WO2014069652A1 - スパッタリングターゲット及びその製造方法 - Google Patents

スパッタリングターゲット及びその製造方法 Download PDF

Info

Publication number
WO2014069652A1
WO2014069652A1 PCT/JP2013/079841 JP2013079841W WO2014069652A1 WO 2014069652 A1 WO2014069652 A1 WO 2014069652A1 JP 2013079841 W JP2013079841 W JP 2013079841W WO 2014069652 A1 WO2014069652 A1 WO 2014069652A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
sputtering target
alloy powder
film
mixed
Prior art date
Application number
PCT/JP2013/079841
Other languages
English (en)
French (fr)
Inventor
張 守斌
啓太 梅本
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201380054636.8A priority Critical patent/CN104903487A/zh
Priority to JP2014544620A priority patent/JPWO2014069652A1/ja
Publication of WO2014069652A1 publication Critical patent/WO2014069652A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention is for forming a thin film, in particular, a light absorption layer of a solar cell having high photoelectric conversion efficiency, and a sputtering target used when forming a Cu—In—Ga—Se alloy film and It relates to the manufacturing method.
  • This application claims priority based on Japanese Patent Application No. 2012-243471 for which it applied to Japan on November 5, 2012, and uses the content here.
  • a Mo electrode layer serving as a positive electrode is formed on a soda lime glass substrate.
  • a light absorption layer made of a Cu (In, Ga) Se 2 compound film (hereinafter also referred to as a CIGS film) is formed thereon, and a buffer layer made of ZnS, CdS or the like is formed on the light absorption layer. It has a basic structure in which a transparent electrode layer to be a negative electrode is formed on the layer.
  • a method for forming the light absorption layer As a method for forming the light absorption layer, a method of forming a film by a vapor deposition method is known, and although the light absorption layer obtained by this method can obtain high energy conversion efficiency, it depends on the vapor deposition method as the substrate becomes larger. In film formation, the uniformity of the in-plane distribution of film thickness is still not sufficient. Therefore, a method for forming a light absorption layer by a sputtering method has been proposed.
  • the composition of a CIGS film having high photoelectric conversion efficiency is Cu y (In x Ga 1-x ) Se 2 .
  • a target Cu y (In x Ga 1-x ) Se 2 by a vapor deposition method using a plurality of vapor deposition processes (see, for example, Patent Document 1).
  • a method of forming a film by sputtering first, a Cu—Ga film is formed by sputtering using a sputtering target using a Cu—Ga binary alloy, and the Cu—Ga film is formed on the Cu—Ga film.
  • CIGS film forming method two sputtering targets of an In target and a Cu—Ga binary alloy target are used, and a heat treatment furnace and a laminated film for heat treatment in an Se atmosphere are used as a heat treatment furnace. Since many apparatuses and processes, such as a process to convey, are required, cost reduction has been difficult. Therefore, an attempt has been made to produce a CIGS film by producing a Cu—In—Ga—Se alloy sputtering target and performing sputtering once using this target. (For example, see Patent Documents 3 and 4).
  • Patent Publication 2004-342678 Japanese Patent No. 3249408 Japanese Patent Publication No. 2008-163367 Japanese Patent Publication No. 2011-111161 Japanese Patent Publication No. 2011-009287
  • the main advantage of forming a CIGS film using a Cu—In—Ga—Se alloy sputtering target is that the cost of the manufacturing process can be reduced by omitting long-time high-temperature heat treatment in the Se atmosphere.
  • substrate heating during film formation Post-annealing is essential. It has been found that the substrate heating temperature required to form this film is about 400 to 500 ° C.
  • the Se content in the formed film is less than the Se content in the sputtering target, and the generated CIGS compound does not have the composition of Cu y (In x Ga 1-x ) Se 2 , and the solar cell The photoelectric conversion efficiency decreases.
  • the sputtering target described in Patent Document 3 that is, a sputtering target having a constituent element of a Cu—In—Ga—Se single-phase alloy for film formation, the amount of Se deficiency in the film could be reduced. However, the Se deficiency still remains.
  • the present invention has been made in view of the above problems, and is based on a Cu—In—Ga—Se alloy used when forming a CIGS film for forming a light absorption layer of a solar cell having high photoelectric conversion efficiency.
  • An object is to provide a sputtering target.
  • the present inventors have proposed a substrate heating condition for forming a CIGS compound crystal film with high conversion efficiency, a post-deposition post-deposition process, and the like. The conditions such as annealing were examined.
  • composition formula: Cu y (In x Ga 1-x ) Se 2 an appropriate Cu y
  • the composition formula of (In x Ga 1-x ) Se 2 can be satisfied, and the composition formula of Cu y (In x Ga 1-x ) Se 2 is properly satisfied after the substrate heating film formation or heat treatment, and the photoelectric conversion efficiency It was found that a Cu y (In x Ga 1-x ) Se 2 film having the highest thickness can be obtained.
  • a sputtering target which is one embodiment of the present invention is a sintered body having a component composition composed of Cu, In, Ga, Se and inevitable impurities, and Se in the sintered body is Se / (Se + Cu + In + Ga). ) In an atomic ratio of 50.1 to 60.0%.
  • the sputtering target of (1) is characterized in that Cu in the sintered body contains 0.9 to 1.0 in terms of an atomic ratio of Cu / (In + Ga).
  • Na is contained as a compound in the sintered body, and the Na is contained in an atomic ratio of Na / (Cu + In + Ga + Se + Na) of 0.05 to 5%. It is characterized by that.
  • the sputtering target of (3) is characterized in that the Na compound is at least one of NaF, Na 2 S, Na 2 Se, and Na 2 SeO 3 .
  • At least one element selected from Bi, Sb, Al, and Zn is M / (Cu + In + Ga + Se + M) :(
  • M is an atomic ratio of at least one element selected from Bi, Sb, Al, and Zn) and is characterized by containing 0.05 to 5%.
  • a method for producing a sputtering target according to another aspect of the present invention comprises a quaternary alloy powder having a chalcopyrite type crystal structure composed of Cu, In, Ga and Se and Se or an alloy powder thereof, A step of obtaining a mixed powder by mixing in an amount of 50.1 to 60% by an atomic ratio of Se / (Se + Cu + In + Ga), and hot pressing the mixed powder in a vacuum or an inert gas atmosphere to obtain a sintered body And a step of manufacturing the device.
  • the manufacturing method of (6) is characterized in that in the step of obtaining the mixed powder, one kind of powder of Sb, Bi, Al and Zn is mixed.
  • a method for producing a sputtering target comprises a Cu—In alloy powder, a Cu powder, a Cu—In—Ga alloy powder, a Se powder or an alloy powder thereof, wherein Se is Se /
  • a step of obtaining a mixed powder by mixing in an amount of 50.1 to 60% in an atomic ratio of (Se + Cu + In + Ga) and hot pressing the mixed powder in a vacuum or an inert gas atmosphere to produce a sintered body And a step of performing.
  • (11) In the production method of any one of (6) to (10), in the step of obtaining the mixed powder, at least one compound powder of NaF, Na 2 S, Na 2 Se, and Na 2 SeO 3 is used. Are mixed.
  • the sputtering target of one embodiment of the present invention contains Cu, In, Ga, and Se, and Se is an atomic ratio of Se / (Cu + In + Ga + Se).
  • the CIGS compound is contained in a proportion of 50.1 to 60%.
  • Cu y (In x Ga 1-x ) Se 2 compound can be formed without Se defects.
  • Se in the formed CIGS compound film is lost, and Cu y (In x Ga 1-x ) Se 2 crystals cannot be formed.
  • Se exceeds 60 at% excess Se cannot be removed by substrate heating or high-temperature heat treatment after film formation, and in addition to Cu y (In x Ga 1-x ) Se 2 crystal, it contains Se. A phase is formed. For this reason, the Se-containing phase other than the Cu y (In x Ga 1-x ) Se 2 crystal causes a decrease in the conversion efficiency of the solar cell.
  • In and Ga are low-melting-point metals, and when Cu y (In x Ga 1-x ) Se 2 is formed by high-temperature film formation or heat treatment after film formation, it is lost due to high vapor pressure. Cu, which is relatively easy to evaporate, becomes rich, and Cu y (In x Ga 1-x ) Se 2 crystals are less likely to be formed.
  • the present inventors have studied to produce a Na-containing Cu—In—Ga—Se alloy sputtering target. As a result, it was found that Na could be added satisfactorily in the state of a compound such as NaF, Na 2 S, Na 2 Se, or Na 2 SeO 3 instead of the state of metal Na. Therefore, in the sputtering target of the present invention, at least one of NaF, Na 2 S, Na 2 Se, and Na 2 SeO 3 is added as a Na compound instead of metal Na.
  • the sputtering target of the present invention contains at least one element selected from Bi, Sb, Al, and Zn in a sputtering target substrate made of Cu, Ga, In, and Se, and the content of the element is
  • Bi, Sb, Al, Zn, like Na has the effect of promoting the formation of Cu y (In x Ga 1- x) Se 2 crystal, by adding an element M, Cu y (In x Ga 1-x ) Se 2 crystal is formed relatively early, and has the effect of reducing Se defects.
  • the raw material powder is Cu—In—Ga—Se quaternary alloy powder, Cu—In alloy powder, Cu—Ga alloy powder, Cu—Se alloy powder, In—Bi alloy powder.
  • Cu—In—Ga alloy powder, In powder, Cu powder, Se powder, In—Se alloy powder, and Ga—Se alloy powder are prepared.
  • CIGS film of interest is such that the Cu y (In x Ga 1- x) Se 2 composition formula, by mixing powders selected from the above powder group, to obtain a mixed powder, This mixed powder was hot-pressed in a vacuum or an inert gas atmosphere to produce a sintered body.
  • the target Cu y (In x ) Se 2 can be obtained.
  • In powder can be further added.
  • the amount of each selected powder and Se powder is adjusted and mixed.
  • Se is mixed in an amount of 50.1 to 60% in an atomic ratio of Se / (Se + Cu + In + Ga).
  • Powders composed of the metal elements Cu, In, Ga, Se, Bi, Sb, Al, Zn used for the production of the above sputtering target of the present invention (Se powder, In powder, Cu powder, Bi powder, Sb powder, Al powder, Zn powder, Cu—Se alloy powder, In—Se powder, Ga—Se powder, Cu—In alloy powder, Cu—Ga alloy powder, Cu—Bi alloy powder, Cu—Sb alloy powder, Cu—Al alloy powder, Cu -Zn alloy powder, Cu-Ga-Bi powder, Cu-Ga-Sb powder, Cu-Ga-Al powder, Cu-Ga-Zn powder, Cu-In-Ga ternary alloy powder, Cu, In and Ga Cu—In—Ga—Se quaternary alloy powder composed of Se, Cu—In—Ga—Se quaternary chalcopyrite type alloy powder, and other Cu, In, Ga, Se, Bi, Sb, Al, Zn One or more types of powder) consisting of some or all of the
  • Cu—In—Ga—Se quaternary chalcopyrite type alloy powder for example, an atomizing method for producing powder from molten metal or a grinding method for producing powder by pulverizing an alloy ingot is often used.
  • a Cu—In—Ga—Se quaternary chalcopyrite type alloy powder composed of Cu, In, Ga and Se can also be produced according to the manufacturing method described in Patent Document 3.
  • a powder composed of the metal elements Cu, In, Ga, Se, Bi, Sb, Al, Zn constituting the sputtering target prepared in advance After hot mixing with Na compound (NaF, Na 2 S, Na 2 Se, Na 2 SeO 3 ) powder, hot pressure sintering is performed.
  • the pressure at which this hot pressure sintering is performed also greatly affects the density of the sintered body. Therefore, in the case of the hot press method (HP method), a preferable pressure is 100 to 500 kg / cm 2 . In the case of hot static and hydrostatic sintering (HIP method), the preferred pressure is 500 to 1500 kgf / cm 2 .
  • the timing of pressurization may be before the start of sintering temperature rise, or pressurization after reaching a certain temperature.
  • the sintered body for sputtering target sintered by the hot pressure sintering method is processed into a specified shape as a target by using a normal electric discharge machining, cutting or grinding method.
  • a dry method that does not use a cooling liquid or a wet method that uses a cooling liquid that does not contain water is preferable.
  • the processed sputtering target is bonded to a backing plate made of Cu or SUS (stainless steel) or other metal (for example, Mo) using In as a solder, and is supplied to a sputtering apparatus.
  • the entire sputtering target is immersed in water, and bubbles and defects in the sputtering target or the solder layer are specified using ultrasonic waves.
  • a Na-containing thin film type sputtering target for example, NaF dissolves in water. Therefore, when performing such an underwater measurement, it is necessary to devise such that the sputtering target and water do not directly contact each other.
  • a method of applying fats and oils that are not water-soluble on the entire surface of the target and removing the fat after measurement there are a method of applying fats and oils that are not water-soluble on the entire surface of the target and removing the fat after measurement, and a method of covering the target with a waterproof sheet.
  • a vacuum pack or a pack obtained by replacing the target with an inert gas it is preferable to apply a vacuum pack or a pack obtained by replacing the target with an inert gas.
  • the sputtering target of this invention can be obtained by hot-pressing said mixed powder by hot press etc. in a vacuum or inert gas atmosphere. Since the pressure at the time of hot pressure sintering has a great influence on the density of the sintered body, the preferred pressure is 100 to 500 kg / cm 2 in the HP method, and the preferred pressure is 500 in the HIP method. ⁇ 1500 kgf / cm 2 .
  • At least one of NaF powder, Na 2 S powder, Na 2 Se powder or Na 2 SeO 3 powder, and Cu—In—Ga—Se quaternary are used as raw material powder. Alloy powder, Cu—In alloy powder, Cu—Ga alloy powder, Cu—Se alloy powder, In—Se alloy powder, Ga—Se alloy powder, In—Bi alloy powder, Cu—In—Ga alloy powder, In A mixed powder prepared by mixing two or more selected from the group of powder, Cu powder, and Se powder was prepared, and the mixed powder was sintered by hot pressing in a vacuum or an inert gas atmosphere. .
  • the powder of these metal elements is added to the above mixed powder and mixed, or Bi, Sb, Al, Zn and Cu are mixed.
  • In, Ga, and Se were alloyed into powders, and these powders were made into the desired mixed powders and sintered by hot pressing in a vacuum or an inert gas atmosphere.
  • the sintering temperature is preferably set to 100 ° C. to 350 ° C.
  • the timing of pressurization may be before the start of sintering temperature rise, or pressurization after reaching a certain temperature.
  • a magnetron direct current (DC) sputtering or a radio frequency (RF) sputtering can be used to form a Cu y (In x Ga 1-x ) Se 2 film on the substrate surface by using the sputtering target according to the present invention. It is. At that time, it is preferable to perform in Ar atmosphere.
  • the input power during sputtering is preferably 1 to 10 W / cm 2 .
  • the thickness of the film formed by the sputtering target of the present invention can be 500 to 2000 nm, the temperature of the substrate during film formation is from room temperature to 550 ° C., and the heat treatment temperature after film formation is as low as 600 ° C. It is preferable to do.
  • a sputtering target made of a Cu—In—Ga—Se alloy for use in forming a CIGS film for forming a light absorption layer of a solar cell having high photoelectric conversion efficiency is provided.
  • the sputtering target of the present invention can be appropriately manufactured.
  • the sputtering target and the manufacturing method thereof according to the present invention will be specifically described below with reference to examples.
  • the first example depends on how each powder is mixed in the manufacturing method. It divides into embodiment, 2nd embodiment, and 3rd embodiment. That is, in the first embodiment, Cu—In—Ga—Se quaternary alloy powder (chalcopyrite quaternary alloy powder made of Cu, Ga, In and Se) and Se powder or In—Se alloy powder, Ga -Se alloy powder and Cu-Se alloy powder are mixed.
  • the second embodiment is a Cu-In alloy powder, Cu-Ga alloy powder, Cu-Se alloy powder, In-Se alloy powder, Ga -Se alloy powder, In-Bi alloy powder, Cu-In-Ga alloy powder, In metal powder, each powder selected from the group of Cu powder and Se powder are mixed, and
  • the third embodiment is a case where Na compound powder is further added to the mixing in the first and second embodiments.
  • Bi, Sb, Al, and Zn powders can be further mixed, and Bi, Sb, Al, and Zn elements can be added to the sputtering target.
  • a chalcopyrite quaternary alloy powder (Cu y (In x Ga 1-x ) Se made of Cu, Ga, In and Se is used as the first raw material powder. 2 alloy powder), and Se powder or In—Se alloy powder and Ga—Se alloy powder are prepared as the second raw material powder, and Bi, Sb, Al, In, Zn, Each powder of Cu-Se alloy powder was prepared. Regarding this Cu—In—Ga—Se quaternary alloy powder, a Cu—In—Ga—Se quaternary alloy obtained by heating and melting Cu powder, In powder, Ga powder and Se powder in an inert gas. The molten metal is cast into a mold to produce an ingot, and the ingot can be pulverized. In addition, each said powder has a purity of 3N or more.
  • the mixed powders of Examples 1 and 2 were prepared by adjusting the amounts of Cu—In—Ga—Se quaternary alloy powder as the first raw material powder and Se powder as the second raw material powder. . Furthermore, Cu—In—Ga—Se quaternary alloy powder as the first raw material powder, Se powder or In 2 Se 3 powder as the second raw material powder, and Bi, Sb, Al, The mixed powder of Examples 3 to 12 was prepared by adjusting the amount of any one of In and Zn and mixing them.
  • the mixed powder of Examples 13 and 14 was prepared by adjusting the amount and mixing.
  • In 2 Se 3 powder, Ga 2 Se 3 powder, or CuSe 2 powder instead of Se powder firing at a higher sintering temperature is possible, which is effective in improving the density of the target.
  • Table 1 shows the blending amounts of the mixed powders of Examples 1 to 14. The purity of the powder raw material is 99.9%, and the particle size is 100 mesh or less.
  • mixed powders of Comparative Examples 1 and 2 were prepared as a case where only the first raw material powder of Cu—In—Ga—Se quaternary alloy powder was used. Furthermore, the mixed powders of Comparative Examples 3 and 4 were mixed by mixing Cu—In—Ga—Se quaternary alloy powder as the first raw material powder and Se powder as the second raw material powder, and the first raw material When mixing Cu—In—Ga—Se quaternary alloy powder as powder, Se powder as second raw material powder, and any one of Sb and Al as third raw material powder The mixed powders of Comparative Examples 5 and 6 were prepared. Table 1 shows the blending amounts of the mixed powders of Comparative Examples 1 to 6.
  • the mixed powders of Examples 1 to 14 and Comparative Examples 1 to 6 blended as shown in Table 1 were sintered under the conditions of pressure, temperature and holding time shown in Table 2.
  • HP method hot press method
  • HIP method hot isostatic pressing method
  • the mixed powder is filled in a metal mold and pressure molded at 1500 kg / cm 2 at room temperature.
  • the molded body thus obtained was placed in a stainless steel container having a thickness of 0.5 mm, and then subjected to vacuum degassing to perform HIP processing.
  • the sintered body after sintering was processed into a size of diameter 125 (mm) ⁇ thickness 5 (mm) by dry cutting, and the sputtering targets of Examples 1 to 14 and Comparative Examples 1 to 6 were used. Produced.
  • the sputtering target after a process it bonded to the backing plate made from oxygen-free copper using In as a solder, and used for the sputtering device.
  • composition analysis was performed on the fabricated sputtering targets of Examples 1 to 14 and Comparative Examples 1 to 6.
  • a part of a sputtering target actually produced was pulverized, and was performed by a high frequency inductively coupled plasma (ICP) method.
  • ICP inductively coupled plasma
  • Table 3 the atomic ratio (at%) which concerns on each metal element of metal element Cu, In, Ga, Se, Bi, Sb, Al, and Zn is calculated by the following formula
  • Sputtering was performed using the sputtering targets of Examples 1 to 14 and Comparative Examples 1 to 6 produced as described above, and the film formation of a film made of Cu—In—Ga—Se (CIGS film) was tested.
  • This film formation test was performed under the following conditions.
  • the film was formed by sputtering on the surface of the silicon wafer on which the thermal oxide film was formed. The thickness of the film is 1500 nm.
  • sputtering was performed on a Corning Eagle XG non-alkali glass substrate on which a Mo film was already formed.
  • the film was formed to 1500 nm.
  • the Mo film has a thickness of 500 nm.
  • a high frequency power supply RF power supply
  • the ultimate vacuum is 5 ⁇ 10 ⁇ 4 Pa or less
  • the input power during sputtering is 400 W
  • the sputtering gas is only Ar
  • the total pressure of Ar is 0.
  • the pressure was 67 Pa.
  • Table 4 shows the substrate temperature during film formation and the heat treatment temperature after film formation.
  • Cu 0.95 to 1.05 (In 1-x Ga) is obtained by sputtering with a sputtering target made of a Cu—In—Ga—Se quaternary element according to Examples 1 to 14.
  • x A film having a composition of Se 1.95 to 2.05 was obtained, and it was confirmed that the film was a Cu—In—Ga—Se quaternary film having a good target composition.
  • the crystal grain size was uniform.
  • the films obtained by sputtering using the sputtering targets of Comparative Examples 1 to 4 it was confirmed that the crystal grain size was non-uniform, small, more than two phases, and an Se-containing phase was present.
  • Cu-In alloy powder, Cu-Se alloy powder and Cu-Zn alloy powder are prepared as the first raw material powder, Se powder is prepared as the second raw material powder, and In metal powder is used as the third raw material powder.
  • Cu-Ga alloy powder was prepared as the fourth raw material powder, and Sb metal powder was prepared as the fifth raw material powder.
  • Each of the above powders may be a general powder obtained by pulverizing a cast ingot, and preferably has a purity of 3N or more.
  • Example 15 , 16 mixed powders were prepared, and the amounts of the Cu—Se alloy powder as the first raw material powder, the Se powder as the second raw material powder, and the Cu—Ga alloy powder as the fourth raw material powder were adjusted.
  • the mixed powders of Examples 17 and 18 were produced.
  • the mixed powder of Example 19 was prepared by adjusting the amount of Sb metal powder as the five raw material powders and mixing them. Table 5 shows the powder blend amounts of the mixed powders of Examples 15 to 19. The purity of each powder is 99.9%, and the particle size is 100 mesh or less.
  • the mixed powders of Examples 15 to 19 blended as shown in Table 5 were sintered under the conditions of pressure, temperature and holding time shown in Table 6.
  • a hot isostatic pressing method (HIP method: expressed as HIP in Table 6) was employed, and sputtering targets of Examples 15 to 19 were produced.
  • HIP method expressed as HIP in Table 6
  • each mixed powder is filled in a metal mold, press-molded at 1500 kg / cm 2 at room temperature, and the obtained molded body is placed in a 0.5 mm-thick stainless steel container, followed by vacuum deaeration. HIP processing was performed.
  • the sintered body after sintering was processed into a size of diameter 125 (mm) ⁇ thickness 5 (mm) by dry cutting to produce sputtering targets of Examples 15 to 19.
  • the sputtering target after a process it bonded to the backing plate made from oxygen-free copper using In as a solder, and used for the sputtering device.
  • composition analysis was performed on the produced sputtering targets of Examples 15 to 19 in the same manner as in the first embodiment.
  • the results of this composition analysis are shown in Table 7.
  • the target composition measurement results in Table 7 are also calculated by the formula used in the case of the first embodiment, and based on the atomic ratio of each metal element obtained by the calculation, Cu for In and Ga The ratio of was calculated.
  • the film formation samples obtained by sputtering using the sputtering targets of Examples 15 to 19 were subjected to infrared heat treatment for 30 minutes at a vacuum degree of 5 ⁇ 10 ⁇ 3 Pa or less,
  • the sample deposited on the silicon wafer was peeled off from the substrate and then subjected to metal element quantitative analysis (ICP method).
  • Table 8 shows the content of each metal element (including Se) in the obtained film.
  • each atomic ratio (%) of each metal element according to the film composition measurement result in Table 8 was calculated by the formula used in the case of the first embodiment.
  • XRD X-ray diffractometer
  • the membrane was analyzed.
  • FE-SEM field emission electron microscope
  • Cu 0.95 to 1.05 (In 1-x Ga) was obtained by sputtering with a sputtering target made of a Cu—In—Ga—Se quaternary element according to Examples 15 to 19. x ) A film having a composition of Se 1.95 to 2.05 was obtained, and it was confirmed that the film was a Cu—In—Ga—Se quaternary film having a good target composition. However, the crystal grain size was uniform, and good results were obtained.
  • the third embodiment is a case where Na compound powder is further added to the mixing in the first and second embodiments.
  • each raw material powder having the component composition shown in Table 9 was prepared as the first to fifth raw material powders.
  • the fifth raw material powder as a Na compound powder, NaF, a respective powders of Na 2 S, Na 2 Se, Na 2 SeO 3, purity 3N, was the one that satisfies the average primary particle diameter of 0.2 [mu] m.
  • These Na compound powders are dried at 80 ° C. for 3 hours or more in a vacuum environment in a vacuum dryer.
  • the Na compound powder was weighed together with the first to fourth raw material powders, put into a polypot, charged with ZrO 2 balls having a diameter of 5 mm, and mixed for a specified time by a ball mill.
  • mixed powders of Examples 20 to 24 were produced.
  • a mixed powder of Comparative Example 7 was prepared by mixing the —In—Ga alloy powder and the NaF compound powder as the fifth raw material powder.
  • Table 9 shows the powder blending amount of the mixed powder of Comparative Example 7.
  • Table 9 lists Comparative Examples 3 and 4 shown in the case of the first embodiment.
  • the mixed powders of Examples 20 to 24 and Comparative Example 7 blended as shown in Table 9 were sintered under the conditions of pressure, temperature and holding time shown in Table 10.
  • a hot press method HP method: expressed as HP in Table 10
  • HP treatment was performed for the mixed powders of Examples 20 to 24 and Comparative Example 7.
  • the sintered body after sintering was processed into a size of diameter 125 (mm) ⁇ thickness 5 (mm) by dry cutting to produce the sputtering targets of Examples 20 to 24 and Comparative Example 7. .
  • the sputtering target after a process it bonded to the backing plate made from oxygen-free copper using In as a solder, and used for the sputtering device.
  • composition analysis was performed on the fabricated sputtering targets of Examples 20 to 24 and Comparative Example 7 in the same manner as in the case of the first embodiment.
  • the results of this composition analysis are shown in Table 11.
  • the target composition measurement results in Table 7 are also calculated by the formula used in the case of the first embodiment, and based on the atomic ratio of each metal element obtained by the calculation, Cu for In and Ga The ratio of was calculated. Further, the elements of F, S, and Se that are incidentally added to the sputtering target when added as Na compounds such as NaF, Na 2 S, and Na 2 SeO 3 are almost in accordance with the stoichiometric ratio with Na. It has been confirmed that it is contained in the target.
  • the film formation samples obtained by sputtering using the sputtering targets of Examples 20 to 24 and Comparative Example 7 were subjected to infrared heat treatment for 30 minutes at a vacuum degree of 5 ⁇ 10 ⁇ 3 Pa or less. Thereafter, the sample deposited on the silicon wafer was peeled off from the substrate and then subjected to analysis of metal element quantitative analysis (ICP method).
  • Table 8 shows the content of each metal element (including Se) in the obtained film.
  • each atomic ratio (%) of each metal element according to the film composition measurement result in Table 12 was calculated by the formula used in the case of the first embodiment.
  • sputtering with a sputtering target made of a Cu—In—Ga—Se—Na ternary element according to Examples 20 to 24 allows Cu 0.95 to 1.
  • a film having a composition of 05 (In 1-x Ga x ) Se 1.95 to 2.05 Na is obtained, and is a Cu—In—Ga—Se—Na ternary film having a good target composition.
  • the crystal grain size was uniform. It was confirmed that the addition of Na has an effect of suppressing Se deficiency in Cu y (In x Ga 1-x ) Se 2 crystal.
  • a CIGS film required for forming a light absorption layer of a solar cell having high photoelectric conversion efficiency can be formed without Se defects.

Abstract

 高い光電変換効率を有する太陽電池の光吸収層を形成するためのCIGS膜を形成するときに使用するCu-In-Ga-Se合金によるスパッタリングターゲットを提供する。このスパッタリングターゲットは、主成分として、Cu、In、Ga及びSeを含有し、残部:不可避不純物からなる成分組成を有する焼結体であって、該焼結体の素地中におけるSeは、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有している。

Description

スパッタリングターゲット及びその製造方法
 本発明は、薄膜を形成、特に、高い光電変換効率を有する太陽電池の光吸収層を形成するためのものであり、Cu-In-Ga-Se合金膜を形成するときに使用するスパッタリングターゲット及びその製造方法に関するものである。
 本願は、2012年11月5日に、日本に出願された特願2012-243471号に基づき優先権を主張し、その内容をここに援用する。
 近年、化合物半導体による薄膜太陽電池が実用に供せられるようになり、この化合物半導体による薄膜太陽電池は、ソーダライムガラス基板の上にプラス電極となるMo電極層を形成し、このMo電極層の上にCu(In,Ga)Se化合物膜(以下、CIGS膜とも称す)からなる光吸収層が形成され、この光吸収層の上にZnS、CdSなどからなるバッファ層が形成され、このバッファ層の上にマイナス電極となる透明電極層が形成された基本構造を有している。
 上記光吸収層の形成方法として、蒸着法により成膜する方法が知られており、この方法により得られた光吸収層は高いエネルギー変換効率が得られるものの、基板の大型化に伴い蒸着法による成膜においては、膜厚の面内分布の均一性が未だ十分とはいえない。そのために、スパッタ法によって光吸収層を形成する方法が提案されている。
 光電変換効率の高いCIGS膜の組成は、Cu(InGa1-x)Seであることが知られている。ここで、複数の蒸着プロセスを用いた蒸着工法によって、目的とするCu(InGa1-x)Seを成膜することが提案されている(例えば、特許文献1を参照)。また、この他に、スパッタリング法により成膜する方法として、まず、Cu-Ga二元合金を用いたスパッタリングターゲットを使用してスパッタによりCu-Ga膜を成膜し、このCu-Ga膜の上にInターゲットを使用してスパッタすることによりIn膜を成膜し、得られたIn膜及びCu-Ga二元系合金膜からなる積層膜をSe雰囲気中で熱処理してCIGS膜を形成する方法(いわゆる、セレン化法)が提案されている(例えば、特許文献2を参照)。
 また、上記CIGS膜の成膜方法では、Inターゲット及びCu-Ga二元合金ターゲットの2枚のスパッタリングターゲットを使用し、さらに、Se雰囲気中で熱処理するための熱処理炉及び積層膜を熱処理炉に搬送する工程を必要とするなど多くの装置及び工程を必要とすることから、コストの削減は難しかった。そこで、Cu-In-Ga-Se合金スパッタリングターゲットを作製し、このターゲットを用いて1回のスパッタリングによりCIGS膜の成膜しようとする試みがなされている。(例えば、特許文献3、4を参照)。
 一方、CIGS膜からなる光吸収層の発電効率を向上させるため、この光吸収層へのNa、Sb、Bi、Al等の添加が要求されている。例えば、Naを添加する場合、太陽電池の成膜用基板となる青板ガラスよりNaをCIGS膜中へ拡散させることが提案されている(例えば、特許文献5、非特許文献1を参照)。この提案では、膜中のNa含有量が0.1%程度が一般的であるとしており、CIGS製造プロセスにおいて、プリカーサー膜を形成した後、高温熱処理を行うことにより、Naを基板のガラスから光吸収層へ拡散させている。また、膜中にSb、Biを共蒸着技術による蒸着法によって作成されたCIGS光吸収膜に添加して、膜の高品質化が確認されている(例えば、非特許文献2を参照)。さらには、Alの添加によるCIGS光吸収層でも、同様な効果が報告されている(例えば、非特許文献3、4を参照)。
特許公開2004-342678 特許第3249408号公報 特許公開2008-163367号公報 特許公開2011-111641号公報 特許公開2011-009287号公報
A.Romeo、「Development of Thin-film Cu(In,Ga)Se2 and CdTe Solar Cells」、Prog. Photovolt: Res. Appl. 2004; 12:93-111 (DOI: 10.1002/pip.527 Honishi, Y. ;Yatsushiro, Y. ; Nakakoba, H. , Impacts of Sb and Bi incorporations on CIGS thin films and solar cells 、Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE P. D. Paulsion et. al., J. Appl. Phys. Vol.91 No.12 (2002) 10153-10156 S. Marsillac et. al., Appl. Phys. Lett. Vol.81 No.7 (2002) 1350-1352
 上述した従来の技術には、以下の課題が残されている。
 Cu-In-Ga-Se合金スパッタリングターゲットを用いてCIGS膜を形成する主なメリットは、Se雰囲気での長時間高温熱処理を省略することによって、製造プロセスのコスト低減化できることである。
 しかし、Cu-In-Ga-Se合金スパッタリングターゲットを用いてCIGS膜を形成する場合においても、変換効率の高いCIGS化合物結晶膜を形成するために、成膜時の基板加熱や、成膜後のポストアニールが必須となっている。この膜を形成するには、必要な基板加熱温度が400~500℃程度にもなることが分かっている。この場合、形成された膜中のSe含有量がスパッタリングターゲット中のSe含有量より少なくなり、生成されたCIGS化合物がCu(InGa1-x)Seの組成にならず、太陽電池の光電変換効率が低下する。特許文献3に記載のスパッタリングターゲット、即ち、構成元素をCu-In-Ga-Se単相合金にしたスパッタリングターゲットを成膜に使用することで、膜中のSeの欠損量を減らすことができたものの、依然、そのSeの欠損状態が残存したままである。
 本発明は、前述の課題に鑑みてなされたもので、高い光電変換効率を有する太陽電池の光吸収層を形成するためのCIGS膜を形成するときに使用するCu-In-Ga-Se合金によるスパッタリングターゲットを提供することを目的とする。
 本発明者らは、Cu-In-Ga-Se合金スパッタリングターゲットを用いてCIGS膜を形成する場合において、変換効率の高いCIGS化合物結晶膜を形成するための基板加熱条件や、成膜後のポストアニール等の条件を検討した。その結果、スパッタリングターゲット中のSe含有量を、目的とする膜中のSe目論見含有量〔組成式:Cu(InGa1-x)Se〕より多めにすることで、適切なCu(InGa1-x)Seの組成式を満足でき、基板加熱の成膜または熱処理後に、適切にCu(InGa1-x)Seの組成式を満足し、光電変換効率の最も高いCu(InGa1-x)Se膜を得ることができることを突き止めた。
 したがって、本発明は、上記知見から得られたものであり、前記課題を解決するために以下の構成を採用した。
(1)本発明の一態様であるスパッタリングターゲットは、Cu、In、Ga、Se及び不可避不純物からなる成分組成を有する焼結体であって、該焼結体中におけるSeは、Se/(Se+Cu+In+Ga)の原子比で、50.1~60.0%含有していることを特徴とする。
(2)前記(1)のスパッタリングターゲットは、前記焼結体中におけるCuが、Cu/(In+Ga)の原子比で、0.9~1.0含有していることを特徴とする。
(3)前記(1)又は(2)のスパッタリングターゲットは、前記焼結体中にNaが化合物として含有され、前記Naは、Na/(Cu+In+Ga+Se+Na)の原子比で、0.05~5%含有していることを特徴とする。
(4)前記(3)のスパッタリングターゲットは、前記Naの化合物が、NaF、NaS、NaSe及びNaSeOのうちの少なくとも1種であることを特徴とする。
(5)前記(1)乃至(4)のいずれかのスパッタリングターゲットは、前記焼結体中に、Bi、Sb、Al、Znから選ばれる少なくとも1種の元素が、M/(Cu+In+Ga+Se+M):(ここで、Mは、Bi、Sb、Al、Znから選ばれる少なくとも1種の元素を示す)の原子比で、0.05~5%含有していることを特徴とする。
(6)本発明の他態様であるスパッタリングターゲットの製造方法は、Cu、In、Ga及びSeからなるカルコパイライト型結晶構造を有する四元系合金粉末とSeまたはその合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中で熱間加圧して焼結体を作製する工程とを備えたことを特徴とする。
(7)前記(6)の製造方法は、前記混合粉末を得る工程では、Sb、Bi、Al及びZnのうちの1種の粉末が混合されることを特徴とする。
(8)本発明の他態様であるスパッタリングターゲットの製造方法は、Cu-In合金粉末と、In粉末と、Cu-Ga合金粉末と、Se又はその合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、該混合粉末を真空または不活性ガス雰囲気中で熱間加圧(ホットプレス)して焼結体を作製する工程とを備えたことを特徴とする。
(9)本発明の他態様であるスパッタリングターゲットの製造方法は、Cu-Se合金粉末と、In-Bi合金粉末と、Cu-Ga合金粉末と、Se又はその合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、該混合粉末を真空または不活性ガス雰囲気中で熱間加圧(ホットプレス)して焼結体を作製する工程とを備えたことを特徴とする。
(10)本発明の他態様であるスパッタリングターゲットの製造方法は、Cu-In合金粉末と、Cu粉末と、Cu-In-Ga合金粉末と、Se粉又はその合金末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中でホットプレスして焼結体を作製する工程とを備えたことを特徴とする。
(11)前記(6)乃至(10)のいずれかの製造方法では、前記混合粉末を得る工程では、NaF、NaS、NaSe及びNaSeOのうちの少なくとも1種の化合物粉末が混合されることを特徴とする。
 以上の様に、本発明の一態様のスパッタリングターゲット(以下、「本発明のスパッタリングターゲット」と称する)では、Cu、In、Ga及びSeを含有し、Seが、Se/(Cu+In+Ga+Se)の原子比で、50.1~60%の割合で含有されているので、スパッタリング法による成膜中に、基板加熱が行われることでCIGS化合物を形成するプロセス、または、成膜後の高温熱処理でCIGS化合物を形成するプロセスにおいて、Cu(InGa1-x)Se化合物をSeの欠損なく形成することができる。Seの含有割合が50.1%未満になると、形成されたCIGS化合物膜中のSeが欠損し、Cu(InGa1-x)Se結晶の形成ができなくなる。一方、Seが60at%を超えると、基板加熱や、成膜後の高温熱処理では、余ったSeを取り除くことができず、Cu(InGa1-x)Se結晶以外に、Se含有相が形成される。このため、Cu(InGa1-x)Se結晶以外に存在するSe含有相が太陽電池の変換効率の低下を招く。
 さらに、本発明のスパッタリングターゲットでは、スパッタリングターゲット中のCuの含有量が原子比で、Cu/(In+Ga)=0.9~1.0であることを特徴としている。Seのみでなく、InやGaは低融点金属であり、高温成膜または成膜後の熱処理でCu(InGa1-x)Seを形成する際に、蒸気圧が高いので欠損しやすく、比較的に蒸発しにくいCuがリッチになり、Cu(InGa1-x)Se結晶が形成されにくくなる。そのため、スパッタリングターゲット中のCuの含有量が原子比で:Cu/(In+Ga)=0.9~1.0にすることで、安定した高変換効率化合物が得られるようになる。また、InとGaとの含有量に対しするCuの含有量比が0.9より少ないと、形成された膜中に、CuがCu(InGa1-x)Seとの理論比より欠損され、一方、その含有量比が1.0を超えると、Cuリッチになり、特性上不都合である。
 さらに、Cu、Ga、In及びSeからなるスパッタリングターゲット素地中にNaが化合物として含有され、Na含有量が原子比で、Na/(Cu+In+Ga+Se+Na)×100=0.05~5%であることとしたのは、NaがCu(InGa1-x)Se結晶の形成を促進する効果があり、Naを添加することで、Cu(InGa1-x)Se結晶が比較的に早く形成し、Seの欠損を低減する効果があるからである。Naが0.05%未満であると、結晶形成促進効果が不明確であり、5%を超えると、CIGS膜とMo膜の界面にNaが集中しやすくなり、Mo電極からのCIGS膜剥がれが発生しやすい。
 本発明者らは、Na含有Cu-In-Ga-Se合金スパッタリングターゲットを製造するべく研究を行った。その結果、金属Naの状態ではなく、NaF、NaS、NaSe又はNaSeOといった化合物の状態であれば、良好にNaを添加可能であることを突き止めた。そこで、本発明のスパッタリングターゲットでは、金属Naの代わりに、Naの化合物として、NaF、NaS、NaSe及びNaSeOのうちの少なくとも1種を添加することとした。
 また、本発明のスパッタリングターゲットでは、Cu、Ga、In、Seからなるスパッタリングターゲット素地中において、Bi、Sb、Al、Znから選ばれる少なくとも1種の元素が含有され、当該元素の含有量が、原子比で、M/(Cu+In+Ga+Se+M)×100=0.05~5%であることとした。Bi、Sb、Al、Znは、Naと同様に、Cu(InGa1-x)Se結晶の形成を促進する効果があり、元素Mを添加することで、Cu(InGa1-x)Se結晶が比較的に早く形成され、Seの欠損を低減する効果がある。
 以上のスパッタリングターゲットを製造するにあたっては、原料粉末として、Cu-In-Ga-Se四元系合金粉末、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Se合金粉末、In-Bi合金粉末、Cu-In-Ga合金粉末、In粉末、Cu粉末、さらには、Se粉末、In-Se合金粉末、Ga-Se合金粉末が用意される。そして、目的とするCIGS膜が、Cu(InGa1-x)Seの組成式となるように、上記粉末グループの中から選択された粉末を混合して、混合粉末を得て、この混合粉末を真空または不活性ガス雰囲気中で熱間加圧して焼結体を作製することとした。
 具体的には、Cu-In-Ga-Se四元系合金粉末(Cu、Ga、In及びSeからなるカルコパイライト型四元合金粉末)を選択した場合には、目的とするCu(InGa1-x)Seの組成式が得られるように、この四元系粉末及びSe合金粉末又はSe粉末の量を調整して混合する。この場合に、さらに、In粉末を添加することもできる。或いは、Cu(InGa1-x)Seの組成式が得られるように、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Se合金粉末、In-Bi合金粉末、Cu-In-Ga合金粉末、In粉末、Cu粉末のグループの中から3種を選択した場合には、選択した各粉末及びSe粉末の量を調整して混合する。ここで、いずれの場合にも、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合されるものとする。
 以上の本発明のスパッタリングターゲットの製造に用いる金属元素Cu、In、Ga、Se、Bi、Sb、Al、Znからなる粉末(Se粉末、In粉末、Cu粉末、Bi粉末、Sb粉末、Al粉末、Zn粉末、Cu-Se合金粉末、In-Se粉末、Ga-Se粉末、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Bi合金粉末、Cu-Sb合金粉末、Cu-Al合金粉末、Cu-Zn合金粉末、Cu-Ga-Bi粉末、Cu-Ga-Sb粉末、Cu-Ga-Al粉末、Cu-Ga-Zn粉末、Cu-In-Ga三元系合金粉末、CuとInとGaとSeとからなるCu-In-Ga―Se四元系合金粉末、Cu-In-Ga―Se四元系カルコパイライト型合金粉末、及びその他Cu、In、Ga、Se、Bi、Sb、Al、Zn元素の一部または全部からなる粉末の1種類又は複数種類)は、純度が99.9%以上、粉末の平均粒径は、250nm~5μmが好ましく、100nm~30μmがより好ましい。
 上記のCu-In-Ga―Se四元系カルコパイライト型合金粉末の製造には、例えば、溶湯から粉末を作るアトマイズ法や合金鋳塊を粉砕して粉を作る粉砕法が良く使われる。特に、CuとInとGaとSeとからなるCu-In-Ga―Se四元系カルコパイライト型合金粉末は、特許文献3に記載の製法に従っても作製することができる。
 また、本発明のNa含有薄膜形用スパッタリングターゲットを製造する場合には、予め用意したスパッタリングターゲットを構成する上記金属元素Cu、In、Ga、Se、Bi、Sb、Al、Znからなる粉末と、Na化合物(NaF、NaS、NaSe、NaSeOの少なくとも1種)粉末とを混合してから、熱間加圧焼結を行う。この熱間加圧焼結を行う際の圧力も、焼結体の密度に大きな影響を及ぼすので、ホットプレス法(HP法)の場合は、好ましい圧力は、100~500kg/cmであり、熱間静、水圧焼結法(HIP法)の場合は、好ましい圧力は、500~1500kgf/cmである。加圧のタイミングは、焼結昇温開始前からでもよいし、一定の温度に到達してから加圧してもよい。
 次に、上記熱間加圧焼結法で焼結したスパッタリングターゲット用焼結体は、通常の放電加工、切削又は研削工法を用いて、ターゲットとしての指定形状に加工される。このとき、Na含有薄膜形用スパッタリングターゲットの場合には、Na化合物が水に溶解するため、加工の際、冷却液を使わない乾式法又は水を含まない冷却液を使用する湿式法が好ましい。また、湿式法で表面粗加工後、さらに乾式法で表面を精密加工する方法もある。
 次に、加工後のスパッタリングターゲットは、Inを半田として、Cu又はSUS(ステンレス)又はその他金属(例えば、Mo)からなるバッキングプレートにボンディングされて、スパッタリング装置に供される。なお、このボンディングの効果(ボンディング率)を測定するために、スパッタリングターゲット全体を水に浸漬し、超音波を利用してスパッタリングターゲット又は半田層中の気泡や欠陥を特定している。しかし、Na含有薄膜形用スパッタリングターゲットの場合には、例えば、NaFが水に溶けるため、このような水中測定を行うとき、スパッタリングターゲットと水とが直接に接触しないような工夫が必要である。例えば、ターゲット全面に水溶しない油脂類を塗り、測定後この油脂を除去する方法や、ターゲットを防水シートで覆う方法などがある。なお、加工済みのスパッタリングターゲットの酸化、吸湿の防止するため、ターゲット全体を真空パック又は不活性ガス置換したパックを施すことが好ましい。
 本発明のスパッタリングターゲットの製造方法では、上記の混合粉末を、真空又は不活性ガス雰囲気中で、ホットプレス等で熱間加圧することで、本発明のスパッタリングターゲットを得ることができる。熱間加圧焼結を行う際の圧力も焼結体の密度に大きな影響を及ぼすので、HP法の場合は、好ましい圧力は100~500kg/cm、HIP法の場合は、好ましい圧力は500~1500kgf/cmとする。
 本発明によるNa含有のスパッタリングターゲットの製造方法では、原料粉末として、NaF粉末、NaS粉末、NaSe粉末又はNaSeO粉末の少なくとも1種と、Cu-In-Ga-Se四元系合金粉末と、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末、In-Bi合金粉末、Cu-In-Ga合金粉末、In粉末、Cu粉末、Se粉末のグループから選択された2種以上と、を混合した混合粉末を作製し、この混合粉末を真空又は不活性ガス雰囲気中で熱間加圧により焼結することとした。
 さらに、本発明によるBi、Sb、Al、Zn含有のスパッタリングターゲットの製造方法では、上記の混合粉末にこれらの金属元素の粉末を添加し混合するか、または、Bi、Sb、Al、ZnとCu、In、Ga、Seとを合金化した後粉末にし、これらの粉末を目的とする混合粉末にし、真空又は不活性ガス雰囲気中で熱間加圧により焼結することとした。
 以上に示した本発明のスパッタリングターゲットの製造方法では、得られた混合粉末を熱間加圧で焼結するとき、焼結温度を100℃~350℃に設定することが好ましい。これにより、異常放電が少なく、より良好な耐スパッタ割れ性を有するターゲットが得られる。また、加圧のタイミングは、焼結昇温開始前からでもよいし、一定の温度に到達してから加圧してもよい。
 なお、本発明によるスパッタリングターゲットを用いて、基板表面にCu(InGa1-x)Se膜をスパッタリング形成するのに、マグネトロン直流(DC)スパッタリングと高周波(RF)スパッタリングのどちらでも可能である。そのとき、Ar雰囲気中で行うことが好ましい。また、スパッタリング時の投入電力は、1~10W/cmが好ましい。そして、本発明のスパッタリングターゲットで作成する膜の厚みは、500~2000nmとすることができ、成膜時における基板の温度は、室温~550℃、成膜後における熱処理温度は、~600℃とすることが好ましい。
 以上の様に、本発明によれば、高い光電変換効率を有する太陽電池の光吸収層を形成するためのCIGS膜を形成するときに使用するCu-In-Ga-Se合金によるスパッタリングターゲットを提供することができる。
 すなわち、本発明のスパッタリングターゲットによれば、Seが所定の割合で含有されているので、目的とするCIGS膜のCu(InGa1-x)Se化合物をSeの欠損なく形成することができる。本発明のスパッタリングターゲットの製造方法によれば、本発明のスパッタリングターゲットを適切に製造することができる。
 次に、本発明に係るスパッタリングターゲット及びその製造方法について、以下に、具体的に、実施例を挙げて説明するが、その実施例について、製造方法における各粉末の混合の仕方によって、第1の実施形態、第2の実施形態及び第3の実施形態に分ける。即ち、第1の実施形態は、Cu-In-Ga-Se四元系合金粉末(Cu、Ga、In及びSeからなるカルコパイライト型四元合金粉末)とSe粉末又はIn-Se合金粉末、Ga-Se合金粉末、Cu-Se合金粉末とを混合する場合であり、第2の実施形態は、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末、In-Bi合金粉末、Cu-In-Ga合金粉末、In金属粉末、Cu粉末のグループの中から3種を選択した各粉末及びSe粉末を混合する場合であり、そして、第3の実施形態は、第1及び第2の実施形態における混合に、さらに、Na化合物粉末を添加した場合である。
 以上の各実施形態においては、さらに、Bi、Sb、Al、Znの各粉末を混合して、スパッタリングターゲットに、Bi、Sb、Al、Znの各元素を添加することができる。
〔第1の実施形態〕
 第1の実施形態における本発明のスパッタリングターゲットの製造には、第一原料粉として、Cu、Ga、In及びSeからなるカルコパイライト型四元合金粉末(Cu(InGa1-x)Se合金粉末)を、そして、第二原料粉として、Se粉末又はIn-Se合金粉末、Ga-Se合金粉末を用意し、さらに、第三原料粉として、Bi、Sb、Al、In、Zn、Cu-Se合金粉末の各粉末を用意した。このCu-In-Ga-Se四元合金粉末については、Cu粉末、In粉末、Ga粉末及びSe粉末を不活性ガス中で加熱、溶解して得たCu-In-Ga-Se四元系合金溶湯を鋳型に鋳造してインゴットを作製し、そのインゴットを粉砕して得ることができる。なお、上記各粉末は、純度3N以上のものが好ましい。
 そこで、第一原料粉としてのCu-In-Ga-Se四元合金粉末と、第二原料粉としてのSe粉末との量を調整して混合し、実施例1、2の混合粉末を作製した。さらに、第一原料粉としてのCu-In-Ga-Se四元合金粉末と、第二原料粉としてのSe粉末またはInSe粉末と、第三原料粉としての、Bi、Sb、Al、In、Znのうちのいずれか1種の粉末との量を調整して混合し、実施例3~12の混合粉末を作製した。さらに、第一原料粉としてのCu-In-Ga-Se四元合金粉末と、第二原料粉末としてのInSe又はGaSe粉末と、第三原料分としてのCuSe粉末との量を調整して混合し、実施例13および14の混合粉末を作製した。Se粉末の代わりに、InSe粉末、GaSe粉末又はCuSe粉末を使用することにより、より高い焼結温度での焼成が可能になり、ターゲットの密度向上に有効である。実施例1~14の混合粉末の粉末配合量は、表1に示されている。粉末原料の純度は99.9%、粒子サイズは100メッシュ以下である。
 また、実施例に対する比較のため、第一原料粉のCu-In-Ga-Se四元合金粉末だけによる場合として比較例1、2の混合粉末を作製した。さらに、第一原料粉としてのCu-In-Ga-Se四元合金粉末と、第二原料粉としてのSe粉末との混合による場合として比較例3、4の混合粉末を、そして、第一原料粉としてのCu-In-Ga-Se四元合金粉末と、第二原料粉としてのSe粉末と、第三原料粉としての、Sb、Alのうちのいずれか1種の粉末との混合による場合の比較例5、6の混合粉末をそれぞれ作製した。比較例1~6の混合粉末の粉末配合量は、表1に示されている。
Figure JPOXMLDOC01-appb-T000001
 次に、表1に示されるように配合された実施例1~14及び比較例1~6の混合粉末を、表2に示した圧力、温度、保持時間の条件で焼結した。
 ホットプレス法(HP法)の場合(表2では、HPと表記)には、鉄製のモールドに混合粉末を充填し、Ar雰囲気中で行った。熱間静水圧焼結法(HIP法)の場合(表2では、HIPと表記)には、まず混合粉末を金属製金型に充填し、室温において1500kg/cmで加圧成形し、得られた成形体を0.5mm厚みのステンレス容器に装入した後、真空脱気を経て、HIP処理を行った。
 そして、この焼結後の焼結体を、乾式切削により、直径125(mm)×厚さ5(mm)の大きさに加工し、実施例1~14及び比較例1~6のスパッタリングターゲットを作製した。
 なお、加工後のスパッタリングターゲットについては、Inを半田として、無酸素銅製のバッキングプレートにボンディングして、スパッタリング装置に供した。
Figure JPOXMLDOC01-appb-T000002
 ここで、作製された上記の実施例1~14及び比較例1~6のスパッタリングターゲットについて、組成分析を行った。この組成分析においては、実際に作製したスパッタリングターゲットの一部を粉砕したものが使われ、高周波誘導結合プラズマ(ICP)法により行われた。その結果を、表3に示した。なお、表3中のターゲット組成測定結果については、金属元素Cu、In、Ga、Se、Bi、Sb、Al、Znの各金属元素に係る原子比(at%)は、以下の式により計算された。
 金属元素のモル数/(Cu+In+Ga+Se+Na+Sb+Bi+Al+Zn)各元素のモル数×100%
 また、計算で得られた各金属元素の原子比に基づいて、In及びGaに対するCuの比を計算した。
Figure JPOXMLDOC01-appb-T000003
 以上の様に作製した実施例1~14及び比較例1~6のスパッタリングターゲットを用いたスパッタリングを行い、Cu-In-Ga-Seからなる膜(CIGS膜)の成膜を試験した。この成膜試験は、以下の条件で行われた。
 実施例1~14及び比較例1~6のスパッタリングターゲットを用いた成膜試験では、熱酸化膜が形成されたシリコンウエハーの表面上にスパッタリングして成膜した。その膜の厚みは1500nmである。
 CIGS膜の断面を観察して、CIGS結晶の成長状況を確認する場合、Mo膜が既に成膜されているコーニング社製イーグル XG無アルカリガラス基板上にスパッタリングした。このときも、1500nmに成膜した。なお、Mo膜の厚みは、500nmである。
 このスパッタリングでは、高周波電源(RF電源)を使用し、到達真空度が5×10-4Pa以下、スパッタリング時の投入電力は、400W、スパッタガスは、Arのみで、Ar全圧は、0.67Paとした。成膜時における基板温度及び成膜後における熱処理温度は、表4に示されている。
 次に、実施例1~14及び比較例1~6のスパッタリングターゲットを用いたスパッタリングで得られた成膜のサンプルに対して、真空度が5×10-3Pa以下の真空度で30minの赤外線熱処理を行った後に、シリコンウエハーに成膜したサンプルについて、膜を基板から剥がした後に、金属元素定量の分析(ICP法)を行った。得られた膜中の各金属元素(Se含む)の含有量が、表4に示されている。ここで、表4中の膜組成測定結果に係る金属元素Cu、In、Ga、Se、Bi、Sb、Al、Znの各原子比(%)は、以下の式により計算された。
 M元素のモル数/(Cu+In+Ga+Se+Na+Sb+Bi+Al+Zn)各元素のモル数×100
 また、得られた実施例1~14及び比較例1~6のスパッタリングターゲットでスパッタリングされた膜の結晶構造解析では、X線回折装置(XRD)を用いて、Mo膜が成膜されたガラス基板上に成膜したCIGS膜を分析した。
 膜の断面観察は、Mo膜付きガラス基板上に成膜したCIGS膜を液体窒素にディープした後、膜付きガラス基板を迅速に割り、その断面を電解放出型電子顕微鏡(FE-SEM)にて観察を行った。実施例1の場合を評価基準として、CIGS膜の結晶成長状況を確認、比較した。
 そこで、基板加熱成膜又は熱処理後の膜について、XRDによる結晶解析により、その膜が、単一相であるか、二相以上であるかを確認した。
 それらの結果が表4に示されている。
Figure JPOXMLDOC01-appb-T000004
 以上の結果から判るように、実施例1~14に係るCu-In-Ga-Se四元系元素からなるスパッタリングターゲットによりスパッタリングすることで、Cu0.95~1.05(In1-xGa)Se1.95~2.05の組成を有する膜が得られ、目的とする組成の良好なCu-In-Ga-Se四元系膜であることが確認され、いずれの実施例の場合も、結晶粒サイズは均一であった。これに対して、比較例1~4のスパッタリングターゲットによるスパッタリングで得られた膜においては、結晶粒サイズが不均一であり、小さく、しかも、二相以上となり、Se含有相が存在することが確認され、目的とする組成の膜が得られなかった。さらに、比較例5、6のスパッタリングターゲットによりスパッタリングを行った場合には、結晶粒サイズが不均一であるだけでなく、膜剥がれの発生がみられた。このため、XRDによる測定ができなかった。
〔第2の実施形態〕
 第2の実施形態は、本発明のスパッタリングターゲットを製造するにあたり、Cu-In合金粉末、Cu-Ga合金粉末、Cu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末、Cu-Zn合金粉末、In-Bi合金粉末、In金属粉末、Sb金属粉末のグループの中から3種以上を選択した各粉末とSe粉末とを混合した混合粉を用いる場合である。
 そこで、第一原料粉として、Cu-In合金粉末、Cu-Se合金粉末、Cu-Zn合金粉末を用意し、第二原料粉として、Se粉末を用意し、第三原料粉として、In金属粉末を、そして、第四原料粉として、Cu-Ga合金粉末を用意し、さらに、第五原料粉として、Sb金属粉末を用意した。上記各粉末は、鋳造されたインゴットを粉砕して得られた一般的なものでよく、純度3N以上のものが好ましい。
 次に、第一原料粉としてのCu-In合金粉末と、第二原料粉としてのSe粉末と、第四原料粉としてのCu-Ga合金粉末との量を調整して混合し、実施例15、16の混合粉末を作製し、第一原料粉としてのCu-Se合金粉末と、第二原料粉としてのSe粉末と、第四原料粉としてのCu-Ga合金粉末との量を調整して混合し、実施例17、18の混合粉末を作製した。さらに、第一原料粉としてのCu-Zn合金粉末と、第二原料粉としてのSe粉末と、第三原料粉としてのIn金属粉末と、第四原料粉としてのCu-Ga合金粉末と、第五原料粉末としてのSb金属粉末との量を調整して混合し、実施例19の混合粉末を作製した。実施例15~19の混合粉末の粉末配合量は、表5に示されている。各粉末の純度は99.9%、粒子サイズは100メッシュ以下である。
Figure JPOXMLDOC01-appb-T000005
 次に、表5に示されるように配合された実施例15~19の混合粉末を、表6に示した圧力、温度、保持時間の条件で焼結した。
 実施例15~19の混合粉末に対しては、熱間静水圧焼結法(HIP法:表6では、HIPと表記)を採用し、実施例15~19のスパッタリングターゲットを作製した。まず、各混合粉末を金属製金型に充填し、室温において1500kg/cmで加圧成形し、得られた成形体を0.5mm厚みのステンレス容器に装入した後、真空脱気を経て、HIP処理を行った。
 そして、この焼結後の焼結体を、乾式切削により、直径125(mm)×厚さ5(mm)の大きさに加工し、実施例15~19のスパッタリングターゲットを作製した。なお、加工後のスパッタリングターゲットについては、Inを半田として、無酸素銅製のバッキングプレートにボンディングして、スパッタリング装置に供した。
Figure JPOXMLDOC01-appb-T000006
 ここで、作製された上記の実施例15~19のスパッタリングターゲットについて、上記第一の実施形態の場合と同様にして、組成分析を行った。この組成分析の結果を、表7に示した。なお、表7中のターゲット組成測定結果についても、第一の実施形態の場合で用いた式により計算され、そして、計算で得られた各金属元素の原子比に基づいて、In及びGaに対するCuの比を計算した。
Figure JPOXMLDOC01-appb-T000007
 以上の様に作製した実施例15~19のスパッタリングターゲットを用いたスパッタリングを行い、Cu-In-Ga-Seからなる膜(CIGS膜)の成膜を試験した。この成膜試験は、上記第一の実施形態の場合と同様の条件で行われた。成膜時における基板温度及び成膜後における熱処理温度は、表8に示されている。
 次に、実施例15~19のスパッタリングターゲットを用いたスパッタリングで得られた成膜のサンプルに対して、真空度が5×10-3Pa以下の真空度で30minの赤外線熱処理を行った後に、シリコンウエハーに成膜したサンプルについて、膜を基板から剥がした後に、金属元素定量の分析(ICP法)を行った。得られた膜中の各金属元素(Se含む)の含有量が、表8に示されている。ここで、表8中の膜組成測定結果に係る各金属元素の各原子比(%)は、第一の実施形態の場合で用いた式により計算された。
 また、得られた実施例15~19のスパッタリングターゲットでスパッタリングされた膜の結晶構造解析では、X線回折装置(XRD)を用いて、Mo膜が成膜されたガラス基板上に成膜したCIGS膜を分析した。
 膜の断面観察は、Mo膜付きガラス基板上に成膜したCIGS膜を液体窒素にディープした後、膜付きガラス基板を迅速に割り、その断面を電解放出型電子顕微鏡(FE-SEM)にて観察を行った。実施例1の場合を評価基準として、CIGS膜の結晶成長状況を確認、比較した。
 そこで、基板加熱成膜又は熱処理後の膜について、XRDによる結晶解析により、その膜が、単一相であるか、二相以上であるかを確認した。
 それらの結果が表8に示されている。
Figure JPOXMLDOC01-appb-T000008
 以上の結果から判るように、実施例15~19に係るCu-In-Ga-Se四元系元素からなるスパッタリングターゲットによりスパッタリングすることで、Cu0.95~1.05(In1-xGa)Se1.95~2.05の組成を有する膜が得られ、目的とする組成の良好なCu-In-Ga-Se四元系膜であることが確認され、いずれの実施例の場合も、結晶粒サイズは均一であり、良好な結果が得られた。
〔第3の実施形態〕
 第3の実施形態は、第1及び第2の実施形態における混合に、さらに、Na化合物粉末を添加した場合である。これは、上述したように、Cu、Ga、In及びSeからなるスパッタリングターゲット素地中にNaが化合物として、Na含有量が原子比で、Na/(Cu+In+Ga+Se+Na)=0.05~5%含有されていると、NaがCu(InGa1-x)Se結晶の形成を促進し、Seの欠損を低減する効果があるため、第1及び第2の実施形態における混合粉の作製時に、Na化合物、例えば、NaF、NaS及びNaSe、NaSeOのうちの少なくとも1種の化合物の粉末を混合することとした。
 そこで、第一乃至第五原料粉として、表9に示される成分組成を有する各原料粉末を用意した。第五原料粉末には、Na化合物粉末として、NaF、NaS、NaSe、NaSeOの各粉末であり、純度3N、一次平均粒子径0.2μmのものを用意した。これらのNa化合物粉末は、真空乾燥機中で真空環境にて80℃、3時間以上の乾燥されている。Na化合物粉末は、第一乃至第四原料粉末とともに、秤量後、ポリポットに入れ、直径:5mmのZrOボールを入れて、ボールミルで指定された時間混合された。ここで、実施例20~24の混合粉が作製された。
 また、実施例に対する比較のため、第一原料粉としてのCu-In合金粉末と、第二原料粉としてのSe粉末と、第三原料粉としてのCu金属粉末と、第四原料粉末としてのCu-In-Ga合金粉末と、第五原料粉末としてのNaF化合物粉末との混合による場合の比較例7の混合粉末を作製した。比較例7の混合粉末の粉末配合量は、表9に示されている。なお、参考のため、表9には、第一の実施形態の場合に示した比較例3、4を記載した。
Figure JPOXMLDOC01-appb-T000009
 次に、表9に示されるように配合された実施例20~24及び比較例7の混合粉末を、表10に示した圧力、温度、保持時間の条件で焼結した。
 実施例20~24及び比較例7の混合粉末に対しては、ホットプレス法(HP法:表10では、HPと表記)を採用し、鉄製のモールドに混合粉末を充填し、Ar雰囲気中でHP処理を行った。
 そして、この焼結後の焼結体を、乾式切削により、直径125(mm)×厚さ5(mm)の大きさに加工し、実施例20~24及び比較例7のスパッタリングターゲットを作製した。なお、加工後のスパッタリングターゲットについては、Inを半田として、無酸素銅製のバッキングプレートにボンディングして、スパッタリング装置に供した。
Figure JPOXMLDOC01-appb-T000010
 ここで、作製された上記の実施例20~24及び比較例7のスパッタリングターゲットについて、上記第一の実施形態の場合と同様にして、組成分析を行った。この組成分析の結果を、表11に示した。なお、表7中のターゲット組成測定結果についても、第一の実施形態の場合で用いた式により計算され、そして、計算で得られた各金属元素の原子比に基づいて、In及びGaに対するCuの比を計算した。
 また、Na化合物であるNaF、NaS、NaSeOとして添加される際に付随してスパッタリングターゲットにドープされるF、S、Seの元素については、ほぼNaとの化学量論比通りにターゲット中に含有されることが確認されている。
Figure JPOXMLDOC01-appb-T000011
 次に、実施例20~24及び比較例7のスパッタリングターゲットを用いたスパッタリングで得られた成膜のサンプルに対して、真空度が5×10-3Pa以下の真空度で30minの赤外線熱処理を行った後に、シリコンウエハーに成膜したサンプルについて、膜を基板から剥がした後に、金属元素定量の分析(ICP法)を行った。得られた膜中の各金属元素(Se含む)の含有量が、表8に示されている。ここで、表12中の膜組成測定結果に係る各金属元素の各原子比(%)は、第一の実施形態の場合で用いた式により計算された。
 また、得られた実施例20~24及び比較例7のスパッタリングターゲットでスパッタリングされた膜の結晶構造解析では、X線回折装置(XRD)を用いて、Mo膜が成膜されたガラス基板上に成膜したCIGS膜を分析した。
 膜の断面観察は、Mo膜付きガラス基板上に成膜したCIGS膜を液体窒素にディープした後、膜付きガラス基板を迅速に割り、その断面を電解放出型電子顕微鏡(FE-SEM)にて観察を行った。実施例1の場合を評価基準として、CIGS膜の結晶成長状況を確認、比較した。
 そこで、基板加熱成膜又は熱処理後の膜について、XRDによる結晶解析により、その膜が、単一相であるか、二相以上であるかを確認した。
 それらの結果が表12に示されている。
Figure JPOXMLDOC01-appb-T000012
 以上の結果から判るように、実施例20~24に係るCu-In-Ga-Se-Na五元系元素からなるスパッタリングターゲットによりスパッタリングすることで、Naが添加されたCu0.95~1.05(In1-xGa)Se1.95~2.05Naの組成を有する膜が得られ、目的とする組成の良好なCu-In-Ga-Se-Na五元系膜であることが確認され、いずれの実施例の場合も、結晶粒サイズは均一であった。そして、Naが添加されたことにより、Cu(InGa1-x)Se結晶におけるSeの欠損の抑制効果があることが確認された。これに対して、比較例7のスパッタリングターゲットによるスパッタリングで得られた膜においては、Naの含有量が多いため、CIGS膜とMo膜の界面にNaが集中しやすくなり、結晶粒サイズが不均一であるだけでなく、膜剥がれの発生がみられた。
 なお、本発明の技術範囲は、上記実施形態及び上記実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 高い光電変換効率を有する太陽電池の光吸収層を形成するために必要とされるCIGS膜を、Seの欠損なく形成することができる。

Claims (11)

  1.  主成分として、Cu、In、Ga、Se及び不可避不純物からなる成分組成を有する焼結体であって、
     前記焼結体中におけるSeは、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有していることを特徴とするスパッタリングターゲット。
  2.  前記焼結体中におけるCuは、Cu/(In+Ga)の原子比で、0.9~1.0含有していることを特徴とする請求項1に記載のスパッタリングターゲット。
  3.  前記焼結体中にNaが化合物として含有され、
     前記Naは、Na/(Cu+In+Ga+Se+Na)の原子比で、0.05~5%含有していることを特徴とする請求項1又は2に記載のスパッタリングターゲット。
  4.  前記Naの化合物は、NaF、NaS、NaSe及びNaSeOのうちの少なくとも1種であることを特徴とする請求項3に記載のスパッタリングターゲット。
  5.  前記焼結体中に、Bi、Sb、Al、Znから選ばれる少なくとも1種の元素が、M/(Cu+In+Ga+Se+M):(ここで、Mは、Bi、Sb、Al、Znから選ばれる少なくとも1種の元素を示す)の原子比で、0.05~5%含有していることを特徴とする請求項1乃至4のいずれか一項に記載のスパッタリングターゲット。
  6.  Cu、In、Ga及びSeからなるカルコパイライト型結晶構造を有する四元系合金粉末とSe粉末又はCu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中で熱間加圧して焼結体を作製する工程とを備えることを特徴とするスパッタリングターゲットの製造方法。
  7.  前記混合粉末を得る工程では、Sb、Bi、Al及びZnのうちの1種の粉末が混合されることを特徴とする請求項6に記載の薄膜形成用スパッタリングターゲットの製造方法。
  8.  Cu-In合金粉末と、In粉末と、Cu-Ga合金粉末と、Se粉末又はCu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中でホットプレスして焼結体を作製する工程とを備えた薄膜形成用スパッタリングターゲットの製造方法。
  9.  Cu-Se合金粉末と、In-Bi合金粉末と、Cu-Ga合金粉末と、Se粉末又はIn-Se合金粉末、Ga-Se合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中でホットプレスして焼結体を作製する工程とを備えた薄膜形成用スパッタリングターゲットの製造方法。
  10.  Cu-In合金粉末と、Cu粉末と、Cu-In-Ga合金粉末と、Se粉末又はCu-Se合金粉末、In-Se合金粉末、Ga-Se合金粉末とを、Seが、Se/(Se+Cu+In+Ga)の原子比で、50.1~60%含有する量で混合して混合粉末を得る工程と、前記混合粉末を真空または不活性ガス雰囲気中でホットプレスして焼結体を作製する工程とを備えた薄膜形成用スパッタリングターゲットの製造方法。
  11.  前記混合粉末を得る工程では、NaF、NaS、NaSe及びNaSeOのうちの少なくとも1種の化合物粉末が混合されることを特徴とする請求項6乃至10のいずれか一項に記載の薄膜形成用スパッタリングターゲットの製造方法。
PCT/JP2013/079841 2012-11-05 2013-11-05 スパッタリングターゲット及びその製造方法 WO2014069652A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380054636.8A CN104903487A (zh) 2012-11-05 2013-11-05 溅射靶及其制造方法
JP2014544620A JPWO2014069652A1 (ja) 2012-11-05 2013-11-05 スパッタリングターゲット及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-243471 2012-11-05
JP2012243471 2012-11-05

Publications (1)

Publication Number Publication Date
WO2014069652A1 true WO2014069652A1 (ja) 2014-05-08

Family

ID=50627544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079841 WO2014069652A1 (ja) 2012-11-05 2013-11-05 スパッタリングターゲット及びその製造方法

Country Status (4)

Country Link
JP (1) JPWO2014069652A1 (ja)
CN (1) CN104903487A (ja)
TW (1) TW201425620A (ja)
WO (1) WO2014069652A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404457A (zh) * 2014-11-21 2015-03-11 北京四方继保自动化股份有限公司 一种铜铟镓硒四元靶材的Na掺杂方法
CN104925760A (zh) * 2015-07-02 2015-09-23 成都先锋材料有限公司 CIGS的Na掺杂方法、及其溅射靶材的制作方法
CN105070791A (zh) * 2015-08-25 2015-11-18 成都先锋材料有限公司 掺杂铋化合物的cigs及其掺杂方法
CN105118878A (zh) * 2015-07-28 2015-12-02 成都先锋材料有限公司 Cigs的锑化合物掺杂方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6692724B2 (ja) * 2016-09-02 2020-05-13 Jx金属株式会社 非磁性材料分散型Fe−Pt系スパッタリングターゲット

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101661971A (zh) * 2009-09-10 2010-03-03 中国科学院电工研究所 一种制备CuInSe2基薄膜太阳能电池光吸收层的方法
JP2010215499A (ja) * 2009-03-04 2010-09-30 Jun-Wen Chung 多元金属系硫黄化合物及びその製造方法
WO2011052574A1 (ja) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 カルコパイライト型化合物薄膜の製造方法およびそれを用いた薄膜太陽電池の製造方法
WO2011083646A1 (ja) * 2010-01-07 2011-07-14 Jx日鉱日石金属株式会社 スパッタリングターゲット、化合物半導体薄膜、化合物半導体薄膜を有する太陽電池及び化合物半導体薄膜の製造方法
WO2012002337A1 (ja) * 2010-06-29 2012-01-05 株式会社コベルコ科研 Cu、In、GaおよびSeの元素を含有する粉末、焼結体およびスパッタリングターゲット、並びに上記粉末の製造方法
WO2012042959A1 (ja) * 2010-09-27 2012-04-05 Jx日鉱日石金属株式会社 Cu-In-Ga-Se四元系合金スパッタリングターゲット
WO2013069710A1 (ja) * 2011-11-10 2013-05-16 三菱マテリアル株式会社 スパッタリングターゲットおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215499A (ja) * 2009-03-04 2010-09-30 Jun-Wen Chung 多元金属系硫黄化合物及びその製造方法
CN101661971A (zh) * 2009-09-10 2010-03-03 中国科学院电工研究所 一种制备CuInSe2基薄膜太阳能电池光吸收层的方法
WO2011052574A1 (ja) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 カルコパイライト型化合物薄膜の製造方法およびそれを用いた薄膜太陽電池の製造方法
WO2011083646A1 (ja) * 2010-01-07 2011-07-14 Jx日鉱日石金属株式会社 スパッタリングターゲット、化合物半導体薄膜、化合物半導体薄膜を有する太陽電池及び化合物半導体薄膜の製造方法
WO2012002337A1 (ja) * 2010-06-29 2012-01-05 株式会社コベルコ科研 Cu、In、GaおよびSeの元素を含有する粉末、焼結体およびスパッタリングターゲット、並びに上記粉末の製造方法
WO2012042959A1 (ja) * 2010-09-27 2012-04-05 Jx日鉱日石金属株式会社 Cu-In-Ga-Se四元系合金スパッタリングターゲット
WO2013069710A1 (ja) * 2011-11-10 2013-05-16 三菱マテリアル株式会社 スパッタリングターゲットおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
T. NAKADA ET AL.: "Impacts of Sb and Bi incorporations on CIGS thin films and solar cells", 2011 37TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE, vol. 5, 2011, pages 3531 - 3535 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104404457A (zh) * 2014-11-21 2015-03-11 北京四方继保自动化股份有限公司 一种铜铟镓硒四元靶材的Na掺杂方法
CN104925760A (zh) * 2015-07-02 2015-09-23 成都先锋材料有限公司 CIGS的Na掺杂方法、及其溅射靶材的制作方法
CN105118878A (zh) * 2015-07-28 2015-12-02 成都先锋材料有限公司 Cigs的锑化合物掺杂方法
CN105070791A (zh) * 2015-08-25 2015-11-18 成都先锋材料有限公司 掺杂铋化合物的cigs及其掺杂方法

Also Published As

Publication number Publication date
JPWO2014069652A1 (ja) 2016-09-08
CN104903487A (zh) 2015-09-09
TW201425620A (zh) 2014-07-01

Similar Documents

Publication Publication Date Title
US9660127B2 (en) Sputtering target and method for producing same
TWI583811B (zh) A Cu-Ga sputtering target, a method for manufacturing the target, a light absorbing layer, and a solar cell using the light absorbing layer
TWI490348B (zh) Sputtering target and its manufacturing method
TWI553139B (zh) Sputtering target and its manufacturing method
WO2011055537A1 (ja) スパッタリングターゲット及びその製造方法
US20120205242A1 (en) Cu-In-Ga-Se QUATERNARY ALLOY SPUTTERING TARGET
US10017850B2 (en) Cu—Ga alloy sputtering target, and method for producing same
WO2014069652A1 (ja) スパッタリングターゲット及びその製造方法
JP2010245238A (ja) 光電変換装置およびその製造方法ならびに硫化物焼結体ターゲットの製造方法
CN104835869B (zh) 铜铟镓硒薄膜太阳能电池及其制备方法
US9399816B2 (en) Refurbishing copper and indium containing alloy sputter targets and use of such targets in making copper and indium-based films
WO2012144655A1 (ja) スパッタリングターゲット及びその製造方法
Cheng et al. Optimization of post-selenization process of Co-sputtered CuIn and CuGa precursor for 11.19% efficiency Cu (In, Ga) Se 2 solar cells
JP2012246574A (ja) スパッタリングターゲット及びその製造方法
JP6436006B2 (ja) スパッタリングターゲット及びその製造方法
JP5776902B2 (ja) スパッタリングターゲット及びその製造方法
JP2016082120A (ja) 太陽電池用光吸収層およびその製造方法、並びに前記太陽電池用光吸収層を有する太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13851756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014544620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13851756

Country of ref document: EP

Kind code of ref document: A1