WO2012165021A1 - 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋 - Google Patents

塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋 Download PDF

Info

Publication number
WO2012165021A1
WO2012165021A1 PCT/JP2012/058381 JP2012058381W WO2012165021A1 WO 2012165021 A1 WO2012165021 A1 WO 2012165021A1 JP 2012058381 W JP2012058381 W JP 2012058381W WO 2012165021 A1 WO2012165021 A1 WO 2012165021A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl chloride
chloride resin
aggregate particles
particles
resin aggregate
Prior art date
Application number
PCT/JP2012/058381
Other languages
English (en)
French (fr)
Inventor
植田貴志
三田村文寛
斉藤広
石原守雄
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201280026633.9A priority Critical patent/CN103562232B/zh
Priority to JP2013517906A priority patent/JP5383952B2/ja
Priority to US14/122,948 priority patent/US8937113B2/en
Publication of WO2012165021A1 publication Critical patent/WO2012165021A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D31/00Materials specially adapted for outerwear
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D19/00Gloves
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/02Monomers containing chlorine
    • C08F14/04Monomers containing two carbon atoms
    • C08F14/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/02Direct processing of dispersions, e.g. latex, to articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/12Esters; Ether-esters of cyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride

Definitions

  • the present invention relates to vinyl chloride resin aggregate particles, a method for producing the same, and a glove using the same.
  • Sheets, gloves, bags, etc. coated with vinyl chloride resin have high mechanical strength, excellent wear resistance, chemical resistance, and oil resistance, and are used in a wide range of fields such as fisheries, agriculture, and mining.
  • vinyl chloride resin sheets, gloves, bags, etc. are coated by spraying or dipping a plastisol containing vinyl chloride resin aggregate particles or a gelled melt obtained by heat-treating plastisol onto a cloth. It was done.
  • plastisol Since plastisol is a viscous liquid, when applied and immersed in a fabric, the plastisol may penetrate into the fabric and may penetrate to the back of the fabric. Similarly, even when plastisol is heat-treated, the gelled melt may penetrate into the back surface of the fabric. When the plastisol or its gelled melt penetrates into the back side of the fabric, there is a problem that the flexibility of the coated product is remarkably deteriorated and the product function is impaired. In particular, when used for gloves, there is a problem that even if the penetration is local, the obtained gloves give the user unpleasant feeling and the product value is inferior.
  • Patent Document 1 proposes a method of heat-treating a vinyl chloride resin for paste in hot air at 60 ° C. to 140 ° C. for 5 minutes to 1 hour.
  • Patent Document 2 proposes a vinyl chloride resin having an average particle size of 20 to 50 ⁇ m, which is dried at an outlet temperature of a spray dryer of 65 ° C. or higher.
  • Patent Document 3 proposes a vinyl chloride resin having a specific particle size distribution and a certain level of collapse resistance, as well as a specific void volume.
  • Patent Document 4 proposes a method in which a permeability inhibitor such as a copolymer of methyl vinyl ether and maleic anhydride is added to vinyl chloride resin latex and dried.
  • Patent Document 5 proposes a method of drying a vinyl chloride resin latex coagulated with a specific coagulant composed of a water-soluble polymer and an inorganic salt.
  • Patent Document 6 proposes a method using a vinyl chloride resin latex polymerized using a specific acrylic monomer.
  • the plastisol containing the vinyl chloride resin proposed in Patent Documents 1 to 6 is improved in impermeability, the plastisol tends to be worse than the plastisol containing a general-purpose paste vinyl chloride resin. If the plastisol has poor sag, the plastisol is excessively attached to the fabric gloves or the like in the process of hanging the excess plastisol after applying the plastisol to the fabric gloves or the like attached to the hand-shaped mold. Gloves and the like with excessive plastisol are heavy and inflexible, resulting in poor usability.
  • Non-Patent Documents 1 and 2 when di-2-ethylhexyl phthalate, which is a general plasticizer, is used, the plasticizer contains a slight amount of water that absorbs moisture in the atmosphere. It is known that the sol viscosity greatly increases with the change in the amount. Such a thickening of the sol with time reduces the sag of the plastisol.
  • the present invention provides a vinyl chloride resin aggregate particle having excellent impermeability and good sagging property in plastisol, a production method thereof, and a glove using the same.
  • the vinyl chloride resin aggregate particles of the present invention have a volume average particle diameter of 10 to 60 ⁇ m, and the proportion of particles having a particle diameter of 10 to 60 ⁇ m is 50% by volume or more.
  • the viscosity at 1 is ⁇ 40 and the viscosity at a shear rate of 1 s ⁇ 1 of plastisol heated from 40 ° C. to 10 ° C./min and held at 70 ° C.
  • the vinyl chloride resin aggregate particles 100 A plastisol composed of parts by weight and 160 parts by weight of di-2-ethylhexyl phthalate satisfies the relationship of 3 ⁇ ⁇ 70 / ⁇ 40 ⁇ 1000.
  • the vinyl chloride resin aggregate particles of the present invention have a volume average particle diameter of 10 to 60 ⁇ m, and the proportion of particles having a particle diameter of 10 to 60 ⁇ m is 50% by volume or more. Has an apparent density in the range of 0.21 to 0.34 g / ml, and the vinyl chloride resin aggregate particles have 5 voids having a void size of 1.0 ⁇ m or more per aggregate particle. Less than 0.0, and when the vinyl chloride resin aggregate particles are ultrasonically treated by irradiation with ultrasonic waves of 28 kHz for 12 minutes at 25 ° C., the particle diameter after the ultrasonic treatment is 1.0 ⁇ m or less. The ratio of the particles is less than 3.0% by volume.
  • the production method of the present invention is a method of producing the vinyl chloride resin aggregate particles of the present invention, wherein a coagulant containing 50% by weight or more of an inorganic acid is added to a vinyl chloride resin latex and coagulated to form a polymer solid.
  • a coagulant containing 50% by weight or more of an inorganic acid is added to a vinyl chloride resin latex and coagulated to form a polymer solid.
  • the slurry containing the resin aggregate particles is dehydrated, dried, pulverized and / or classified, so that the volume average particle diameter is 10 to 60 ⁇ m and the particles There wherein the ratio of particles of 10 ⁇ 60 [mu] m to obtain a vinyl chloride resin aggregate particles is at least 50% by volume.
  • the heat treatment is performed by mixing a coagulated latex of vinyl chloride resin with one or more heating media selected from the group consisting of water vapor and water bath.
  • the vinyl chloride resin is preferably a vinyl chloride resin.
  • the heat treatment is preferably performed at a temperature of 80 to 115 ° C.
  • the temperature at which the coagulant is added to the vinyl chloride resin latex and coagulated is preferably in the range of 5 ° C. to Tg-15 ° C.
  • the coagulated latex of the vinyl chloride resin preferably has a polymer solid content of 25 to 50% by weight.
  • the vinyl chloride resin latex is polymerized by adding a polymerization initiator and an emulsifier to a vinyl chloride monomer or a mixture of a vinyl chloride monomer and a monomer copolymerizable therewith.
  • the emulsifier is a fatty acid salt.
  • coagulant consists only of inorganic acids.
  • the inorganic acid is preferably at least one selected from the group consisting of sulfuric acid and hydrochloric acid.
  • the glove of the present invention is a glove coated with a vinyl chloride resin, and the glove is coated with a vinyl chloride resin by applying plastisol to the cloth surface of the glove and then gelling by heating.
  • the plastisol contains the vinyl chloride resin aggregate particles of the present invention.
  • vinyl chloride resin agglomerate particles that give plastisol excellent impermeability can be obtained.
  • the plastisol containing the vinyl chloride resin aggregate particles of the present invention has little increase in viscosity due to temperature rise, and the aging time when the moisture content of the plastisol is high due to moisture absorption (including the case where moisture is added). There is little increase in viscosity due to, and it has excellent sagability.
  • a glove that is coated with a vinyl chloride resin has good wearability, is flexible, and has a good feeling of use.
  • FIG. 1 is a schematic diagram illustrating an example of a process for producing vinyl chloride resin aggregate particles.
  • FIG. 2 is a schematic diagram for explaining another example of a process for producing vinyl chloride resin aggregate particles.
  • FIG. 3 is a schematic diagram for explaining the hierarchical structure of the vinyl chloride resin aggregate particles.
  • FIG. 4 is a scanning electron micrograph (magnified 3000 times) of the fractured surface of the vinyl chloride resin aggregate particles of one example of the present invention.
  • FIG. 5 is a scanning electron micrograph (3000 times) of a fractured surface of a vinyl chloride resin aggregate particle of one comparative example of the present invention.
  • FIG. 6 is a schematic diagram illustrating an example of a void.
  • FIG. 1 is a schematic diagram illustrating an example of a process for producing vinyl chloride resin aggregate particles.
  • FIG. 2 is a schematic diagram for explaining another example of a process for producing vinyl chloride resin aggregate particles.
  • FIG. 3 is a schematic diagram for explaining the hierarchical structure of the vinyl
  • FIG. 7 is a graph showing the particle size distribution (particle size distribution) of the vinyl chloride resin aggregate particles before and after ultrasonic treatment of one example of the present invention.
  • FIG. 8 is a graph showing the particle size distribution (particle size distribution) of the vinyl chloride resin aggregate particles of one comparative example of the present invention before and after ultrasonic treatment.
  • the vinyl chloride resin aggregate particles of the present invention can suppress the penetration of plastisol into the back surface of the fabric, which can occur when the plastisol is applied to the fabric surface, by including the aggregate particles in the plastisol.
  • fabric refers to a sheet-like material using fibers such as woven fabric, knitted fabric, and non-woven fabric.
  • impermeable indicates that when plastisol is applied to the fabric surface, penetration into the back surface of the fabric can be suppressed.
  • application refers to an operation of attaching plastisol to the surface of a fabric by an operation such as painting, applying, or dipping.
  • Vinyl chloride resin aggregate particles In the following, first, the vinyl chloride resin aggregate particles of Embodiment 1 will be described.
  • the vinyl chloride resin aggregate particles of the present invention have a volume average particle size of 10 to 60 ⁇ m and a ratio of particles having a particle size of 10 to 60 ⁇ m is 50% by volume or more. If the volume average particle diameter is in the range of 10 to 60 ⁇ m, it is also preferable from the viewpoint of suppressing the increase in viscosity of plastisol and suppressing the precipitation of vinyl chloride resin aggregate particles in the plastisol over time. Further, when the ratio of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles is 50% by volume or more, the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is improved, and the glove weight is increased.
  • the vinyl chloride resin aggregate particles preferably have a volume average particle diameter of 10 to 50 ⁇ m. Further, from the viewpoint of impermeability, the vinyl chloride resin aggregate particles preferably have a ratio of particles having a particle diameter of 10 to 60 ⁇ m of 60% by volume or more.
  • the volume average particle size means an average size obtained from a volume-based particle size distribution. The particle size distribution of the particles can be measured using a Microtrac HRA9320-X100 type (manufactured by Nikkiso Co., Ltd.) which is a laser diffraction type particle size distribution measuring device.
  • the vinyl chloride resin agglomerated particles are 24 under the conditions of 30 ° C. and relative humidity of 97.0 ⁇ 0.4% (test by a desiccator method using a saturated aqueous solution of potassium sulfate) according to the operation procedure of JIS A 1475.
  • the moisture absorption when held for a period of time (hereinafter also simply referred to as moisture absorption) is 1.5% by weight or less.
  • moisture absorption is 1.5% by weight or less.
  • viscosity increase thickening due to moisture absorption
  • due to moisture absorption of plastisol hardly occurs during the production or storage of plastisol containing vinyl chloride resin aggregate particles.
  • the sag of plastisol depends on its viscosity.
  • the vinyl chloride resin aggregate particles preferably have a moisture absorption rate of 1.0% by weight or less, and more preferably 0.75% by weight or less.
  • plastisol containing vinyl chloride resin aggregate particles is less likely to thicken due to moisture absorption, and can provide a plastisol having good impermeability and sagging property even under high temperature and high humidity conditions.
  • a light and flexible glove can be obtained by coating such a plastisol on the glove.
  • the plastisol containing the vinyl chloride resin aggregate particles preferably has little change in viscosity due to temperature rise from the viewpoint of sagging property.
  • the sagability of plastisol depends on its viscosity.
  • the viscosity of plastisol is susceptible to temperature.
  • the viscosity of the plastisol tends to gradually increase as the gelation proceeds. Therefore, when the plastisol is applied to the glove of the fabric, the drooping property of the plastisol may greatly change if the change in viscosity due to the temperature of the mold on which the glove is attached is large.
  • the viscosity at a shear rate 1s -1 plastisol was kept at 40 ° C. 10 minutes and ⁇ 40, ⁇ 70 viscosity at a shear rate 1s -1 of 3 minutes holding the plastisol at 70 ° C. was heated at 10 ° C. / min from 40 ° C. In this case, it is possible to evaluate a change in viscosity due to an increase in temperature by ⁇ 70 / ⁇ 40 (hereinafter, also referred to as thermal thickening).
  • thermo viscosity increase can be performed using a plastisol comprising 100 parts by weight of the vinyl chloride resin aggregate particles and 160 parts by weight of di-2-ethylhexyl phthalate.
  • plastisol prepared or stored at room temperature for measurement it is preferable to heat from room temperature to 40 ° C., hold at 40 ° C. for 10 minutes, and raise the temperature to 70 ° C.
  • the viscosity can be easily measured using a commercially available rheometer having a temperature control function such as AR2000 manufactured by TA Instruments.
  • ⁇ 70 / ⁇ 40 of the plastisol containing the vinyl chloride resin aggregate particles when ⁇ 70 / ⁇ 40 of the plastisol containing the vinyl chloride resin aggregate particles is in the range of 3 to 1000, the increase in viscosity due to the temperature increase of the plastisol is small and the sagability is excellent. From the standpoint of superior sagging and impermeability, ⁇ 70 / ⁇ 40 is preferably 5 to 110. When ⁇ 70 / ⁇ 40 (thermal viscosity increase) is 3 or more, the plastisol sag tends to be good, and the vinyl chloride resin aggregate particles do not collapse when preparing the plastisol, and the particle size is 10 The ratio of particles of ⁇ 60 ⁇ m tends to be 50% by volume or more, and the impermeability tends to be improved.
  • thermo viscosity increase when ⁇ 70 / ⁇ 40 (thermal viscosity increase) is 1000 or less, the osmotic property of plastisol tends to be good, and the thermal viscosity increase of plastisol tends to be small and the sagging property is improved even under high temperature conditions. There is.
  • the ⁇ 70 / ⁇ 40 (thermal viscosity increase) varies depending on the formation conditions of the aggregate particles, for example, the type and amount of the coagulant, the concentration of polymer solids in the coagulated latex, the type of heating medium, the heat treatment temperature, the heat treatment time, and the like. .
  • ⁇ 70 / ⁇ 40 heat Vinyl chloride resin aggregate particles having a viscosity increase in the range of 3 to 1000 can be obtained.
  • the apparent density of the vinyl chloride resin aggregate particles is preferably in the range of 0.21 to 0.34 g / ml, more preferably in the range of 0.21 to 0.31 g / ml.
  • the apparent density of the vinyl chloride resin aggregate particles can be measured using a powder tester PT-R type (manufactured by Hosokawa Micron Corporation) according to JIS K 7365.
  • the vinyl chloride resin aggregate particles of the present invention have a volume average particle size of 10 to 60 ⁇ m, and the proportion of particles having a particle size of 10 to 60 ⁇ m is 50% by volume or more. If the volume average particle diameter is in the range of 10 to 60 ⁇ m, it is also preferable from the viewpoint of suppressing the increase in viscosity of plastisol and suppressing the precipitation of vinyl chloride resin aggregate particles in the plastisol over time. Further, when the ratio of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles is 50% by volume or more, the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is improved, and the glove weight is increased.
  • the vinyl chloride resin aggregate particles preferably have a volume average particle diameter of 10 to 50 ⁇ m. Further, from the viewpoint of impermeability, the vinyl chloride resin aggregate particles preferably have a ratio of particles having a particle diameter of 10 to 60 ⁇ m of 60% by volume or more.
  • the volume average particle size means an average size obtained from a volume-based particle size distribution. The particle size distribution of the particles can be measured using a Microtrac HRA9320-X100 type (manufactured by Nikkiso Co., Ltd.) which is a laser diffraction type particle size distribution measuring device.
  • the above-mentioned vinyl chloride resin aggregate particles have an apparent density in the range of 0.21 to 0.34 g / ml. Preferably, it is in the range of 0.21 to 0.31 g / ml.
  • the apparent density of the vinyl chloride resin aggregate particles is in the range of 0.21 to 0.34 g / ml, the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is improved, and it is light and flexible. Gloves are obtained.
  • the apparent density of the vinyl chloride resin aggregate particles can be measured using a powder tester PT-R type (manufactured by Hosokawa Micron) according to JIS K 7365 as in the case of the first embodiment.
  • the number of voids (voids) having a void size of 1.0 ⁇ m or more per aggregate particle is less than 5.0. If the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is 5.0 or more, both the impermeability and sagging property of plastisol containing vinyl chloride resin aggregate particles are high. There is a tendency that the level cannot be maintained, and when applied to a glove, one or both of impermeability and sagging tends to deteriorate.
  • the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is 5.0 or more
  • the plastisol containing the vinyl chloride resin aggregate particles is stored for several days or more, the plastisol The viscosity tends to increase with time, and the handleability deteriorates.
  • the above vinyl chloride resin aggregate particles have a void size of 1.0 ⁇ m or more per aggregate particle. It is preferable that the number of voids is 4.0 or less, more preferably 3.6 or less, still more preferably 3.0 or less, still more preferably 1.0 or less, Particularly preferred is 0.
  • the vinyl chloride resin agglomerate particles are a coagulated latex of vinyl chloride resin obtained by coagulating vinyl chloride resin latex particles 51 (corresponding to basic particles) with a coagulant.
  • This is a vinyl chloride resin aggregate particle (secondary aggregate particle) 53 in which particles 52 (primary aggregate particles) are aggregated, and has a tufted structure.
  • the size of the voids in the vinyl chloride resin aggregate particles 53 having such a tuft structure depends on the size of the primary aggregate particles 52 forming the tuft structure. In particular, when the average diameter of the major and minor diameters of the primary aggregate particles is larger than 1.0 ⁇ m, a void having a void size of 1.0 ⁇ m or more is easily formed.
  • the “average diameter of the major axis and the minor axis” is represented by a value obtained by dividing the sum of the major axis and the minor axis by 2 and is generally referred to as the major and minor average diameter.
  • the average length of the major axis and the minor axis becomes (major axis + minor axis) / 2.
  • the size of the primary aggregate particles is easily affected by the type of coagulant and the type of emulsifier in producing a vinyl chloride resin latex by emulsion polymerization.
  • vinyl chloride-based resin aggregate particles having almost no voids with a void size of 1.0 ⁇ m or more can be prepared, which is preferable. More preferably, when an inorganic acid is used as the coagulant and a fatty acid salt such as a potassium salt of a fatty acid, a sodium salt of a fatty acid, or an ammonium salt of a fatty acid is used as an emulsifier, the void size is 1.0 ⁇ m or more and no void is generated. Vinyl resin aggregate particles can be prepared.
  • the size of voids in the vinyl chloride resin aggregate particles can be measured by observing the fractured surface of the vinyl chloride resin aggregate particles with a scanning electron microscope.
  • 4 and 5 show scanning electron micrographs (3,000 times) of the fractured surfaces of the vinyl chloride resin aggregate particles of one example and one comparative example of the present invention, respectively.
  • the vinyl chloride resin aggregate particles of the present invention have almost no voids, whereas the vinyl chloride resin aggregate particles of the comparative example have micron-sized voids. ing.
  • the void shape present in the vinyl chloride resin aggregate particles is an irregular shape.
  • the long diameter of the void that is, a rectangle circumscribing the void (circumscribed rectangle) as shown in FIG.
  • the length (major axis) on the long side is defined as the void size.
  • the measurement of the void size in the vinyl chloride resin aggregate particles can be performed as follows. 0.2 g of vinyl chloride resin aggregate particles are added to 1.0 g of the epoxy adhesive and mixed so that the whole is uniform to prepare a mixed solution. The obtained mixed solution is packed in a gelatin capsule and allowed to stand at room temperature (20 ⁇ 5 ° C.) for 24 hours to cure the epoxy adhesive to obtain a cured mixture. The resulting hardened mixture is removed from the gelatin capsule and frozen by immersion in liquid nitrogen for 15 minutes.
  • a cutter blade is applied to the frozen cured mixture, and the cured mixture is cleaved by hitting it with a wooden hammer from above to form a fractured surface.
  • the section of the vinyl chloride resin agglomerate particles with platinum-palladium, they were observed with a scanning electron microscope (Hitachi High-Tech "S-4800", magnification 3000 times) and selected at random.
  • the number of voids having a void size of 10 ⁇ m or more in 10 split sections of the vinyl chloride resin aggregate particles thus obtained was counted and averaged, and the void size existing per aggregate particle was 1.0 ⁇ m or more. The number of voids.
  • the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment is less than 3.0% by volume.
  • “sonication” refers to irradiation with ultrasonic waves of 28 kHz at 25 ° C. for 12 minutes.
  • 0.5 g of vinyl chloride resin aggregate particles is 0.5% dioctylsulfosuccinate. It means that a dispersion liquid dispersed in 100 ml of an aqueous sodium acid solution is irradiated with ultrasonic waves of 28 kHz at 25 ° C. for 12 minutes.
  • an ultrasonic cleaner (WT-300M type, manufactured by Honda Electronics Co., Ltd.) filled with a predetermined amount of water (25 ° C.)
  • 100 ml of a 0.5% aqueous sodium dioctylsulfosuccinate solution was added to a vinyl chloride resin coagulum.
  • a 200 ml beaker (manufactured by Hario Glass Co., Ltd.) containing a dispersion in which 0.5 g of aggregated particles are dispersed is placed so that the liquid level in the beaker is lower than the level of water stretched on the ultrasonic cleaner, This refers to irradiation with an ultrasonic wave of 28 kHz at 25 ° C. for 12 minutes.
  • the proportion of particles having a particle size of 1.0 ⁇ m or less can be determined from the particle size distribution measured on a volume basis.
  • the particle size distribution can be measured using a Microtrac HRA9320-X100 type (manufactured by Nikkiso Co., Ltd.), which is a laser diffraction type particle size distribution measuring device.
  • the ratio of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment in the vinyl chloride resin aggregate particles is 3.0% by volume or more, the impermeability of the plastisol containing the vinyl chloride resin aggregate particles Gets worse.
  • the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment in the vinyl chloride resin aggregate particles is 2.0% by volume or less, more preferably 1.0% by volume. Hereinafter, it is particularly preferably 0% by volume.
  • FIG. 7 and 8 are graphs showing the particle size distribution (particle size distribution) before and after ultrasonic treatment of vinyl chloride resin aggregate particles of one example and one comparative example of the present invention, respectively.
  • the particle size distribution curve 30 before the ultrasonic treatment and the particle size distribution curve 31 after the ultrasonic treatment almost overlap each other, and the vinyl chloride resin aggregate particles are not substantially collapsed by the ultrasonic treatment. It can be seen that the vinyl chloride resin aggregate particles of the examples of the present invention are excellent in ultrasonic collapse resistance.
  • FIG. 7 the particle size distribution curve 30 before the ultrasonic treatment and the particle size distribution curve 31 after the ultrasonic treatment almost overlap each other, and the vinyl chloride resin aggregate particles are not substantially collapsed by the ultrasonic treatment. It can be seen that the vinyl chloride resin aggregate particles of the examples of the present invention are excellent in ultrasonic collapse resistance.
  • the particle size distribution curve 40 before the ultrasonic treatment and the particle size distribution curve 41 after the ultrasonic treatment are not overlapped, and the ultrasonic wave
  • the vinyl chloride resin aggregate particles are disintegrated by the treatment, and particles having a particle size of 1.0 ⁇ m or less are generated. Whether the vinyl chloride resin aggregate particles are disrupted by ultrasonic waves depends on whether the vinyl chloride resin aggregate particles (primary aggregate particles) of the vinyl chloride resin constituting the vinyl chloride resin aggregate particles (secondary aggregate particles) are used. ) Depends on the fusion force between.
  • the fusion force between the coagulated latex particles (primary aggregate particles) of the vinyl chloride resin increases as the heat treatment temperature increases, and increases as the polymer solid concentration during coagulation increases. It also depends on the type of coagulant and emulsifier used during emulsion polymerization. In particular, when an inorganic acid is used as a coagulant, a fatty acid salt is used as an emulsifier, and a polymer solid content concentration of a coagulated latex of a vinyl chloride resin is set to 30% by weight or more, resin agglomerated particles having a high fusing force can be obtained. It is possible and preferable.
  • the vinyl chloride resin agglomerated particles are 24 under the conditions of 30 ° C. and relative humidity of 97.0 ⁇ 0.4% (test by a desiccator method using a saturated aqueous solution of potassium sulfate) according to the operation procedure of JIS A 1475. It is preferable that a moisture absorption rate (hereinafter also simply referred to as a moisture absorption rate) at the time of holding is 1.5% by weight or less. When the moisture absorption is 1.5% by weight or less, viscosity increase (thickening due to moisture absorption) due to moisture absorption of plastisol hardly occurs during the production or storage of plastisol containing vinyl chloride resin aggregate particles. The sag of plastisol depends on its viscosity.
  • the vinyl chloride resin aggregate particles preferably have a moisture absorption rate of 1.0% by weight or less, and more preferably 0.75% by weight or less.
  • plastisol containing vinyl chloride resin aggregate particles is less likely to thicken due to moisture absorption, and can provide a plastisol having good impermeability and sagging property even under high temperature and high humidity conditions.
  • a light and flexible glove can be obtained by coating such a plastisol on the glove.
  • the plastisol containing the vinyl chloride resin aggregate particles preferably has little change in viscosity due to temperature rise from the viewpoint of sagging property.
  • the sagability of plastisol depends on its viscosity.
  • the viscosity of plastisol is susceptible to temperature.
  • the viscosity of the plastisol tends to gradually increase as the gelation proceeds. Therefore, when the plastisol is applied to the glove of the fabric, the drooping property of the plastisol may greatly change if the change in viscosity due to the temperature of the mold on which the glove is attached is large.
  • the viscosity at a shear rate 1s -1 plastisol was kept at 40 ° C. 10 minutes and ⁇ 40, ⁇ 70 viscosity at a shear rate 1s -1 of 3 minutes holding the plastisol at 70 ° C. was heated at 10 ° C. / min from 40 ° C.
  • a change in viscosity due to a temperature rise can be evaluated by ⁇ 70 / ⁇ 40 (thermal viscosity increase).
  • the evaluation of ⁇ 70 / ⁇ 40 thermal viscosity increase
  • the viscosity can be easily measured using a commercially available rheometer having a temperature control function such as AR2000 manufactured by TA Instruments.
  • ⁇ 70 / ⁇ 40 of the plastisol containing the vinyl chloride resin aggregate particles is in the range of 3 to 1000, the increase in viscosity due to the temperature rise of the plastisol is small and the sag is excellent. From the standpoint of superior sagging and impermeability, ⁇ 70 / ⁇ 40 is preferably 5 to 110.
  • ⁇ 70 / ⁇ 40 thermal viscosity increase
  • the plastisol sag tends to be good, and the vinyl chloride resin aggregate particles do not collapse when preparing the plastisol, and the particle size is 10
  • the ratio of particles of ⁇ 60 ⁇ m tends to be 50% by volume or more, and the impermeability tends to be improved.
  • thermo viscosity increase when ⁇ 70 / ⁇ 40 (thermal viscosity increase) is 1000 or less, the osmotic property of plastisol tends to be good, and the thermal viscosity increase of plastisol tends to be small and the sagging property is improved even under high temperature conditions. There is.
  • the ⁇ 70 / ⁇ 40 (thermal viscosity increase) varies depending on the formation conditions of the aggregate particles, for example, the type and amount of the coagulant, the concentration of polymer solids in the coagulated latex, the type of heating medium, the heat treatment temperature, the heat treatment time, and the like. .
  • ⁇ 70 / ⁇ 40 heat Vinyl chloride resin aggregate particles having a viscosity increase in the range of 3 to 1000 can be obtained.
  • the vinyl chloride resin aggregate particles of the present invention can be obtained by aggregating a vinyl chloride resin. Specifically, the vinyl chloride resin aggregate particles of the present invention were obtained by heat-treating a coagulated latex of a vinyl chloride resin obtained by adding a coagulant to a vinyl chloride resin latex and coagulating it. The pH of the slurry containing the vinyl chloride resin aggregate particles is adjusted, and the slurry containing the vinyl chloride resin aggregate particles after the pH adjustment is dehydrated, dried, and then pulverized and / or classified.
  • a coagulating latex of a vinyl chloride resin is obtained by adding a coagulant to the vinyl chloride resin latex and coagulating it.
  • the amount of the coagulant added is not particularly limited as long as the vinyl chloride resin latex can be coagulated, but is preferably 0.3 to 5 parts by weight with respect to 100 parts by weight of the polymer solid content in the vinyl chloride resin latex. .
  • the addition amount of the coagulant is 0.3 parts by weight or more, the coagulation of the vinyl chloride resin latex sufficiently proceeds and the vinyl chloride resin aggregate particles of the present invention are easily obtained. Further, when the addition amount of the coagulant is 5 parts by weight or less, the manufacturing cost can be reduced and the productivity is improved.
  • the coagulant contains 50% by weight or more inorganic acid with respect to the total weight of the coagulant.
  • the content of the inorganic acid relative to the total weight of the coagulant is 50% by weight or more, the moisture absorption rate of the vinyl chloride resin aggregate particles is low, and the viscosity increase due to moisture absorption of the plastisol containing the vinyl chloride resin aggregate particles is reduced. It is less likely to occur and therefore the plastisol sag is good and the plastisol-coated gloves are light and flexible.
  • the acid content is preferably 60% by weight or more, more preferably 90% by weight or more, and still more preferably 100% by weight.
  • the content of the inorganic acid with respect to the total weight of the coagulant is 50% by weight or more, the number of voids having a void size of 1.0 ⁇ m or more in the vinyl chloride resin aggregate particles is small, and the particles after ultrasonic treatment The proportion of particles having a diameter of 1.0 ⁇ m or less is also reduced, and therefore, the impermeability and sagging properties of plastisol containing vinyl chloride resin aggregate particles are improved.
  • the higher the content of the inorganic acid in the coagulant the smaller the number of voids in the vinyl chloride resin aggregate particles having a void size of 1.0 ⁇ m or more, and the particle diameter after ultrasonic treatment of 1.0 ⁇ m or less. It is particularly preferred that the proportion is reduced and that the coagulant consists only of an inorganic acid.
  • the inorganic acid is not particularly limited, and for example, sulfuric acid, hydrochloric acid, nitric acid, phosphoric acid and the like can be used. From the viewpoint of wastewater treatment, the inorganic acid is preferably at least one selected from the group consisting of sulfuric acid and hydrochloric acid.
  • the coagulant other than the inorganic acid contained in the coagulant is preferably a water-soluble coagulant from the viewpoint of obtaining a homogeneous coagulated latex in a short time.
  • the water-soluble coagulant include inorganic salts, organic acids, water-soluble polymers, and the like.
  • Examples of the inorganic salt include cations such as Na + , K + , Mg 2+ , Ca 2+ , Al 3+ , H + , Cl ⁇ , Br ⁇ , SO 4 2 ⁇ , SO 3 2 ⁇ , NO 2 ⁇ , Examples thereof include compounds that dissociate into anions such as NO 3 ⁇ , PO 4 3 ⁇ , CO 3 2 ⁇ , and OH ⁇ .
  • NaCl, KCl, Na 2 SO 4 , CaCl 2 , AlCl 3, Al 2 (SO 4 ) 3 or the like can be used.
  • the organic acid is not particularly limited, and for example, citric acid, malic acid, tartaric acid, gluconic acid, succinic acid, malonic acid, glutaric acid, maleic acid, fumaric acid, glutaconic acid and the like can be used.
  • organic salt for example, sodium acetate, calcium acetate and the like can be used.
  • water-soluble polymer for example, a synthetic polymer, a natural polymer, a semi-synthetic polymer and the like can be used.
  • the synthetic polymer include acryloyl group-containing monomer polymer, vinyl polymer, polyamidine, polyethylene oxide, and polyethyleneimine.
  • the acryloyl group-containing monomer polymer include polyacrylamide, polymethacrylamide, polyacrylic acid, polymethacrylic acid, polyacrylate, polymethacrylate, polyacrylate, and polymethacrylate.
  • vinyl polymer carboxyl group containing vinyl polymers, such as polyvinyl alcohol (PVA), polyvinyl pyrrolidone, polyvinyl methyl ether, polyvinyl acetate, polystyrene sulfonic acid, polystyrene sulfonate, etc.
  • PVA polyvinyl alcohol
  • polyvinyl pyrrolidone polyvinyl methyl ether
  • polyvinyl acetate polystyrene sulfonic acid
  • polystyrene sulfonate etc.
  • the natural polymer include polysaccharides and proteins.
  • the polysaccharide include starch, dextrin, glucomannan, galactomannan, gum arabic, xanthan gum, pectin, carrageenan locust bean gum, guar gum, tragacanth, chitin, chitosan, pullulan, and alginates.
  • the protein gelatin, casein, collagen and the like can be used.
  • the semisynthetic polymer include cellulose ether and starch derivatives.
  • the cellulose ether include methyl cellulose, ethyl cellulose, benzyl cellulose, trityl cellulose, cyanethyl cellulose, aminoethyl cellulose, hydroxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl methyl cellulose, ethyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, carboxymethyl cellulose, and carboxyethyl cellulose.
  • starch derivative soluble starch, methyl starch, carboxymethyl starch, etc. can be used, for example.
  • the blending amount of the water-soluble polymer is based on the total weight of the coagulant from the viewpoint of reducing the moisture absorption rate of the vinyl chloride resin aggregate particles. On the other hand, it is preferably 25% by weight or less, and more preferably 10% by weight or less.
  • the form of addition of the coagulant to the vinyl chloride resin latex may be either a solid or an aqueous solution, but from the viewpoint of dispersion, the aqueous solution is preferred, and into the vinyl chloride resin latex that is in a fluid state by stirring or mixing. It is more preferable to add.
  • the addition of the coagulant to the vinyl chloride resin latex is preferably performed after the polymerization of the vinyl chloride resin is completed.
  • the vinyl chloride resin latex used in the present invention is not particularly limited.
  • the polymerization starts in a vinyl chloride monomer or a mixture of a vinyl chloride monomer and a monomer copolymerizable therewith.
  • An agent, an emulsifier, and, if necessary, a dispersion aid such as a higher alcohol or higher fatty acid are added, and the mixture is obtained by fine suspension polymerization, emulsion polymerization, seed fine suspension polymerization, or seed emulsion polymerization.
  • the volume average particle diameter of the vinyl chloride resin is not particularly limited, but is preferably 0.1 to 1.0 ⁇ m, and more preferably 0.15 to 0.5 ⁇ m. .
  • the volume average particle diameter of the vinyl chloride resin is 0.1 ⁇ m or more, the mechanical stability at the time of latex transfer becomes good, and the productivity is improved.
  • the volume average particle diameter of the vinyl chloride resin is 1.0 ⁇ m or less, the obtained vinyl chloride resin aggregate particles have high strength, and the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is high. Becomes easy to express.
  • the volume average particle diameter of the vinyl chloride resin can be determined, for example, by measuring the particle size distribution of the vinyl chloride resin latex using NICOM 380 manufactured by Particle Sizing System (PARTICLE SIZING SYSTEMS).
  • the monomer copolymerizable with the vinyl chloride monomer is not particularly limited, and examples thereof include olefins such as ethylene, propylene and butene, and vinyl esters such as vinyl acetate, vinyl propionate and vinyl stearate. , Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, octyl vinyl ether and lauryl vinyl ether, vinylidenes such as vinylidene chloride, acrylic acid, methacrylic acid, fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, etc.
  • Saturated carboxylic acid and its acid anhydride unsaturated carboxylic acid esters such as methyl acrylate, ethyl acrylate, monomethyl maleate, dimethyl maleate, butyl benzyl maleate, and aromatic vinyl such as styrene, ⁇ -methyl styrene, divinylbenzene
  • unsaturated nitriles and diallyl phthalate all monomers capable of vinyl chloride copolymer, such as cross-linking monomers such as acrylonitrile can be used.
  • the amount of these monomers used is preferably less than 50% by weight in the mixture with the vinyl chloride monomer.
  • the emulsifier is not particularly limited.
  • an anionic surfactant can be used, and usually about 0.1 to 3 parts by weight per 100 parts by weight of the monomer.
  • the anionic surfactant include fatty acid, alkyl sulfuric acid, alkyl benzene sulfonic acid, alkyl sulfosuccinic acid, ⁇ -olefin sulfonic acid, potassium salt such as alkyl ether phosphate, sodium salt, ammonium salt and the like.
  • the emulsifier is preferably a fatty acid salt, more preferably at least one selected from the group consisting of a fatty acid potassium salt, a fatty acid sodium salt, and a fatty acid ammonium salt. More preferably, it is at least one selected from the group consisting of potassium stearate, potassium myristate and ammonium myristate.
  • a fatty acid salt is used as an emulsifier, when ultrasonic treatment is performed by irradiating 28 kHz ultrasonic waves at 25 ° C. for 12 minutes, the proportion of particles having a particle size of 1.0 ⁇ m or less after ultrasonic treatment is 3.0 volume.
  • vinyl chloride resin agglomerate particles of less than%, which is preferable.
  • an inorganic acid is used as a coagulant and a fatty acid salt is used as an emulsifier, the number of voids having a void size of 1.0 ⁇ m or more is smaller, and the proportion of particles having a particle diameter after ultrasonication of 1.0 ⁇ m or less Less vinyl chloride resin aggregate particles are easily obtained.
  • polymerization initiator examples include oil-soluble polymerization initiators and water-soluble polymerization initiators.
  • oil-soluble polymerization initiator include diacyl peroxides such as dilauroyl peroxide, di-3,5,5, trimethylhexanoyl peroxide, diisopropyl peroxydicarbonate, di-2-ethylhexyl peroxydicarbonate, etc.
  • Peroxydicarbonates organic peroxide initiators such as peroxyesters such as t-butylperoxypivalate, t-butylperoxyneodecanoate, and 2,2′-azobisisobutyrate
  • An azo initiator such as rhonitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) can be used.
  • water-soluble polymerization initiator ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide water, etc.
  • sodium sulfite, sodium thiosulfate, sodium formaldehyde sulfoxylate dihydrate as necessary.
  • a reducing agent such as ascorbic acid or sodium ascorbate can be used in combination. These can be used alone or in combination of two or more.
  • the mixing of the vinyl chloride resin latex and the coagulant is preferably carried out so that the coagulated latex becomes homogeneous in a short time.
  • a mixer capable of imparting a large shearing force to the latex such as an onrator or a vertical vibration type agitator (for example, “Vibro Mixer” manufactured by Chilling Industries Co., Ltd.).
  • the stirring power in the mixing (coagulation) operation is preferably 2 kW / m 3 or more, and more preferably 5 kW / m 3 or more.
  • the upper limit of the stirring power in the mixing operation is not particularly limited, but is preferably 50 kW / m 3 or less from the viewpoint of equipment cost.
  • the temperature at which the coagulant is added and coagulated in the vinyl chloride resin latex is not particularly limited as long as it is lower than the glass transition temperature Tg of the vinyl chloride resin. From the viewpoint of being obtained in a short time, it is preferably in the range of 5 ° C. or more and Tg ⁇ 15 ° C. or less.
  • preparation temperature refers to the temperature of the mixture immediately after mixing the vinyl chloride resin latex and the coagulant.
  • the concentration of polymer solids is 22% by weight or more, preferably 25 to 50% by weight, more preferably 30 to 45% by weight. If the polymer solids concentration in the coagulated latex of the vinyl chloride resin is 22% by weight or more, the ⁇ 70 / ⁇ 40 of the plastisol containing the vinyl chloride resin agglomerate particles becomes 3 or more, and the plastisol drooping property and Improves permeability.
  • the polymer solid content in the coagulated latex of the vinyl chloride resin is 25 to 50% by weight, the apparent density is 0.21 to 0.34 and the volume average particle size is 10 to 60 ⁇ m.
  • the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is improved, and the glove coated with the plastisol can be easily reduced in weight.
  • the concentration of polymer solids in the coagulated latex of the above-mentioned vinyl chloride resin is 25 to 50% by weight, the coagulated latex has excellent fluidity and can be easily transferred by piping when it is added to a container for heat treatment. become.
  • the concentration of the polymer solid content in the coagulated latex of the vinyl chloride resin is 30 to 50% by weight, the number of voids having a void size of 1.0 ⁇ m or more is smaller, and the particle diameter after ultrasonic treatment is 1 It is easy to obtain vinyl chloride resin aggregate particles having a smaller proportion of particles of 0.0 ⁇ m or less.
  • the coagulated latex of the vinyl chloride resin obtained as described above is heat-treated in a temperature range of Tg to Tg + 35 ° C. to obtain a slurry containing vinyl chloride resin aggregate particles.
  • the heat treatment temperature is Tg or higher, the proportion of particles having a particle diameter of 10 ⁇ m or less in the vinyl chloride resin aggregate particles is low, and the apparent density is 0.21 g / ml or more. Therefore, the impermeability of the plastisol containing the vinyl chloride resin aggregate particles is improved, and a light and flexible glove can be obtained. Further, when the heat treatment temperature is Tg + 35 ° C.
  • the value of ⁇ 70 / ⁇ 40 does not increase, and a light and flexible glove can be easily obtained even when the mold temperature of the glove is high.
  • the heat treatment temperature is Tg or more and Tg + 35 ° C. or less
  • the vinyl chloride resin aggregate particles are excellent in ultrasonic disintegration resistance, and the ratio of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment is small. Less than 0% by volume.
  • the higher the heat treatment temperature the smaller the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment is obtained. Cheap.
  • the glass transition temperature of a vinyl chloride resin varies depending on the molecular weight, copolymer composition, etc., but the glass transition temperature of a vinyl chloride resin obtained from only a vinyl chloride monomer is usually about 80 ° C. by a general polymerization method. is there.
  • the glass transition temperature is measured using a differential scanning calorimeter (model DSC220C, manufactured by SII Nano Technology Co., Ltd.) under operating conditions of a temperature of 30 to 200 ° C. and a heating rate of 10 ° C./min. it can.
  • the heat treatment temperature is preferably 80 to 115 ° C, and more preferably 85 to 100 ° C.
  • the heat treatment temperature is within the above range, vinyl chloride resin aggregate particles that improve the impermeability of plastisol can be easily obtained, and a light and flexible glove can be obtained.
  • the heat treatment time is not particularly limited, but after reaching a predetermined temperature, it is preferably held for 30 seconds to 300 minutes, more preferably 3 minutes to 120 minutes, more preferably 5 minutes from the viewpoint of industrial implementation. It is more preferable to hold for ⁇ 30 minutes.
  • the vinyl chloride resin coagulated latex and aggregating the vinyl chloride resin particles it is easy to obtain vinyl chloride resin aggregate particles that improve the impermeability of plastisol, and is light and flexible. Gloves are obtained.
  • the heat treatment is preferably performed by mixing a coagulated latex of vinyl chloride resin with one or more heating media selected from the group consisting of water vapor and water bath from the viewpoint of performing the heat treatment uniformly.
  • the type and pressure of the water vapor are not particularly limited as long as the temperature can be increased to the Tg or higher of the vinyl chloride resin, but water vapor of 0.1 MPa or more is preferable.
  • the heat treatment method is not particularly limited.
  • water vapor is supplied to the coagulated latex of the vinyl chloride resin, that is, vinyl chloride. It is preferable to perform heat treatment by mixing coagulated latex of water-based resin and water vapor. This is because when the polymer solid content in the coagulated latex of the vinyl chloride resin is low, it can be uniformly heat-treated by mixing with water vapor. Moreover, it is preferable to supply water vapor
  • the supply rate of water vapor is not particularly limited, but from the viewpoint of productivity, the rate of temperature increase of the coagulated latex is preferably 0.5 to 20 ° C./min, and is preferably 1 to 10 ° C./min. It is more preferable to do so.
  • the stirring method is not particularly limited, but it is preferable to stir at a rotation speed or higher that can ensure the flow of the entire tank with a stirring blade.
  • the heat treatment method is not particularly limited.
  • the coagulated latex of the vinyl chloride resin is set to a predetermined heat treatment temperature. It is preferable to perform heat treatment by adding to the water bath. This is because when the polymer solid content in the coagulated latex of the vinyl chloride resin is high, heat treatment in a water bath is easy to heat uniformly. Further, from the viewpoint of heat treatment more uniformly, it is preferable to continuously add a coagulated latex of vinyl chloride resin into a water bath. In addition, when the temperature of a water bath falls by continuous addition of coagulated latex, it is preferable to supply water vapor
  • the average residence time in the tank in which heat treatment is performed (heat treatment is performed).
  • the value obtained by dividing the charging capacity (L) of the tank to be performed by the supply rate (L / min) of coagulated latex and water continuously supplied to the heat treatment tank corresponds to the heat treatment time.
  • the heat treatment time is not particularly limited as long as the object of the present invention can be achieved, but is preferably 30 seconds or longer from the viewpoint of improving the impermeability of the plastisol containing the vinyl chloride resin aggregate particles.
  • the above heat treatment is not particularly limited, but can be performed, for example, in a mixer or piping.
  • the mixer used in the present invention may be any apparatus that can mix the whole so that the coagulated latex particles do not settle.
  • an apparatus such as a stirring tank, a static mixer, or an onlator can be used.
  • the obtained slurry containing the vinyl chloride resin aggregate particles is adjusted so that the pH is 4 to 11, preferably 5 to 10, and more preferably 6 to 9.
  • the pH is within the above range, the moisture absorption rate of the obtained vinyl chloride resin aggregate particles is low, and the dripping property of the plastisol to which water is added (water-added plastisol) is improved. Therefore, plastisol-coated gloves are light and flexible.
  • the pH is closer to neutral, since the moisture absorption rate of the resulting vinyl chloride resin aggregate particles tends to decrease.
  • the pH is within the above range, the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment of the obtained vinyl chloride resin aggregate particles is small, and the vinyl chloride resin aggregate particles are The impermeability of the contained plastisol is improved.
  • the slurry containing the vinyl chloride resin aggregate particles after pH adjustment is dehydrated, dried, and then pulverized and / or classified to adjust the volume average particle size and particle size distribution to obtain desired particles.
  • Vinyl chloride-based resin aggregate particles having a particle ratio having a diameter are obtained.
  • the dehydration is not particularly limited, but can be performed by filtration. Further, from the viewpoint of reducing the moisture absorption rate of the resulting vinyl chloride resin aggregate after dehydration, it is preferable to wash with pure water having the same pH as the slurry and further dehydrate.
  • the amount of pure water used for washing is not particularly limited as long as the resin can be washed with water, but it is preferably 2 to 20 times the weight of the resin from the viewpoint of sufficient washing.
  • dehydrators such as a decanter, a centrifugal dehydrator, a horizontal belt filter, a belt filter, a screw press, a drum filter, can be used.
  • the dryer is not particularly limited, and for example, a dryer such as an air dryer, a fluid dryer, a belt dryer, or a box dryer can be used.
  • the drying temperature is not particularly limited, but usually the hot air temperature is 50 to 220 ° C. and the resin temperature is about 35 to 100 ° C.
  • the pulverizer or crusher is not particularly limited, and for example, a roller mill, a high-speed rotary pulverizer, a ball mill, a jet mill, or the like can be used. Moreover, it can also adjust so that it may become desired particle diameter distribution by using a wind classifier and the grinder with a classification function.
  • a plasticizer can be added to the vinyl chloride resin aggregate particles of the present invention to be used as a plastisol.
  • plastisol may contain vinyl chloride resins other than the above-mentioned vinyl chloride resin aggregate particles, stabilizers, diluents, thickeners, fillers, reinforcing agents, antioxidants, ultraviolet absorbers, foams as necessary.
  • the plasticizer is not particularly limited, and examples thereof include phthalate ester plasticizers such as di-2-ethylhexyl phthalate, dinormal octyl phthalate, dibutyl phthalate, diisononyl phthalate, and butyl benzyl phthalate, tricresyl phosphate, Phosphate plasticizers such as -2-ethylhexyl phosphate, adipate plasticizers such as di-2-ethylhexyl adipate, sebacic acid ester plasticizers such as di-2-ethylhexyl sebacate, di-2-ethylhexyl Azelaic acid ester plasticizers such as azelate, trimellitic acid ester plasticizers such as tri-2-ethylhexyl trimellitate, polyester plasticizers, di-2-ethylhexyl benzoate, diethylene glycol dibenzoate, 2,2, -Benzo
  • the amount of the plasticizer used is not particularly limited. For example, it is used in the range of 50 to 200 parts by weight with respect to 100 parts by weight of the vinyl chloride resin containing the vinyl chloride resin aggregate particles of the present invention.
  • the stabilizer is not particularly limited, for example, organic tin stabilizers such as dimethyltin mercapto, dibutyltin mercapto, dioctyltin mercapto, dibutyltin malate, dioctyltin malate, dibutyltin laurate, lead stearate, dibasic Lead stabilizers such as lead phosphite and tribasic lead sulfate, calcium-zinc stabilizer, barium-zinc stabilizer, epoxidized soybean oil, epoxidized linseed oil, epoxidized tetrahydrophthalate, epoxidized polybutadiene, phosphoric acid Esters can be used.
  • organic tin stabilizers such as dimethyltin mercapto, dibutyltin mercapto, dioctyltin mercapto, dibutyltin malate, dioctyltin malate, dibutyl
  • the amount of the stabilizer used is not particularly limited, but for example, it is used in the range of 0 to 20 parts by weight with respect to 100 parts by weight of the vinyl chloride resin containing the vinyl chloride resin aggregate of the present invention.
  • the diluent is not particularly limited, and for example, 2,2,4-trimethyl-1,3-pentadiol diisobutyrate (TXIB), normal paraffin, isoparaffin and the like can be used. These may be used alone or in combination of two or more.
  • the amount of the diluent used is not particularly limited.
  • the diluent is used in the range of 0 to 200 parts by weight with respect to 100 parts by weight of the vinyl chloride resin containing the vinyl chloride resin aggregate of the present invention.
  • the filler is not particularly limited, and for example, calcium carbonate, magnesium carbonate, lithium carbonate, kaolin clay, gypsum, mica, talc, magnesium hydroxide, calcium silicate, borax and the like can be used.
  • the amount of the filler used is not particularly limited, but generally 0 to 500 parts by weight is preferably used with respect to 100 parts by weight of the vinyl chloride resin containing the vinyl chloride resin aggregate of the present invention. . More preferably, it is used in the range of 0 to 200 parts by weight, and more preferably in the range of 0 to 100 parts by weight.
  • thickeners reinforcing agents, antioxidants, UV absorbers, foaming agents, flame retardants, antistatic agents, lubricants, pigments, surface treatment agents, thixotropic agents, adhesion promoters, and antifungal agents, What is necessary is just to use within the range which achieves the objective of invention.
  • a glove coated with a vinyl chloride resin is obtained by applying the plastisol containing the vinyl chloride resin agglomerate particles obtained as described above to the surface of the glove fabric and then gelling by heating. Since the glove is treated with a plastisol that contains vinyl chloride resin aggregate particles and is excellent in impermeability and sagging property, it is lightweight and flexible and has a good feeling of use. Moreover, the glove has high mechanical strength, excellent wear resistance, chemical resistance, and oil resistance, and is used in a wide range of fields such as fisheries, agriculture, and mining.
  • Glass-transition temperature A differential scanning calorimeter (model DSC220C, manufactured by SII Nano Technology Co., Ltd.) was used under the operating conditions of a temperature of 30 to 200 ° C. and a heating rate of 10 ° C./min.
  • volume average particle diameter of vinyl chloride resin Using a vinyl chloride resin latex as a measurement sample, the particle size distribution was measured at 25 ° C. using NICOM 380 manufactured by Particle Sizing System (PARTICLE SIZING SYSTEMS), the measurement cycle was 3 minutes ⁇ 5 times, and the Gaussian of the fifth data From the volume-based particle size distribution in the distribution, the volume average particle size of the vinyl chloride resin was determined.
  • the measurement conditions were a laser wavelength of 635 nm, an intensity of 1.2, an irradiation angle of 90 °, a liquid viscosity of 0.933 cP, a refractive index of 1.333, a KIMBLE glass container with an inner diameter of 6 mm and a height of 50 mm.
  • the measurement was made by the cell (Drop-In Cell) method.
  • the measurement sample used was prepared by adding ion-exchanged water filtered through a 0.2 ⁇ m filter to vinyl chloride resin latex filtered through a 350-mesh wire mesh so that the strength was in the range of 300 ⁇ 50. It was.
  • Vinyl chloride resin aggregate particles (water content 0.1% by weight or less) were put in an aluminum cup to prepare a sample.
  • the sample was placed in a desiccator with a sufficient amount of water on the bottom and kept at 30 ° C. for 24 hours. After 24 hours, the samples were removed in the desiccator, and weighed, the weight of the vinyl chloride resin aggregate particles when the was W W. After weighing, the sample was kept in a hot air circulation type thermostatic bath at 105 ° C. for 1 hour to evaporate the moisture absorbed. After evaporating the water, the sample was taken out of the thermostatic bath, held in a desiccator with dry silica gel laid on the bottom, and allowed to cool to room temperature.
  • Moisture absorption rate (% by weight) [(W W ⁇ W D ) / W D ] ⁇ 100 (1)
  • the apparent density of the vinyl chloride resin aggregate particles was measured using a powder tester PT-R type (manufactured by Hosokawa Micron Corporation) based on JIS K 7365.
  • the temperature rising viscosity of the obtained plastisol was measured using a rheometer (model: AR2000, rotor: flat plate with a diameter of 4 cm, gap: 0.35 mm, shear rate: 1 s ⁇ 1 ) manufactured by TA Instruments. did.
  • the plastisol prepared at 25 ° C. was set in a rheometer, heated to 40 ° C. at a heating rate of 5 ° C./min, held at 40 ° C. for 10 minutes, and then increased to 70 ° C. at a heating rate of 10 ° C./min. After heating, it was kept at 70 ° C. for 3 minutes.
  • ⁇ 70 / ⁇ 40 was calculated as ⁇ 40 when held at 40 ° C. for 10 minutes and ⁇ 70 when held at 70 ° C. for 3 minutes.
  • the particle size distribution of the vinyl chloride resin aggregate particles after ultrasonic treatment was measured on a volume basis using a microtrac HRA9320-X100 type (manufactured by Nikkiso Co., Ltd.) which is a particle size distribution measuring device.
  • the volume fraction (%) of particles having a particle size of 0 ⁇ m or less was obtained, and the ratio was the proportion of particles having a particle size of 1.0 ⁇ m or less.
  • the particle diameter measurement conditions were a temperature of 25 ° C., the substance information was transparent and the refractive index was 1.51, the spherical particles were not checked, the carrier was water, and the refractive index was 1.33. Also, set zero (SET ZERO) 10 seconds, measurement 10 seconds, and dry cut (DRY CUT) calculation was not performed.
  • a test tube (corresponding to a mold) with an outer diameter of 3 cm and a length of 20 cm and an outer diameter of 2.5 cm and a fabric with a length of 15 cm sewn into a test tube shape so that it can be attached in close contact with the outside of the test tube
  • a knit (round knitting or weft knitting) using cotton yarn No. 32 (cotton count), 35 gauge, basis weight 216 g / m 2 ] was prepared.
  • the fabric was covered at the laboratory level with the fabric glove attached to the mold by covering the fabric from the bottom with the fabric seam on the inside and covering the outside from the bottom.
  • the upper end portion of the fabric was tied to a test tube with a cotton thread so that the fabric would not slip during measurement.
  • test tube (sample) covered with the fabric was held in a hot air circulation thermostat at 70 ° C. for 1 hour, and the sample was heated to 70 ° C.
  • the sample was taken out of the thermostatic bath, and 200 g of plastisol prepared as described above was applied from the top of the fabric with no gap.
  • the plastisol-coated sample was hung for 10 minutes in an atmosphere at 25 ° C. with the bottom side of the test tube facing down, and excess plastisol was hung. Thereafter, the sample was heated in an oven adjusted to 190 ° C. for 10 minutes to gel the plastisol.
  • the sample taken out was air-cooled, and then the cloth coated with the gel was removed from the test tube, and cut from the bottom side to be 10 cm long.
  • the plastisol sagging property was evaluated by measuring the weight of the fabric coated with the gel after cutting to 10 cm, and the following three-step evaluation was performed, with A and B being passed and C being rejected.
  • the polymerization conversion rate of the finally obtained vinyl chloride resin latex with respect to the total amount of initially charged monomer and additional monomer (hereinafter referred to as total monomer amount) was 90%.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 80 ° C.
  • Production Example 2 A vinyl chloride resin latex was obtained in the same manner as in Production Example 1 except that potassium stearate was used in place of ammonium myristate as the emulsifier.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 80 ° C.
  • a vinyl chloride resin latex was obtained in the same manner as in Production Example 1 except that potassium myristate was used instead of ammonium myristate as the emulsifier.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 80 ° C.
  • a vinyl chloride resin latex was obtained in the same manner as in Production Example 1, except that the monomer components used were a mixture of 104.5 kg of vinyl chloride monomer and 5.5 kg of vinyl acetate monomer.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 78 ° C.
  • a vinyl chloride resin latex was obtained in the same manner as in Production Example 1 except that the charged monomer component was a mixture of 99 kg of vinyl chloride monomer and 11 kg of vinyl acetate monomer.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 76 ° C.
  • a vinyl chloride resin latex was obtained in the same manner as in Production Example 1 except that the monomer components used were a mixture of 93.5 kg of vinyl chloride monomer and 16.5 kg of vinyl acetate monomer.
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 45%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 74 ° C.
  • a vinyl chloride resin latex was obtained in the same manner as in Production Example 1 except that sodium dodecyl sulfate (SDS) was used as the emulsifier instead of ammonium myristate.
  • SDS sodium dodecyl sulfate
  • the volume average particle diameter of the vinyl chloride resin was 0.3 ⁇ m.
  • the concentration of polymer solids in the vinyl chloride resin latex was 46%.
  • the glass transition temperature of the vinyl chloride resin measured as described above was about 80 ° C.
  • Example 1 As shown in FIG. 1, after charging 114 kg of the vinyl chloride resin latex obtained in Production Example 1 into the first mixer 10 (300 L tank) with a stirrer 15, the polymer solids in the latex after coagulation Pure water was added and the temperature was adjusted to 40 ° C. so that the concentration of the solution became 30%. Subsequently, using hydrochloric acid as a coagulant, a 10% hydrochloric acid aqueous solution was chlorinated while stirring so that the addition amount of hydrochloric acid was 1 part by weight with respect to 100 parts by weight of the polymer solid content in the vinyl chloride resin latex. It added over 1 minute in vinyl resin latex. The resulting mixture of vinyl chloride resin latex and coagulant was stirred and mixed for 30 minutes under a strong shearing force of 5 kW / m 3 or more to obtain a coagulated latex of vinyl chloride resin.
  • the steam mixer 13 installed in the middle of sending the obtained latex coagulated latex of the vinyl chloride resin to the second mixer 11 with a stirrer 16 (300 L tank) by the pump 12, the steam mixer 13 is used.
  • the steam mixer 13 was used.
  • water vapor of 0.3 MPa so that the outlet temperature of the water became 105 ° C.
  • water vapor 14 was supplied and held at 105 ° C. for 30 minutes for heat treatment.
  • a slurry containing vinyl chloride resin aggregate particles (hereinafter also simply referred to as aggregate particles) using a 5% aqueous sodium hydroxide solution is used.
  • the pH was adjusted to 7.
  • the pH of the slurry containing an aggregate particle was 2.5. After adjusting the pH, the slurry containing aggregate particles was discharged from the second mixer 11.
  • the slurry containing the aggregated particles was dehydrated by filtration, washed with 10 times the amount of pure water with respect to the resin weight, and then again filtered and dehydrated.
  • the obtained wet resin was dried by standing for 48 hours in a constant temperature dryer (manufactured by Yamato Scientific Co., Ltd., model DX402) set at 60 ° C. to obtain a dry powder (aggregate particles). Further, the obtained dried powder was subjected to a micro bantam mill AP-B type pulverizer manufactured by Hosokawa Micron Co., Ltd. so that the volume average particle size and the ratio of particles having a particle size of 10 to 60 ⁇ m were as shown in Table 1. To obtain pulverized particles (aggregate particles).
  • Example 2 As shown in FIG. 2, after charging 15.5 kg of the vinyl chloride resin latex obtained in Production Example 1 to the mixer 20, the concentration of polymer solids in the latex after coagulation becomes 40%. Thus, pure water was added and the temperature was adjusted to 40 ° C. Subsequently, using hydrochloric acid as a coagulant, a 10% hydrochloric acid aqueous solution was chlorinated while stirring so that the addition amount of hydrochloric acid was 1 part by weight with respect to 100 parts by weight of the polymer solid content in the vinyl chloride resin latex. It added over 1 minute in vinyl resin latex. The resulting mixture of vinyl chloride resin latex and coagulant was stirred and mixed for 30 minutes under a strong shearing force of 5 kW / m 3 or more to obtain a coagulated latex of vinyl chloride resin.
  • the pH of the slurry containing aggregate particles was adjusted to 7 with a 5% aqueous sodium hydroxide solution.
  • the pH of the slurry containing an aggregate particle was 2.6.
  • the slurry containing aggregate particles was dispensed from the 50 L tank 21. Subsequently, the slurry containing the aggregated particles was dehydrated by filtration, washed with 10 times the amount of pure water with respect to the resin weight, and then again filtered and dehydrated.
  • the obtained wet resin was dried by standing for 48 hours in a constant temperature dryer (manufactured by Yamato Scientific Co., Ltd., model DX402) set at 60 ° C. to obtain a dry powder (aggregate particles). Further, the obtained dried powder was subjected to a micro bantam mill AP-B type pulverizer manufactured by Hosokawa Micron Co., Ltd. so that the volume average particle size and the ratio of particles having a particle size of 10 to 60 ⁇ m were as shown in Table 1. To obtain pulverized particles (aggregate particles).
  • Example 3 In the same manner as in Example 2, except that sulfuric acid (10% aqueous sulfuric acid solution) was used instead of hydrochloric acid (10% aqueous hydrochloric acid) as a coagulant and heat treatment was performed at 100 ° C., pulverized particles (aggregated particles) were obtained. Obtained. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 4 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the heat treatment was performed at 85 ° C. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 5 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the heat treatment was performed at 110 ° C. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 6 When the internal temperature of the second mixer 11 becomes 80 ° C. or lower, the pH of the slurry containing aggregate particles is adjusted to 5 with a 5% aqueous sodium hydroxide solution, and the washing after filtration dehydration is performed with sulfuric acid. In the same manner as in Example 3 except that pure water adjusted to pH 5 was used to obtain pulverized particles (aggregate particles). In addition, before adjusting pH, the pH of the slurry containing an aggregate particle was 2.6. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 7 When the internal temperature of the second mixer 11 becomes 80 ° C. or lower, the pH of the slurry containing the aggregate particles is adjusted to 10 with a 5% aqueous sodium hydroxide solution, and washing after filtration and dehydration is performed with water. Grinded particles (aggregate particles) were obtained in the same manner as in Example 3 except that pure water adjusted to pH 10 with sodium oxide was used. In addition, before adjusting pH, the pH of the slurry containing an aggregate particle was 2.6. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 8 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 2 was used. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 9 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 3 was used. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 10 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 4 was used and heat treatment was performed at 95 ° C. Table 1 shows the volume average particle diameter of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle diameter of 10 to 60 ⁇ m.
  • Example 11 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 5 was used and heat treatment was performed at 90 ° C.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 12 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 6 was used and heat treatment was performed at 85 ° C.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 13 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that phosphoric acid (10% phosphoric acid aqueous solution) was used instead of sulfuric acid (10% sulfuric acid aqueous solution) as a coagulant.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 14 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that nitric acid (10% nitric acid aqueous solution) was used instead of sulfuric acid (10% sulfuric acid aqueous solution) as a coagulant.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 15 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the vinyl chloride resin latex obtained in Production Example 7 was used. Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 16 The temperature of 15.5 kg of the vinyl chloride resin latex obtained in Production Example 1 was adjusted to 40 ° C. Subsequently, using sulfuric acid as a coagulant, a 10% sulfuric acid aqueous solution was added to the vinyl chloride resin while stirring so that the added amount of sulfuric acid was 1 part with respect to 100 parts of the polymer solid content in the vinyl chloride resin latex. Added to the latex over 1 minute. The resulting mixture of vinyl chloride resin latex and coagulant was stirred and mixed for 30 minutes under a strong shearing force of 5 kW / m 3 or more to obtain a coagulated latex of vinyl chloride resin.
  • the water contained in the obtained coagulated latex was removed with a paper towel, and the concentration of the polymer solid content in the coagulated latex of the vinyl chloride resin was adjusted to 47.5%.
  • Grinded particles (aggregate particles) were obtained in the same manner as in Example 3 except that the coagulated latex of vinyl chloride resin having a polymer solid content concentration of 47.5% was used.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 17 The same as Example 3 except that pure water was added to 15.5 kg of the vinyl chloride resin latex obtained in Production Example 1 so that the polymer solid content in the latex after coagulation was 27.5%. Thus, pulverized particles (aggregate particles) were obtained. Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 18 Sulfuric acid (10% aqueous solution) and calcium chloride (10% aqueous solution) were used as coagulants, and the addition amount of sulfuric acid and calcium chloride was 0.6 parts for each 100 parts of polymer solid content in the vinyl chloride resin latex. In the same manner as in Example 3, except that the amount was 0.4 parts, pulverized particles (aggregate particles) were obtained. Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 19 Sulfuric acid (10% aqueous solution) and polyvinyl alcohol (“GOHSENOL KH17” manufactured by Nippon Synthetic Chemical Co., Ltd., 3% aqueous solution) were used as the coagulant, and the amount of sulfuric acid and polyvinyl alcohol added was 100% of the polymer solid content in the vinyl chloride resin latex.
  • the pulverized particles (aggregate particles) were obtained in the same manner as in Example 3 except that the amount was 0.9 parts and 0.1 parts, respectively.
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 20 Ground particles (aggregate particles) were obtained in the same manner as in Example 3 except that the stirring after the addition of the coagulant during the preparation of the coagulated latex was performed under a weak shear force of less than 2 kW / m 3 .
  • Table 2 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 1 Pulverized particles (aggregate particles) were obtained in the same manner as in Example 1 except that the heat treatment temperature was 120 ° C.
  • Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 2 Grinded particles (aggregate particles) were obtained in the same manner as in Example 2 except that the heat treatment temperature was 120 ° C.
  • Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 3 Grinded particles (aggregate particles) were obtained in the same manner as in Example 3 except that the heat treatment temperature was 120 ° C. Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 4 Grinded particles (aggregate particles) were obtained in the same manner as in Example 3 except that the heat treatment temperature was 75 ° C. Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Ground particles were obtained in the same manner as in Example 3 except that calcium chloride (10% aqueous solution) was used instead of sulfuric acid (10% sulfuric acid aqueous solution) as a coagulant.
  • Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • Example 10 Grinded particles (aggregate particles) in the same manner as in Example 3 except that pulverization was performed so that the proportion of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles was less than 50% by volume.
  • Table 3 shows the volume average particle size of the obtained pulverized particles (aggregate particles) and the ratio of particles having a particle size of 10 to 60 ⁇ m.
  • the vinyl chloride resin aggregate particles of Examples 1 to 20 have a volume average particle size of 10 to 60 ⁇ m, and the proportion of particles having a particle size of 10 to 60 ⁇ m is 50% by volume or more. Met.
  • the vinyl chloride resin aggregate particles of Examples 1 to 20 had a moisture absorption rate of 1.5% by weight or less and ⁇ 70 / ⁇ 40 of 3 to 1000.
  • the vinyl chloride resin aggregate particles of Examples 1 to 20 have an apparent density in the range of 0.21 to 0.34 g / ml, and have a void size of 1.0 ⁇ m or more per aggregate particle. The number of voids was less than 5.0.
  • the vinyl chloride resin aggregate particles of Examples 1 to 20 were ultrasonically treated by irradiating with 28 kHz ultrasonic waves at 25 ° C. for 12 minutes, the particle diameter after ultrasonic treatment was 1.0 ⁇ m or less. The proportion of the particles was less than 3.0% by volume.
  • the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is obtained. It was less than 1.0 and was preferable.
  • the polymer solid content concentration of the coagulated latex is 30% by weight or more, 1.0 ⁇ m or more per aggregate particle
  • the number of voids having a void size of 1.0 or less was 1.0, and the proportion of particles having a particle diameter of 1.0 ⁇ m or less after sonication was 1.0% by volume or less, which was more preferable.
  • Example 1 to 14, 16 and 20 in Examples 1 to 14 and 16, where the shearing force during the solidification operation is strong, the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle And the ratio of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment was 1.0% by volume or less, which was more preferable.
  • the plastisol using the vinyl chloride resin aggregate particles of Examples 1 to 20 had good impermeability and good sagability. Also, the dripping property of the water-added plastisol using the vinyl chloride resin aggregate particles of Examples 1 to 20 was good.
  • Comparative Example 5 in which the adjusted pH of the slurry containing the vinyl chloride resin aggregate particles is less than 4, the proportion of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles is less than 50% by volume. The moisture absorption rate exceeded 1.5% by weight, and the sagging property of the water-added plastisol was C.
  • Comparative Example 6 in which the adjusted pH of the slurry containing the vinyl chloride resin aggregate particles exceeds 11, the moisture absorption rate of the vinyl chloride resin aggregate particles exceeds 1.5% by weight, and the water-added plastisol The sag rating was C.
  • Comparative Example 7 in which the content of the inorganic acid in the coagulant is less than 50% by weight, the moisture absorption rate of the vinyl chloride resin aggregate particles exceeds 1.5% by weight, and the sagging property of the water-added plastisol is evaluated.
  • Comparative Example 8 in which the coagulant did not contain an inorganic acid, ⁇ 70 / ⁇ 40 of the plastisol containing the vinyl chloride resin aggregate particles exceeded 1000, and the evaluation of the sagability of the plastisol and the water-added plastisol was both C. there were.
  • Comparative Example 9 where the polymer solids concentration in the coagulated latex of the vinyl chloride resin is less than 22% by weight, the plastisol containing the vinyl chloride resin aggregate particles has an ⁇ 70 / ⁇ 40 of less than 3, indicating that the plastisol is impervious.
  • the evaluation of sagging property and sagging property of water-added plastisol was C.
  • Comparative Example 10 in which the proportion of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles was less than 50% by volume, the permeable evaluation of plastisol was C.
  • Comparative Example 5 in which the adjusted pH of the slurry containing the vinyl chloride resin aggregate particles is less than 4, the proportion of particles having a particle diameter of 10 to 60 ⁇ m in the vinyl chloride resin aggregate particles is less than 50% by volume.
  • the evaluation of sagging property of the water-added plastisol was C.
  • Comparative Example 6 in which the adjusted pH of the slurry containing vinyl chloride resin aggregate particles exceeds 11, the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment exceeds 3.0% by volume.
  • the sag rating of the water-added plastisol was C.
  • Comparative Example 7 in which the content of the inorganic acid in the coagulant is less than 50% by weight, the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is 5.0 or more, and water is added.
  • the plastisol sag rating was C.
  • Comparative Example 8 in which the coagulant did not contain an inorganic acid and an inorganic salt was used, the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle was 5.0 or more, and The ratio of particles having a particle diameter of 1.0 ⁇ m or less after sonication exceeded 3.0% by volume, and the evaluations of sagging properties of plastisol and water-added plastisol were both C.
  • Comparative Example 9 where the concentration of polymer solids in the coagulated latex of vinyl chloride resin is less than 22% by weight, the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is 5.0 or more.
  • the ratio of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment exceeds 3.0% by volume, and the evaluation of the impregnation and sagging properties of plastisol and the sagging property of water-added plastisol is any Was also C.
  • Comparative Example 11 in which the coagulant contains no inorganic acid and inorganic salt and PVA, the number of voids having a void size of 1.0 ⁇ m or more per aggregate particle is 5.0 or more, In addition, the proportion of particles having a particle diameter of 1.0 ⁇ m or less after ultrasonic treatment exceeded 3.0% by volume, and the evaluation of the impregnation property and the dripping property of the water-added plastisol was C.
  • FIGS. 4 and 5 show scanning electron micrographs (3,000 times) of the fractured surfaces of the vinyl chloride resin aggregate particles of Example 9 and Comparative Example 8, respectively.
  • the vinyl chloride resin aggregate particles of the examples do not have voids, whereas the vinyl chloride resin aggregate particles of the comparative examples have micron-sized voids.
  • It was. 7 and 8 show the particle size distribution (particle size distribution) of the vinyl chloride resin aggregate particles of Example 9 and Comparative Example 8 before and after ultrasonic treatment, respectively.
  • the particle size distribution curve 30 before the ultrasonic treatment and the particle size distribution curve 31 after the ultrasonic treatment are almost overlapped, and the vinyl chloride resin aggregate particles of the examples are excellent in ultrasonic collapse resistance. I understood.
  • the particle size distribution curve 40 before the ultrasonic treatment and the particle size distribution curve 41 after the ultrasonic treatment are not overlapped, and the ultrasonic wave
  • the vinyl chloride resin aggregate particles were disintegrated by the treatment, and particles having a particle size of 1.0 ⁇ m or less were generated.
  • vinyl chloride resin aggregate particles of the present invention By using the vinyl chloride resin aggregate particles of the present invention and covering sheets, gloves, bags, etc. with vinyl chloride resin, it has high mechanical strength, excellent wear resistance, chemical resistance and oil resistance, Sheets, gloves, bags and the like coated with a vinyl chloride resin can be provided for use in a wide range of industries, agriculture, mining, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulding By Coating Moulds (AREA)
  • Gloves (AREA)

Abstract

 本発明は、プラスチゾルに優れた無浸透性及び良好な垂れ性を持たせる塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋を提供する。本発明の塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上であり、30℃かつ相対湿度97.0±0.4%の条件下で24時間保持した際の吸湿率が1.5重量%以下であり、上記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルが、3≦η70/η40≦1000の関係を満たす。また、本発明の塩化ビニル系樹脂凝集体粒子は、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満であり、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満である。

Description

塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋
 本発明は、塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋に関する。
 塩化ビニル系樹脂で被覆したシート、手袋、袋等は、機械的強度が強く、耐摩耗性、耐薬品性、耐油性に優れ、水産業、農業、鉱業等の広い分野に使用されている。
 従来から、塩化ビニル系樹脂のシート、手袋、袋等への被覆は、塩化ビニル系樹脂凝集体粒子を含むプラスチゾル又はプラスチゾルを加熱処理したゲル化溶融体を、布地にスプレー塗布や浸漬することによって行われていた。
 プラスチゾルは、粘調な液体であるので、布地に塗布、浸漬すると、布地の中にプラスチゾルが浸透し、布地裏面まで浸透することがある。同様に、プラスチゾルを加熱処理した場合でも、ゲル化溶融体が布地の裏面へ浸透してしまうことがある。そして、プラスチゾルやそれのゲル化溶融体が布地の裏面に浸透すると、被覆された製品の柔軟性が著しく劣り、製品機能を損ねてしまうという問題がある。特に、手袋に使用する場合は、局所的な浸透であっても、得られた手袋は使用者に不快感を与え、製品価値が劣ってしまうという問題がある。
 そこで、布地に被覆する際に布地裏面への浸透性を低下させることができるすなわち無浸透性を向上させたプラスチゾルを提供できる塩化ビニル系樹脂及びその製造方法が、提案されている。例えば、特許文献1には、ペースト用塩化ビニル樹脂を60℃~140℃の熱風中で5分~1時間熱処理する方法が提案されている。特許文献2には、スプレードライヤーの出口温度を65℃以上にして乾燥した平均粒子径20~50μmの塩化ビニル樹脂が提案されている。特許文献3には、特定の粒径分布と、一定レベル以上の耐崩壊強度に加え、特定の空隙容量を有する塩化ビニル樹脂が提案されている。特許文献4には、塩化ビニル樹脂ラテックスに、メチルビニルエーテルと無水マレイン酸との共重合体等の浸透性抑制剤を添加し、乾燥する方法が提案されている。特許文献5には、水溶性高分子及び無機塩からなる特定の凝固剤で凝固した塩化ビニル樹脂ラテックスを乾燥させる方法が提案されている。特許文献6には、特定のアクリル系モノマーを用いて重合した塩化ビニル樹脂ラテックスを用いる方法が提案されている。
 上記特許文献1~6に提案されている塩化ビニル系樹脂を含むプラスチゾルは、無浸透性は向上するものの、汎用のペースト塩化ビニル樹脂を含有するプラスチゾルより垂れ性が悪い傾向がある。プラスチゾルの垂れ性が悪いと、手形状の金型に装着した布地の手袋等にプラスチゾルを塗布した後、余分なプラスチゾルを垂らす工程において、布地の手袋等にプラスチゾルが過剰に付着した状態となる。プラスチゾルが過剰に付着した手袋等は、重量が重く柔軟性がないため使用感が悪くなる。
 また、塩化ビニル系樹脂を含むプラスチゾルでは、プラスチゾルの経時的粘度増加(経時増粘)が長年の技術課題となっている。例えば非特許文献1~2に開示されているように、一般的な可塑剤であるフタル酸ジ-2-エチルヘキシルを用いた場合、可塑剤が大気中の水分を吸湿する程度の僅かな水分含有量の変化で、ゾルの粘度が大きく増加してしまう現象が知られている。そして、このようなゾルの経時増粘は、プラスチゾルの垂れ性を低下させる。
特公昭46-7177公報 特開昭48-16945号公報 特開昭58-145748号公報 特開昭48-16946号公報 国際公開2008/041697号公報 特開2009-227699号公報
Colloids and Surfaces A:Physicochemical and Engineering Aspects、2002年、197巻、173~181頁 Langmuir、2007年、23巻、8365~8370頁
 本発明は、上記従来の問題を解決するため、プラスチゾルに優れた無浸透性及び良好な垂れ性を持たせる塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋を提供する。
 本発明の塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上であり、上記塩化ビニル系樹脂凝集体粒子は、30℃かつ相対湿度97.0±0.4%の条件下で24時間保持した際の吸湿率が1.5重量%以下であり、40℃で10分間保持したプラスチゾルの剪断速度1s-1における粘度をη40とし、40℃から10℃/分で昇温して70℃で3分間保持したプラスチゾルの剪断速度1s-1における粘度をη70とした場合、上記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルが、3≦η70/η40≦1000の関係を満たすことを特徴とする。
 本発明の塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上であり、上記塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲であり、上記塩化ビニル系樹脂凝集体粒子は、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満であり、上記塩化ビニル系樹脂凝集体粒子は、25℃で、28kHzの超音波を12分間照射することで超音波処理した場合、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満であることを特徴とする。
 本発明の製造方法は、本発明の塩化ビニル系樹脂凝集体粒子を製造する方法であって、塩化ビニル系樹脂ラテックスに無機酸を50重量%以上含む凝固剤を添加して凝固させ、ポリマー固形分の濃度が22重量%以上の塩化ビニル系樹脂の凝固ラテックスにし、上記塩化ビニル系樹脂の凝固ラテックスを、塩化ビニル系樹脂のガラス転移温度をTgとした場合、Tg以上Tg+35℃以下の温度範囲で熱処理し、塩化ビニル系樹脂凝集体粒子を含むスラリーにし、上記塩化ビニル系樹脂凝集体粒子を含むスラリーを、pHが4~11の範囲になるように調整し、上記pH調整後の塩化ビニル系樹脂凝集体粒子を含むスラリーを、脱水し、乾燥した後、粉砕及び/又は分級することにより、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上である塩化ビニル系樹脂凝集体粒子を得ることを特徴とする。
 本発明の塩化ビニル系樹脂凝集体粒子の製造方法において、上記熱処理は、塩化ビニル系樹脂の凝固ラテックスを、水蒸気及び水浴からなる群から選ばれる一種以上の加熱媒体と混合することにより行うことが好ましい。また、上記塩化ビニル系樹脂は、塩化ビニル樹脂であることが好ましい。また、上記熱処理は、80~115℃の温度で行うことが好ましい。また、上記塩化ビニル系樹脂ラテックスに凝固剤を添加して凝固させる際の温度は5℃以上Tg-15℃以下の範囲であることが好ましい。また、上記塩化ビニル系樹脂の凝固ラテックスは、ポリマー固形分の濃度が25~50重量%であることが好ましい。また、上記塩化ビニル系樹脂ラテックスは、塩化ビニル単量体又は塩化ビニル単量体とこれと共重合可能な単量体との混合物に、重合開始剤と、乳化剤とを添加して重合させることにより得られており、上記乳化剤が脂肪酸塩であることが好ましい。また、上記凝固剤は、無機酸のみからなることが好ましい。また、上記無機酸は、硫酸及び塩酸からなる群から選ばれる少なくとも一つであることが好ましい。
 本発明の手袋は、塩化ビニル系樹脂で被覆された手袋であって、上記手袋は、プラスチゾルを上記手袋の布地表面に塗布した後、加熱してゲル化させることにより塩化ビニル系樹脂で被覆処理されており、上記プラスチゾルが、本発明の塩化ビニル系樹脂凝集体粒子を含有することを特徴とする。
 本発明によれば、プラスチゾルに優れた無浸透性を持たせる塩化ビニル系樹脂凝集体粒子が得られる。また、本発明の塩化ビニル系樹脂凝集体粒子を含むプラスチゾルは、昇温による粘度の増加が少なく、吸湿等によりプラスチゾルの水分含有量が高くなった際(水分を添加した場合を含む)の経時による粘度の増加も少なく、垂れ性に優れる。また、本発明によれば、塩化ビニル系樹脂で被覆され、装着性が良好で、柔軟で使用感の良い手袋が得られる。
図1は、塩化ビニル系樹脂凝集体粒子を製造する工程の一例を説明する模式図である。 図2は、塩化ビニル系樹脂凝集体粒子を製造する工程の他の一例を説明する模式図である。 図3は、塩化ビニル系樹脂凝集体粒子における階層構造を説明する模式図である。 図4は、本発明の一実施例の塩化ビニル系樹脂凝集体粒子の割断面の走査電子顕微鏡写真(3000倍)である。 図5は、本発明の一比較例の塩化ビニル系樹脂凝集体粒子の割断面の走査電子顕微鏡写真(3000倍)である。 図6は、ボイドの一例を示す模式図である。 図7は、本発明の一実施例の塩化ビニル系樹脂凝集体粒子の超音波処理前後の粒子径分布(粒度分布)を示すグラフである。 図8は、本発明の一比較例の塩化ビニル系樹脂凝集体粒子の超音波処理前後の粒子径分布(粒度分布)を示すグラフである。
 本発明の塩化ビニル系樹脂凝集体粒子は、プラスチゾル中に該凝集体粒子を含有させることで、プラスチゾルを布地表面に塗布した場合に起こりうる布地裏面へのプラスチゾルの浸透を抑制できる。本明細書において、「布地」とは、織物、編物、不織布等の繊維を使用したシート状物をいう。また、本明細書において、「無浸透性」とは、プラスチゾルを布地表面に塗布した際に、布地裏面への浸透が抑制できることを示す。また、本明細書において、「塗布」とは、塗る、かける、浸ける等の操作により、布地表面にプラスチゾルを付着させる操作を指す。
 (塩化ビニル系樹脂凝集体粒子)
 以下において、まず実施形態1の塩化ビニル系樹脂凝集体粒子について説明する。
 <実施形態1>
 実施形態1において、本発明の塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上である。体積平均粒子径が10~60μmの範囲にあれば、プラスチゾルの粘度上昇抑制及び経時によるプラスチゾル中の塩化ビニル系樹脂凝集体粒子の沈降抑制の視点からも好ましい。また、塩化ビニル系樹脂凝集体粒子における粒子径が10~60μmの粒子の割合が50体積%以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が向上し、手袋重量が軽く風合いが良好になる。無浸透性の観点から、塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~50μmであることがより好ましい。また、無浸透性の観点から、塩化ビニル系樹脂凝集体粒子は、粒子径が10~60μmの粒子の割合が60体積%以上であることがより好ましい。本発明において、体積平均粒子径とは、体積基準の粒子径分布より求めた平均径を意味する。なお、粒子の粒子径分布は、レーザー回折式粒度分布測定装置であるマイクロトラックHRA9320-X100型(日機装株式会社製)を用いて測定することができる。
 上記塩化ビニル系樹脂凝集体粒子は、JIS A 1475の操作手順に従い、30℃かつ相対湿度97.0±0.4%(硫酸カリウム飽和水溶液を用いたデシケータ法での試験)の条件下で24時間保持した際の吸湿率(以下において、単に吸湿率とも記す。)が、1.5重量%以下である。上記吸湿率が1.5重量%以下であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの製造又は保存時にプラスチゾルの吸湿による粘度増加(吸湿による増粘)が起こりにくい。プラスチゾルの垂れ性はその粘度に依存する。プラスチゾルの粘度が増加すると、プラスチゾルの垂れ性が低下し、そのプラスチゾルを手袋に塗布した際、重量が重く、厚くて柔軟性のない手袋となってしまう。また、垂れ性の観点から、上記塩化ビニル系樹脂凝集体粒子は、吸湿率が1.0重量%以下であることがより好ましく、0.75重量%以下であることがさらに好ましい。吸湿率が上記の範囲内であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの吸湿による増粘が起こりにくく、高温多湿条件下でも良好な無浸透性及び垂れ性を有するプラスチゾルを提供でき、そのようなプラスチゾルを手袋に被覆することにより軽くて柔軟な手袋が得られる。
 また、上記塩化ビニル系樹脂凝集体粒子を含むプラスチゾルは、垂れ性の観点から、温度の上昇による粘度の変化が少ないことが好ましい。上述したとおり、プラスチゾルの垂れ性はその粘度に依存する。そして、プラスチゾルの粘度は温度に影響されやすい。特に、塩化ビニル系樹脂を含むプラスチゾルは、一般的に室温から塩化ビニル系樹脂のガラス転移温度付近まで加熱した場合、ゲル化の進行に伴ってプラスチゾルの粘度が徐々に上昇する傾向がある。従って、布地の手袋にプラスチゾルを塗布する際、手袋を装着させる金型の温度による粘度の変化が大きいとプラスチゾルの垂れ性が大きく変化する恐れがある。
 40℃で10分間保持したプラスチゾルの剪断速度1s-1における粘度をη40とし、40℃から10℃/分で昇温して70℃で3分間保持したプラスチゾルの剪断速度1s-1における粘度をη70とした場合、η70/η40(以下において、熱増粘度とも記す。)により温度の上昇による粘度の変化を評価することができる。そして、η70/η40(熱増粘度)の評価は、上記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルを用いて行うことができる。室温で調製或いは保管されているプラスチゾルを測定に用いる場合、室温から40℃に加熱後、40℃で10分間保持し、70℃への昇温を実施するのが好ましい。また、上記において粘度は、TA インスツルメンツ(TA Instruments)社製のAR2000等の温度制御機能を有する市販のレオメータを用い、簡便に測定することができる。
 本発明において、上記塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が3~1000の範囲であると、プラスチゾルの昇温による粘度の増加が少なく、垂れ性に優れる。垂れ性及び無浸透性により優れるという観点から、η70/η40は5~110であることが好ましい。η70/η40(熱増粘度)が3以上であると、プラスチゾルの垂れ性が良好になりやすい上、プラスチゾルを調製する際に塩化ビニル系樹脂凝集体粒子が崩壊することもなく、粒子径が10~60μmの粒子の割合が50体積%以上となりやすく、無浸透性が向上する傾向がある。また、η70/η40(熱増粘度)が1000以下であると、プラスチゾルの無浸透性が良好になりやすい上、特に温度が高い条件においてもプラスチゾルの熱増粘が小さく、垂れ性が向上する傾向がある。
 上記η70/η40(熱増粘度)は、凝集体粒子の形成条件、例えば、凝固剤の種類及び量、凝固ラテックスのポリマー固形分の濃度、加熱媒体の種類、熱処理温度、熱処理時間等により変化する。本発明において、上記の凝固剤の種類及び量、凝固ラテックスのポリマー固形分の濃度、並びに加熱媒体の種類をそれぞれ固定した条件で、熱処理温度及び時間を適宜調整することで、η70/η40(熱増粘度)が3~1000の範囲にある塩化ビニル系樹脂凝集体粒子を得ることができる。
 上記塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲であることが好ましく、0.21~0.31g/mlの範囲であることがより好ましい。塩化ビニル系樹脂凝集体粒子の見かけ密度が上記の範囲であることにより、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が良好になり、軽くて柔軟な手袋が得られる。塩化ビニル系樹脂凝集体粒子の見かけ密度は、JIS K 7365に準じ、パウダーテスターPT-R型(ホソカワミクロン社製)を用いて測定することができる。
 次に、実施形態2の塩化ビニル系樹脂凝集体粒子について説明する。
 <実施形態2>
 実施形態2において、本発明の塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上である。体積平均粒子径が10~60μmの範囲にあれば、プラスチゾルの粘度上昇抑制及び経時によるプラスチゾル中の塩化ビニル系樹脂凝集体粒子の沈降抑制の視点からも好ましい。また、塩化ビニル系樹脂凝集体粒子における粒子径が10~60μmの粒子の割合が50体積%以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が向上し、手袋重量が軽く風合いが良好になる。無浸透性の観点から、塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~50μmであることがより好ましい。また、無浸透性の観点から、塩化ビニル系樹脂凝集体粒子は、粒子径が10~60μmの粒子の割合が60体積%以上であることがより好ましい。本発明において、体積平均粒子径とは、体積基準の粒子径分布より求めた平均径を意味する。なお、粒子の粒子径分布は、レーザー回折式粒度分布測定装置であるマイクロトラックHRA9320-X100型(日機装株式会社製)を用いて測定することができる。
 上記塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲である。好ましくは、0.21~0.31g/mlの範囲である。塩化ビニル系樹脂凝集体粒子の見かけ密度が0.21~0.34g/mlの範囲であることにより、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が良好になり、軽くて柔軟な手袋が得られる。塩化ビニル系樹脂凝集体粒子の見かけ密度は、実施形態1の場合と同様、JIS K 7365に準じ、パウダーテスターPT-R型(ホソカワミクロン社製)を用いて測定することができる。
 上記塩化ビニル系樹脂凝集体粒子は、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイド(空隙)の数が5.0個未満である。凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性と垂れ性の両方を高いレベルに保持できない傾向があり、手袋に塗布した場合、無浸透性と垂れ性のいずれか一方又は両方が悪化する傾向がある。また、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルを数日以上保存した時、プラスチゾルの粘度が経時的に増加する傾向が高く、取り扱い性が悪くなる。塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性と垂れ性がより向上するという観点から、上記塩化ビニル系樹脂凝集体粒子において、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が4.0個以下であることが好ましく、より好ましくは3.6個以下であり、さらに好ましくは3.0個以下であり、さらにより好ましくは1.0個以下であり、特に好ましくは0個である。
 上記塩化ビニル系樹脂凝集体粒子は、図3に示しているように、塩化ビニル系樹脂ラテックス粒子51(基本粒子に該当する)を凝固剤により凝固して得られた塩化ビニル系樹脂の凝固ラテックス粒子52(一次凝集体粒子)が凝集されている塩化ビニル系樹脂凝集体粒子(二次凝集体粒子)53であり、房状構造を有する。このような房状構造を有する塩化ビニル系樹脂凝集体粒子53中のボイドの大きさは、房状構造を形成している一次凝集体粒子52のサイズに依存する。特に、一次凝集体粒子の長径と短径の平均径が1.0μmより大きい場合に、1.0μm以上のボイドサイズを有するボイドが形成されやすい。なお、一次凝集体粒子において、「長径と短径の平均径」とは、長径と短径の合計を2で除した値で表されるものであり、一般的に長短平均径と言われる。式で示すと、長短平均径=(長径+短径)/2になる。
 一次凝集体粒子の大きさは、凝固剤の種類及び乳化重合により塩化ビニル系樹脂ラテックスを作製する場合の乳化剤の種類等により影響されやすい。凝固剤として無機酸を用いると、ボイドサイズが1.0μm以上のボイドをほとんど有しない塩化ビニル系樹脂凝集体粒子を調製することができ、好ましい。より好ましくは、凝固剤として無機酸を用い、乳化剤として脂肪酸塩、例えば脂肪酸のカリウム塩、脂肪酸のナトリウム塩及び脂肪酸のアンモニウム塩等を用いると、ボイドサイズが1.0μm以上のボイドを有しない塩化ビニル系樹脂凝集体粒子を調製することができる。
 本発明において、塩化ビニル系樹脂凝集体粒子におけるボイドのサイズは、塩化ビニル系樹脂凝集体粒子の割断面を走査電子顕微鏡で観察することで測定することができる。図4及び図5に、それぞれ、本発明の一実施例及び一比較例の塩化ビニル系樹脂凝集体粒子の割断面の走査電子顕微鏡写真(3000倍)を示している。図4及び図5から分かるように、本発明の塩化ビニル系樹脂凝集体粒子では、ボイドがほぼないのに対し、比較例の塩化ビニル系樹脂凝集体粒子には、ミクロンサイズのボイドが存在している。通常、塩化ビニル系樹脂凝集体粒子中に存在するボイド形状は不規則形状であるので、本発明では、図6に示しているような、ボイドの長径、即ちボイドに外接する長方形(外接長方形)の長辺側の長さ(長径)をボイドサイズとする。塩化ビニル系樹脂凝集体粒子におけるボイドのサイズの測定は、具体的には、以下のように行うことができる。エポキシ接着剤1.0gに、0.2gの塩化ビニル系樹脂凝集体粒子を加え、全体が均一になるよう混合して混合液を調整する。得られた混合液をゼラチンカプセルに詰め、24時間室温(20±5℃)で放置し、エポキシ接着剤を硬化させ、硬化混合物とする。得られた硬化混合物をゼラチンカプセルから取り出し、液体窒素に15分間浸漬して凍結する。凍結した硬化混合物にカッター刃を当て、その上から木槌で叩くことで硬化混合物を割断し、割断面を形成する。次に、塩化ビニル系樹脂凝集体粒子の割断面を、白金-パラジウムで蒸着した後、走査型電子顕微鏡(日立ハイテク社製「S-4800」、倍率3000倍)で観察し、無作為に選択した塩化ビニル系樹脂凝集体粒子の10個の割断面におけるボイドサイズが1.0μm以上のボイドの数をカウントし、平均し、凝集体粒子1個当りに存在するボイドサイズが1.0μm以上のボイドの数とする。
 上記塩化ビニル系樹脂凝集体粒子は、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満である。本発明において、「超音波処理」とは、25℃で、28kHzの超音波を12分間照射することをいい、具体的には塩化ビニル系樹脂凝集体粒子0.5gを0.5%ジオクチルスルホコハク酸ナトリウム水溶液100mlに分散した分散液を、25℃で、28kHzの超音波を12分間照射することをいう。より詳しくは、所定量の水(25℃)を張った超音波洗浄機(本多電子株式会社製のWT-300M型)に、0.5%ジオクチルスルホコハク酸ナトリウム水溶液100mlに塩化ビニル系樹脂凝集体粒子0.5gを分散した分散液を入れた200mlのビーカー(ハリオグラス社製)を、ビーカー内の液面が超音波洗浄機に張った水の液面よりも低くなるように設置し、25℃で、28kHzの超音波を12分間照射することをいう。ここで、粒子径が1.0μm以下の粒子の割合は、体積基準で測定した粒子径分布より求めることができる。なお、粒子径分布は、レーザー回折式粒度分布測定装置であるマイクロトラックHRA9320-X100型(日機装株式会社製)を用いて測定することができる。上記塩化ビニル系樹脂凝集体粒子における超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が悪化する。上記塩化ビニル系樹脂凝集体粒子が超音波により崩壊しやすいほど、すなわち超音波処理後の粒子径が1.0μm以下の粒子の割合が高いほど、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が悪くなる。無浸透性により優れるという観点から、上記塩化ビニル系樹脂凝集体粒子における超音波処理後の粒子径が1.0μm以下の粒子の割合は2.0体積%以下、より好ましくは1.0体積%以下、特に好ましくは0体積%である。
 図7及び図8は、それぞれ、本発明の一実施例の及び一比較例の塩化ビニル系樹脂凝集体粒子の超音波処理前後の粒子径分布(粒度分布)を示すグラフである。図7において、超音波処理前の粒子径分布曲線30と超音波処理後の粒子径分布曲線31はほぼ重なっており、超音波処理により塩化ビニル系樹脂凝集体粒子がほぼ崩壊していないことから、本発明の実施例の塩化ビニル系樹脂凝集体粒子は超音波耐崩壊性に優れていることが分かる。一方、図8から分かるように、比較例の塩化ビニル系樹脂凝集体粒子では、超音波処理前の粒子径分布曲線40と超音波処理後の粒子径分布曲線41は重なっておらず、超音波処理により塩化ビニル系樹脂凝集体粒子が崩壊し、粒子径が1.0μm以下の粒子が発生している。上記塩化ビニル系樹脂凝集体粒子が、超音波により崩壊するか否かは、塩化ビニル系樹脂凝集体粒子(二次凝集体粒子)を構成する塩化ビニル系樹脂の凝固ラテックス粒子(一次凝集体粒子)間の融着力に依存する。塩化ビニル系樹脂の凝固ラテックス粒子(一次凝集体粒子)間の融着力は、熱処理温度が高いほど大きくなり、凝固時のポリマー固形分濃度が高いほど大きくなる。また、凝固剤及び乳化重合時に用いる乳化剤の種類にも依存する。特に、凝固剤として無機酸、乳化剤として脂肪酸塩を用い、更に塩化ビニル系樹脂の凝固ラテックスのポリマー固形分濃度を30重量%以上とした場合に、融着力の大きな樹脂凝集体粒子を得ることができ、好ましい。
 上記塩化ビニル系樹脂凝集体粒子は、JIS A 1475の操作手順に従い、30℃かつ相対湿度97.0±0.4%(硫酸カリウム飽和水溶液を用いたデシケータ法での試験)の条件下で24時間保持した際の吸湿率(以下において、単に吸湿率とも記す。)が、1.5重量%以下であることが好ましい。上記吸湿率が1.5重量%以下であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの製造又は保存時にプラスチゾルの吸湿による粘度増加(吸湿による増粘)が起こりにくい。プラスチゾルの垂れ性はその粘度に依存する。プラスチゾルの粘度が増加すると、プラスチゾルの垂れ性が低下し、そのプラスチゾルを手袋に塗布した際、重量が重く、厚くて柔軟性のない手袋となってしまう。また、垂れ性の観点から、上記塩化ビニル系樹脂凝集体粒子は、吸湿率が1.0重量%以下であることがより好ましく、0.75重量%以下であることがさらに好ましい。吸湿率が上記の範囲内であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの吸湿による増粘が起こりにくく、高温多湿条件下でも良好な無浸透性及び垂れ性を有するプラスチゾルを提供でき、そのようなプラスチゾルを手袋に被覆することにより軽くて柔軟な手袋が得られる。
 また、上記塩化ビニル系樹脂凝集体粒子を含むプラスチゾルは、垂れ性の観点から、温度の上昇による粘度の変化が少ないことが好ましい。上述したとおり、プラスチゾルの垂れ性はその粘度に依存する。そして、プラスチゾルの粘度は温度に影響されやすい。特に、塩化ビニル系樹脂を含むプラスチゾルは、一般的に室温から塩化ビニル系樹脂のガラス転移温度付近まで加熱した場合、ゲル化の進行に伴ってプラスチゾルの粘度が徐々に上昇する傾向がある。従って、布地の手袋にプラスチゾルを塗布する際、手袋を装着させる金型の温度による粘度の変化が大きいとプラスチゾルの垂れ性が大きく変化する恐れがある。
 40℃で10分間保持したプラスチゾルの剪断速度1s-1における粘度をη40とし、40℃から10℃/分で昇温して70℃で3分間保持したプラスチゾルの剪断速度1s-1における粘度をη70とした場合、η70/η40(熱増粘度)により温度の上昇による粘度の変化を評価することができる。そして、η70/η40(熱増粘度)の評価は、上記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルを用いて行うことができる。室温で調製或いは保管されているプラスチゾルを測定に用いる場合、室温から40℃に加熱後、40℃で10分間保持し、70℃への昇温を実施するのが好ましい。また、上記において粘度は、TA インスツルメンツ(TA Instruments)社製のAR2000等の温度制御機能を有する市販のレオメータを用い、簡便に測定することができる。
 上記塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が3~1000の範囲であると、プラスチゾルの昇温による粘度の増加が少なく、垂れ性に優れる。垂れ性及び無浸透性により優れるという観点から、η70/η40は5~110であることが好ましい。η70/η40(熱増粘度)が3以上であると、プラスチゾルの垂れ性が良好になりやすい上、プラスチゾルを調製する際に塩化ビニル系樹脂凝集体粒子が崩壊することもなく、粒子径が10~60μmの粒子の割合が50体積%以上となりやすく、無浸透性が向上する傾向がある。また、η70/η40(熱増粘度)が1000以下であると、プラスチゾルの無浸透性が良好になりやすい上、特に温度が高い条件においてもプラスチゾルの熱増粘が小さく、垂れ性が向上する傾向がある。
 上記η70/η40(熱増粘度)は、凝集体粒子の形成条件、例えば、凝固剤の種類及び量、凝固ラテックスのポリマー固形分の濃度、加熱媒体の種類、熱処理温度、熱処理時間等により変化する。本発明において、上記の凝固剤の種類及び量、凝固ラテックスのポリマー固形分の濃度、並びに加熱媒体の種類をそれぞれ固定した条件で、熱処理温度及び時間を適宜調整することで、η70/η40(熱増粘度)が3~1000の範囲にある塩化ビニル系樹脂凝集体粒子を得ることができる。
 (塩化ビニル系樹脂凝集体粒子の製造方法)
 以下、本発明の塩化ビニル系樹脂凝集体粒子の製造方法を説明する。本発明の塩化ビニル系樹脂凝集体粒子は、塩化ビニル系樹脂を凝集させることで得られる。具体的には、本発明の塩化ビニル系樹脂凝集体粒子は、塩化ビニル系樹脂ラテックスに、凝固剤を添加して凝固させて得られた塩化ビニル系樹脂の凝固ラテックスを熱処理し、得られた塩化ビニル系樹脂凝集体粒子を含むスラリーをpH調整し、pH調整後の塩化ビニル系樹脂凝集体粒子を含むスラリーを脱水し、乾燥した後、粉砕及び/又は分級することにより得られる。
 先ず、塩化ビニル系樹脂ラテックスに、凝固剤を添加して凝固させることで塩化ビニル系樹脂の凝固ラテックスを得る。凝固剤の添加量は、塩化ビニル系樹脂ラテックスを凝固できればよく特に制限はないが、塩化ビニル系樹脂ラテックス中のポリマー固形分100重量部に対し、0.3~5重量部であることが好ましい。凝固剤の添加量が0.3重量部以上であると、塩化ビニル系樹脂ラテックスの凝固が十分に進行し、本発明の塩化ビニル系樹脂凝集体粒子が得られやすくなる。また、凝固剤の添加量が5重量部以下であると、製造コストを低減でき生産性が良好になる。
 上記凝固剤は、凝固剤の全体重量に対して50重量%以上の無機酸を含む。凝固剤の全体重量に対する無機酸の含有量が50重量%以上であることにより、塩化ビニル系樹脂凝集体粒子の吸湿率が低く、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの吸湿による増粘が起こりにくく、それゆえプラスチゾルの垂れ性が良好になり、プラスチゾルを被覆した手袋が、軽くて柔軟なものになる。塩化ビニル系樹脂凝集体粒子の吸湿率を低くし、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの吸湿による増粘を抑制し、プラスチゾルの垂れ性を良好にするという観点から、凝固剤中の無機酸の含有量は60重量%以上であることが好ましく、90重量%以上であることがより好ましく、100重量%であることがさらに好ましい。また、凝固剤の全体重量に対する無機酸の含有量が50重量%以上であると、塩化ビニル系樹脂凝集体粒子におけるボイドサイズが1.0μm以上のボイドの数が少なく、超音波処理後の粒子径が1.0μm以下の粒子の割合も少なくなり、それゆえ塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性と垂れ性がより良好になる。凝固剤中の無機酸の含有量が高いほど、塩化ビニル系樹脂凝集体粒子におけるボイドサイズが1.0μm以上のボイドの数が少なく、超音波処理後の粒子径が1.0μm以下の粒子の割合も少なくなり、凝固剤が無機酸のみからなることが特に好ましい。
 上記無機酸としては、特に限定されないが、例えば硫酸、塩酸、硝酸、燐酸等を用いることができる。排水処理の観点から、上記無機酸は、硫酸及び塩酸からなる群から選ばれる少なくとも一つであることが好ましい。
 上記凝固剤に含まれる無機酸以外の凝固剤は、均質な凝固ラテックスを短時間で得ることができる観点から、水溶性凝固剤であることが好ましい。上記水溶性凝固剤としては、例えば無機塩、有機酸、水溶性高分子等が挙げられる。
 上記無機塩としては、例えばNa、K、Mg2+、Ca2+、Al3+、H等の陽イオンや、Cl、Br、SO 2-、SO 2-、NO 、NO 、PO 3-、CO 2-、OH等の陰イオンに解離する化合物等が挙げられる。具体的には、NaCl、KCl、NaSO、CaCl、AlCl3、Al(SO等を用いることができる。
 上記有機酸としては、特に限定されないが、例えばクエン酸、リンゴ酸、酒石酸、グルコン酸、コハク酸、マロン酸、グルタル酸、マレイン酸、フマル酸、グルタコン酸等を用いることができる。
 上記有機塩としては、例えば酢酸ナトリウム、酢酸カルシウム等を用いることができる。
 上記水溶性高分子としては、例えば合成高分子、天然高分子、半合成高分子等を用いることができる。上記合成高分子としては、例えばアクリロイル基含有モノマー重合体、ビニル重合体、ポリアミジン、ポリエチレンオキサイド及びポリエチレンイミン等が挙げられる。上記アクリロイル基含有モノマー重合体としては、例えばポリアクリルアミド、ポリメタクリルアミド、ポリアクリル酸、ポリメタクリル酸、ポリアクリル酸塩、ポリメタクリル酸塩、ポリアクリレート及びポリメタクリレート等を用いることができる。上記ビニル重合体としては、例えばポリビニルアルコール(PVA)、ポリビニルピロリドン、ポリビニルメチルエーテル、ポリ酢酸ビニル等のカルボキシル基含有ビニル重合体、ポリスチレンスルホン酸及びポリスチレンスルホン酸塩等を用いることができる。上記天然高分子としては、例えば多糖類及び蛋白質等が挙げられる。上記多糖類としては、例えばデンプン、デキストリン、グルコマンナン、ガラクトマンナン、アラビアゴム、キサンタンガム、ペクチン、カラギーナンローカストビーンガム、グアーガム、トラガント、キチン、キトサン、プルラン及びアルギン酸塩等を用いることができる。上記蛋白質としては、ゼラチン、カゼイン及びコラーゲン等を用いることができる。上記半合成高分子としては、例えばセルロースエーテル及びデンプン誘導体等が挙げられる。上記セルロースエーテルとしては、メチルセルロース、エチルセルロース、ベンジルセルロース、トリチルセルロース、シアンエチルセルロース、アミノエチルセルロース、ヒドロキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロース、エチルヒドロキシエチルセルロース、メチルヒドロキシプロピルセルロース、カルボキシメチルセルロース及びカルボキシエチルセルロース等を用いることができる。上記デンプン誘導体としては、例えば可溶性デンプン、メチルデンプン及びカルボキシメチルデンプン等を用いることができる。なお、上記無機酸以外の凝固剤として水溶性高分子を用いる場合は、塩化ビニル系樹脂凝集体粒子の吸湿率を低くするという観点から、水溶性高分子の配合量は凝固剤の全体重量に対して25重量%以下であることが好ましく、10重量%以下であることがより好ましい。
 塩化ビニル系樹脂凝集体粒子の吸湿率が低くなり、プラスチゾルの吸湿による増粘が起こりにくく、軽くて柔軟な手袋が得られやすいという観点から、上記無機酸以外の凝固剤としては、無機塩、有機酸及び有機塩を用いることが好ましい。
 上記凝固剤の塩化ビニル系樹脂ラテックスへの添加形態は、固体、水溶液のいずれでも良いが、分散の点から、水溶液の形態が好ましく、撹拌や混合により流動状態にある塩化ビニル系樹脂ラテックス中へ添加することがより好ましい。また、上記凝固剤の塩化ビニル系樹脂ラテックスへの添加は、塩化ビニル系樹脂の重合終了後に行うことが好ましい。
 本発明で用いる塩化ビニル系樹脂ラテックスは、特に限定されないが、例えば水性媒体中で、塩化ビニル単量体又は塩化ビニル単量体とこれと共重合可能な単量体との混合物に、重合開始剤と、乳化剤と、必要に応じて、高級アルコール、高級脂肪酸等の分散助剤とを加え、微細懸濁重合、乳化重合、シード微細懸濁重合、或いはシード乳化重合することにより得られる。
 上記塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は、特に制限されないが、0.1~1.0μmであることが好ましく、0.15~0.5μmであることがより好ましい。上記塩化ビニル系樹脂の体積平均粒子径が0.1μm以上であると、ラテックス移送時の機械安定性が良好になり、生産性が向上する。また、上記塩化ビニル系樹脂の体積平均粒子径が1.0μm以下であると、得られた塩化ビニル系樹脂凝集体粒子の強度が高く、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が発現しやすくなる。上記塩化ビニル系樹脂の体積平均粒子径は、例えば、パーティクル サイジング システム(PARTICLE SIZING SYSTEMS)製のNICOMP 380を用いて上記塩化ビニル系樹脂ラテックスの粒子径分布を測定することで求めることができる。
 塩化ビニル単量体と共重合可能な単量体は、特に限定されるものではないが、例えば、エチレン、プロピレン、ブテン等のオレフィン類、酢酸ビニル、プロピオン酸ビニル、ステアリン酸ビニル等のビニルエステル類、メチルビニルエーテル、エチルビニルエーテル、オクチルビニルエーテル、ラウリルビニルエーテル等のビニルエーテル類、塩化ビニリデン等のビニリデン類、アクリル酸、メタクリル酸、フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等の不飽和カルボン酸及びその酸無水物、アクリル酸メチル、アクリル酸エチル、マレイン酸モノメチル、マレイン酸ジメチル、マレイン酸ブチルベンジル等の不飽和カルボン酸エステル類、スチレン、αーメチルスチレン、ジビニルベンゼン等の芳香族ビニル化合物、アクリロニトリル等の不飽和ニトリル類及びジアリルフタレート等の架橋性モノマー等の塩化ビニルと共重合可能な全ての単量体が使用できる。これらの単量体の使用量は、塩化ビニル単量体との混合物中50重量%未満であるのが好ましい。
 上記乳化剤は特に限定されるものではないが、例えばアニオン性界面活性剤を用いることができ、通常単量体100重量部当たり0.1~3重量部程度用いられる。上記アニオン性界面活性剤としては、脂肪酸、アルキル硫酸、アルキルベンゼンスルホン酸、アルキルスルホコハク酸、α-オレフィンスルホン酸、アルキルエーテルリン酸エステル等のカリウム塩、ナトリウム塩、アンモニウム塩等が挙げられる。無浸透性及び垂れ性の観点から、上記乳化剤は、脂肪酸塩であることが好ましく、脂肪酸のカリウム塩、脂肪酸のナトリウム塩及び脂肪酸のアンモニウム塩からなる群から選ばれる一種以上であることがより好ましく、ステアリン酸カリウム、ミリスチン酸カリウム及びミリスチン酸アンモニウムからなる群から選ばれる一種以上であることがさらに好ましい。乳化剤として脂肪酸塩を用いると、25℃で、28kHzの超音波を12分間照射することで超音波処理した場合、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満である塩化ビニル系樹脂凝集体粒子を得られやすく、好ましい。また、凝固剤として、無機酸を用い、乳化剤として脂肪酸塩を用いると、ボイドサイズが1.0μm以上のボイド数がより少なく、超音波処理後の粒子径が1.0μm以下の粒子の割合がより少ない塩化ビニル系樹脂凝集体粒子が得られやすい。
 上記重合開始剤としては、油溶性重合開始剤と水溶性重合開始剤が挙げられる。上記油溶性重合開始剤としては、ジラウロイルパーオキサイド、ジ-3,5,5,トリメチルヘキサノイルパーオキサイド等のジアシルパーオキサイド類、ジイソプロピルパーオキシジカーボネート、ジ-2-エチルヘキシルパーオキシジカーボネート等のパーオキシジカーボネート類、t-ブチルパーオキシピバレート、t-ブチルパーオキシネオデカノエート等のパーオキシエステル類等の有機過酸化物系開始剤、及び2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系開始剤を用いることができる。また、上記水溶性重合開始剤としては、過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素水等を用い、必要に応じて、亜硫酸ナトリウム、チオ硫酸ナトリウム、ホルムアルデヒドナトリウムスルホキシラート二水塩、アスコルビン酸、アスコルビン酸ナトリウム等の還元剤を併用することができる。これらは単独又は2種以上組み合わせて用いることができる。
 上記塩化ビニル系樹脂ラテックスと上記凝固剤との混合は、本発明の目的を達成する上では、凝固ラテックスが短時間で均質となるように混合操作を実施するのが好ましい。例えば、オンレーターや上下振動式撹拌機(例えば、冷化工業株式会社製「バイブロミキサー」)等のラテックスに大きなせん断力を付与できる混合機を用い、凝固操作を実施するのが好ましい。凝固ラテックスが短時間で均質となるようなせん断力を付与するという観点から、混合(凝固)操作における撹拌動力は2kW/m以上であることが好ましく、5kW/m以上であることがより好ましい。混合操作における撹拌動力の上限は特に限定されないが、設備コスト上の観点から、50kW/m以下であることが好ましい。
 上記塩化ビニル系樹脂ラテックス中に凝固剤を添加して凝固させる際の温度は、塩化ビニル系樹脂のガラス転移温度Tg未満であればよく、特に制限されないが、大きなせん断場において均質な凝固ラテックスが短時間で得られる観点から、5℃以上Tg-15℃以下の範囲であることが好ましい。なお、ここで、「調製温度」とは、塩化ビニル系樹脂ラテックスと凝固剤を混合した直後の混合物の温度を指す。
 上記塩化ビニル系樹脂の凝固ラテックスにおいて、ポリマー固形分の濃度は、22重量%以上であり、好ましくは25~50重量%、より好ましくは30~45重量%である。上記塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が22重量%以上であると、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が3以上になり、プラスチゾルの垂れ性及び無浸透性が向上する。そして、上記塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が25~50重量%であることにより、見かけ密度が0.21~0.34であり、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上である塩化ビニル系樹脂凝集体粒子が得られやすくなる。それゆえ、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が良好になり、プラスチゾルを被覆した手袋を軽量化しやすい。また、上記塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が25~50重量%であると、凝固ラテックスが流動性に優れ、熱処理を行う容器へ添加する際の配管での移送が容易になる。また、上記塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が30~50重量%であると、ボイドサイズが1.0μm以上のボイド数がより少なく、超音波処理後の粒子径が1.0μm以下の粒子の割合がより少ない塩化ビニル系樹脂凝集体粒子が得られやすい。
 無機酸を50重量%以上含む凝固剤と、ポリマー固形分の濃度が22重量%以上である塩化ビニル系樹脂の凝固ラテックスを用いると、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満である塩化ビニル系樹脂凝集体粒子を得られやすい。
 次に、上記のようにして得られた塩化ビニル系樹脂の凝固ラテックスを、Tg以上Tg+35℃以下の温度範囲で熱処理し、塩化ビニル系樹脂凝集体粒子を含むスラリーを得る。熱処理温度がTg以上であると、塩化ビニル系樹脂凝集体粒子中の粒子径が10μm以下の粒子の割合が低く、見かけ密度も0.21g/ml以上になる。それゆえ、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が向上し、軽くて柔軟な手袋が得られる。また、熱処理温度がTg+35℃以下であると、η70/η40の値が大きくならず、手袋の金型温度が高い場合にも、軽くて柔軟な手袋が得られやすい。また、熱処理温度がTg以上Tg+35℃以下であると、塩化ビニル系樹脂凝集体粒子が超音波耐崩壊性に優れ、超音波処理後の粒子径が1.0μm以下の粒子の割合が少なく3.0体積%未満になる。また、熱処理温度がTg以上Tg+35℃以下の温度範囲において、熱処理温度が高いほど、超音波処理後の粒子径が1.0μm以下の粒子の割合がより少ない塩化ビニル系樹脂凝集体粒子が得られやすい。
 塩化ビニル系樹脂のガラス転移温度は、分子量や共重合組成等により異なるが、通常、一般的な重合方法で、塩化ビニル単量体のみから得られる塩化ビニル樹脂のガラス転移温度は約80℃である。なお、ガラス転移温度の測定は、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製、型式DSC220C)を用いて、温度30~200℃、昇温速度10℃/分の操作条件で行うことができる。熱処理温度は、80~115℃であることが好ましく、85~100℃であることがより好ましい。熱処理温度が上記の範囲内であることにより、プラスチゾルの無浸透性を向上させる塩化ビニル系樹脂凝集体粒子が得られやすく、軽くて柔軟な手袋が得られる。また、熱処理時間は、特に限定されないが、所定の温度に到達後、工業的実施の側面から、30秒~300分保持することが好ましく、3分~120分保持することがより好ましく、5分~30分保持することがさらに好ましい。このように、塩化ビニル系樹脂の凝固ラテックスを熱処理して、塩化ビニル系樹脂粒子を凝集させることで、プラスチゾルの無浸透性を向上させる塩化ビニル系樹脂凝集体粒子が得られやすく、軽くて柔軟な手袋が得られる。
 上記熱処理は、熱処理を均一に行うという観点から、塩化ビニル系樹脂の凝固ラテックスを、水蒸気及び水浴からなる群から選ばれる一種以上の加熱媒体と混合することにより行うことが好ましい。上記水蒸気の種類と圧力は、温度を塩化ビニル系樹脂のTg以上に上昇できるものであれば良いが、中でも0.1MPa以上の水蒸気が好ましい。また、水浴で行う場合は、所定の温度を維持するため、水浴中に水蒸気を投入しても良い。
 塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が30重量%以下の場合、熱処理する方法は特に限定されないが、例えば、塩化ビニル系樹脂の凝固ラテックスに水蒸気を供給して、すなわち塩化ビニル系樹脂の凝固ラテックスと水蒸気を混合して、熱処理を行うことが好ましい。塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が低い場合は、水蒸気と混合することで、均一に熱処理し得るからである。また、より均一に熱処理するという観点から、撹拌状態にある塩化ビニル系樹脂の凝固ラテックスに水蒸気を連続的に供給することが好ましい。水蒸気の供給速度には特に制限はないが、生産性の観点から、凝固ラテックスの昇温速度が0.5~20℃/分になるようにすることが好ましく、1~10℃/分になるようにすることがより好ましい。なお、水蒸気の投入方法には特に制限はないが、熱処理中の凝固ラテックスに直接投入するのが工業的に簡便であり好ましい。また、撹拌の方法にも特に制限はないが、撹拌翼で槽内全体の流動が確保できる回転数以上で撹拌するのが好ましい。
 そして、塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が30重量%を超える場合、熱処理する方法は特に限定されないが、例えば、塩化ビニル系樹脂の凝固ラテックスを、所定の熱処理温度に設定した水浴中に添加して、熱処理を行うことが好ましい。塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が高い場合は、水浴中で熱処理を行うことが、均一に熱処理しやすいからである。また、より均一に熱処理するという観点から、塩化ビニル系樹脂の凝固ラテックスを水浴中に連続的に添加することが好ましい。なお、凝固ラテックスの連続的な添加により、水浴の温度が低下する場合は、水蒸気等を連続的に供給し、熱処理温度を所定の温度に保持することが好ましい。
 塩化ビニル系樹脂の凝固ラテックスを、所定の温度に調整した水浴中に連続的に添加し、さらに連続的に抜き出しながら熱処理する場合には、例えば、熱処理を行う槽における平均の滞留時間(熱処理を行う槽の仕込み容量(L)を、熱処理槽に連続的に供給される凝固ラテックス及び水の供給速度(L/分)で除した値)が熱処理時間に相当する。熱処理時間は、本発明の目的を達成することができれば特に制限されないが、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性を向上するという観点から、30秒以上とするのが好ましい。
 上記の熱処理は、特に制限はないが、例えば、混合機又は配管中で行うことができる。本発明で用いられる混合機としては、凝固ラテックス粒子が沈降しないよう全体を混合できる装置であればよく、例えば、撹拌槽、スタティックミキサー、オンレーター等の装置を用いることができる。
 次に、得られた塩化ビニル系樹脂凝集体粒子を含むスラリーを、pHが4~11、好ましくはpHが5~10、より好ましくはpHが6~9の範囲になるように調整する。pHが上記の範囲内であることにより、得られる塩化ビニル系樹脂凝集体粒子の吸湿率が低く、水を添加したプラスチゾル(水添加プラスチゾル)の垂れ性が良好になる。それゆえ、プラスチゾルを被覆した手袋が軽くて柔軟なものになる。そして、pHが中性に近い程、得られる塩化ビニル系樹脂凝集体粒子の吸湿率が低下する傾向にあり好ましい。また、pHが上記の範囲内であることにより、得られる塩化ビニル系樹脂凝集体粒子の超音波処理後の粒子径が1.0μm以下の粒子の割合が少なく、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの無浸透性が良好になる。
 次に、pH調整後の塩化ビニル系樹脂凝集体粒子を含むスラリーを脱水し、乾燥した後、粉砕及び/又は分級処理することで、体積平均粒子径及び粒子径分布を調整し、所望の粒子径を有する粒子割合の塩化ビニル系樹脂凝集体粒子を得る。
 上記脱水は、特に限定されないが、濾過により行うことができる。また、脱水した後、得られる塩化ビニル系樹脂凝集体の吸湿率を低減できる観点から、スラリーと同じpHの純水で洗浄し、さらに脱水することが好ましい。洗浄に用いる純水の量は、樹脂を水洗いできればよく特に限定されないが、十分に洗浄するという観点から、樹脂重量に対して2~20倍であることが好ましい。また、上記脱水に用いる脱水機には特に制限はなく、例えば、デカンタ、遠心脱水機、水平ベルトフィルター、ベルトフィルター、スクリュープレス、ドラムフィルター等の脱水機を用いることができる。
 上記乾燥機にも特に制限はなく、例えば、気流乾燥機、流動乾燥機、ベルト乾燥機、箱型乾燥機等の乾燥機を用いることができる。乾燥温度には特に制限はないが、通常は、熱風温度50~220℃、樹脂温度35~100℃程度である。
 上記粉砕機或いは破砕機にも特に制限はなく、例えば、ローラーミル、高速回転粉砕機、ボールミル、ジェットミル等を使用することができる。また、風力分級機や、分級機能付きの粉砕機を用いることで、所望の粒子径分布となるよう調整することもできる。
 本発明の塩化ビニル系樹脂凝集体粒子に、可塑剤を添加してプラスチゾルとして用いることができる。また、プラスチゾルは、必要に応じて、上記塩化ビニル系樹脂凝集体粒子以外の塩化ビニル系樹脂、安定剤、希釈剤、減粘剤、充填剤、補強剤、酸化防止剤、紫外線吸収剤、発泡剤、難燃剤、帯電防止剤、滑剤、顔料、表面処理剤、チキソトロープ剤、接着性付与剤、防カビ剤等を含んでも良い。
 上記可塑剤としては、特に制限されず、例えば、フタル酸ジ-2-エチルヘキシル、ジノルマルオクチルフタレート、ジブチルフタレート、ジイソノニルフタレート、ブチルベンジルフタレート等のフタル酸エステル系可塑剤、トリクレジルホスフェート、トリ-2-エチルヘキシルホスフェート等のリン酸エステル系可塑剤、ジ-2-エチルヘキシルアジペート等のアジピン酸エステル系可塑剤、ジ-2-エチルヘキシルセバケート等のセバシン酸エステル系可塑剤、ジ-2-エチルヘキシルアゼレート等のアゼライン酸エステル系可塑剤、トリ-2-エチルヘキシルトリメリテート等のトリメリット酸エステル系可塑剤、ポリエステル系可塑剤、ジ-2-エチルヘキシルベンゾエート、ジエチレングリコールジベンゾエート、2,2,4-トリメチル-1,3-ペンタンジオールイソブチレートベンゾエート等の安息香酸エステル系可塑剤、アセチルトリブチルシトレート等のクエン酸エステル系可塑剤、グリコール酸エステル系可塑剤、塩素化パラフィン系可塑剤、塩素化脂肪酸エステル系可塑剤、エポキシ系可塑剤、テキサノールイソブチレート等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。上記可塑剤の使用量は特に制限はないが、例えば本発明の塩化ビニル系樹脂凝集体粒子を含む塩化ビニル系樹脂100重量部に対して50~200重量部の範囲で使用される。
 上記安定剤としては、特に制限はないが、例えばジメチル錫メルカプト、ジブチル錫メルカプト、ジオクチル錫メルカプト、ジブチル錫マレート、ジオクチル錫マレート、ジブチル錫ラウレート等の有機錫安定剤、ステアリン酸鉛、二塩基性亜燐酸鉛、三塩基性硫酸鉛等の鉛系安定剤、カルシウム-亜鉛系安定剤、バリウム-亜鉛系安定剤、エポキシ化大豆油、エポキシ化アマニ油、エポキシ化テトラヒドロフタレート、エポキシ化ポリブタジエン、燐酸エステル等を用いることができる。これらは単独で用いても2種以上を組み合わせて用いても良い。また上記安定剤の使用量は特に制限はないが、例えば本発明の塩化ビニル系樹脂凝集体を含む塩化ビニル系樹脂100重量部に対して0~20重量部の範囲で使用される。 
 上記希釈剤としては、特に制限はないが、例えば2,2,4-トリメチル-1,3-ペンタジオールジイソブチレート(TXIB)、ノルマルパラフィン、イソパラフィン等を用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いても良い。上記希釈剤の使用量は特に制限はないが、例えば本発明の塩化ビニル系樹脂凝集体を含む塩化ビニル系樹脂100重量部に対して0~200重量部の範囲で使用される。
 上記充填剤としては、特に制限はないが、例えば炭酸カルシウム、炭酸マグネシウム、炭酸リチウム、カオリングレー、石膏、マイカ、タルク、水酸化マグネシウム、珪酸カルシウム、硼砂等を用いることができる。上記充填剤の使用量についても、特に制限はないが、一般的に本発明の塩化ビニル系樹脂凝集体を含む塩化ビニル系樹脂100重量部に対して、0~500重量部使用することが好ましい。より好ましくは、0~200重量部の範囲で使用され、さらに好ましくは0~100重量部の範囲で使用される。
 その他、減粘剤、補強剤、酸化防止剤、紫外線吸収剤、発泡剤、難燃剤、帯電防止剤、滑剤、顔料、表面処理剤、チキソトロープ剤、接着性付与剤、防カビ剤については、本発明の目的を達する範囲内で使用すれば良い。
 上記のようにして得られた塩化ビニル系樹脂凝集体粒子を含有するプラスチゾルを手袋の布地表面に塗布した後、加熱してゲル化させることにより塩化ビニル系樹脂で被覆された手袋が得られる。上記手袋は、塩化ビニル系樹脂凝集体粒子を含有する無浸透性及び垂れ性に優れるプラスチゾルを用いて処理しているため、軽量かつ柔軟で使用感もよい。また、上記手袋は、機械的強度が強く、耐摩耗性、耐薬品性及び耐油性に優れ、水産業、農業、鉱業等の広い分野に使用される。
 以下実施例により本発明をさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。下記において、「%」及び「部」という記載は、特に指摘がない場合、それぞれ、「重量%」及び「重量部」を意味する。
 まず、実施例及び比較例で用いた測定方法及び評価方法について説明する。
 (ガラス転移温度)
 示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製、型式DSC220C)を用いて、温度30~200℃、昇温速度10℃/分の操作条件で行った。
 (塩化ビニル系樹脂の体積平均粒子径)
 塩化ビニル系樹脂ラテックスを測定試料とし、パーティクル サイジング システム(PARTICLE SIZING SYSTEMS)製NICOMP 380を用いて粒子径分布を25℃で測定し、測定サイクルを3分×5回とし、5回目のデータのガウス分布における体積基準の粒子径分布から、塩化ビニル系樹脂の体積平均粒子径を求めた。測定条件としては、レーザー波長635nm、強度1.2、照射角90°、液粘度0.933cP、屈折率1.333とし、KIMBLE製の内径6mm、高さ50mmのガラス容器を用い、ドロップ-イン セル(Drop-In Cell)方式で測定した。また、測定試料は、350メッシュの金網でろ過した塩化ビニル系樹脂ラテックスに、0.2μmのフィルターでろ過したイオン交換水を加え、強度が300±50の範囲になるように調整したものを用いた。
 (塩化ビニル系樹脂ラテックスの凝固操作時のせん断力)
 塩化ビニル系樹脂ラテックスを凝固する際に付与するせん断力については、撹拌動力をその指標とし、凝固時の撹拌トルクを実測値から算出し、以下の三段階に分類した。
強:撹拌動力が5kW/m以上(極めて大きなせん断力を付与)。
中:撹拌動力が2kW/m以上5kW/m未満。
弱:撹拌動力が2kW/m未満(せん断力が小さい)。
 (塩化ビニル系樹脂凝集体粒子の体積平均粒子径及び粒子割合)
 粒度分布測定装置であるマイクロトラックHRA9320-X100型(日機装株式会社製)を用いて、塩化ビニル系樹脂凝集体粒子の粒子径分布を体積基準で測定し、体積平均粒子径を求めた。測定条件としては、温度25℃、物質情報は透明で屈折率1.51、球形粒子のチェックはなし、キャリアーは水を用い屈折率は1.33とした。また、セットゼロ(SET ZERO)10秒、計測10秒、ドライカット(DRY CUT)計算なしとした。また、上記と同様に測定した粒子径分布に基づいて、粒子径が10~60μmの粒子の体積分率(%)を求め、粒子径が10~60μmの粒子の割合(体積%)とした。
 (吸湿率)
 塩化ビニル系樹脂凝集体粒子(水分含有量0.1重量%以下)をアルミカップに入れてサンプルとした。サンプルを底面に十分量の水を張ったデシケータ内に入れ、30℃雰囲気下で24時間保持した。24時間後、デシケータ内のサンプルを取り出し、重量を計量し、この時の塩化ビニル系樹脂凝集体粒子の重量をWとした。重量を計量した後、サンプルを105℃の熱風循環型恒温槽内で1時間保持し、吸湿した水分を蒸発させた。水分を蒸発させた後、サンプルを恒温槽から取り出し、乾燥シリカゲルを底面に敷詰めたデシケータ内に保持して室温まで放冷した。室温まで放冷した後、デシケータ内のサンプルを取り出し、重量を計量し、この時の塩化ビニル系樹脂凝集体粒子の重量をWとした。塩化ビニル系樹脂凝集体粒子の吸湿率は、上記WおよびWの値を基に、下記数式1より求めた。
 [数式1]
 吸湿率(重量%)=[(W-W)/W]×100  (1)
 (見かけ密度)
 塩化ビニル系樹脂凝集体粒子の見かけ密度は、JIS K 7365に基づいて、パウダーテスターPT-R型(ホソカワミクロン社製)を用いて測定した。
 (η70/η40の測定方法)
 先ず、塩化ビニル系樹脂凝集体粒子100重量部を可塑剤(フタル酸-ジ-2エチルヘキシル)160重量部に加え、ディゾルバー型混練機(「ROBO MICS/TOKUSHU」KIKA社製、ディゾルバー翼5cm直径)を用い、25℃で、500rpmで3分間混練して、プラスチゾルを調製した。得られたプラスチゾルの昇温粘度を、TA インスツルメンツ(TA Instruments)社製のレオメータ(機種:AR2000、ローター:直径4cmのフラットプレート、ギャップ:0.35mm、せん断速度:1s-1)を用いて測定した。測定では、25℃で調製したプラスチゾルをレオメータにセットし、5℃/分の昇温速度で40℃に加熱後、10分間40℃で保持し、10℃/分の昇温速度で70℃に加熱後、70℃で3分間保持した。η70/η40は、40℃で10分間保持した時の粘度をη40とし、70℃で3分間保持した時の粘度をη70として算出した。
 (ボイドのサイズの測定)
 エポキシ接着剤1.0gに、0.2gの塩化ビニル系樹脂凝集体粒子を加え、全体が均一になるよう混合して混合液を調整した。次に、得られた混合液をゼラチンカプセルに詰め、24時間室温(20±5℃)で放置し、エポキシ接着剤を硬化させ、硬化混合物とした。次に、得られた硬化混合物をゼラチンカプセルから取り出し、液体窒素に15分間浸漬して凍結した。次に、凍結した硬化混合物にカッター刃を当て、その上から木槌で叩くことで硬化混合物を割断し、割断面を形成した。次に、塩化ビニル系樹脂凝集体粒子の割断面を、白金-パラジウムで蒸着した後、走査型電子顕微鏡(日立ハイテク社製「S-4800」、倍率3000倍)で観察し、無作為に選択した塩化ビニル系樹脂凝集体粒子の10個の割断面におけるボイドサイズが1.0μm以上のボイドの数をカウントし、平均し、塩化ビニル系樹脂凝集体粒子1個当りに存在するボイドサイズが1.0μm以上のボイドの数とした。
 (超音波処理後の粒子径が1.0μm以下の粒子の割合の測定)
 0.5%ジオクチルスルホコハク酸ナトリウム水溶液100mlを入れた200mlビーカー(ハリオグラス社製)に、塩化ビニル系樹脂凝集体粒子0.5gを加え、25℃で分散液を調整した。他方、超音波洗浄機(本多電子株式会社製のWT-300M型)に所定量の水(25℃)を張り、上記の分散液の入ったビーカーを、ビーカー内の液面が超音波洗浄機の液面よりも低くなるように設置し、25℃で、28kHzの超音波を12分間照射した。超音波処理後の塩化ビニル系樹脂凝集体粒子の粒子径分布を、粒度分布測定装置であるマイクロトラックHRA9320-X100型(日機装株式会社製)を用いて体積基準で測定し、粒子径が1.0μm以下の粒子の体積分率(%)を求め、粒子径が1.0μm以下の粒子の割合とした。粒子径測定条件としては、温度25℃、物質情報は透明で屈折率1.51、球形粒子のチェックはなし、キャリアーは水を用い屈折率は1.33とした。また、セットゼロ(SET ZERO)10秒、計測10秒、ドライカット(DRY CUT)計算なしとした。
 (無浸透性及び垂れ性の評価)
 塩化ビニル系樹脂凝集体粒子100重量部に対して、汎用のペースト塩ビ樹脂(株式会社カネカ社製「PSM-30」)を75重量部、可塑剤(フタル酸-ジ-2エチルヘキシル)を210重量部、安定剤(旭電化社製「SC73」)を3重量部配合し、25℃で撹拌槽にて10分間混合脱泡することでプラスチゾルを調製した。別途、外径3cm、長さ20cmの試験管(金型に該当)と、試験管の外側に密着して装着できるよう試験管形状に縫製した外径2.5cm、長さ15cmの布地[木綿糸32番(綿番手)を使用したニット(丸編又は横編)、35ゲージ、目付け216g/m]を準備した。上記布地を、布地の縫い目が内側となるようにして、上記試験管の外側に底から覆いかぶせ、金型に装着させた布地の手袋を実験室レベルで代替した。なお、測定中に布地がずれないよう、布地の上端部分は木綿糸で試験管に縛りつけた。布地で覆われた試験管(サンプル)を、70℃の熱風循環型恒温槽内で1時間保持し、サンプルを70℃まで加熱した。サンプルを恒温槽から取り出し、間を置かず、上記のように調製しておいたプラスチゾル200gを布地の上から流下させて塗布した。続いて、プラスチゾルを塗布したサンプルを、試験管の底側が下になるようにして25℃雰囲気下10分間吊るし、余分なプラスチゾルを垂らした。その後、サンプルを190℃に調整したオーブン内で10分間加熱し、プラスチゾルをゲル化させた。取り出したサンプルを風冷後、試験管からゲルでコーティングされた布地を取り外し、底側から10cm長となるようカットした。
 プラスチゾルの無浸透性の評価は、目視でカットした布地を観察し、以下の三段階評価とし、A及びBを合格、Cを不合格とした。
A:布地の裏側にゲルが浸透していない。
B:布地の裏側にゲルが若干浸透している。
C:布地の裏側にゲルが多量に浸透している(無浸透性が不良)。
 プラスチゾルの垂れ性の評価は、10cmにカット後の、ゲルでコーティングされた布地の重さを計測することにより行い、以下の三段階評価とし、A及びBを合格、Cを不合格とした。
A:重量が10g未満。
B:重量が10g以上12g未満。
C:重量が12g以上(プラスチゾルの垂れ性が不良)。
 (水添加プラスチゾルの垂れ性の評価)
 上記無浸透性及び垂れ性の評価に用いたプラスチゾルに、プラスチゾル重量の0.2重量%に相当する純水を配合し、25℃で撹拌槽にて10分間混合することで水添加プラスチゾルを調製した。得られた水添加プラスチゾルを用い、上記プラスチゾルの垂れ性の評価と同様にして、水添加プラスチゾルの垂れ性を評価した。
 (製造例1)
 ジャケット付き300L耐圧容器に塩化ビニル単量体110Kg、イオン交換水110Kg、過硫酸アンモニウム40g及び硫酸銅五水和物(レドックス反応の触媒)0.3gを仕込んで50℃に昇温し、攪拌しながら、1%亜硫酸ナトリウム水溶液9kgと10%ミリスチン酸アンモニウム水溶液7kgを連続的に追加することで、重合を行った。重合圧力が初期圧力(0.7MPa)より0.15MPa低下するまで重合した後、残存単量体を回収して塩化ビニル系樹脂ラテックスを得た。最終的に得られた塩化ビニル系樹脂ラテックスの、初期仕込み単量体及び追加単量体の総量(以下、全単量体量と記す。)に対する重合転化率は90%であった。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約80℃であった。
 (製造例2)
 乳化剤として、ミリスチン酸アンモニウムに替えてステアリン酸カリウムを用いた以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約80℃であった。
 (製造例3)
 乳化剤として、ミリスチン酸アンモニウムに替えてミリスチン酸カリウムを用いた以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約80℃であった。
 (製造例4)
 仕込みモノマー成分を、塩化ビニル単量体104.5Kgと酢酸ビニル単量体5.5kgの混合物とした以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約78℃であった。
 (製造例5)
 仕込みモノマー成分を、塩化ビニル単量体99Kgと酢酸ビニル単量体11kgの混合物とした以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約76℃であった。
 (製造例6)
 仕込みモノマー成分を、塩化ビニル単量体93.5Kgと酢酸ビニル単量体16.5kgの混合物とした以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は45%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約74℃であった。
 (製造例7)
 乳化剤として、ミリスチン酸アンモニウムに替えてドデシル硫酸ナトリウム(SDS)を用いた以外は、製造例1と同様にして塩化ビニル系樹脂ラテックスを得た。得られた塩化ビニル系樹脂ラテックスにおいて、塩化ビニル系樹脂の体積平均粒子径は0.3μmであった。また、塩化ビニル系樹脂ラテックス中のポリマー固形分の濃度は46%であった。また、上記のように測定した塩化ビニル系樹脂のガラス転移温度は約80℃であった。
 (実施例1)
 図1に示しているように、攪拌機15付き第一混合機10(300L槽)内に製造例1で得られた塩化ビニル系樹脂ラテックス114kgを仕込んだ後、凝固後のラテックス中のポリマー固形分の濃度が30%となるように純水を添加するとともに、温度を40℃に調整した。続いて、塩酸を凝固剤として用い、塩酸の添加量が塩化ビニル系樹脂ラテックス中のポリマー固形分100重量部に対して1重量部になるように、撹拌しながら、10%の塩酸水溶液を塩化ビニル系樹脂ラテックス中に1分間かけて添加した。得られた塩化ビニル系樹脂ラテックスと凝固剤の混合物を、5kW/m以上の強せん断力下で、30分間攪拌混合し、塩化ビニル系樹脂の凝固ラテックスを得た。
 得られた塩化ビニル系樹脂の凝固ラテックスを、ポンプ12にて、攪拌機16付き第二混合機11(300L槽)に送液する途中に設置された蒸気混合機13を用いて、蒸気混合機13の出口温度が105℃となるよう0.3MPaの水蒸気と混合させた。送液が終了後、第二混合機11において、塩化ビニル系樹脂の凝固ラテックスと水蒸気の混合物を攪拌しつつ、水蒸気14を供給して105℃で30分間保持し、熱処理した。
 熱処理後、第二混合機11のジャケットに冷水を流して第二混合機11を内温が80℃以下になるまで冷却させた。第二混合機11の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液を用い、塩化ビニル系樹脂凝集体粒子(以下において、単に凝集体粒子とも記す。)を含むスラリーのpHが7となるように調整した。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.5であった。pHを調整した後、第二混合機11から凝集体粒子を含むスラリーを払い出した。続いて、凝集体粒子を含むスラリーを濾過により脱水し、樹脂重量に対し10倍量の純水で洗浄後、再度濾過脱水を行った。得られた湿樹脂を60℃に設定した定温乾燥機(ヤマト科学株式会社取り扱い品、DX402型)で48時間静置乾燥して乾燥粉体(凝集体粒子)を得た。さらに、得られた乾燥粉体を、体積平均粒子径及び粒子径が10~60μmの粒子の割合が表1に示す値になるように、ホソカワミクロン株式会社製のマイクロバンタムミルAP-B型粉砕機で粉砕し、粉砕粒子(凝集体粒子)を得た。
 (実施例2)
 図2に示しているように、混合機20に、製造例1で得られた塩化ビニル系樹脂ラテックス15.5kgを仕込んだ後、凝固後のラテックス中のポリマー固形分の濃度が40%となるように純水を添加するとともに、温度を40℃に調整した。続いて、塩酸を凝固剤として用い、塩酸の添加量が塩化ビニル系樹脂ラテックス中のポリマー固形分100重量部に対して1重量部になるように、撹拌しながら、10%の塩酸水溶液を塩化ビニル系樹脂ラテックス中に1分間かけて添加した。得られた塩化ビニル系樹脂ラテックスと凝固剤の混合物を、5kW/m以上の強せん断力下で、30分間攪拌混合し、塩化ビニル系樹脂の凝固ラテックスを得た。
 攪拌機25付き50L槽21に21kgの105℃の温水23を仕込み、そこへ上記で得られた塩化ビニル系樹脂の凝固ラテックスを約10分間連続的に添加した。得られた混合物を、攪拌しながら105℃で30分間保持し、熱処理した。熱処理後の塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度は18%であった。なお、熱処理中は、混合物の温度が105℃に保持されるように0.3MPa水蒸気22を連続的に供給した。
 その後50L槽21のジャケットに冷水を流して50L槽21を内温が80℃以下になるまで冷却させた。50L槽21の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液で、凝集体粒子を含むスラリーのpHが7となるように調整した。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.6であった。pHの調整後、50L槽21から凝集体粒子を含むスラリーを払い出した。続いて、凝集体粒子を含むスラリーを濾過により脱水し、樹脂重量に対し10倍量の純水で洗浄後、再度濾過脱水を行った。得られた湿樹脂を60℃に設定した定温乾燥機(ヤマト科学株式会社取り扱い品、DX402型)で48時間静置乾燥して乾燥粉体(凝集体粒子)を得た。さらに、得られた乾燥粉体を、体積平均粒子径及び粒子径が10~60μmの粒子の割合が表1に示す値になるように、ホソカワミクロン株式会社製のマイクロバンタムミルAP-B型粉砕機で粉砕し、粉砕粒子(凝集体粒子)を得た。
 (実施例3)
 凝固剤として、塩酸(10%塩酸水溶液)に替えて硫酸(10%硫酸水溶液)を用い、熱処理を100℃で実施した以外は、実施例2と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例4)
 熱処理を85℃で実施した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例5)
 熱処理を110℃で実施した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例6)
 第二混合機11の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液で、凝集体粒子を含むスラリーのpHが5となるように調整し、濾過脱水後の洗浄を硫酸でpH5に調整した純水を用いて行った以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.6であった。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例7)
 第二混合機11の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液で、凝集体粒子を含むスラリーのpHが10となるように調整し、濾過脱水後の洗浄を水酸化ナトリウムでpH10に調整した純水を用いて行った以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.6であった。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例8)
 製造例2で得られた塩化ビニル系樹脂ラテックスを用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例9)
 製造例3で得られた塩化ビニル系樹脂ラテックスを用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例10)
 製造例4で得られた塩化ビニル系樹脂ラテックスを用い、熱処理を95℃で実施した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表1に示すとおりであった。
 (実施例11)
 製造例5で得られた塩化ビニル系樹脂ラテックスを用い、熱処理を90℃で実施した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例12)
 製造例6で得られた塩化ビニル系樹脂ラテックスを用い、熱処理を85℃で実施した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例13)
 凝固剤として、硫酸(10%硫酸水溶液)に替えて燐酸(10%燐酸水溶液)を用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例14)
 凝固剤として、硫酸(10%硫酸水溶液)に替えて硝酸(10%硝酸水溶液)を用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例15)
 製造例7で得られた塩化ビニル系樹脂ラテックスを用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例16)
 製造例1で得られた塩化ビニル系樹脂ラテックス15.5kgの温度を40℃に調整した。続いて、硫酸を凝固剤として用い、硫酸の添加量が塩化ビニル系樹脂ラテックス中のポリマー固形分100部に対し1部になるように、撹拌しながら、10%の硫酸水溶液を塩化ビニル系樹脂ラテックス中に1分間かけて添加した。得られた塩化ビニル系樹脂ラテックスと凝固剤の混合物を、5kW/m以上の強せん断力下で、30分間攪拌混合し、塩化ビニル系樹脂の凝固ラテックスを得た。得られた凝固ラテックスに含まれる水分をペーパータオルで除去し、塩化ビニル系樹脂の凝固ラテックス中のポリマー固形分の濃度が47.5%になるように調整した。上記で得られたポリマー固形分濃度が47.5%の塩化ビニル系樹脂の凝固ラテックスを用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例17)
 製造例1で得られた塩化ビニル系樹脂ラテックス15.5kgに、凝固後のラテックス中のポリマー固形分の濃度が27.5%となるように純水を添加した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例18)
 凝固剤として硫酸(10%水溶液)と塩化カルシウム(10%水溶液)を用い、硫酸と塩化カルシウムの添加量が、塩化ビニル系樹脂ラテックス中のポリマー固形分100部に対して、それぞれ0.6部と0.4部になるようにした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例19)
 凝固剤として硫酸(10%水溶液)とポリビニルアルコール(日本合成化学社製「ゴーセノール KH17」、3%水溶液)を用い、硫酸とポリビニルアルコールの添加量が、塩化ビニル系樹脂ラテックス中のポリマー固形分100部に対して、それぞれ0.9部と0.1部になるようにした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (実施例20)
 凝固ラテックス調製時の凝固剤を添加した後の攪拌を、2kW/m未満の弱いせん断力下で行った以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表2に示すとおりであった。
 (比較例1)
 熱処理温度を120℃とした以外は、実施例1と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例2)
 熱処理温度を120℃とした以外は、実施例2と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例3)
 熱処理温度を120℃とした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例4)
 熱処理温度を75℃とした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例5) 
 第二混合機11の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液で、凝集体粒子を含むスラリーのpHが3となるよう調整し、濾過脱水後の洗浄を硫酸でpH3に調整した純水を用いて行った以外は、実施例3と同様にして粉砕粒子(凝集体粒子)を得た。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.6であった。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例6) 
 第二混合機11の内温が80℃以下になった段階で、5%水酸化ナトリウム水溶液で、凝集体粒子を含むスラリーのpHが12となるよう調整し、濾過脱水後の洗浄を水酸化ナトリウムでpH12に調整した純水を用いて行った以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。なお、pHを調整する前、凝集体粒子を含むスラリーのpHは2.6であった。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例7) 
 凝固剤として硫酸(10%水溶液)とポリビニルアルコール(日本合成化学社製「ゴーセノール KH17」、3%水溶液)を用い、硫酸とポリビニルアルコールの添加量が、塩化ビニル系樹脂ラテックス中のポリマー固形分100部に対して、それぞれ0.4部と0.6部になるようにした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例8) 
 凝固剤として硫酸(10%硫酸水溶液)に替えて塩化カルシウム(10%水溶液)を用いた以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例9) 
 製造例1で得られた塩化ビニル系樹脂ラテックス15.5kgに、凝固後のラテックス中のポリマー固形分の濃度が20%となるように純水を添加した以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例10) 
 塩化ビニル系樹脂凝集体粒子中の粒子径が10~60μmの粒子の割合が50体積%未満になるように粉砕処理をした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 (比較例11)
 凝固剤として硫酸ナトリウム(10%水溶液)とポリビニルアルコール(日本合成化学社製「ゴーセノール KH17」、3%水溶液)を用い、硫酸ナトリウムとポリビニルアルコールの添加量が、塩化ビニル系樹脂ラテックス中のポリマー固形分100部に対して、それぞれ1部と0.5部になるようにした以外は、実施例3と同様にして、粉砕粒子(凝集体粒子)を得た。得られた粉砕粒子(凝集体粒子)の体積平均粒子径及び粒子径が10~60μmの粒子の割合は、表3に示すとおりであった。
 実施例及び比較例で得られた塩化ビニル系樹脂凝集体粒子(粉砕粒子)の吸湿率、見かけ密度、ボイドのサイズ、超音波処理後の粒子径が1.0μm以下の粒子の割合、並びに実施例及び比較例で得られた塩化ビニル系樹脂凝集体粒子を含むプラスチゾルの熱増粘度、無浸透性、垂れ性、及び水添加プラスチゾルの垂れ性を上記のように測定し、その結果を下記表1~表3に示した。なお、表1~表3には、実施例及び比較例におけるその他の条件等についても併せて示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表2から分かるように、実施例1~20の塩化ビニル系樹脂凝集体粒子は体積平均粒子径が10~60μmであり、粒子径が10~60μmの粒子の割合が50体積%以上であった。
 また、実施例1~20の塩化ビニル系樹脂凝集体粒子は、吸湿率が1.5重量%以下であり、η70/η40が3~1000であった。
 また、実施例1~20の塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲であり、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満であった。また、実施例1~20の塩化ビニル系樹脂凝集体粒子は、25℃で、28kHzの超音波を12分間照射することで超音波処理した場合、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満であった。特に、凝固剤として無機酸のみを用い、乳化剤として脂肪酸塩を用いた実施例1~14、16、17及び20では凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が1.0個以下であり、好ましかった。実施例1~14、16、17及び20の中でも、凝固ラテックスのポリマー固形分濃度が30重量%以上である実施例1~14、16及び20では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が1.0個以下であり、超音波処理後の粒子径が1.0μm以下の粒子の割合が1.0体積%以下であり、より好ましかった。実施例1~14、16及び20の中でも、凝固操作時のせん断力が強である実施例1~14及び16では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が0個であるとともに、超音波処理後の粒子径が1.0μm以下の粒子の割合が1.0体積%以下であり、さらに好ましかった。
 そして、実施例1~20の塩化ビニル系樹脂凝集体粒子を用いたプラスチゾルは、無浸透性が良好であり、垂れ性も良好であった。また、実施例1~20の塩化ビニル系樹脂凝集体粒子を用いた水添加プラスチゾルの垂れ性も良好であった。
 一方、表3から分かるように、熱処理を所定の温度より高い温度で行った比較例1~3では、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が1000を超えており、プラスチゾル及び水添加プラスチゾルの垂れ性の評価がいずれもCであった。熱処理を、所定の温度より低い温度で行った比較例4では、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が3未満であり、プラスチゾルの無浸透性及び垂れ性並びに水添加プラスチゾルの垂れ性の評価がいずれもCであった。塩化ビニル系樹脂凝集体粒子を含むスラリーの調整後のpHが4未満である比較例5では、塩化ビニル系樹脂凝集体粒子における粒子径が10~60μmの粒子の割合が50体積%未満であり、吸湿率が1.5重量%を超えており、水添加プラスチゾルの垂れ性の評価がCであった。塩化ビニル系樹脂凝集体粒子を含むスラリーの調整後のpHが11を超えている比較例6では、塩化ビニル系樹脂凝集体粒子の吸湿率が1.5重量%を超えており、水添加プラスチゾルの垂れ性の評価がCであった。凝固剤における無機酸の含有量が50重量%未満である比較例7では、塩化ビニル系樹脂凝集体粒子の吸湿率が1.5重量%を超えており、水添加プラスチゾルの垂れ性の評価がCであった。凝固剤が無機酸を含んでいない比較例8では、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が1000を超えており、プラスチゾル及び水添加プラスチゾルの垂れ性の評価がいずれもCであった。塩化ビニル系樹脂の凝固ラテックスにおけるポリマー固形分の濃度が22重量%未満である比較例9では、塩化ビニル系樹脂凝集体粒子を含むプラスチゾルのη70/η40が3未満であり、プラスチゾルの無浸透性及び垂れ性並びに水添加プラスチゾルの垂れ性の評価がいずれもCであった。塩化ビニル系樹脂凝集体粒子における粒子径が10~60μmの粒子の割合が50体積%未満である比較例10では、プラスチゾルの無浸透性の評価がCであった。
 また、表3から分かるように、熱処理を、所定の温度より高い温度で行った比較例1~3では、塩化ビニル系樹脂凝集体粒子の見かけ密度が0.34g/mlを超えており、プラスチゾル及び水添加プラスチゾルの垂れ性の評価がいずれもCであった。熱処理を、所定の温度より低い温度で行った比較例4の塩化ビニル系樹脂凝集体粒子では、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%を大きく超えており、プラスチゾルの無浸透性及び垂れ性並びに水添加プラスチゾルの垂れ性の評価がいずれもCであった。塩化ビニル系樹脂凝集体粒子を含むスラリーの調整後のpHが4未満である比較例5では、塩化ビニル系樹脂凝集体粒子における粒子径が10~60μmの粒子の割合が50体積%未満であり、水添加プラスチゾルの垂れ性の評価がCであった。塩化ビニル系樹脂凝集体粒子を含むスラリーの調整後のpHが11を超えている比較例6では、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%を超えており、水添加プラスチゾルの垂れ性の評価がCであった。凝固剤における無機酸の含有量が50重量%未満である比較例7では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であり、水添加プラスチゾルの垂れ性の評価がCであった。凝固剤が無機酸を含んでおらず無機塩を用いた比較例8では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であり、かつ超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%を超えており、プラスチゾル及び水添加プラスチゾルの垂れ性の評価がいずれもCであった。塩化ビニル系樹脂の凝固ラテックスにおけるポリマー固形分の濃度が22重量%未満である比較例9では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であり、かつ超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%を超えており、プラスチゾルの無浸透性及び垂れ性並びに水添加プラスチゾルの垂れ性の評価がいずれもCであった。凝固剤が無機酸を含んでおらず無機塩及びPVAを用いた比較例11では、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個以上であり、かつ超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%を超えており、無浸透性及び水添加プラスチゾルの垂れ性の評価がいずれもCであった。
 図4及び図5に、それぞれ、実施例9及び比較例8の塩化ビニル系樹脂凝集体粒子の割断面の走査電子顕微鏡写真(3000倍)を示した。図4及び図5から分かるように、実施例の塩化ビニル系樹脂凝集体粒子では、ボイドがないのに対し、比較例の塩化ビニル系樹脂凝集体粒子には、ミクロンサイズのボイドが存在していた。また、図7及び図8に、それぞれ、実施例9及び比較例8の塩化ビニル系樹脂凝集体粒子の超音波処理前後の粒子径分布(粒度分布)を示した。図7において、超音波処理前の粒子径分布曲線30と超音波処理後の粒子径分布曲線31はほぼ重なっており、実施例の塩化ビニル系樹脂凝集体粒子は超音波耐崩壊性に優れることが分かった。一方、図8から分かるように、比較例の塩化ビニル系樹脂凝集体粒子では、超音波処理前の粒子径分布曲線40と超音波処理後の粒子径分布曲線41は重なっておらず、超音波処理により塩化ビニル系樹脂凝集体粒子が崩壊し、粒子径が1.0μm以下の粒子が発生していた。
 本発明の塩化ビニル系樹脂凝集体粒子を用い、シート、手袋、袋等を塩化ビニル系樹脂で被覆することにより、機械的強度が強く、耐摩耗性、耐薬品性及び耐油性に優れ、水産業、農業、鉱業等の広い分野に使用される、塩化ビニル系樹脂で被覆したシート、手袋、袋等を提供し得る。
 10 第一混合機
 11 第二混合機
 12 ポンプ
 13 蒸気混合機
 14、22 水蒸気
 15、16、25 攪拌機
 20 混合機
 21 50L槽
 23 温水
 30、31、40、41 粒子径分布曲線
 51 塩化ビニル系樹脂ラテックス粒子
 52 塩化ビニル系樹脂の凝固ラテックス粒子
 53 塩化ビニル系樹脂凝集体粒子

Claims (19)

  1.  塩化ビニル系樹脂凝集体粒子であって、
     前記塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上であり、
     前記塩化ビニル系樹脂凝集体粒子は、30℃かつ相対湿度97.0±0.4%の条件下で24時間保持した際の吸湿率が1.5重量%以下であり、
     40℃で10分間保持したプラスチゾルの剪断速度1s-1における粘度をη40とし、40℃から10℃/分で昇温して70℃で3分間保持したプラスチゾルの剪断速度1s-1における粘度をη70とした場合、前記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルが、3≦η70/η40≦1000の関係を満たすことを特徴とする塩化ビニル系樹脂凝集体粒子。
  2.  前記塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲である請求項1に記載の塩化ビニル系樹脂凝集体粒子。
  3.  塩化ビニル系樹脂凝集体粒子であって、
     前記塩化ビニル系樹脂凝集体粒子は、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上であり、
     前記塩化ビニル系樹脂凝集体粒子は、見かけ密度が0.21~0.34g/mlの範囲であり、
     前記塩化ビニル系樹脂凝集体粒子は、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満であり、
     前記塩化ビニル系樹脂凝集体粒子は、25℃で、28kHzの超音波を12分間照射することで超音波処理した場合、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満であることを特徴とする塩化ビニル系樹脂凝集体粒子。
  4.  前記塩化ビニル系樹脂凝集体粒子は、30℃かつ相対湿度97.0±0.4%の条件下で24時間保持した際の吸湿率が1.5重量%以下である請求項3に記載の塩化ビニル系樹脂凝集体粒子。
  5.  40℃で10分間保持したプラスチゾルの剪断速度1s-1における粘度をη40とし、40℃から10℃/分で昇温して70℃で3分間保持したプラスチゾルの剪断速度1s-1における粘度をη70とした場合、前記塩化ビニル系樹脂凝集体粒子100重量部とフタル酸ジ-2-エチルヘキシル160重量部からなるプラスチゾルが、3≦η70/η40≦1000の関係を満たす請求項3又は4に記載の塩化ビニル系樹脂凝集体粒子。
  6.  前記塩化ビニル系樹脂凝集体粒子は、30℃かつ相対湿度97.0±0.4%の条件下で24時間保持した際の吸湿率が1.0重量%以下である請求項1~5のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子。
  7.  前記η70/η40が5~110の範囲である請求項1、2、5及び6のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子。
  8.  請求項1~7のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子を製造する方法であって、
     塩化ビニル系樹脂ラテックスに無機酸を50重量%以上含む凝固剤を添加して凝固させ、ポリマー固形分の濃度が22重量%以上の塩化ビニル系樹脂の凝固ラテックスにし、
     前記塩化ビニル系樹脂の凝固ラテックスを、塩化ビニル系樹脂のガラス転移温度をTgとした場合、Tg以上Tg+35℃以下の温度範囲で熱処理し、塩化ビニル系樹脂凝集体粒子を含むスラリーにし、
     前記塩化ビニル系樹脂凝集体粒子を含むスラリーを、pHが4~11の範囲になるように調整し、
     前記pH調整後の塩化ビニル系樹脂凝集体粒子を含むスラリーを、脱水し、乾燥した後、粉砕及び/又は分級することにより、体積平均粒子径が10~60μmであり、かつ粒子径が10~60μmの粒子の割合が50体積%以上である塩化ビニル系樹脂凝集体粒子を得ることを特徴とする塩化ビニル系樹脂凝集体粒子の製造方法。
  9.  無機酸を50重量%以上含む凝固剤と、ポリマー固形分の濃度が22重量%以上である塩化ビニル系樹脂の凝固ラテックスを用いることにより、凝集体粒子1個当たりにおける1.0μm以上のボイドサイズを有するボイドの数が5.0個未満である塩化ビニル系樹脂凝集体粒子を得る請求項8に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  10.  前記熱処理は、塩化ビニル系樹脂の凝固ラテックスを、水蒸気及び水浴からなる群から選ばれる一種以上の加熱媒体と混合することにより行う請求項8又は9に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  11.  前記塩化ビニル系樹脂は、塩化ビニル樹脂である請求項8~10のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  12.  前記熱処理を、80~115℃の温度で行う請求項8~11のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  13.  前記塩化ビニル系樹脂ラテックスに凝固剤を添加して凝固させる際の温度は5℃以上Tg-15℃以下の範囲である請求項8~12のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  14.  前記塩化ビニル系樹脂の凝固ラテックスは、ポリマー固形分濃度が25~50重量%である請求項8~13のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  15.  前記塩化ビニル系樹脂ラテックスは、塩化ビニル単量体又は塩化ビニル単量体とこれと共重合可能な単量体との混合物に、重合開始剤と、乳化剤とを添加して重合させることにより得られており、前記乳化剤が脂肪酸塩である請求項8~14のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  16.  乳化剤として脂肪酸塩を用いることにより、25℃で、28kHzの超音波を12分間照射することで超音波処理した場合、超音波処理後の粒子径が1.0μm以下の粒子の割合が3.0体積%未満である塩化ビニル系樹脂凝集体粒子を得る請求項15に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  17.  前記凝固剤は、無機酸のみからなる請求項8~16のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  18.  前記無機酸が、硫酸及び塩酸からなる群から選ばれる少なくとも一つである請求項8~17のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子の製造方法。
  19.  塩化ビニル系樹脂で被覆された手袋であって、
     前記手袋は、プラスチゾルを前記手袋の布地表面に塗布した後、加熱してゲル化させることにより塩化ビニル系樹脂で被覆処理されており、
     前記プラスチゾルが、請求項1~7のいずれか1項に記載の塩化ビニル系樹脂凝集体粒子を含有することを特徴とする手袋。
     
     
     
     
     
PCT/JP2012/058381 2011-05-31 2012-03-29 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋 WO2012165021A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280026633.9A CN103562232B (zh) 2011-05-31 2012-03-29 氯乙烯系树脂凝聚体粒子、其制造方法以及使用了它的手套
JP2013517906A JP5383952B2 (ja) 2011-05-31 2012-03-29 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋
US14/122,948 US8937113B2 (en) 2011-05-31 2012-03-29 Vinyl chloride resin aggregate particle, method for producing same, and gloves comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011121621 2011-05-31
JP2011-121621 2011-05-31
JP2012021527 2012-02-03
JP2012-021527 2012-02-03

Publications (1)

Publication Number Publication Date
WO2012165021A1 true WO2012165021A1 (ja) 2012-12-06

Family

ID=47258887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058381 WO2012165021A1 (ja) 2011-05-31 2012-03-29 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋

Country Status (6)

Country Link
US (1) US8937113B2 (ja)
JP (1) JP5383952B2 (ja)
CN (2) CN103562232B (ja)
MY (1) MY171736A (ja)
TW (1) TWI464185B (ja)
WO (1) WO2012165021A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159896A1 (ja) * 2018-02-16 2019-08-22 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、その製造方法、金属缶塗料用組成物、マーキングフィルム用組成物及び塗膜
JP2021532248A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 塩化ビニル系重合体製造用組成物及びこれを用いた塩化ビニル系重合体の製造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221268B2 (en) * 2014-03-20 2019-03-05 Mitsubishi Chemical Corporation Vinyl polymer powder, thermoplastic resin composition, and molded body thereof
CN106344071B (zh) * 2016-11-16 2019-07-16 珠海沃姆电子有限公司 一次性高清显像超声凝胶探头隔离套及其制备方法
KR20210131717A (ko) * 2020-04-24 2021-11-03 주식회사 엘지화학 후처리 장치
CN113999466B (zh) * 2021-11-22 2023-04-18 山东蓝帆新材料有限公司 一种塑胶手套及其制备方法
CN115316732B (zh) * 2022-10-13 2023-01-31 山东恒昌医疗科技股份有限公司 一种吸湿排汗pvc手套及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200105A (ja) * 1992-12-28 1994-07-19 Mitsubishi Rayon Co Ltd ポリ塩化ビニル系樹脂組成物
JPH07138314A (ja) * 1993-11-12 1995-05-30 Japan Synthetic Rubber Co Ltd 重合体ラテックスの凝固方法
JPH08302128A (ja) * 1995-04-28 1996-11-19 Mitsubishi Chem Corp 塩化ビニル系樹脂組成物の製造方法
JPH09286815A (ja) * 1996-04-22 1997-11-04 Japan Synthetic Rubber Co Ltd 重合体ラテックスの回収方法
JPH10251339A (ja) * 1997-03-17 1998-09-22 Kanegafuchi Chem Ind Co Ltd ペーストブレンド用塩化ビニル系樹脂の製造方法
WO2008041697A1 (fr) * 2006-10-03 2008-04-10 Kaneka Corporation Particules agrégées contenant de la résine de chlorure de vinyle et procédé de production desdites particules agrégées
JP2009227699A (ja) * 2008-03-19 2009-10-08 Kaneka Corp 塩化ビニル樹脂を含む凝集体粒子およびその製造方法
WO2012035830A1 (ja) * 2010-09-17 2012-03-22 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58145748A (ja) 1982-02-23 1983-08-30 Nippon Zeon Co Ltd 無浸透性プラスチゾル
US20080176974A1 (en) * 2005-02-28 2008-07-24 Takashi Ueda Process for Producing Coagulated Latex Particle
CN101522814A (zh) * 2006-10-03 2009-09-02 株式会社钟化 含有氯乙烯树脂的凝聚体粒子及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06200105A (ja) * 1992-12-28 1994-07-19 Mitsubishi Rayon Co Ltd ポリ塩化ビニル系樹脂組成物
JPH07138314A (ja) * 1993-11-12 1995-05-30 Japan Synthetic Rubber Co Ltd 重合体ラテックスの凝固方法
JPH08302128A (ja) * 1995-04-28 1996-11-19 Mitsubishi Chem Corp 塩化ビニル系樹脂組成物の製造方法
JPH09286815A (ja) * 1996-04-22 1997-11-04 Japan Synthetic Rubber Co Ltd 重合体ラテックスの回収方法
JPH10251339A (ja) * 1997-03-17 1998-09-22 Kanegafuchi Chem Ind Co Ltd ペーストブレンド用塩化ビニル系樹脂の製造方法
WO2008041697A1 (fr) * 2006-10-03 2008-04-10 Kaneka Corporation Particules agrégées contenant de la résine de chlorure de vinyle et procédé de production desdites particules agrégées
JP2009227699A (ja) * 2008-03-19 2009-10-08 Kaneka Corp 塩化ビニル樹脂を含む凝集体粒子およびその製造方法
WO2012035830A1 (ja) * 2010-09-17 2012-03-22 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019159896A1 (ja) * 2018-02-16 2019-08-22 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、その製造方法、金属缶塗料用組成物、マーキングフィルム用組成物及び塗膜
JPWO2019159896A1 (ja) * 2018-02-16 2021-02-12 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、その製造方法、金属缶塗料用組成物、マーキングフィルム用組成物及び塗膜
JP7231604B2 (ja) 2018-02-16 2023-03-01 株式会社カネカ 塩化ビニル系樹脂凝集体粒子、その製造方法、金属缶塗料用組成物、マーキングフィルム用組成物及び塗膜
US11746249B2 (en) 2018-02-16 2023-09-05 Kaneka Corporation Polyvinyl chloride aggregate particles, method for producing the same, composition for metal can coating material, composition for marking film, and coating film
JP2021532248A (ja) * 2018-11-02 2021-11-25 エルジー・ケム・リミテッド 塩化ビニル系重合体製造用組成物及びこれを用いた塩化ビニル系重合体の製造方法
JP7244624B2 (ja) 2018-11-02 2023-03-22 エルジー・ケム・リミテッド 塩化ビニル系重合体製造用組成物及びこれを用いた塩化ビニル系重合体の製造方法

Also Published As

Publication number Publication date
US8937113B2 (en) 2015-01-20
CN104277143A (zh) 2015-01-14
JPWO2012165021A1 (ja) 2015-02-23
TW201249883A (en) 2012-12-16
TWI464185B (zh) 2014-12-11
CN103562232A (zh) 2014-02-05
CN103562232B (zh) 2015-04-01
JP5383952B2 (ja) 2014-01-08
MY171736A (en) 2019-10-25
US20140088222A1 (en) 2014-03-27
CN104277143B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
JP5383952B2 (ja) 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋
JP4721780B2 (ja) 多孔質吸水性ポリマー粒子の製造法
EP3190216B1 (en) Method for manufacturing super absorbent polymer fiber
CA2593037A1 (en) Process for producing aggregated latex particle
JP5255730B2 (ja) 塩化ビニル系樹脂凝集体粒子、及びその製造方法とそれを用いた手袋
CN106893012B (zh) 一种纳米银改性石墨烯晶体复合材料及其制备方法
JPWO2008041697A1 (ja) 塩化ビニル樹脂を含む凝集体粒子及びその製造方法
CN107286832A (zh) 一种防水保温涂料及制备方法
NO168894B (no) Fremgangsmaate for suspensjonspolymerisering
JP2005306905A (ja) 塩化ビニル系プラスチゾル組成物及び発泡成形体
JP2009227699A (ja) 塩化ビニル樹脂を含む凝集体粒子およびその製造方法
JP3637798B2 (ja) ペースト用塩化ビニル系樹脂
CN109071831A (zh) 用于生产超吸收性聚合物的方法
SA516380359B1 (ar) خرز بوليمر قابل للتمدد بالماء
JP3328980B2 (ja) プラスチゾル組成物
KR101620140B1 (ko) 염화비닐계 수지용 포스트 중합 첨가제, 염화비닐계 수지 조성물 및 염화비닐계 수지의 제조방법
JPH11228606A (ja) 塩化ビニル系樹脂の懸濁重合方法
JPH11189606A (ja) 塩化ビニル系樹脂の懸濁重合方法
JPS60235807A (ja) 塩化ビニル重合体の製造方法
JP2002317004A (ja) 塩化ビニル系ペースト樹脂
CN105026488B (zh) 氯乙烯类纳米复合材料组合物以及制备该氯乙烯类纳米复合材料的方法
JPH1067807A (ja) 塩化ビニル系樹脂の懸濁重合方法
JPS62265328A (ja) 微小セルロ−ズ粒子の製造方法
JP2002348318A (ja) 塩化ビニル系ペースト樹脂
JP4962324B2 (ja) ペースト塩化ビニル系樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12794065

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013517906

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14122948

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12794065

Country of ref document: EP

Kind code of ref document: A1