WO2012137770A1 - 改質天然黒鉛粒子 - Google Patents

改質天然黒鉛粒子 Download PDF

Info

Publication number
WO2012137770A1
WO2012137770A1 PCT/JP2012/059059 JP2012059059W WO2012137770A1 WO 2012137770 A1 WO2012137770 A1 WO 2012137770A1 JP 2012059059 W JP2012059059 W JP 2012059059W WO 2012137770 A1 WO2012137770 A1 WO 2012137770A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite particles
negative electrode
graphite
modified natural
natural graphite
Prior art date
Application number
PCT/JP2012/059059
Other languages
English (en)
French (fr)
Inventor
克浩 西原
山本 浩司
永田 辰夫
禰宜 教之
藤原 徹
Original Assignee
住友金属工業株式会社
中央電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属工業株式会社, 中央電気工業株式会社 filed Critical 住友金属工業株式会社
Priority to JP2013508877A priority Critical patent/JP5814347B2/ja
Priority to US14/110,240 priority patent/US20140093781A1/en
Priority to EP12768047.8A priority patent/EP2695857A4/en
Priority to KR1020137029475A priority patent/KR101562724B1/ko
Priority to CN201280027914.6A priority patent/CN103596881A/zh
Publication of WO2012137770A1 publication Critical patent/WO2012137770A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to modified natural graphite particles useful as a negative electrode active material in a negative electrode plate of a non-aqueous electrolyte secondary battery, particularly a lithium ion secondary battery.
  • a negative electrode plate of a nonaqueous electrolyte secondary battery typified by a lithium ion secondary battery includes applying a negative electrode mixture formed by mixing at least a negative electrode active material and a binder to a current collector and then compacting the mixture. Manufactured by the method.
  • the current collector is often a foil made of copper or a copper alloy.
  • the negative electrode active material a material that can occlude cations such as lithium ions during charging is used, and a typical material includes a graphite material that has a layered crystal structure and can occlude cations between layers.
  • Graphite materials are roughly classified into natural graphite and artificial graphite. In general, natural graphite is less expensive than artificial graphite.
  • natural graphite natural graphite with a high aspect ratio due to its flat shape has a high degree of graphitization that represents crystallinity, and therefore has a high charge / discharge capacity as a negative electrode active material (hereinafter simply referred to as “capacity”). Is expected to be obtained.
  • natural graphite with such a high aspect ratio has the problems that the shape is anisotropic, so that it is oriented when applied to a current collector, the initial irreversible capacity is large, and the packing density is low. Have. For this reason, natural graphite having a high aspect ratio is not used as an active material as it is, but is usually used after a shape adjustment treatment.
  • Patent Document 1 and Non-Patent Document 1 disclose a method of making a particle shape into a disk shape using Mechano-Fusion (registered trademark) as a method for adjusting the shape of graphite particles.
  • Patent Document 2 discloses a method of making a particle shape spherical using a jet mill.
  • Patent Documents 3 and 4 disclose a method of making a particle shape spherical using a pin mill.
  • the binder which is another essential component of the negative electrode mixture, serves to bond the negative electrode active materials to each other or between the negative electrode active material and the current collector. It is desirable that the utilization efficiency of the binder is high as long as the adhesiveness can be secured. In particular, in recent years, there has been a demand for higher electrode density (increased capacity per unit volume of the negative electrode mixture), so that the negative electrode active materials or between the negative electrode active material and the current collector are not involved. In order to minimize the amount of the binder existing between the graphite particles and inhibiting the densification of the electrodes, there is a tendency to reduce the amount of binder used as a whole.
  • JP 2007-169160 A Japanese Patent Laid-Open No. 11-263612 Japanese Patent Laid-Open No. 2003-238135 JP 2008-24588 A
  • the negative electrode mixture used for the production of the negative electrode plate of the nonaqueous electrolyte secondary battery simply reducing the amount of binder used decreases the bonding strength between the negative electrode active materials or between the negative electrode active material and the current collector, and the negative electrode plate
  • the negative electrode mixture falls off from the current collector or the negative electrode plate.
  • the production or assembly speed is increased, the bending force or tensile force applied to the negative electrode mixture layer or the negative electrode plate formed on the current collector tends to increase. The phenomenon tends to occur.
  • the loss of the negative electrode mixture not only causes a decrease in product quality, but also a significant decrease in productivity such as a decrease in yield and line stoppage. While non-aqueous electrolyte secondary batteries are being developed not only for consumer use but also for automobile use and power storage use, cost reduction by improving productivity is an important issue.
  • This invention makes it a subject to provide the natural graphite material which can solve said problem and can bring about the negative electrode plate excellent in adhesive strength.
  • the present invention completed based on the above findings is defined by the following equation, which has a circularity of 0.92 or more and is obtained by measurement of a CK edge X-ray absorption spectrum using synchrotron radiation as an excitation light source.
  • the circularity is expressed by the following formula, and the upper limit is 1.
  • (Circularity) (Perimeter of a circle having the same area as the projected shape) / (Perimeter of the projected shape)
  • the “projection shape” is a shape obtained by projecting particles to be measured on a two-dimensional plane.
  • the circumference of a circle having the same area as the projection shape and the circumference of the projection shape are images of the projection shape. It is calculated by processing.
  • the modified natural graphite particles according to the present invention satisfy at least one of the following conditions (a) to (c): (a) the true specific gravity is 2.25 g / cm 3 or more; (b) The tap density is 1.0 g / cm 3 or more and 1.4 g / cm 3 or less; (c) linseed oil absorption is less than 20 cm 3/100 g or more 50 cm 3/100 g.
  • the present invention also provides carbon-attached graphite particles comprising the modified natural graphite particles and a carbonaceous material attached to at least a part of the surface thereof. Since the modified natural graphite particles according to the present invention have a sufficiently smooth surface, a negative electrode having sufficient adhesive strength between the negative electrode mixture and the current collector even if the amount of binder used is suppressed A board is obtained. Such a negative electrode plate has high quality and high productivity. Therefore, the nonaqueous electrolyte secondary battery including the negative electrode plate using the modified natural graphite particles according to the present invention is high in quality and high in productivity.
  • FIG. 3A is a diagram showing a CK edge NEXAFS spectrum when radiated light is incident on carbon at different incident angles (0 °, 30 °, and 60 °), and FIG. In the case of a certain HOPG (Highly Oriented Pyrolytic Graphite), FIG. 3B shows a case where the carbon is an amorphous carbon deposition film (film thickness: 10 nm).
  • HOPG Highly Oriented Pyrolytic Graphite
  • FIG. 5 (A) is an explanatory view conceptually showing a process in which natural graphite is granulated by spheronization in the production of modified natural graphite particles according to the present invention
  • FIG. 5 (B) is spheroidized.
  • An SEM observation image of the spheroidized graphite in the middle of the processing is shown
  • FIG. 5C shows an optical microscope observation image of the cross section of the spheroidized graphite in the middle of the spheroidizing processing.
  • grains after a spheroidization process is shown.
  • grains based on this invention obtained by performing the smoothing process after a spheronization process is shown.
  • Natural graphite particles as a raw material of the modified natural graphite particles according to the present invention are scaly graphite (specifically, scaly graphite or scaly graphite described below). Thus, it has not been subjected to modification treatment or heat treatment.
  • the modified natural graphite particles according to the present invention can be produced, for example, by subjecting the natural graphite particles to a shape adjustment treatment described later.
  • Natural graphite is classified according to its appearance and properties into flake graphite, flake graphite (also known as bulk graphite), and amorphous graphite.
  • Scaly graphite and scaly graphite show nearly perfect crystals, and earthy graphite has lower crystallinity than them.
  • the quality of natural graphite is determined by the main production areas and veins. Scaly graphite is produced in Madagascar, China, Brazil, Ukraine, Canada, Vietnam, Australia, etc. Scaly graphite is mainly produced in Sri Lanka. Soil graphite is produced in the Korean peninsula, China, Mexico, etc.
  • the modified natural graphite particles according to the present invention are required to have a high capacity, scaly graphite and scaly graphite having high crystallinity are suitable as the raw material graphite.
  • a true specific gravity is mentioned as a scale for evaluating the crystallinity of the graphite particles, and the raw graphite preferably has a true specific gravity of 2.25 g / cm 3 or more. Since the true specific gravity hardly changes in the mechanical modification treatment, it is preferable that the obtained modified natural graphite particles have a true specific gravity of 2.25 g / cm 3 or more.
  • the shape and size of the raw graphite are not particularly limited. Moreover, you may comprise raw material graphite by mixing 2 or more types of graphites with different origins and types.
  • the particle shape is evaluated by using circularity as an index of sphericity. The degree of circularity is obtained by the following equation regarding the projection shape.
  • Circularity (perimeter of a circle having the same area as the projected shape) / (perimeter of the projected shape) If the projected shape is a perfect circle, the circularity is 1. Therefore, the maximum value of circularity is 1. When the degree of circularity is 1, the degree of sphere when the particle is evaluated three-dimensionally is considered to be particularly high. Therefore, the higher the degree of circularity (closer to 1), the higher the degree of sphericity of the particle. I can say that.
  • the projected shape can be obtained from an observation image obtained using an optical microscope, a scanning electron microscope, or the like.
  • the circularity of the raw graphite is usually around 0.85 and rarely exceeds 0.90.
  • the raw material graphite may have such a low circularity, and the circularity of the raw material graphite is not particularly specified.
  • modified natural graphite particles having a circularity of 0.92 or more are obtained after the modification treatment.
  • the “average particle diameter” is used as the median diameter in the volume-based particle size distribution obtained by the light scattering diffraction method.
  • This particle size distribution can be measured, for example, with a laser diffraction / scattering particle size distribution meter (LA-910) manufactured by Horiba, Ltd.
  • the raw material graphite preferably has an average particle size of 5 mm or less, particularly preferably 200 ⁇ m or less.
  • the average particle size of the raw graphite is preferably 3 ⁇ m or more, and particularly preferably 5 ⁇ m or more.
  • modified natural graphite particles have a circularity of 0.92 or more, and the incident angle dependence S 60/0 of the peak intensity ratio in the CK edge X-ray absorption spectrum (for details) (Described later) is 0.5 or more and 0.7 or less.
  • the modified natural graphite particles according to the present invention have a circularity of 0.92 or more. When the circularity is less than 0.92, the graphite particles have a flat shape with a large aspect ratio, and problems such as orientation during coating and a decrease in capacity as a battery are likely to occur.
  • the upper limit of the circularity is 1.0 when the particle shape is a true sphere, that is, 1.0.
  • the circularity is preferably 0.93 or more.
  • the modified natural graphite particles according to the present invention have the following formula when measuring the CK-edge X-ray absorption spectrum of a powder using synchrotron radiation as an excitation light source.
  • the incident angle dependence S 60/0 of the peak intensity ratio defined by is 0.5 or more and 0.7 or less.
  • B 60 From the C-1s level to the ⁇ * level (that is, the antibonding orbital of sp3 bond: ⁇ C in the CK edge X-ray absorption spectrum of the particle measured with the incident angle of the emitted light being 60 ° Absorption peak intensity attributed to the transition to -C-).
  • a 0 Absorption peak intensity attributed to the transition from the C-1s level to the ⁇ * level in the CK edge X-ray absorption spectrum of the particle, measured with the incident angle of the emitted light being 0 °.
  • B 0 Absorption peak intensity attributed to the transition from the C-1s level to the ⁇ * level in the CK edge X-ray absorption spectrum of the particle measured with the incident angle of the emitted light being 0 °.
  • the CK edge X-ray absorption spectrum used in the present invention is also called a CK edge NEXAFS (Near Edge X-ray Absorbance Fine Structure) spectrum, and the core level of an occupied carbon atom ( An absorption spectrum observed when electrons (K-shell inner electrons) existing in the (1s orbit) absorb energy of the irradiated X-rays and are excited to various vacant levels in an unoccupied state. is there.
  • FIG. 1 The measurement principle of this X-ray absorption spectroscopy is shown in FIG. 1 in comparison with X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • an energy variable light source in the soft X-ray region (280 eV to 320 eV) is necessary. Since S 60/0 is based on the premise that the linear polarization of the excitation light source is high, the CK edge NEXAFS spectrum according to the present invention uses emitted light as the excitation light source.
  • the vacant levels at which electrons in the core level are excited include the ⁇ * level attributed to the antibonding orbitals of sp2 bonds that reflect the crystallinity (basal plane, orientation, etc.) in natural graphite, and crystals ⁇ * level attributed to antibonding orbitals of sp3 bonds that reflect disorder of properties (edge surface, non-orientation, etc.), or antibonding orbitals such as CH bonds and CO bonds There are empty levels.
  • the surface is a plane of a hexagonal network surface (AB surface described later) is a basal surface, and a surface on which the end of the hexagonal network appears. Is the edge surface. On the edge surface, carbon often takes sp3 bonds.
  • the CK edge NEXAFS spectrum reflects the local structure in the vicinity of the carbon atom including the excited inner electrons, and in addition, the escape depth of electrons emitted from the solid into the vacuum by the irradiated light. Since the thickness is about 10 nm, only the measured surface structure of the graphite particles is reflected. Therefore, by using the CK edge NEXAFS spectrum, the crystalline state (orientation) of graphite existing on the surface of the modified natural graphite particles can be measured, thereby evaluating the roughness of the graphite surface. it can.
  • the method for fixing the modified natural graphite particles to be measured to the sample stage is not particularly limited. It is preferable to adopt a method such as supporting on the copper substrate with In (indium) foil or supporting on the copper substrate with carbon tape so that an excessive load is not applied to the graphite particles and the surface properties thereof are not changed. .
  • the sample is irradiated with radiation light having a fixed incident angle with respect to the sample. Then, while scanning the energy of radiated light from 280 eV to 320 eV, the total electron yield method is used to measure the sample current flowing into the sample in order to complement the photoelectrons emitted from the sample.
  • the basic configuration of this measurement method is shown in FIG.
  • 3 (A) and 3 (B) are diagrams showing CK edge NEXAFS spectra when radiated light is incident on carbon at different incident angles (0 °, 30 °, and 60 °), respectively.
  • 3A shows the case where carbon is a single crystal HOPG (highly oriented pyrolytic graphite)
  • FIG. 3B shows the case where carbon is an amorphous carbon vapor deposition film (film thickness: 10 nm). Show.
  • HOPG which is a single crystal
  • the absorption peak intensity attributed to the transition from the C-1s level to the ⁇ * level when the incident angle is increased from 0 ° to 60 °.
  • the profile of the HOPG CK edge NEXAFS spectrum varies greatly depending on the incident angle.
  • the profile of the CK edge NEXAFS spectrum of the amorphous carbon vapor deposition film shown in FIG. 3B hardly depends on the incident angle, and the profile does not change even when the incident angle changes. Almost no change.
  • the graphite crystals existing in the vicinity of the surface of the material are regularly arranged, that is, when the orientation is high and, on the contrary, the ratio I does not depend on the incident angle, the material
  • the graphite crystals existing in the vicinity of the surface are irregularly arranged and have low orientation. Then, by quantifying the incident angle dependency of the ratio I between the absorption intensities A and B, the orientation of graphite crystals existing in the vicinity of the surface of the graphite-based material can be quantitatively evaluated.
  • FIG. 4 is a diagram for explaining the method for quantitative evaluation of the orientation of surface graphite crystals according to the present invention, using HOPG as a sample.
  • the modified natural graphite particles according to the present invention are obtained from scaly raw material graphite and have a circularity of 0.92 or more. .
  • a process for obtaining the above circularity by making the shape of the entire raw graphite close to a sphere (hereinafter referred to as “spheronization process”) is performed.
  • Specific examples of the spheroidizing process include those disclosed in Patent Documents 2 to 4.
  • the scale-shaped graphite used as a raw material has many hexagonal mesh planes (AB planes) in which carbon atoms regularly form a network structure and spread in a plane, and has a thickness in the C-axis direction perpendicular to the AB plane. It is a crystal. Since the bonding force (van der Waals force) between the laminated AB surfaces is much smaller than the bonding force in the in-plane direction of the AB surface, peeling between the AB surfaces is likely to occur. Therefore, since the thickness of the laminate is small with respect to the spread of the AB surface, the scale shape is exhibited as a whole.
  • the raw graphite having the scale shape is subjected to the spheronization treatment, as shown in FIGS. 5 (A) to 5 (C), the raw graphite which was originally substantially flat is folded or another particle is folded. It is taken in when it is applied, or adheres to the surface of another particle.
  • spheroidized graphite particles graphite particles obtained by spheroidizing raw material graphite (hereinafter referred to as “spheroidized graphite particles”) with the surface (AB surface) of the raw material graphite being flat as it is. Covers most of the surface. Therefore, the AB surface is considered to be dominant on the surface of the spheroidized graphite particles.
  • FIG. 6 if the spheroidized graphite particles are enlarged and observed, the end surfaces of the folded particles and the end surfaces of the adhered particles, that is, the edge surfaces are exposed on the surface. There are irregularities. From a microscopic viewpoint, the impact force during the spheroidizing process causes peeling at some points on the AB surface and bending, generating a portion where the edge surface appears on the surface.
  • the surface of the spheroidized graphite particles Due to the unevenness of the surface, the surface of the spheroidized graphite particles has a rough surface. For this reason, the bond axis of the sp2 bond in the graphite crystal existing in the vicinity of the surface of the spheroidized graphite particles is directed in a random direction as a whole. Therefore, the spheroidized graphite particles have a circularity of 0.92 or more, but S 60/0 is in the vicinity of 1.
  • Spherical graphite particles having a surface texture roughened by spheronization treatment in other words, spheroidized graphite particles having a circularity of 0.92 or more and S 60/0 in the vicinity of 1, and a negative electrode active material. Then, only the protruding portion of the rough surface of the spheroidized graphite particles becomes a contact portion between the negative electrode active materials and a contact portion between the negative electrode active material and the current collector.
  • the binder that is contained together with the negative electrode active material and constitutes the negative electrode mixture is originally bonded to the negative electrode active materials or the negative electrode active material and the current collector by being supplied to such a contact portion,
  • the obtained negative electrode mixture has low adhesiveness and is easily dropped from the current collector.
  • the modified natural graphite particles according to the present invention have a circularity of 0.92 or more and S 60/0 of 0.7 or less, so that the particles are subjected to spheronization treatment.
  • the surface graphite crystals are oriented to some extent. In the oriented portion of the surface graphite crystal, there is little defect such as bending, and the AB surface has high planarity. Therefore, the negative electrode active material made of these particles is relatively wide with the adjacent negative electrode active material or current collector. A contact portion can be formed.
  • the modified natural graphite particles according to the present invention as the negative electrode active material, it is possible to obtain a negative electrode mixture that has high adhesiveness and does not easily fall off from the current collector.
  • the lower limit of S 60/0 of the modified natural graphite particles according to the present invention is not particularly limited as long as the circularity is 0.92 or more, but 0.5 is a substantial lower limit. When S 60/0 is less than 0.5, it is practically extremely difficult to set the circularity to 0.92 or more.
  • the modified natural graphite particles according to the present invention have a tap density of 1.0 g / cm 3 or more and 1.4 g / cm 3 or less measured using a container having a volume of 100 cm 3 as tapping frequency of 180 times. It is preferable that
  • the packing density of the negative electrode active material in the negative electrode plate is increased.
  • the tap density is preferably 1.05 g / cm 3 or more. Since the graphite particles obtained by spheroidizing raw material graphite have a rough surface, the tap density is difficult to increase.
  • the tap density is preferably higher, but in reality, the upper limit is 1.4 g / cm 3 .
  • a modified natural graphite particle according to the present invention is linseed that is measured using an absorbent meter in accordance with an oil absorption measurement method generally defined in JIS K6217-4: 2008. It is preferred oil absorption is less than 20 cm 3/100 g or more 50 cm 3/100 g.
  • Graphite particles obtained by spheroidizing raw material graphite tend to have a high linseed oil absorption because the surface is excessively rough.
  • the amount of linseed oil absorbed is excessively high, the utilization efficiency of the binder is lowered and it is difficult to increase the capacity. Therefore, it is preferable linseed oil absorption is 50 cm 3/100 g or less. Oil absorption is preferably smaller, but in practice the lower limit is 20 cm 3/100 g.
  • modified natural graphite particles according to the present invention having the above characteristics may be carbon-attached graphite particles having a carbonaceous material attached to the surface thereof. This improves battery characteristics.
  • carbonaceous material means a material mainly composed of carbon, and the structure thereof is not particularly limited.
  • the carbonaceous material may be attached to a part of the surface of the modified natural graphite particles, or may be attached so as to substantially cover the entire surface.
  • the carbonaceous material preferably has a lower crystallinity than modified natural graphite particles serving as a core material and / or a high sp3 bond composition ratio in all carbon-carbon bonds. Since such a carbonaceous material has a higher bulk hardness than the graphite particles, the presence of the carbonaceous material attached to the surface of the modified natural graphite particles increases the hardness of the entire particles. As a result, in the manufacturing process of the negative electrode plate, particularly in the compression process, the possibility that the closed pores are formed inside the electrode, which is the negative electrode active material, and charge acceptability is reduced is reduced.
  • the specific surface area of the graphite particles is reduced due to carbon adhesion, and thus the reactivity with the electrolytic solution is suppressed. Therefore, the negative electrode plate using the carbon-attached graphite particles as an active material has improved charge / discharge efficiency and improved battery capacity.
  • turbostratic structure carbon refers to a carbon substance having a laminated structure parallel to the hexagonal plane direction but composed of carbon atoms whose crystallographic regularity cannot be measured in the three-dimensional direction.
  • Amorphous carbon is exemplified as a carbonaceous material having a lower crystallinity than modified natural graphite particles serving as a core material and a high constituent ratio of sp3 bonds.
  • amorphous carbon is a carbon material having short-range order (several to tens of atoms) but not long-range order (hundreds to thousands of atoms).
  • the method for adhering the carbonaceous material to the surface of the modified natural graphite particles as a core material and the method for coating are not particularly limited.
  • a surface treatment method and a deposition method using a vacuum film forming technique are exemplified.
  • the surface treatment method is a method in which an organic compound such as pitch is attached to at least a part of the surface of the graphite powder in advance or is coated, and then the organic compound is carbonized by heat treatment.
  • a carbonaceous material composed of a turbostratic carbon is obtained.
  • a carbonaceous material made of amorphous carbon can be attached to the surface of the core material.
  • the modified natural graphite particles according to the present invention may be produced by any production method as long as they have the above properties. Next, a method capable of stably and efficiently producing modified natural graphite particles satisfying the above characteristics will be described. Conditions in each processing step are appropriately adjusted so that the modified natural graphite particles according to the present invention are obtained.
  • the raw natural graphite particles can be spheroidized.
  • the raw graphite particles collide with pins or the like at a high speed, and as shown in FIGS. 5 (A) to 5 (C), the laminated AB surface is bent or other graphite particles are adhered. As a result, the aspect ratio of the graphite particles decreases.
  • the mechanical attrition treatment is a treatment performed to round the corners of the particles and smooth the fine irregularities on the particle surface.
  • a device that repeatedly gives mechanical action to particles such as compression, friction, and shear, including particle interaction, can be used.
  • a powder processing apparatus (circulation type mechanofusion system, AMS-Lab) manufactured by Hosokawa Micron Co., Ltd., a theta composer manufactured by Deoksugaku Kosakusho, etc. can be used.
  • a strong sliding force in the in-plane direction is applied to the surface of the graphite particles by allowing the graphite particles to pass through a gap formed by two solids (for example, a rotor and an inner piece) that move in close proximity to each other. .
  • the crystal passing through the gap is oriented in the sliding direction at the sliding portion.
  • the exposed end surfaces of the folded particles and the end surfaces of the adhered particles also slip between the AB surface layers and are covered with the AB surface.
  • the portion where the edge portion is directed to the surface direction due to peeling and bending existing in various places on the AB surface is also compressed and oriented.
  • modified natural graphite particles according to the present invention having a circularity of 0.92 or more and S60 / 0 of 0.7 or less can be obtained.
  • a negative electrode plate of a nonaqueous electrolyte secondary battery can be produced.
  • the binder and current collector used for the production of the negative electrode are not particularly limited, and may be those conventionally used.
  • the surface of the graphite particles as the active material is smooth, and the contact area between the graphite particles or between the graphite particles and the current collector is increased, so that the amount of the binder can be reduced as compared with the prior art. This makes it possible to manufacture higher density and higher capacity electrodes.
  • Examples 1 to 4 and Comparative Examples 1 to 4 (1) Production of modified natural graphite particles Graphite particles made from Hosokawa Micron Co., Ltd. (ACM pulperizer, ACM-) against raw natural graphite particles (Chinese scale graphite, true specific gravity is 2.26 g / cm 3 ) The spheronization treatment was performed using 10A). The treatment was repeated 15 times. Furthermore, fine powder was removed by air classification. Spheroidized graphite particles shown as Comparative Examples 1 to 4 in Table 1 having four different particle sizes were obtained by appropriately performing spheronization at different pulverization rotational speeds and classification rotational speeds.
  • a negative electrode active material composed of spheroidized graphite particles or modified natural graphite particles obtained by the above method and a binder are mixed to prepare two types of negative electrode mixtures (negative electrode mixtures 1 and 2). Prepared.
  • Negative electrode mixture 2 A binder composed of polyvinylidene fluoride (PVdF) and graphite particles were mixed to prepare a negative electrode mixture.
  • Each negative electrode mixture was applied onto an electrolytic copper foil (thickness: 17 ⁇ m) serving as a current collector and dried (75 ° C. ⁇ 20 minutes for negative electrode mixture 1, 100 ° C. ⁇ 20 minutes for negative electrode mixture 2), and uniaxial It consolidated by the press and the negative electrode plate was obtained.
  • the negative electrode mixture layer in the obtained negative electrode plate was 9 mg / cm 2 in all cases, and the density was 1.6 g / cm 3 .
  • the peel strength of each negative electrode plate was measured by the method described later, and the results are shown in Table 1.
  • the CK edge NEXAFS spectrum measuring apparatus installed in BL7B and BL9, the CK edge NEXAFS spectrum was measured for the graphite particles according to the examples and the comparative examples, and the obtained incident angles were 0 ° and 60 °. S 60/0 was calculated from the spectrum profile at °. The details of the measurement principle and the measurement method are as described above. In foil was used as a carrier for supporting sample particles.
  • Average particle diameter (denoted as d50 in Table 1)
  • the volume-based particle size distribution of each graphite particle was determined by a light scattering diffraction method using a laser diffraction / scattering particle size distribution analyzer (LA-910) manufactured by Horiba, Ltd.
  • the median diameter in the obtained particle size distribution was defined as the average particle diameter of each graphite particle.
  • each graphite particle was measured using a flow type particle image analyzer FPIA-2100 manufactured by Sysmex Corporation. Specifically, 5,000 or more particles constituting each graphite particle are taken as measurement samples, and a flat sample flow is taken as an ion exchange water dispersion medium to which polyoxylen sorbitan monourarate is added as a surfactant, Each particle image obtained was determined by image processing.
  • FPIA-2100 flow type particle image analyzer
  • Peel strength Peel strength was determined in accordance with JIS C6481. Specifically, a negative electrode plate cut into a strip shape having a width of 15 mm was placed on the table so that the negative electrode mixture was on the lower surface, and fixed to the table with double-sided tape (NW-K15 manufactured by Nichiban Co., Ltd.). . The negative electrode current collector forming the upper surface of the fixed negative electrode plate was pulled 50 mm at a speed of 50 mm / min in the direction perpendicular to the upper surface of the table to separate the negative electrode current collector from the negative electrode mixture. The peel load at this time was continuously measured, and the lowest value among the obtained measurement loads was defined as the peel strength (unit: N / m).
  • the strength ratio in Table 1 is the ratio of the peel strength after the smoothing treatment to the peel strength before the smoothing treatment, and specifically, (peel strength of Example 1) / (peel strength of Comparative Example 1). This is what I asked for.
  • the graphite particles of Comparative Examples 1 to 4 obtained by spheronization treatment have a circularity of 0.92 or more, but S60 / 0 is as large as 0.75 to 0.88, and linseed oil absorption the amount was also not exceed 50cm 3 / 100g.
  • the graphite particles of Examples 1 to 4 received a smoothing process becomes small as S 60/0 is from 0.51 to 0.68, linseed oil absorption amount is smaller than 50 cm 3/100 g.
  • the tap density was higher in the example when the corresponding comparative example and the example (example, example 1 and comparative example 1) were compared.
  • the modified natural graphite particles of Examples 1 to 4 according to the present invention have a peel strength of 1.72 to 1.88 in the mixture 1 compared to the spheroidized graphite particles of Comparative Examples 1 to 4 before the smoothing treatment. In the case of Mixture 2, it is 2.11-7.50 times higher, indicating that the peel strength is remarkably improved.
  • Example 5 and Comparative Example 5 Each of the graphite particles obtained in Example 2 and Comparative Example 2 was mixed with coal-based pitch powder having an average particle size of 15 ⁇ m in an amount of 20% by mass with respect to the graphite particles, and the mixture was mixed at 1000 ° C. in a nitrogen stream. By heat-treating for 1 hour, carbon-attached graphite particles having a turbulent structure carbon attached to the surface were obtained. The average particle diameter, specific surface area, tap density, and linseed oil absorption of the obtained carbon-attached graphite particles were determined in the same manner as in Examples 1 to 4. The results are shown in Table 2.
  • the negative electrode active material composed of carbon-attached graphite particles thus obtained and PVdF were mixed at a mass ratio of 95: 5 to prepare a negative electrode mixture.
  • negative electrode plates were produced in the same manner as in Examples 1 to 4.
  • the peel strength of the obtained negative electrode plate was measured in the same manner as in Examples 1 to 4, and the strength ratio and the strength ratio are also shown in Table 2.
  • Example 5 in which the core material was modified natural graphite particles according to the present invention, a peel strength 2.28 times higher than that in Comparative Example 5 in which the core material was spheroidized graphite particles was obtained. .
  • the carbon adhesion treatment significantly reduces the specific surface area of the graphite particles and increases the tap density, but the average particle diameter hardly increases.
  • the amount of coal-based pitch powder used to form the carbonaceous material is relatively large, it is considered that most of the surfaces of the graphite particles are covered with the carbonaceous material (turbulent structure carbon). Thereby, since the micro unevenness was filled, the specific surface area was remarkably reduced.
  • Example 6 and Comparative Example 6 Each of the graphite particles obtained in Example 3 and Comparative Example 3 was mixed with a coal-based pitch powder having an average particle diameter of 15 ⁇ m in an amount of 2% by mass with respect to the graphite particles, and then in a nitrogen stream at 1000 ° C. for 1 hour. By carrying out heat treatment, carbon-attached graphite particles having a turbulent structure carbon attached to the surface were obtained. The average particle diameter, specific surface area, tap density, and linseed oil absorption of the obtained carbon-attached graphite particles were determined in the same manner as in Examples 1 to 4. The results are shown in Table 3.
  • the negative electrode active material comprising the carbon-attached graphite particles thus obtained, SBR, and CMC were mixed at a mass ratio of 98: 1: 1 to prepare a negative electrode mixture.
  • negative electrode plates were produced in the same manner as in Examples 1 to 4.
  • the peel strength of the obtained negative electrode plate was measured in the same manner as in Examples 1 to 4. As a result, the strength ratio is also shown in Table 3.
  • Example 6 in which the core material was modified natural graphite particles according to the present invention, a peel strength 1.89 times higher than that in Comparative Example 6 in which the core material was spheroidized graphite particles was obtained. .
  • the carbonaceous material of the turbulent structure carbon adheres to only part of the surface of the graphite particles. It is thought that there is. Even in this case, the specific surface area of the graphite particles was somewhat reduced. This is presumably because the molten pitch preferentially adhered to the edge surface having a larger surface area than the basal surface.

Abstract

 負極合剤と集電体との間の密着性に優れた負極板をもたらす改質天然黒鉛材料は、円形度が0.92以上1.0以下であって、放射光を励起光源として測定された粉体のC-K端X線吸収スペクトルから求められるピーク強度比の入射角依存性S60/0が0.5以上0.7以下である。真比重が2.25g/cm以上、タップ密度が1.0g/cm以上1.4g/cm以下、ならびに亜麻仁油吸収量が20cm/100g以上50cm/100g以下の少なくとも一つを満たすことが好ましい。その表面の少なくとも一部に炭素質材料が付着していてもよい。

Description

改質天然黒鉛粒子
 本発明は、非水電解質二次電池、特にリチウムイオン二次電池の負極板における負極活物質として有用な、改質天然黒鉛粒子に関する。
 リチウムイオン二次電池で代表される非水電解質二次電池の負極板は、少なくとも負極活物質とバインダとを混合してなる負極合剤を集電体に塗布した後、圧密化することを含む方法で製造される。集電体は、銅または銅合金からなる箔であることが多い。
 負極活物質には、充電時にリチウムイオン等の陽イオンを吸蔵できる材料が用いられ、典型的な材料として、層状結晶構造を有し、層間に陽イオンを吸蔵できる黒鉛材料が挙げられる。黒鉛材料は天然黒鉛と人造黒鉛とに大別される。一般に、天然黒鉛は人造黒鉛に比べて安価である。天然黒鉛のうちでも、その形状が扁平であるためにアスペクト比の高い天然黒鉛は、結晶性を表す黒鉛化度が高いため、負極活物質として高い充放電容量(以下、単に「容量」という)が得られることが期待される。しかし、そのようなアスペクト比が高い天然黒鉛は、その形状が異方性を有するがゆえに、集電体に塗布するときに配向する、初回不可逆容量が大きい、充填密度が低い、といった問題点を有している。このため、アスペクト比が高い天然黒鉛は、そのままでは活物質として使用されず、形状調整処理を施した後で使用されるのが普通である。
 特許文献1および非特許文献1には、黒鉛粒子の形状調整法として、メカノフュージョン(登録商標)を用いて粒子形状を円盤状にする方法が開示されている。特許文献2には、ジェットミルを用いて、粒子形状を球形化する方法が開示されている。特許文献3および4には、ピンミルを用いて粒子形状を球形化する方法が開示されている。
 一方、負極合剤のもう一つの必須成分であるバインダは、負極活物質同士、または負極活物質と集電体、とを接着させる役割を果たす。接着性が確保できる範囲においてバインダの利用効率は高いことが望ましい。特に、近年、電極の高密度化(負極合剤の単位体積あたりの容量の増加)が求められていることから、負極活物質同士または負極活物質と集電体との接着に関与することなく黒鉛粒子間に存在して、電極の高密度化の阻害因子となるバインダ量を最小限とするために、バインダ全体の使用量を少なくする傾向がある。
特開2007-169160号公報 特開平11-263612号公報 特開2003-238135号公報 特開2008-24588号公報
大関克知ほか「炭素」, 2005, No. 217, pp. 99-103
 非水電解質二次電池の負極板の製造に用いる負極合剤において、単にバインダの使用量を少なくすると、負極活物質同士、または負極活物質と集電体との接着強度が低下し、負極板の製造過程や電池としての組立作業過程において集電体または負極板から負極合剤が脱落することが問題となる。特に、製造または組立速度を高めようとすると、集電体上に形成された負極合剤層または負極板に加えられる折曲力や引張力は高まる傾向があるため、上記の負極合剤の脱落現象は起こりやすくなる。負極合剤の脱落は、製品の品質低下をもたらすだけでなく、歩留まり低下やライン停止などの生産性の著しい低下をもたらす。非水電解質二次電池が、民生用途のみでなく、自動車用途や蓄電用途などへの展開も進められている中、生産性向上による低コスト化は重要な課題である。
 本発明は、上記の問題を解決し、接着強度に優れた負極板をもたらすことができる天然黒鉛材料を提供することを課題とする。
 本発明者らは、上記課題を解決するために検討を行った結果、次の新たな知見を得た。
 (A)これまで行われているアスペクト比が高い天然黒鉛粒子の形状調整処理法のうち、メカノフュージョン(登録商標)などの磨砕式の粉砕手段では、球形化が不十分である。その他の形状調整処理法の適用ではいずれも、黒鉛粒子の全体形状の調整に主眼が置かれていた。このため、形状の異方性の低下は達成できていたものの、その表面は粗なままであった。
 (B)黒鉛粒子の表面が粗な場合、バインダの使用量が少ないと、粗な表面のうち突出部のみが、隣接する黒鉛粒子または集電体との接着部となる。このため、黒鉛粒子同士、または黒鉛粒子と集電体との接着強度は低下し、負極合剤が集電体または負極板から脱落しやすくなる。
 (C)この負極合剤の脱落を抑制するには、天然黒鉛の形状調整処理において黒鉛粒子の表面の粗さ改善(平滑化)を行うことが効率的である。
 (D)黒鉛粒子表面の粗さを定量的に評価するための手段として、C-K端X線吸収スペクトルによる黒鉛粒子の配向の程度の計測および黒鉛粒子による亜麻仁油の吸収量を計測することが好ましい。
 上記の知見に基づき完成された本発明は、円形度が0.92以上であって、放射光を励起光源としたC-K端X線吸収スペクトルの測定により求められる、下記式により定義されるピーク強度比の入射角依存性S60/0が0.5以上0.7以下であることを特徴とする改質天然黒鉛粒子である:
 S60/0=I60/I
  ここで、
  I60=B60/A60
  I=B/A
  A60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度;
  B60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度;
  A:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度;
  B:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度。
 なお、円形度は次の式で表され、上限は1である。
  (円形度)=(投影形状と同一の面積を有する円の周囲長)/(投影形状の周囲長)
 「投影形状」とは測定に係る粒子を二次元平面に投影して得られる形状であり、投影形状と同一の面積を有する円の周囲長および投影形状の周囲長は、投影形状の画像を画像処理することにより求められる。
 好適態様において、本発明に係る改質天然黒鉛粒子は下記(a)~(c)の少なくとも1つの条件を満たす:
 (a)真比重が2.25g/cm以上である;
 (b)タップ密度が1.0g/cm以上1.4g/cm以下である;
 (c)亜麻仁油吸収量が20cm/100g以上50cm/100g以下である。
 本発明はまた、上記改質天然黒鉛粒子およびその表面の少なくとも一部に付着した炭素質材料を備える、炭素付着黒鉛粒子も提供する。
 本発明に係る改質天然黒鉛粒子は、その表面が十分に平滑化されているため、バインダ使用量を抑制しても、負極合剤と集電体との間に十分な接着強度を有する負極板が得られる。そのような負極板は品質が高い上に生産性が高い。したがって、本発明に係る改質天然黒鉛粒子を用いた負極板を備える非水電解質二次電池も品質が高くかつ生産性が高い。
本発明において用いたX線吸収分光の測定原理をX線光電子分光(XPS)との対比で示す図である。 本発明において用いた放射光によるX線吸収分光の測定方法の基本構成を示す図である。 炭素に対してそれぞれ異なる入射角(0°、30°及び60°)で放射光を入射させた場合のC-K端NEXAFSスペクトルを示す図であり、図3(A)は炭素が単結晶であるHOPG(Highly Oriented Pyrolytic Graphite、高配向性熱分解黒鉛)である場合、図3(B)は炭素が非晶質の炭素蒸着膜(膜厚:10nm)である場合を示す。 本発明に係る表面黒鉛結晶の配向性の定量評価方法を、HOPGを試料とした場合を例として説明する図である。 図5(A)は、本発明に係る改質天然黒鉛粒子の製造において、天然黒鉛が球形化処理により造粒される過程を概念的に示す説明図であり、図5(B)は球形化処理途中段階での球形化黒鉛のSEM観察画像を示し、図5(C)は球形化処理途中段階での球形化黒鉛の断面の光学顕微鏡観察画像を示している。 球形化処理後の天然黒鉛粒子のSEM観察画像を示す。 球形化処理後に平滑化処理を行うことにより得られた、本発明に係る改質天然黒鉛粒子のSEM観察画像を示す。
 以下、本発明に係る改質天然黒鉛粒子とその製造方法について説明する。
 1.天然黒鉛粒子
 本発明に係る改質天然黒鉛粒子の原料となる天然黒鉛粒子(以下「原料黒鉛」という)は、鱗片形状の黒鉛(具体的には次に述べる鱗片状黒鉛または鱗状黒鉛)であって、改質処理や熱処理を受けていないものである。この天然黒鉛粒子に、例えば、後述する形状調整処理を施すことにより、本発明に係る改質天然黒鉛粒子を製造することができる。
 天然黒鉛はその外観と性状により、鱗片状黒鉛(flake graphite)、鱗状黒鉛(別名:塊状黒鉛、vein graphite)、および土状黒鉛(amorphous graphite)に分類される。鱗片状黒鉛および鱗状黒鉛は完全に近い結晶を示し、土状黒鉛はそれらより結晶性が低い。天然黒鉛の品質は、主な産地、鉱脈により定まる。鱗片状黒鉛は、マダガスカル、中国、ブラジル、ウクライナ、カナダ、ベトナム、オーストラリア等に産する。鱗状黒鉛は、主にスリランカに産する。土状黒鉛は、朝鮮半島、中国、メキシコ等に産する。
 本発明に係る改質天然黒鉛粒子には高容量であることが求められることから、原料黒鉛として適当なのは、結晶性の高い鱗片状黒鉛および鱗状黒鉛である。黒鉛粒子の結晶性の高さを評価する尺度として真比重が挙げられ、原料黒鉛は2.25g/cm以上の真比重を有していることか好ましい。真比重は、機械的な改質処理ではほとんど変化しないので、得られた改質天然黒鉛粒子も2.25g/cm以上の真比重を有することが好ましい。
 原料黒鉛の形状および大きさは特に制限されない。また、産地や種類の異なる2種以上の黒鉛を混合して原料黒鉛を構成してもよい。
 本発明では、球形度の指標として円形度を用いることにより粒子形状を評価する。円形度は投影形状に関する次の式により求められる。
 円形度=(投影形状と同一の面積を有する円の周囲長)/(投影形状の周囲長)
 投影形状が真円をなす場合には円形度は1となる。従って、円形度の最大値は1である。円形度が1である場合、その粒子を3次元的に評価した場合における球形の程度も特に高いと考えられることから、円形度が高いほど(1に近づくほど)、粒子の球形度も高いといえる。投影形状は、光学顕微鏡や走査型電子顕微鏡などを用いて得られた観察像から求めることができる。
 例えば、原料黒鉛として鱗片状黒鉛を用いた場合、原料黒鉛の円形度は通常は0.85近傍であり、0.90を超えることは希である。原料黒鉛はこのような円形度が低いものでよく、原料黒鉛の円形度は特に規定されない。本発明では改質処理後に円形度が0.92以上の改質天然黒鉛粒子とする。
 本発明では、黒鉛粒子の大きさを評価する場合には、光散乱回折法により求めた体積基準の粒度分布におけるメジアン径としての「平均粒径」を用いる。この粒度分布は、例えば、(株)堀場製作所製レーザー回折/散乱式粒度分布計(LA-910)により測定することができる。
 原料黒鉛の粒径が過度に大きいと、改質天然黒鉛粒子を得るために行う球形化処理の効率が低下する。したがって、原料黒鉛は平均粒径が5mm以下であることが好ましく、200μm以下であれば特に好ましい。一方、原料黒鉛が過度に小さいと、形状調整処理の具体的手段によっては形状制御が困難になったり、粉塵公害の原因物質となったりすることが懸念される。したがって、原料黒鉛の平均粒径は3μm以上であることが好ましく、5μm以上であることが特に好ましい。
 2.改質天然黒鉛粒子
 本発明に係る改質天然黒鉛粒子は、円形度が0.92以上であり、C-K端X線吸収スペクトルにおけるピーク強度比の入射角依存性S60/0(詳細は後述)が0.5以上0.7以下である。
 本発明に係る改質天然黒鉛粒子の特性について以下に詳しく説明する。
 (1)円形度
 本発明に係る改質天然黒鉛粒子の円形度は0.92以上である。円形度が0.92未満であると、黒鉛粒子はアスペクト比が大きな扁平形状をなしているため、塗布時の配向、電池としての容量低下などの問題が生じやすくなる。円形度の上限は粒子形状が真球となる場合の円形度、つまり1.0である。円形度は好ましくは0.93以上である。
 (2)C-K端X線吸収スペクトルにおける強度比
 本発明に係る改質天然黒鉛粒子は、放射光を励起光源とする粉体のC-K端X線吸収スペクトルを測定したときに下記式により定義されるピーク強度比の入射角依存性S60/0が0.5以上0.7以下である。
 S60/0=I60/I
 ここで、
  I60=B60/A60
  I=B/A
  A60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位(即ち、sp2結合の反結合性軌道:-C=C-)への遷移に帰属される吸収ピーク強度。
  B60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位(即ち、sp3結合の反結合性軌道:-C-C-)への遷移に帰属される吸収ピーク強度。
  A:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度。
  B:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度。
 以下、S60/0を特定の範囲とすることについて詳しく説明する。
 i)測定方法
 本発明において用いるC-K端X線吸収スペクトルは、C-K端NEXAFS(Near Edge X-ray Absorbance Fine Structure)スペクトルとも称され、占有状態である炭素原子の内殻準位(1s軌道)に存在する電子(K殻内殻電子)が、照射されたX線のエネルギーを吸収して、非占有状態である種々の空準位に励起されることにより観測される吸収スペクトルである。
 このX線吸収分光の測定原理を、X線光電子分光(XPS)との対比で図1に示す。
 結合エネルギーが283.8eVである炭素の内殻準位から種々の空準位への電子遷移を観測するためには、軟X線領域(280eV~320eV)におけるエネルギー可変光源が必要であること、およびS60/0の定量性は励起光源の直線偏光性が高いことを前提としていることから、本発明に係るC-K端NEXAFSスペクトルでは励起光源として放射光を用いる。
 内殻準位にある電子が励起される空準位としては、天然黒鉛における結晶性(ベーサル面や配向性など)を反映するsp2結合の反結合性軌道に帰属されるπ準位、結晶性の乱れ(エッジ面や無配向性など)を反映するsp3結合の反結合性軌道に帰属されるσ準位、あるいはC-H結合やC-O結合などの反結合性軌道に帰属される空準位などがある。sp2結合による六角網構造が積層した結晶構造をもつ黒鉛において、表面が六角網面の平面(後述のAB面)になっているのがベーサル面であり、六角網の端部が現れている面がエッジ面である。エッジ面では炭素はsp3結合をとることが多い。
 また、C-K端NEXAFSスペクトルは、励起された内殻電子を含む炭素原子近傍の局所構造を反映することに加えて、照射された光によって固体中から真空中に放出される電子の脱出深さが10nm程度であることから、測定された黒鉛粒子の表面構造のみを反映する。したがって、C-K端NEXAFSスペクトルを用いることにより、改質天然黒鉛粒子の表面に存在する黒鉛の結晶状態(配向性)を測定することができ、それにより黒鉛表面の粗さを評価することができる。
 測定される改質天然黒鉛粒子の試料台への固定方法は特に限定されない。黒鉛粒子に過度の荷重が加わってその表面性状が変化しないように、In(インジウム)箔で銅基板上に担持する、あるいはカーボンテープで銅基板上に担持するなどの方法を採用することが好ましい。
 本発明に係るC-K端NEXAFSスペクトルの測定は、試料に対して入射角が固定された放射光を試料に照射する。そして、照射する放射光のエネルギーを280eV~320eVまで走査しながら、試料から放出された光電子を補完するために試料に流れこむ試料電流を計測する全電子収量法により行う。この測定方法の基本構成を図2に示す。
 ii)S60/0による表面黒鉛結晶の配向性の定量評価
 次に説明するように、S60/0を測定することにより、測定された改質天然黒鉛粒子の表面近傍の黒鉛結晶(以下、「表面黒鉛結晶」という)の配向性を定量的に評価することができる。
 放射光は直線偏光性が高いため、放射光の入射方向が表面黒鉛結晶のsp2結合(-C=C-)の結合軸方向に平行である場合にC-1s準位からπ準位への遷移に帰属される吸収ピーク強度が大きくなり、逆に両者が直交する場合にはこの吸収ピーク強度が小さくなる。
 そのため、高配向性熱分解黒鉛(HOPG,単結晶黒鉛)のように表面近傍においてsp2結合を形成する黒鉛結晶が高度に配向している試料の場合には、試料に対する放射光の入射角を変えるとスペクトル形状が大きく変化するが、炭素蒸着膜(非晶質)のように表面近傍においてsp2結合を形成する炭素材料の配向性が低い試料の場合には、試料に対する放射光の入射角を変えてもスペクトル形状はほとんど変化しない。
 図3(A)および(B)は、炭素に対してそれぞれ異なる入射角(0°、30°および60°)で放射光を入射させた場合のC-K端NEXAFSスペクトルを示す図であり、図3(A)は炭素が単結晶であるHOPG(高配向性熱分解黒鉛)である場合、図3(B)は炭素が非晶質の炭素蒸着膜(膜厚:10nm)である場合を示す。図3(A)に示すように、単結晶であるHOPGでは、入射角を0°から60°へと増加させるとC-1s準位からπ準位への遷移に帰属される吸収ピーク強度Aは増加し、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度Bは減少する。このため、HOPGのC-K端NEXAFSスペクトルは入射角度によってそのプロファイルが大きく変化する。これに対して、図3(B)に示す非晶質である炭素蒸着膜のC-K端NEXAFSスペクトルのプロファイルは、入射角にほとんど依存しておらず、入射角が変化してもプロファイルはほとんど変化しない。
 したがって、ある黒鉛系材料に対して異なる入射角でC-K端NEXAFSスペクトルを測定した結果、吸収ピーク強度Aの吸収ピーク強度Bに対する比I(=A/B)が入射角に応じて変化する場合には、その材料の表面近傍に存在する黒鉛結晶は規則正しく並んで配置されており、つまり、配向性が高く、逆にその比Iに入射角依存性が見られない場合には、その材料の表面近傍に存在する黒鉛結晶は不規則に並んでいて配向性が低いということになる。そうすると、吸収強度AとBとの比Iの入射角依存性を定量化することにより、黒鉛系材料の表面近傍に存在する黒鉛結晶の配向性を定量的に評価することができることになる。
 そこで、本発明では、二つの入射角60°および0°の場合における吸収ピーク強度Aの吸収ピーク強度Bに対する比I60およびIを用いて導かれるピーク強度比の入射角依存性S60/0(=I60/I)を用いて、表面黒鉛結晶の配向性を定量評価する。図4は、本発明に係る表面黒鉛結晶の配向性の定量評価方法を、HOPGを試料とした場合を例として説明する図である。
 S60/0が1近傍である場合には、表面黒鉛結晶の配向性が低く、S60/0が1から0に近づくほど(図4)表面黒鉛結晶の配向性が高い。
 なお、S60/0を求めるにあたり、In箔やカーボンテープを用いて試料粒子を担持する場合には、これらの担体のC-K端NEXAFSスペクトルをブランクスペクトルとして測定しておき、試料粒子を測定して得られたC-K端NEXAFSスペクトルの強度をこのブランクスペクトルを用いて補正して各遷移の吸収ピーク強度を算出する。
 iii)S60/0と負極合剤の接着強度との関係について
 本発明に係る改質天然黒鉛粒子は鱗片形状の原料黒鉛から得られるものであって、その円形度が0.92以上である。原料黒鉛全体の形状を球形に近づけ、前記円形度を得るための処理(以下、「球形化処理」という)が施されている。この球形化処理として、具体的には特許文献2から4に開示されるような処理が例示される。
 原料となる鱗片形状の黒鉛は、炭素原子が規則正しく網目構造を形成して平面状に広がる六角網面平面(AB面)が多数積層し、AB面に垂直方向であるC軸方向に厚みを有する結晶である。積層したAB面相互間の結合力(ファンデルワールス力)は、AB面の面内方向の結合力に比べてはるかに小さいため、AB面間の剥離が起きやすい。よってAB面の広がりに対して積層の厚みが薄いため、全体として鱗片形状を呈している。
 この鱗片形状を有する原料黒鉛が球形化処理を受けると、図5(A)~図5(C)に示すように、本来ほぼ平面状であった原料黒鉛は折り畳まれたり、別の粒子が折り畳まれる時に取り込まれたり、また別の粒子の表面に付着したりする。
 そのため、マクロな視点で見れば、平面状であった原料黒鉛の表面(AB面)がそのまま、原料黒鉛を球形化処理することにより得られた黒鉛粒子(以下、「球状化黒鉛粒子」という)の表面の大部分を覆っている。したがって、球状化黒鉛粒子の表面はAB面が支配的になると考えられる。しかし、図6に示すように、球状化黒鉛粒子を拡大して観察すれば、その表面には折り畳まれた粒子の端面や付着した粒子の端面、すなわち、エッジ面が露出しているので、多数の凹凸が存在する。さらにミクロな視点で見れば、球形化処理時の衝撃力により、AB面のところどころで剥離が生じて折れ曲がり、エッジ面が表面に現れる部分が生成する。
 このような表面の凹凸により、球状化黒鉛粒子の表面は粗面を呈する。このため、球状化黒鉛粒子の表面近傍に存在する黒鉛結晶におけるsp2結合の結合軸は全体としてランダムな方向を向くことになる。それゆえ、球状化黒鉛粒子は、その円形度は0.92以上であるが、S60/0は1近傍となる。
 球形化処理によって粗面化された表面性状を有する球状化黒鉛粒子、換言すれば円形度が0.92以上であるとともにS60/0が1近傍である球状化黒鉛粒子、を負極活物質とすると、その球状化黒鉛粒子の粗な面の突出した部分のみが負極活物質同士の接触部および負極活物質と集電体との接触部となる。負極活物質とともに含有されて負極合剤を構成するバインダは、本来、このような接触部に供給されることによって負極活物質同士または負極活物質と集電体とを接着するものであるから、球状化黒鉛粒子を負極活物質とすると、得られた負極合剤は接着性が低く、集電体から脱落しやすいものとなってしまう。
 これに対し、本発明に係る改質天然黒鉛粒子は、円形度が0.92以上であるとともに、S60/0が0.7以下であることから、その粒子は球形化処理を受けていながら、表面黒鉛結晶はある程度配向している。この表面黒鉛結晶における配向した部分では、折れ曲がりなどの欠陥が少なく平面性の高いAB面になっているため、この粒子からなる負極活物質は隣接する負極活物質や集電体と相対的に広い接触部を形成することができる。
 それゆえ、本発明に係る改質天然黒鉛粒子を負極活物質とすることによって、接着性が高く集電体から脱落しにくい負極合剤を得ることが実現される。
 本発明に係る改質天然黒鉛粒子のS60/0の下限は、円形度が0.92以上である限り特に限定されないが、0.5が実質的な下限となる。S60/0が0.5未満である場合には円形度を0.92以上とすることは現実的にきわめて困難である。
 (3)タップ密度
 本発明に係る改質天然黒鉛粒子は、容積100cmの容器を用いてタッピング回数180回として測定されるタップ密度が、1.0g/cm以上1.4g/cm以下であることが好ましい。
 タップ密度が1.0g/cm以上であることで、負極板中の負極活物質の充填密度が高くなる。タップ密度は好ましくは1.05g/cm以上である。原料黒鉛に球形化処理を施したのみの黒鉛粒子は、表面が粗なため、タップ密度は高まりにくい。タップ密度は、より高いほうが好ましいが、現実的には1.4g/cmが上限である。
 (4)亜麻仁油吸収量
 本発明に係る改質天然黒鉛粒子は、概ねJIS K6217-4:2008に規定されるオイル吸収量測定方法に準拠して、アブソープドメータを用いて測定される亜麻仁油吸収量が20cm/100g以上50cm/100g以下であることが好ましい。
 原料黒鉛に球形化処理を施したのみの黒鉛粒子は、その表面が過度に粗であるため、亜麻仁油吸収量が高くなる傾向がある。亜麻仁油吸収量が過度に高いと、バインダの利用効率が低下し、容量を高めることが困難となる。したがって、亜麻仁油吸収量は50cm/100g以下であることが好ましい。吸油量はより小さいほうが好ましいが、現実的には20cm/100gが下限である。
 (5)被覆層
 上記の特性を備える本発明に係る改質天然黒鉛粒子は、その表面に炭素質材料を付着させた炭素付着黒鉛粒子としてもよい。こうすると電池特性が向上する。
 ここで、「炭素質材料」とは炭素を主成分とする材料を意味し、その構造は特に限定されない。炭素質材料は改質天然黒鉛粒子の表面の一部に付着していてもよいし、実質的に全面を覆うように付着していてもよい。
 炭素質材料は、核材となる改質天然黒鉛粒子よりも結晶性が低いか、および/または全炭素-炭素結合におけるsp3結合の構成比率が高いものが好ましい。そのような炭素質材料は、黒鉛粒子よりバルク的な硬度が高いので、この炭素質材料が改質天然黒鉛粒子の表面に付着して存在することにより、粒子全体の硬度が高まる。その結果、負極板の製造過程、特に圧縮工程において、負極活物質である電極内部に閉気孔が形成されて充電受け入れ性が低下する可能性が少なくなる。さらに、後述する実施例からもわかるように、炭素付着により黒鉛粒子の比表面積が低減するため、電解液との反応性が抑制される。そのため、この炭素付着黒鉛粒子を活物質とする負極板は、充放電効率が向上し、電池容量が向上する。
 核材となる改質天然黒鉛粒子より結晶性が低い炭素質材料として、乱層構造炭素が例示される。ここで、「乱層構造炭素」とは、六角網平面方向に平行な積層構造は有するが、三次元方向には結晶学的規則性が測定できない炭素原子からなる炭素物質をいう。
 核材となる改質天然黒鉛粒子よりも結晶性が低く、かつsp3結合の構成比率が高い炭素質材料として、非晶質炭素が例示される。ここで、「非晶質炭素」とは、短距離秩序(数原子~十数個原子オーダー)を有するものの、長距離秩序(数百~数千個の原子オーダー)を有していない炭素物質をいう。
 炭素質材料を核材となる改質天然黒鉛粒子の表面に付着させる方法および被覆する方法は特に限定されない。典型的には、表面処理法および真空成膜技術を用いた堆積法が例示される。ここで、表面処理法は、ピッチなどの有機化合物をあらかじめ黒鉛粉末の表面の少なくとも一部に付着させるか、あるいは被覆した後、加熱処理して有機化合物を炭素化させる方法であり、この方法によって乱層構造炭素からなる炭素質材料が得られる。真空成膜技術では、非晶質炭素からなる炭素質材料を核材の表面に付着させることができる。
 3.改質天然黒鉛粒子の製造方法
 本発明に係る改質天然黒鉛粒子は上記の特性を有する限り、いかなる製造方法により製造されていてもよい。上記の特性を満たす改質天然黒鉛粒子を安定的かつ効率的に生産することができる方法を次に説明する。各処理工程における条件は、本発明に係る改質天然黒鉛粒子が得られるように、適宜調整される。
 (1)球形化処理
 ジェットミル、ピンミルなどで例示される衝撃式の粉砕手段を用いることにより、原料の天然黒鉛粒子を球形化することができる。この手段において、原料黒鉛粒子は高速でピンなどと衝突することによって、図5(A)~図5(C)に示されるように、積層されたAB面は折れ曲がったり、他の黒鉛粒子が付着したりして、黒鉛粒子のアスペクト比は低下する。
 しかし、衝撃力によって積層されたAB面の一部がめくれたり、端面が粉末表面に露出したりするため、図6に示されるように、球形化処理を施された黒鉛粒子(球状化黒鉛粒子)はその表面には微細な凹凸が多数存在し、結果的に粗な面を有する粒子となる。球形化処理は、円形度が0.92以上の黒鉛粒子が生成するように実施する。
 (2)平滑化処理
 上記の球状化黒鉛粒子に対して、機械的摩砕処理を適用することにより、黒鉛粒子の表面を平滑化し、本発明の改質天然黒鉛粒子を得ることができる。
 機械的摩砕処理は、粒子の角張りに丸みを帯びさせるとともに、粒子表面の微細な凹凸を平滑化するために行う処理である。例えば、粒子の相互作用を含めた圧縮、摩擦およびせん断などの機械的作用を繰り返し粒子に与える装置を用いることができる。機械的摩砕を行う装置としては、ホソカワミクロン(株)製の粉体処理装置(循環型メカノフュージョンシステム,AMS-Lab)や徳寿工作所製のシータ・コンポーザ等を用いることができる。
 この手段では、例えば、近接して相対運動する二つの固体(例えばロータとインナーピース)が作る間隙に黒鉛粒子を通過させることにより、黒鉛粒子の表面に面内方向への強い摺動力を付与する。このため、間隙を通過する黒鉛はその摺動部位において摺動方向に結晶が配向する。すなわち露出した折り畳まれた粒子の端面や付着した粒子の端面も、AB面層間ですべりが起こりAB面で覆われる。またAB面のところどころに存在する剥離、折れ曲がりによりエッジ部が表面方向を向いていた部分も圧縮され、配向する。
 こうして、図7に示されるように、機械的摩砕処理などの平滑化処理によって球状化黒鉛粒子の表面は平滑化され、得られた改質天然黒鉛粒子における表面黒鉛結晶の配向性は高まる。それにより、円形度が0.92以上であるともにS60/0が0.7以下である本発明に係る改質天然黒鉛粒子を得ることができる。
 本発明に係る改質天然黒鉛粒子およびこれを核材とする炭素付着黒鉛粒子を活物質として使用し、非水電解質二次電池の負極板を製造することができる。負極の製造に用いるバインダおよび集電体は特に制限されず、従来より使用されてきたものでよい。本発明によれば、活物質である黒鉛粒子の表面が平滑であって、黒鉛粒子同士または黒鉛粒子と集電体との接触面積が増大するため、バインダの量を従来より低減させることができ、それにより、より高密度で高容量の電極の製造が可能になる。
 (実施例1~4および比較例1~4)
 (1)改質天然黒鉛粒子黒鉛粒子の製造
 原料天然黒鉛粒子(中国産鱗片状黒鉛、真比重は2.26g/cm)に対して、ホソカワミクロン(株)製粉砕装置(ACMパルペライザ、ACM-10A)を用いて球形化処理を行った。処理は15回繰り返した。さらに風力分級により微粉を除去した。適宜異なった粉砕回転数、分級回転数で球形化処理を行うことにより、粒度の異なる4種類の表1に比較例1から4として示す球状化黒鉛粒子を得た。
 これらの黒鉛粒子のそれぞれの一部について、さらに、ホソカワミクロン(株)製メカノフュージョンシステム(AMS-Lab)を用いて平滑化処理を行った。処理条件は次のとおりであった。
  投入量:600g
  ロータとインナーピースとの隙間:5mm
  回転数:2600rpm
  処理時間:15分間
 この平滑化処理により、表1に実施例1から4として示す改質天然黒鉛粒子を得た。
 得られた比較例1~4の球状化黒鉛粒子および実施例1~4の改質天然黒鉛粒子の特性(S60/0、平均粒径、円形度、比表面積、タップ密度、および亜麻仁油吸収量を、後述する方法で求めた結果を表1に示す。これらの黒鉛粒子の真比重は表1に示されていないが、原料黒鉛の真比重と同じ2.26g/cmである。
 (2)負極板の製造
 上記方法により得られた球状化黒鉛粒子または改質天然黒鉛粒子からなる負極活物質とバインダとを混合して2種類の負極合剤(負極合剤1および2)を調製した。
 [負極合剤1]
 スチレン-ブダジエンゴム(SBR)およびカルボキシメチルセルロースナトリウム(CMC)からなるバインダと黒鉛粒子とを混合して負極合剤を調製した。負極合剤の配合比(質量比)は次のとおりであった:
 負極活物質:SBR:CMC=98:1:1。
 [負極合剤2]
 ポリフッ化ビニリデン(PVdF)からなるバインダと黒鉛粒子とを混合して負極合剤を調製した。負極合剤の配合比(質量比)は次のとおりであった:
 負極活物質:PVdF=9:1。
 各負極合剤を集電体となる電解銅箔(厚み:17μm)上に塗布し、乾燥し(負極合剤1では75℃×20分間、負極合剤2では100℃×20分間)、一軸プレスにより圧密化して負極板を得た。得られた負極板における負極合剤層はいずれも9mg/cmであり、密度は1.6g/cmであった。各負極板の剥離強度を後述する方法で測定し、結果を表1に示す。
 (3)測定方法
 i)S60/0
 C-K端NEXAFSスペクトルの測定は、兵庫県が大型放射光施設Spring-8の敷地内に設置し、兵庫県立大学高度産業科学技術研究所が運営している、放射光施設ニュースバルのビームラインBL7BおよびBL9において行った。加速電圧1.0GeV~1.5GeV、蓄積電流80~350mAで蓄積リングに蓄積された電子が、アンジュレーターと呼ばれる挿入光源を蛇行して通過する際に放出される放射光を励起光源とした。BL7BおよびBL9に設置されているC-K端NEXAFSスペクトル測定装置を用いて、各実施例および比較例に係る黒鉛粒子についてC-K端NEXAFSスペクトルを測定し、得られた入射角0°および60°におけるスペクトルプロファイルからS60/0を算出した。測定原理および測定方法の詳細については前述のとおりである。試料粒子を担持するための担体としてはIn箔を用いた。
 ii)平均粒径(表1ではd50と表記)
 (株)堀場製作所製レーザー回折/散乱式粒度分布計(LA-910)を用いて光散乱回折法により各黒鉛粒子の体積基準の粒度分布を求めた。得られた粒度分布におけるメジアン径を各黒鉛粒子の平均粒径とした。
 iii)円形度
 シスメックス(株)製フロー式粒子画像分析装置FPIA-2100を用いて、各黒鉛粒子の円形度を測定した。具体的には、各黒鉛粒子を構成する5000個以上の粒子を測定対象試料とし、界面活性剤としてポリオキシレンソルビタンモノウラレートを添加したイオン交換水分散媒とする扁平な試料流を撮影し、得られた各粒子像を画像処理することにより求めた。
 iv)比表面積
 ユアサアイオニクス(株)製カンタソープを用いて、各黒鉛粒子の比表面積をBET1点法により求めた。
 v)タップ密度
 ホソカワミクロン(株)製パウダテスタ(登録商標)PT-N型を用い、容積100cmの容器を用いてタッピング回数180回として固め見掛け比重を各黒鉛粒子について測定し、これを各黒鉛粒子のタップ密度とした。
 vi)亜麻仁油吸収量(表1には吸油量と表記)
 (株)あさひ総研製アブソープドメータ(S-410)を用い、概ねJIS K6217-4:2008に規定されるオイル吸収量測定法に準拠して、各黒鉛粒子の亜麻仁油吸収量を測定した。具体的には、2枚羽根によってかき混ぜられている黒鉛粒子に4cm/minの速度で亜麻仁油を添加した。このときの粘度特性の変化をトルク検出器によってトルクの変化として検出した。発生した最大トルクの100%時点のトルクに対応する亜麻仁油添加量を、黒鉛粒子100gあたりに換算して亜麻仁油吸収量を求めた。
 vii)剥離強度
 剥離強度は、概ねJIS C6481に準拠して求めた。具体的には、幅15mmの短冊状に切り取った負極板を、負極合剤が下面になるようにテーブル上に配置して、両面テープ(ニチバン(株)製NW-K15)でテーブルに固定した。固定された負極板の上面をなす負極集電体を、テーブル上面に対して垂直方向に50mm/minの速さで50mm引っ張ることにより負極集電体と負極合剤とを剥離させた。このときの剥離荷重を連続的に測定し、得られた測定荷重のうちの最低値を剥離強度(単位:N/m)とした。
Figure JPOXMLDOC01-appb-T000001
 表1中の強度比は、平滑化処理後の剥離強度の平滑化処理前の剥離強度に対する比であり、具体的には(実施例1の剥離強度)/(比較例1の剥離強度)のようにして求めたものである。
 表1から、球状化処理で得られた比較例1~4の黒鉛粒子は、円形度は0.92以上であるが、S60/0は0.75~0.88と大きく、亜麻仁油吸収量も50cm/100gを超えていた。これに対し、平滑化処理を受けた実施例1~4の黒鉛粒子は、S60/0が0.51~0.68と小さくなり、亜麻仁油吸収量も50cm/100gより小さくなった。また、タップ密度も、対応する比較例と実施例(例、実施例1と比較例1)とを比べると、実施例の方が高くなっていた。
 本発明に係る実施例1~4の改質天然黒鉛粒子は、平滑化処理前の比較例1~4の球状化黒鉛粒子に比べて、剥離強度が合剤1では1.72~1.88倍、合剤2では2.11倍~7.50倍高くなり、剥離強度が著しく改善されていることがわかる。
 (実施例5および比較例5)
 実施例2および比較例2で得られた黒鉛粒子のそれぞれに、平均粒径15μmの石炭系ピッチ粉末を黒鉛粒子に対して20質量%の量で混合し、混合物を窒素気流中、1000℃で1時間熱処理することにより、表面に乱層構造炭素が付着した炭素付着黒鉛粒子を得た。得られた炭素付着黒鉛粒子の平均粒径、比表面積、タップ密度、および亜麻仁油吸収量を実施例1~4と同様の方法で求めた。結果を表2に示す。
 こうして得られた炭素付着黒鉛粒子からなる負極活物質とPVdFとを質量比95:5で混合して負極合剤を調製した。これらの負極合剤を用いて実施例1~4と同じ方法で負極板を製造した。得られた負極板の剥離強度を実施例1~4と同様に測定した結果、強度比とともに、表2に併記する。
Figure JPOXMLDOC01-appb-T000002
 表2からわかるように、核材が本発明に係る改質天然黒鉛粒子である実施例5では、核材が球状化黒鉛粒子である比較例5より2.28倍高い剥離強度が得られた。表1と表2とを比較するとわかるように、炭素付着処理を行うことによって、黒鉛粒子の比表面積が著しく減少し、タップ密度が増大するが、平均粒径はほとんど増加していない。本例では、炭素質材料の形成に用いた石炭系ピッチ粉末の量が比較的多いため、黒鉛粒子の大部分の表面は炭素質材料(乱層構造炭素)で被覆されていると考えられる。それにより、ミクロな凹凸が埋められたので比表面積が著しく減少した。
 (実施例6および比較例6)
 実施例3および比較例3で得られた黒鉛粒子のそれぞれに、平均粒径15μmの石炭系ピッチ粉末を黒鉛粒子に対して2質量%の量で混合し、窒素気流中、1000℃で1時間熱処理することにより、表面に乱層構造炭素が付着した炭素付着黒鉛粒子を得た。得られた炭素付着黒鉛粒子の平均粒径、比表面積、タップ密度、および亜麻仁油吸収量を実施例1~4と同様の方法で求めた。結果を表3に示す。
 こうして得られた炭素付着黒鉛粒子からなる負極活物質とSBRとCMCとを質量比98:1:1で混合して負極合剤を調製した。これらの負極合剤を用いて実施例1~4と同じ方法で負極板を製造した。得られた負極板の剥離強度を実施例1~4と同様に測定した結果、強度比とともに、表3に併記する。
 表3からわかるように、核材が本発明に係る改質天然黒鉛粒子である実施例6では、核材が球状化黒鉛粒子である比較例6より1.89倍高い剥離強度が得られた。本例では、炭素質材料の形成に用いた石炭系ピッチ粉末の量が黒鉛粒子の2質量%と少ないため、黒鉛粒子の表面の一部だけに炭素質材料の乱層構造炭素が付着していると考えられる。この場合でも、黒鉛粒子の比表面積はいくらか低減した。これは溶融したピッチが、ベーサル面より表面積の大きいエッジ面に優先的に付着したためであると考えられる。

Claims (5)

  1.  円形度が0.92以上であって、放射光を励起光源としたC-K端X線吸収スペクトルの測定により求められる、下記式により定義されるピーク強度比の入射角依存性S60/0が0.5以上0.7以下である、ことを特徴とする改質天然黒鉛粒子:
      S60/0=I60/I
     ここで、
      I60=B60/A60
      I=B/A
      A60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度。
      B60:放射光の入射角を60°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度。
      A:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からπ準位への遷移に帰属される吸収ピーク強度。
      B:放射光の入射角を0°として測定した、粒子のC-K端X線吸収スペクトルにおける、C-1s準位からσ準位への遷移に帰属される吸収ピーク強度。
  2.  真比重が2.25g/cm以上である請求項1記載の改質天然黒鉛粒子。
  3.  タップ密度が1.0g/cm以上1.4g/cm以下である請求項1または2記載の改質天然黒鉛粒子。
  4.  亜麻仁油吸収量が20cm/100g以上50cm/100g以下である、請求項1から3のいずれかに記載の改質天然黒鉛粒子。
  5.  請求項1から4のいずれかに記載される改質天然黒鉛粒子の表面の少なくとも一部に炭素質材料が付着してなる、炭素付着黒鉛粒子。
PCT/JP2012/059059 2011-04-08 2012-04-03 改質天然黒鉛粒子 WO2012137770A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013508877A JP5814347B2 (ja) 2011-04-08 2012-04-03 改質天然黒鉛粒子
US14/110,240 US20140093781A1 (en) 2011-04-08 2012-04-03 Modified Natural Graphite Particles
EP12768047.8A EP2695857A4 (en) 2011-04-08 2012-04-03 MODIFIED NATURAL GRAPHITE PARTICLES
KR1020137029475A KR101562724B1 (ko) 2011-04-08 2012-04-03 개질 천연 흑연 입자
CN201280027914.6A CN103596881A (zh) 2011-04-08 2012-04-03 改性天然石墨颗粒

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-086266 2011-04-08
JP2011086266 2011-04-08

Publications (1)

Publication Number Publication Date
WO2012137770A1 true WO2012137770A1 (ja) 2012-10-11

Family

ID=46969167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/059059 WO2012137770A1 (ja) 2011-04-08 2012-04-03 改質天然黒鉛粒子

Country Status (6)

Country Link
US (1) US20140093781A1 (ja)
EP (1) EP2695857A4 (ja)
JP (1) JP5814347B2 (ja)
KR (1) KR101562724B1 (ja)
CN (1) CN103596881A (ja)
WO (1) WO2012137770A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032922A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JPWO2013018179A1 (ja) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JP2017085037A (ja) * 2015-10-30 2017-05-18 旭化成株式会社 非水系リチウム型蓄電素子用負極電極体、及びそれを用いた非水系リチウム型蓄電素子
EP3205896A1 (en) 2016-02-15 2017-08-16 Daido Metal Company Ltd. Sliding member
JP2017145277A (ja) * 2016-02-15 2017-08-24 大同メタル工業株式会社 摺動装置
JP2017219438A (ja) * 2016-06-08 2017-12-14 住友ゴム工業株式会社 高分子複合材料中の高分子の配向度を評価する方法
DE102017216068A1 (de) 2016-09-23 2018-03-29 Daido Metal Company Ltd. Gleitelement
JP2018114649A (ja) * 2017-01-17 2018-07-26 住友ゴム工業株式会社 高分子複合材料のシート切れ評価方法
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2018190544A (ja) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 負極活物質粒子、負極、リチウムイオン二次電池、および負極活物質粒子の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10710094B2 (en) 2016-05-18 2020-07-14 Syrah Resources Ltd. Method and system for precision spheroidisation of graphite
US10710882B2 (en) 2016-06-27 2020-07-14 Syrah Resources Ltd. Purification process modeled for shape modified natural graphite particles
KR102358446B1 (ko) * 2017-05-12 2022-02-04 주식회사 엘지에너지솔루션 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지
KR102347003B1 (ko) * 2018-12-17 2022-01-05 주식회사 엘지에너지솔루션 이차전지용 음극 활물질, 이를 포함하는 음극 및 이의 제조방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263612A (ja) 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd 鱗片状天然黒鉛改質粒子、その製造法、および二次電池
JP2000003708A (ja) * 1998-06-12 2000-01-07 Osaka Gas Co Ltd 被覆炭素材料、その製造方法、ならびにそれを用いたリチウム二次電池
JP2003238135A (ja) 2002-02-19 2003-08-27 Mitsui Mining Co Ltd 球状化黒鉛粒子の製造方法
JP2007169160A (ja) 2007-02-08 2007-07-05 Mitsubishi Chemicals Corp 非水電解液二次電池の極板用の高充填性炭素粉末
JP2008024588A (ja) 2007-07-30 2008-02-07 Mitsui Mining Co Ltd 黒鉛粒子
JP2008305661A (ja) * 2007-06-07 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2009209035A (ja) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
JP2009238584A (ja) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185989A (ja) * 2002-12-03 2004-07-02 Hitachi Chem Co Ltd 電極用黒鉛粒子、その製造方法、それを用いた非水電解液二次電池用負極及び非水電解液二次電池
KR100704096B1 (ko) * 2002-12-19 2007-04-06 제이에프이 케미칼 가부시키가이샤 복합 흑연 입자 및 그의 제조방법, 및 이것을 이용한 리튬이온 2차 전지의 음극재 및 리튬 이온 2차 전지
JP4215633B2 (ja) * 2002-12-19 2009-01-28 Jfeケミカル株式会社 複合黒鉛粒子の製造方法
CN1326266C (zh) * 2003-12-26 2007-07-11 比亚迪股份有限公司 一种锂离子二次电池负极石墨材料及其制备方法
JP4693470B2 (ja) * 2004-04-12 2011-06-01 三星エスディアイ株式会社 リチウム二次電池用負極活物質、及びこれを含む負極、及びリチウム二次電池
EP1906472B1 (en) * 2005-06-27 2013-08-21 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
EP2554515A4 (en) * 2010-03-31 2016-01-20 Nippon Steel & Sumitomo Metal Corp MODIFIED NATURAL GRAPHITE PARTICLE AND PRODUCTION METHOD THEREOF

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11263612A (ja) 1998-03-18 1999-09-28 Kansai Coke & Chem Co Ltd 鱗片状天然黒鉛改質粒子、その製造法、および二次電池
JP2000003708A (ja) * 1998-06-12 2000-01-07 Osaka Gas Co Ltd 被覆炭素材料、その製造方法、ならびにそれを用いたリチウム二次電池
JP2003238135A (ja) 2002-02-19 2003-08-27 Mitsui Mining Co Ltd 球状化黒鉛粒子の製造方法
JP2007169160A (ja) 2007-02-08 2007-07-05 Mitsubishi Chemicals Corp 非水電解液二次電池の極板用の高充填性炭素粉末
JP2008305661A (ja) * 2007-06-07 2008-12-18 Tokai Carbon Co Ltd リチウムイオン二次電池用負極材とその製造方法
JP2008024588A (ja) 2007-07-30 2008-02-07 Mitsui Mining Co Ltd 黒鉛粒子
JP2009209035A (ja) * 2008-02-04 2009-09-17 Mitsubishi Chemicals Corp 複層構造炭素質物及びその製造方法並びにそれを用いた非水系二次電池
JP2009238584A (ja) * 2008-03-27 2009-10-15 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素粒子、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIS K, 2008, pages 6217 - 4
K. OHZEKI ET AL., TANSO (CARBON, 2005, pages 99 - 103
See also references of EP2695857A4

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018179A1 (ja) * 2011-07-29 2015-03-02 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
US9929398B2 (en) 2011-07-29 2018-03-27 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery and method of manufacturing the same
JP2014032922A (ja) * 2012-08-06 2014-02-20 Toyota Motor Corp 非水電解質二次電池の負極および非水電解質二次電池、ならびにこれらの製造方法
JP2017085037A (ja) * 2015-10-30 2017-05-18 旭化成株式会社 非水系リチウム型蓄電素子用負極電極体、及びそれを用いた非水系リチウム型蓄電素子
EP3205896A1 (en) 2016-02-15 2017-08-16 Daido Metal Company Ltd. Sliding member
JP2017145277A (ja) * 2016-02-15 2017-08-24 大同メタル工業株式会社 摺動装置
US10995296B2 (en) 2016-02-15 2021-05-04 Daido Metal Company Ltd. Sliding member
JP2017219438A (ja) * 2016-06-08 2017-12-14 住友ゴム工業株式会社 高分子複合材料中の高分子の配向度を評価する方法
US10422380B2 (en) 2016-09-23 2019-09-24 Daido Metal Company Ltd. Sliding member
DE102017216068A1 (de) 2016-09-23 2018-03-29 Daido Metal Company Ltd. Gleitelement
DE102017216068B4 (de) 2016-09-23 2022-09-15 Daido Metal Company Ltd. Gleitelement
JP2018114649A (ja) * 2017-01-17 2018-07-26 住友ゴム工業株式会社 高分子複合材料のシート切れ評価方法
JP2018190544A (ja) * 2017-04-28 2018-11-29 トヨタ自動車株式会社 負極活物質粒子、負極、リチウムイオン二次電池、および負極活物質粒子の製造方法
WO2018207333A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
WO2018207896A1 (ja) * 2017-05-11 2018-11-15 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018207896A1 (ja) * 2017-05-11 2020-05-14 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020177931A (ja) * 2017-05-11 2020-10-29 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020177932A (ja) * 2017-05-11 2020-10-29 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
US11605818B2 (en) 2017-05-11 2023-03-14 Showa Denko Materials Co., Ltd. Anode material for lithium ion secondary battery, method of producing anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
CN103596881A (zh) 2014-02-19
JPWO2012137770A1 (ja) 2014-07-28
US20140093781A1 (en) 2014-04-03
EP2695857A1 (en) 2014-02-12
KR101562724B1 (ko) 2015-10-22
KR20140002793A (ko) 2014-01-08
EP2695857A4 (en) 2014-09-17
JP5814347B2 (ja) 2015-11-17

Similar Documents

Publication Publication Date Title
JP5814347B2 (ja) 改質天然黒鉛粒子
KR101421860B1 (ko) 개질 천연 흑연 입자 및 그 제조 방법
JP5375953B2 (ja) 混合炭素材料および非水系二次電池用負極
TWI418081B (zh) Lithium ion secondary battery anode material and manufacturing method thereof
JP5429168B2 (ja) 混合炭素材料および非水系二次電池用負極
JPWO2017002959A1 (ja) リチウムイオン電池用負極材及びその用途
JP5798678B2 (ja) ケイ素黒鉛複合粒子およびその製造方法ならびに電極およびその電極を備える非水電解質二次電池
WO2014157318A1 (ja) 炭素材、その炭素材を用いた非水系二次電池
WO2007000982A1 (ja) 非水系二次電池用黒鉛質複合粒子、それを含有する負極活物質材料、負極及び非水系二次電池
JP2010218758A (ja) リチウム二次電池用負極材及びその製造方法
US20210265620A1 (en) Compositions and uses thereof
JP5859114B2 (ja) 複合黒鉛質粒子およびその製造方法
JP2016115418A (ja) ケイ素黒鉛複合粒子の使用方法、非水系二次電池用黒鉛負極の放電容量改良材、混合粒子、電極および非水電解質二次電池
JP2022032057A (ja) リチウムイオン二次電池電極用黒鉛材料
JP2016091762A (ja) ケイ素黒鉛複合粒子およびその製造方法
WO2021192651A1 (ja) リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
WO2021192648A1 (ja) リチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極材の製造方法
JP7263284B2 (ja) リチウムイオン二次電池用負極材の製造方法
WO2023189342A1 (ja) 炭素材組成物及びその製造方法、並びに負極及び二次電池
JP2015060642A (ja) ケイ素酸化物黒鉛複合粒子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768047

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508877

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012768047

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137029475

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14110240

Country of ref document: US