WO2012161165A1 - 糖液から固形物を製造する方法及び固形物 - Google Patents

糖液から固形物を製造する方法及び固形物 Download PDF

Info

Publication number
WO2012161165A1
WO2012161165A1 PCT/JP2012/062962 JP2012062962W WO2012161165A1 WO 2012161165 A1 WO2012161165 A1 WO 2012161165A1 JP 2012062962 W JP2012062962 W JP 2012062962W WO 2012161165 A1 WO2012161165 A1 WO 2012161165A1
Authority
WO
WIPO (PCT)
Prior art keywords
isomaltulose
solid
mass
sugar solution
sugar
Prior art date
Application number
PCT/JP2012/062962
Other languages
English (en)
French (fr)
Inventor
俊明 杉谷
清昭 宮坂
武 平岡
靖 成田
Original Assignee
三井製糖株式会社
サンエイ糖化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井製糖株式会社, サンエイ糖化株式会社 filed Critical 三井製糖株式会社
Priority to EP12790104.9A priority Critical patent/EP2716771B1/en
Priority to KR1020137031791A priority patent/KR101465383B1/ko
Priority to ES12790104.9T priority patent/ES2566644T3/es
Priority to CN201280036573.9A priority patent/CN103717758B/zh
Publication of WO2012161165A1 publication Critical patent/WO2012161165A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/18Preparation of compounds containing saccharide radicals produced by the action of a glycosyl transferase, e.g. alpha-, beta- or gamma-cyclodextrins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B30/00Crystallisation; Crystallising apparatus; Separating crystals from mother liquors ; Evaporating or boiling sugar juice
    • C13B30/02Crystallisation; Crystallising apparatus
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B30/00Crystallisation; Crystallising apparatus; Separating crystals from mother liquors ; Evaporating or boiling sugar juice
    • C13B30/02Crystallisation; Crystallising apparatus
    • C13B30/028Crystallisation; Crystallising apparatus obtaining sugar crystals by drying sugar syrup or sugar juice, e.g. spray-crystallisation

Definitions

  • the present invention relates to a method for producing a solid from a sugar solution and the solid.
  • Isomaltulose has ⁇ -1,2 linkage of sucrose to ⁇ -1,2 by allowing the enzyme ⁇ -glucosyltransferase produced by Protaminobacter rubrum, Serratia plymuthica, Erwinia rhapontici, or Klebsiella sp. To act on sucrose. It is a disaccharide transferred to 6 bonds.
  • the sugar composition of the sugar solution obtained by allowing the above enzyme to act on sucrose solution is 60 to 90% by mass of isomaltulose, 5 to 35% by mass of trehalulose, and 0.2 to 5 mass of glucose and fructose, respectively. %.
  • the sugar solution is concentrated to produce isomaltulose crystals (crystallization step), and the produced crystals are collected by centrifugation (centrifugation step) to obtain crystallized isomaltulose. .
  • crystallized isomaltulose can be obtained by subjecting the sugar solution to a crystallization step and a centrifugation step.
  • the crystallized isomaltulose is sold as crystalline palatinose (trademark) IC (Mitsui Sugar Co., Ltd., isomaltulose purity 99.0% or more).
  • the sugar composition of the honey obtained by the centrifugation step is 53 to 59% for trehalulose and 11 to 17% for isomaltulose.
  • the honey is sold as Palatinose TM syrup-ISN (Mitsui Sugar Co., Ltd.).
  • Isomaltulose has low solubility in water, so isomaltulose crystals are likely to precipitate.
  • trehalulose does not crystallize and is liquid. Therefore, in order to remove trehalulose from the sugar solution and sell it as a solid product or a powder product of isomaltulose product, the centrifugation step is essential. In the centrifugation step, the crystallized isomaltulose and the honey are produced at a constant ratio, but the honey may be left over due to a mismatch between the demand and supply.
  • Patent Document 1 describes a method for producing a saccharide compound, which changes the contents of glucose and fructose by-produced when sucrose is converted to palatinose by a bacterial enzyme that converts sucrose to palatinose. And the total amount of the produced saccharide is solidified (claims).
  • a consolidation pulverization method, a spray drying method, a drum-type vacuum drying method, a foam drying method and the like can be used (page 2, lower left column, lines 10 to 13).
  • the concentrated sugar solution or the sugar solution in the form of white powder and the saccharide composition of the present invention which has already been powdered are separately made into a thin film by centrifugal force, and these two layers are cross-impacted to solidify.
  • This is a method of granulating and solidifying with working gas (page 2, lower left column, line 17 to right lower column, line 1).
  • Patent Document 2 describes granules composed of lactose and starch (Claim 1).
  • the granules are obtained by a method characterized in that it comprises a step of spray drying a suspension of lactose and starch (paragraph 0036).
  • a starch suspension is prepared in cold water, to which lactose monohydrate is added (paragraph 0037).
  • the mixture usually has a temperature of 15 to 25 ° C., which is selected in an ordinary spray dryer known to those skilled in the art by selecting an inlet temperature of approximately 160 ° C., and air and spray drying at the outlet.
  • a flow rate is selected such that the temperature of the resulting product is approximately 65 ° C. and spray dried (paragraph 0037).
  • Patent Document 4 listed below is a method for producing mono- and disaccharide powders through a process of spray-drying a saccharified liquid such as maltose / glucose (masskit), and after the spray-drying process, a nectar film (attachment mother liquor)
  • BX value (Brix: sugar concentration): Manufacture of mono- and disaccharide powder characterized by undergoing an aging step of adjusting atmospheric relative humidity (ambient RH) to equilibrium relative humidity (equilibrium RH) corresponding to 82 ⁇ 2 A method is described (claim 1).
  • Patent Documents 5 to 7 describe a method of spray drying an oligosaccharide-containing liquid.
  • Patent Document 5 describes a method for producing a sugar (hereinafter abbreviated as oligosaccharide) powder containing oligosaccharide as a main component from an aqueous solution containing an oligosaccharide having an oligosaccharide having a molecular weight equal to or higher than that of maltose and maltotriose. (Claim 1).
  • the method includes a drying step in which the concentrated aqueous solution obtained in the concentration step is brought into contact with hot air in a sprayed state to powder oligosaccharides (Claim 1).
  • the introduction temperature of the hot air in the drying step is 80 to 200 ° C., preferably 100 to 160 ° C. (page 5, lower left column, lines 5 to 6).
  • Patent Document 6 describes a method for producing powdered maltose (Claim 1).
  • a high-purity maltose solution having a maltose content of 90% or more and a maltotriose content of 2.5% or less obtained by enzymatic hydrolysis of a low-hydrolyzed starch liquefaction solution is obtained with a solid content of 65-80.
  • the seed crystal is added and the primary crystal is precipitated to a crystal precipitation rate of 50 ⁇ 5% at 25 ⁇ 5 ° C., and if necessary, an appropriate amount of maltose solution is added so that the viscosity at the crystal precipitation temperature is 70000 centipoise or less.
  • US Pat. No. 6,057,031 describes at least one inherently hygroscopic product having a glass transition temperature of 10 ° C. to 110 ° C., as well as cryogenic fluids, particularly food quality cryogenic fluids, or mixtures of cryogenic fluids, particularly carbon dioxide, nitrogen, And a method for producing a non-hygroscopic powder composition comprising a spray-drying step of an aqueous solution containing one selected from liquid air without an atomizing carrier (claim 1). In this method, the aqueous solution is obtained by dissolving the cryogenic fluid in an initial aqueous solution containing the originally hygroscopic product (Claim 1).
  • Patent Documents 8 to 11 listed below describe spray-drying a sugar alcohol-containing liquid.
  • Patent Document 8 describes a composition consisting essentially of two or more polyols having a mannitol content of less than 10% by weight, obtainable by co-spray drying (claim 1).
  • the composition can be obtained by dissolving two or more polyols in water and spraying the resulting water-soluble mixture into an air stream having a temperature of 120 to 300 ° C. (Claim 2).
  • Patent Document 9 describes a spray containing a sugar alcohol for preventing the active ingredient from being decomposed or denatured by compression or preventing the function of functional particles from being changed by compression in the production of a compression-molded preparation.
  • the use of dry powder is described (claim 1).
  • Patent Document 10 listed below is characterized in that the xylitol content exceeds 90% by mass and the content of one or more other polyols is less than 10% by mass, and is produced by spray drying or fluidized bed granulation.
  • a directly compressible tableting aid is described (claim 1).
  • Patent Document 11 describes a method for producing crystalline maltitol and honey-containing crystals containing the same (Claim 1).
  • a first step of catalytic hydrogenation of a syrup having a concentration of 30 to 75% by mass containing 81 to 90% by mass of maltose in a solid content to obtain a corresponding sugar alcohol syrup 2) a sugar alcohol syrup
  • the second step of supplying a syrup fraction containing high maltitol containing 92 to 99.9% by mass of maltitol in a solid content by supplying to a column packed with a cation exchange resin and chromatographic separation.
  • Patent application No. 2011-27216 describes a method for producing an isomaltulose-containing sugar solution by allowing an enzyme that generates isomaltulose from sucrose to act on the sucrose solution, and producing a solid product from the sugar solution. To do.
  • the sugar solution is heated to adjust the solid content concentration of the sugar solution to 77 to 96% by mass, and a shear force is applied while maintaining the preparation obtained above at 65 to 120 ° C. It includes subjecting to a treatment for producing crystal nuclei and cooling the treated product obtained above (Claim 1).
  • the composition of the saccharide contained in the isomaltulose-containing sugar solution obtained by allowing the enzyme ⁇ -glucosyltransferase to act on the sucrose solution is 60 to 90% by mass of isomaltulose and 5 to 35% by mass of trehalulose. %, And glucose and fructose are 0.2 to 5% by mass, respectively.
  • Trehalulose is amorphous (liquid). Therefore, when the centrifugal separation step is not performed, it is difficult to obtain a solid from the isomaltulose-containing sugar solution because of the presence of an amorphous sugar solution mainly composed of trehalulose.
  • the isomaltulose-containing sugar solution itself cannot be sold as a solidified or powdered isomaltulose product.
  • the conventional solidified or powdered isomaltulose product the above crystalline palatinose IC (Mitsui Sugar Co., Ltd.) can be mentioned.
  • This product is isomaltulose crystals.
  • a centrifugation step was indispensable in order to separate the isomaltulose crystals from the amorphous sugar solution.
  • an object of this invention is to provide the method of manufacturing the isomaltulose product which can be sold as a solid product or a powder product, without passing through the said centrifugation process.
  • Another object of the present invention is to provide a solid containing the amorphous sugar solution.
  • the present invention provides a method for producing an isomaltulose-containing sugar solution by causing an enzyme that produces isomaltulose from sucrose to act on the sucrose solution, and producing an isomaltulose-containing solid from the sugar solution.
  • the method includes crystallizing isomaltulose crystals having a median diameter of 5 to 60 ⁇ m in the sugar solution, and spray drying the sugar solution having the isomaltulose crystals at a hot air temperature of 50 to 95 ° C.
  • the present invention also provides a solid material containing 70 to 90% by mass of isomaltulose and an amorphous sugar solution. The solid material is characterized by being spherical.
  • a sugar solution obtained by allowing an enzyme that produces isomaltulose from sucrose to act on a sucrose solution can be solidified without undergoing a conventional centrifugation step. That is, according to the present invention, the sugar liquid itself containing an amorphous substance such as trehalulose itself can be solidified without centrifuging the sugar liquid. As a result, a solid with a high content of isomaltulose is obtained. Further, the isomaltulose-containing solid obtained by the production method of the present invention is non-sticky and is particularly free of powder. As a result, the solid can be sold as a solid product of isomaltulose, particularly as a powder product.
  • the isomaltulose-containing solid obtained by the method of the present invention is white. This whiteness does not change the color of the other food when the solid is added to the other food. Therefore, the said solid substance is preferable as an isomaltulose product.
  • Patent application No. 2011-27216 filed by Mitsui Sugar Co., Ltd., among the applicants of the present application, obtained isomaltulose-containing sugar solution by acting an enzyme that generates isomaltulose from sucrose on sucrose solution, A method for producing a solidified product from the sugar solution will be described.
  • the solidified product obtained by this method is not spherical.
  • the isomaltulose-containing solid obtained by the method of the present invention is spherical.
  • “isomaltulose” refers to a disaccharide constituted by an ⁇ -1,6-glucosyl bond of glucose to fructose. Isomaltulose is also called palatinose TM. Hereinafter also referred to as palatinose.
  • the “enzyme that generates isomaltulose from sucrose” may be any enzyme that can generate isomaltulose from sucrose.
  • the enzyme is, for example, ⁇ -glucosyltransferase.
  • the ⁇ -glucosyltransferase is derived from, for example, Protaminobacter rubrum, Serratia plymuthica, Erwinia rhapontici, or Klebsiella sp.
  • “isomaltulose-containing sugar solution” refers to a sugar solution obtained by allowing an enzyme that produces isomaltulose from sucrose to act on the sucrose solution, and containing isomaltulose.
  • the sucrose solution only needs to be a raw material for producing isomaltulose by the enzyme.
  • the sucrose solution may be a low liquor, a brown liquor, a carbonate liquor, a fine liquor or the like obtained in a sugar making process.
  • the sucrose solution may contain 5 to 60% by mass, particularly 10 to 50% by mass of sucrose for the purpose of optimizing the reaction by the enzyme.
  • the sucrose solution may contain sugars other than sucrose, but the sucrose content is preferably 97% by mass or more based on the total mass of all the saccharides contained in the sucrose solution.
  • the above enzyme can be allowed to act on the sucrose solution by, for example, the method described in JP-A-57-39794, but is not limited thereto.
  • the isomaltulose-containing sugar solution is obtained by allowing the enzyme to act on the sucrose solution.
  • a sugar solution obtained by allowing an enzyme that produces isomaltulose from sucrose to act on a sucrose solution (hereinafter also referred to as “isomaltulose-containing sugar solution”) contains saccharides other than isomaltulose.
  • sugars other than isomaltulose include sugars contained in an enzyme reaction solution obtained as a result of the above-described enzyme action, such as trehalulose, fructose, glucose, sucrose, isomaltose, and isomeretitose.
  • the isomaltulose-containing sugar solution may contain minerals and / or amino acids.
  • the isomaltulose-containing sugar solution may further contain other components. The other component is added, for example, in order to make the concentration of the component contained in the isomaltulose-containing sugar solution constant for each batch.
  • the concentration and composition of each saccharide in the isomaltulose-containing sugar solution can be measured by a usual method in the art such as high performance liquid chromatography.
  • the isomaltulose-containing sugar solution is 70 to 90% by mass, preferably 72 to 89% by mass, more preferably 74 to 88% by mass, and still more preferably among the sugars contained in the isomaltulose-containing sugar solution. 75 to 85% by mass is isomaltulose.
  • the denominator is the total mass of isomaltulose, trehalulose, fructose, glucose, sucrose and isomaltose contained in the isomaltulose-containing sugar solution.
  • the mass of saccharide is calculated as anhydride. If the ratio of isomaltulose is too low, the sugar solution cannot be solidified.
  • the ratio of isomaltulose may be higher than the above upper limit. However, from the viewpoint of production efficiency, the ratio is usually up to the upper limit according to the isomaltulose ratio in the sugar solution obtained as a result of the action of the enzyme.
  • the mass ratio of trehalulose to the total mass of saccharides contained in the isomaltulose-containing sugar solution can be, for example, 8 to 25% by mass, particularly 9 to 20% by mass, and more particularly 10 to 18% by mass.
  • the ratio of glucose to saccharide contained in the isomaltulose-containing sugar solution can be, for example, 0.1 to 5% by mass, particularly 0.2 to 4% by mass, and more particularly 0.3 to 3% by mass.
  • the ratio of fructose to saccharide contained in the isomaltulose-containing sugar solution can be, for example, 0.1 to 5% by mass, particularly 0.2 to 4% by mass, and more particularly 0.3 to 3% by mass.
  • the denominator is the total mass of isomaltulose, trehalulose, fructose, glucose, sucrose, and isomaltose contained in the sugar solution, as is the case with the mass ratio of isomaltulose.
  • the mass of these saccharides is calculated as anhydride. It is considered that the ratio of one or more saccharides other than these isomaltuloses contributes to achieving the solid shape and / or achieving drying described below.
  • the form of the isomaltulose-containing sugar liquid may be in any form, for example, isomaltulose and sugars other than isomaltulose may be dissolved in the liquid, or suspended or dispersed in the liquid. Or may be precipitated in the liquid.
  • the sugar liquid is water containing saccharides other than isomaltulose and isomaltulose.
  • the “isomaltulose-containing solid” includes isomaltulose and an amorphous sugar solution.
  • isomaltulose is particularly solid.
  • the solids of the present invention also contain isomaltulose crystals.
  • the amorphous sugar solution is thought to be mainly trehalulose.
  • the amorphous sugar solution may further contain a saccharide other than trehalulose.
  • saccharides other than isomaltulose are considered not to be crystallized.
  • trehalulose is amorphous.
  • Saccharides with a low content such as glucose, fructose, and sucrose are present as honey and are not considered to be crystals.
  • the amorphous sugar solution is particularly a sugar solution containing trehalulose, fructose, glucose, sucrose, isomaltose and / or isomeretitose.
  • the amorphous sugar solution can also contain isomaltulose.
  • the composition and mass ratio of the saccharide contained in the isomaltulose-containing solid are the same as the composition and mass ratio of the saccharide contained in the isomaltulose-containing sugar solution described above.
  • the mass ratio of isomaltulose is 70 to 90% by mass, more particularly 72 to 89% by mass, and even more particularly 74 to 90% by mass with respect to the total mass of the solid. It is 88% by mass or 75 to 85% by mass.
  • the non-crystalline sugar liquid may be all liquid in the isomaltulose-containing solid material of the present invention, or a part thereof may be liquid and the other may be solid.
  • trehalulose is 40% to 99% by mass, particularly 45 to 80% by mass, more particularly 50 to 70% by mass with respect to the mass of the amorphous sugar solution in the amorphous sugar solution. It can be.
  • isomaltulose is 3% by mass to 30% by mass, particularly 5 to 25% by mass, and more particularly 7 to 20% with respect to the mass of the amorphous sugar solution. It can be mass%.
  • the shape of the solid may be a spherical particle.
  • the spherical particle does not necessarily need to be a true sphere, and may be substantially spherical.
  • the substantially spherical shape includes an oval spherical body and a spherical body having irregularities on the particle surface.
  • Many of the particles have a particle diameter of mainly 0.3 to 300 ⁇ m, but may be larger than the range.
  • the median diameter of the spherical particles is preferably 60 to 300 ⁇ m, more preferably 80 to 200 ⁇ m, when laser diffraction particle size distribution measurement is performed.
  • the shape to which the said several spherical particle adhered can also be taken.
  • the solid substance of this invention has a space
  • the voids are confirmed by the generation of bubbles when the solid is dissolved in water. It is considered that a high dissolution rate of the solid material of the present invention can be obtained by the voids.
  • an amorphous sugar solution is encapsulated inside by solid isomaltulose.
  • isomaltulose crystals having a median diameter of 5 to 60 ⁇ m, preferably 6 to 55 ⁇ m, more preferably 8 to 50 ⁇ m are crystallized in an isomaltulose-containing sugar solution.
  • the median diameter is measured by laser diffraction particle size distribution measurement.
  • SALD-2000J Shiadzu Corporation
  • the median diameter of the isomaltulose crystals crystallized in the isomaltulose-containing sugar solution is in the above range, solidification, particularly powdering of the isomaltulose-containing sugar solution is achieved.
  • the median diameter is larger than the above range, the crystal in the maskit and the non-crystalline sugar liquid are separated even after spray drying. As a result of the separation, the non-crystalline sugar liquid is obtained in the product obtained by spray drying. Is not encased by solid isomaltulose (especially isomaltulose crystals), and solid isomaltulose is surrounded by an amorphous sugar solution. And the obtained product is highly hygroscopic and is very sticky or easily consolidated.
  • the surface area of the crystal is too large.
  • the amorphous sugar liquid is difficult to move due to the surface tension, that is, the viscosity is increased. Because of the high viscosity, spray drying cannot be performed.
  • crystallization of isomaltulose crystals can be appropriately performed by techniques known to those skilled in the art.
  • isomaltulose crystals are crystallized in the sugar solution.
  • 1) adjustment of Brix and 2) aging will be described in detail.
  • the Brix of an isomaltulose-containing sugar solution obtained by allowing an enzyme that generates isomaltulose from sucrose to act on the sucrose solution is usually about 20 to 60 °, particularly 30 to 50 °. is there.
  • the sugar solution may be subjected to an aging process as it is to crystallize isomaltulose crystals.
  • adjusting the Brix of the isomaltulose-containing sugar liquid is preferred. That is, the Brix of the isomaltulose-containing sugar solution is adjusted to 50 to 80 °, preferably 53 to 75 °, more preferably 55 to 70 °, and still more preferably 60 to 70 °.
  • the adjustment of Brix is preferably performed by heating from the viewpoint of increasing the efficiency of the crystallization process, but may be performed by other methods.
  • the heating may be performed by a usual method in the art.
  • the sugar solution can be placed in a container and heated with a heater while stirring.
  • the heater include a concentration can, a crystal can, an effect can, and a thin film type concentrator.
  • the temperature of the sugar solution can be adjusted to the above Brix by setting the temperature of the sugar solution to 100 to 115 ° C., more particularly 102 to 111 ° C., and even more particularly 103 to 108 ° C.
  • the heating may be performed at normal pressure.
  • it may be performed under reduced pressure.
  • the Brix can be obtained by heating the sugar solution at 100 mmHg to 50 to 60 ° C., particularly 52 to 59 ° C., and more particularly 53 to 57 ° C.
  • aging refers to maintaining the sugar solution in a certain temperature range for a certain period of time.
  • aging also called an auxiliary crystal
  • isomaltulose crystals grow in the sugar liquid.
  • Aging may be performed in a crystallite or in a refrigerator.
  • the auxiliary crystallizer include a tank with a stirrer having a jacket or a coil for cooling with cooling water, a vertical crystallizer, and a ribbon mixer.
  • the aging time is 12 to 48 hours at 20 to 40 ° C., for example.
  • a step of increasing the number of crystal grains also referred to as crystallization
  • a small amount of seed crystal having a median diameter of 50 ⁇ m or less, for example, 0.01 to 0.5% DS (solid content mass ratio) is added to the sugar solution prepared by adjusting the Brix, and a high speed of 8000 to 20000 rpm is added. It is carried out by stirring with a rotary homogenizer. As a result, more crystals than the added seed crystals are generated. In aging, a crystal grows with the generated crystal as a nucleus. Further, instead of the crystal formation, a seed crystal having a median diameter of 25 ⁇ m or less of 0.1 to 5% DS is added to the sugar solution prepared with Brix, and the crystal is dispersed by stirring with a stirrer at 200 to 1500 rpm. May be.
  • the seed crystal may be, for example, a commercially available isomaltulose crystal pulverized with a hammer mill.
  • the hammer mill include, but are not limited to, a sample mill KIIW-1 manufactured by Fuji Powder Co., Ltd.
  • the seed crystal may be a slurry containing isomaltulose crystals, for example.
  • the crystallization rate obtained by the aging treatment varies depending on the Brix of the sugar solution.
  • the solid content of about half the solid content of the sugar solution may be crystallized, preferably 30 to 80% by mass, More preferably, it is 40 to 70% by mass.
  • 1 g of a sugar solution containing crystals is placed in a 1.5 ml Eppendorf tube, centrifuged at 16,000 rpm for 1 minute with a centrifuge (M150IV manufactured by Sakuma Seisakusho Co., Ltd.), and the supernatant is removed. It is calculated from the remaining amount of crystals left behind.
  • the viscosity of the sugar solution after the aging treatment may be a viscosity that can be spray-dried by a spray dryer, particularly 4000 mPa ⁇ s or less, more particularly 2000 mPa ⁇ s or less, and even more particularly 1000 mPa ⁇ s. s or less.
  • the viscosity is measured by, for example, a rotary viscometer. With this viscosity, a preferred spraying is achieved in the subsequent spray-drying process, for example by avoiding clogging.
  • the liquid specific gravity of the sugar solution after the aging treatment is preferably 1 to 1.7 g / ml, more preferably 1.05 to 1.65 g / ml, and still more preferably 1.1 to 1.6 g / ml. .
  • the liquid specific gravity is measured by, for example, a specific gravity bottle (Geryusac type). By the liquid specific gravity, preferable spraying is achieved in the subsequent spray drying process.
  • the isomaltulose-containing solid material of the present invention can be obtained by spray-drying the sugar solution from which isomaltulose crystals are crystallized.
  • the hot air temperature in the spray drying is 50 to 95 ° C., preferably 53 to 93 ° C., more preferably 55 to 90 ° C.
  • the temperature is lower than the temperature range, sufficient drying cannot be performed and solidification becomes insufficient.
  • the above particle structure is achieved, resulting in a free-flowing solid, in particular a powder, without stickiness.
  • the color of the obtained product becomes brown, and the brown product brings about a color change in the other food when added to the other food, which is not preferable as an isomaltulose product.
  • a odor occurs with browning, and the solid cannot be sold as a product. This browning is probably due to the burning of sugar (caramelization). That is, a white isomaltulose-containing solid is obtained depending on the temperature range.
  • the hot air temperature of spray drying is the inlet temperature of hot air that is put into the drying chamber of the spray dryer.
  • the hot air temperature is measured by a temperature sensor generally attached to the spray dryer.
  • the temperature sensor is attached in the vicinity of a connection portion between the drying chamber and the hot air supply pipe.
  • conditions other than the hot air temperature in spray drying may be determined as appropriate, and are particularly as follows.
  • the machine for spray drying may be a normal spray dryer or another machine having a spray drying function equivalent to that of a spray dryer.
  • the drying chamber size ⁇ (inner diameter) of the spray dryer can be, for example, 300 to 5000 mm.
  • the drying chamber size can be determined by the production scale of isomaltulose-containing solids. Examples of the spray method include a nozzle method and an atomizer method, but the atomizer method is particularly preferable from the viewpoint of the viscosity of the sugar solution and the viewpoint that the sugar solution contains a solid content.
  • Examples of the atomizer method include a pressurization method, a rotation method, and a composite method, but the rotation method is preferable in order to avoid clogging of the pump and nozzle due to the sugar solution used.
  • a pin type disk can be mentioned as the atomizer disk, but other types of disks may be used.
  • the disk diameter and the atomizer rotational speed are appropriately determined depending on the drying chamber size of the spray dryer.
  • the feeding rate of the sugar solution can be preferably 2 to 15 kg / Hr, more preferably 2.5 to 14 kg / Hr, and even more preferably 3 to 13 kg / Hr.
  • the mass kit supply tube may be a silicon tube having an inner diameter of 3 to 8 mm and an outer diameter of 6 to 14 mm, for example.
  • the mass kit is supplied to the spray dryer via the tube.
  • a roller pump can be mentioned, for example.
  • the exhaust air temperature can be, for example, 30 to 70 ° C., in particular 35 to 60 ° C.
  • the exhaust air temperature is a value determined by spray drying conditions (for example, hot air temperature, mass kit supply amount, etc.).
  • the exhaust air temperature can be measured by a temperature sensor near the exhaust port.
  • the isomaltulose-containing solid obtained by the method of the present invention has a very high dissolution rate.
  • 80 g of distilled water is put into a 200 ml volume beaker, the distilled water is kept at 20 ° C. in a 20 ° C. water bath, and 20 g of the above solid matter is stirred while stirring at 400 rpm with a magnetic stirrer, the solid matter is dissolved.
  • the time until completion can be 150 seconds or less, particularly 130 seconds or less, more particularly 110 seconds or less, and even more particularly 100 seconds or less.
  • the dissolution rates for crystalline palatinose IC and powdered palatinose ICP are about 262 seconds and about 235 seconds, respectively. That is, compared with a commercially available palatinose product, the dissolution rate of the said solid substance is very high. Due to the high dissolution rate, the isomaltulose-containing solid material has good workability when added in food production, for example.
  • the bulk specific gravity of the solid material containing isomaltulose obtained by the method of the present invention is 1.2 g / ml or less, more particularly 1.1 g / ml or less, according to the measurement method described in the Examples below. Even more particularly, it may be 1.0 g / ml or less.
  • the bulk specific gravity of crystalline palatinose IC and powdered palatinose ICP is 0.817 g / ml and 0.41 g / ml, respectively, as an analysis example.
  • the water content of the isomaltulose-containing solid obtained by the method of the present invention is 0.5% by mass to 4% by mass, particularly 0.6% by mass, according to the measurement method described in the following Examples. % To 3.5% by weight, more particularly 0.7% to 3% by weight.
  • the water contents for crystalline palatinose IC and powdered palatinose ICP are 0.16% by mass and 0.23% by mass, respectively.
  • the water content does not include crystal water.
  • the present invention also provides a solid material containing 70 to 90% by mass of isomaltulose and an amorphous sugar solution, wherein the solid material is spherical.
  • the said solid substance is obtained by said manufacturing method.
  • the Brix of the sugar solution as a raw material is a value obtained by calculation from the solid content of palatinose crystal IC and the solid content of palatinose ISK.
  • Palatinose ISK has a solid content of 75% by mass.
  • the solid content is a solid content percentage (Refbrix) measured based on the refractive index. The measurement was performed using a Refbrix meter. Since palatinose crystals contain 5% crystallization water, the value excluding the crystallization water was taken as the solid content.
  • the particle size is the median diameter. The particle size was measured by a laser diffraction type particle size distribution measuring apparatus (Shimadzu Corporation, SALD-2000J).
  • Crystalline palatinose IC Mitsubishi Sugar Co., Ltd.
  • palatinose syrup ISK Mitsubishi Sugar Co., Ltd.
  • isomaltulose-containing sugar solutions obtained by allowing an enzyme that produces isomaltulose from sucrose to act on sucrose solution.
  • the sugar composition of the model solution is shown in Table 1.
  • the enzyme reaction solution in the production of isomaltulose is desalted and subjected to a palatinose crystal separation step, and the separated crystal is palatinose IC (Mitsui Sugar Co., Ltd.), and the separated honey is palatinose.
  • Syrup ISK Mitsubishi Sugar Co., Ltd.
  • That is, a liquid obtained by mixing palatinose IC (Mitsui Sugar Co., Ltd.) and palatinose syrup ISK (Mitsui Sugar Co., Ltd.) at the above blending ratio is obtained by allowing an enzyme that produces isomaltulose from sucrose to act on the sucrose liquid. It can be used as a model solution for a sugar solution containing isomaltulose.
  • the model solution had a Brix of about 65 °.
  • pulverized palatinose (median diameter 13 ⁇ m, pulverized palatinose crystal with a hammer mill) was added to the model solution as a seed crystal and aged at 20 ° C. overnight to crystallize isomaltulose crystals.
  • the particle size of isomaltulose crystals contained in the model liquid crystallized crystal (hereinafter also referred to as “maskit”) was 15 to 50 ⁇ m, and the median diameter was 32.19 ⁇ m.
  • the viscosity and liquid specific gravity of the mass kit were 100 mPa ⁇ s and 1.28 g / ml, respectively. The viscosity was measured with a rotary viscometer.
  • the liquid specific gravity was measured by a specific gravity bottle (Geryusac type).
  • the mass kit was spray dried.
  • the spray dryer used in the spray drying is P260 manufactured by Pris Corporation. Details of the spray dryer are as follows; inner diameter of main body: 2600 mm, spray type: rotary atomizer system, disk: pin type ( ⁇ 100 mm), device size: ⁇ 2600 mm, mass kit supply tube: ⁇ 6 ⁇ ⁇ 10 silicon tube ⁇ 1 piece (Tube inner diameter 6 mm, tube outer diameter 10 mm), pump type: RPSE2 type roller pump (middle stage installation). The rotation speed of the atomizer was 12000 rpm. The amount of mass kit supplied to the spray dryer was 4.419 kg / hour.
  • the hot air temperature (also referred to as inlet temperature) was 85 ° C.
  • the exhaust temperature was 67-68 ° C.
  • an isomaltulose-containing solid (hereinafter, also referred to as “solid of Example 1”) was obtained.
  • Fig. 1 shows a digital microscope photograph of the solid matter.
  • the scale in the photograph is 10 ⁇ m.
  • the solid matter was spherical particles.
  • the particle size of the solid was about 22 to 500 ⁇ m.
  • the median diameter of the solid was about 131 ⁇ m.
  • the solid matter was recoverable using a knocker or air, and the collected solid matter was a non-sticky powder.
  • the color of the said solid substance was white.
  • the model figure about the structure of the said solid substance is shown in FIG.
  • the solid matter is considered to be spherical particles in which isomaltulose crystals in the mass kit are assembled. Further, in the spherical particles, the isomaltulose crystals are bound through solid isomaltulose, and an amorphous sugar solution is considered to be enclosed inside.
  • An isomaltulose-containing solid (hereinafter, also referred to as “solid of Example 2”) was obtained in the same manner as in Example 1 except that the mass kit supply was 9.036 kg / hour. The exhaust air temperature was 66 ° C.
  • the solid matter was spherical particles.
  • the particle size of the solid was about 28 to 500 ⁇ m.
  • the median diameter of the solid was about 130 ⁇ m.
  • the solid matter was recoverable using air, and the collected solid matter was a non-sticky powder.
  • the color of the solid was white.
  • the isomaltulose-containing solid (hereinafter also referred to as “solid of Example 3”) in the same manner as in Example 1 except that the hot air temperature is 90 ° C. and the mass kit supply rate is 9.036 kg / hour. ) The exhaust temperature was 68-69 ° C.
  • the solid matter was spherical particles.
  • the particle size of the solid was about 28 to 600 ⁇ m.
  • the median diameter of the solid was about 124 ⁇ m.
  • the solid matter was recoverable using air, and the collected solid matter was a non-sticky powder.
  • the color of the solid was white.
  • a mass kit was prepared in the same manner as in Example 1 except that 10 g of palatinose crystals were added as a seed before aging to 1000 g of the model liquid produced in Example 1.
  • the seed is obtained by pulverizing palatinose IC with a hammer mill (Fuji Paudal Co., Ltd., SAMPLE-MILL KIIW-I).
  • the stock solution viscosity and liquid specific gravity of the mass kit were 90 mPa ⁇ s and 1.304 g / ml, respectively.
  • Example The isomaltulose-containing solid (hereinafter referred to as “Example”) in the same manner as in Example 1 except that the mass kit was used, the hot air temperature was 90 ° C., and the mass kit supply rate was 9.036 kg / hour. 4 solids "). The exhaust air temperature was 69-71 ° C.
  • the solid matter was spherical particles.
  • the particle size of the solid was about 34 to 500 ⁇ m.
  • the median diameter of the solid was about 164 ⁇ m.
  • the solid matter was recoverable using air, and the collected solid matter was a non-sticky powder.
  • the color of the solid was white.
  • Example 2 Water was added to the mixture, and the palatinose IC was dissolved while heating to adjust the Brix to 60.4 °. The mixture was then cooled to 25 ° C. After cooling, 0.1% DS (solid content ratio) of the palatinose mill used in Example 1 was added to the mixture and stirred at 11000 rpm in an auxiliary crystallizer (homogenizer, IKA, ULTRA-TURRAX). The mass kit was obtained by aging at 20 ° C. for 2 hours while stirring at a speed. When the isomaltulose crystal particles in the mass kit were examined with an optical microscope, the particle size was 25 to 98 ⁇ m. The median diameter of the isomaltulose crystals in the mass kit was 32.5 ⁇ m.
  • the mass kit was spray-dried with a spray dryer (Hirano Kogyo Co., Ltd., SA-5). Details of the spray dryer are as follows; inner diameter of main body: 2000 mm, spray type: centrifugal atomizer system, disk: pin type ( ⁇ 100 mm), drying chamber size: ⁇ 2000 mm, mass kit supply tube: ⁇ 5 ⁇ ⁇ 8 silicon tube ⁇ 1 This (tube inner diameter 5 mm, tube outer diameter 8 mm), pump type: roller pump (model RP-2000). The rotation speed of the atomizer was 14000 rpm. The amount of mass kit supplied to the spray dryer was 4 kg / hour. The hot air temperature was 60 ° C. The exhaust air temperature was 41 ° C. As a result of the spray drying, an isomaltulose-containing solid (hereinafter, also referred to as “solid of Example 5”) was obtained.
  • a spray dryer Hirano Kogyo Co., Ltd., SA-5. Details of the spray dryer are as follows; inner diameter of main body:
  • the solid matter was spherical particles. When the solid was observed with an optical microscope, the particle size was 22 to 500 ⁇ m. The median diameter of the solid was about 131 ⁇ m. The solid collected was a non-sticky, dry powder. The color of the solid was white.
  • a mass kit was obtained in the same manner as in Example 5 except that Brix was adjusted to 59.8 °.
  • the particle size was 3 to 25 ⁇ m.
  • the median diameter of the isomaltulose crystals in the mass kit was 17.7 ⁇ m.
  • the mass kit was subjected to the same spray drying treatment as that described in Example 5 except that the hot air temperature was 80 ° C.
  • the exhaust air temperature was 46 ° C.
  • an isomaltulose-containing solid hereinafter also referred to as “solid of Example 6”.
  • the solid matter was spherical particles. When the solid was observed with an optical microscope, the particle size was 28 to 600 ⁇ m. The median diameter of the solid was about 130 ⁇ m. The color of the solid was white. The solid collected was a non-sticky, dry powder.
  • a mass kit was obtained in the same manner as in Example 5 except that Brix was adjusted to 59.6 °.
  • the particle size was 20 to 67 ⁇ m.
  • the median diameter of the isomaltulose crystals in the mass kit was 25.7 ⁇ m.
  • Example 7 An isomaltulose-containing solid (hereinafter also referred to as “solid of Example 7”) was obtained.
  • the solid matter was spherical particles. When the solid was observed with an optical microscope, the particle size was 28 to 600 ⁇ m. The median diameter of the solid was about 124 ⁇ m. The color of the solid was white. The solid collected was a non-sticky, dry powder.
  • a mass kit was obtained in the same manner as in Example 5 except that Brix was adjusted to 60.6 °, the stirring speed was 16000 rpm, and the cooling temperature was 10 ° C.
  • the particle size was 1 to 25 ⁇ m.
  • the median diameter of the isomaltulose crystals in the mass kit was 15.4 ⁇ m.
  • the mass kit was subjected to the same spray-drying treatment as described in Example 5.
  • the exhaust air temperature was 42 ° C.
  • an isomaltulose-containing solid hereinafter, also referred to as “solid of Example 8”.
  • the solid matter was spherical particles. When the solid was observed with an optical microscope, the particle size was 34 to 500 ⁇ m. The median diameter of the solid was about 164 ⁇ m. The color of the solid was white. The solid collected was a non-sticky, dry powder.
  • Example 1 A mass kit was obtained in the same manner as in Example 5 except that Brix was adjusted to 51.2 ° and the stirring speed was 120 rpm. When the isomaltulose crystal particles in the mass kit were examined with an optical microscope, the particle size was 150 to 156 ⁇ m. The median diameter of the isomaltulose crystals in the mass kit was 120.2 ⁇ m.
  • the mass kit was subjected to the same spray-drying process as described in Example 5 except that the hot air temperature was 65 ° C. In addition, the exhaust air temperature was 41 degreeC.
  • the product of the spray-drying process was not a smooth powder, but adhered and sticky in the spray dryer. That is, the product is a product obtained by separating isomaltulose crystals and non-crystalline sugar solution, and the mass kit could not be solidified in its entirety. The product is difficult to sell as it is because of its stickiness.
  • Example 2 A mass kit was obtained in the same manner as in Example 5 except that the Brix was adjusted to 60.1 ° and the stirring speed was 120 rpm. When the isomaltulose crystal particles in the mass kit were examined with an optical microscope, the particle size was 105 to 156 ⁇ m. The median diameter of isomaltulose crystals in the mass kit was 133.1 ⁇ m.
  • the mass kit was subjected to the same spray-drying process as described in Example 5 except that the hot air temperature was 65 ° C. In addition, the exhaust air temperature was 41 degreeC.
  • the product of the spray-drying process was not a smooth powder, but adhered and sticky in the spray dryer. That is, the product is a product obtained by separating isomaltulose crystals and non-crystalline sugar solution, and the mass kit could not be solidified in its entirety. The product is difficult to sell as it is because of its stickiness. In addition, many of the solidified parts of the product formed united aggregates.
  • Example 3 A mass kit was obtained in the same manner as in Example 5 except that Brix was adjusted to 60.2 ° and the stirring speed was 120 rpm. When the isomaltulose crystal particles in the mass kit were examined with an optical microscope, the particle size was 45 to 207 ⁇ m. The median diameter of the isomaltulose crystals in the mass kit was 103.6 ⁇ m.
  • the mass kit was subjected to the same spray-drying treatment as described in Example 5.
  • the exhaust air temperature was 41 degreeC.
  • the product of the spray-drying process was not a smooth powder, but adhered and sticky in the spray dryer. That is, the product is a product obtained by separating isomaltulose crystals and non-crystalline sugar solution, and the mass kit could not be solidified in its entirety. The product is difficult to sell as it is because of its stickiness. In addition, many of the solidified parts of the product formed united aggregates.
  • Table 3 below lists the experimental conditions and results in Examples 5 to 8 and Comparative Examples 1 to 3.
  • indicates that the isomaltulose-containing sugar solution is completely solidified
  • x indicates that the isomaltulose-containing sugar solution is not solidified.
  • the solids obtained in Examples 5 to 8 were all non-sticky and free-flowing powders.
  • Example 1 Solids of Example 1 and Solids of Example 5 and two types of commercially available palatinose (crystalline palatinose IC (Mitsui Sugar Co., Ltd., hereinafter also referred to as “IC”)) and powdered palatinose ICP (Mitsui Sugar Co., Ltd., hereinafter referred to as “ICP”) Also known as)).
  • IC crystalline palatinose IC
  • ICP powdered palatinose ICP
  • the dissolution rate, bulk specific gravity, and water content were measured for these four types of samples.
  • Example 1 and Example 5 The dissolution rate of the solids of Example 1 and Example 5 was much higher than that of crystalline palatinose IC. Moreover, the dissolution rate of the solid substance of Example 1 and Example 5 was about the same dissolution rate as palatinose ICP. Moreover, the solid materials of Example 1 and Example 5 produced bubbles when dissolved in water. This bubble originates from the space
  • Example 1 The bulk specific gravity of the solids of Example 1 and Example 5 was smaller than that of crystalline palatinose IC.
  • a rotary evaporator (N-11, Tokyo Science) connected with a cooling trap (UT-50 type, manufactured by Tokyo Science Machinery Co., Ltd.) and a diaphragm type vacuum pump (DIVAC 2.2L, manufactured by Tokyo Science Machinery Co., Ltd.).
  • the concentrate was adjusted to 63 ° Brix while being heated to 85 ° C.
  • the obtained concentrated liquid was allowed to cool to 25 ° C. with stirring.
  • 70 g of palatinose pulverized material (median diameter 15 ⁇ m, pulverized crystalline palatinose with a hammer mill) is added to 7 kg of the concentrated solution at 25 ° C., and aged 15 to 50 ⁇ m of crystals by aging at 25 ° C. overnight. I got a mass kit.
  • the median diameter of the crystals in the mass kit was 35.2 ⁇ m.
  • the viscosity and specific gravity of the mass kit after aging were 120 mPa ⁇ s and 1.305 g / ml, respectively.
  • the mass kit was spray-dried at a hot air temperature of 90 ° C., an atomizer rotational speed of 16000 rpm, and a sugar liquid supply amount of 1.13 kg / h to the spray dryer.
  • the exhaust air temperature was 67-71 ° C.
  • an isomaltulose-containing solid hereinafter also referred to as “solid of Example 10” was obtained.
  • the isomaltulose-containing solid had a median diameter of about 124.4 ⁇ m.
  • the solid was spherical.
  • the collected solid matter was a non-sticky and free-flowing powder.
  • Test Example 1 Production and evaluation of hard candy
  • Example 10 7 parts by mass of the solid matter of Example 10 and 3 parts by mass of water were put, mixed, and then set on fire. When the liquid temperature reached 160 ° C., the pan was removed from the fire, and the liquid was put into a mold and hardened to obtain a hard candy.
  • Hard candy was produced by the above method except that the same amount of palatinose (crystalline palatinose IC, Mitsui Sugar Co., Ltd.) was used instead of the solid of Example 10.
  • palatinose crystalline palatinose IC, Mitsui Sugar Co., Ltd.
  • the hard candy using the solid material of Example 10 was transparent like the palatinose hard candy.
  • hard candy is produced with sugar alone, crystals are precipitated in the boiling step or the hardening step, and a transparent hard candy cannot be obtained.
  • Test Example 2 Production and evaluation of yogurt drink
  • a yogurt drink was produced using the materials and blends in Test Groups 1 to 3 shown in Table 8 below.
  • the blending amount of the solids and palatinose in the examples was set to 1 / 4.5 times the blending amount of sugar in order to match the sweetness of sugar.
  • the manufacturing procedure is as follows. (1) Nonfat dry milk was added to yogurt and mixed so as not to become lumps. (2) Milk was added to the mixture obtained in (1) and mixed, and each saccharide was added and mixed well. (3) 30% by mass of citric acid was added to the mixture obtained in (2) to adjust the pH to 4.5 to obtain a yogurt drink.
  • Table 9 shows the results of measuring the yogurt drinks in the test sections 1 to 3 using a color difference meter (CR-400, Konica Minolta Co., Ltd.).
  • the values in Table 9 are in accordance with the CIE color difference formula L * a * b * defined by the International Commission on Illumination (CIE).
  • L *, a *, and b * are read as Elster, Aster, and Beester, respectively.
  • Test Example 3 Production and evaluation of whipped cream
  • a whipped cream was produced using the materials and blends in Test Groups 1 to 3 shown in Table 10 below.
  • the blending amount of the solid material and palatinose in Example 10 was set to be 1 / 4.45 times the blending amount of sugar in order to match the sweetness of sugar.
  • Whipped cream was prepared by adding various sugars to fresh cream and whipping with a hand mixer. Foaming was stopped when it was nine minutes.
  • Chocolate was produced by using the materials and blends in the test groups 1 to 3 shown in Table 11 below. In order to supplement sweetness, in Test Groups 1 and 2, only half of the amount of sugar in Test Group 3 was replaced with the solid or palatinose of Example 10, respectively.
  • Chocolate was manufactured as follows. First, various sugars were pulverized with a pulverizer. Combined with chopped various sugars and chopped black chocolate. The black chocolate was melted over a water bath. When the black chocolate melts, mix well at 40-45 ° C for 5 minutes to prevent air from entering. When the sugars were evenly mixed, warmed to 56 ° C and lowered the bowl to 28 ° C with cold water. Again, the temperature was raised to 31 ° C., poured into a mold, and cooled to obtain chocolate.
  • the sample in Test Zone 1 was thicker in sweetness and had a good aroma and flavor.
  • sweetness the sweetness of the chocolate in the test group 3 was the strongest, and the sweetness of the test group 2 was the weakest.
  • the bitterness the bitterness of the chocolate in the test section 3 was stronger than that in the test sections 1 and 2.
  • the chocolate in the test group 2 felt strongly only the bitterness due to its weak sweetness, whereas the chocolate in the test group 1 had a strong sweetness and bitterness, and a cacao flavor.
  • a sponge was produced using the materials and blends in Test Groups 1 to 3 shown in Table 12 below. In order to supplement sweetness, in Test Groups 1 and 2, only half of the amount of sugar in Test Group 3 was replaced with the solid or palatinose of Example 10, respectively.
  • the sponge was manufactured as follows. First, soft flour and green tea were mixed and sieved. Melted butter. Sugar was put in the whole egg and foamed with a hand mixer for 12 minutes while keeping it at 30 ° C. with a hot water bath. The mixture of the above-mentioned weak flour and matcha tea was put in three times in the foamed egg liquid and mixed thoroughly. Furthermore, melted butter was added and mixed so as not to knead to obtain a sponge dough. The sponge dough was poured on a baking sheet with cooking paper and baked at 200 ° C. for 15 minutes to obtain a matcha sponge.
  • the sponge in Test Zone 1 was modest and refreshing.
  • a baton chocolate was produced using the materials and blends in the test groups 1 to 3 shown in Table 13 below. In order to supplement sweetness, in Test Groups 1 and 2, only half of the amount of sugar in Test Group 3 was replaced with the solid or palatinose of Example 10, respectively.
  • the baton chocolate was manufactured as follows. First, butter was kneaded into cream, and various sugars were added to the kneaded butter and further mixed. Whole eggs were added little by little to the butter. Further, sieved flour (a mixture of wheat flour, almond powder, cocoa powder) was added to obtain a dough. The dough was squeezed on a top plate with a squeezed bag and baked at 170 ° C. for 15 minutes to obtain a baton chocolate.
  • the baton chocolate in the test zone 1 was not as refreshing as that in the test zone 2, but was fresher than that in the test zone 3. In addition, the baton chocolate in the test section 1 had the strongest bitter feeling.
  • Carrot jelly was produced using the materials and blends in Test Groups 1 to 3 shown in Table 14 below.
  • the manufacturing method is as follows. First, carrots were cut appropriately and combined with water and lemon, and they were put into a mixer (15 seconds ⁇ 3 times) to obtain carrot juice. Separately, the gelling agent and the solid material of Example 10, palatinose, or sugar were mixed well. The mixture and the juice were put in a pan, mixed well, boiled on fire, and boiled for 3 minutes. The boiled liquid was filled into a mold and cooled to obtain a carrot jelly.
  • Test Zone 1 and Test Zone 2 had less carrot blue odor than that in Test Zone 3.
  • palatinose has been added for odor masking. It was shown that a masking effect can be obtained by the granular material of the example as well as palatinose.
  • Test Example 8 Production and evaluation of strawberry jam
  • Test Group 3 jams had crystals precipitated after 1 month of refrigerated storage, but Test Groups 1 and 2 had no crystals deposited even after 1 month of refrigerated storage. It was not seen. When the sweetness was evaluated, the jam in the test group 3 was not as sweet as the jam in the test group 1, but a firm sweetness was felt. In addition, the jam with more solid content of Example 10 had a clearer sweetness and a stronger acidity. The test area 3 jam had a good balance between sweetness and sourness, and the strawberry taste was strong.
  • Chewing gum was produced using palatinose or the solid of Example 10.
  • the manufacturing method is as follows. First, add 30 parts by mass of chewing gum base to 15 parts by mass of enzymatic saccharified starch syrup (Koso Shirap H85C, Brix85 °, Nippon Corn Starch Co., Ltd.) And kneaded for 5 minutes. To the obtained mixture, 54 parts by mass of palatinose (powdered palatinose ICP, Mitsui Sugar Co., Ltd.) or 54 parts by mass of the solid material of Example 10 were added in several portions as a sweetener, and further 1 part by mass of glycerol (Pure Chemical) Food additive) was added and kneaded for 15 minutes.
  • fragrance peppermint oil, Takada Fragrance Co., Ltd.
  • powdered palatinose powdered palatinose ICP, Mitsui Sugar Co., Ltd.
  • the kneaded product was rolled and formed into a sheet gum shape (thickness 2 mm, width 2 cm, length 7 cm) and made into aluminum foil Wrapped to obtain chewing gum.
  • the chewing gum using the solid material of Example 10 was softer than that using palatinose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Seasonings (AREA)
  • Medicinal Preparation (AREA)

Abstract

課題 本発明は、糖液の固形物を製造する方法及び糖液の固形物を提供することを目的とする。 解決手段 本発明は、ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させてイソマルツロース含有糖液を得、当該糖液からイソマルツロース含有固形物を製造する方法を提供する。当該方法は、前記糖液中においてメディアン径5~60μmのイソマルツロース結晶を晶出させること、ここで前記メディアン径はレーザー回折式粒度分布測定により測定したものである、そして前記イソマルツロース結晶を有する糖液を熱風温度50~95℃でスプレードライすることを含む。また、本発明は、イソマルツロース70~90質量%及び非結晶の糖液を含有する固形物を提供する。当該固形物は球状であることを特徴とする。

Description

糖液から固形物を製造する方法及び固形物
 本発明は、糖液から固形物を製造する方法及び固形物に関する。
 イソマルツロースは、Protaminobacter rubrum、Serratia plymuthica、Erwinia rhapontici、又はKlebsiella sp.などが生成する酵素α-グルコシルトランスフェラーゼをショ糖に作用させることにより、ショ糖のα-1,2結合がα-1,6結合に転移した二糖である。
 ショ糖液に上記酵素を作用させて得られた糖液の糖組成は、イソマルツロースが60~90質量%、トレハルロースが5~35質量%、並びにグルコース及び果糖がそれぞれ0.2~5質量%である。この糖液を濃縮して、イソマルツロースの結晶を生成させ(結晶化工程)、当該生成された結晶を遠心分離により採取すること(遠心分離工程)によって結晶化されたイソマルツロースが得られる。このように、結晶化されたイソマルツロースは、上記糖液を結晶化工程及び遠心分離工程に付すことにより得られる。当該結晶化されたイソマルツロースは、結晶パラチノース(商標)IC(三井製糖株式会社、イソマルツロース純度99.0%以上)として販売されている。一方、遠心分離工程により得られた蜜分の糖組成は、トレハルロースが53~59%及びイソマルツロースが11~17%である。当該蜜分は、パラチノース(商標)シロップ-ISN(三井製糖株式会社)として販売されている。
 イソマルツロースの水への溶解度は低く、そのためイソマルツロースの結晶は析出しやすい。一方、トレハルロースは結晶化せず、液状である。よって、上記糖液からトレハルロースを除いて、イソマルツロース製品の固形製品又は粉末製品として販売するために、上記遠心分離工程は必須である。また、上記遠心分離工程において、上記結晶化されたイソマルツロースと上記蜜分は一定の割合で生成するが、需要と供給のバランスが一致しないことによって、蜜分が余る場合がある。
 下記特許文献1は、糖類配合物の製造法を記載し、当該方法は、ショ糖をパラチノースに変換する細菌の酵素により蔗糖をパラチノースに変換するに際し、副生するぶどう糖、果糖の含量を温度変化によって制御し、生成糖類を全量固形化することを特徴とする(特許請求の範囲)。全量固形化する手段としては、固結粉砕法、噴霧乾燥法、ドラム型真空乾燥法、泡沫乾燥法などを使用することができる(第2頁左下欄第10~13行)。当該噴霧乾燥法は濃縮した糖液または白下状となった糖液と、すでに粉末化した本発明の糖類配合物とを別々に遠心力によって薄膜状となし、この2層を交叉衝突せしめ固化作用気体で造粒固化する方法である(第2頁左下欄第17行~同右下欄第1行)。
 下記特許文献2は、ラクトース及びデンプンからなる顆粒を記載する(請求項1)。当該顆粒は、ラクトース及びデンプンの懸濁液をスプレー乾燥する工程を含むことを特徴とする方法によって得られる(段落0036)。スプレー乾燥を行うためには、デンプン懸濁液を冷水中に調製し、これにラクトース一水和物を添加する(段落0037)。該混合物は、通常は15乃至25℃の温度を有しており、これを当業者には知られた通常のスプレー乾燥機において、およそ160℃の入口温度を選択し、出口における空気及びスプレー乾燥された生成物の温度がおよそ65℃になるような流速を選択してスプレー乾燥する(段落0037)。
 下記特許文献3は、澱粉を酸または酵素により加水分解し、常法により精製または精製せずして濃縮し、結晶種を加えまたは加えずして予め晶出せしめたマスキットを噴霧乾燥して粉末ブドウ糖を製造する点を特徴とする粉末ブドウ糖の製造法を記載する(特許請求の範囲)。
 下記特許文献4は、マルトース・ぶどう糖等の糖化液の白下(マスキット:massecuite)をスプレー乾燥する工程を経て一・二糖類粉末を製造する方法において、スプレー乾燥工程後、蜜膜(付着母液)のBX値(Brix:糖濃度):82±2に対応する平衡関係湿度(平衡RH)に雰囲気関係湿度(雰囲気RH)を調節する熟成工程を経ることを特徴とする一・二糖類粉末の製造方法を記載する(請求項1)。
 下記特許文献5~7は、オリゴ糖含有液をスプレードライする方法を記載する。
 特許文献5は、マルトース及びマルトトリオース以上の分子量を有するオリゴ糖を有するオリゴ糖を含む水溶液からオリゴ糖を主成分とする糖(以下、オリゴ糖と略称する)粉末の製造する方法を記載する(請求項1)。当該方法は、濃縮工程で得られた濃縮水溶液を噴霧状態で熱風と接触させてオリゴ糖を粉末化する乾燥工程を含む(請求項1)。当該乾燥工程における熱風の導入温度は、80~200℃、好ましくは100~160℃である(第5頁左下欄第5~6行)。
 特許文献6は、粉末マルトースの製造法を記載する(請求項1)。当該方法は、低加水分解液の澱粉液化液を酵素的に加水分解して得たマルトース含有量90%以上でマルトトリオース含量が2.5%以下の高純度マルトース液を固形分65~80%に濃縮した後、種晶を加えて25±5℃で、一次結晶を結晶析出率50±5%まで析出させ、必要によりマルトース溶液の適量を加えて結晶析出温度における粘度が70000センチポイズ以下とし、噴霧乾燥して水分5.5~7.5%、関係湿度50~70%で絶対湿度45~185g水/kg渇き空気を満たす高温高湿条件の雰囲気に曝して結晶化、乾燥させる熟成工程を経ることを特徴とする(請求項1)。
 特許文献7は、10℃~110℃のガラス転移温度を有する少なくとも1つの本来は吸湿性の生成物、並びに低温流体、特に食品品質の低温流体、又は低温流体の混合物、特に二酸化炭素、窒素、及び液体空気から選択されるものを含有する水溶液の、噴霧化担体なしでの噴霧乾燥段階を含む、非吸湿性の粉末組成物の製造方法を記載する(請求項1)。当該方法において、前記水溶液が、前記本来は吸湿性の生成物を含有する初期水溶液に前記低温流体を溶解することにより得られる(請求項1)。
 下記特許文献8~11は、糖アルコール含有液をスプレードライすることを記載する。
 特許文献8は、共噴霧乾燥によって得ることのできる、10質量%未満のマニトール含量を有する、2以上のポリオールから実質的になる組成物を記載する(請求項1)。当該組成物は、2以上のポリオールを水に溶解し、得られる水溶性混合物を120~300℃の温度を有する空気流中に噴霧することにより得られる(請求項2)。
 特許文献9は、圧縮成形製剤の製造において、圧縮によって活性成分が分解もしくは変性することを防止するためまたは圧縮によって機能性粒子の機能が変化することを防止するための、糖アルコールを含有する噴霧乾燥粉末の使用を記載する(請求項1)。下記特許文献10は、キシリトール含有量が90質量%を超え、かつ、1つ以上の他のポリオール含有量が10質量%未満であって、噴霧乾燥又は流動床造粒によって製造されることを特徴とする、直接圧縮可能な錠剤化助剤を記載する(請求項1)。
 特許文献11は、結晶マルチトール及びそれを含有する含蜜結晶を製造する方法を記載する(請求項1)。当該方法は、1)固形分中にマルトースが81~90質量%含まれる濃度30~75質量%のシロップを接触水素化して相当する糖アルコールシロップを得る第一工程、2)糖アルコールシロップを、陽イオン交換樹脂を充填した塔に供給してクロマト分離し、固形分中にマルチトールが92~99.9質量%含まれるマルチトール高含有シロップ画分を得る第二工程、3)マルチトール高含有シロップ画分を濃縮した後、得られたシロップの一部を種結晶の存在下で結晶化して結晶マルチトールを回収する工程及び、得られたシロップの残余を種結晶の存在下で噴霧乾燥又は冷却混練することにより結晶マルチトールを含有する含蜜結晶を得る工程から成る第三工程、の各工程を逐次経由することを特徴とする(請求項1)。
 特許出願第2011-27216号明細書は、ショ糖液にショ糖からイソマルツロースを生成する酵素を作用させてイソマルツロース含有糖液を得、当該糖液から固形化物を製造する方法を記載する。当該方法は、当該糖液を加熱して、当該糖液の固形分濃度を77~96質量%に調整すること、上記で得た調製物を65~120℃に保ちながら、せん断力を与えて結晶核を作る処理に付すこと、そして上記で得た処理物を冷やすことを含む(請求項1)。
特開昭56-117796号公報 特開2002-142690号公報 特開昭39-4834号公報 特開2004-283026号公報 特開昭61-93129号公報 特開昭60-92299号公報 特表2009-530356号公報 特表平9-507863号公報 国際公開第2002/070013号 特表2001-519378号公報 特開平9-19300号公報
 上記したように酵素α-グルコシルトランスフェラーゼをショ糖液に作用させて得られたイソマルツロース含有糖液に含まれる糖類の組成は、イソマルツロースが60~90質量%、トレハルロースが5~35質量%、並びにグルコース及びフルクトースがそれぞれ0.2~5質量%である。トレハルロースは非結晶性(液状)である。よって、遠心分離工程を経ない場合、主としてトレハルロースからなる非結晶の糖液の存在の故に、当該イソマルツロース含有糖液から固形物を得ることは困難である。従って、従来、当該イソマルツロース含有糖液そのものは、固形化又は粉末化したイソマルツロース製品として販売できなかった。従来の固形化又は粉末化したイソマルツロース製品として、上記結晶パラチノースIC(三井製糖株式会社)が挙げられる。この製品はイソマルツロース結晶である。イソマルツロース結晶を得る為には、上記のとおり、結晶化工程及び遠心分離工程を経る必要があった。特に、当該イソマルツロース結晶を上記非結晶の糖液から分離する為に遠心分離工程は必須であった。しかし、酵素α-グルコシルトランスフェラーゼをショ糖液に作用させて得られたイソマルツロース含有糖液は糖類のうち約80質量%がイソマルツロースであるので、当該糖液それ自体を固形化又は粉末化できれば、イソマルツロース純度は従来製品より低いものの、イソマルツロース製品として販売できる。そこで、本発明は、上記遠心分離工程を経ずに、固形製品又は粉末製品として販売可能なイソマルツロース製品を製造する方法を提供することを目的とする。また、本発明は、上記非結晶の糖液を含む固形物を提供することを目的とする。
 本発明は、ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させてイソマルツロース含有糖液を得、当該糖液からイソマルツロース含有固形物を製造する方法を提供する。当該方法は、前記糖液中にメディアン径5~60μmのイソマルツロース結晶を晶出させること、そして前記イソマルツロース結晶を有する糖液を熱風温度50~95℃でスプレードライすることを含む。また、本発明は、イソマルツロース70~90質量%及び非結晶の糖液を含有する固形物を提供する。当該固形物は球状であることを特徴とする。
 本発明の製造方法により、ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られる糖液を、従来の遠心分離工程を経ずに固形化することができる。すなわち、本発明により、当該糖液を遠心分離せずに、トレハルロース等の非結晶の物質を含む当該糖液それ自体を全量固形化できる。その結果、イソマルツロース高含有の固形物が得られる。
 また、本発明の製造方法により得られたイソマルツロース含有固形物はべとつかずさらさらしており、特には粉末状である。その結果、当該固形物は、イソマルツロースの固形製品、特には粉末製品として販売することが可能である。
 また、本発明の方法により得られたイソマルツロース含有固形物は白い。この白さによって、当該固形物を他の食品に添加したときに当該他の食品に色の変化をもたらさない。よって、当該固形物は、イソマルツロース製品として好ましい。
 本件出願人のうち三井製糖株式会社が出願した特許出願第2011-27216号明細書は、ショ糖液にショ糖からイソマルツロースを生成する酵素を作用させてイソマルツロース含有糖液を得、当該糖液から固形化物を製造する方法を記載する。当該方法によって得られる固形化物は球状でない。一方、本発明の方法により得られたイソマルツロース含有固形物は球状である。
本発明の製造方法により得られたイソマルツロース含有固形物のデジタルマイクロスコープ写真である。 本発明の製造方法により得られたイソマルツロース含有固形物のモデル図である。
 本発明において「イソマルツロース(isomaltulose)」とは、グルコースがフラクトースにα-1,6-グルコシル結合することによって構成された二糖をいう。イソマルツロースはパラチノース(palatinose)(商標)とも呼ばれる。以降、パラチノースともいう。
 本発明において、「ショ糖からイソマルツロースを生成する酵素」とは、ショ糖からイソマルツロースを生成することができる酵素であれば任意のものであってよい。当該酵素は、例えばα-グルコシルトランスフェラーゼである。α-グルコシルトランスフェラーゼは、例えばProtaminobacter rubrum、Serratia plymuthica、Erwinia rhapontici、又はKlebsiella sp.に由来するものである。
 本発明において「イソマルツロース含有糖液」とは、ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られた糖液であって、イソマルツロースを含む液をいう。当該ショ糖液は、当該酵素によりイソマルツロースを生成する為の原料となるものであればよい。例えば、当該ショ糖液は、製糖工程で得られるローリカー、ブラウンリカー、炭酸リカー及びファインリカーなどでありうる。当該ショ糖液は、上記酵素による反応の最適化の為に、ショ糖を5~60質量%、特には10~50質量%含みうる。当該ショ糖液はショ糖以外の糖を含んでもよいが、当該ショ糖液に含まれる全ての糖類の合計質量に対して、ショ糖が97質量%以上であることが好ましい。当該ショ糖液に上記酵素を作用させることは、例えば特開昭57-39794号公報に記載の方法により行なわれうるが、当該方法に限られない。当該ショ糖液に、上記酵素を作用させてイソマルツロース含有糖液が得られる。ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られた糖液(以下、「イソマルツロース含有糖液」ともいう)は、イソマルツロース以外の糖類を含む。イソマルツロース以外の糖類として、例えばトレハルロース、フルクトース、グルコース、スクロース、イソマルトース、イソメレチトースなど、上記酵素の作用の結果得られる酵素反応液に含まれる糖を挙げることができる。さらに、イソマルツロース含有糖液はミネラル及び/又はアミノ酸を含みうる。当該イソマルツロース含有糖液は、さらに他の成分を含みうる。当該他の成分は、例えば当該イソマルツロース含有糖液に含まれる成分の濃度を各バッチ毎に一定にする為に添加されものである。本発明の方法において、当該イソマルツロース含有糖液中の各糖類の濃度及び組成は、高速液体クロマトグラフィー等の当技術分野の通常の方法により測定されうる。
 当該イソマルツロース含有糖液は、当該イソマルツロース含有糖液に含まれる糖類のうち、70~90質量%、好ましくは72~89質量%、より好ましくは74~88質量%、さらにより好ましくは75~85質量%がイソマルツロースである。当該イソマルツロースの割合の計算において、分母は、当該イソマルツロース含有糖液に含まれるイソマルツロース、トレハルロース、フルクトース、グルコース、スクロース及びイソマルトースの合計質量である。糖類の質量は無水物として計算される。イソマルツロースの割合が低すぎる場合、糖液の固形化ができない。イソマルツロースの割合は上記上限より高くてもよいが、通常は、製造効率の観点から、上記酵素を作用させた結果得られる糖液中のイソマルツロース割合に従い上記上限の割合までとする。
 当該イソマルツロース含有糖液に含まれる糖類の合計質量に対するトレハルロースの質量割合は、例えば8~25質量%、特には9~20質量%、より特には10~18質量%でありうる。当該イソマルツロース含有糖液に含まれる糖類に対するグルコースの割合は、例えば0.1~5質量%、特には0.2~4質量%、より特には0.3~3質量%でありうる。当該イソマルツロース含有糖液に含まれる糖類に対するフルクトースの割合は、例えば0.1~5質量%、特には0.2~4質量%、より特には0.3~3質量%でありうる。これらの割合の計算においても、分母は、イソマルツロースの質量割合と同様に、当該糖液に含まれるイソマルツロース、トレハルロース、フルクトース、グルコース、スクロース、イソマルトースの合計質量である。これらの糖類の質量は無水物として計算される。これらのイソマルツロース以外の一つ又は複数の糖類の割合が、以下で述べる固形物の形状の達成及び/又は乾燥の達成に寄与していると考えられる。また、本発明において、特にはイソマルツロース及びトレハルロースの割合の組み合わせが固形物の形状の達成及び/又は乾燥の達成に寄与していると考えられる。
 当該イソマルツロース含有糖液の形態はいかなる形態のものであってよく、例えば、イソマルツロース及びイソマルツロース以外の糖類は液中に溶解していてよく、又は、液中に縣濁若しくは分散していてもよく、又は液中に沈殿していてもよい。例えば、糖液は、イソマルツロース及びイソマルツロース以外の糖類を含む水である。
 本発明において「イソマルツロース含有固形物」は、イソマルツロースと非結晶の糖液とを含む。本発明のイソマルツロース含有固形物において、イソマルツロースは特には固形である。さらに、本発明の固形物はイソマルツロース結晶も含む。当該非結晶の糖液は主にトレハルロースであると考えられる。当該非結晶の糖液はさらに、トレハルロース以外の糖類を含みうる。上記非結晶の糖液中に含まれる糖類のうち、イソマルツロース以外の糖類は結晶化していないと考えられる。例えば、トレハルロースは非結晶性である。グルコース、フルクトース、及びショ糖などの含有率が低い糖類は蜜分として存在し、結晶にならないと考えられる。当該非結晶の糖液は特にはトレハルロース、フルクトース、グルコース、スクロース、イソマルトース及び/又はイソメレチトースを含む糖液である。なお、当該非結晶の糖液はイソマルツロースも含みうる。当該イソマルツロース含有固形物に含まれる糖類の組成及び質量割合は、上記で述べたイソマルツロース含有糖液に含まれる糖類の組成及び質量割合と同じである。例えば、イソマルツロース(イソマルツロース結晶を含む)の質量割合は当該固形物の全質量に対して、特には70~90質量%、より特には72~89質量%、さらにより特には74~88質量%又は75~85質量%である。また、当該非結晶の糖液は、本発明のイソマルツロース含有固形物中において、その全部が液状であってよく、又は、その一部が液状であり且つそれ以外が固体状であってもよい。特には、当該非結晶の糖液のうち、当該非結晶の糖液の質量に対して、トレハルロースが40質量%~99質量%、特には45~80質量%、より特には50~70質量%でありうる。特には、当該非結晶の糖液のうち、当該非結晶の糖液の質量に対して、イソマルツロースが3質量%~30質量%、特には5~25質量%、より特には7~20質量%でありうる。
 本発明において上記固形物の形状は特には球状の粒子でありうる。本発明において球状粒子とは、必ずしも該粒子の形状が真球である必要はなく、実質的に球状であればよい。実質的に球状とは、楕円形の球状体や粒子表面の凹凸を有する球状体を含む。当該粒子の多くは、粒子の直径が主に0.3~300μmであるが、当該範囲より大きいものもありうる。当該球状粒子のメディアン径は、レーザー回折式粒度分布測定をしたときに、好ましくは60~300μm、より好ましくは80~200μmである。また、複数の当該球状粒子が付着した形状もとりうる。
 また、本発明の固形物は空隙を有する。当該空隙は、固形物を水に溶解すると泡が発生することから確認される。当該空隙によって、本発明の固形物の高い溶解速度が得られると考えられる。
 また、当該球状粒子において、固形のイソマルツロースにより、非結晶の糖液が内部に包まれていると考えられる。
 以下では、本発明の方法を詳細に説明する。
 本発明の方法において、イソマルツロース含有糖液中にメディアン径5~60μm、好ましくは6~55μm、より好ましくは8~50μmのイソマルツロース結晶を晶出させる。当該メディアン径はレーザー回折式粒度分布測定により測定されたものである。測定のために、例えばSALD-2000J(株式会社島津製作所)を用いることができる。
 本発明において、上記イソマルツロース含有糖液中に晶出されるイソマルツロース結晶のメディアン径が上記範囲にある場合に、当該イソマルツロース含有糖液の固形化、特には粉末化が達成される。メディアン径が上記範囲より大きい場合、スプレードライをしても、マスキット中の結晶と非結晶の糖液とが分離し、当該分離の結果、スプレードライにより得られた産物において、非結晶の糖液が固形のイソマルツロース(特にはイソマルツロース結晶)により包まれず、固形のイソマルツロースが非結晶の糖液により取り囲まれる。そして、得られた産物は吸湿性が高く、非常にべたべたしたりまたは固結しやすい。また、メディアン径が上記範囲より小さい場合、結晶の表面積が大きすぎる。その結果、表面張力によって非結晶の糖液が動きにくくなり、すなわち粘度が高くなる。当該粘度の高さの故に、スプレードライをすることができない。
 本発明においてイソマルツロース結晶を晶出させることは、当技術分野の当業者に既知の技術により適宜行なわれうる。特には、上記イソマルツロース含有糖液のBrixの調整を行い、そして当該糖液についてエージングを行なうことにより、イソマルツロース結晶が上記糖液中に晶出する。以下で、1)Brixの調整及び2)エージングについて詳述する。
 1)Brixの調整
 ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られたイソマルツロース含有糖液のBrixは、通常約20~60°、特には30~50°である。この糖液をそのままエージング工程に付して、イソマルツロース結晶を晶出させてもよいが、結晶の晶出工程の効率化の観点から、上記イソマルツロース含有糖液のBrixを調整することが好ましい。すなわち、上記イソマルツロース含有糖液のBrixを50~80°、好ましくは53~75°、より好ましくは55~70°、さらにより好ましくは60~70°に調整する。上記Brixの場合に、エージング工程における晶出の効率化が図られるとともに、晶出時間が短縮される。Brixの調整は、晶出工程の効率化の観点から、好ましくは加熱により行なわれるが、他の方法により行なわれてもよい。当該加熱は、当技術分野の通常の方法により行なわれてよい。例えば、上記糖液を容器に入れて、攪拌しながら加熱機によって加熱することができる。当該加熱機の例として、濃縮缶、結晶缶、効用缶及び薄膜式濃縮機などを挙げることができる。本発明において、当該加熱により、糖液の温度が特には100~115℃、より特には102~111℃、さらにより特には103~108℃にすることで、上記Brixに調整されうる。当該加熱は常圧で行なわれてよい。また、より速やかなBrixの達成の為に、減圧下で行なわれてもよい。当該加熱を減圧下で行なう場合、例えば、当該糖液を100mmHgで50~60℃、特には52~59℃に、より特には53~57℃に加熱することにより、上記Brixが得られる。
 2)エージング
 本発明において、エージングとは、当該糖液を或る時間或る温度範囲に維持することをいう。当該エージング(助晶ともいう)によって、糖液中においてイソマルツロース結晶が成長する。エージングは助晶機中で行なわれてよく、または冷蔵庫中で行なわれてもよい。助晶機の例として、冷却水により冷却するためのジャケット又はコイルを有する攪拌機付タンク、たて型クリスタライザー、リボンミキサーなどを挙げることができる。エージングの時間は例えば20~40℃で12~48時間である。エージングの前に、結晶の目数を増やす工程(起晶ともいう)が行なわれてもよい。当該起晶は例えば、前記Brixを調整した糖液に少量の、例えば0.01~0.5%DS(固形分質量割合)のメディアン径50μm以下の種晶を添加し、8000~20000rpmの高速回転ホモジナイザーで攪拌することにより行なわれる。その結果、添加した種晶より多くの結晶が生じる。エージングにおいて、当該生じた結晶を核として結晶が成長する。また、当該起晶の代わりに、前記Brixを調整した糖液に、0.1~5%DSのメディアン径25μm以下の種晶を添加し、攪拌機により200~1500rpmで攪拌して結晶を分散させてもよい。エージングにおいて、分散した結晶を核として結晶が成長する。上記種晶は、例えば市販のイソマルツロース結晶をハンマーミルにより粉砕したものでよい。当該ハンマーミルとして、例えば不二パウダル株式会社製のサンプルミルKIIW-1を挙げることができるが、これに限定されない。また、当該種晶は、例えばイソマルツロース結晶を含むスラリーでもよい。
 上記エージング処理によって得られる晶出率は、糖液のBrixにより異なるが、例えば糖液の固形分のうちの約半分の質量の固形分が晶出すればよく、好ましくは30~80質量%、より好ましくは40~70質量%である。晶出率の測定は、結晶を含む糖液を1.5ml容エッペンドルフチューブに1g入れ、遠心分離機(株式会社佐久間製作所製のM150IV)により16,000rpmで1分間遠心分離を行い、上清を捨てて残った結晶の残存量から算出される。
 上記エージング処理後の糖液の粘度は、スプレードライヤによりスプレードライされることができる粘度であればよく、特には4000mPa・s以下であり、より特には2000mPa・s以下、さらにより特には1000mPa・s以下である。当該粘度は、例えば回転式粘度計によって測定される。この粘度によって、続くスプレードライ工程において、例えば目詰まりが回避されることにより、好ましい噴霧が達成される。上記エージング処理後の糖液の液比重は、好ましくは1~1.7g/ml、より好ましくは1.05~1.65g/ml、さらにより好ましくは1.1~1.6g/mlである。当該液比重は、例えば比重ビン(ゲーリュサック型)によって測定される。当該液比重により、続くスプレードライ工程において好ましい噴霧が達成される。
 本発明において、イソマルツロース結晶を晶出させた上記糖液をスプレードライすることによって本発明のイソマルツロース含有固形物が得られる。当該スプレードライにおける熱風温度は、50~95℃、好ましくは53~93℃、より好ましくは55~90℃である。当該温度範囲より低い温度では、十分な乾燥ができず、固形化が不十分となる。当該温度範囲によって、上記粒子構造が達成され、その結果べたつきのない、さらさらした固形物、特には粉末が得られる。当該温度範囲より高い温度では、得られる産物の色が褐色になり、褐色の産物は他の食品に添加したときに当該他の食品に色の変化をもたらすので、イソマルツロース製品として好ましくない。また、褐色化にともない臭いが生じ、固形物を製品として販売できない。この褐色化は、糖が焦げること(カラメル化)によると思われる。すなわち、当該温度範囲によって、白色のイソマルツロース含有固形物が得られる。
 本発明においてスプレードライの熱風温度とは、スプレードライヤの乾燥室へ入れられる熱風の入口温度である。当該熱風温度は、スプレードライヤに一般的に取り付けられている温度センサーにより測定される。当該温度センサーの取り付け部分は一般に、乾燥室と熱風供給配管との接続部分近傍である。
 本発明において、スプレードライにおける熱風温度以外の条件は、適宜定められてよいが、特には以下のとおりである。スプレードライの為の機械は、通常のスプレードライヤあるいはスプレードライヤと同等のスプレードライ機能を有する他の機械であってもよい。スプレードライヤの乾燥室サイズφ(内径)は、例えば300~5000mmでありうる。乾燥室サイズはイソマルツロース含有固形物の生産規模によって定められうる。噴霧方式の例として、ノズル方式及びアトマイザー方式を挙げることができるが、糖液の粘度の観点及び糖液が固形分を含むという観点から、特にはアトマイザー方式が好ましい。アトマイザー方式の例として、加圧式、回転式及び複合式などを挙げることができるが、用いられる糖液によるポンプやノズルの詰まりを回避する為に、回転式が好ましい。アトマイザーディスクとしてピン型ディスクを挙げることができるが、他の型のディスクであってもよい。ディスク径及びアトマイザー回転数は、スプレードライヤーの乾燥室サイズによって適宜定められる。糖液の供給速度は好ましくは2~15kg/Hr、より好ましくは2.5~14kg/Hr、さらにより好ましくは3~13kg/Hrでありうる。供給速度が低い場合は製造スピードが遅くなり、一方供給速度が高すぎる場合は糖液の詰まり又はスプレードライ産物において不充分な乾燥状態を生じうる。マスキット供給用チューブは、例えば内径が3~8mm及び外径が6~14mmのシリコンチューブでありうる。マスキットは当該チューブを介してスプレードライヤに供給される。供給の為のポンプとして、例えばローラーポンプを挙げることができる。スプレードライにおいて、排風温度は例えば、30~70℃、特には35~60℃でありうる。排風温度はスプレードライ条件(例えば熱風温度、マスキット供給量など)によって定まる値である。排風温度は、排風口近傍の温度センサーにより測定されうる。
 本発明の方法により得られたイソマルツロース含有固形物は溶解速度が非常に高い。200ml容積ビーカーに蒸留水80gを入れ、20℃のウォーターバス中で当該蒸留水を20℃に保ち、マグネチックスターラーで400rpmで攪拌しながら20gの上記固形物を入れた場合、当該固形物が溶解するまでの時間が、150秒以下、特には130秒以下、より特には110秒以下、さらにより特には100秒以下でありうる。結晶パラチノースIC及び粉末パラチノースICPの上記溶解速度はそれぞれ約262秒及び約235秒である。すなわち、市販のパラチノース製品と比べて、上記固形物の溶解速度は非常に高い。当該溶解速度の高さにより、当該イソマルツロース含有固形物は、例えば食品製造において添加する場合において、作業性が良い。
 本発明の方法により得られたイソマルツロース含有固形物のかさ比重は、下記実施例に記載の測定方法に従った場合に、1.2g/ml以下、より特には1.1g/ml以下、さらにより特には1.0g/ml以下でありうる。結晶パラチノースIC及び粉末パラチノースICPの上記かさ比重は一分析例としてそれぞれ0.817g/ml及び0.41g/mlである。
 本発明の方法により得られたイソマルツロース含有固形物の水分含有量は、下記実施例に記載の測定方法に従った場合に、0.5質量%~4質量%、特には0.6質量%~3.5質量%、より特には0.7質量%~3質量%でありうる。結晶パラチノースIC及び粉末パラチノースICPについての上記水分含有量はそれぞれ0.16質量%及び0.23質量%である。当該水分含有量に結晶水は含まれない。
 また、本発明は、イソマルツロース70~90質量%及び非結晶の糖液を含有する固形物であって、球状であることを特徴とする前記固形物を提供する。当該固形物は、上記の製造方法により得られる。
 下記に実施例を挙げて本発明を説明するが、本発明はこれら実施例により限定されるものでない。
 下記の実施例において、原料となる糖液のBrixは、パラチノース結晶ICの固形分及びパラチノースISKの固形分から計算により求めた値である。パラチノースISKは固形分が75質量%である。該固形分は、屈折率に基づき測定した固形分百分率(レフブリックス)である。当該測定は、レフブリックス計により行なわれた。パラチノース結晶は5%の結晶水を含むので、当該結晶水を除いた値を固形分とした。すなわち、パラチノースIC(固形分95%)、パラチノースISK(固形分75%)及び水を任意の質量割合で混合した場合、各固形分と混合比率から計算して得られた固形分が、原料となる糖液のBrixである。
 下記の実施例において、他に示されない限り、粒径はメディアン径である。当該粒径は、レーザー回折式粒度分布測定装置(株式会社島津製作所、SALD-2000J)により測定された。
(イソマルツロース含有固形物の製造)
 ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られるイソマルツロース含有糖液のモデル液として、結晶パラチノースIC(三井製糖株式会社)、パラチノースシロップISK(三井製糖株式会社)及び水を、IC:ISK:水=51:18:26の配合割合(質量に基づく)で混合し、固形分を溶解させたモデル液を調製した。当該モデル液の糖組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 イソマルツロース製造における酵素反応液は、脱塩され、そしてパラチノース結晶の分離工程に付され、そして、分離された結晶分がパラチノースIC(三井製糖株式会社)であり、分離された蜜分がパラチノースシロップISK(三井製糖株式会社)である。すなわち、上記配合割合でパラチノースIC(三井製糖株式会社)とパラチノースシロップISK(三井製糖株式会社)とを混合した液は、ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させて得られるイソマルツロース含有糖液のモデル液として使用できる。当該モデル液のBrixは約65°であった。
 当該モデル液に1質量%のパラチノース粉砕物(メディアン径13μm、ハンマーミルでパラチノース結晶を粉砕したもの)を種晶として添加し、20℃で一晩エージングを行なって、イソマルツロース結晶を晶出させた。結晶を晶出させたモデル液(以下、「マスキット」ともいう)に含まれるイソマルツロース結晶の粒径は15~50μmであり、メディアン径は32.19μmであった。当該マスキットの粘度及び液比重はそれぞれ100mPa・s及び1.28g/mlであった。粘度は回転式粘度計により測定された。液比重は比重ビン(ゲーリュサック型)により測定された。当該マスキットをスプレードライした。当該スプレードライにおいて使用したスプレードライヤは、株式会社プリス社製のP260である。当該スプレードライヤの詳細は以下のとおりである;本体内径:2600mm、噴霧型式:回転型アトマイザー方式、ディスク:ピン型(φ100mm)、装置サイズ:φ2600mm、マスキット供給チューブ:φ6×φ10シリコンチューブ×1本(チューブ内径6mm、チューブ外径10mm)、ポンプの種類:RPSE2型ローラーポンプ(中段設置)。アトマイザーの回転数は12000rpmであった。当該スプレードライヤへのマスキット供給量は4.419kg/時であった。熱風温度(入口温度ともいう)は85℃であった。排風温度は67~68℃であった。上記スプレードライの結果、イソマルツロース含有固形物(以下、「実施例1の固形物」ともいう)が得られた。
 図1に、当該固形物のデジタルマイクロスコープ写真を示す。当該写真中の目盛りは、1目盛りが10μmである。当該固形物は球状の粒子であった。また、当該固形物の粒径は約22~500μmであった。当該固形物のメディアン径は約131μmであった。当該固形物は、ノッカー又はエアーを用いて回収可能であり、集められた当該固形物はべたつかずサラサラとした粉末であった。また、当該固形物の色は白色であった。当該固形物の構造についてのモデル図を図2に示す。図2に示すとおり、当該固形物は、マスキット中のイソマルツロース結晶が集合した球状粒子であると考えられる。また、当該球状粒子において、固形のイソマルツロースを介して当該イソマルツロース結晶が結合されるとともに、非結晶の糖液が内部に包まれていると考えられる。
 マスキット供給量が9.036kg/時であること以外は実施例1と同じ方法でイソマルツロース含有固形物(以下、「実施例2の固形物」ともいう)を得た。排風温度は66℃であった。
 当該固形物は球状の粒子であった。また、当該固形物の粒径は約28~500μmであった。当該固形物のメディアン径は約130μmであった。当該固形物は、エアーを用いて回収可能であり、集められた当該固形物はべたつかずサラサラとした粉末であった。当該固形物の色は白色であった。
 熱風温度が90℃であること及びマスキット供給量が9.036kg/時であること以外は、実施例1と同じ方法でイソマルツロース含有固形物(以下、「実施例3の固形物」ともいう)を得た。排風温度は68~69℃であった。
 当該固形物は球状の粒子であった。また、当該固形物の粒径は約28~600μmであった。当該固形物のメディアン径は約124μmであった。当該固形物は、エアーを用いて回収可能であり、集められた当該固形物はべたつかずサラサラとした粉末であった。当該固形物の色は白色であった。
 実施例1で製造したモデル液1000gに対して、エージング前に10gのパラチノース結晶をシードとして添加したこと以外は、実施例1と同じ方法でマスキットを調製した。当該シードは、パラチノースICをハンマーミル(不二パウダル株式会社、SAMPLE-MILL KIIW-I)により粉砕したものである。当該マスキットの原液粘性及び液比重はそれぞれ90mPa・s及び1.304g/mlであった。
 当該マスキットを用いたこと、熱風温度が90℃であること及びマスキット供給量が9.036kg/時であること以外は、実施例1と同じ方法でイソマルツロース含有固形物(以下、「実施例4の固形物」ともいう)を得た。排風温度は69~71℃であった。
 当該固形物は球状の粒子であった。当該固形物の粒径は約34~500μmであった。当該固形物のメディアン径は約164μmであった。当該固形物は、エアーを用いて回収可能であり、集められた当該固形物はべたつかずサラサラとした粉末であった。当該固形物の色は白色であった。
 パラチノースIC(三井製糖株式会社)及びパラチノースシロップISK(三井製糖株式会社)を65:24の質量割合で混合した。当該混合物の糖組成を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 当該混合物に水を添加し、加熱しながらパラチノースICを溶解して、Brixを60.4°に調整した。次に、当該混合物を25℃に冷却した。冷却後、0.1%DS(固形分割合)の実施例1で用いたパラチノース粉砕物を当該混合物に添加し、そして助晶機(ホモジナイザー、IKA社製、ULTRA-TURRAX)中において11000rpmの攪拌速度で攪拌しながら20℃で2時間エージングしてマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は25~98μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は32.5μmであった。
 当該マスキットをスプレードライヤ(平野工業株式会社、SA-5)によりスプレードライした。当該スプレードライヤの詳細は以下のとおりである;本体内径:2000mm、噴霧型式:遠心型アトマイザー方式、ディスク:ピン型(φ100mm)、乾燥室サイズ:φ2000mm、マスキット供給チューブ:φ5×φ8シリコンチューブ×1本(チューブ内径5mm、チューブ外径8mm)、ポンプの種類:ローラーポンプ(型式RP-2000)。アトマイザーの回転数は14000rpmであった。当該スプレードライヤへのマスキット供給量は4kg/時であった。熱風温度は60℃であった。排風温度は41℃であった。上記スプレードライの結果、イソマルツロース含有固形物(以下、「実施例5の固形物」ともいう)が得られた。
 当該固形物は球状の粒子であった。当該固形物を光学顕微鏡で観察したところ粒径は22~500μmであった。当該固形物のメディアン径は約131μmであった。当該固形物を集めたものは、べたつかずさらさらとした粉末であった。当該固形物の色は白色であった。
 Brixを59.8°に調整したこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は3~25μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は17.7μmであった。
 当該マスキットを、熱風温度を80℃にしたこと以外は実施例5に記載されたスプレードライ処理と同じスプレードライ処理に付した。なお、排風温度は46℃であった。当該スプレードライ処理の結果、イソマルツロース含有固形物(以下、「実施例6の固形物」ともいう)が得られた。
 当該固形物は球状の粒子であった。当該固形物を光学顕微鏡で観察したところ粒径は28~600μmであった。当該固形物のメディアン径は約130μmであった。当該固形物の色は白色であった。当該固形物を集めたものは、べたつかずさらさらとした粉末であった。
 Brixを59.6°に調整したこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は20~67μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は25.7μmであった。
 当該マスキットを、実施例5に記載されたものと同じスプレードライ処理に付した。なお、排風温度は37℃であった。当該スプレードライ処理の結果、イソマルツロース含有固形物(以下、「実施例7の固形物」ともいう)が得られた。
 当該固形物は球状の粒子であった。当該固形物を光学顕微鏡で観察したところ粒径は28~600μmであった。当該固形物のメディアン径は約124μmであった。当該固形物の色は白色であった。当該固形物を集めたものは、べたつかずさらさらとした粉末であった。
 Brixを60.6°に調整したこと、攪拌速度を16000rpmとしたこと及び冷却温度を10℃としたこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は1~25μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は15.4μmであった。
 当該マスキットを、実施例5に記載されたものと同じスプレードライ処理に付した。なお、排風温度は42℃であった。当該スプレードライ処理の結果、イソマルツロース含有固形物(以下、「実施例8の固形物」ともいう)が得られた。
 当該固形物は球状の粒子であった。当該固形物を光学顕微鏡で観察したところ粒径は34~500μmであった。当該固形物のメディアン径は約164μmであった。当該固形物の色は白色であった。当該固形物を集めたものは、べたつかずさらさらとした粉末であった。
(比較例1)
 Brixを51.2°に調整したこと及び攪拌速度を120rpmとしたこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は150~156μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は120.2μmであった。
 当該マスキットを、熱風温度を65℃としたこと以外は実施例5に記載されたものと同じスプレードライ処理に付した。なお、排風温度は41℃であった。当該スプレードライ処理の産物は、さらさらとした粉末でなく、スプレードライヤ内に付着し、べたついたものであった。すなわち、当該産物はイソマルツロース結晶と非結晶の糖液とが分離したものであり、当該マスキットを全量固形化することはできなかった。当該産物は、そのべたつきの故に、そのまま販売することが困難である。
(比較例2)
 Brixを60.1°に調整したこと及び攪拌速度を120rpmとしたこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は105~156μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は133.1μmであった。
 当該マスキットを、熱風温度を65℃としたこと以外は実施例5に記載されたものと同じスプレードライ処理に付した。なお、排風温度は41℃であった。当該スプレードライ処理の産物は、さらさらとした粉末でなく、スプレードライヤ内に付着し、べたついたものであった。すなわち、当該産物はイソマルツロース結晶と非結晶の糖液とが分離したものであり、当該マスキットを全量固形化することはできなかった。当該産物は、そのべたつきの故に、そのまま販売することが困難である。また、当該産物のうち固形化した部分の多くは、団結した団粒を形成した。
(比較例3)
 Brixを60.2°に調整したこと及び攪拌速度を120rpmとしたこと以外は実施例5と同じ方法でマスキットを得た。当該マスキット中のイソマルツロース結晶粒子を光学顕微鏡で顕鏡したところ粒径は45~207μmであった。当該マスキット中のイソマルツロース結晶のメディアン径は103.6μmであった。
 当該マスキットを、実施例5に記載されたものと同じスプレードライ処理に付した。なお、排風温度は41℃であった。当該スプレードライ処理の産物は、さらさらとした粉末でなく、スプレードライヤ内に付着し、べたついたものであった。すなわち、当該産物はイソマルツロース結晶と非結晶の糖液とが分離したものであり、当該マスキットを全量固形化することはできなかった。当該産物は、そのべたつきの故に、そのまま販売することが困難である。また、当該産物のうち固形化した部分の多くは、団結した団粒を形成した。
 以下の表3は、実施例5~8及び比較例1~3における実験条件及び結果の一覧である。以下表の結果の行において、○はイソマルツロース含有糖液が全量固形化されたことを示す、×はイソマルツロース含有糖液が全量固形化されなかったことを示す。また、実施例5~8において得られた固形物はいずれもべとつかずさらさらした粉末であった。
Figure JPOXMLDOC01-appb-T000003
 実施例1の固形物及び実施例5の固形物並びに市販のパラチノース2種類(結晶パラチノースIC(三井製糖株式会社、以下「IC」ともいう)及び粉末パラチノースICP(三井製糖株式会社、以下「ICP」ともいう))を用意した。これら4種類の試料について、溶解速度、かさ比重及び水分含有量を測定した。
1)溶解速度
 200ml溶ビーカーに蒸留水80mlをいれ、ウォーターバスにて20℃に保ち、マグネチックスターラーにより400rpmで攪拌しながら上記試料20gを入れ、完全に溶解するまでの時間(秒)を測定した。結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1及び実施例5の固形物の溶解速度は、結晶パラチノースICと比較して、溶解速度が非常に速いものであった。また、実施例1及び実施例5の固形物の溶解速度は、パラチノースICPとほぼ同程度の溶解速度であった。また、実施例1及び実施例5の固形物は、水に溶解したときに泡を生じた。この泡は、これら固形物が有する空隙に由来する。一方、IC及びICPを溶解しても、泡は生じなかった。
2)かさ比重
 かさ比重は、ABD粉体特性測定器(筒井理化学器械株式会社)を用いて測定した。測定方法は当該測定器に付属の説明書に従った。すなわち、当該測定器のホッパーからサンプル容器(100ml容量)へ試料を山盛りに充填し、容器上部ですり切り、すり切った後の質量を測定した。かさ比重を求める為の計算式は以下のとおりである:かさ比重(g/ml)=試料質量測定値(g)÷100(ml)。測定結果は以下の表5とおりである。
Figure JPOXMLDOC01-appb-T000005
 実施例1及び実施例5の固形物のかさ比重は、結晶パラチノースICと比較して小さかった。
3)水分含有量
 水分含有量は、試料を75℃で3時間減圧乾燥したときの質量変化に基づき測定した。測定結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 40質量%のショ糖液に、Protaminobacter rubrumから得られたα-グルコシルトランスフェラーゼを反応させてイソマルツロース含有糖液を得、そして当該イソマルツロース含有糖液を脱塩した。当該酵素反応及び脱塩は、中島良和、「パラチノースの製法と用途」、澱粉科学、日本澱粉学会、1982年、第35巻、第2号、p.131~139、に記載された方法に従った。この脱塩液のBrixは38.2°であった。当該脱塩液の糖組成は表7の通りであった。
Figure JPOXMLDOC01-appb-T000007
 当該脱塩液を、冷却トラップ(UT-50型、東京理科機械株式会社製)、ダイアフラム型真空ポンプ(DIVAC2.2L、東京理科機械株式会社製)を接続したロータリーエバポレーター(N-11、東京理科器械株式会社製)の10Lフラスコに入れ、85℃に加熱しながらBrixを63°に調整した濃縮液を得た。得られた濃縮液を撹拌しながら25℃に放冷した。25℃になった濃縮液7kgに70gのパラチノース粉砕物(メディアン径15μm、ハンマーミルで結晶パラチノースを粉砕したもの)を添加し、25℃で一晩エージングすることにより15~50μmの結晶を析出させてマスキットを得た。当該マスキット中の結晶のメディアン径は35.2μmであった。当該エージング後のマスキットの粘度及び比重はそれぞれ、120mPa・s及び1.305g/mlであった。
 スプレードライヤ(株式会社プリス、小型スプレードライヤ R160)を用いて、熱風温度90℃、アトマイザー回転数16000rpm、スプレードライヤへの糖液供給量1.13kg/hで、当該マスキットをスプレードライした。排風温度は67~71℃であった。スプレードライの結果、イソマルツロース含有固形物(以下、「実施例10の固形物」ともいう)が得られた。当該イソマルツロース含有固形物はメディアン径が約124.4μmであった。当該固形物は球状であった。また、当該固形物を集めたものは、べたつかずさらさらした粉末であった。
試験例1:ハードキャンディの製造と評価
 なべに実施例10の固形物7質量部及び水3質量部を入れ、それらを混合後、火にかけた。液温が160℃になった時点でなべを火からおろし、当該液を型に入れ、そして固めて、ハードキャンディを得た。
 実施例10の固形物の代わりに同量のパラチノース(結晶パラチノースIC、三井製糖株式会社)を用いたこと以外は、上記方法でハードキャンディを製造した。
 実施例10の固形物を用いたハードキャンディは、パラチノースハードキャンディと同様に透明であった。砂糖単独でハードキャンディを製造した場合、煮詰める工程又は固める工程において結晶が析出し、透明なハードキャンディが得られない。一方、パラチノース及び本発明による固形物によりキャンディを製造した場合、透明なキャンディが得られることが示された。
試験例2:ヨーグルトドリンクの製造と評価
(ヨーグルトドリンクの製造)
 ヨーグルトドリンクを、下記表8に示す試験区1~3の材料及び配合により製造した。実施例の固形物及びパラチノースの配合量は、砂糖の甘味度と合わせる為に、砂糖配合量の1/0.45倍とした。製造手順は以下のとおりである。(1)ヨーグルトに脱脂粉乳を加え、ダマにならないよう混ぜた。(2)(1)で得られた混合物に牛乳を加えて混ぜ、そして各糖類を加えてよく混ぜた。(3)(2)で得られた混合物に30質量%クエン酸を添加してpHを4.5に調整し、ヨーグルトドリンクを得た。
Figure JPOXMLDOC01-appb-T000008
(外観の評価)
 色彩色差計(CR-400、コニカミノルタ株式会社)を用いて、試験区1~3のヨーグルトドリンクを測定した結果を表9に示す。表9中の値は、国際照明委員会(CIE)の規定するCIE色差式L*a*b*に従うものである。L*、a*、及びb*はそれぞれ、エルスター、エースター、及びビースターと読む。
Figure JPOXMLDOC01-appb-T000009
 表9に示されるとおり、試験区1~3のヨーグルトドリンクの間で、色の違いはほとんどみられなかった。すなわち、実施例10の固形物を用いた場合、砂糖及びパラチノースを用いた場合と同等の外観を有するヨーグルトドリンクが製造される。なお、試験区1及び3のヨーグルトドリンクの粘度は、試験区2のものよりも高かった。これは糖類の配合量がより多いことによる。
(味の評価)
 上記のとおり試験区1~3の甘味度を揃えたが、試験区2のヨーグルトドリンクの甘味が最も強く、試験区3のヨーグルトドリンクの甘味が最も弱かった。試験区1のヨーグルトドリンクの甘味は、試験区2のものよりも弱いが、しっかり感じられるものであった。
 酸味については、試験区1のヨーグルトドリンクが最も強く、試験区2のものが最も弱かった。
 試験区3のヨーグルトドリンクと試験区1のものとを味の点で比較すると、試験区3のものは単調な味ですっきりしているのに対し、試験区1のものは甘さに厚みがあり濃厚な味であった。
試験例3:ホイップクリームの製造と評価
(ホイップクリームの製造)
 ホイップクリームを、下記表10に示す試験区1~3の材料及び配合により製造した。実施例10の固形物及びパラチノースの配合量は、砂糖の甘味度と合わせる為に、砂糖配合量の1/0.45倍とした。ホイップクリームは、生クリームに各種糖類を加え、ハンドミキサーで泡立て製造した。泡立ては、九分立てになった時点で止めた。
Figure JPOXMLDOC01-appb-T000010
 食感及び味質において、試験区1~3のホイップクリームの間で差は認められなかった。また、試験区2のホイップクリームよりも、試験区1及び3のものの方が、泡立ち始めるのが早かった。
試験例4:チョコレートの製造と評価
(チョコレートの製造)
 チョコレートを、下記表11に示す試験区1~3の材料及び配合により製造した。甘味を補う為に、試験区1及び2では、試験区3の砂糖配合量の半分だけを、それぞれ実施例10の固形物又はパラチノースで置き換えた。チョコレートは、以下のとおりに製造した。まず、各種糖類を粉砕機で粉砕した。粉砕した各種糖類を刻んだブラックチョコレートと合わせた。湯煎にかけてブラックチョコレートを溶かした。ブラックチョコレートが溶けたら、40~45℃で5分間、空気が入らないようによく混ぜた。糖類が均一に混ざったら、56℃まで温め、ボウルを冷水につけて28℃まで下げた。再び湯煎にかけて31℃まで温度をあげ、型に流し入れ、冷却して、チョコレートを得た。
Figure JPOXMLDOC01-appb-T000011
(味の評価)
 試験区2のチョコレートと比較して試験区1のものは甘味に厚みがあり、香りや風味も良かった。甘味については、試験区3のチョコレートの甘味が最も強く、試験区2のものが最も弱かった。
 苦味については、試験区3のチョコレートの苦味が、試験区1及び2のものよりも強かった。また、試験区2のチョコレートは甘味が弱い分苦味だけが強く感じるのに対し、試験区1のものは甘味も苦味も強く、且つ、カカオの風味も感じられた。
試験例5:抹茶スポンジの製造と評価
(スポンジの製造)
 スポンジを、下記表12に示す試験区1~3の材料及び配合により製造した。甘味を補う為に、試験区1及び2では、試験区3の砂糖配合量の半分だけを、それぞれ実施例10の固形物又はパラチノースで置き換えた。スポンジは、以下のとおりに製造した。まず、薄力粉及び抹茶を混合しふるった。バターを溶かした。全卵に糖類を入れて、湯煎で30℃に保ちながらハンドミキサーで12分間泡立てた。泡立てた卵液に、上記薄力粉及び抹茶の混合物を、3回に分けて入れさっくり混ぜた。さらに、溶かしバターを加え、練らないように混ぜてスポンジ生地を得た。スポンジ生地を、クッキングペーパーを敷いた天板に流し、200℃で15分間焼いて、抹茶スポンジを得た。
Figure JPOXMLDOC01-appb-T000012
 得られた抹茶スポンジのうち、試験区1のスポンジが、甘さが控えめでさっぱりしていた。
試験例6:バトンショコラの製造と評価
(バトンショコラの製造)
 バトンショコラを、下記表13に示す試験区1~3の材料及び配合により製造した。甘味を補う為に、試験区1及び2では、試験区3の砂糖配合量の半分だけを、それぞれ実施例10の固形物又はパラチノースで置き換えた。バトンショコラは、以下のとおりに製造した。まず、バターをクリーム状に練って、当該練ったバターに各種糖類を加えてさらに混ぜた。当該バターに、全卵を少しずつ加えた。さらに、篩った粉(小麦粉、アーモンドパウダー、ココアパウダーの混合物)を加えて生地を得た。当該生地を、絞り袋で天板に絞り出し、170℃で15分間焼いて、バトンショコラを得た。
Figure JPOXMLDOC01-appb-T000013
 試験区1のバトンショコラは、試験区2のものよりもさっぱりしていなかったが、試験区3のものよりもさっぱりしていた。また、試験区1のバトンショコラが、最もビター感が強かった。
試験例7:にんじんゼリーの製造と評価
(にんじんゼリーの製造)
 にんじんゼリーを、下記表14に示す試験区1~3の材料及び配合により製造した。製造方法は以下のとおりである。まず、にんじんを適当に切って、水及びレモンと合わせ、それらをミキサーにかけて(15秒×3回)、にんじんジュースを得た。別途、ゲル化剤と実施例10の固形物、パラチノース、又は砂糖とをよく混合しておいた。当該混合物と上記ジュースとを鍋に入れてよく混ぜ、火にかけて沸騰してから3分間煮た。当該煮た液を型に充填し、そして冷却して、にんじんゼリーを得た。
Figure JPOXMLDOC01-appb-T000014
 試験区1及び試験区2のゼリーは、試験区3のものよりも、にんじんの青臭みが少なかった。従来、パラチノースが、臭みのマスキングの為に添加されている。実施例の粒状物によっても、パラチノースと同様にマスキング効果が得られることが示された。
試験例8:イチゴジャムの製造と評価
(イチゴジャムの製造)
 イチゴジャムを、下記表15に示す試験区1~3の材料及び配合により製造した。砂糖と実施例4-2の粒状物の割合を変えて、結晶が析出しないBrix60°のイチゴジャムを検討した。なお、結晶析出を防ぐ為に、いずれの試験区においても、トレハルロースシロップ(ミルディア75、三井製糖株式会社)を全糖類質量の2質量割合配合した。
Figure JPOXMLDOC01-appb-T000015
 試験区3のジャムは冷蔵保存1ヶ月後に結晶が析出したが、試験区1及び2のジャムは冷蔵保存1ヶ月後でも結晶は析出せず、3日間冷凍してから解凍しても結晶析出はみられなかった。
 甘味を評価したところ、試験区3のジャムは、試験区1のジャムほどの甘さは無いが、しっかりとした甘さが感じられた。また、実施例10の固形物の配合が多いジャムほど甘味がすっきりしており酸味が強かった。試験区3のジャムは、甘さと酸味のバランスがよく、イチゴの味が強かった。
試験例9:チューインガムの製造と評価
 パラチノース又は実施例10の固形物を用いてチューインガムを製造した。製造方法は、以下のとおりである。まず、チューインガムベース30質量部に、酵素糖化水飴(コーソシラップH85C、Brix85°、日本コーンスターチ株式会社)15質量部を加え、45℃に保温したニーダー(ベンチニーダーPNV-1、株式会社入江商会)を用いて5分間混練した。得られた混合物に、甘味料としてパラチノース(粉末パラチノースICP、三井製糖株式会社)54質量部又は実施例10の固形物54質量部を数回に分けて加え、さらに1質量部のグリセロール(純正化学 食品添加物)を加えて15分間混練した。次いで、1質量部の香料(ペパーミントオイル、高田香料株式会社)を加えて5分間混練した。そして次に、取り粉として粉末パラチノース(粉末パラチノースICP、三井製糖株式会社)を用い、混練物を圧延して板ガム状に成型し(厚さ2mm、幅2cm、長さ7cm)、アルミ箔に包み、チューインガムを得た。
 得られたガムを、製造の1週間後に観察したところ、実施例10の固形物を使用したチューインガムは、パラチノースを使用したものよりもやわらかかった。

Claims (4)

  1.  ショ糖からイソマルツロースを生成する酵素をショ糖液に作用させてイソマルツロース含有糖液を得、当該糖液からイソマルツロース含有固形物を製造する方法であって、
    前記糖液中においてメディアン径5~60μmのイソマルツロース結晶を晶出させること、ここで前記メディアン径はレーザー回折式粒度分布測定により測定したものである、そして
    前記イソマルツロース結晶を有する糖液を熱風温度50~95℃でスプレードライすること
    を含む前記方法。
  2.  前記晶出の前に、前記糖液のBrixを50~80°に調整する、請求項1に記載の方法。
  3.  イソマルツロース70~90質量%及び非結晶の糖液を含有する固形物であって、球状であることを特徴とする前記固形物。
  4.  前記非結晶の糖液が固形のイソマルツロースにより包まれている、請求項3に記載の固形物。
PCT/JP2012/062962 2011-05-23 2012-05-21 糖液から固形物を製造する方法及び固形物 WO2012161165A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12790104.9A EP2716771B1 (en) 2011-05-23 2012-05-21 Method for producing solid material from saccharide solution, and solid material
KR1020137031791A KR101465383B1 (ko) 2011-05-23 2012-05-21 당액으로부터 고형물을 제조하는 방법 및 고형물
ES12790104.9T ES2566644T3 (es) 2011-05-23 2012-05-21 Procedimiento para producir un material sólido a partir de una solución de sacáridos, y material sólido
CN201280036573.9A CN103717758B (zh) 2011-05-23 2012-05-21 由糖液制备固态物的方法和固态物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-114934 2011-05-23
JP2011114934 2011-05-23
JP2011259313A JP5483482B2 (ja) 2011-05-23 2011-11-28 糖液から固形物を製造する方法及び固形物
JP2011-259313 2011-11-28

Publications (1)

Publication Number Publication Date
WO2012161165A1 true WO2012161165A1 (ja) 2012-11-29

Family

ID=47217242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062962 WO2012161165A1 (ja) 2011-05-23 2012-05-21 糖液から固形物を製造する方法及び固形物

Country Status (6)

Country Link
EP (1) EP2716771B1 (ja)
JP (1) JP5483482B2 (ja)
KR (1) KR101465383B1 (ja)
CN (1) CN103717758B (ja)
ES (1) ES2566644T3 (ja)
WO (1) WO2012161165A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100498B2 (ja) * 2012-10-15 2017-03-22 三井製糖株式会社 抹茶含有食品を製造する方法及び抹茶を含有する食品
JP5667666B2 (ja) 2013-06-28 2015-02-12 三井製糖株式会社 糖結晶含有液を製造する方法
JP6438238B2 (ja) * 2014-08-29 2018-12-12 三井製糖株式会社 澱粉質、イソマルツロース、及びトレハルロースを含む求肥様食品、並びに当該求肥様食品を製造する方法
US20190281874A1 (en) * 2016-12-16 2019-09-19 Nestec S.A. Oligosaccharides for flavour generation
EP3363909A1 (en) * 2017-02-15 2018-08-22 Evonik Degussa GmbH Process for production of a solid material containing isomaltulose crystals and trehalulose
JP2021106571A (ja) * 2019-12-27 2021-07-29 三井製糖株式会社 顆粒の製造方法及び顆粒
JP7197743B1 (ja) 2022-07-15 2022-12-27 Dm三井製糖株式会社 顆粒を製造する方法及び顆粒

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117796A (en) 1980-02-20 1981-09-16 Mitsui Seito Kk Preparation of saccharide blend
JPS5739794A (en) 1980-08-21 1982-03-05 Mitsui Seito Kk Preparation of palatinose by immobilized alpha- glucosyltransferase
JPS6092299A (ja) 1983-10-25 1985-05-23 Sanwa Kosan Kk 粉末マルト−スの製造法
JPS6193129A (ja) 1984-10-04 1986-05-12 ジエネンテク,インコーポレイテツド 治療活性を有するタンパク質の経口投与製剤
JPH01124350A (ja) * 1987-11-07 1989-05-17 Lotte Co Ltd 加糖練乳様組成物およびその製造方法
JPH02257888A (ja) * 1989-03-30 1990-10-18 Nisshin Seito Kk 微生物によるパラチノース、トレハルロースの製造方法
JPH05130886A (ja) * 1991-08-07 1993-05-28 Mitsui Sugar Co Ltd トレハルロースおよびパラチノースの製造法
JPH0919300A (ja) 1995-05-02 1997-01-21 Towa Chem Ind Co Ltd 結晶マルチトール及びそれを含有する含蜜結晶の製造方法
JPH09507863A (ja) 1994-11-08 1997-08-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 共噴霧乾燥によって得られるポリオール組成物
JP2001519378A (ja) 1997-10-15 2001-10-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 直接圧縮可能な錠剤化助剤の製造
JP2002142690A (ja) 2000-07-27 2002-05-21 Roquette Freres デンプン及びラクトースに基づく顆粒
WO2002070013A1 (fr) 2001-03-06 2002-09-12 Kyowa Hakko Kogyo Co., Ltd. Utilisation d'une poudre sechee par atomisation contenant un alcool de sucre
JP2004283026A (ja) 2003-03-19 2004-10-14 Nisshi:Kk 一・二糖類粉末の製造方法
JP2009530356A (ja) 2006-03-17 2009-08-27 イノヴィア 粉末組成物の製造方法及び得られた生成物
JP2009536168A (ja) * 2006-05-08 2009-10-08 スズカー アクチエンゲセルシャフト マンハイム/オシュセンフルク 流動性が改善されたイソマルツロース
JP2011027216A (ja) 2009-07-28 2011-02-10 Yokohama Rubber Co Ltd:The マリンホース
JP2011114934A (ja) 2009-11-26 2011-06-09 Kyocera Corp 保護回路
JP2011259313A (ja) 2010-06-10 2011-12-22 Ntt Docomo Inc 無線制御装置及び通信制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3213107A1 (de) * 1982-04-07 1983-10-13 Süddeutsche Zucker AG, 6800 Mannheim Verfahren zur herstellung von isomaltulose (6-o-(alpha)-d-glucopyranosido-d-fructose) mit hilfe von immobilisierten bakterienzellen
JPH03180172A (ja) * 1989-12-08 1991-08-06 Mitsui Sugar Co Ltd パラチノースおよびトレハルロースの製造法
US5229276A (en) * 1990-10-31 1993-07-20 Mitsui Sugar Co., Ltd. Process for preparing trehalulose and isomaltulose
JP2756360B2 (ja) * 1990-10-31 1998-05-25 三井製糖株式会社 トレハルロースおよびパラチノースの製造法
FI105048B (fi) * 1997-05-22 2000-05-31 Xyrofin Oy Menetelmä isomaltuloosin ja muiden tuotteiden valmistamiseksi
JP4482336B2 (ja) * 2004-01-05 2010-06-16 上野製薬株式会社 イソマルチュロース結晶および還元イソマルチュロースの製造方法
CN101575629A (zh) * 2009-06-11 2009-11-11 大连工业大学 一种无纯化步骤的异麦芽酮糖生产方法
CN101591689B (zh) * 2009-06-30 2010-12-08 广西投资集团维科特生物技术有限公司 生物酶法转化蔗糖生产异麦芽酮糖的方法

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56117796A (en) 1980-02-20 1981-09-16 Mitsui Seito Kk Preparation of saccharide blend
JPS5739794A (en) 1980-08-21 1982-03-05 Mitsui Seito Kk Preparation of palatinose by immobilized alpha- glucosyltransferase
JPS6092299A (ja) 1983-10-25 1985-05-23 Sanwa Kosan Kk 粉末マルト−スの製造法
JPS6193129A (ja) 1984-10-04 1986-05-12 ジエネンテク,インコーポレイテツド 治療活性を有するタンパク質の経口投与製剤
JPH01124350A (ja) * 1987-11-07 1989-05-17 Lotte Co Ltd 加糖練乳様組成物およびその製造方法
JPH02257888A (ja) * 1989-03-30 1990-10-18 Nisshin Seito Kk 微生物によるパラチノース、トレハルロースの製造方法
JPH05130886A (ja) * 1991-08-07 1993-05-28 Mitsui Sugar Co Ltd トレハルロースおよびパラチノースの製造法
JPH09507863A (ja) 1994-11-08 1997-08-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 共噴霧乾燥によって得られるポリオール組成物
JPH0919300A (ja) 1995-05-02 1997-01-21 Towa Chem Ind Co Ltd 結晶マルチトール及びそれを含有する含蜜結晶の製造方法
JP2001519378A (ja) 1997-10-15 2001-10-23 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 直接圧縮可能な錠剤化助剤の製造
JP2002142690A (ja) 2000-07-27 2002-05-21 Roquette Freres デンプン及びラクトースに基づく顆粒
WO2002070013A1 (fr) 2001-03-06 2002-09-12 Kyowa Hakko Kogyo Co., Ltd. Utilisation d'une poudre sechee par atomisation contenant un alcool de sucre
JP2004283026A (ja) 2003-03-19 2004-10-14 Nisshi:Kk 一・二糖類粉末の製造方法
JP2009530356A (ja) 2006-03-17 2009-08-27 イノヴィア 粉末組成物の製造方法及び得られた生成物
JP2009536168A (ja) * 2006-05-08 2009-10-08 スズカー アクチエンゲセルシャフト マンハイム/オシュセンフルク 流動性が改善されたイソマルツロース
JP2011027216A (ja) 2009-07-28 2011-02-10 Yokohama Rubber Co Ltd:The マリンホース
JP2011114934A (ja) 2009-11-26 2011-06-09 Kyocera Corp 保護回路
JP2011259313A (ja) 2010-06-10 2011-12-22 Ntt Docomo Inc 無線制御装置及び通信制御方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2716771A4 *
YOSHIKAZU NAKAJIMA: "Manufacture and Utilization of Palatinose", JOURNAL OF THE JAPANESE SOCIETY OF STARCH SCIENCE, JAPANESE SOCIETY OF STARCH SCIENCE, vol. 35, no. 2, 1988, pages 131 - 139

Also Published As

Publication number Publication date
JP5483482B2 (ja) 2014-05-07
KR101465383B1 (ko) 2014-11-26
EP2716771A1 (en) 2014-04-09
EP2716771B1 (en) 2016-01-06
CN103717758B (zh) 2015-05-13
KR20140036209A (ko) 2014-03-25
EP2716771A4 (en) 2015-01-14
ES2566644T3 (es) 2016-04-14
CN103717758A (zh) 2014-04-09
JP2013005790A (ja) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5483482B2 (ja) 糖液から固形物を製造する方法及び固形物
JP6983157B2 (ja) かさ高い糖代替物
JP4034862B2 (ja) スクロースの後味改善方法とその用途
TWI377913B (en) Eutectic crystalline sugar alcohol and manufacturing method thereof
JP6448631B2 (ja) 非晶質に固化された生体高分子からなる球状粒子、その製法及びその使用
EP3815540A1 (en) Sweetener powder composition and preparation method therefor
US6875460B2 (en) Co-crystallized polyols and hydrogenated maltodextrin
WO2020005022A1 (ko) 말토올리고당을 포함하는 혼합당 조성물
KR20020034209A (ko) 고형상 감미료 조성물, 액상 감미료 조성물 및 이들의 사용
JP5635965B2 (ja) 糖液から固形物を製造する方法及び固形物
JPH08511415A (ja) 甘味料、その製造方法、及びその用途
EP1173453B1 (en) Crystallization of glucopyranosylalditols, crystalline glucopyranosylalditol product and use thereof
Kruger Sugar and Bulk sweeteners
JP2004261039A (ja) L−アラビノース含有結晶性粉末糖組成物およびその製造方法
JPH04360663A (ja) 粉末糖質とその製造方法並びに用途
RU2549769C2 (ru) Композиции пониженной калорийности для получения какаосодержащих быстрорастворимых напитков
KR101608545B1 (ko) 조대 입자 크기를 가진 결정화 말티톨 분말, 그 제조 방법 및, 특히 초콜릿에서의 그 용도
JPH03240463A (ja) アモルファスパラチノースの製造法および該アモルファスパラチノースによる菓子の製造法
KR20180121224A (ko) 인삼 건조 제품
JP6782737B2 (ja) 経口組成物
JP3749335B2 (ja) チョコレートおよびその製造方法
Krüger Sugar and bulk sweeteners
JPH05137518A (ja) ゼリー菓子
JPS60232058A (ja) チヨコレ−ト
WO2024047122A1 (en) Process for the preparation of a particulate allulose composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12790104

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137031791

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012790104

Country of ref document: EP