TWI634669B - 大面積薄膜太陽能電池的製法 - Google Patents

大面積薄膜太陽能電池的製法 Download PDF

Info

Publication number
TWI634669B
TWI634669B TW105112547A TW105112547A TWI634669B TW I634669 B TWI634669 B TW I634669B TW 105112547 A TW105112547 A TW 105112547A TW 105112547 A TW105112547 A TW 105112547A TW I634669 B TWI634669 B TW I634669B
Authority
TW
Taiwan
Prior art keywords
layer
potassium fluoride
gallium
copper
solar cell
Prior art date
Application number
TW105112547A
Other languages
English (en)
Other versions
TW201739063A (zh
Inventor
賴志煌
蔡忠浩
Original Assignee
國立清華大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立清華大學 filed Critical 國立清華大學
Priority to TW105112547A priority Critical patent/TWI634669B/zh
Priority to CN201610348034.9A priority patent/CN107305914A/zh
Priority to US15/275,862 priority patent/US20170309772A1/en
Publication of TW201739063A publication Critical patent/TW201739063A/zh
Application granted granted Critical
Publication of TWI634669B publication Critical patent/TWI634669B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0694Halides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5866Treatment with sulfur, selenium or tellurium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • H01L31/0323Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一種大面積薄膜太陽能電池的製法,實質上是由以下步驟所構成:(a)在一表面之上形成有一第一電極單元的基板上形成一多層膜,該步驟;(b)在一含有一惰性氣體及一硒源的退火環境內對該多層膜施予硒化處理,以令該多層膜形成一具有黃銅礦晶相的吸收層;(c)於該吸收層上形成一第一緩衝層;(d)於該第一緩衝層上形成一第二緩衝層;(e)於該第二緩衝層上形成一透明導電層;及驟(f)於該透明導電層上形成一第二電極單元。該步驟(a)包括以下次步驟:(a1)於該第一電極單元上濺鍍一含有Cu、Ga及KF的第一複合膜體,及(a2)在該含有Cu、Ga及KF的第一複合膜體上濺鍍一In膜體。

Description

大面積薄膜太陽能電池的製法
本發明是有關於一種薄膜太陽能電池(thin film solar cell)的製法,特別是指一種大面積薄膜太陽能電池的製法。
在現有的各類太陽能電池中,以薄膜太陽能電池因其光電轉換效率(photoelectric conversion efficiency;以下稱PCE)高而廣受業界所重視。薄膜太陽能電池主要是以具有黃銅礦晶相(chalcopyrite phase)的光電材料,如,硒化銅銦鎵[Cu(In,Ga)Se2,以下稱CIGS)]做為其一吸收層(absorber layer)。
本發明所屬技術領域中的相關技術人員皆知,當薄膜太陽能電池中的CIGS吸收層與其上下界面間的能隙(energy gap)越大時,其能有效地阻止載子產生復合(recombination),並藉此提升薄膜太陽能電池的開路電壓(open circuit voltage;以下稱Voc)等諸多電性。因此,本發明所屬技術領域中的相關技術人員無不想發方設法地提升CIGS吸收層與其上下界面間的能隙。如令CIGS吸收層至少具有單側階級能隙(normal grading bandgap),或進一步地令CIGS吸收層具有一V字型結構(notch structure)的 雙側階級能隙(double grading bandgap),以進一步地提升短路電流密度(short circuit current density;以下稱Jsc)。以前述V字型結構之能隙的製法舉例來說,前述CIGS吸收層大致上可分為共蒸鍍法(co-evaporation)及濺鍍法(sputtering)。
傳統的共蒸鍍法主要是使一表面沉積有鉬(以下稱Mo)電極的待鍍物設置於一連續型共蒸鍍設備(in-line co-evaporation plant)的高真空腔裡,並於蒸鍍過程中持續地控制多數個分別對應載有銅(以下稱Cu)、銦(以下稱In)、鎵(以下稱Ga)與硒(以下稱Se)等起始物料的電極坩堝的輸出功率,以藉此調整自該等電極坩堝所分別蒸發出來的Cu、In、Ga與Se等氣體流量,從而在該待鍍物的Mo電極上沉積出一上表面及一下表面含Ga量偏高的一共蒸鍍CIGS吸收層,以令該共蒸鍍CIGS吸收層具有該V字型結構的能隙。
隨著技術的演進,Chiril,A.等人於Nature Materials,12(2013),1107-1111公開有Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cealls一文(以下稱前案1)。前案1提及,在一商用的聚醯亞胺膜(polyimide film)上共蒸鍍一CIGS膜後,對該CIGS膜施予一沉積後處理(post-deposition treatment;以下稱PDT),以藉此改善該CIGS膜的能隙結構。該PDT所指的是, 使該CIGS膜透過共蒸鍍法於該CIGS膜上先沉積一厚度約26nm的NaF膜,並進一步地在350℃的基板溫度條件下,於存在有Se的環境下使KF蒸發在該NaF膜上。前案1的分析結果顯示,PDT中的KF可令沉積於該CIGS膜上的CdS層內的Cd補充至該CIGS膜內的Cu空缺(vacancy),一方面可減少CdS層所需厚度並降低短波段(400nm至500nm間)的吸收從而提升其薄膜太陽能電池的外部量子效率(external quantum efficiency;以下稱EQE);另一方面也能改善CIGS/CdS的異質接面(heterojunction)品質。然而,不論是傳統的共蒸鍍法或是前案1的做法,都無法實現大面積薄膜太陽能電池的目標。惟有透過濺鍍法才可突破薄膜太陽能電池長期無法達成大尺寸的難題。
參閱圖1,傳統的濺鍍法則是在一沉積有一下電極(如,Mo)100的玻璃基板10上依序濺鍍上一CuGa膜11,及一In膜12,從而在該下電極100上形成一前趨物(precursor)多層膜13。進一步地,對該前驅物多層膜13施予一先硒化後硫化(sulfurization after selenization;簡稱SAS)的高溫退火處理(annealing),從而製得一濺鍍CIGS吸收層,以令該多層膜13透過後硫化的程序使該濺鍍CIGS吸收層具有該V字型結構的能隙。雖然前述傳統的濺鍍法可令CIGS吸收層具有該V字型結構的能隙。 然而,該濺鍍CIGS吸收層仍需耗費時間來實施後硫化處理才可令其吸收層具有該V字型結構的能隙,時間成本也高。
經上述說明可知,在簡化製法程序以節省時間成本的前提下,令大面積的吸收層至少具有單側階級能隙的能隙結構,是此技術領域的相關技術人員所待突破的難題。
因此,本發明之目的,即在提供一種在簡化製法程序以節省時間成本的前提下,令大面積的吸收層至少具有單側階級能隙的能隙結構的大面積薄膜太陽能電池的製法。
於是,本發明大面積薄膜太陽能電池的製法,實質上是由以下步驟所構成,一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。該步驟(a)是在一表面之上形成有一第一電極單元的基板上形成一多層膜,並包括以下次步驟,一步驟(a1)及一步驟(a2)。該步驟(a1)是於該第一電極單元上濺鍍一含有銅(以下稱Cu)、鎵(以下稱Ga)及氟化鉀(以下稱KF)的第一複合膜體。該步驟(a2)是在該含有Cu、Ga及KF的第一複合膜體上濺鍍一銦(以下稱In)膜體。該步驟(b)是於該步驟(a)後,在一含有一惰性氣體及一硒源的退火環境內對該多層膜施予硒化處理,以令該多層膜形成一具有黃銅礦晶相的吸收層。該步驟(c)是於該吸收層上形成一第一緩衝層。該步驟(d)是於該第一緩衝層上形成一第二 緩衝層。該步驟(e)是於該第二緩衝層上形成一透明導電層。該步驟(f)是於該透明導電層上形成一第二電極單元。
本發明之功效在於:直接透過可大面積成膜的濺鍍法來形成該多層膜中的該含有Cu、Ga及KF的第一複合膜體,在無需引入後硫化處理的前提下可令其吸收層僅透過硒化處理而具有單側階級能隙,不僅製程簡化,且所需耗費的時間成本少。
2‧‧‧基板
3‧‧‧第一電極單元
4‧‧‧多層膜
40‧‧‧吸收層
41‧‧‧含有Cu、Ga及KF的第一複合膜體
411‧‧‧含有Ga與KF的第一層
412‧‧‧由Cu所構成的第二層
413‧‧‧含有Ga與KF的第二層
42‧‧‧In膜體
43‧‧‧含有Cu、Ga及KF的第二複合膜體
44‧‧‧Se氣體
5‧‧‧第一緩衝層
6‧‧‧第二緩衝層
7‧‧‧透明導電層
8‧‧‧第二電極單元
9‧‧‧退火爐
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一正視示意圖,說明一種傳統的濺鍍法所形成的一多層膜;圖2是一元件製作流程圖,說明本發明大面積薄膜太陽能電池的製法的一第一實施例的一前段流程;圖3是一元件製作流程圖,說明本發明該第一實施例的一後段流程;圖4是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第二實施例的一步驟(a)的一多層膜;圖5是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第三實施例的該步驟(a)的多層膜; 圖6是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第四實施例的該步驟(a)的多層膜;圖7是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第五實施例的該步驟(a)的多層膜;圖8是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第六實施例的該步驟(a)的多層膜;圖9是一正視示意圖,說明本發明大面積薄膜太陽能電池的製法的一第七實施例的該步驟(a)的多層膜;圖10是二次離子質譜圖(secondary ion mass spectrogram;SIMS),說明本發明大面積薄膜太陽能電池的製法的複數個比較例(Comparative Examples,以下稱CE)與一具體例1(Example 1;以下稱E1)之一吸收層內的Ga縱深成分分布(depth profile);圖11是一X-射線光電子能譜儀的成分縱深圖(spectroscopy compositional depth profiles by X-ray photoelectron spectroscopy;XPS),說明本發明大面積薄膜太陽能電池的製法的一具體例2(以下稱E2)之一吸收層內的縱深成分分布;圖12是一電流密度(J)對電壓(V)關係圖,說明本發明該等比較例(CE)與該具體例1(E1)的電性; 圖13是一外部量子效率(external quantum efficiency;EQE)對波長關係圖,說明本發明該等比較例(CE)與該具體例1(E1)的不同波長下的外部量子效率;及圖14是一電流密度(J)對電壓(V)關係圖,說明本發明該具體例1(E1)與該具體例2(E2)的電性。
<發明詳細說明>
在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。
如圖2與圖3所示,本發明之大面積薄膜太陽能電池的製法的一第一實施例,實質上是由以下步驟所構成,一步驟(a)、一步驟(b)、一步驟(c)、一步驟(d)、一步驟(e),及一步驟(f)。該步驟(a)是在一表面之上形成有一第一電極單元3的基板2上形成一多層膜4,並包括以下次步驟,一步驟(a1)及一步驟(a2)。
該步驟(a1)是於該第一電極單元3上濺鍍一含有Cu、Ga及KF的第一複合膜體41;該步驟(a2)是在該含有Cu、Ga及KF的第一複合膜體41上濺鍍一In膜體42。在本發明該第一實施例中,該步驟(a1)的該含有Cu、Ga及KF的第一複合膜體41是經濺射一含有Cu、Ga及KF的第一靶材(圖未示)所製成。此處需補充說明的是,本發明該第一實施例之該含有Cu、Ga及KF的第一靶材含有 10at%至40at%間的Ga、0.5at%至10at%間的KF,與剩餘的Cu。
該步驟(b)是於該步驟(a)後,在一含有一惰性氣體及一硒源(Se source)的退火環境內對該多層膜4施予20分鐘的硒化處理,以令該多層膜4形成一具有黃銅礦晶相的吸收層40。更具體地來說,如圖1之步驟(b)所示,在本發明該第一實施例中,該多層膜4是被放置在一退火爐9內之一內部承載有Se粉末的石墨盒(圖未示)中並引入氬氣(Ar),以在550℃與1atm的環境下使該Se氣化成Se氣體44並與該多層膜4硒化成該具有黃銅礦晶相的吸收層40。
較佳地,該步驟(b)後所完成的該吸收層40具有一總厚度(D),該步驟(a1)的該含有Cu、Ga及KF的第一複合膜體41具有一第一厚度(d1),該步驟(a2)的該In膜體42具有一第二厚度(d2),D至少大於0.8μm,且d1/d2 0.25。更佳地,0.25d1/d2 1.2。
該步驟(c)是以化學浴沉積法(chemical bath deposition,以下稱CBD)於該吸收層40上形成一由硫化鎘(CdS)所構成的第一緩衝層5。該步驟(d)是以射頻濺鍍法(r.f.sputtering)於該第一緩衝層5上形成一由氧化鋅(ZnO)所構成的第二緩衝層6。該步驟(e)同樣是以射頻濺鍍法於該第二緩衝層6上形成一由摻雜有鋁的氧化鋅(ZnO:Al)所構成的透明導電層7。該步 驟(f)是以電子束蒸鍍法(e-beam evaporation)於該透明導電層7上形成一由鋁(Al)所構成的第二電極單元8。
經上述第一實施例的簡單說明可知,本發明僅對該多層膜4施予硒化處理,並未進一步地施予後硫化處理。
參閱圖4,本發明之大面積薄膜太陽能電池的製法的一第二實施例,大致上是相同於該第一實施例,其不同的地方在於,本發明該第二實施例的該步驟(a)還包括一於該步驟(a2)後的步驟(a3)。該步驟(a3)是經濺射該含有Cu、Ga及KF的第一靶材以於該In膜體42上濺鍍一含有Cu、Ga及KF的第二複合膜體43。
較佳地,該步驟(b)後所完成的該吸收層40具有該總厚度(D),該步驟(a3)的該含有Cu、Ga及KF的第二複合膜體43具有一第三厚度(d3),0.5d1/d3 6,且(d1+d3)/d2 0.25。更佳地,0.25(d1+d3)/d2 1.2。
參閱圖5,本發明之大面積薄膜太陽能電池的製法的一第三實施例,大致上是相同於該第一實施例,其不同的地方在於,該第三實施例的該步驟(a1)的該含有Cu、Ga及KF的第一複合膜體41具有一形成於該第一電極單元3上且含有Ga與KF的第一層411,及一形成在該含有Ga與KF的第一層411上且是由Cu所構成的第二層412。該含有Ga與KF的第一層411是經濺射一含有Ga與 KF的第二靶材(圖未示)所製成,且該由Cu所構成之第二層412是經濺射一由Cu所構成之第三靶材(圖未示)所製成。
參閱圖6,本發明之大面積薄膜太陽能電池的製法的一第四實施例,大致上是相同於該第三實施例,其不同的地方在於,該第四實施例的該步驟(a)還包括一於該步驟(a2)後的步驟(a4),該步驟(a4)是經濺射該含有Ga與KF的第二靶材以於該In膜體42上濺鍍一含有Ga與KF的第二層413。
參閱圖7,本發明之大面積薄膜太陽能電池的製法的一第五實施例,大致上是相同於該第三實施例,其不同的地方在於,本發明該第五實施例的該步驟(a)還包括該步驟(a4)。該步驟(a4)是介於該步驟(a1)與該步驟(a2)間,且是經濺射該含有Ga與KF的第二靶材以於該由Cu所構成的第二層412上濺鍍該含有Ga與KF的第二層413。
參閱圖8,本發明之大面積薄膜太陽能電池的製法的一第六實施例,大致上是相同於該第一實施例,其不同的地方在於,該第六實施例的該步驟(a1)的該含有Cu、Ga及KF的第一複合膜體41具有該形成於該第一電極單元3上且是由Cu所構成的第二層412,及該形成在該由Cu所構成的第二層412上且含有Ga與KF的第一層411。該由Cu所構成之第二層412是經濺射該由Cu所構成之 第三靶材(圖未示)所製成,且該含有Ga與KF的第一層411是經濺射該含有Ga與KF的第二靶材(圖未示)所製成。
參閱圖9,本發明之大面積薄膜太陽能電池的製法的一第七實施例,大致上是相同於該第六實施例,其不同的地方在於,該第七實施例的該步驟(a)還包括該步驟(a4)。該步驟(a4)是於該步驟(a2)後,且是經濺射該含有Ga與KF的第二靶材(圖未示)以於該In膜體42上濺鍍該含有Ga與KF的第二層413。
<具體例1(E1)>
本發明大面積薄膜太陽能電池之一具體例1(E1)是根據該第一實施例來實施,其具體的製作方法是簡單說明於下。
首先,以直流濺鍍法(d.c.sputtering)於一經清潔的鈉玻璃(SLG)上濺鍍一厚度900nm的鉬(Mo)電極,以做為本發明該具體例1(E1)之第一電極單元。接著,濺射一由CuGa:KF所構成的第一靶材以在該鉬電極上濺鍍一厚度300nm的下CuGa:KF層,以做為該具體例1(E1)之一含有Cu、Ga及KF的第一複合膜體。進一步地,濺射一In靶材以在下CuGa:KF層上濺鍍一厚度550nm的In層,以做為該具體例1(E1)之該In膜體,從而完成該具體例1(E1)之多層膜。
在1atm的壓力下令該多層膜實施550℃持溫20分鐘的硒化處理後再予以空冷至100℃,以令該多層膜轉變成黃銅礦晶 相從而形成該具體例1(E1)之一厚度2μm的吸收層。實施完硒化處理後,透過CBD於該吸收層上沉積一厚度60nm的CdS層,以做為該具體例1(E1)之第一緩衝層。接著,以射頻濺鍍法於該CdS層上依序濺鍍一厚度50nm的ZnO層及一厚度200nm的ZnO:Al層,以分別做為該具體例1(E1)之一第二緩衝層及一透明導電層。最後,經電子束蒸鍍法與光微影製程(photolithography process)於該ZnO:Al層上形成一圖案化Al層,以做為該具體例1(E1)之一第二電極單元,並製得該具體例1(E1)的一薄膜太陽能電池。
<具體例2(E2)>
本發明大面積薄膜太陽能電池的製法的一具體例2(E2)是根據該第二實施例來實施,且大致上是相同於該具體例1(E1),其不同的地方是在於,該具體例2(E2)的下CuGa:KF層厚度為240nm,且該具體例2(E2)於該In層上還濺射該由CuGa:KF所構成的第一靶材以在該In層上濺鍍一厚度60nm的上CuGa:KF層,令該上CuGa:KF層做為該具體例2(E2)的一含有Cu、Ga及KF的第二複合膜體。
<比較例1(CE1)>
本發明大面積薄膜太陽能電池的製法的一比較例1(CE1),大致上是相同於該具體例1(E1),其不同的地方是在於, 該比較例1(CE1)是濺射一CuGa靶材以在該鉬電極上濺鍍一厚度300nm的CuGa層。
<比較例2(CE2)>
本發明大面積薄膜太陽能電池的製法的一比較例2(CE2),大致上是相同於該具體例1(E1),其不同的地方是在於,該比較例2(CE2)是濺射一CuGa:NaF靶材以在該鉬電極上濺鍍一厚度300nm的CuGa:NaF層。
參閱圖10,顯示有該等比較例(CE1、CE2)與該具體例1(E1)之吸收層的縱深成分分布。隨著濺射深度越深(也就是,越接近鉬電極),該等比較例(CE1、CE2)之吸收層內的Ga含量僅些許地遞增;反觀本發明該具體例1(E1),隨著濺射深鍍越深,該具體例1(E1)之吸收層內的Ga含量明顯地遞增。初步證實,本發明該具體例1(E1)之吸收層與鉬電極界面間的能隙高,能阻止鉬電極與吸收層界面處的載子產生復合(recombination),有利於提升薄膜太陽能電池的開路電壓(open circuit voltage;以下稱Voc)與短路電流密度(short circuit current density;以下稱Jsc),並改善元件效率。
進一步參閱圖11,顯示有本發明該具體例2(E2)之吸收層的縱深成分分布。由圖11顯示可知,該具體例2(E2)之吸收層內的Ga含量不僅自趨近0.25μm的深度處隨著濺射深度的增加而提 升,並於達鉬電極時遞減;此外,該具體例2(E2)之吸收層於鄰近其表面區間的Ga含量是隨著濺射深度的增加而遞減至趨近0.25μm的深度處。顯見該具體例2(E2)之吸收層內的Ga含量是呈現V字型的輪廓,相對證實該吸收層具有一V字型結構的能隙,其進一步地阻止該具體例2(E2)之吸收層與CdS層界面間的載子產生復合以利於提升薄膜太陽能電池的開路電壓(Voc)及其短路電流密度(Jsc)。
參閱圖12,顯示有該等比較例(CE1、CE2)與該具體例1(E1)之電流密度(J)對電壓(V)關係圖。該比較例1(CE1)與該比較例(CE2)的開路電壓(Voc)分別為512mV與536mV,雖然該具體例1(E1)的開路電壓(Voc)為514mV;然而,根據圖12顯示結果可知(見表1.),該具體例1(E1)的短路電流密度(Jsc)已提升至35.63mA/cm2,相對高於該比較例1(CE1)與該比較例(CE2)的31.34mA/cm2與31.55mA/cm2
此外,參閱圖13所顯示之外部量子效率(EQE)對波長關係圖可知,該具體例1(E1)於500nm至1000nm波段的平均外部量子效率趨近87%,反觀該等比較例(CE1、CE2)於500nm至1000nm波段的平均外部量子效率則僅趨近80%。本發明該具體例1(E1)因其多層膜內之下CuGa:KF層已存在有KF,能在該具體例1(E1)之吸收層中形成一相對該等比較例(CE1~CE2)更為陡峭之Ga含量 階級。該Ga含量階級將於該具體例1(E1)之吸收層內形成一內部電場(interior electric field)以幫助電子傳輸至CdS層;因此,提升了總體的外部量子效應。進一步詳細地來說,由於該具體例1(E1)之吸收層表面的Ga含量低(低能隙),能夠吸收到更長波段的光(1100nm~1150nm區間),因此該具體例(E1)最終的短路電流密度(Jsc)相對大於該等比較例(CE1~CE2)。圖13的分析結果也相對反應到該等比較例(CE1、CE2)與該具體例1(E1)的光電轉換效率(PCE)。由表1.顯示可知,該比較例(CE1)與該比較例2(CE2)的光電轉換效率(PCE)僅分別為9.94%與10.40%;然而,該具體例1(E1)則是因為其外部量子效率(EQE)相對高於該等比較例(CE1、CE2)而提升至11.21%。
圖14顯示有該具體例2(E2)之電流密度(J)對電壓(V)關係圖。由圖14可知,本發明該具體例2(E2)之吸收層的能隙結構因該上CuGa:KF層與該下CuGa:KF層而呈V字型結構(配合參閱圖11),以致於其開路電壓(Voc)與短路電流密度(Jsc)分別提升至 533mV與35.97mA/cm2(見表1.)。此外,本發明該具體例2(E2)之光電轉換效率(PCE)更提升至12.24%。
經上述該等具體例(E1~E2與該等比較例(CE1~CE2)之實施條件及其分析數據的詳細說明可知,本發明該等具體例(E1~E2)經濺射該CuGa:KF第一靶材(單一個靶材)即可在其多層膜內直接引入KF,並使其吸收層的能隙呈現出單側階級能隙的結構,甚或是雙側階級能隙的V字型結構,以提升其薄膜太陽能電池的短路電流密度(Jsc)與光電轉換效率(PCE)等性能。
此外,本發明該具體例2(E2)之薄膜太陽能電池的多層膜是透過可大面積成膜的濺鍍法來完成,並僅透過硒化處理無須進一步透過後硫化處理,即可得到V字型結構的能隙。相對前案1所提及的共蒸鍍法,其必須另外在存在有Se的環境下於該CIGS膜上之蒸發KF,本發明的製法較為簡化,且可製作的面積相對大於共蒸鍍法。再進一步地與傳統的濺鍍法(再參閱圖1)相比較,傳統的濺鍍法除了需對該多層膜13實施硒化處理外,尚需進一步地對經先硒化處理後的多層膜13施予硫化處理,才可令其CIGS吸收層具有V字型結構的能隙。因此,本發明該具體例2(E2)之製法也因省略後硫化處理而相對節省時間成本。
綜上所述,本發明大面積薄膜太陽能電池的製法是直接使KF引入至Ga靶材或Cu、Ga靶材中,以透過可大面積成膜的濺 鍍法來完成該等多層膜4,在無需引入後硫化處理的前提下便可令其吸收層40的能隙僅透過硒化處理而具有單側階級能隙的結構,甚或是雙側階級能隙的V字型結構,從而提升短路電流密度(Jsc)與光電轉換效率(PCE),不僅製程簡化,且所需耗費的時間成本少。因此,確實可達到本發明之目的。
惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。

Claims (10)

  1. 一種大面積薄膜太陽能電池的製法,實質上是由以下步驟所構成:一步驟(a),是在一表面之上形成有一第一電極單元的基板上形成一多層膜,該步驟(a)包括以下次步驟:一步驟(a1),於該第一電極單元上濺鍍一含有銅(Cu)、鎵(Ga)及氟化鉀(KF)的第一複合膜體,及一步驟(a2),在該含有銅、鎵及氟化鉀的第一複合膜體上濺鍍一銦(In)膜體;一步驟(b),是於該步驟(a)後,在一含有一惰性氣體及一硒源的退火環境內對該多層膜施予硒化處理,以令該多層膜形成一具有黃銅礦晶相的吸收層;一步驟(c),是於該吸收層上形成一第一緩衝層;一步驟(d),是於該第一緩衝層上形成一第二緩衝層;一步驟(e),是於該第二緩衝層上形成一透明導電層;及一步驟(f),是於該透明導電層上形成一第二電極單元。
  2. 如請求項第1項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a1)的該含有銅、鎵及氟化鉀的第一複合膜體是經濺射一含有銅、鎵及氟化鉀的第一靶材所製成。
  3. 如請求項第2項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a)還包括一於該步驟(a2)後的步驟(a3),該步 驟(a3)是經濺射該含有銅、鎵及氟化鉀的第一靶材以於該銦膜體上濺鍍一含有銅、鎵及氟化鉀的第二複合膜體。
  4. 如請求項第1項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a1)的該含有銅、鎵及氟化鉀的第一複合膜體具有一形成於該第一電極單元上且含有鎵與氟化鉀的第一層,及一形成在該含有鎵與氟化鉀的第一層上且是由銅所構成的第二層,該含有鎵與氟化鉀的第一層是經濺射一含有鎵與氟化鉀的第二靶材所製成,且該由銅所構成之第二層是經濺射一由銅所構成之第三靶材所製成。
  5. 如請求項第4項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a)還包括一於該步驟(a2)後的步驟(a4),該步驟(a4)是經濺射該含有鎵與氟化鉀的第二靶材以於該銦膜體上濺鍍一含有鎵與氟化鉀的第二層。
  6. 如請求項第4項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a)還包括一介於該步驟(a1)與該步驟(a2)間的步驟(a4),該步驟(a4)是經濺射該含有鎵與氟化鉀的第二靶材以於該由銅所構成的第二層上濺鍍一含有鎵與氟化鉀的第二層。
  7. 如請求項第1項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a1)的該含有銅、鎵及氟化鉀的第一複合膜體具有一形成於該第一電極單元上且是由銅所構成的第二層,及一形成在該由銅所構成的第二層上且含有鎵與氟化鉀的第一層,該由銅所構成之第二層是經濺射一由銅所構 成之第三靶材所製成,且該含有鎵與氟化鉀的第一層是經濺射一含有鎵與氟化鉀的第二靶材所製成。
  8. 如請求項第7項所述的大面積薄膜太陽能電池的製法,其中,該步驟(a)還包括一於該步驟(a2)後的步驟(a4),該步驟(a4)是經濺射該含有鎵與氟化鉀的第二靶材以於該銦膜體上濺鍍一含有鎵與氟化鉀的第二層。
  9. 如請求項第2項所述的大面積薄膜太陽能電池的製法,其中,該步驟(b)後所完成的該吸收層具有一總厚度(D),該步驟(a1)的該含有銅、鎵及氟化鉀的第一複合膜體具有一第一厚度(d1),該步驟(a2)的該銦膜體具有一第二厚度(d2),D至少大於0.8μm,且d1/d2 0.25。
  10. 如請求項第3項所述的大面積薄膜太陽能電池的製法,其中,該步驟(b)後所完成的該吸收層具有一總厚度(D),該步驟(a1)的該含有銅、鎵及氟化鉀的第一複合膜體具有一第一厚度(d1),該步驟(a2)的該銦膜體具有一第二厚度(d2),該步驟(a3)的該含有銅、鎵及氟化鉀的第二複合膜體具有一第三厚度(d3),D至少大於0.8μm,0.5d1/d3 6,且(d1+d3)/d2 0.25。
TW105112547A 2016-04-22 2016-04-22 大面積薄膜太陽能電池的製法 TWI634669B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW105112547A TWI634669B (zh) 2016-04-22 2016-04-22 大面積薄膜太陽能電池的製法
CN201610348034.9A CN107305914A (zh) 2016-04-22 2016-05-23 大面积薄膜太阳能电池的制法
US15/275,862 US20170309772A1 (en) 2016-04-22 2016-09-26 Method for manufacturing a large-area thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105112547A TWI634669B (zh) 2016-04-22 2016-04-22 大面積薄膜太陽能電池的製法

Publications (2)

Publication Number Publication Date
TW201739063A TW201739063A (zh) 2017-11-01
TWI634669B true TWI634669B (zh) 2018-09-01

Family

ID=60089751

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105112547A TWI634669B (zh) 2016-04-22 2016-04-22 大面積薄膜太陽能電池的製法

Country Status (3)

Country Link
US (1) US20170309772A1 (zh)
CN (1) CN107305914A (zh)
TW (1) TWI634669B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269868A (zh) * 2018-01-29 2018-07-10 北京铂阳顶荣光伏科技有限公司 薄膜太阳能电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474505A (zh) * 2012-06-06 2013-12-25 尚越光电科技有限公司 铜铟镓硒薄膜太阳能电池大规模生产中的碱金属掺杂方法
TW201424027A (zh) * 2012-12-10 2014-06-16 Zhi-Huang Lai 薄膜太陽能電池之製作方法
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120034734A1 (en) * 2010-08-05 2012-02-09 Aventa Technologies Llc System and method for fabricating thin-film photovoltaic devices
JP5725610B2 (ja) * 2011-04-29 2015-05-27 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
US8703524B1 (en) * 2012-11-29 2014-04-22 Tsmc Solar Ltd. Indium sputtering method and materials for chalcopyrite-based material usable as solar cell absorber layers
TWI654771B (zh) * 2012-12-21 2019-03-21 瑞士商弗里松股份有限公司 附加著鉀之薄膜光電裝置的製造
JP6103525B2 (ja) * 2013-02-12 2017-03-29 日東電工株式会社 Cigs膜およびそれを用いたcigs太陽電池
JP5594618B1 (ja) * 2013-02-25 2014-09-24 三菱マテリアル株式会社 スパッタリングターゲット及びその製造方法
US9196768B2 (en) * 2013-03-15 2015-11-24 Jehad A. Abushama Method and apparatus for depositing copper—indium—gallium selenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
KR20140120011A (ko) * 2013-04-01 2014-10-13 삼성에스디아이 주식회사 태양전지 및 이의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103474505A (zh) * 2012-06-06 2013-12-25 尚越光电科技有限公司 铜铟镓硒薄膜太阳能电池大规模生产中的碱金属掺杂方法
TW201424027A (zh) * 2012-12-10 2014-06-16 Zhi-Huang Lai 薄膜太陽能電池之製作方法
CN105070784A (zh) * 2015-07-17 2015-11-18 邓杨 一种全新的低成本高效率cigs电池吸收层制备工艺

Also Published As

Publication number Publication date
TW201739063A (zh) 2017-11-01
US20170309772A1 (en) 2017-10-26
CN107305914A (zh) 2017-10-31

Similar Documents

Publication Publication Date Title
Zhang et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S) 2 solar cells
JP4384237B2 (ja) Cis系薄膜太陽電池の製造方法
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
KR101094326B1 (ko) 태양전지용 Cu-In-Zn-Sn-(Se,S)계 박막 및 이의 제조방법
KR20110009151A (ko) Cis계 박막태양전지의 제조방법
CN107871795A (zh) 一种基于柔性钼衬底的镉掺杂铜锌锡硫硒薄膜的带隙梯度的调控方法
WO2011074685A1 (ja) Cis系薄膜太陽電池の製造方法
JP6316877B2 (ja) Acigs薄膜の低温形成方法およびそれを用いた太陽電池の製造方法
KR101441942B1 (ko) 플렉시블 박막형 태양전지 및 그 제조방법
KR101322652B1 (ko) ZnS/CIGS 박막태양전지 및 제조방법
TWI634669B (zh) 大面積薄膜太陽能電池的製法
CN109935652B (zh) 一种CdTe纳米晶太阳电池及其制备方法
WO2023109712A1 (zh) 宽禁带铜镓硒光吸收层及其制备方法、太阳能电池
KR20100085769A (ko) CdS/CdTe 박막 태양전지 및 그 제조 방법
KR101410968B1 (ko) 씨아이지에스 박막태양전지 제조방법
CN113571594B (zh) 铜铟镓硒电池及其制造方法
KR20120133342A (ko) 균일한 Ga 분포를 갖는 CIGS 박막 제조방법
US8119513B1 (en) Method for making cadmium sulfide layer
JP2014506391A (ja) 太陽電池、及び太陽電池の製造方法
KR20140122326A (ko) 산화인듐을 이용한 cigs 광흡수층 제조방법
CN112951933A (zh) 室温脉冲激光沉积法制备铜锌锡硫/硫化铋薄膜异质结
TWI688112B (zh) 軟性薄膜太陽能電池的製法及其製品
TWI463685B (zh) 多層堆疊的光吸收薄膜與其製造方法及太陽能電池
KR102212042B1 (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
KR101462498B1 (ko) Cigs 흡수층 제조방법, 이를 이용한 박막 태양전지 제조방법 및 박막 태양전지