WO2012137552A1 - 発光デバイス - Google Patents

発光デバイス Download PDF

Info

Publication number
WO2012137552A1
WO2012137552A1 PCT/JP2012/054226 JP2012054226W WO2012137552A1 WO 2012137552 A1 WO2012137552 A1 WO 2012137552A1 JP 2012054226 W JP2012054226 W JP 2012054226W WO 2012137552 A1 WO2012137552 A1 WO 2012137552A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur
based gas
phosphor
emitting device
light
Prior art date
Application number
PCT/JP2012/054226
Other languages
English (en)
French (fr)
Inventor
春香 清水
稲村 昌晃
明日香 篠倉
彰記 熊谷
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to US14/009,650 priority Critical patent/US9166119B2/en
Priority to JP2013508792A priority patent/JP5486733B2/ja
Priority to KR1020137016771A priority patent/KR101496921B1/ko
Priority to KR1020157000814A priority patent/KR101562577B1/ko
Priority to CN201280007123.7A priority patent/CN103348497B/zh
Priority to EP12768562.6A priority patent/EP2696378B1/en
Publication of WO2012137552A1 publication Critical patent/WO2012137552A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a light emitting device that can effectively suppress the adverse effects of sulfur-based gas.
  • LEDs are used as light sources, they consume less power than fluorescent lamps, have a long life, and are safe to touch and touch.
  • LEDs since it does not contain harmful substances such as mercury and is excellent in terms of environment, light emitting devices using LEDs as light sources are becoming widespread.
  • the LED is disposed on a metal plate obtained by silver-plating copper, and the LED is a phosphor-containing resin in which a phosphor is contained in a resin such as a silicone resin.
  • the light emitting device provided with the structure formed by sealing a metal plate is known.
  • the sulfur-containing phosphor When a sulfur-containing phosphor is used in such a light-emitting device, the sulfur-containing phosphor easily reacts with water. For example, it reacts with moisture in the atmosphere to react with sulfur such as hydrogen sulfide, sulfur dioxide, and sulfur trioxide. System gas is generated, and this sulfur-based gas corrodes the metal member inside the element such as an Ag plating film (hereinafter referred to as “Ag reflection film”) applied to increase the reflectance of the metal member, for example, the reflector.
  • Ag reflection film Ag plating film
  • Patent Document 1 a method of coating this type of phosphor with a glass material or the like for the purpose of improving moisture resistance
  • Patent Document 2 Patent Document 3, Patent Document 4, Patent Document 5
  • Patent Document 6 a method of coating the surface of phosphor particles by a chemical vapor reaction method
  • Patent Document 7 attaching metal compound particles A method
  • the present invention proposes a new light-emitting device that can effectively suppress the adverse effects of sulfur-based gas.
  • the present invention relates to a light-emitting device including a solid light-emitting element, a metal member that reacts with a sulfur-based gas, and a phosphor-containing layer, and the phosphor-containing layer adsorbs a sulfur-based gas.
  • the present invention is also a light emitting device including a solid light emitting element, a metal member that reacts with a sulfur-based gas, and a phosphor-containing layer, and further includes a sulfur-based gas adsorbing material that adsorbs the sulfur-based gas.
  • a light emitting device provided with a sulfur-based gas absorption layer between the metal member and the phosphor-containing layer is proposed.
  • the sulfur-based gas adsorbing material By adding a sulfur-based gas adsorbing substance to the phosphor-containing layer that covers the metal member, and adding more sulfur-based gas adsorbing substance on the side of the phosphor-containing layer closer to the metal member, for example, Even when a sulfur-containing phosphor is used, the sulfur-based gas adsorbing material adsorbs the sulfur-based gas generated due to the sulfur-containing phosphor. it can. In addition, corrosion due to sulfur-based gas existing in the atmosphere can be suppressed. Even if a sulfur-based gas absorption layer containing a sulfur-based gas adsorbing material is provided between the metal member and the phosphor-containing layer, corrosion due to the sulfur-based gas can be similarly suppressed.
  • FIG. 14 is a partially enlarged top view of the LED package (after phosphor filling) shown in FIG. 13.
  • FIG. 6 is a longitudinal sectional view of an LED package manufactured in (Example 1-1) to (Example 1-7). It is the figure explaining the measuring method at the time of dividing into 3 areas and measuring the element concentration of each layer about the LED package produced in (Example 1-3), and the longitudinal cross-sectional view which showed the measurement location of EDS especially It is.
  • FIG. 18 is a longitudinal sectional view of an LED package manufactured in (Example 2-1) to (Example 2-18). It is a longitudinal cross-sectional view of the LED package produced in (Comparative Example 2-1).
  • 6 is a graph showing the relationship between the specific surface area of ZnO and the emission intensity maintenance rate for Examples 3-1 to 3-10.
  • a light emitting device A includes a solid light emitting element 1, a metal member 2 that reacts with a sulfur-based gas, a phosphor 3, and a sulfur-based gas adsorbing material 4. And a phosphor-containing layer 5 containing a resin 6.
  • the light emitting device shown in FIGS. 1 and 2 shows an example of the present light emitting device A. That is, the solid light emitting element 1 is disposed on the metal member 2 as a reflector, and the metal member 2 is covered with the phosphor-containing layer 5 containing the phosphor 3, the sulfur-based gas adsorbing substance 4 and the resin 6. It is a light-emitting device provided with the structure formed. However, as will be described later, the configuration of the light emitting device A is not limited to such a light emitting device.
  • the phosphor-containing layer 5 of the light emitting device A has a higher concentration of the sulfur-based gas adsorbing substance 4 toward the side closer to the metal member 2.
  • the three adjacent layers 5a, the intermediate layer 5b, and the outer layer 5c have three equal thicknesses from the side closer to the metal member 2 toward the far side.
  • contact layer part 5a become higher than that of the intermediate
  • “when divided into three” does not mean actually dividing into three layers, but means when divided into three equally as a concept according to the distance from the metal member 2.
  • the fluorescent substance 3 should just be scattered in the fluorescent substance containing layer 5.
  • the phosphors 3 may be uniformly or non-uniformly dispersed in the phosphor-containing layer 5, or may be scattered with a concentration distribution in the depth direction. Moreover, it may settle and be scattered in layers. For example, as shown in FIG. 1, the phosphors 3 may be uniformly scattered in the phosphor-containing layer 5, or may be scattered with a concentration distribution as shown in FIG.
  • the sulfur-based gas adsorbing material 4 and the resin 6 are produced, Two or more kinds of phosphor-containing resin compositions having different concentrations may be prepared, and sequentially laminated so that the concentration of the sulfur-based gas adsorbing material 4 increases toward the side closer to the metal member 2. If the sulfur-based gas adsorbing material 4 can settle in the resin 6 before curing, a phosphor-containing resin composition containing the phosphor 3, the sulfur-based gas adsorbing material 4 and the resin 6 is prepared in advance.
  • the resin composition is filled on the metal member 2 and cured over time, so that the sulfur-based gas adsorbing material 4 is settled and the concentration of the sulfur-based gas adsorbing material 4 increases toward the side closer to the metal member 2.
  • a light-emitting device B according to the second embodiment of the present invention includes a solid-state light-emitting element 1, a metal member 2 that reacts with a sulfur-based gas, and a phosphor containing a phosphor 3.
  • the light-emitting device includes a body-containing layer 7 and a sulfur-based gas absorption layer 8 containing the sulfur-based gas adsorbing material 4.
  • the light emitting device shown in FIGS. 3 to 10 shows an example of the present light emitting device B. That is, on the metal member 2 as a reflection plate, a sulfur-based gas absorption layer 8 made of a sulfur-based gas adsorbing substance 4 and a resin 6 covers the solid-state light emitting element 1 and the metal member 2, and the outer side thereof is a phosphor. 3 and a phosphor-containing layer 7 containing a resin 6.
  • the configuration of the light emitting device B is not limited to such a light emitting device.
  • the sulfur-based gas absorption layer 8 may be formed closer to the metal member 2 than the phosphor-containing layer 7, may be formed so as to cover the metal member 2, or as shown in FIGS.
  • the solid light emitting element 1 may be formed so as to cover it, or as shown in FIGS. 3 to 6, it may be formed so as to cover a part of the solid light emitting element 1.
  • the sulfur-based gas absorption layer 8 may be laminated at a location apart from the metal member 2 as shown in FIGS.
  • the sulfur type gas absorption layer 8 may be provided also in the outermost layer, and you may comprise so that the fluorescent substance containing layer 7 may be pinched
  • the phosphors 3 in the phosphor-containing layer 7 only need to be scattered in each layer. That is, it is only necessary that each layer is uniformly scattered, non-uniformly scattered, or distributed with a concentration distribution in the depth direction, or settled and scattered in layers.
  • the phosphors 3 in the phosphor-containing layer 7 may be evenly scattered in the phosphor-containing layer 7 as shown in FIGS. 3 and 5. As shown in FIG. 6, it may be settled and scattered in layers.
  • the content ratio of the sulfur-based gas adsorbing material 4 in the sulfur-based gas absorbing layer 8 is preferably 0.01 to 40 parts by mass with respect to the resin 6, and more preferably 0.1 parts by mass or more. It is preferably 20 parts by mass or less.
  • the sulfur-based gas adsorbing material 4 in the sulfur-based gas absorption layer 8 is uniformly dispersed in each layer, is unevenly dispersed, or is dispersed with a concentration distribution in the depth direction, or sedimentation. And it should just be scattered in layers.
  • the sulfur-based gas absorption layer 8 may be uniformly dispersed, and as shown in FIGS. 4 and 5, the sulfur-based gas adsorbing material 4 is settled. And it may be scattered in layers.
  • Solid-state light emitting device 1 As solid light emitting element 1 used for this light emitting device A and B, LED, a laser, electroluminescence etc. can be mentioned, for example.
  • the metal member 2 used in the present light emitting devices A and B is effective as long as it is a metal member that reacts with a sulfur-based gas.
  • any metal or alloy containing at least one Group VIII metal or Group IB metal may be used. Specific examples include silver, silver-based alloys, copper, copper-based alloys, nickel, nickel-based alloys, iron, and iron-based alloys.
  • the shape of the metal member 2 is a plate shape in the example of FIG. 1-10, but is not particularly limited.
  • the phosphor 3 used in the present light-emitting devices A and B may be any substance that emits visible light when irradiated with light, and if it is a sulfur-containing phosphor containing sulfur, the effects of the present invention can be further enjoyed.
  • the phosphor may not contain sulfur. This is because even if the phosphor does not contain sulfur, the light emitting device is deteriorated by sulfur-based gas contained in the atmosphere.
  • the phosphor has a composition in which an activating element or a co-activating element is combined with a crystal matrix.
  • the crystal matrix include metal oxides typified by Y 2 O 3 , metal nitrides typified by Sr 2 Si 5 N 8 , (Sr, Ca) AlSiN 3 , and sialon. Examples thereof include oxynitrides, phosphates such as Ca 5 (PO 4 ) 3 Cl, and sulfides such as ZnS, SrS, and CaS.
  • sulfides such as (Zn, Cd) S, SrGa 2 S 4 , CaGa 2 S 4 , SrS, CaS and ZnS, oxysulfides such as Y 2 O 2 S, BaAl 2 Si 2 O 8 , silicates such as Y 2 SiO 5 , Zn 2 SiO 4 , Sr 2 SiO 4 , SnO 2 , Y 2 O 3, (Y, Gd) 3 Al 5 O 12 , YA 1 O 3 , BaMgAl 10 O 17 , (Ba , Sr) (Mg, Mn) Al 10 O 17 , (Ba, Sr, Ca) (Mg, Zn, Mn) Al 10 O 17 , BaAl 12 O 19 , CaMgAl 10 O 17, (Ba, Sr, Mg) O ⁇ Oxides such as Al 2 O 3 , borates such as GdMgB 5 O 10 and (Y, Gd) BO 3 , Ca 10
  • ions of rare earth metals such as Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb, Ag, Cu, Au
  • examples include ions of metals such as Al, Mn, and Sb.
  • the sulfur-containing phosphor is not particularly limited as long as it contains sulfur. Whatever the composition, if sulfur (S) is contained in the matrix, it may react with moisture in the air to generate sulfur-based gas such as hydrogen sulfide gas. Specific examples include (Ca, Sr, Ba) S, (Zn, Cd) (S, Se), Ba 2 ZnS 3 , (Ca, Sr, Ba) (Al, Ga, In) 2 S 4 : Eu. (Ca, Sr, Ba) Ga 2 S 4 , (Ca, Sr, Ba) Al 2 S 4 , (Ca, Sr, Ba) 2 SiS 4 and the like. However, it is not limited to these.
  • an activating element or a co-activating element luminescent center (luminescent ion) combined with such a crystal matrix for example, Sc, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm And ions of rare earth metals such as Yb and transition metals such as Cr, Ti, Ag, Cu, Au, Al, Mn, and Sb.
  • luminescent center for example, Sc, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm And ions of rare earth metals such as Yb and transition metals such as Cr, Ti, Ag, Cu, Au, Al, Mn, and Sb.
  • the sulfur-based gas adsorbing material 4 used in the light emitting devices A and B may be a physically adsorbable material or a chemically adsorbable material as long as it can adsorb sulfur-based gas. However, in any case, it is preferable that the sulfur-based gas adsorbing substance maintains transparency after adsorbing the sulfur-based gas.
  • “maintain transparency” means that the object color of the sulfur-based gas adsorbent after reaction with the sulfur-based gas is measured with a spectrocolorimeter (“CM-2600d” manufactured by Konica Minolta) with a diameter of 3 mm, 10 This means that the L * value of the color system / color value L * a * b * obtained by measurement in the visual field, observation light source D65, and SCI (including regular reflection) mode is 60 or more.
  • CM-2600d manufactured by Konica Minolta
  • any one of Ca, Ba, Sr and Mg and O is contained.
  • Compounds, ie, alkaline earth oxides such as MgO based compounds, CaO based compounds, BaO based compounds, SrO based compounds, La 2 O 3 Rare earth oxides such as base compounds (La 2 O 3 based compounds) can be mentioned, and one or more of these can be used.
  • a ZnO-based compound containing Zn and O has a feature that it reacts with a sulfur-based gas, does not absorb light of an LED or the like, does not affect color, in other words, is white and transparent.
  • the “ZnO group compound” is a compound containing Zn and O, and the specific composition thereof is not limited. For example, mention is made of one or more crystalline fine particles selected from the group consisting of ZnO, Zn (OH) 2 , ZnSO 4 .nH 2 O (0 ⁇ n ⁇ 7), ZnAl 2 O 4 and ZnGa 2 O 4. It may be of any other composition.
  • ZnO-MOx (M different metal such as Al).
  • ZnAl 2 O 4 used in the examples is a ZnO-based compound containing ZnO as a main component phase and ZnAl 2 O 4 as an impurity phase.
  • alkaline earth oxides such as MgO group compounds, CaO group compounds, BaO group compounds and SrO group compounds and rare earth oxides such as La 2 O 3 group compounds react with sulfur-based gases.
  • an organic acid zinc salt such as zinc stearate may be used.
  • a ZnO-based compound used as the sulfur-based gas adsorbing substance a ZnO-based compound having a specific surface area of 18 m 2 / g or more, particularly 18 m 2 / g or more or 40 m 2 / g or less is used from the viewpoint of further maintaining the emission intensity. Is preferred.
  • sulfur-based gas adsorbing substance capable of physically adsorbing the sulfur-based gas
  • examples of the sulfur-based gas adsorbing substance capable of physically adsorbing the sulfur-based gas include zeolite and / or molecular sieve.
  • any one of a transparent or white thermoplastic resin, a transparent or white thermosetting resin, and a transparent or white photocurable resin can be used.
  • thermosetting resin examples include silicone resin, epoxy resin, acrylic resin and imide resin.
  • transparent thermoplastic resins include polyethylene resins such as low density polyethylene, high density polyethylene, and linear low density polyethylene, or styrene resins such as polystyrene resin, ABS resin, AS resin, AAS resin, AES resin, and MBS resin.
  • Resin or ethylene-alkyl acrylate or methacrylate copolymer, ethylene-acrylic acid copolymer, ionomer resin, polymethyl methacrylate, polymethacrylate, or other acrylic resin, or cellulose acetate, cellulose propionate, or other cellulose Resin, biodegradable plastic such as polylactic acid, other aliphatic polyester, modified starch, thermoplastic elastomer such as styrene, nylon and olefin, or polyamide resin such as various nylons, or Polyester resin such as polypropylene resin, ethylene-vinyl acetate copolymer, polyvinyl chloride resin, thermoplastic polyurethane resin, thermoplastic polyester resin, polycarbonate resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, Polyacetal resin, modified polyphenylene ether resin, polymethylpentene resin, polysulfone resin, polyether sulfone resin, polyallyl
  • photo-curing resin examples include urethane resin, acrylic resin, imide resin, and silicone resin.
  • the phosphor-containing layer 5 in the light-emitting device A, can be formed by molding the phosphor 3 and the sulfur-based gas adsorbent 4 together with glass or a binder.
  • the phosphor 3 and the sulfur-based gas adsorbent 4 may be formed into a ceramic to form the phosphor-containing layer 5.
  • the phosphor-containing layer 7 in the light emitting device B it is possible to form the phosphor-containing layer 7 by molding the phosphor 3 together with glass or a binder. It is also possible to form the body-containing layer 7.
  • the sulfur type gas absorption layer 8 in the light-emitting device B, it is also possible to form the sulfur type gas absorption layer 8 by shape
  • the light-emitting devices A and B can be suitably used as parts of visual devices such as lighting devices such as LED bulb devices and LED lighting devices, backlights of liquid crystal televisions, traffic lights, and indicators.
  • Luminous intensity was applied to the sample (LED package) by applying a voltage of 3V and a current of 40 mA, condensing with an integrating sphere ("FIOS-1” manufactured by Ocean Optics), and an optical fiber ("VIS-NIR” manufactured by Ocean Optics), Connected to a fiber multichannel spectrometer (“USB4000” manufactured by Ocean Optics) with a core diameter of 50 ⁇ m, and measured using a measurement software (“OPwave Version 1.40” manufactured by Ocean Photonics) with an integration time of 300 ms and an average
  • the emission spectrum of the LED package was obtained with the number of times of 10 and the number of times of smoothing of 10 and integrated in the range of 400 to 800 nm to obtain the emission intensity (integrated intensity).
  • the emission spectrum and intensity were corrected using an absolute intensity correcting halogen light source (“LS-1-CAL” manufactured by Ocean Optics).
  • the concentration distribution of the sulfur-based gas adsorbent and the concentration of the phosphor are measured by cutting a sample (LED package) near the center and measuring the element concentration of the cross section using energy dispersive X-ray spectroscopy (EDS). I went there. In this measurement, an EDS detector (“INCA Energy 250” manufactured by Oxford Instruments) and quantitative analysis software (Oxford Instrument) connected to a field emission scanning electron microscope (FE-SEM, “JSM7001F” manufactured by JEOL Ltd.) The concentrations of Si, S, Zn, and Sr were analyzed using “INCA Microanalysis Suite” manufactured by Sentence Corporation.
  • the acceleration voltage of a field emission scanning electron microscope (FE-SEM) was 5 kV, the current was 18 ⁇ A, the working distance was 10.00 mm, and quantitative analysis was performed by point & ID.
  • the set values for the quantitative analysis were a lifetime of 60 seconds, a process time of 3, and a spectrum range of 0 to 20 keV.
  • the peak detection positions were set to Si of 1.74 keV, S of 2.31 keV, Zn of 1.02 keV, and Sr of 1.58 keV, and the total of the four elements was set to 100 wt. % And the mass concentration of each element was calculated.
  • the specific surface area was measured by physically adsorbing nitrogen gas to a sample placed in a glass cell and determining the amount of adsorption from the weight difference before and after adsorption.
  • a multipoint high-speed specific surface area pore distribution measuring device (“SA3100” manufactured by BECKMAN COULTER and software “version 2.13” manufactured by BECKMAN COULTER) was used. The measurement was performed by a multipoint method by adding 100% nitrogen gas from a vacuum state to change the partial pressure from 0.05 to 0.20.
  • a resin silicone resin, “OE-6630” manufactured by Toray Dow Corning Co., Ltd.
  • a solution: B solution 1: 4
  • 5 wt.% Phosphor composition: SrGa 2 S 4 : Eu
  • Zinc oxide specific surface
  • An LED package (sample) was prepared by slowly curing the silicone resin by sequentially placing in an oven at 10 ° C for 10 minutes, in an oven at 120 ° C for 10 minutes, and in an oven at 150 ° C for 60 minutes, respectively (see FIGS. 14 and 15). ).
  • Example 1-2 The concentration of zinc oxide was adjusted to 5 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • Example 1-3 The concentration of zinc oxide was 10 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • the LED package obtained in Example 1-3 was analyzed for zinc oxide and phosphor concentration distributions. That is, depending on the distance from the reflector (silver-plated copper alloy) installed behind from the LED light extraction side, the proximity layer portion 5a, the intermediate layer portion 5b, and the outer layer portion 5c are divided into three areas from the vicinity. The layers are divided (see FIG. 16), and in each layer, Si (derived from a silicone resin), S (derived from a phosphor), Zn (derived from zinc oxide), Sr (phosphor) in a size of 570 ⁇ m in width and 75 ⁇ m in length. 4) were analyzed by EDS and normalized by the total concentration of the four elements, the results shown in Table 1 were obtained.
  • the ratio of the Zn concentration to the Si concentration was calculated to be 0.29 in the proximity layer portion 5a, whereas the outer layer portion 5c. It was 0.27, and it was confirmed that zinc oxide was sinking.
  • the ratio of the Sr concentration to the Si concentration was calculated, the proximity layer portion 5a was 0.35, whereas the outer layer portion 5c was 0.39, so that the phosphor was not sunk. was confirmed. From the above, it was found that zinc oxide was present at a high concentration in the lower layer close to the reflective member, which is a metal member.
  • Example 1-4 The concentration of zinc oxide was 15 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • Example 1-5 The concentration of zinc oxide was adjusted to 20 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • Example 1-6 The concentration of zinc oxide was 40 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • Example 1--7 The concentration of zinc oxide was 0.1 wt.
  • An LED package (sample) was produced in the same manner as in Example 1-1 except that the percentage was changed to%.
  • Example 1 The concentration of zinc oxide was adjusted to 0 wt. %, Ie, an LED package (sample) was produced in the same manner as in Example 1-1 except that zinc oxide was not mixed (see FIG. 17).
  • the silicone resin was slowly cured to form the first layer (sulfur-based gas absorption layer) on the reflector (a silver-plated copper alloy).
  • Example 2-2 Example 2-2 to (Example 2-18) As shown in Table 3, Example 2-1 except that the concentration of zinc oxide in the first layer (sulfur-based gas absorption layer) and the thickness of the first layer (sulfur-based gas absorption layer) were changed.
  • the LED package (sample) was produced in the same manner as in FIG.
  • Example 2-1 As shown in Table 3, in the first layer, the concentration of zinc oxide relative to the resin was set to 0 wt. %, That is, an LED package (sample) was produced in the same manner as in Example 2-1 except that zinc oxide was not mixed (see FIG. 19).
  • the LED package so that the sulfur-based gas adsorbing substance (in this example, zinc oxide) is present at a high concentration near the metal member (reflecting plate).
  • the sulfur-based gas adsorbing substance in this example, zinc oxide
  • a sulfur-based gas absorption layer containing a sulfur-based gas adsorbing substance (in this example, zinc oxide) is used as a metal member (reflecting plate) and a phosphor. Even if it is provided between the containing layers, the sulfur-based gas generated due to the sulfur-containing phosphor, particularly hydrogen sulfide, is preferentially given over the reaction with the metal member (reflecting plate) as described above. Since it is adsorbed by the sulfur-based gas adsorbing substance (in this example, zinc oxide), it has been found that the corrosion of the metal member can be suppressed and the light emission equivalent to that before the environmental test can be maintained.
  • a sulfur-based gas adsorbing substance in this example, zinc oxide
  • Example 3-10 In Example 1-3, a zinc oxide mixed powder having a predetermined average specific surface area (see Table 4) was prepared by changing the mixing ratio of two types of zinc oxides having different specific surface areas.
  • An LED package (sample) was produced in the same manner as in Example 1-3 except that it was used as a gas adsorbing substance. About the obtained sample, the light emission maintenance rate (%) after 3000 hours was measured, and the results are shown in Table 4, and the relationship between the specific surface area and the light emission maintenance rate (%) after 3000 hours is shown in FIG. Indicated.
  • the ZnO-based compound used as the sulfur-based gas adsorbing substance is a ZnO-based compound having a specific surface area of 18 m 2 / g or more, particularly 18 m 2 / g or more or 40 m 2 / g or less. In some cases, it has been found that the emission intensity can be further maintained.
  • Example 1-3 As shown in Table 5 below, an LED package (sample) was produced in the same manner as in Example 1-3, except that a substance other than the ZnO-based compound was used as the sulfur-based gas adsorbing substance. About the obtained sample, the light emission maintenance rate (%) after 200 hours was measured, and the result is shown in Table 5.
  • the ZnAl 2 O 4 used in Example 4-5 is a ZnO group compound containing ZnO as a main component phase and ZnAl 2 O 4 as an impurity phase, and may be a ZnO group compound containing Zn and O. In other words, it has been found that it reacts with a sulfur-based gas and does not absorb light such as an LED and does not affect the color.
  • Example 5-1 to 5-8 and Comparative Examples 5-1 to 5-5) As shown in Table 6, an LED package (sample) was produced in the same manner as in Example 2-17, except that in Example 2-17, a phosphor other than SrGa 2 S 4 : Eu was used.
  • the “CaGa 2 S 4 : Eu coated product” used in Example 5-4 was manufactured as follows. CaS, Ga 2 S 3 and EuS as starting materials were weighed and mixed so as to have a target composition, and mixed with a paint shaker for 100 minutes using ⁇ 3 mm zirconia balls as media. The resulting mixture was calcined at 980 ° C. for 4 hours in a hydrogen sulfide atmosphere. Next, the fired product is crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, the mesh is 140 mesh.
  • ALM-360T manufactured by Nisto Kagaku Co., Ltd.
  • the “SrS: Eu coated product” used in Example 5-5 was manufactured as follows. SrS and EuS as starting materials were weighed and mixed so as to have a target composition, and mixed using a zirconia ball having a diameter of 3 mm for 100 minutes with a paint shaker. The resulting mixture was calcined at 1100 ° C. for 6 hours in a hydrogen sulfide atmosphere. Next, the fired product is crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, the mesh is 140 mesh. And a sieve having a mesh size of 440 mesh were collected to obtain SrS: Eu 2+ phosphor powder.
  • ALM-360T manufactured by Nisto Kagaku Co., Ltd.
  • the “CaS: Eu coated product” used in Example 5-6 was manufactured as follows. CaS and EuS as starting materials were weighed and mixed so as to have a target composition, and mixed using a zirconia ball having a diameter of 3 mm for 100 minutes with a paint shaker. The resulting mixture was calcined at 1100 ° C. for 6 hours in a hydrogen sulfide atmosphere. Next, the fired product is crushed for 1 minute with a rakai machine (“ALM-360T” manufactured by Nisto Kagaku Co., Ltd.), and using a 140 mesh mesh and a 440 mesh sieve, the mesh is 140 mesh. And a sieve with an opening of 440 mesh were collected to obtain a CaS: Eu 2+ phosphor powder.
  • ALM-360T manufactured by Nisto Kagaku Co., Ltd.
  • ZnO average particle size 30 nm
  • the phosphors used in Examples 5-7 and 5-8 and Comparative Examples 5-4 and 5-5 are phosphors containing no sulfur (S), so that the temperature is 30 ° C., the humidity is 92%, and the sulfide is used. It preserve

Abstract

 硫黄系ガスの悪影響を効果的に抑制できる高信頼性発光デバイスを提供する。 固体発光素子1と、硫黄系ガスと反応する金属部材2と、蛍光体3を含有した蛍光体含有層5とを備えた発光デバイスであって、該蛍光体含有層5は、硫黄系ガスを吸着する硫黄系ガス吸着物質4を含有し、且つ、該蛍光体含有層5を金属部材に近い側から遠い方に近接層部、中間層部及び外層部に3分割した場合に、近接層部における硫黄系ガス吸着物質4の濃度が中間層部及び外層部よりも高くするようにした。

Description

発光デバイス
 本発明は、硫黄系ガスの悪影響を効果的に抑制することができる発光デバイスに関する。
 現在の照明用光源の主流は、蛍光灯や白熱電球であるが、LEDを光源に用いると、蛍光灯等に比べて消費電力が少なく、寿命も長く、手で触っても熱くない安全性を備えている上、水銀等の有害物質を含まず環境面でも優れているため、LEDを光源とした発光デバイスが普及しつつある。
 LEDを用いた発光デバイスとして、例えば反射板として、銅に銀メッキを施した金属板上に、LEDを配置し、シリコーン樹脂などの樹脂中に蛍光体を含有させた蛍光体含有樹脂で前記LED及び金属板を封止してなる構成を備えた発光デバイスが知られている。
 このような発光デバイスにおいて硫黄含有蛍光体を用いた場合、硫黄含有蛍光体は水と反応し易いために、例えば大気中の水分等と反応して硫化水素や二酸化硫黄、三酸化硫黄などの硫黄系ガスが発生し、この硫黄系ガスが、金属部材、例えば反射板の反射率を高めるために施されたAgめっき膜(以下「Ag反射膜」と称する)等の素子内部の金属部材を腐食して、その反射性能を低下させたり、断線等の電気的不良を生じたりするなどの問題が指摘されていた。
 また、温泉街などでは大気中に硫黄系ガスが存在するため、硫黄含有蛍光体以外の蛍光体を用いた場合であっても、大気中の硫黄系ガスによってAg反射膜等の素子内部の金属部材が腐食して反射性能が低下したり、断線等の電気的不良を生じたりする可能性が指摘されていた。
 発光デバイスに関し、このような課題を解決し得る従来提案されている技術について調べてみると、例えば、耐湿性等の向上を目的として、この種の蛍光体をガラス材料等でコーティングする方法(特許文献1、特許文献2、特許文献3、特許文献4、特許文献5)や、蛍光体粒子の表面を化学気相反応法によって被覆する方法(特許文献6)や、金属化合物の粒子を付着させる方法(特許文献7)等が提案されている。
特開2002-223008号公報 特開2004-250705号公報 特開2002-173675号公報 特開2008-7779号公報 特開2009-13186号公報 特開2005-82788号公報 特開2006-28458号公報
 本発明は、硫黄系ガスの悪影響を効果的に抑制することができる新たな発光デバイスを提案せんとするものである。
 本発明は、固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、該蛍光体含有層は、硫黄系ガスを吸着する硫黄系ガス吸着物質を含有し、且つ、該蛍光体含有層を金属部材に近い側から遠い方に近接層部、中間層部及び外層部に3分割した場合に、近接層部における硫黄系ガス吸着物質の濃度が中間層部及び外層部よりも高いことを特徴とする発光デバイスを提案する。
 本発明はまた、固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、さらに、硫黄系ガスを吸着する硫黄系ガス吸着物質を含有する硫黄系ガス吸収層を、前記金属部材と蛍光体含有層との間に備えた発光デバイスを提案する。
 金属部材を被覆する蛍光体含有層に硫黄系ガス吸着物質を含有させ、且つ、該蛍光体含有層の金属部材に近い側に、より一層多くの硫黄系ガス吸着物質を含有させることにより、たとえ硫黄含有蛍光体を用いた場合であっても、硫黄含有蛍光体に起因して発生した硫黄系ガスを硫黄系ガス吸着物質が吸着するため、硫黄系ガスによる金属部材の腐食を抑制することができる。また、大気中に存在する硫黄系ガスによる腐食も抑制することができる。
 硫黄系ガス吸着物質を含有する硫黄系ガス吸収層を、金属部材と蛍光体含有層との間に設けるようにしても、同様に硫黄系ガスによる腐食を抑制することができる。
本発明の第1の実施形態の一例を示した断面図である。 本発明の第1の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の一例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の第2の実施形態の変形例を示した断面図である。 本発明の別の実施形態の一例を示した断面図である。 図11の実施形態の変形例を示した断面図である。 実施例で作製したLEDパッケージ(蛍光体充填前)の上面図である。 図13に示したLEDパッケージ(蛍光体充填後)の一部拡大上面図である。 (実施例1-1)~(実施例1-7)で作製したLEDパッケージの縦断面図である。 (実施例1-3)で作製したLEDパッケージについて、3つの区域に分割して各層の元素濃度を測定した際の測定方法を説明した図であり、特にEDSの測定箇所を示した縦断面図である。 (比較例1-1)で作製したLEDパッケージの縦断面図である。 (実施例2-1)~(実施例2-18)で作製したLEDパッケージの縦断面図である。 (比較例2-1)で作製したLEDパッケージの縦断面図である。 実施例3-1~3-10について、ZnOの比表面積と発光強度維持率との関係を示したグラフである。
 次に、実施の形態例に基づいて本発明を説明するが、本発明が次に説明する実施形態に限定されるものではない。
<発光デバイスA>
 第1の実施形態に係る発光デバイスA(以下「本発光デバイスA」と称する)は、固体発光素子1と、硫黄系ガスと反応する金属部材2と、蛍光体3、硫黄系ガス吸着物質4及び樹脂6を含有する蛍光体含有層5と、を備えた発光デバイスである。
 ここで、図1及び図2に示す発光デバイスは、本発光デバイスAの一例を示したものである。すなわち、反射板としての金属部材2上に固体発光素子1を配置すると共に、蛍光体3、硫黄系ガス吸着物質4及び樹脂6を含有する蛍光体含有層5で、金属部材2を覆うように形成されてなる構成を備えた発光デバイスである。
 但し、後述するように、本発光デバイスAの構成はこのような発光デバイスに限定されるものではない。
 本発光デバイスAの蛍光体含有層5は、金属部材2に近い側ほど硫黄系ガス吸着物質4の濃度が高いことが重要である。例えば図1及び図2に示すように、金属部材2に近い側から遠い方に向かって、3つの均等な厚さとなるように、近接層部5a、中間層部5b及び外層部5cの3つの区域に3分割した場合に、近接層部5aにおける硫黄系ガス吸着物質4の濃度が、中間層部5b及び外層部5cのそれよりも高くなるようにすればよい。この際、「3分割した場合」とは、実際に3層に分けるという意味ではなく、金属部材2からの距離に応じて概念として均等に3分割した場合という意味である。
 なお、蛍光体3は、蛍光体含有層5中に散在していればよい。すなわち、蛍光体含有層5内において蛍光体3が均一又は不均一に散在していてもよいし、深さ方向に濃度分布をもって散在していてもよい。また、沈降して層状に散在していてもよい。例えば図1に示すように、蛍光体含有層5内において蛍光体3が均一に散在していてもよいし、図2に示すように、濃度分布をもって散在していてもよい。
 蛍光体含有層5をこのように形成するためには、例えば蛍光体3、硫黄系ガス吸着物質4及び樹脂6を含有する蛍光体含有樹脂組成物を作製する際、硫黄系ガス吸着物質4の濃度の異なる2種類以上の蛍光体含有樹脂組成物を作製しておき、金属部材2に近い側ほど硫黄系ガス吸着物質4の濃度が高くなるように、順次積層すればよい。
 また、硬化前の樹脂6中を硫黄系ガス吸着物質4が沈降可能であれば、蛍光体3、硫黄系ガス吸着物質4及び樹脂6を含有する蛍光体含有樹脂組成物を作製しておき、金属部材2上にこの樹脂組成物を充填し、時間をかけて硬化させることで、硫黄系ガス吸着物質4を沈降させて金属部材2に近い側ほど硫黄系ガス吸着物質4の濃度が高くなるようにすることができる。
 但し、これらの方法に限定するものではない。
<発光デバイスB>
 本発明の第2の実施形態に係る発光デバイスB(以下「本発光デバイスB」と称する)は、固体発光素子1と、硫黄系ガスと反応する金属部材2と、蛍光体3を含有する蛍光体含有層7と、硫黄系ガス吸着物質4を含有する硫黄系ガス吸収層8とを備えた発光デバイスである。
 ここで、図3~図10に示す発光デバイスは、本発光デバイスBの一例を示したものである。
 すなわち、反射板としての金属部材2上において、硫黄系ガス吸着物質4及び樹脂6からなる硫黄系ガス吸収層8が、前記固体発光素子1及び金属部材2を被覆し、その外側を、蛍光体3及び樹脂6を含有する蛍光体含有層7が被覆してなる構成を備えた発光デバイスである。
 但し、後述するように、本発光デバイスBの構成はこのような発光デバイスに限定されるものではない。
 硫黄系ガス吸収層8は、蛍光体含有層7よりも金属部材2の近くに形成すればよく、金属部材2を覆うように形成してもよいし、図7~図10に示すように、固体発光素子1を覆うように形成してもよいし、図3~図6に示すように、固体発光素子1の一部を覆うように形成してもよい。
 硫黄系ガス吸収層8は、金属部材2に近いところに加えて、例えば図11及び図12に示すように、金属部材2から離れたところに積層してもよい。
 また、図11及び図12に示すように、硫黄系ガス吸収層8を最側層にも設け、硫黄系ガス吸収層8で蛍光体含有層7を両側から挟むように構成してもよい。
 蛍光体含有層7における蛍光体3は、各層においてそれぞれ散在していればよい。すなわち、各層においてそれぞれ均一に散在しているか、不均一に散在しているか、或いは、深さ方向に濃度分布をもって散在しているか、あるいは沈降して層状に散在していればよい。例えば図3に示すように、蛍光体含有層7における蛍光体3は、図3及び図5に示すように、蛍光体含有層7内において均一に散在していてもよいし、図4及び図6に示すように、沈降して層状に散在していてもよい。
 硫黄系ガス吸収層8における硫黄系ガス吸着物質4の含有割合については、硫黄系ガス吸着物質4の量が少な過ぎると十分な硫黄系ガス吸着効果が得られなくなる一方、多過ぎても光の取り出しが悪くなるため、硫黄系ガス吸収層8における硫黄系ガス吸着物質4の含有割合は、樹脂6に対して0.01~40質量部であるのが好ましく、中でも0.1質量部以上或いは20質量部以下であるのが好ましい。
 該硫黄系ガス吸収層8における硫黄系ガス吸着物質4は、各層においてそれぞれ均一に散在しているか、不均一に散在しているか、或いは、深さ方向に濃度分布をもって散在しているか、あるいは沈降して層状に散在していればよい。例えば図3及び図6に示すように、硫黄系ガス吸収層8内において均一に分散していてもよいし、また、図4及び図5に示すように、硫黄系ガス吸着物質4内において沈降して層状に散在していてもよい。
<固体発光素子1>
 本発光デバイスA及びBに用いる固体発光素子1としては、例えばLED、レーザー、エレクトロルミネッセンス等を挙げることができる。
<金属部材2>
 本発光デバイスA及びBに用いる金属部材2は、硫黄系ガスと反応する金属部材であれば効果を発揮する。すなわち、VIII族系金属、或いはIB族系金属を一種以上含有する金属又は合金からなるものであればよい。具体的には、例えば銀、銀系合金、銅、銅系合金、ニッケル、ニッケル系合金、鉄、鉄系合金などを挙げることができる。 
 また、金属部材2の形態は、図1-10の例では板状を呈するものであるが、特に限定するものではない。
<蛍光体3>
 本発光デバイスA及びBに用いる蛍光体3は、光の照射によって可視光を発する物質であればよく、硫黄を含有する硫黄含有蛍光体であれば、本発明の効果をより一層享受できるが、硫黄を含有しない蛍光体であってもよい。なぜなら、硫黄を含有しない蛍光体でも、大気中に含まれる硫黄系ガスにより、発光デバイスは劣化するからである。
 蛍光体は、結晶母体に付活元素又は共付活元素を組み合わせてなる組成が一般的である。この際、結晶母体としては、例えばY23等に代表される金属酸化物、Sr2Si58、(Sr,Ca)AlSiN3等に代表される金属窒化物、サイアロンに代表される酸窒化物、Ca5(PO4)3Cl等に代表されるリン酸塩、ZnS、SrS、CaS等に代表される硫化物などを挙げることができる。より具体的には、例えば(Zn,Cd)S、SrGa24、CaGa24、SrS、CaS、ZnS等の硫化物、Y22S等の酸硫化物、BaAl2Si28、Y2SiO5、Zn2SiO4、Sr2SiO4等の珪酸塩、SnO2、Y23、(Y,Gd)3Al512、YA1O3、BaMgAl1017、(Ba,Sr)(Mg,Mn)Al1017、(Ba,Sr,Ca)(Mg,Zn,Mn)Al1017、BaAl1219、CaMgAl1017、(Ba,Sr,Mg)O・Al23等の酸化物、GdMgB510、(Y,Gd)BO3等の硼酸塩、Ca10(PO4)6(F,Cl)2、(Sr,Ca,Ba,Mg)10(PO4)6Cl2等のハロリン酸塩、Sr227、(La,Ce)PO4等のリン酸塩等を挙げることができる。
 また、付活元素又は共付活元素としては、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンや、Ag、Cu、Au、Al、Mn、Sb等の金属のイオンを挙げることができる。
 硫黄含有蛍光体としては、硫黄を含んでいれば、具体的組成を特に限定するものではない。如何なる組成であっても、母体中に硫黄(S)を含んでいれば、空気中の水分等と反応して硫化水素ガスなどの硫黄系ガスを発生する可能性がある。
 具体例としては、例えば(Ca、Sr、Ba)S、(Zn、Cd)(S、Se)、Ba2ZnS3、(Ca、Sr、Ba)(Al、Ga、In)24:Eu、(Ca、Sr、Ba)Ga24、(Ca,Sr,Ba)Al24、(Ca,Sr,Ba)2SiS4などを挙げることができる。但し、これらに限定するものではない。
 他方、このような結晶母体に組み合わせる付活元素又は共付活元素発光中心(発光イオン)としては、例えばSc、Ce、Pr、Nd、Pm、Sm、Eu、Tb、Dy、Ho、Er、Tm、Yb等の希土類金属のイオンや、Cr、Ti、Ag、Cu、Au、Al、Mn、Sb等の遷移金属のイオンを挙げることができる。但し、これらに限定するものではない。
<硫黄系ガス吸着物質4>
 本発光デバイスA及びBに用いる硫黄系ガス吸着物質4は、硫黄系ガスを吸着できる物質であれば、物理的に吸着できる物質であっても、化学的に吸着できる物質であってもよい。但し、いずれの場合も、硫黄系ガスを吸着した後、該硫黄系ガス吸着物質が透明性を維持するものが好ましい。
 この際、「透明を維持する」とは、硫黄系ガスと反応後の硫黄系ガス吸着物質の物体色を、分光測色計(コニカミノルタ社製「CM-2600d」)で測定径φ3mm、10°視野、観察光源D65、SCI(正反射含む)モードで測定して得た表色系・表色値LのLの値が60以上であることを意味している。
 硫黄系ガスを化学的に吸着できる硫黄系ガス吸着物質としては、例えばZn及びOを含有するZnO基化合物(ZnO based compounds)のほか、Ca、Ba、Sr及びMgの何れかとOとを含有する化合物、すなわちMgO基化合物(MgO based compounds)、CaO基化合物(CaO based compounds)、BaO基化合物(BaO based compounds)、SrO基化合物(SrO based compounds)などのアルカリ土類酸化物、La23基化合物(La2O3 based compounds)などの希土類酸化物を挙げることができ、これらのうちの1種又は2種類以上を使用することができる。
 Zn及びOを含有するZnO基化合物であれば、硫黄系ガスと反応し、且つ、LED等の光を吸収せず色に影響を与えることがない、言い換えれば白色透明であるという特徴を有している。
 ここで、「ZnO基化合物」とは、Zn及びOを含有する化合物であり、その具体的組成を限定するものではない。例えばZnO、Zn(OH)2、ZnSO4・nH2O(0≦n≦7)、ZnAl24及びZnGa24からなる群から選ばれる一種又は二種以上の結晶性微粒子を挙げることができるし、その他の組成のものでもよい。また、バリスタや光触媒、酸化物半導体材料などのように、ZnOを主成分相又は基材とし、これに異種元素を加えた化合物、すなわちZnO-MOx(M=Alなどの異種金属)で示される化合物も包含する。例えば実施例で使用されているZnAl24は、ZnOを主成分相とし、ZnAl24を不純物相として含んだZnO基化合物である。
 ZnO基化合物と同様に、MgO基化合物、CaO基化合物、BaO基化合物、SrO基化合物などのアルカリ土類酸化物及びLa23基化合物などの希土類酸化物なども、硫黄系ガスと反応し、且つ、LED等の光を吸収せず色に影響を与えることはないと考えることができる。
 さらにまた、ステアリン酸亜鉛などの有機酸亜鉛塩であってもよい。
 硫黄系ガス吸着物質として用いるZnO基化合物については、発光強度をより一層維持できる観点から、比表面積が18m2/g以上、中でも18m2/g以上或いは40m2/g以下のZnO基化合物を用いるのが好ましい。
 硫黄系ガスを物理的に吸着できる硫黄系ガス吸着物質としては、例えばゼオライト又はモレキュラーシーブ又はこれら両方を挙げることができる。
<樹脂6>
 本発光デバイスA及びBに用いる樹脂6としては、透明若しくは白色の熱可塑性樹脂、透明若しくは白色の熱硬化性樹脂、および、透明若しくは白色の光硬化樹脂のいずれかを用いることもできる。
 透明な熱硬化性樹脂としては、例えばシリコーン樹脂、エポキシ樹脂、アクリル樹脂やイミド樹脂などを例示することができる。
 透明な熱可塑性樹脂としては、例えば低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン等のポリエチレン樹脂、或いはポリスチレン樹脂、ABS樹脂、AS樹脂、AAS樹脂、AES樹脂、MBS樹脂等のスチレン系樹脂、或いはエチレン-アルキルアクリレートもしくはメタクリレート共重合体、エチレンーアクリル酸共重合体、アイオノマー樹脂、ポリメチルメタアクリレート、ポリメタアクリレート等のアクリル系樹脂、或いはセルロースアセテート、セルロースプロピオネート等のセルロース系樹脂、或いはポリ乳酸、その他の脂肪族ポリエステル、変性澱粉等の生分解性プラスチック、或いはスチレン系、ナイロン系、オレフィン系等の熱可塑性エラストマー、或いは各種ナイロン等のポリアミド樹脂、或いは、ポリプロピレン樹脂、エチレン-酢酸ビニル共重合体、ポリ塩化ビニル樹脂、熱可塑性ポリウレタン樹脂、熱可塑性ポリエステル樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル系樹脂、ポリアセタール樹脂、変性ポリフェニレンエーテル樹脂、ポリメチルペンテン樹脂、ポリサルフォン樹脂、ポリエーテルサルフォン樹脂、ポリアリルサルフォン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、液晶ポリマー等のエンジニアリングプラスチック及びスーパーエンジニアリングプラスチックなどを挙げることができ、これらのうちの1種を単独で使用することもできるし、又、2種類以上からなるポリマーブレンドを使用することもできる。
 光硬化樹脂としては、例えばウレタン樹脂、アクリル樹脂、イミド樹脂、シリコーン樹脂などを例示することができる。
 なお、樹脂6の代わりに、ガラス、バインダー或いはセラミックスを用いることも可能である。
 例えば、本発光デバイスAにおける蛍光体含有層5であれば、蛍光体3及び硫黄系ガス吸着剤4をガラスやバインダーとともに成形して蛍光体含有層5を形成することも可能であるし、また、蛍光体3及び硫黄系ガス吸着剤4をセラミックス成形して蛍光体含有層5を形成することも可能である。
 発光デバイスBにおける蛍光体含有層7であれば、蛍光体3をガラスやバインダーとともに成形して蛍光体含有層7を形成することも可能であるし、また、蛍光体3をセラミックス成形して蛍光体含有層7を形成することも可能である。
 また、発光デバイスBにおける硫黄系ガス吸収層8であれば、硫黄系ガス吸着剤4をガラスやバインダーとともに成形して硫黄系ガス吸収層8を形成することも可能であるし、また、硫黄系ガス吸着剤4をセラミックス成形して硫黄系ガス吸収層8を形成することも可能である。
<発光デバイスの用途>
 本発光デバイスA及びBは、LED電球装置やLED照明装置などの照明装置や、液晶テレビのバックライトや、信号機、インジケーターなどの視覚装置の部品として好適に用いることができる。
<語句の説明>
 本明細書において「X~Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含する。
 また、「X以上」(Xは任意の数字)或いは「Y以下」(Yは任意の数字)と表現した場合、「Xより大きいことが好ましい」或いは「Y未満であることが好ましい」旨の意図も包含する。
 以下、本発明を下記実施例及び比較例に基づいてさらに詳述する。
 実施例および比較例で得られたサンプルに関して、以下に示す方法で諸特性を評価した。
<評価方法>
 温度85℃、湿度85%RHに設定した小型環境試験器(エスペック社製「SH-641」)内に、実施例・比較例で得たサンプル(LEDパッケージ)を200時間、1000時間又は3000時間放置し、放置前後の発光強度を比較した。
 発光強度は、サンプル(LEDパッケージ)に電圧3V、電流40mAを印加し、積分球(オーシャンオプティクス社製「FIOS-1」)で集光し、光ファイバ(オーシャンオプティクス社製「VIS-NIR」、コア径50μm)でファイバマルチチャンネル分光器(オーシャンオプティクス社製「USB4000」)と接続して測光し、測定用ソフト(オーシャンフォトニクス社製「OPwave Version1.40」)を用いて、積分時間300ms、平均回数10回、スムージング回数10回でLEDパッケージの発光スペクトルを得、400~800nmの範囲で積分し、発光強度(積分強度)を求めた。
 なお、発光スペクトルおよび強度は、絶対強度補正用ハロゲン光源(オーシャンオプティクス社製「LS-1-CAL」を用いて補正した。
 硫黄系ガス吸着剤の濃度分布及び蛍光体の濃度の測定は、サンプル(LEDパッケージ)を中央付近で切断し、その断面を、エネルギー分散X線分光法(EDS)を用いて元素濃度を測定することで行った。この測定では、電界放出型走査電子顕微鏡(FE-SEM、日本電子社製「JSM7001F」)に接続したEDS検出器(オックスフォード・インストゥルメンツ社製「INCA Energy250」と定量分析ソフト(オックスフォード・インストゥルメンツ社製「INCA Microanalysis Suite」を用いて、Si、S、Zn及びSrの濃度を分析した。
 なお、電界放出型走査電子顕微鏡(FE-SEM)の加速電圧は5kV、電流は18μA、ワーキングディスタンス10.00mmとし、ポイント&IDにより定量分析を行った。定量分析の設定値はライフタイム60秒、プロセスタイム3、スペクトルレンジ0から20keVとした。
 ピークの検出位置を、Siが1.74keV、Sが2.31keV、Znが1.02keV、Srが1.58keVとし、ZAF補正を用いて、4元素の合計を100wt.%とし、各元素の質量濃度を計算した。
 比表面積の測定は、ガラスのセルに入れたサンプルに窒素ガスを物理吸着させ、吸着前後の重量差から吸着量を求めることで行った。この測定では、多点高速比表面積細孔分布測定装置(BECKMAN COULTER社製「SA3100」とソフトウェア(BECKMAN COULTER社製「version 2.13」)を用いた。
 なお、測定は、真空の状態から100%の窒素ガスを加えて分圧を0.05~0.20に変化させ、多点法で行った。
(実施例1-1) 
 樹脂(シリコーン樹脂、東レ・ダウコーニング社製「OE-6630」(A液:B液=1:4)中に、該樹脂に対して5wt.%の蛍光体(組成:SrGa24:Eu)と、該樹脂に対して2.5wt.%の酸化亜鉛(比表面積38.47m2/g)を混合し、自転・公転ミキサー(シンキ-社製「AR-250」)で撹拌、脱泡を60秒ずつ行い、樹脂と蛍光体と酸化亜鉛の混合物を得た。この混合物をLEDリードフレーム(図13参照)内に800μmの厚みで充填した。その後、酸化亜鉛を沈降させるために、80℃のオーブンに10分、120℃のオーブンに10分、150℃のオーブンに60分、それぞれ順に入れてゆっくりとシリコーン樹脂を硬化させてLEDパッケージ(サンプル)を作製した(図14、図15参照)。
(実施例1-2) 
 酸化亜鉛の濃度を、前記樹脂に対して5wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
(実施例1-3) 
 酸化亜鉛の濃度を、前記樹脂に対して10wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
 (実施例1-3)で得られたLEDパッケージについて、酸化亜鉛および蛍光体の濃度分布を分析した。すなわち、LEDの光取り出し側から後方に設置した反射板(銀メッキを施した銅合金)からの距離に応じて、近傍から近接層部5a、中間層部5b、外層部5cの3つの区域に分割し(図16参照)、それぞれの層で、横570μm、縦75μmのサイズにて、各層におけるSi(シリコーン樹脂由来)、S(蛍光体由来)、Zn(酸化亜鉛由来)、Sr(蛍光体由来)の4元素をEDSで分析し、4元素の濃度の合計で規格化したところ、表1に示す結果となった。
Figure JPOXMLDOC01-appb-T000001
 この結果、(実施例1-3)で得られたLEDパッケージに関しては、Siの濃度に対するZnの濃度の比率を算出すると、近接層部5aでは0.29であったのに対し、外層部5cでは0.27となり、酸化亜鉛が沈んでいることが確認された。
 一方、Siの濃度に対するSrの濃度の比率を算出すると、近接層部5aが0.35であったのに対し、外層部5cでは0.39であったことから、蛍光体は沈んでいないことが確認された。
 以上のことから、金属部材である反射部材に近い下層で酸化亜鉛が高濃度に存在していることが分かった。
(実施例1-4) 
 酸化亜鉛の濃度を、前記樹脂に対して15wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
(実施例1-5) 
 酸化亜鉛の濃度を、前記樹脂に対して20wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
(実施例1-6) 
 酸化亜鉛の濃度を、前記樹脂に対して40wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
(実施例1-7) 
 酸化亜鉛の濃度を、前記樹脂に対して0.1wt.%とした以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した。
(比較例1-1) 
 酸化亜鉛の濃度を、前記樹脂に対して0wt.%とした、すなわち酸化亜鉛を混合しなかった以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製した(図17参照)。
(比較例1-2) 
 酸化亜鉛の濃度を、前記樹脂に対して60wt.%とし、それ以外は、(実施例1-1)と同様にLEDパッケージ(サンプル)を作製しようとしたが、高粘度のためにLEDリードフレームに充填できず、LEDパッケージ(サンプル)を作製できなかった。
Figure JPOXMLDOC01-appb-T000002
(実施例2-1) 
 樹脂(シリコーン樹脂、東レ・ダウコーニング社製「OE-6630」(A液:B液=1:4)中に、該樹脂に対して0.1wt.%の酸化亜鉛(比表面積38.47m2/g)を混合し、自転・公転ミキサー(シンキ-社製「AR-250」)で撹拌、脱泡を60秒ずつ行い、樹脂と酸化亜鉛の混合物を得、この混合物をLEDリードフレーム(図13参照)内に50μmの厚みで充填した。その後、酸化亜鉛を沈降させるために、80℃のオーブンに10分、120℃のオーブンに10分、150℃のオーブンに60分、それぞれ順に入れてゆっくりとシリコーン樹脂を硬化させて、反射板(銀メッキを施した銅合金)上に第1層目(硫黄系ガス吸収層)を形成した。
 次に、樹脂(シリコーン樹脂、東レ・ダウコーニング社製「OE-6630」(A液:B液=1:4)中に、該樹脂に対して5wt.%の蛍光体(組成:SrGa24:Eu)を混合し、自転・公転ミキサー(シンキ-社製「AR-250」)で撹拌、脱泡を60秒ずつ行い、樹脂と蛍光体の混合物を得た。LEDリードフレーム(図13参照)内において、前記第1層目(硫黄系ガス吸収層)上に当該混合物を700μmの厚みで充填した。その後、80℃のオーブンに5分、120℃のオーブンに5分、150℃のオーブンに60分、それぞれ順に入れてシリコーン樹脂を硬化させて、第1層目(硫黄系ガス吸収層)上に第2層目(蛍光体含有層)を形成して、図18に示すようなLEDパッケージ(サンプル)を作製した。
(実施例2-2)~(実施例2-18) 
 表3に示すように、第1層目(硫黄系ガス吸収層)における酸化亜鉛の濃度および第1層目(硫黄系ガス吸収層)の厚さを変えた以外は、(実施例2-1)と同様にLEDパッケージ(サンプル)を作製した(図18参照)。
(比較例2-1) 
 表3に示すように、第1層目において、該樹脂に対する酸化亜鉛の濃度を0wt.%とした、すなわち酸化亜鉛を混合しなかった以外は、(実施例2-1)と同様にLEDパッケージ(サンプル)を作製した(図19参照)。
Figure JPOXMLDOC01-appb-T000003
(結果)
 上記実施例及び比較例で作製したLEDパッケージ(サンプル)を、温度85℃、湿度85%RHの小型環境試験器中で1000時間保存した後に取り出したところ、表2及び表3の結果となった。
 実施例(1-1)~(1-7)及び実施例(2-1)~(2-18)では、反射板の色などに変化は認められなかったが、比較例(1-1)及び比較例(2-1)では、反射板が黒色化したことが確認された。これは、硫黄含有蛍光体から発生する硫黄含有ガス、特に硫化水素と、反射板(銀メッキを施した銅合金)とが反応し、例えば銀が硫化銀になって黒色化したことが原因であると考えられる。このように反射板が黒色化すると、LEDパッケージ(サンプル)の発光が低下することになる。また、黒色化した金属部材が、反射板以外の電極であれば、断線や高抵抗化を引き起こすことにもなる。
 実施例(1-1)~(1-7)のように、金属部材(反射板)の近いところに硫黄系ガス吸着物質(本例では酸化亜鉛)が高濃度で存在するように、LEDパッケージを作製すると、硫黄含有蛍光体に起因して発生した硫黄系ガス、特に硫化水素は、金属部材(反射板)と反応するよりも、優先的に硫黄系ガス吸着物質(本例では酸化亜鉛)に吸着されるため、金属部材の腐食を抑制でき、環境試験前と同等の発光を維持できることが分かった。
 また、実施例(2-1)~(2-18)のように、硫黄系ガス吸着物質(本例では酸化亜鉛)を含有する硫黄系ガス吸収層を、金属部材(反射板)と蛍光体含有層との間に設けるようにしても、上記同様に、硫黄含有蛍光体に起因して発生した硫黄系ガス、特に硫化水素は、金属部材(反射板)と反応するよりも、優先的に硫黄系ガス吸着物質(本例では酸化亜鉛)に吸着されるため、金属部材の腐食を抑制でき、環境試験前と同等の発光を維持できることが分かった。
 その一方、比較例(2-1)のように、硫黄系ガス吸着物質を含まない樹脂層を、金属部材と蛍光体含有層との間に設けた場合には、硫黄含有蛍光体を含有する蛍光体含有層と、金属部材とを直接接触させないようにしたとしても、硫黄系ガスによる腐食を抑制できないことが確認された。この点からも、硫黄系ガス吸着物質が金属部材の腐食を抑制していることが確認された。
(実施例3-1~3-10) 
 実施例1-3において、比表面積の異なる2種類の酸化亜鉛の混合比率を変えて所定の平均比表面積(表4参照)を有する酸化亜鉛混合粉末を調製し、この酸化亜鉛混合粉末を硫黄系ガス吸着物質として用いた以外は、実施例1-3と同様にLEDパッケージ(サンプル)を作製した。
 得られたサンプルについて、3000時間後の発光維持率(%)を測定し、結果を表4に示すと共に、比表面積と3000時間後の発光維持率(%)との関係をグラフとして図20に示した。
Figure JPOXMLDOC01-appb-T000004
 表4及び図20の結果より、硫黄系ガス吸着物質として用いたZnO基化合物については、比表面積が18m2/g以上、中でも18m2/g以上或いは40m2/g以下のZnO基化合物である場合に、発光強度をより一層維持することができることが分かった。
(実施例4-1~4-5及び比較例4-1~4-2) 
 実施例1-3において、下記表5に示すように、硫黄系ガス吸着物質としてZnO基化合物以外の物質を用いた以外は、実施例1-3と同様にLEDパッケージ(サンプル)を作製した。
 得られたサンプルについて、200時間後の発光維持率(%)を測定し、結果を表5に示した。
Figure JPOXMLDOC01-appb-T000005
 表5の結果より、硫黄系ガス吸着物質としてZnO基化合物以外に、MgO基化合物、CaO基化合物、BaO基化合物、SrO基化合物などのアルカリ土類酸化物、La23基化合物などの希土類酸化物及びゼオライトを用いても、発光強度を維持できることが確かめられた。
 ちなみに、実施例4-5で使用したZnAl24は、ZnOを主成分相とし、ZnAl24を不純物相として含んだZnO基化合物であり、Zn及びOを含有するZnO基化合物であれば、硫黄系ガスと反応し、且つ、LED等の光を吸収せず色に影響を与えることがないことが分かった。
(実施例5-1~5-8及び比較例5-1~5-5) 
 表6に示すように、実施例2-17において、蛍光体としてSrGa24:Eu以外の蛍光体を用いた以外は、実施例2-17と同様にLEDパッケージ(サンプル)を作製した。
 なお、実施例5-4で使用した「CaGa24:Eu 被覆品」は、次のようにして作製したものである。
 出発原料としてのCaS、Ga23及びEuSを目的の組成となるように秤量して混合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、980℃で4時間焼成した。次に、焼成して得たものを、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、CaGa24:Eu2+蛍光体粉末を得た。
 得られたCaGa24:Eu2+蛍光体粉末を懸濁したエタノールに、純水、Si(OEt)4、H3BO3を加え、さらに触媒としてアンモニア水を少量添加して60℃で加水分解させ、ガラスの前駆体ゲルを蛍光体表面に被覆したガラス前駆体・蛍光体複合体を合成した。
 この複合体を、600℃で30分間熱処理してB23-SiO2ガラスを被覆した「B23-SiO2ガラス被覆CaGa24:Eu2+蛍光体」を得た。
 次に、当該蛍光体100質量部に対して10質量部のZnO(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。ここに、前記で得た「B23-SiO2ガラス被覆CaGa24:Eu2+蛍光体」を10g添加し、エバポレータで攪拌しながらエタノールを蒸発させ、ZnO被着B23-SiO2ガラス被覆CaGa24:Eu2+蛍光体(サンプル)を得た。
 実施例5-5で使用した「SrS:Eu 被覆品」は、次のようにして作製したものである。
 出発原料としてのSrS及びEuSを目的の組成となるように秤量して混合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で6時間焼成した。次に、焼成して得たものを、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、SrS:Eu2+蛍光体粉末を得た。
 得られたSrS:Eu2+蛍光体を懸濁したエタノールに、純水、Si(OEt)4、H3BO3を加え、さらに触媒としてアンモニア水を少量添加して60℃で加水分解させ、ガラスの前駆体ゲルを蛍光体表面に被覆したガラス前駆体・蛍光体複合体を合成した。
 この複合体を、600℃で30分間熱処理して「B23-SiO2ガラスを被覆したB23-SiO2ガラス被覆SrS:Eu2+蛍光体」を得た。
 当該蛍光体100質量部に対して10質量部のZnO(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。ここに、前記「B23-SiO2ガラス被覆SrS:Eu2+蛍光体」を10g添加し、エバポレータで攪拌しながらエタノールを蒸発させ、ZnO被着B23-SiO2ガラス被覆SrS:Eu2+蛍光体(サンプル)を得た。 
 実施例5-6で使用した「CaS:Eu 被覆品」は、次のようにして作製したものである。
 出発原料としてのCaS及びEuSを目的の組成となるように秤量して混合し、φ3mmのジルコニアボールをメディアに用いてペイントシェーカーで100分間混合した。得られた混合物を、硫化水素雰囲気中、1100℃で6時間焼成した。次に、焼成して得たものを、らいかい機(日陶科学社製「ALM-360T」)で1分間解砕し、目開き140メッシュ及び440メッシュの篩を用いて、目開き140メッシュの篩下で且つ目開き440メッシュの篩上を回収し、CaS:Eu2+蛍光体粉末を得た。
 得られたCaS:Eu2+蛍光体粉末を懸濁したエタノールに、純水、Si(OEt)4を加え、さらに触媒としてアンモニア水を少量添加して60℃で加水分解させ、SiO2ガラスを被覆した「SiO2ガラス被覆CaS:Eu2+蛍光体」を得た。
 当該蛍光体100質量部に対して2質量部のZnO(平均粒径30nm)を、エタノール50mLとともにナス型フラスコに入れ、超音波洗浄器にてZnOをエタノール中に分散させた。ここに、前記で得た「SiO2ガラス被覆CaS:Eu2+蛍光体」を10g添加し、エバポレータで攪拌しながらエタノールを蒸発させ、ZnO被着SiO2ガラス被覆CaS:Eu2+蛍光体(サンプル)を得た。
 なお、実施例5-7、5-8及び比較例5-4、5-5で用いた蛍光体は、硫黄(S)を含有しない蛍光体であるため、温度30℃、湿度92%、硫化水素濃度3ppmのチャンバーで保存し、当該保存した前後の発光強度を比較した。
 得られたサンプルについて、1000時間後の発光維持率(%)を測定し、結果を表6に示した。
Figure JPOXMLDOC01-appb-T000006
 表6の結果より、SrGa24:Eu以外の硫黄含有蛍光体であっても、これから発生した硫化水素ガスによる劣化を防止して発光強度を維持することができることが確かめられた。
 また、比較例5-4、5-5に示されるように、硫黄を含有しない蛍光体であっても、硫化水素ガスにより劣化して発光強度が低下することが確かめられると共に、その場合も、硫黄系ガス吸着物質によって硫化水素ガスによる劣化を防止することができ、発光強度を維持することができることが確かめられた。
1 固体発光素子
2 硫黄系ガスと反応する金属部材
3 蛍光体
4 硫黄系ガス吸着物質
5 蛍光体含有層
6 樹脂
7 蛍光体含有層
8 硫黄系ガス吸収層

Claims (10)

  1.  固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、
     該蛍光体含有層は、硫黄系ガスを吸着する硫黄系ガス吸着物質を含有し、且つ、該蛍光体含有層を金属部材に近い側から遠い方に近接層部、中間層部及び外層部に3分割した場合に、近接層部における硫黄系ガス吸着物質の濃度が中間層部及び外層部よりも高いことを特徴とする発光デバイス。
  2.  固体発光素子と、硫黄系ガスと反応する金属部材と、蛍光体含有層とを備えた発光デバイスであって、
     さらに、硫黄系ガスを吸着する硫黄系ガス吸着物質を含有する硫黄系ガス吸収層を、前記金属部材と蛍光体含有層との間に備えた発光デバイス。
  3.  硫黄系ガス吸着物質は、硫黄系ガスを化学的に吸着でき、しかも硫化しても透明性を維持する物質であることを特徴とする請求項1又は2に記載の発光デバイス。
  4.  硫黄系ガス吸着物質は、ZnO基化合物、MgO基化合物、CaO基化合物、BaO基化合物、SrO基化合物及び希土類酸化物からなる群から選択される1種又は2種類以上であることを特徴とする請求項1~3の何れかに記載の発光デバイス。
  5.  硫黄系ガス吸着物質は、比表面積が18m2/g以上であるZnO基化合物を含有することを特徴とする請求項4に記載の発光デバイス。
  6.  硫黄系ガス吸着物質は、硫黄系ガスを物理的に吸着でき、しかも硫化しても透明性を維持する物質であることを特徴とする請求項1又は2に記載の発光デバイス。
  7.  硫黄系ガス吸着層における硫黄系ガス吸着物質は、ゼオライト又はモレキュラーシーブ又はこれら両方であることを特徴とする請求項1、2又は6に記載の発光デバイス。
  8.  蛍光体含有層は、樹脂中に硫化物蛍光体が散在した構成を備えたものであることを特徴とする請求項1~7の何れかに記載の発光デバイス。
  9.  請求項1~8の何れかに記載の発光デバイスを備えた照明装置。
  10.  請求項1~8の何れかに記載の発光デバイスを備えた視覚装置。
     
     
PCT/JP2012/054226 2011-04-05 2012-02-22 発光デバイス WO2012137552A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US14/009,650 US9166119B2 (en) 2011-04-05 2012-02-22 Light-emitting device
JP2013508792A JP5486733B2 (ja) 2011-04-05 2012-02-22 発光デバイス
KR1020137016771A KR101496921B1 (ko) 2011-04-05 2012-02-22 발광 디바이스
KR1020157000814A KR101562577B1 (ko) 2011-04-05 2012-02-22 발광 디바이스
CN201280007123.7A CN103348497B (zh) 2011-04-05 2012-02-22 发光器件
EP12768562.6A EP2696378B1 (en) 2011-04-05 2012-02-22 Light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011083834 2011-04-05
JP2011-083834 2011-04-05

Publications (1)

Publication Number Publication Date
WO2012137552A1 true WO2012137552A1 (ja) 2012-10-11

Family

ID=46968956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054226 WO2012137552A1 (ja) 2011-04-05 2012-02-22 発光デバイス

Country Status (7)

Country Link
US (1) US9166119B2 (ja)
EP (1) EP2696378B1 (ja)
JP (2) JP5486733B2 (ja)
KR (2) KR101496921B1 (ja)
CN (1) CN103348497B (ja)
TW (1) TWI498413B (ja)
WO (1) WO2012137552A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013084921A1 (ja) * 2011-12-07 2013-06-13 デクセリアルズ株式会社 被覆蛍光体及び被覆蛍光体の製造方法
JP2014043569A (ja) * 2012-08-02 2014-03-13 Nihon Ceratec Co Ltd 蛍光体材料および発光装置
JP2014086403A (ja) * 2012-10-26 2014-05-12 Panasonic Corp 照明装置
JP2015138965A (ja) * 2014-01-24 2015-07-30 日亜化学工業株式会社 発光装置
US20160013369A1 (en) * 2013-03-12 2016-01-14 Osram Opto Semiconductors Gmbh Optoelectronic Component And Method For Producing An Optoelectronic Component
JP2016505213A (ja) * 2012-12-20 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 保護用組成物
JP2016112510A (ja) * 2014-12-15 2016-06-23 共同印刷株式会社 硫化物系ガス吸着用積層体
JP2017001187A (ja) * 2015-06-04 2017-01-05 共同印刷株式会社 硫化物系ガス吸着用積層体
KR20180005664A (ko) * 2015-05-11 2018-01-16 사에스 게터스 에스.페.아. Led 시스템
WO2019003927A1 (ja) * 2017-06-29 2019-01-03 パナソニックIpマネジメント株式会社 波長変換部材及び光源

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9651821B2 (en) * 2012-05-18 2017-05-16 Sumitomo Osaka Cement Co., Ltd. Surface-modified metal oxide particle material, dispersion liquid, silicone resin composition, silicone resin composite body, optical semiconductor light emitting device, lighting device, and liquid crystal imaging device
KR20140124110A (ko) * 2013-04-16 2014-10-24 주식회사 포스코엘이디 광 반도체 조명장치
US9231168B2 (en) 2013-05-02 2016-01-05 Industrial Technology Research Institute Light emitting diode package structure
DE102015111656A1 (de) * 2015-07-17 2017-01-19 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil, Verwendung eines optoelektronischen Halbleiterbauteils und Verfahren zum Betrieb eines optoelektronischen Halbleiterbauteils
US10193031B2 (en) * 2016-03-11 2019-01-29 Rohinni, LLC Method for applying phosphor to light emitting diodes and apparatus thereof
JP6790563B2 (ja) 2016-08-05 2020-11-25 日本電気硝子株式会社 波長変換部材の製造方法
JP2018056512A (ja) * 2016-09-30 2018-04-05 デクセリアルズ株式会社 発光装置、及び発光装置の製造方法
JP7299242B2 (ja) 2018-01-11 2023-06-27 ビーエーエスエフ ソシエタス・ヨーロピア C2~c3-アルケニル置換リレンイミド色素および硬化型シリコーン樹脂組成物の硬化性生成物およびc2~c3-アルケニル置換リレンイミド色素
CN110185950A (zh) * 2019-05-10 2019-08-30 安徽屹珹新材料科技有限公司 一种氟代聚烯烃材料在uv led封装材料中的应用、封装结构及封装方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099826A (ja) * 2002-09-12 2004-04-02 Tokyo Gas Co Ltd 燃料ガス中硫黄化合物の常温除去装置及び除去方法
JP2006312663A (ja) * 2005-05-06 2006-11-16 Japan Energy Corp 炭化水素油の脱硫方法
JP2007123390A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 発光装置
JP2009170824A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置
JP2009191189A (ja) * 2008-02-15 2009-08-27 Jsr Corp 金属コート材、および発光装置
WO2010064325A1 (ja) * 2008-12-06 2010-06-10 ズードケミー触媒株式会社 酸化亜鉛組成物及びその製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059851A1 (en) * 2000-02-09 2001-08-16 Nippon Leiz Corporation Light source
DE10051242A1 (de) 2000-10-17 2002-04-25 Philips Corp Intellectual Pty Lichtemittierende Vorrichtung mit beschichtetem Leuchtstoff
JP2002173675A (ja) 2000-12-06 2002-06-21 Sanken Electric Co Ltd 被覆層を有する蛍光粒子及びその製法
JP2004127988A (ja) * 2002-09-30 2004-04-22 Toyoda Gosei Co Ltd 白色発光装置
JP4725008B2 (ja) 2003-09-11 2011-07-13 日亜化学工業株式会社 発光装置、発光素子用蛍光体および発光素子用蛍光体の製造方法
DE10307282A1 (de) 2003-02-20 2004-09-02 Osram Opto Semiconductors Gmbh Beschichteter Leuchtstoff, lichtemittierende Vorrichtung mit derartigem Leuchtstoff und Verfahren zu seiner Herstellung
JP2006030708A (ja) 2004-07-16 2006-02-02 Ricoh Co Ltd 画像読み取り装置
JP4150362B2 (ja) 2004-07-21 2008-09-17 松下電器産業株式会社 ランプ用蛍光体の製造方法
JP2006307083A (ja) * 2005-04-28 2006-11-09 Mitsui Mining & Smelting Co Ltd 青色励起黄色蛍光体及びそれを用いた白色発光素子
US7820074B2 (en) 2006-06-28 2010-10-26 Seoul Semiconductor Co., Ltd. Phosphor, method for manufacturing same, and light emitting diode
JP5233087B2 (ja) 2006-06-28 2013-07-10 日亜化学工業株式会社 発光装置およびその製造方法、パッケージ、発光素子実装用の基板
KR101414243B1 (ko) * 2007-03-30 2014-07-14 서울반도체 주식회사 황화물 형광체 코팅 방법 및 코팅된 황화물 형광체를채택한 발광 소자
JP2008308510A (ja) 2007-06-12 2008-12-25 Sony Corp 発光組成物及びこれを用いた光学装置並びにこれを用いた表示装置
JP2009013186A (ja) 2007-06-29 2009-01-22 Mitsubishi Chemicals Corp 被覆蛍光体粒子、被覆蛍光体粒子の製造方法、蛍光体含有組成物、発光装置、画像表示装置、および照明装置
JP4962270B2 (ja) 2007-10-31 2012-06-27 日亜化学工業株式会社 発光装置及びこれの製造方法
EP2085411A3 (en) 2008-01-22 2009-08-26 JSR Corporation Metal-coating material, method for protecting metal, and light emitting device
JP5289835B2 (ja) 2008-06-25 2013-09-11 シャープ株式会社 発光装置およびその製造方法
JP5503388B2 (ja) 2009-05-25 2014-05-28 株式会社神戸製鋼所 Led用リードフレーム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004099826A (ja) * 2002-09-12 2004-04-02 Tokyo Gas Co Ltd 燃料ガス中硫黄化合物の常温除去装置及び除去方法
JP2006312663A (ja) * 2005-05-06 2006-11-16 Japan Energy Corp 炭化水素油の脱硫方法
JP2007123390A (ja) * 2005-10-26 2007-05-17 Kyocera Corp 発光装置
JP2009170824A (ja) * 2008-01-19 2009-07-30 Nichia Corp 発光装置
JP2009191189A (ja) * 2008-02-15 2009-08-27 Jsr Corp 金属コート材、および発光装置
WO2010064325A1 (ja) * 2008-12-06 2010-06-10 ズードケミー触媒株式会社 酸化亜鉛組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2696378A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119581A (ja) * 2011-12-07 2013-06-17 Dexerials Corp 被覆蛍光体及び被覆蛍光体の製造方法
WO2013084921A1 (ja) * 2011-12-07 2013-06-13 デクセリアルズ株式会社 被覆蛍光体及び被覆蛍光体の製造方法
US9540563B2 (en) 2011-12-07 2017-01-10 Dexerials Corporation Coated phosphor and method for producing coated phosphor
JP2014043569A (ja) * 2012-08-02 2014-03-13 Nihon Ceratec Co Ltd 蛍光体材料および発光装置
JP2014086403A (ja) * 2012-10-26 2014-05-12 Panasonic Corp 照明装置
JP2016505213A (ja) * 2012-12-20 2016-02-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 保護用組成物
US20160013369A1 (en) * 2013-03-12 2016-01-14 Osram Opto Semiconductors Gmbh Optoelectronic Component And Method For Producing An Optoelectronic Component
JP2015138965A (ja) * 2014-01-24 2015-07-30 日亜化学工業株式会社 発光装置
JP2016112510A (ja) * 2014-12-15 2016-06-23 共同印刷株式会社 硫化物系ガス吸着用積層体
KR102283169B1 (ko) 2015-05-11 2021-07-30 사에스 게터스 에스.페.아. Led 시스템
KR20180005664A (ko) * 2015-05-11 2018-01-16 사에스 게터스 에스.페.아. Led 시스템
JP2018517291A (ja) * 2015-05-11 2018-06-28 サエス・ゲッターズ・エッセ・ピ・ア Ledシステム
JP2017001187A (ja) * 2015-06-04 2017-01-05 共同印刷株式会社 硫化物系ガス吸着用積層体
CN110799863A (zh) * 2017-06-29 2020-02-14 松下知识产权经营株式会社 波长转换构件及光源
JPWO2019003927A1 (ja) * 2017-06-29 2020-04-30 パナソニックIpマネジメント株式会社 波長変換部材及び光源
WO2019003927A1 (ja) * 2017-06-29 2019-01-03 パナソニックIpマネジメント株式会社 波長変換部材及び光源
CN110799863B (zh) * 2017-06-29 2021-11-30 松下知识产权经营株式会社 波长转换构件及光源

Also Published As

Publication number Publication date
JP2014096602A (ja) 2014-05-22
KR101496921B1 (ko) 2015-02-27
TWI498413B (zh) 2015-09-01
US9166119B2 (en) 2015-10-20
KR20150017765A (ko) 2015-02-17
KR20130091772A (ko) 2013-08-19
CN103348497A (zh) 2013-10-09
US20140021502A1 (en) 2014-01-23
JP5575998B2 (ja) 2014-08-20
EP2696378A1 (en) 2014-02-12
KR101562577B1 (ko) 2015-10-23
JPWO2012137552A1 (ja) 2014-07-28
CN103348497B (zh) 2016-08-17
JP5486733B2 (ja) 2014-05-07
EP2696378A4 (en) 2014-10-22
TW201245412A (en) 2012-11-16
EP2696378B1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
JP5575998B2 (ja) 発光デバイス
JP5466771B2 (ja) ZnO化合物被覆硫黄含有蛍光体
JP6122747B2 (ja) 蛍光体
JP5575994B1 (ja) 蛍光体、led発光素子及び光源装置
TW201316543A (zh) 含發光磷光體之發光二極體(led)照明配置
JP5796148B1 (ja) 蛍光体及びその用途
WO2016181293A1 (en) Led system
JP5756523B2 (ja) 赤色蛍光体及び発光素子
CN104871040B (zh) 保护性组合物
JP2018056512A (ja) 発光装置、及び発光装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12768562

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013508792

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137016771

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012768562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012768562

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14009650

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE