrogen phosphate was changed to potassium dihydrogen phosphate, and a biaxially stretched film was obtained in the same manner as in Example 2. As shown in Table 1, the obtained film exhibited almost the same performance as Example 2.
- Example 4 PEN3 was prepared in the same manner as in the production method of PEN1, except that the intrinsic viscosity was adjusted to 0.60 and the COOH end group was 17.4 eq / ton by adjusting the solid-state polymerization time. A film was obtained. As shown in Table 1, the obtained film was superior to Example 2 in interlayer adhesion.
- Example 5 PEN 4 and 5 were prepared in the same manner as in the production method of PEN 3 except that the addition amount and mixing ratio of phosphoric acid and sodium dihydrogen phosphate were changed, and a biaxially stretched film was obtained in the same manner as in Example 1. The obtained film exhibited the same performance as Example 4 as shown in Table 1.
- Example 7 PEN6 was prepared in the same manner as in the production method of PEN3 except that triethylphosphonoacetate was not added, and a biaxially stretched film was obtained in the same manner as in Example 2. As shown in Table 1, the obtained film exhibited almost the same performance as that of Example 4, but the durability was slightly lowered.
- Example 8 PEN7 was prepared in the same manner as in the production method of PEN3 except that 0.3 mol% of trimethyl trimellitic acid was added in the second step, and a biaxially stretched film was obtained in the same manner as in Example 2. As shown in Table 1, the obtained film was slightly better in durability than Example 4.
- Example 9 A biaxially stretched film was obtained in the same manner as in Example 2 except that polyester B was mixed with 85% by weight of PETG and 15% by weight of PET1. As shown in Table 1, the obtained film had improved interlayer adhesion as compared with Example 4, but the average reflectance was reduced.
- Example 10 A biaxially stretched film was obtained in the same manner as in Example 2 except that polyester A was mixed with 85% by weight of PEN3 and 15% by weight of PET1. As shown in Table 1, the obtained film had improved interlayer adhesion as compared with Example 4, but the average reflectance was reduced.
- Example 11 A biaxially stretched film was obtained in the same manner as in Example 2 except that PETG1 was used for polyester B. As shown in Table 1, the obtained film exhibited extremely superior interlayer adhesion and durability as compared with Example 4.
- Example 12 As the resin C, PBT having a Tg of 45 ° C. (product number: Toraycon 1200S, manufactured by Toray Industries, Inc.) was used.
- a biaxially stretched film was obtained in the same manner as in Example 2 except that polyester A was mixed with 99% by weight of PEN1 and 1% by weight of resin C. As shown in Table 1, the obtained film exhibited extremely excellent interlayer adhesion as compared with Example 2.
- Example 13 Biaxial as in Example 12 except that a copolymer of PBT of Tg-20 ° C. and polyether (indicated in the table as copolymerized PBT. Product number: Hytrel 5557, manufactured by Toray DuPont) was used as the resin C. A stretched film was obtained. As shown in Table 1, the obtained film exhibited extremely excellent interlayer adhesion as compared with Example 12. (Example 14) A laminated film was obtained in the same manner as in Example 12 except that the mixing amount of the resin C was changed to 3% by weight. As shown in Table 1, the obtained film exhibited extremely excellent interlayer adhesion as compared with Example 12.
- Polyester B is an amorphous resin having no melting point and a copolymerized PEN (copolymerization) obtained by copolymerizing 25 mol% of 2,6-naphthalenedicarboxylic acid spiroglycol having a glass transition temperature of 103 ° C., 25 mol% of terephthalic acid, and 50 mol% of ethylene glycol. PEN) was used.
- An unstretched film obtained by the same method as in Example 2 was heated with a roll group set at 120 ° C., and then stretched 3.0 times with a roll set at 135 ° C. in the longitudinal direction of the film. Once cooled.
- This uniaxially stretched film was guided to a tenter, preheated with hot air at 115 ° C., and then stretched 3.0 times in the film width direction at a temperature of 135 ° C. to obtain a biaxially stretched film as a film roll. Further, the biaxially stretched film was heated with a roll group set at 120 ° C., and then stretched 3.0 times with a roll set at 160 ° C. in the longitudinal direction of the film.
- the film thus obtained exhibited physical properties as shown in Table 1, exhibited a high Young's modulus in the longitudinal direction, and exhibited polarization reflection characteristics.
- PEN8 was prepared in the same manner as in the production method of PEN1, except that the intrinsic viscosity was adjusted to 0.65 and the COOH end group was 15.6 eq / ton by adjusting the time of solid phase polymerization. A film was obtained. As shown in Table 1, the obtained film had a worse interlaminar adhesion than Example 2.
- Polyester A used PET1.
- the unstretched film was longitudinally stretched at 90 ° C. and a stretching ratio of 3.3 times, led to a tenter that grips both ends with clips, and transversely stretched at 100 ° C. and 3.5 times, and then cooled once.
- PEN9 was prepared in the same manner as in the production method of PEN3, and a biaxially stretched film was obtained in the same manner as in Example 1.
- Table 1 the obtained film has insufficient interlayer adhesion, and since it does not exhibit a buffering effect, the amount of increase in COOH end groups before and after wet heat treatment tends to be large, and the durability is insufficient. there were.
- PEN10 was prepared in the same manner as in the production method of PEN3, and a biaxially stretched film was obtained in the same manner as in Example 1. Since the amount of sodium dihydrogen phosphate added was increased, sodium dihydrogen phosphate became a foreign substance during the polymerization. As a result, foreign sodium dihydrogen phosphate did not function, interlayer adhesion deteriorated, and durability was insufficient.
- PEN11 was prepared in the same manner as in the production method of PEN3 except that the COOH end group amount after solid phase polymerization was 21 eq / ton, and a biaxially stretched film was obtained in the same manner as in Example 2. As shown in Table 1, the obtained film had insufficient interlayer adhesion, and the durability was insufficient because the COOH end groups were large.
- metal element content represents the total content of the following metal elements (Na, Li, K, Mg, Ca, Mn, Co, Sb, Ti, Ge).
- the present invention relates to a heat ray reflective film having no delamination, excellent transparency and reflectance in a wavelength band in the near infrared region, and excellent outdoor durability.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
[I]主たる繰り返し単位がエチレン-2,6-ナフタレートであるポリエステルAからなるA層と、主たる繰返し単位がエチレンテレフタレートからなる、A層を構成するポリエステルの屈折率よりも低い屈折率を有するポリエステルBからなるB層とを、交互に少なくとも201層以上積層させた多層積層フィルムであり、ポリエステルAが以下の要件を満たすことを特徴とする多層積層フィルム。
(1)カルボン酸末端基量が5eq/t以上20eq/t以下。
(2)リン酸アルカリ金属塩を、1.3mol/ton以上3.0mol/ton以下、かつ、リン酸をリン酸アルカリ金属塩に対して0.4倍以上1.5倍以下のモル比で含有する。
(3)固有粘度が0.55以上0.63以下。
[II]波長850nmから1400nmの範囲における平均反射率が60%以上であり、波長400nmから700nmの可視光領域における平均反射率が少なくとも30%未満であることを特徴とする[I]に記載の多層積層フィルム。
[III]引裂強度が4N/mm2以上であることを特徴とする[I]または[II]に記載の多層積層フィルム。
[IV]ポリエステルBが以下の要件を満たすことを特徴とする[I]~[III]のいずれかに記載の多層積層フィルム。
(1)カルボン酸末端基量が5eq/ton以上20eq/ton以下。
(2)リン酸アルカリ金属塩を、1.3mol/ton以上3.0mol/ton以下、かつ、リン酸をリン酸アルカリ金属塩に対して0.4倍以上1.5倍以下のモル比で含有する。
[V]ポリエステルAが、リン酸、リン酸アルカリ金属塩以外のリン化合物を0.01mol/ton以上50mol/ton以下含有することを特徴とする[I]~[IV]のいずれかに記載の多層積層フィルム。
[VI]ポリエステルAが、共重合成分として3官能以上の架橋成分を0.01~1.0mol%含有していることを特徴とする[I]~[V]のいずれかに記載の多層積層フィルム。
[VII]ポリエステルAが、Na、Li、Kの少なくとも1種から選ばれるアルカリ金属化合物、Mg、Ca、Mn、Coの少なくとも1種から選ばれる2価の金属化合物、およびSb、Ti、Geの少なくとも1種からから選ばれる重合触媒能を有する金属化合物を、金属元素の合計量で30ppm以上500ppm以下、および、リン化合物をリン元素換算で30ppm以上150ppm以下含有することを特徴とする[I]~[VI]のいずれかに記載の多層積層フィルム。
[VIII]ポリエステルBがエチレン-2,6-ナフタレートを含んでいないことを特徴とする[I]~[VII]のいずれかに記載の多層積層フィルム。
[IX]フィルム表面に1mm2のクロスカットを100個入れ、ニチバン社製セロハンテープをその上に貼り付け100kPaの応力を加えた後、90度方向に10mm/秒の速度で剥離した際に剥離が生じないことを特徴とすることを特徴とする[I]~[VIII]のいずれかに記載の多層積層フィルム。
[X]温度125℃、相対湿度100%RH、24時間の条件下にて処理を行ったときのフィルム表面に1mm2のクロスカットを100個入れ、ニチバン社製セロハンテープをその上に貼り付け100kPaの応力を加えた後、90度方向に10mm/秒の速度で剥離した際に剥離が生じないことを特徴とすることを特徴とする[I]~[IX]のいずれかに記載の多層積層フィルム。
[XI]温度125℃、相対湿度100%RH、24時間の条件下にて処理を行ったときのフィルムの破断伸度が50%以上であることを特徴とする[I]~[X]のいずれかに記載の多層積層フィルム。
[XII]ポリエステルAがジカルボン酸成分としてナフタレンジカルボン酸残基を90モル%以上、ジオール成分としてエチレングリコール残基を50モル%以上含む樹脂組成物であり、A層中に構成成分として炭素数が4以上のジオール、ジカルボン酸、脂肪族ジオールのうち少なくとも1以上の残基を含む樹脂Cを含むことを特徴とすることを特徴とする[I]~[XI]のいずれかに記載の多層積層フィルム。
[XIII]前記樹脂Cがポリブチレンテレフタレートおよび/またはポリブチレンテレフタレートとの共重合体であることを特徴とすることを特徴とする[I]~[XII]のいずれかに記載の多層積層フィルム。
[XIV]ヤング率が最大となる方向におけるヤング率が10GPa以下であることを特徴とする[I]~[XIII]のいずれかに記載の多層積層フィルム。
naはA層の面内屈折率、daはA層の層厚み、
nbはB層の面内屈折率、dbはB層の層厚み
(本願において、面内屈折率は単純に屈折率ともいう)。
本発明のポリエステルAは、ジカルボン酸成分としてナフタレンジカルボン酸残基を80モル%以上、ジオール成分としてエチレングリコール残基を50モル%以上含む樹脂組成物であり、A層中に構成成分として炭素数が4以上のジオール、ジカルボン酸、脂肪族ジオールのうち少なくとも1以上の残基を含む樹脂Cを含んでいることが好ましい。ジオールおよび脂肪族ジオールとしては、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタジオール、ジエチレングリコール、ポリ(トリメチレンオキシド)グリコール、ポリ(テトラメチレンオキシド)グリコール、ポリアルキレングリコール、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、イソソルベート、1,4-シクロヘキサンジメタノール、スピログリコール、およびこれらのエステル形成性誘導体などが挙げられる。ジカルボン酸成分としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸(1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸)、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、アジピン酸、セバシン酸、ダイマー酸、シクロヘキサンジカルボン酸とそれらのエステル形成性誘導体などが挙げられる。樹脂Cは2種類以上の組み合わせであってもよく、例えばジオール成分として1,4-ブタンジオールおよびポリ(テトラメチレンオキシド)グリコール、ジカルボン酸としてテレフタル酸を少なくとも含有している形態も好ましい。樹脂Cとしては炭素数が4以上のジオールを用いることが特に好ましく、ジオール成分として1,4-ブタンジオール、ジカルボン酸としてテレフタル酸を用いたポリブチレンテレフタレート(PBTとも示す)が好ましい。更にジオール成分としてポリ(テトラメチレンオキシド)グリコール等の非晶性の成分を共重合させることも好ましい。
[物性の測定方法ならびに効果の評価方法]
物性値の評価方法ならびに効果の評価方法は次の通りである。
日立製作所製 分光光度計(U-4100 Spectrophotomater)に付属の12°正反射付属装置P/N134-0104を取り付け、入射角度φ=12度における波長250~2600nmの絶対反射率を測定した。測定条件:スリットは2nm(可視)/自動制御(赤外)とし、ゲインは2と設定し、走査速度を600nm/分とした。サンプルをフィルム幅中央部から5cm×5cmで切り出し測定した。これらの結果から、波長400nm~700nm、波長850nm~1400nmの波長範囲のうち最も平均反射率が高くなるように選んだ300nmの範囲の平均反射率を求めた。
使用したポリエステル樹脂からサンプル質量5mgを採取し、示差走査熱量分析計(DSC)セイコーインスツルメント(株)製EXSTAR DSC6220を用い、JIS-K-7122(1987年)に従って測定、算出した。測定は25℃から290℃まで5℃/minで昇温しこのときの融点±20℃の範囲におけるベースラインからの積分値を融解熱量とした。また、ここでの融点とは、DSCのベースラインからの差異が最大となる点とした。ここで、融解熱量が20J/g以上の樹脂を結晶性樹脂、5J/g以下である樹脂を非晶性樹脂とした。
多層積層フィルム中のフィルムの各層の層厚みおよび積層数は、ミクロトームを用いて断面を切り出したサンプルについて、透過型電子顕微鏡(TEM)観察により求めた。透過型電子顕微鏡H-7100FA型((株)日立製作所製)を用い、加速電圧100kVの条件でフィルムの断面を4000~100000倍に拡大観察し、断面写真を撮影、層構成および各層厚みを測定した。尚、コントラストを高く得るために、公知のRuO4やOsO4などを使用した染色技術を用いた。4万倍のTEM写真画像を、画像処理ソフトImage-Pro Plus ver.4(販売元 プラネトロン(株))を用いて、このファイルを開き、画像解析を行った。画像解析処理は、垂直シックプロファイルモードで、厚み方向位置と幅方向の2本のライン間で挟まれた領域の平均明るさとの関係を、数値データとして読み取った。表計算ソフト(Excel2000)を用いて、位置(nm)と明るさのデータに対してサンプリングステップ2(間引き2)でデータ採用した後に、4点移動平均の数値処理を施した。さらに、この得られた周期的に明るさが変化するデータを微分し、VBA(ビジュアル・ベーシック・フォア・アプリケーションズ)プログラムにより、その微分曲線の極大値と極小値を読み込み、隣り合うこれらの間隔を1層の層厚みとして層厚みを算出した。この操作を写真毎に行い、全ての層の層厚みを算出した。
多層積層フィルムと同様の条件で厚み100μmのキャスティングフィルム(未延伸フィルム)を作成し、アッベ屈折率計 (株)アタゴ製 NAR-4T、光源としてナトリウムD線を用いた。フィルムの幅方向中心からサンプリングを行い、製膜方向(MD)、製膜方向に対する垂直方向(幅方向、TD)の屈折率を測定し、面内屈折率(MD+TD)/2を求めた。
o-クロロフェノール溶媒を用い、25℃で測定した。
理学電機(株)製蛍光X線分析装置(型番:3270)を用いて測定した。
原子吸光分析法(日立製作所製:偏光ゼーマン原子吸光光度計180-8。フレーム:アセチレン-空気)にて定量を行った。
Mauliceの方法によって測定した。(文献M.J.Maulice,F.Huizinga.Anal.Chim.Acta,22363(1960))
(9)引裂強度
東洋精機製軽荷重引裂き試験機で測定した。試験片寸法は63.5mm×50mmで、MD方向とTD方向をそれぞれn数3で測定して、平均値(MD+TD)/2を求めた。引裂強度(N/mm)は、得られた引裂力(N)をフィルム厚み(mm)で除した値で表す。
フィルム表面に1mm2のクロスカットを100個入れ、ニチバン(株)製セロテープ(登録商標)「No405」をその上に貼り付け、1.5kg/cm2の荷重でゴムローラーで押し付けた後、90°方向に剥離させた。剥離方向はMD方向とTD方向にそれぞれ3回ずつ行い、その時マス目からフィルムが剥離せずに残存していた数の平均値を残存数とし、残存数により4段階評価(A:100、B:50~99、C:0~49、)した。このときの剥離力は3.5N/mmである。また、○のサンプルについてはより密着力の強いスリーエム(株)製スコッチテープ(登録商標)「超透明タイプS」を同様の方法にて評価し、残存した個数が100の場合の評価をSとした。このときの剥離力は5N/mmである。一般的にBが用途によっては使用できる、Aがほとんどの用途に使用できる、Sがあらゆる用途に使用できることを表す。
多層積層フィルムを用いて、高温加湿器にて125℃、100%RH、24時間処理後のフィルム破断伸度を測定した。フィルムの伸度は、ASTM-d882に規定された方法に従って、インストロンタイプの引張試験機を用いて、下記条件にて測定した。
測定装置:オリエンテック(株)製フィルム強伸度測定装置
“テンシロンAMF/RTA-100”
試料サイズ:幅10mm×試長間100mm
引張速度:200mm/分
測定環境:23℃、65%RH
伸度保持率50%以上を合格とした。
多層積層フィルムを長さ150mm×幅10mmの短冊形に切り出し、サンプルとした。引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離50mmとし、引張速度を300mm/分として引張試験を行った。測定は室温23℃、相対湿度65%の雰囲気にて実施し、得られた荷重-歪曲線からヤング率を求めた。なお、測定は長手方向および幅方向についてそれぞれ5回ずつ行い、それらの平均値から求めた。
ポリエステル樹脂A、Bからサンプル質量5gを採取し、示差走査熱量分析計(DSC) セイコー電子工業(株)製ロボットDSC-RDC220を用い、JIS-K-7122(1987年)に従って測定、算出した。溶融して吐出後、すぐに10℃以下の冷水で冷却した樹脂試料を、25℃から290℃まで20℃/minで昇温した。このとき、結晶化ピークが見える前の変曲点をガラス転移温度とした。
ポリマー中に含まれる金属元素の総量(Na、Li、Kの少なくとも1種から選ばれるアルカリ金属化合物、Mg、Ca、Mn、Coの少なくとも1種から選ばれる2価の金属元素、およびSb、Ti、Geの少なくとも1種からから選ばれる金属元素)は、ICP発光分光分析法(高周波誘導結合プラズマ発光分光分析法:ICP-AES、ICP-OES)により行った。試料は、凍結冷凍粉砕にて粉末状にして100℃で乾燥処理したものを用いた。測定の直前に、60%硝酸と40%フッ化水素を用いてマイクロ波分解により試料を溶解し、更に純水で適当な濃度に希釈して、ICP発光分光分析に供した。マイクロ波分解は、マイルストーンゼネラル株式会社製のマイクロ波試料前処理装置ETHOS1、TFM高圧分解容器HPV-100を用いて行った。ICP発光分光分析は、バリアンテクノロジーズジャパンリミテッド製のICP発光分光分析装置VISTA-PROを用いて行った。
また、上記の方法にて得た溶液にアセトニトリルで希釈し、沈下したポリマーを遠心分離機にて分離して上澄み液を得た。これを島津製原子吸光分光光度計SPCA-6210を用いてリン酸含有量を測定した。
第一工程として、ナフタレンジカルボン酸ジメチル100重量部、エチレングリコール51.2重量部、酢酸マグネシウム0.06重量部、三酸化アンチモン0.03重量部を180℃、窒素雰囲気下で溶融後、攪拌しながら230℃まで3時間かけて昇温し、メタノールを留出させ、エステル交換反応を終了した。第二工程として、エステル交換反応終了後、トリエチルホスホノアセテート0.004重量部(0.2mol/ton相当)を添加し、5分後、リン酸0.019重量部(1.9mol/ton相当)とリン酸二水素ナトリウム2水和物0.027重量部(1.7mol/ton相当)をエチレングリコール0.5重量部に溶解したエチレングリコール溶液(pH5.0)を添加した。第三工程として、重合反応を最終到達温度285℃、真空度0.1Torrで行い、固有粘度0.52、COOH末端基18eq/tonのポリエチレンナフタレートを得た。第四工程として、得られたポリエチレンナフタレートを160℃で6時間乾燥、結晶化させたのち、230℃、真空度0.3Torrにて固相重合を行い、固有粘度0.63、COOH末端基12.8eq/tonのポリエチレンナフタレート(以下PENと呼ぶこともある)1を得た。
第一工程の仕込み組成を、テレフタル酸ジメチル100重量部、エチレングリコール64.5重量部、酢酸マグネシウム0.06重量部、三酸化アンチモン0.03重量部とした以外はPEN1の製造方法と同様にしてPET1を作成した。
第一工程の仕込み組成を、テレフタル酸ジメチル100重量部、1,4-シクロヘキサンジメタノール64.5重量部、酢酸マグネシウム0.06重量部、三酸化アンチモン0.03重量部とした以外はPEN1の製造方法と同様にしてPETG1を作成した。
ポリエステルAにPEN1、ポリエステルBにシクロヘキサンジメタノールが33mol%共重合されたPET(以下PETGと呼ぶ。品番:GN001、イーストマンケミカル製)を用いた。DSCよりポリエステルの融解熱量を測定した結果、PEN1は結晶性ポリエステル、PETGは非晶ポリエステルであった。ポリエステルAおよびポリエステルBを、それぞれ、押出機にて290℃で溶融させ、FSSタイプのリーフディスクフィルタを5枚介した後、ギヤポンプおよびフィルタを介した後、201層のフィードブロックにて合流させた。合流したポリエステルAおよびBは、フィードブロック内にて各層の厚みが表面側から反対表面側までほぼ一定となるようにし、ポリエステルAが101層、ポリエステルBが100層からなる厚み方向に交互に積層された構造とした。各層の厚みの調整は、フィードブロック内の各層の流路に設けた微細スリット(加工精度0.01mmにて形成)の形状により調整した。なお、両表層部分はポリエステルAとなるようにした。ここで隣接するA層とB層の厚み比(A層厚み/B層厚み)が1.1になるように、フィードブロックの形状および吐出量にて調整した。
得られたフィルムは表1に示すとおり、層間密着性に優れていた。
ギアポンプにて、フィルムの厚膜層を除いた光学厚みの比がポリエステルA/ポリエステルB=1になるように計量しながら、スリット数301個のスリットプレートを2枚用いた構成である601層積層装置にて合流させて、厚み方向に交互に601層積層された積層体とした。積層体とする方法は、特開2007-307893号公報〔0053〕~〔0056〕段の記載に従って行った。なお、A層同士を重ね合わせて形成する層があるため、スリットプレート内の間隙数は、602個となる。また、波長1200nm以下の反射帯域をポリマー多層積層とし、かつ波長850nm以上1200nm以下の平均反射率が60%以上とするために、以下の工程を経て得られた積層フィルムの層厚み分布が図1のごときになるように設計されたスリット設計されたものである。あとは実施例1と同様にして、厚み125μmの二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、波長850nm~1400nmの平均反射率に優れ、また可視光領域の透過性に優れていた。
リン酸二水素ナトリウムをリン酸二水素カリウムに変更する以外はPEN1の製造方法と同様にしてPEN2を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例2とほぼ同等の性能を示した。
固相重合の時間を調整して固有粘度0.60、COOH末端基17.4eq/tonとした以外はPEN1の製造方法と同様にしてPEN3を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例2よりも層間密着力に優れていた。
リン酸とリン酸二水素ナトリウムの添加量と混合比を変更する以外はPEN3の製造方法と同様にしてPEN4および5を作成し、実施例1と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4と同等の性能を示した。
トリエチルホスホノアセテートを添加しなかった以外はPEN3の製造方法と同様にしてPEN6を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4とほぼ同等の性能を示したがわずかに耐久性が低下していた。
第二工程においてトリメリット酸トリメチルを0.3mol%添加した以外はPEN3の製造方法と同様にしてPEN7を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4よりもわずかに耐久性が優れていた。
ポリエステルBに、PETGを85重量%とPET1を15重量%混合させたものを使用した以外は実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4と比べて層間密着力は向上していたが、平均反射率は低下していた。
ポリエステルAに、PEN3を85重量%とPET1を15重量%混合させたものを使用した以外は実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4と比べて層間密着力は向上していたが、平均反射率は低下していた。
ポリエステルBにPETG1を使用した以外は、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例4と比べて非常に優れた層間密着性と耐久性を示した。
(実施例12)
樹脂Cとして、Tg45℃のPBT(品番:トレコン1200S、東レ製)を用いた。ポリエステルAに、PEN1を99重量%と樹脂Cを1重量%混合させたものを使用した以外は実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例2と比べて非常に優れた層間密着性を示した。
(実施例13)
樹脂Cとして、Tg-20℃のPBTとポリエーテルの共重合体(表中において共重合PBTと記す。品番:ハイトレル5557、東レデュポン製)を用いた以外は実施例12と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例12と比べて非常に優れた層間密着性を示した。
(実施例14)
樹脂Cの混合量を3重量%に変更した以外は実施例12と同様にして積層フィルムを得た。得られたフィルムは表1に示すとおり、実施例12と比べて非常に優れた層間密着性を示した。
(実施例15)
ポリエステルBとして融点を持たない非晶性樹脂でありガラス転移温度103℃の2,6-ナフタレンジカルボン酸スピログリコール25mol%、テレフタル酸25mol%、エチレングリコール50mol%を共重合した共重合PEN(共重合PEN)を用いた。 実施例2と同様の方法にして得られた未延伸フィルムを、120℃に設定したロール群で加熱した後、フィルム長手方向に135℃に設定されたロールで3.0倍に延伸し、その後一旦冷却した。 この一軸延伸フィルムをテンターに導き、115℃の熱風で予熱後、135℃の温度でフィルム幅方向に3.0倍延伸し、二軸延伸フィルムをフィルムロールとして得た。さらに、二軸延伸フィルムを120℃に設定したロール群で加熱した後、フィルム長手方向に160℃に設定されたロールで3.0倍に延伸した。このようにして得られたフィルムは、表1に示すとおりの物性を示すものであり、長手方向に高いヤング率を示すものであり、偏光反射特性を示した。
固相重合の時間を調整して固有粘度0.65、COOH末端基15.6eq/tonとした以外はPEN1の製造方法と同様にしてPEN8を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、実施例2よりも層間密着力が悪化していた。
ポリエステルAにPET1を使用した。未延伸フィルムを、90℃、延伸倍率3.3倍で縦延伸を行い、両端部をクリップで把持するテンターに導き100℃、3.5倍横延伸した後一旦冷却した。つづいて、この一軸延伸フィルムの両面に空気中でコロナ放電処理を施し、基材フィルムの濡れ張力を55mN/mとし、その処理面に(ガラス転移温度が18℃のポリエステル樹脂)/(ガラス転移温度が82℃のポリエステル樹脂)/数平均粒子径100nmのシリカ粒子からなる積層形成膜塗液を塗布し、透明・易滑・易接着層を形成した。10秒間230℃で熱処理及び3%の幅方向リラックスを実施し、厚み125μmの多層積層フィルムを得た。層間密着性は問題ないものの、A層とB層の屈折率差不足により平均反射率が不足しており、また、耐久性も不充分であった。
リン酸二水素ナトリウムおよびリン酸を添加しなかった以外は、PEN3の製造方法と同様にしてPEN9を作成し、実施例1と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、層間密着性が不十分であり、また緩衝効果を発現しないために湿熱処理前後のCOOH末端基増加量が大きくなる傾向にあり、耐久性が不十分であった。
リン酸二水素ナトリウム添加量を多く添加した以外は、PEN3の製造方法と同様にしてPEN10を作成し、実施例1と同様にして二軸延伸フィルムを得た。リン酸二水素ナトリウム添加量を多くしたために重合中にリン酸二水素ナトリウムが異物化した。その結果、異物化したリン酸二水素ナトリウムが機能せず、層間密着性が悪化し、耐久性も不十分であった。
固相重合後のCOOH末端基量21eq/tonとした以外は、PEN3の製造方法と同様にしてPEN11を作成し、実施例2と同様にして二軸延伸フィルムを得た。得られたフィルムは表1に示すとおり、層間密着性が不十分であり、またCOOH末端基が大きいために、耐久性が不十分であった。
Claims (14)
- 主たる繰り返し単位がエチレン-2,6-ナフタレートであるポリエステルAからなるA層と、主たる繰返し単位がエチレンテレフタレートからなる、A層を構成するポリエステルの屈折率よりも低い屈折率を有するポリエステルBからなるB層とを、交互に少なくとも201層以上積層させた多層積層フィルムであり、ポリエステルAが以下の要件を満たすことを特徴とする多層積層フィルム。
(1)カルボン酸末端基量が5eq/ton以上20eq/ton以下。
(2)リン酸アルカリ金属塩を、1.3mol/ton以上3.0mol/ton以下、かつ、リン酸をリン酸アルカリ金属塩に対して0.4倍以上1.5倍以下のモル比で含有する。
(3)固有粘度が0.55以上0.63以下。 - 波長850nmから1400nmの範囲における平均反射率が60%以上であり、波長400nmから700nmの可視光領域における平均反射率が少なくとも30%未満であることを特徴とする請求項1に記載の多層積層フィルム。
- 引裂強度が4N/mm2以上であることを特徴とする請求項1に記載の多層積層フィルム。
- ポリエステルBが以下の要件を満たすことを特徴とする請求項1に記載の多層積層フィルム。
(1)カルボン酸末端基量が5eq/ton以上20eq/ton以下。
(2)リン酸アルカリ金属塩を、1.3mol/ton以上3.0mol/ton以下、かつ、リン酸をリン酸アルカリ金属塩に対して0.4倍以上1.5倍以下のモル比で含有する。 - ポリエステルAが、リン酸、リン酸アルカリ金属塩以外のリン化合物を0.01mol/ton以上50mol/ton以下含有することを特徴とする請求項1に記載の多層積層フィルム。
- ポリエステルAが、共重合成分として3官能以上の架橋成分を0.01~1.0mol%含有していることを特徴とする請求項1に記載の多層積層フィルム。
- ポリエステルAが、Na、Li、Kの少なくとも1種から選ばれるアルカリ金属化合物、Mg、Ca、Mn、Coの少なくとも1種から選ばれる2価の金属化合物、およびSb、Ti、Geの少なくとも1種からから選ばれる金属化合物を、金属元素の合計量で30ppm以上500ppm以下、および、リン化合物をリン元素換算で30ppm以上150ppm以下含有することを特徴とする請求項1に記載の多層積層フィルム。
- ポリエステルBがエチレン-2,6-ナフタレートを含んでいないことを特徴とする請求項1に記載の多層積層フィルム。
- フィルム表面に1mm2のクロスカットを100個入れ、ニチバン社製セロハンテープをその上に貼り付け100kPaの応力を加えた後、90度方向に10mm/秒の速度で剥離した際に剥離が生じないことを特徴とすることを特徴とする請求項1に記載の多層積層フィルム。
- 温度125℃、相対湿度100%RH、24時間の条件下にて処理を行ったときのフィルム表面に1mm2のクロスカットを100個入れ、ニチバン社製セロハンテープをその上に貼り付け100kPaの応力を加えた後、90度方向に10mm/秒の速度で剥離した際に剥離が生じないことを特徴とすることを特徴とする請求項1に記載の多層積層フィルム。
- 温度125℃、相対湿度100%RH、24時間の条件下にて処理を行ったときのフィルムの破断伸度が50%以上であることを特徴とする請求項1に記載の多層積層フィルム。
- ポリエステルAがジカルボン酸成分としてナフタレンジカルボン酸残基を80モル%以上、ジオール成分としてエチレングリコール残基を50モル%以上含む樹脂組成物であり、A層中に構成成分として炭素数が4以上のジオール、ジカルボン酸、脂肪族ジオールのうち少なくとも1以上の残基を含む樹脂Cを含むことを特徴とすることを特徴とする請求項1に記載の多層積層フィルム。
- 前記樹脂Cがポリブチレンテレフタレートおよび/またはポリブチレンテレフタレートとの共重合体であることを特徴とすることを特徴とする請求項1に記載の多層積層フィルム。
- ヤング率が最大となる方向におけるヤング率が10GPa以下であることを特徴とする請求項1に記載の多層積層フィルム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167030065A KR102288704B1 (ko) | 2014-08-07 | 2015-07-03 | 다층 적층 필름 |
CN201580032252.5A CN106457810B (zh) | 2014-08-07 | 2015-07-03 | 多层叠层膜 |
JP2015534302A JP6551232B2 (ja) | 2014-08-07 | 2015-07-03 | 多層積層フィルム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-161167 | 2014-08-07 | ||
JP2014161167 | 2014-08-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016021345A1 true WO2016021345A1 (ja) | 2016-02-11 |
Family
ID=55263619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/069219 WO2016021345A1 (ja) | 2014-08-07 | 2015-07-03 | 多層積層フィルム |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6551232B2 (ja) |
KR (1) | KR102288704B1 (ja) |
CN (1) | CN106457810B (ja) |
TW (1) | TWI677436B (ja) |
WO (1) | WO2016021345A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017177810A (ja) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | 積層フィルム |
JP2019093575A (ja) * | 2017-11-20 | 2019-06-20 | 帝人フィルムソリューション株式会社 | 多層積層フィルム、それを用いた輝度向上部材および偏光板 |
JP2019521200A (ja) * | 2016-05-04 | 2019-07-25 | クラリアント・プラスティクス・アンド・コーティングス・リミテッド | ポリエステルの加水分解安定化のための組成物 |
JPWO2019069758A1 (ja) * | 2017-10-03 | 2020-09-17 | 東レ株式会社 | 積層フィルム |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7143854B2 (ja) * | 2017-10-11 | 2022-09-29 | 大日本印刷株式会社 | ポリブチレンテレフタレートフィルム、電池用包装材料、電池用包装材料の製造方法、及び電池 |
CN110920183A (zh) * | 2019-12-04 | 2020-03-27 | 江苏光辉包装材料有限公司 | 一种白色聚酯热收缩标签膜的制备方法 |
CN114179325B (zh) * | 2021-12-04 | 2024-02-02 | 宁波盈瑞聚合科技有限公司 | 一种bopet薄膜的生产方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09506837A (ja) * | 1993-12-21 | 1997-07-08 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | 多層光学フィルム |
JP2003511729A (ja) * | 1999-10-12 | 2003-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | 複屈折ポリマーを使用して製造される光学体 |
WO2010103945A1 (ja) * | 2009-03-09 | 2010-09-16 | 東レ株式会社 | ポリエステル樹脂組成物、その製造方法およびフィルム |
JP2011089090A (ja) * | 2009-10-26 | 2011-05-06 | Toray Ind Inc | ポリエステル樹脂組成物、その製造方法、およびフィルム |
WO2012032876A1 (ja) * | 2010-09-08 | 2012-03-15 | 東レ株式会社 | ポリエステル組成物の製造方法 |
WO2013122025A1 (ja) * | 2012-02-13 | 2013-08-22 | 東レ株式会社 | 反射フィルム |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS484193Y1 (ja) | 1969-07-22 | 1973-02-02 | ||
JP3935936B2 (ja) * | 1995-06-26 | 2007-06-27 | スリーエム カンパニー | 反射偏光型半透過反射体を備えた半透過反射型ディスプレイ |
TWI281891B (en) * | 2002-03-01 | 2007-06-01 | Teijin Ltd | Biaxially oriented multi-layered laminated film and method for manufacture thereof |
JP4147322B2 (ja) | 2002-07-18 | 2008-09-10 | キヤノン株式会社 | 画像識別回路 |
JP4534637B2 (ja) | 2004-03-31 | 2010-09-01 | 東レ株式会社 | 積層フィルム |
JP5640380B2 (ja) * | 2008-02-01 | 2014-12-17 | 東レ株式会社 | 積層フィルムおよび成形体、反射体 |
JP5749794B2 (ja) * | 2011-04-12 | 2015-07-15 | 帝人株式会社 | 配向積層フィルム |
-
2015
- 2015-07-03 JP JP2015534302A patent/JP6551232B2/ja active Active
- 2015-07-03 WO PCT/JP2015/069219 patent/WO2016021345A1/ja active Application Filing
- 2015-07-03 KR KR1020167030065A patent/KR102288704B1/ko active IP Right Grant
- 2015-07-03 CN CN201580032252.5A patent/CN106457810B/zh active Active
- 2015-07-22 TW TW104123631A patent/TWI677436B/zh active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09506837A (ja) * | 1993-12-21 | 1997-07-08 | ミネソタ・マイニング・アンド・マニュファクチュアリング・カンパニー | 多層光学フィルム |
JP2003511729A (ja) * | 1999-10-12 | 2003-03-25 | スリーエム イノベイティブ プロパティズ カンパニー | 複屈折ポリマーを使用して製造される光学体 |
WO2010103945A1 (ja) * | 2009-03-09 | 2010-09-16 | 東レ株式会社 | ポリエステル樹脂組成物、その製造方法およびフィルム |
JP2011089090A (ja) * | 2009-10-26 | 2011-05-06 | Toray Ind Inc | ポリエステル樹脂組成物、その製造方法、およびフィルム |
WO2012032876A1 (ja) * | 2010-09-08 | 2012-03-15 | 東レ株式会社 | ポリエステル組成物の製造方法 |
WO2013122025A1 (ja) * | 2012-02-13 | 2013-08-22 | 東レ株式会社 | 反射フィルム |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017177810A (ja) * | 2016-03-28 | 2017-10-05 | 東レ株式会社 | 積層フィルム |
JP2019521200A (ja) * | 2016-05-04 | 2019-07-25 | クラリアント・プラスティクス・アンド・コーティングス・リミテッド | ポリエステルの加水分解安定化のための組成物 |
JP7015790B2 (ja) | 2016-05-04 | 2022-02-03 | アヴィエント スウィッツァランド ゲーエムベーハー | ポリエステルの加水分解安定化のための組成物 |
JPWO2019069758A1 (ja) * | 2017-10-03 | 2020-09-17 | 東レ株式会社 | 積層フィルム |
JP7238404B2 (ja) | 2017-10-03 | 2023-03-14 | 東レ株式会社 | 積層フィルム |
JP2019093575A (ja) * | 2017-11-20 | 2019-06-20 | 帝人フィルムソリューション株式会社 | 多層積層フィルム、それを用いた輝度向上部材および偏光板 |
JP7067027B2 (ja) | 2017-11-20 | 2022-05-16 | 東洋紡株式会社 | 多層積層フィルム、それを用いた輝度向上部材および偏光板 |
Also Published As
Publication number | Publication date |
---|---|
KR102288704B1 (ko) | 2021-08-11 |
TW201609392A (zh) | 2016-03-16 |
KR20170039075A (ko) | 2017-04-10 |
CN106457810A (zh) | 2017-02-22 |
CN106457810B (zh) | 2018-08-28 |
TWI677436B (zh) | 2019-11-21 |
JPWO2016021345A1 (ja) | 2017-05-18 |
JP6551232B2 (ja) | 2019-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6551232B2 (ja) | 多層積層フィルム | |
KR101159687B1 (ko) | 적층 필름 | |
JP5643441B2 (ja) | 二軸延伸積層ポリエステルフィルム、それからなる合わせガラス用赤外線遮蔽構成体およびそれらからなる合わせガラス | |
JP5807466B2 (ja) | 積層フィルムおよびそれを用いた自動車用窓ガラス | |
WO2005040868A1 (ja) | 近赤外線遮蔽フィルム | |
JP7400724B2 (ja) | 多層積層フィルム | |
JP7400725B2 (ja) | 多層積層フィルム | |
JP7400723B2 (ja) | 多層積層フィルム | |
CN110023076B (zh) | 多层层叠膜和使用其的加工品 | |
JP5782302B2 (ja) | 多層延伸フィルム | |
JPWO2018012252A1 (ja) | フィルムおよび積層体 | |
JP6225495B2 (ja) | 多層積層フィルムおよびこれを用いたガラス窓部材 | |
JP5782303B2 (ja) | 多層延伸フィルム | |
JP5031883B2 (ja) | 積層ポリエステルフィルム | |
JP2006281731A (ja) | 積層フィルム | |
JP5706246B2 (ja) | 多層延伸フィルム | |
JP2018127607A (ja) | フィルム | |
JP4703179B2 (ja) | 積層ポリエステルフィルム | |
CN110869826B (zh) | 多层层叠薄膜 | |
JP2011126182A (ja) | 1軸延伸多層積層フィルム、それからなる輝度向上用部材、それらからなる液晶ディスプレイ用複合部材およびそれらからなる液晶ディスプレイ装置 | |
JP2020042080A (ja) | 多層積層フィルム、それを用いた輝度向上部材および偏光板 | |
JP2017177350A (ja) | 積層フィルム | |
JP2024110078A (ja) | 投影画像表示部材 | |
JP2024072399A (ja) | 積層ポリエステルフィルム | |
WO2024062961A1 (ja) | フィルムおよびその製造方法、積層構成体、合わせガラス、自動車 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015534302 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15830569 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20167030065 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15830569 Country of ref document: EP Kind code of ref document: A1 |