WO2012147985A1 - スパッタリングターゲット及びその製造方法 - Google Patents
スパッタリングターゲット及びその製造方法 Download PDFInfo
- Publication number
- WO2012147985A1 WO2012147985A1 PCT/JP2012/061516 JP2012061516W WO2012147985A1 WO 2012147985 A1 WO2012147985 A1 WO 2012147985A1 JP 2012061516 W JP2012061516 W JP 2012061516W WO 2012147985 A1 WO2012147985 A1 WO 2012147985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- compound
- sputtering target
- target
- sputtering
- Prior art date
Links
- 238000005477 sputtering target Methods 0.000 title claims abstract description 66
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 40
- 239000011734 sodium Substances 0.000 claims abstract description 172
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims abstract description 54
- 239000011775 sodium fluoride Substances 0.000 claims abstract description 45
- 235000013024 sodium fluoride Nutrition 0.000 claims abstract description 45
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 39
- 239000001301 oxygen Substances 0.000 claims abstract description 39
- 229910052751 metal Inorganic materials 0.000 claims abstract description 30
- 239000002184 metal Substances 0.000 claims abstract description 29
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 11
- 229910052979 sodium sulfide Inorganic materials 0.000 claims abstract description 10
- GRVFOGOEDUUMBP-UHFFFAOYSA-N sodium sulfide (anhydrous) Chemical compound [Na+].[Na+].[S-2] GRVFOGOEDUUMBP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910052711 selenium Inorganic materials 0.000 claims abstract description 9
- VPQBLCVGUWPDHV-UHFFFAOYSA-N sodium selenide Chemical compound [Na+].[Na+].[Se-2] VPQBLCVGUWPDHV-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 8
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 150000001875 compounds Chemical class 0.000 claims description 116
- 239000000843 powder Substances 0.000 claims description 113
- 229910000807 Ga alloy Inorganic materials 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 44
- -1 NaF compound Chemical class 0.000 claims description 38
- 239000002245 particle Substances 0.000 claims description 38
- 238000005245 sintering Methods 0.000 claims description 29
- 239000011812 mixed powder Substances 0.000 claims description 28
- 239000012298 atmosphere Substances 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 17
- 238000007731 hot pressing Methods 0.000 claims description 13
- 229910052708 sodium Inorganic materials 0.000 claims description 12
- 239000011261 inert gas Substances 0.000 claims description 9
- 230000001603 reducing effect Effects 0.000 claims description 8
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000001513 hot isostatic pressing Methods 0.000 claims description 4
- 238000004544 sputter deposition Methods 0.000 abstract description 45
- 239000010408 film Substances 0.000 description 55
- 239000011669 selenium Substances 0.000 description 40
- 238000002156 mixing Methods 0.000 description 21
- 230000031700 light absorption Effects 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 18
- 239000002994 raw material Substances 0.000 description 17
- 230000002159 abnormal effect Effects 0.000 description 13
- 239000002243 precursor Substances 0.000 description 13
- 238000003754 machining Methods 0.000 description 12
- 239000010409 thin film Substances 0.000 description 10
- 238000010248 power generation Methods 0.000 description 7
- 238000001035 drying Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005336 cracking Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 229910052733 gallium Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 238000005266 casting Methods 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910002056 binary alloy Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000110 cooling liquid Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 239000011163 secondary particle Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 229910004613 CdTe Inorganic materials 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011978 dissolution method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000007580 dry-mixing Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- BPLYVSYSBPLDOA-GYOJGHLZSA-N n-[(2r,3r)-1,3-dihydroxyoctadecan-2-yl]tetracosanamide Chemical compound CCCCCCCCCCCCCCCCCCCCCCCC(=O)N[C@H](CO)[C@H](O)CCCCCCCCCCCCCCC BPLYVSYSBPLDOA-GYOJGHLZSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
- B22F3/15—Hot isostatic pressing
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0425—Copper-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
- C23C14/3407—Cathode assembly for sputtering apparatus, e.g. Target
- C23C14/3414—Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
- H01L31/0322—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/541—CuInSe2 material PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a sputtering target used when forming a Cu—In—Ga—Se compound film (hereinafter sometimes abbreviated as CIGS film) for forming a light absorption layer of a CIGS thin film solar cell, and It relates to the manufacturing method.
- CIGS film Cu—In—Ga—Se compound film
- thin film solar cells based on chalcopyrite compound semiconductors have come into practical use, and thin film solar cells based on this compound semiconductor form a Mo electrode layer serving as a positive electrode on a soda-lime glass substrate.
- a light absorption layer made of a CIGS film is formed on the Mo electrode layer, a buffer layer made of ZnS, CdS or the like is formed on the light absorption layer, and a transparent electrode layer serving as a negative electrode is formed on the buffer layer. It has a basic structure formed.
- a method for forming the light absorption layer As a method for forming the light absorption layer, a method of forming a film by vapor deposition is known. Although a light absorption layer obtained by this method can obtain high energy conversion efficiency, film formation by vapor deposition has a vapor deposition rate. Since it is slow, the uniformity of the film thickness distribution tends to decrease when the film is formed on a large-area substrate. Therefore, a method for forming a light absorption layer by a sputtering method has been proposed.
- an In film is formed by sputtering using an In target.
- a Cu-Ga binary alloy film is formed on the In film by sputtering using a Cu-Ga binary alloy target, and the resulting In film and Cu-Ga binary alloy film are formed.
- selenization method a method in which a laminated precursor film is heat-treated in an Se atmosphere to form a CIGS film.
- the Cu-Ga alloy film and the In film laminated precursor film are formed from the metal back electrode layer side with a high Ga content Cu-Ga alloy layer, a low Ga content Cu-Ga alloy.
- a layer and an In layer are formed by a sputtering method in this order, and this is heat-treated in a selenium and / or sulfur atmosphere, so that the inside of the thin-film light absorption layer from the interface layer (buffer layer) side to the metal back electrode layer side
- a technique for realizing a thin film type solar cell with a large open circuit voltage by gradually changing the Ga concentration gradient (stepwise) and preventing peeling of the thin film light absorption layer from other layers has been proposed.
- the Ga content in the CuGa target has been proposed as 1 to 40 atomic% (see Patent Document 1).
- Non-Patent Document 1 the Na content in the CIGS film is about 0.1%.
- a precursor film containing metal elements of In, Cu and Ga is formed on the back electrode layer formed on the substrate, and then four precursors are formed on the precursor film.
- an aqueous solution containing sodium acid, sodium sulfide and sodium aluminum sulfate is attached, and further heat-treated in an H 2 Se gas atmosphere to cause selenization.
- the present invention has been made in view of the above-described problems, and provides a sputtering target capable of adding Na to a Cu—Ga film having a Ga concentration of 1 to 40 at% by a sputtering method and a method for manufacturing the same. Objective.
- the present inventors have studied so that Na can be added to a Cu—Ga alloy target having a Ga concentration of 1 to 40 at%. As a result, it was found that Na could be added if it was added to the target as sodium fluoride, sodium sulfide, or sodium selenide (hereinafter also referred to as Na compound) in a compound state instead of a metallic Na state. .
- the target When adding a Na compound to a Cu-Ga alloy target, the target is manufactured by a powder sintering method. Accordingly, CuGa alloy powder, Na compound powder, and Cu powder as necessary are used as raw materials, so that oxygen contained in these raw materials increases the oxygen content in the target. Oxygen in the target causes an increase in the amount of oxygen in the precursor film, and further, when the CIGS compound crystal is formed, oxygen penetrates into the Se site and can ultimately reduce the photoelectric conversion efficiency of the light absorption layer. There is sex. Therefore, the present invention is characterized by being a low oxygen content target having an oxygen content of 1000 ppm or less in a Cu-Ga alloy target to which an Na compound is added.
- the present invention has been obtained from the above findings, and the following configuration has been adopted to solve the above problems. That is, the sputtering target of the first invention contains Ga: 1 to 40 at%, Na: 0.05 to 2 at% as metal components excluding F, S, and Se of the sputtering target, with the balance being Cu and inevitable impurities. And Na is contained in at least one state of sodium fluoride, sodium sulfide, and sodium selenide, and has an oxygen content of 100 to 1000 ppm.
- This sputtering target has a composition in which the amount of oxygen is suppressed within a certain range, and by controlling the amount of oxygen in the precursor film obtained by sputtering, the photoelectric conversion efficiency in the light absorption layer of the CIGS thin film solar cell can be improved.
- Na content and Ga content of this invention are with respect to the whole metal component except F, S, and Se of a sputtering target, and are the sum of each atom of Cu, Ga, and Na in a target as follows. It is calculated by the ratio. Na (at%): Na / (Na + Cu + Ga) ⁇ 100% Ga (at%): Ga / (Na + Cu + Ga) ⁇ 100%
- the reason for setting the amount of Na added in at least one of sodium fluoride, sodium sulfide, and sodium selenide within the above range is that when the amount of Na added exceeds 2 at%, Na in the CuGa film This is because segregation occurs at the interface between the CuGa film and the Mo film which is the metal back electrode, and decreases the adhesion between the Mo film and the CuGaInSe film.
- the amount of Na added is less than 0.05 at%, the amount of Na in the film is insufficient and the effect of improving the power generation efficiency cannot be obtained. From the viewpoint of power generation efficiency, the preferable content of Na is 0.1 to 0.5 at%.
- the reason for setting the oxygen content in the target within the above range is that when the oxygen content exceeds 1000 ppm, the oxygen concentration in the Na-containing CuGa film obtained by sputtering increases, and this is after the CIGS compound formation. This is because the photoelectric conversion efficiency is lowered. On the other hand, in order to make the oxygen content less than 100 ppm, it is necessary to reduce the oxygen content in the raw material powder, which increases the production cost of the target.
- the sputtering target of the second invention has a structure in which at least one of NaF compound phase, Na 2 S compound phase, and Na 2 Se compound phase is dispersed in the target substrate in the first invention, An average particle size of the NaF compound phase, the Na 2 S compound phase, and the Na 2 Se compound phase is 5 ⁇ m or less.
- An average particle size of the NaF compound phase, the Na 2 S compound phase, and the Na 2 Se compound phase is 5 ⁇ m or less.
- the sputtering target of the present invention by making the average particle diameter of each Na compound phase 5 ⁇ m or less, abnormal discharge due to the Na compound can be suppressed and stable direct current sputtering can be performed.
- the diameter of the circumscribed circle is 10 ⁇ m or more in the 0.1 mm 2 visual field is 5 or less.
- the sputtering target of the third invention is characterized in that, in the first or second invention, the average particle size of the metal phase in the target substrate is 10 to 100 ⁇ m.
- the average particle size of the metal phase in the target substrate is 10 to 100 ⁇ m.
- the fine CuGa powder or Cu powder can be used to uniformly disperse the particles of the Na compound, but the specific surface area increases and the oxygen content increases as the metal powder becomes finer. .
- the particle size increases, the dispersion of the Na compound becomes insufficient.
- the target manufactured using the raw material powder with a large particle diameter has a particle diameter after sintering exceeding 100 ⁇ m, and the Na compound tends to concentrate on the grain boundary of the metal phase. Such targets are prone to chipping during machining.
- the sputtering target of the present invention by setting the average particle diameter (projected area circle equivalent diameter) of the metal phase in the target substrate to 10 to 100 ⁇ m, a target with less chipping can be obtained during machining. It becomes possible to manufacture, the effect of suppressing abnormal discharge is exhibited, the spatter is stabilized, and the spatter crack resistance can be further improved.
- Method for producing the sputtering target of the fourth invention the first to a method for producing any of the sputtering target of the third invention, NaF compound powder, Na 2 S compound powder, of Na 2 Se compound powder At least one and mixed powder of Cu-Ga alloy powder, or NaF compound powder, Na 2 S compound powder, a mixed powder of at least one of Cu-Ga alloy powder and Cu powder of Na 2 Se compound powder It has the process of sintering a molded object in a vacuum, an inert gas, or a reducing atmosphere (henceforth an atmospheric pressure sintering method).
- Method for producing the sputtering target of the fifth invention the first to a method for producing any of the sputtering target of the third invention, NaF compound powder, Na 2 S compound powder, of Na 2 Se compound powder At least one and mixed powder of Cu-Ga alloy powder, or NaF compound powder, Na 2 S compound powder, a mixed powder of at least one of Cu-Ga alloy powder and Cu powder of Na 2 Se compound powder, It has a step of hot pressing in a vacuum or an inert gas atmosphere (hereinafter referred to as hot pressing method).
- hot pressing method a step of hot pressing in a vacuum or an inert gas atmosphere
- Method for producing the sputtering target of the sixth aspect of the invention the first to a method for producing any of the sputtering target of the third invention, NaF compound powder, Na 2 S compound powder, of Na 2 Se compound powder At least one and mixed powder of Cu-Ga alloy powder, or NaF compound powder, Na 2 S compound powder, a mixed powder of at least one of Cu-Ga alloy powder and Cu powder of Na 2 Se compound powder, It has the process of sintering using a hot isostatic pressing method (henceforth HIP method).
- the mixed powder can be uniformly distributed and distributed by using a powder sintering method as compared with a target manufactured by adding a Na compound by a melting method. Since the Na compound is segregated at the grain boundaries, the target produced by the melting method has a reduced mechanical strength of the target and is easily broken during machining. Further, since the Na compound evaporates or decomposes violently from 1000 ° C. or higher at normal pressure, the Na compound-containing Cu—Ga alloy target made by melt casting at 1000 ° C. or higher greatly shifts the Na compound content.
- the sputtering target manufactured by the manufacturing method of the present invention which is a powder sintering method, has a Na compound sintered in “Cu—Ga alloy sintered phase” or “Cu—Ga alloy” and “Cu”. It is dispersed as an aggregate in the phase matrix, does not reduce the strength of the target, does not cause chipping or chipping during machining, and stably forms without cracking during sputtering. it can.
- a method for producing a sputtering target according to the fourth aspect wherein the compact is sintered at 700 to 950 ° C.
- a sputtering target manufacturing method according to the fifth aspect wherein the hot pressing is performed at 500 to 900 ° C.
- a sputtering target manufacturing method according to the sixth aspect wherein the hot isostatic pressing is performed at 500 to 900 ° C.
- the reason which set sintering temperature in the said range is because target density will not fully go up that it is less than 700 degreeC, and abnormal discharge at the time of sputtering a target increases. .
- the firing temperature exceeds 950 ° C., the evaporation of the Na compound starts and the target composition shifts.
- a more preferable temperature is in the range of 700 to 850 ° C.
- the reason why the hot press temperature is set within the above range is that if it is less than 500 ° C., the target density is not sufficiently increased, and abnormal discharge is increased when the target is sputtered.
- it exceeds 900 ° C. hot pressing temperature NaF compound or Na 2 S compound, Na 2 Se compound is moved to the grain boundaries of the Cu-Ga alloy powder and Cu powder in the sintering process, the strength of the sintered body This is because chipping is likely to occur during machining and cracking is likely to occur during sputtering.
- a more preferable temperature is in the range of 650 to 850 ° C.
- the reason why the HIP processing temperature is set within the above range is that when it is less than 500 ° C., the target density is not sufficiently increased, and abnormal discharge is increased when the target is sputtered.
- the firing temperature exceeds 900 ° C., the strength of the target is lowered, and chipping is likely to occur during machining or cracks are likely to occur during sputtering.
- a more preferable temperature is in the range of 550 to 650 ° C.
- the present invention has the following effects. That is, according to the sputtering target and the manufacturing method thereof according to the present invention, the metal components excluding F, S, and Se of the sputtering target contain Ga: 1 to 40 at%, Na: 0.05 to 2 at%, and the balance Has a component composition consisting of Cu and unavoidable impurities, Na is contained in at least one of sodium fluoride, sodium sulfide, and sodium selenide, and the oxygen content is 100 to 1000 ppm. Then, a Cu-Ga film containing Na effective in improving the power generation efficiency can be formed.
- the light absorption layer of the CIGS thin film type solar cell by sputtering using the sputtering target of the present invention, a required amount of Na can be added to the light absorption layer, and the solar cell having high power generation efficiency. Can be manufactured.
- Example 1 In the sputtering target of Example 1 which concerns on this invention, and its manufacturing method, it is an optical microscope photograph which shows the sputtering target after an etching.
- the sputtering target of this embodiment contains Ga: 1 to 40 at% and Na: 0.05 to 2 at% as metal components excluding F, S, and Se of the sputtering target, with the balance being Cu and inevitable impurities. It has a composition, Na is contained in at least one of sodium fluoride, sodium sulfide, and sodium selenide, and the oxygen content is 100 to 1000 ppm.
- the sputtering target of this embodiment forms the base of the target of the metallic phase which consists of the sintered phase of Cu-Ga alloy or the sintered phase of Cu-Ga alloy and Cu, and NaF compound is formed in this target base And an average particle size of the NaF compound phase, the Na 2 S compound phase, and the Na 2 Se compound phase, and having a structure in which at least one of a phase, a Na 2 S compound phase, and a Na 2 Se compound phase is dispersed. Is 5 ⁇ m or less.
- the number of Na compound particles having a circumscribed circle diameter of 10 ⁇ m or more in a 0.1 mm 2 visual field is preferably 5 or less.
- the sputtering target of this embodiment is characterized in that the average particle diameter (projected area circle equivalent diameter) of the metal phase of the target substrate is 10 to 100 ⁇ m.
- the method for preparing the observation sample for measuring the average particle diameter and the calculation of the average particle diameter are as follows.
- the method for producing the sputtering target of the present embodiment includes a mixed powder of at least one of NaF compound powder, Na 2 S compound powder, Na 2 Se compound powder and Cu—Ga alloy powder, or NaF compound powder, Na A mixed powder of at least one of 2 S compound powder and Na 2 Se compound powder, Cu—Ga alloy powder and Cu powder is prepared in advance, and can be manufactured by the following three sintering methods.
- the mixed powder is filled into a mold, and a molded body press-molded in the cold or a molded mold is filled and tapped to form a molded body having a certain bulk density, which is formed in a vacuum, an inert gas or Sintering is performed at 700 to 950 ° C. in a reducing atmosphere.
- the mixed powder is hot pressed in a temperature range of 500 to 900 ° C. in a vacuum or an inert gas atmosphere.
- the mixed powder is sintered by the HIP method at a temperature of 500 to 900 ° C. and a pressure of 30 to 150 MPa.
- any one of the following methods (1) to (3) is performed.
- NaF compound, Na 2 S compound or Na 2 Se compound has a purity of 3N or more, suppresses an increase in oxygen content, and considers the mixing properties of Cu-Ga alloy powder and Cu powder, and the primary particle diameter Is preferably 0.01 to 1.0 ⁇ m.
- the oxygen content in the target 1000 ppm or less it is necessary to remove in advance the adsorbed moisture in the Na compound. For example, drying at 120 ° C. for 10 hours in a vacuum environment in a vacuum dryer is effective.
- the pulverization is performed using a pulverizer (for example, a ball mill, a jet mill, a Henschel mixer, an attritor, etc.).
- the average secondary particle size obtained is preferably 1 ⁇ m to 5 ⁇ m.
- the pulverization step is preferably performed in a dry environment with a humidity of RH 40% or less.
- NaF compound, Na 2 S compound or Na 2 Se compound has high hygroscopicity and is dissolved in water, it is not suitable to use a wet pulverization mixing apparatus using water.
- it is preferable to dry before mixing for example, as described above, drying at 120 ° C. for 10 hours in a vacuum dryer is effective.
- the dried crushed powder and the Cu-Ga alloy powder having the target composition are mixed in a dry environment having a relative humidity of RH 40% or less using a dry mixing device to prepare a raw material powder for sintering.
- the mixing is more preferably performed in a reducing atmosphere.
- the average particle size of the Cu—Ga alloy powder is preferably 1 to 150 ⁇ m.
- Cu-Ga powder is refined
- the Na compound tends to concentrate on the grain boundary of the metal phase, and such a target tends to generate chipping during machining.
- drying at 80 ° C. for 3 hours or more in a vacuum environment in a vacuum dryer is effective.
- NaF compound, Na 2 S compound or Na 2 Se compound has a purity of 3N or more, suppresses an increase in oxygen content, and considers the mixing properties of Cu-Ga alloy powder and Cu powder, and the primary particle diameter Is preferably 0.01 to 0.5 ⁇ m.
- the oxygen content in the target 1000 ppm or less it is necessary to remove adsorbed moisture in the Na compound before mixing. For example, drying at 120 ° C. for 10 hours in a vacuum environment in a vacuum dryer is effective.
- a dried Na compound and a Cu-Ga alloy powder having a target composition prepared in advance are simultaneously filled in a grinding device (for example, a ball mill, a jet mill, a Henschel mixer, an attritor, a V-type mixer, etc.), and mixed with the Na compound. Crushing is simultaneously performed, and when the average secondary particle diameter of the NaF compound, Na 2 S compound or Na 2 Se compound becomes 5 ⁇ m or less, the crushing is finished to obtain a raw material powder.
- the average particle size of the Cu—Ga alloy powder is preferably 1 to 150 ⁇ m.
- Mixing is preferably performed in a dry environment with a humidity of RH 40% or less, and more preferably in a reducing atmosphere.
- a humidity of RH 40% or less for example, drying at 80 ° C. for 3 hours or more in a vacuum environment in a vacuum dryer is effective.
- the Cu-Ga alloy powder prepared in advance sets a Ga content higher than the Cu / Ga ratio of the target composition.
- a Cu-Ga alloy powder (or Cu powder) having a low Ga content is further added and mixed to be uniform to obtain a raw material powder.
- All of the above mixing is performed in a low-humidity environment such as (1) and (2) above. It is more preferable to carry out in a reducing atmosphere.
- the average particle diameter of the Cu-Ga alloy powder is preferably 1 to 150 ⁇ m.
- the average particle size of the powder is preferably from 0.1 to 30 ⁇ m.
- the raw material powder mixed by any of the above methods (1) to (3) is sealed in a plastic resin bag in a dry environment of RH 30% or less and stored. This is to prevent the Na compound from absorbing moisture and aggregating due to moisture absorption.
- atmospheric pressure sintering, hot pressing or HIP is performed in a reducing atmosphere, a vacuum, or an inert gas atmosphere.
- the presence of hydrogen in the atmosphere is advantageous for improving the sinterability.
- the hydrogen content in the atmosphere is preferably 1% or more, more preferably 80% or more.
- Na 2 S or Na 2 Se is added, hydrogen in the sintering atmosphere reacts with sulfur and Se, so that it is difficult to obtain a high-density sintered body.
- a high-density sintered body can be realized by firing in a vacuum or reducing atmosphere.
- the preferred pressure is 100 to 500 kgf / cm 2 .
- the pressurization may be performed before the start of temperature rise or after reaching a certain hot press temperature.
- a preferable pressure is 500 to 1500 kgf / cm 2 .
- the sintering time of the sintered body varies depending on the composition, but is preferably 1 to 10 hours. If it is shorter than 1 hour, sintering is insufficient, and there is a high possibility that chipping will occur during processing of the target or abnormal discharge will occur during sputtering. On the other hand, even if it is longer than 10 hours, there is almost no effect of improving the density.
- the sintered Cu—Ga—Na compound sintered body is processed into a specified shape of the target, usually using electric discharge machining, cutting, or grinding.
- a dry method that does not use a cooling liquid or a wet method that uses a cooling liquid that does not contain water is preferable during processing.
- the surface is precision processed by a dry method after being previously processed by a wet method.
- the processed sputtering target is bonded to a backing plate made of Cu or SUS (stainless steel) or other metal (for example, Mo) using In as a solder, and subjected to sputtering.
- a vacuum pack or a pack obtained by replacing the entire target with a vacuum in order to prevent oxidation and moisture absorption.
- the Cu—Ga—Na compound target thus produced is subjected to DC magnetron sputtering using Ar gas as a sputtering gas.
- direct current (DC) sputtering may be performed using a pulsed DC power supply to which a pulse voltage is applied or a DC power supply without a pulse.
- the input power during sputtering is preferably 1 to 10 W / cm 2 .
- the thickness of the film formed using the Cu—Ga—Na compound target is 200 to 2000 nm.
- the sputtering target of this embodiment contains Ga: 1 to 40 at% and Na: 0.05 to 2 at% as metal components excluding F, S, and Se of the sputtering target, and the balance is made of Cu and inevitable impurities. It has a component composition, and Na is contained in at least one of sodium fluoride, sodium sulfide, and sodium selenide, and has an oxygen content of 100 to 1000 ppm, so it is effective for improving power generation efficiency by sputtering. Cu-Ga film containing good Na can be formed.
- the target substrate has a structure in which at least one of a NaF compound phase, a Na 2 S compound phase, and a Na 2 Se compound phase is dispersed, and a NaF compound phase, a Na 2 S compound phase, and a Na 2 Se compound. Since the average particle size of the phase is 5 ⁇ m or less, it is possible to suppress abnormal discharge due to the Na compound and perform stable direct current sputtering.
- the average particle size (projected area equivalent circle diameter) of the metal phase of the target substrate is 10 to 100 ⁇ m, chipping during machining is suppressed and stable without causing cracks or abnormal discharge during sputtering. Sputtering becomes possible.
- the production in the manufacturing method of the sputtering target of the present embodiment the mixed powder described above, by sintering in a vacuum or in an inert gas atmosphere, NaF compound, Na 2 S compound, by dissolution method Na 2 Se compound Can be more uniformly distributed than the target.
- Example 2 Cu—Ga alloy powder having the component composition and particle size shown in Table 1, Cu powder (purity 4N), NaF compound, Na 2 S compound or Na having a purity of 3N and a primary average particle size of 0.5 ⁇ m 2 Se compound powder was blended so as to have an amount shown in Table 1 to obtain raw material powders of Examples 1 to 35. These raw material powders were first dried in a vacuum dryer in a vacuum environment of 10 ⁇ 1 Pa at 120 ° C. for 10 hours, then placed in a 10 L polyethylene pot and further dried at 120 ° C. for 10 hours. 5 mm zirconia balls were put in and mixed for a specified time with a ball mill. Mixing was performed in a nitrogen atmosphere.
- the obtained mixed powder was sintered under the conditions specified in Table 2.
- the mixed powder was filled in a metal mold and pressed at room temperature with a pressure of 1500 kgf / cm 2 to form a compact.
- hot pressing the raw material powder was filled in a graphite mold and vacuum hot pressing was performed.
- HIP similarly to the normal pressure sintering, the mixed powder is first filled in a metal mold and pressure-molded at a normal temperature of 1500 kgf / cm 2 .
- the obtained molded body is placed in a 0.5 mm-thick stainless steel container and then sealed through vacuum deaeration and used for HIP treatment.
- the sintered body that had been sintered was subjected to dry cutting to prepare targets (Examples 1 to 35) having a diameter of 125 (mm) and a thickness of 5 (mm).
- the average size of the NaF compound, Na 2 S compound or Na 2 Se compound particles is measured by the following procedures (A) to (C).
- (A) Ten 500 times COMPO images (60 ⁇ m ⁇ 80 ⁇ m) are taken with EPMA.
- (B) Using a commercially available image analysis software, the captured image is converted into a monochrome image and binarized using a single threshold value. Thereby, the NaF compound, the Na 2 S compound or the Na 2 Se compound is displayed in black.
- image analysis software for example, WinRoof Ver 5.6.2 (manufactured by Mitani Corporation) can be used.
- a certain “threshold value” is set for the luminance (brightness) of each pixel of an image, and “0” is set if the threshold value is less than the threshold value, and “1” is set if the threshold value is greater than the threshold value.
- C Assuming that the maximum threshold value that does not select all the images is 100%, a threshold value of 30 to 35% is used and a black side region is selected. Then, the selected region is contracted four times, and the region when expanded three times is defined as NaF compound, Na 2 S compound or Na 2 Se compound particles, and the size of each particle is measured.
- the shrinkage and expansion magnification is, for example, 2.3%.
- the surface of the tissue observation piece is polished to a surface roughness (Ra) of 0.5 ⁇ m or less to create an observation surface.
- Ra surface roughness
- the target was formed into a 1000 nm film on a 3.2 mm-thick blue glass coated with a Mo sputtered film by direct current sputtering with an input power of 5 W / cm 2 using a magnetron sputtering apparatus.
- the thickness of the Mo sputtered film was 500 nm.
- the Ar pressure during sputtering was 1.3 Pa, and the target-substrate distance was 70 mm. Note that the substrate is not heated during film formation.
- continuous sputtering was performed for 10 minutes under the above conditions, and the number of occurrences of abnormal discharge was automatically recorded by an arcing counter attached to the sputtering power source.
- the contents of Na and Ga at five locations in the film were measured with the electron beam probe microanalyzer.
- the result of the average value is shown in Table 4.
- the target was 2000 nm on the Si wafer substrate by direct current sputtering using a magnetron sputtering apparatus at room temperature, Ar pressure during sputtering: 1.3 Pa, target-substrate distance: 70 mm, and input power: 5 W / cm 2.
- a film was formed. The formed film was peeled off from the substrate, and the oxygen content in the film was analyzed.
- “Comparative example” Cu-Ga alloy powder or Cu powder and Na compound powder having the component composition and particle size shown in Table 5 were prepared.
- the Na compound powder has not been dried beforehand. These raw materials were mixed at a designated time by a ball mill in the same manner as in Table 1. The mixing was performed in the atmosphere. The mixture thus obtained was subjected to hot pressing, normal pressure sintering or HIP sintering under the conditions shown in Table 6.
- the Na content is out of the range of 0.05 to 2 at%, or the oxygen content is out of the range of 100 to 1000 ppm.
- the comparative example was evaluated in the same manner as in the above example.
- the evaluation results are shown in Table 7 and Table 8.
- Comparative Examples the content of Na is as high as 2.3 at% or more, and Comparative Examples 1, 8, 9, 11, 12, and the number of aggregates of NaF compound, Na 2 S compound or Na 2 Se compound are large. No. 13 is chipped during machining or sputtering. Further, in Comparative Examples 1, 7, 8, 9, 15, and 16 having a large metal phase particle size, chipping and cracking occur in the target even during processing. In Comparative Examples 7, 15, and 16 by the melt casting method, the Na compound added to the raw material evaporated during the melt casting, and the Na content in the target was significantly reduced.
- Comparative Examples 1, 2, 4, 8, 9 to 13, 18 the raw material powder is mixed in the air, the Cu raw material powder or the CuGa raw material powder is oxidized, and the oxygen concentration in the target produced by hot pressing or HIP However, the oxygen concentration is higher than that of a mixed powder obtained by mixing similar raw material powders in an inert gas.
- oxygen is removed during vacuum melting, and the obtained target has a low oxygen content.
- the target of Comparative Example 3 sintered in a hydrogen-containing atmosphere also had an oxygen concentration reduced by hydrogen reduction during sintering.
- atmosphere is as high as 960 degreeC
- the comparative example 6 whose content of Na in a target is extremely small as 0.03 at% is melt
- the evaluation was not achieved.
- the comparative example having a small Na content of less than 0.05 at% contained almost no Na in the resulting film, and failed to achieve the object of the invention.
- the sputtering target of the present invention contains Ga: 1 to 40 at%, Na: 0.05 to 2 at% as metal components excluding F, S, and Se of the sputtering target, and the balance is made up of Cu and inevitable impurities.
- the component composition is as follows: Na is contained in at least one state of sodium fluoride, sodium sulfide, and sodium selenide, and the oxygen content is 100 to 1000 ppm. A Cu-Ga film containing effective Na can be formed. Therefore, by forming a light absorption layer by sputtering using the sputtering target of the present invention, Na can be added satisfactorily and a solar cell with high power generation efficiency can be manufactured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Physical Vapour Deposition (AREA)
- Photovoltaic Devices (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Naを光吸収層に添加するため、基板上に形成された裏面電極層上に、In、Cu及びGaの金属元素を含有成分としたプリカーサ膜を形成した後、該プリカーサ膜に対して四ホウ酸ナトリウム、硫化ナトリウム及び硫酸ナトリウムアルミニウム含有水溶液を付着させ、さらに、それをH2Seガス雰囲気中で熱処理を行い、セレン化させる方法が提案されている。(特許文献2参照)
すなわち、特許文献2に記載の方法では、Naの化合物膜をプリカーサ膜上に形成することにより、裏面金属電極と光吸収膜との間の界面剥がれを防止できるが、ナトリウム塩の水溶液を使用することが必須である。従って、製造工程が増える上、さらに大面積の基板に成膜する場合、プリカーサ膜へのナトリウム塩水溶液の均一付着が困難となる。
このため、プリカーサ膜中に直接にNaを添加する方法として、例えばプリカーサ膜を形成するための各種ターゲットにNaを添加し、スパッタによってプリカーサ膜にNaを含有させる方法が考えられる。しかしながら、特許文献1に記載のように上記セレン化法を用いる太陽電池の製造では、Cu−Ga膜を形成するためにCu−Ga合金ターゲットが用いられるが、NaがCuに固溶しないこと、また金属Naの融点(98℃)及び沸点(883℃)が非常に低いこと、さらに金属Naが非常に酸化しやすいことから、金属NaをCu−Ga合金ターゲットに添加することは極めて困難である。
このスパッタリングターゲットは、酸素量を一定の範囲に抑制した組成にし、スパッタで得られるプリカーサ膜中の酸素量をコントロールすることにより、CIGS薄膜型太陽電池の光吸収層中の光電変換効率の向上に寄与することができる。
なお、本発明のNa含有量およびGa含有量は、スパッタリングターゲットのF,S,Seを除く金属成分全体に対するものであり、以下のように、ターゲット中のCu,Ga及びNaの各原子の和との比で計算される。
Na(at%):Na/(Na+Cu+Ga)×100%
Ga(at%):Ga/(Na+Cu+Ga)×100%
Cu−Ga合金ターゲットに化合物状態のNa化合物を添加し、直流スパッタを行うと、絶縁体のNa化合物によって異常放電が発生しやすい。太陽電池の光吸収層は非常に厚く(例えば、1000~2000nm)、即ち、Cu−Gaの膜は非常に厚いので、異常放電抑制のため、低いスパッタパワーでスパッタリングすると成膜速度が低くなり、量産に必要な高速スパッタが困難となる。これを解決すべく、本発明のスパッタリングターゲットでは、Na化合物の粒子サイズを最適化することで、従来のCu−Ga合金ターゲットと同様のスパッタ条件でも直流スパッタを可能にした。
なお、ターゲットの断面組織をSEMを用いて観察する際、0.1mm2視野中に外接円の直径が10μm以上のNa化合物粒子は5個以下であることが、異常放電を抑制する観点から好ましい。
Na化合物を添加した場合、微細なCuGa粉末又はCu粉末を使用することで、Na化合物の粒子が均一に分散しやすいが、金属粉末が細かくなることで比表面積が増え、酸素含有量が上昇する。一方、粒径が大きくなると、Na化合物の分散が不十分になる。また、大きい粒径の原料粉を用いて製造したターゲットは、焼結後の粒径が100μmを超え、Na化合物が金属相の粒界に集中しやすい。このようなターゲットは機械加工中にチッピングが発生しやすい。
そこで、これらを解決すべく、本発明のスパッタリングターゲットでは、ターゲット素地中の金属相の平均粒径(投影面積円相当径)を10~100μmとすることで、機械加工時に、チッピングが少ないターゲットを製造することが可能になり、異常放電の抑制効果も発揮してスパッタが安定し、さらに耐スパッタ割れ性を向上させることができる。
溶解法で製造する上記ターゲットは、Na化合物が粒界に偏析するため、ターゲットの機械的強度が低下し、機械加工の際に割れやすい。さらに、Na化合物は常圧においては1000℃以上から激しく蒸発または分解するため、1000℃以上の溶解鋳造で作ったNa化合物含有Cu−Ga合金ターゲットは、Na化合物含有量が大きくずれる。これに対して、粉末焼結法である本発明の製造方法で製造したスパッタリングターゲットは、Na化合物が「Cu−Ga合金焼結相」または「Cu−Ga合金」と「Cu」との焼結相のマトリックス中に凝集体として分散して存在し、ターゲットの強度を低下させることがなく、機械加工時に欠けやチッピングを生じることなく、スパッタ時においても、割れが発生することなく安定に成膜できる。
第8の発明のスパッタリングターゲットの製造方法は、第5の発明において、前記ホットプレスを、500~900℃で行うことを特徴とする。
第9の発明のスパッタリングターゲットの製造方法は、第6の発明において、前記熱間静水圧プレスを、500~900℃で行うことを特徴とする。
なお、第7の発明において、焼結温度を上記範囲内に設定した理由は、700℃未満であると、ターゲット密度が十分に上がらず、ターゲットをスパッタする際の異常放電が多くなるためである。一方、焼成温度が950℃を越えると、Na化合物の蒸発が開始し、ターゲット組成のずれが発生するためである。なお、より好ましい温度は、700~850℃の範囲内である。
第8の発明において、ホットプレス温度を上記範囲内に設定した理由は、500℃未満であると、ターゲット密度が十分に上がらず、ターゲットをスパッタする際の異常放電が多くなるためである。一方、ホットプレス温度が900℃を越えると、NaF化合物又はNa2S化合物、Na2Se化合物が焼結過程においてCu−Ga合金粉末やCu粉末の粒界に移動し、焼結体の強度が低下し、機械加工時にチッピングを生じたり、スパッタ時に割れを発生しやすくなるためである。なお、より好ましい温度は、650~850℃の範囲内である。
第9の発明において、HIP処理温度を上記範囲内に設定した理由は、500℃未満であると、ターゲット密度が十分に上がらず、ターゲットをスパッタする際の異常放電が多くなるためである。一方、焼成温度が900℃を越えると、ターゲットの強度が低下し、機械加工時にチッピングを生じたり、スパッタ時に割れを発生しやすくなるためである。なお、より好ましい温度は、550~650℃の範囲内である。
すなわち、本発明に係るスパッタリングターゲット及びその製造方法によれば、スパッタリングターゲットのF,S,Seを除く金属成分として、Ga:1~40at%、Na:0.05~2at%を含有し、残部がCu及び不可避不純物からなる成分組成を有し、Naがフッ化ナトリウム、硫化ナトリウム、セレン化ナトリウムのうち少なくとも1種の状態で含有され、酸素含有量が100~1000ppmであるので、スパッタ法により、発電効率の向上に有効なNaを含有したCu−Ga膜を成膜することができる。したがって、本発明のスパッタリングターゲットを用いてスパッタ法によりCIGS薄膜型太陽電池の光吸収層を成膜することで、光吸収層へ必要量のNaを添加することができ、発電効率の高い太陽電池を製造することが可能となる。
また、本実施形態のスパッタリングターゲットは、Cu−Ga合金の焼結相またはCu−Ga合金とCuとの焼結相からなる金属相のターゲットの素地を形成しており、このターゲット素地にNaF化合物相、Na2S化合物相、Na2Se化合物相のうち少なくとも1種が分散している組織を有すると共に、前記NaF化合物相、前記Na2S化合物相および前記Na2Se化合物相の平均粒径が5μm以下であることを特徴とする。
さらに、本実施形態のスパッタリングターゲットは、ターゲット素地の金属相の平均粒径(投影面積円相当径)が10~100μmであることを特徴とする。
この平均粒径を測定するための観察用サンプルの作製方法および平均粒径の計算は、以下の通りである。
(2)上記サンプルをRa:0.5μm以下まで研磨し、観察面を作製する。さらに、この観察面を、純水50ml、過酸化水素水5ml、アンモニア水45mlのエッチング液に5秒間浸漬してエッチングする。
(3)エッチング面を250倍の光学顕微鏡で、図1に示すように合金組織を撮影する。このとき、500μm×1000μm視野中の結晶の断面積を計算し、投影面積円相当径に換算したのち、上記視野中の粒子の平均粒径を計算する。
2.混合粉末を真空または不活性ガス雰囲気中で500~900℃の温度範囲内でホットプレスする。
3.混合粉末をHIP法で温度:500~900℃、圧力:30~150MPaにて焼結する。
(1)NaF化合物、Na2S化合物またはNa2Se化合物は、純度3N以上で、酸素含有量の上昇を抑えると共にCu−Ga合金粉とCu粉との混合性を考慮して、一次粒子径が0.01~1.0μmのものが好ましい。また、ターゲット中の酸素含有量を1000ppm以下にするために、Na化合物中の吸着水分を混合する前に予め取り除く必要がある。例えば、真空乾燥機中で真空環境にて120℃、10時間の乾燥が有効である。
なお、混合後の混合粉中の吸着水分を取り除く必要がある場合、例えば、真空乾燥機中で真空環境にて80℃、3時間以上の乾燥が有効である。
また、Cu−Ga合金またはCuの焼結中の酸化防止のため、常圧焼結、ホットプレスまたはHIPは還元性雰囲気中、真空中または不活性ガス雰囲気中で行う。
ホットプレスにおいては、ホットプレスの圧力がターゲット焼結体の密度に大きな影響を及ぼすので、好ましい圧力は100~500kgf/cm2とする。また、加圧は、昇温開始前からでもよいし、一定のホットプレス温度に到達してから行ってもよい。
HIP法においては、好ましい圧力は500~1500kgf/cm2とする。
焼結体の焼結時間は組成により変わるが、1~10時間が好ましい。1時間より短くなると、焼結が不十分であり、ターゲットの加工中にチッピングが発生したり、スパッタ時に異常放電が発生する可能性が高くなる。一方、10時間より長くしても密度を向上させる効果はほとんどない。
なお、加工済みのターゲットを保管する際には、酸化、吸湿を防止するため、ターゲット全体を真空パックまたは不活性ガス置換したパックを施すことが好ましい。
また、ターゲット素地中にNaF化合物相、Na2S化合物相、Na2Se化合物相のうち少なくとも1種が分散している組織を有すると共に、NaF化合物相、Na2S化合物相およびNa2Se化合物相の平均粒径が5μm以下であるので、Na化合物による異常放電を抑制して安定した直流スパッタが可能になる。
また、本実施形態のスパッタリングターゲットの製造方法では、上述した混合粉末を、真空または不活性ガス雰囲気中で焼結することで、NaF化合物、Na2S化合物、Na2Se化合物を溶解法で製造するターゲットに比べ均一に分散分布させることができる。
まず、表1に示される成分組成および粒径を有するCu−Ga合金粉末と、Cu粉(純度4N)と、純度3Nで一次平均粒子径が0.5μmのNaF化合物、Na2S化合物またはNa2Se化合物の粉末とを、表1に示される量になるように配合し、実施例1~35の原料粉末とした。これらの原料粉末を、まず真空乾燥機中で10−1Paの真空環境にて120℃、10時間で乾燥させ、その後、容積10Lのポリエチレン製ポットに入れ、さらに120℃、10時間乾燥した直径5mmのジルコニアボールを入れて、ボールミルで指定された時間で混合した。混合は窒素雰囲気で行った。
なお、焼結済みの焼結体に、乾式切削加工を施し、直径125(mm)×厚さ5(mm)のターゲット(実施例1~35)を作製した。
本実施例1~35について、加工時におけるターゲットの欠け、割れ発生の有無を記録し、さらに分析用焼結体の小片について非分散赤外線吸収法にて酸素濃度分析を行った。
一方、焼結体中のNa化合物粒子を、日本電子株式会社製電子線プローブマイクロアナライザ(EPMA)(JXA−8500F)で観察した。
また、観察視野が0.05mm2の写真(500倍)を2枚撮影し、その中の観察可能なNaF化合物、Na2S化合物またはNa2Se化合物の粒子(0.5μm以上)のサイズを測定し、粒子の平均サイズを計算した。同時に、0.1mm2当たりの10μm以上のNaF化合物、Na2S化合物またはNa2Se化合物の凝集体個数(2枚の合計)を計算した。
(A)EPMAにより500倍のCOMPO像(60μm×80μm)10枚を撮影する。
(B)市販の画像解析ソフトにより、撮影した画像をモノクロ画像に変換するとともに、単一しきい値を使用して二値化する。
これにより、NaF化合物、Na2S化合物またはNa2Se化合物は、黒く表示されることとなる。
なお、画像解析ソフトとしては、例えば、WinRoof Ver5.6.2(三谷商事社製)などが利用できる。また、二値化とは、画像の各画素の輝度(明るさ)に対してある“しきい値”を設け、しきい値以下ならば“0”、しきい値より大きければ“1”として、領域を区別化することである。
(C)この画像すべてを選択しない最大のしきい値を100%とすると、30~35%のしきい値を使用し、黒い側の領域を選択する。
そして、この選択した領域を4回収縮し、3回膨張させたときの領域をNaF化合物、Na2S化合物またはNa2Se化合物の粒子とし、個々の粒子のサイズを測定する。なお、収縮および膨張の倍率としては、例えば、2.3%である。
また、同時に、作製したターゲット中のGaとNaとの含有量を、ICP法(高周波誘導結合プラズマ法)を用いて定量分析を行った。
また、スパッタ時のAr圧力は1.3Paとし、ターゲット−基板間距離は70mmとした。なお、成膜時の基板加熱は行っていない。さらに、以上の条件において10分間連続スパッタを行い、異常放電の発生回数をスパッタ電源に付属したアーキングカウンターにて自動的に記録した。
また、当該ターゲットをマグネトロンスパッタ装置を用いて、常温、スパッタ時のAr圧力:1.3Pa、ターゲット−基板間距離:70mm、投入電力:5W/cm2の直流スパッタにより、Siウエハ基板上に2000nmの膜を形成した。形成された膜を基板から剥がし、膜中の酸素含有量を分析した。
表5に示された成分組成及び粒径を有するCu−Ga合金粉末またはCu粉末とNa化合物粉末とを用意した。なお、Na化合物粉末は事前に乾燥を行っていない。これらの原料を表1と同様にボールミルで、指定された時間で混合した。尚、混合は大気中で行った。このように混合したものを、表6の条件で、ホットプレス、常圧焼結またはHIP焼結を行った。このように得られた比較例のターゲットは、Naの含有量が0.05~2at%の範囲外となっているか、または酸素量は100~1000ppmの範囲外となっている。
溶解鋳造法による比較例7,15,16は、原料に添加したNa化合物が溶解鋳造中で蒸発が生じ、ターゲット中のNa含有量が著しく低下した。また、Na化合物の凝集は少ないがNaの含有量が3.0at%と高い比較例12と、Naの含有量が0.0at%とNa量が検出されず、またホットプレス温度が450℃と低い比較例2と、Naの含有量が0.0at%とNa量が検出されず、またHIP温度が300℃と低い比較例5は、加工時またはスパッタ時に割れや欠けが生じている。
比較例1,2,4,8,9~13,18は原料粉末が大気中で混合しており、Cu原料粉末またはCuGa原料粉末が酸化され、ホットプレスやHIPで作製したターゲット中の酸素濃度が、同様な原料粉末を不活性ガス中で混合した混合粉によるものより酸素濃度が高い。一方、鋳造法で得られた比較例7,15,16のターゲットは真空溶解中に酸素が除去され、得られたターゲットの酸素含有量が低い。水素含有雰囲気中で焼結した比較例3のターゲットも、焼結中の水素還元により酸素濃度が低減された。
また、大気での常圧焼結温度が960℃と高く、さらにターゲット中のNaの含有量が0.03at%と極端に少ない比較例6は、大気焼結のためターゲットの一部表面より溶融が確認されており、さらに表面全体が酸化し、色むらが発生したため評価に至らなかった。Naの含有量が0.05at%未満の少ない比較例は、得られた膜にNaが殆ど含有せず、発明の目的を達成できなかった。
したがって、本発明のスパッタリングターゲットを用いてスパッタ法により光吸収層を成膜することで、Naを良好に添加でき、発電効率の高い太陽電池を作製可能である。
Claims (9)
- スパッタリングターゲットのF,S,Seを除く金属成分として、Ga:1~40at%、Na:0.05~2at%を含有し、残部がCu及び不可避不純物からなる成分組成を有し、
Naがフッ化ナトリウム、硫化ナトリウム、セレン化ナトリウムのうち少なくとも1種の状態で含有され、
酸素含有量が100~1000ppmであることを特徴とするスパッタリングターゲット。 - 請求項1に記載のスパッタリングターゲットにおいて、
ターゲット素地中にNaF化合物相、Na2S化合物相、Na2Se化合物相のうち少なくとも1種が分散している組織を有し、前記NaF化合物相、前記Na2S化合物相および前記Na2Se化合物相の平均粒径が5μm以下であることを特徴とするスパッタリングターゲット。 - 請求項1に記載のスパッタリングターゲットにおいて、
ターゲット素地中の金属相の平均粒径が10~100μmであることを特徴とするスパッタリングターゲット。 - 請求項1に記載のスパッタリングターゲットを製造する方法であって、
NaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末との混合粉末、
又はNaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末とCu粉末との混合粉末からなる成形体を、真空中、不活性ガス中または還元性雰囲気中で焼結する工程を有していることを特徴とするスパッタリングターゲットの製造方法。 - 請求項1に記載のスパッタリングターゲットを製造する方法であって、
NaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末との混合粉末、
又はNaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末とCu粉末との混合粉末を、真空中または不活性ガス雰囲気中でホットプレスする工程を有していることを特徴とするスパッタリングターゲットの製造方法。 - 請求項1に記載のスパッタリングターゲットを製造する方法であって、
NaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末との混合粉末、
又はNaF化合物粉末、Na2S化合物粉末、Na2Se化合物粉末のうち少なくとも1種とCu−Ga合金粉末とCu粉末との混合粉末を、熱間静水圧プレス法を用いて焼結する工程を有していることを特徴とするスパッタリングターゲットの製造方法。 - 請求項4に記載のスパッタリングターゲットの製造方法において、
前記成形体の焼結を、700~950℃で行うことを特徴とするスパッタリングターゲットの製造方法。 - 請求項5に記載のスパッタリングターゲットの製造方法において、
前記ホットプレスを、500~900℃で行うことを特徴とするスパッタリングターゲットの製造方法。 - 請求項6に記載のスパッタリングターゲットの製造方法において、
前記熱間静水圧プレスを、500~900℃で行うことを特徴とするスパッタリングターゲットの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137028266A KR20140027964A (ko) | 2011-04-29 | 2012-04-24 | 스퍼터링 타겟 및 그 제조방법 |
EP12777599.7A EP2703519B1 (en) | 2011-04-29 | 2012-04-24 | Sputtering target and method for producing same |
CN201280021123.2A CN103534381B (zh) | 2011-04-29 | 2012-04-24 | 溅射靶及其制造方法 |
US14/111,520 US9660127B2 (en) | 2011-04-29 | 2012-04-24 | Sputtering target and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-102587 | 2011-04-29 | ||
JP2011102587A JP5725610B2 (ja) | 2011-04-29 | 2011-04-29 | スパッタリングターゲット及びその製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012147985A1 true WO2012147985A1 (ja) | 2012-11-01 |
Family
ID=47072495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/061516 WO2012147985A1 (ja) | 2011-04-29 | 2012-04-24 | スパッタリングターゲット及びその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9660127B2 (ja) |
EP (1) | EP2703519B1 (ja) |
JP (1) | JP5725610B2 (ja) |
KR (1) | KR20140027964A (ja) |
CN (1) | CN103534381B (ja) |
TW (1) | TWI534286B (ja) |
WO (1) | WO2012147985A1 (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013028837A (ja) * | 2011-07-28 | 2013-02-07 | Ulvac Japan Ltd | CuGaNa系スパッタリング用ターゲット及びその製造方法 |
JP2013028836A (ja) * | 2011-07-28 | 2013-02-07 | Ulvac Japan Ltd | CuGaNa系スパッタリング用ターゲット及びその製造方法 |
WO2013125716A1 (ja) * | 2012-02-24 | 2013-08-29 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
JP2013181220A (ja) * | 2012-03-02 | 2013-09-12 | Mitsubishi Materials Corp | スパッタリングターゲット及びその製造方法 |
WO2014117190A1 (de) * | 2013-01-31 | 2014-08-07 | Plansee Se | Cu-ga-in-na target |
JP2015028213A (ja) * | 2013-02-25 | 2015-02-12 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
WO2015114914A1 (ja) * | 2014-01-28 | 2015-08-06 | 三菱マテリアル株式会社 | Cu-Ga合金スパッタリングターゲット及びその製造方法 |
EP3029171A1 (en) * | 2013-08-01 | 2016-06-08 | Mitsubishi Materials Corporation | Cu-ga alloy sputtering target, and method for producing same |
WO2016114895A1 (en) | 2015-01-12 | 2016-07-21 | Dow Global Technologies Llc | High rate sputter deposition of alkali metal-containing precursor films useful to fabricate chalcogenide semiconductors |
US20170236695A1 (en) * | 2014-08-28 | 2017-08-17 | Mitsubishi Materials Corporation | Cu-Ga SPUTTERING TARGET AND PRODUCTION METHOD FOR Cu-Ga SPUTTERING TARGET |
WO2017147037A1 (en) | 2016-02-26 | 2017-08-31 | Dow Global Technologies Llc | Method for improving stability of photovoltaic articles incorporating chalcogenide semiconductors |
US9934949B2 (en) | 2013-04-15 | 2018-04-03 | Mitsubishi Materials Corporation | Sputtering target and production method of the same |
US10283332B2 (en) | 2012-10-17 | 2019-05-07 | Mitsubishi Materials Corporation | Cu—Ga binary alloy sputtering target and method of producing the same |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013105885A (ja) * | 2011-11-14 | 2013-05-30 | Sumitomo Metal Mining Co Ltd | Cu−Ga合金スパッタリングターゲット及びその製造方法 |
CN102751388B (zh) * | 2012-07-18 | 2015-03-11 | 林刘毓 | 一种铜铟镓硒薄膜太阳能电池的制备方法 |
JP6088768B2 (ja) * | 2012-09-07 | 2017-03-01 | 株式会社アルバック | Cu−Ga系合金ターゲットの製造方法 |
CN105473758B (zh) * | 2013-10-07 | 2018-02-27 | 三菱综合材料株式会社 | 溅射靶及其制造方法 |
JP2015086434A (ja) * | 2013-10-30 | 2015-05-07 | 住友金属鉱山株式会社 | Cu−Ga合金スパッタリングターゲットの製造方法 |
JP6665428B2 (ja) * | 2014-07-08 | 2020-03-13 | 三菱マテリアル株式会社 | Cu−Ga合金スパッタリングターゲット及びその製造方法 |
JP6041219B2 (ja) * | 2014-08-27 | 2016-12-07 | 日立金属株式会社 | スパッタリングターゲット |
JP6634750B2 (ja) * | 2014-09-22 | 2020-01-22 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
JP6794850B2 (ja) * | 2016-02-08 | 2020-12-02 | 三菱マテリアル株式会社 | スパッタリングターゲット及びスパッタリングターゲットの製造方法 |
TWI634669B (zh) * | 2016-04-22 | 2018-09-01 | 國立清華大學 | 大面積薄膜太陽能電池的製法 |
JP2019112671A (ja) * | 2017-12-22 | 2019-07-11 | 三菱マテリアル株式会社 | Cu−Ga合金スパッタリングターゲット、及び、Cu−Ga合金スパッタリングターゲットの製造方法 |
CN114773061B (zh) * | 2022-05-06 | 2023-02-24 | 中国科学院精密测量科学与技术创新研究院 | 一种偏硼酸金属盐激光溅射靶材制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10135495A (ja) | 1996-10-25 | 1998-05-22 | Showa Shell Sekiyu Kk | 薄膜太陽電池の製造方法及び製造装置 |
JP2007266626A (ja) * | 1994-12-01 | 2007-10-11 | Shell Solar Gmbh | 基板上に太陽電池を製造する方法及びカルコパイライト吸収層を有する太陽電池 |
JP2009283560A (ja) * | 2008-05-20 | 2009-12-03 | Showa Shell Sekiyu Kk | Cis系薄膜太陽電池の製造方法 |
JP2010265544A (ja) * | 2009-04-14 | 2010-11-25 | Kobelco Kaken:Kk | Cu−Ga合金スパッタリングターゲットおよびその製造方法 |
WO2011010529A1 (ja) * | 2009-07-23 | 2011-01-27 | Jx日鉱日石金属株式会社 | Cu-Ga合金焼結体スパッタリングターゲット、同ターゲットの製造方法、Cu-Ga合金焼結体ターゲットから作製された光吸収層及び同光吸収層を用いたCIGS系太陽電池 |
WO2011055537A1 (ja) * | 2009-11-06 | 2011-05-12 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
WO2011083647A1 (ja) * | 2010-01-07 | 2011-07-14 | Jx日鉱日石金属株式会社 | Cu-Ga系スパッタリングターゲット、同ターゲットの製造方法、光吸収層及び該光吸収層を用いた太陽電池 |
WO2011114657A1 (ja) * | 2010-03-18 | 2011-09-22 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3791041B2 (ja) | 1996-04-10 | 2006-06-28 | 東ソー株式会社 | クロム系スパッタリングターゲットの製造方法 |
JP4422574B2 (ja) | 2004-07-30 | 2010-02-24 | 三井金属鉱業株式会社 | セラミックス−金属複合材料からなるスパッタリングターゲット材およびその製造方法 |
JP5204460B2 (ja) | 2007-10-24 | 2013-06-05 | 三井金属鉱業株式会社 | 磁気記録膜用スパッタリングターゲットおよびその製造方法 |
WO2011013471A1 (ja) * | 2009-07-27 | 2011-02-03 | Jx日鉱日石金属株式会社 | Cu-Ga焼結体スパッタリングターゲット及び同ターゲットの製造方法 |
JP2011084804A (ja) | 2009-09-18 | 2011-04-28 | Kobelco Kaken:Kk | 金属酸化物−金属複合スパッタリングターゲット |
JP5418463B2 (ja) * | 2010-10-14 | 2014-02-19 | 住友金属鉱山株式会社 | Cu−Ga合金スパッタリングターゲットの製造方法 |
-
2011
- 2011-04-29 JP JP2011102587A patent/JP5725610B2/ja not_active Expired - Fee Related
-
2012
- 2012-04-24 KR KR1020137028266A patent/KR20140027964A/ko not_active Application Discontinuation
- 2012-04-24 US US14/111,520 patent/US9660127B2/en active Active
- 2012-04-24 WO PCT/JP2012/061516 patent/WO2012147985A1/ja active Application Filing
- 2012-04-24 CN CN201280021123.2A patent/CN103534381B/zh not_active Expired - Fee Related
- 2012-04-24 EP EP12777599.7A patent/EP2703519B1/en not_active Not-in-force
- 2012-04-27 TW TW101115147A patent/TWI534286B/zh not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007266626A (ja) * | 1994-12-01 | 2007-10-11 | Shell Solar Gmbh | 基板上に太陽電池を製造する方法及びカルコパイライト吸収層を有する太陽電池 |
JPH10135495A (ja) | 1996-10-25 | 1998-05-22 | Showa Shell Sekiyu Kk | 薄膜太陽電池の製造方法及び製造装置 |
JP2009283560A (ja) * | 2008-05-20 | 2009-12-03 | Showa Shell Sekiyu Kk | Cis系薄膜太陽電池の製造方法 |
JP2010265544A (ja) * | 2009-04-14 | 2010-11-25 | Kobelco Kaken:Kk | Cu−Ga合金スパッタリングターゲットおよびその製造方法 |
WO2011010529A1 (ja) * | 2009-07-23 | 2011-01-27 | Jx日鉱日石金属株式会社 | Cu-Ga合金焼結体スパッタリングターゲット、同ターゲットの製造方法、Cu-Ga合金焼結体ターゲットから作製された光吸収層及び同光吸収層を用いたCIGS系太陽電池 |
WO2011055537A1 (ja) * | 2009-11-06 | 2011-05-12 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
WO2011083647A1 (ja) * | 2010-01-07 | 2011-07-14 | Jx日鉱日石金属株式会社 | Cu-Ga系スパッタリングターゲット、同ターゲットの製造方法、光吸収層及び該光吸収層を用いた太陽電池 |
WO2011114657A1 (ja) * | 2010-03-18 | 2011-09-22 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
Non-Patent Citations (4)
Title |
---|
A. ROMEO: "Development of Thin-film Cu(In, Ga)Se2 and CdTe Solar Cells", PROG. PHOTOVOLT: RES. APPL., vol. 12, 2004, pages 93 - 111 |
See also references of EP2703519A4 * |
TOORU TANAKA ET AL.: "Characterization of Cu (InxGa1-x) Se3.5 thin films prepared by rf sputtering", SOLAR ENERGY MATERIALS AND SOLAR CELLS, vol. 50, 1998, pages 13 - 18, XP004102485 * |
TOORU TANAKA ET AL.: "Preparation of Cu ( In, Ga) Se3.5 thin films by radio frequency sputtering from stoichiometric Cu(In,Ga)Se2 and Na2Se mixture target", J.APPL.PHYS., vol. 81, no. 11, 1997, pages 7619 - 7622, XP012041309 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013028836A (ja) * | 2011-07-28 | 2013-02-07 | Ulvac Japan Ltd | CuGaNa系スパッタリング用ターゲット及びその製造方法 |
JP2013028837A (ja) * | 2011-07-28 | 2013-02-07 | Ulvac Japan Ltd | CuGaNa系スパッタリング用ターゲット及びその製造方法 |
US9607812B2 (en) | 2012-02-24 | 2017-03-28 | Mitsubishi Materials Corporation | Sputtering target and method for producing same |
WO2013125716A1 (ja) * | 2012-02-24 | 2013-08-29 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
JP2013181220A (ja) * | 2012-03-02 | 2013-09-12 | Mitsubishi Materials Corp | スパッタリングターゲット及びその製造方法 |
US10283332B2 (en) | 2012-10-17 | 2019-05-07 | Mitsubishi Materials Corporation | Cu—Ga binary alloy sputtering target and method of producing the same |
WO2014117190A1 (de) * | 2013-01-31 | 2014-08-07 | Plansee Se | Cu-ga-in-na target |
US10329661B2 (en) | 2013-01-31 | 2019-06-25 | Plansee Se | Cu—Ga—In—Na target |
JP2015028213A (ja) * | 2013-02-25 | 2015-02-12 | 三菱マテリアル株式会社 | スパッタリングターゲット及びその製造方法 |
US9934949B2 (en) | 2013-04-15 | 2018-04-03 | Mitsubishi Materials Corporation | Sputtering target and production method of the same |
US20160208376A1 (en) * | 2013-08-01 | 2016-07-21 | Mitsubishi Materials Corporation | Cu-ga alloy sputtering target, and method for producing same |
EP3029171A4 (en) * | 2013-08-01 | 2017-03-29 | Mitsubishi Materials Corporation | Cu-ga alloy sputtering target, and method for producing same |
TWI617681B (zh) * | 2013-08-01 | 2018-03-11 | 三菱綜合材料股份有限公司 | Cu-Ga合金濺鍍靶及其製造方法 |
US10017850B2 (en) | 2013-08-01 | 2018-07-10 | Mitsubishi Materials Corporation | Cu—Ga alloy sputtering target, and method for producing same |
EP3029171A1 (en) * | 2013-08-01 | 2016-06-08 | Mitsubishi Materials Corporation | Cu-ga alloy sputtering target, and method for producing same |
US9748080B2 (en) | 2014-01-28 | 2017-08-29 | Mitsubishi Materials Corporation | Cu—Ga alloy sputtering target and method for producing same |
WO2015114914A1 (ja) * | 2014-01-28 | 2015-08-06 | 三菱マテリアル株式会社 | Cu-Ga合金スパッタリングターゲット及びその製造方法 |
US20170236695A1 (en) * | 2014-08-28 | 2017-08-17 | Mitsubishi Materials Corporation | Cu-Ga SPUTTERING TARGET AND PRODUCTION METHOD FOR Cu-Ga SPUTTERING TARGET |
WO2016114895A1 (en) | 2015-01-12 | 2016-07-21 | Dow Global Technologies Llc | High rate sputter deposition of alkali metal-containing precursor films useful to fabricate chalcogenide semiconductors |
US9947531B2 (en) | 2015-01-12 | 2018-04-17 | NuvoSun, Inc. | High rate sputter deposition of alkali metal-containing precursor films useful to fabricate chalcogenide semiconductors |
WO2017147037A1 (en) | 2016-02-26 | 2017-08-31 | Dow Global Technologies Llc | Method for improving stability of photovoltaic articles incorporating chalcogenide semiconductors |
Also Published As
Publication number | Publication date |
---|---|
US9660127B2 (en) | 2017-05-23 |
TW201307595A (zh) | 2013-02-16 |
CN103534381B (zh) | 2015-09-09 |
EP2703519A4 (en) | 2014-12-24 |
JP2012233230A (ja) | 2012-11-29 |
CN103534381A (zh) | 2014-01-22 |
EP2703519B1 (en) | 2016-04-06 |
TWI534286B (zh) | 2016-05-21 |
US20140034491A1 (en) | 2014-02-06 |
EP2703519A1 (en) | 2014-03-05 |
KR20140027964A (ko) | 2014-03-07 |
JP5725610B2 (ja) | 2015-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5725610B2 (ja) | スパッタリングターゲット及びその製造方法 | |
JP4793504B2 (ja) | スパッタリングターゲット及びその製造方法 | |
TWI490348B (zh) | Sputtering target and its manufacturing method | |
TWI600777B (zh) | Sputtering target and its manufacturing method | |
JP5919738B2 (ja) | スパッタリングターゲットおよびその製造方法 | |
WO2014069652A1 (ja) | スパッタリングターゲット及びその製造方法 | |
WO2014024975A1 (ja) | スパッタリングターゲット及びその製造方法 | |
JP2012246574A (ja) | スパッタリングターゲット及びその製造方法 | |
JP6436006B2 (ja) | スパッタリングターゲット及びその製造方法 | |
JP5776902B2 (ja) | スパッタリングターゲット及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12777599 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14111520 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20137028266 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012777599 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |