WO2013084921A1 - 被覆蛍光体及び被覆蛍光体の製造方法 - Google Patents

被覆蛍光体及び被覆蛍光体の製造方法 Download PDF

Info

Publication number
WO2013084921A1
WO2013084921A1 PCT/JP2012/081477 JP2012081477W WO2013084921A1 WO 2013084921 A1 WO2013084921 A1 WO 2013084921A1 JP 2012081477 W JP2012081477 W JP 2012081477W WO 2013084921 A1 WO2013084921 A1 WO 2013084921A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
coated
oxide powder
silicon dioxide
metal oxide
Prior art date
Application number
PCT/JP2012/081477
Other languages
English (en)
French (fr)
Inventor
正英 大門
雄大 山菅
楠木 常夫
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to US14/363,577 priority Critical patent/US9540563B2/en
Priority to EP12856565.2A priority patent/EP2789671B1/en
Publication of WO2013084921A1 publication Critical patent/WO2013084921A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7729Chalcogenides
    • C09K11/7731Chalcogenides with alkaline earth metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a coated phosphor in which a phosphor is coated with a coating material and a method for producing the coated phosphor.
  • Patent Document 1 and Patent Document 2 the surface of a phosphor is coated with silicon dioxide using a metal alkoxide by a sol-gel method so that the phosphor does not come into contact with water, and deterioration of the phosphor due to hydrolysis is prevented. And maintaining the characteristics (emission intensity, luminance, etc.) of the phosphor.
  • the present invention has been proposed in view of such circumstances, and an object of the present invention is to provide a coated phosphor and a method for producing the coated phosphor that can suppress the release of sulfur-based gas under high temperature and high humidity.
  • the coated phosphor according to the present invention is coated with a sulfide phosphor by a silicon dioxide film containing a metal oxide powder.
  • the method for producing a coated phosphor according to the present invention comprises a sulfide phosphor, an alkoxysilane, a metal oxide powder, and a catalyst mixed in a solvent, and a silicon dioxide film containing the metal oxide powder and formed from the alkoxysilane.
  • a white light source includes a blue light-emitting element formed on an element substrate, and a kneaded material that is disposed on the blue light-emitting element and kneaded a red phosphor and a green phosphor or a yellow phosphor in a transparent resin.
  • the green phosphor is covered with a sulfide phosphor by a silicon dioxide film containing a metal oxide powder.
  • the lighting device includes a light emitting structure in which a blue light emitting element is included in a transparent resin, a substrate on which the light emitting structure is two-dimensionally arranged, and a space apart from the substrate, and from the blue light of the blue light emitting element
  • the sulfur-based gas released from the sulfide phosphor by the hydrolysis of the sulfide phosphor is adsorbed by the metal oxide powder, the release of the sulfur-based gas under high temperature and high humidity is suppressed. Can do.
  • FIG. 1 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing an example of a white light source according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a coated phosphor according to an embodiment of the present invention.
  • FIG. 7A is a plan view showing an example of an illuminating device in which white light sources are arranged in a square lattice
  • FIG. 7B is a plan view showing an example of an illuminating device in which white light sources are arranged by shifting every other half pitch. It is.
  • FIG. 8 is a cross-sectional view showing an example of a lighting device according to an embodiment of the present invention.
  • FIG. 9 is a graph showing the results of the high temperature and high humidity test.
  • FIG. 10 is a diagram for explaining a silver piece test method.
  • Coated phosphor> In the coated phosphor 1 according to the present embodiment, for example, as shown in FIG. 1, a sulfide phosphor 2 is covered with a silicon dioxide film 4 containing a metal oxide powder 3. By covering the sulfide phosphor 2 with the silicon dioxide film 4 containing the metal oxide powder 3, the sulfur-based gas released from the sulfide phosphor 2 by hydrolysis of the sulfide phosphor 2 is Adsorbed on the metal oxide powder 3. Therefore, for example, release of sulfur-based gas from the sulfide phosphor 2 can be suppressed under high temperature and high humidity.
  • the coated phosphor 1 may be a secondary particle in which two or more primary particles are connected as shown in FIG. Good.
  • the sulfide phosphor 2 is not particularly limited, for example, SrGa 2 S 4: Eu and CaS: Eu is used.
  • the metal oxide powder 3 is preferably one that has an excellent ability to adsorb a sulfur-based gas, for example, hydrogen sulfide, and can exhibit a sulfur-based gas suppressing effect.
  • a sulfur-based gas for example, hydrogen sulfide
  • Examples of such metal oxide powder 3 include zinc oxide powder and aluminum oxide (Al 2 O 3 ) powder, and in particular, from the viewpoint of more effectively exhibiting the sulfur-based gas suppression effect. It is preferable to use zinc oxide powder.
  • a surface-treated powder may be used as the metal oxide powder 3.
  • the metal oxide powder 3 preferably has a particle size of 0.2 ⁇ m or less.
  • the ability of the metal oxide powder 3 to adsorb the sulfur-based gas released from the sulfide phosphor 2 by hydrolysis of the sulfide phosphor 2 by setting the particle size of the metal oxide powder 3 to 0.2 ⁇ m or less. Can be kept from becoming scarce. Thereby, discharge
  • the amount of the metal oxide powder 3 is preferably 1 part by mass or more and less than 20 parts by mass, preferably 5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the sulfide phosphor 2. More preferred. By setting the amount of the metal oxide powder 3 to 1 part by mass or more with respect to 100 parts by mass of the sulfide phosphor 2, an effective adsorption action of the metal oxide powder 3 can be obtained. It is possible to prevent the product powder 3 from having a poor ability to adsorb sulfur-based gas.
  • the amount of the metal oxide powder 3 is less than 20 parts by mass with respect to 100 parts by mass of the sulfide phosphor 2, the characteristics of the sulfide phosphor 2, such as peak intensity and luminance, are reduced. This can be prevented.
  • the silicon dioxide film 4 is formed on the surface of the sulfide phosphor 2 and covers the surface of the sulfide phosphor 2.
  • the silicon dioxide film 4 is produced, for example, by hydrolysis (sol-gel method) of alkoxysilane.
  • the thickness of the silicon dioxide film 4 is preferably such that the metal oxide powder 3 is covered with the silicon dioxide film 4.
  • the thickness of the silicon dioxide film 4 is preferably 50 to 150 nm.
  • the sulfide phosphor 2 is coated with the silicon dioxide film 4 containing the metal oxide powder 3, so that the sulfide phosphor 2 is hydrolyzed by the hydrolysis of the sulfide phosphor 2.
  • the sulfur-based gas released from the body 2 is adsorbed by the metal oxide powder 3. Therefore, for example, release of sulfur-based gas from the sulfide phosphor 2 can be suppressed under high temperature and high humidity.
  • the coated phosphor 1 is coated with the sulfide phosphor 2 by the silicon dioxide film 4 containing the metal oxide powder 3, so that the sulfide phosphor 2 does not come into contact with water so as to be in contact with water. It is possible to prevent the sulfide phosphor 2 from deteriorating due to the decomposition. Thereby, it can prevent that the characteristic of sulfide fluorescent substance 2 falls.
  • the sulfide phosphor 2 is covered with two or more layers of silicon dioxide film 4, and at least one of the silicon dioxide films 4 has a metal Oxide powder 3 may be contained.
  • the coated phosphor 1 includes a two-layered silicon dioxide film 4 on a sulfide phosphor 2, that is, a silicon dioxide film 4 A containing a metal oxide powder 3, and a metal oxide powder.
  • the silicon dioxide film 4B containing 3 may be coated in this order.
  • the coated phosphor 1 includes a silicon dioxide film 4 ⁇ / b> A containing a metal oxide powder 3 and a silica film, that is, a metal oxide powder 3 on a sulfide phosphor 2.
  • the silicon dioxide film 4B that has not been formed may be coated in this order. Further, as shown in FIG.
  • the coated phosphor 1 includes a silicon dioxide film 4 ⁇ / b> A that does not contain the metal oxide powder 3 and a silicon dioxide that contains the metal oxide powder 3 on the sulfide phosphor 2.
  • the film 4B may be coated in this order.
  • coated phosphors 1 shown in FIGS. 3 to 5 at least the silicon dioxide film 4B from the viewpoint of more effectively suppressing the release of sulfur-based gas from the sulfide phosphor 2 under high temperature and high humidity, for example.
  • the metal oxide powder 3 is preferably shown in FIGS. 3 and 5. That is, the coated phosphor 1 in which the metal oxide powder 3 is contained in the outermost silicon dioxide film 4B is preferable.
  • Method for producing coated phosphor> In the method for producing a coated phosphor according to the present embodiment, a sulfide phosphor 2, an alkoxysilane, a metal oxide powder 3, and a catalyst are mixed in a solvent, and the metal oxide powder 3 is contained in the alkoxy. A mixing step of covering the sulfide phosphor 2 with the silicon dioxide film 4 formed of silane; Next, the method for manufacturing the coated phosphor according to the present embodiment includes a separation step of separating the mixed solution into a solid phase and a liquid phase.
  • the alkoxysilane can be selected from ethoxide, methoxide, isopropoxide and the like, and examples thereof include tetraethoxysilane and tetramethoxysilane.
  • the alkoxysilane may be an alkoxysilane oligomer such as polyethyl silicate or a hydrolysis condensate.
  • a silane coupling agent having an alkyl group, an amino group, a mercapto group, or the like that does not contribute to the sol-gel reaction, such as an alkylalkoxysilane, may be used.
  • the solvent is not particularly limited, and for example, water, an organic solvent, or the like can be used.
  • organic solvent alcohol, ether, ketone, polyhydric alcohol and the like can be used.
  • alcohol methanol, ethanol, propanol, pentanol and the like can be used.
  • polyhydric alcohols ethylene glycol, propylene glycol, diethylene glycol and the like can be used. Moreover, what combined 2 or more types may be used for a solvent.
  • the catalyst is for initiating hydrolysis or polycondensation reaction of alkoxysilane.
  • an acidic catalyst or a basic catalyst can be used.
  • the acidic catalyst include hydrochloric acid, sulfuric acid, boric acid, nitric acid, perchloric acid, tetrafluoroboric acid, hexafluoroarsenic acid, hydrobromic acid, acetic acid, oxalic acid, methanesulfonic acid and the like.
  • the basic catalyst include alkali metal hydroxides such as sodium hydroxide, ammonia and the like.
  • two or more of these acidic catalysts and basic catalysts may be used in combination.
  • the compounding amount of the sulfide phosphor 2 and the metal oxide powder 3 is 1 part by mass or more and less than 20 parts by mass or less of the metal oxide powder 3 with respect to 100 parts by mass of the sulfide phosphor 2. It is preferable. As described above, an effective adsorption action of the metal oxide powder 3 can be obtained by blending 1 part by mass or more of the metal oxide powder 3 with respect to 100 parts by mass of the sulfide phosphor 2. In addition, by blending less than 20 parts by mass of the metal oxide powder 3 with respect to 100 parts by mass of the sulfide phosphor 2, the characteristics of the sulfide phosphor 2, such as peak intensity and luminance, are reduced. Can be prevented.
  • a mixed solution is separated into a solid phase and a liquid phase using a suction filter, the separated solid phase is dried, a sample obtained by drying is crushed, and subjected to a firing treatment. Do. Thereby, the coated phosphor 1 in which the sulfide phosphor 2 is coated with the silicon dioxide film 4 containing the metal oxide powder 3 can be obtained.
  • the temperature at which the separated solid phase is dried can be changed according to the solvent used, but is preferably 80 to 110 ° C.
  • the time for drying the separated solid phase is preferably 2 hours or longer.
  • the temperature for firing the sample is preferably 150 to 250 ° C.
  • the time for firing the crushed sample is preferably 8 hours or longer.
  • the method of coating only one layer has been described, it is not limited to this example.
  • the coating process of the silicon dioxide film 4 may be repeatedly performed so that the sulfide phosphor 2 is coated with two or more layers of the silicon dioxide film 4.
  • the peak intensity of the sulfide phosphor 2 is reduced. Is preferably 2 to 3 times.
  • coated phosphor 1 obtained by the above-described coated phosphor manufacturing method can be applied to, for example, a white light source or a lighting device.
  • the white light source 10 has a blue light emitting element 13 on a pad portion 12 formed on an element substrate 11. Electrodes 14 and 15 for supplying electric power for driving the blue light emitting element 13 are formed on the element substrate 11 while maintaining insulation, and the respective electrodes 14 and 15 are formed by, for example, lead wires 16 and 17 with the blue light emitting element. 13 is connected.
  • a resin layer 18 is provided around the blue light emitting element 13, and an opening 19 that opens on the blue light emitting element 13 is formed in the resin layer 18.
  • the opening 19 is formed on an inclined surface whose opening area is widened in the light emitting direction of the blue light emitting element 13, and a reflective film 20 is formed on the inclined surface. That is, the resin layer 18 having the mortar-shaped opening 19 is covered with the reflective film 20 of the opening 19, and the blue light emitting element 13 is disposed on the bottom surface of the opening 19.
  • the kneaded material 21 which mixed the red fluorescent substance and the green fluorescent substance in the transparent resin in the opening part 19 is embedded in the state which covers the blue light emitting element 13, and the white light source 10 is comprised.
  • the above-described coated phosphor 1 is used as the green phosphor.
  • This green phosphor has a peak emission wavelength in the green wavelength band, a high emission intensity, and a high luminance. Therefore, it is possible to obtain bright white light having a wide color gamut by the three primary colors of blue light of the blue light emitting element, red light by the red phosphor, and green light by the green phosphor.
  • the arrangement example may be, for example, a square lattice arrangement as shown in FIG. 7 (A), or an arrangement shifted every other row, for example, by 1/2 pitch as shown in FIG. 7 (B). Good.
  • the shifting pitch is not limited to 1/2, and may be 1/3 pitch or 1/4 pitch. Furthermore, you may shift every 1 line or every several lines (for example, 2 lines).
  • every other column is shifted by 1/2 pitch, for example.
  • the shifting pitch is not limited to 1/2, and may be 1/3 pitch or 1/4 pitch. Further, it may be shifted every line or every plural lines (for example, 2 lines). That is, how to shift the white light source 10 is not limited.
  • the white light source 10 has the same configuration as that described with reference to FIG. That is, the white light source 10 has a kneaded material 21 in which a red phosphor and a green phosphor are kneaded with a transparent resin on the blue light emitting element 13.
  • the green phosphor described above is used as the green phosphor.
  • the illumination device 22 is equivalent to surface light emission because a plurality of white light sources 10 substantially equivalent to point light emission are arranged vertically and horizontally on the illumination substrate 23, so that it is used as, for example, a backlight of a liquid crystal display device. be able to.
  • the illuminating device 22 can be used for various illuminating devices such as a normal illuminating device, a photographing illuminating device, and a construction site illuminating device.
  • the illumination device 22 uses the white light source 10, it is possible to obtain bright white light with a wide color gamut. For example, when used for a backlight of a liquid crystal display device, pure white with high luminance can be obtained on the display screen, and the quality of the display screen can be improved.
  • the coated phosphor 1 according to the present embodiment can be applied to a phosphor sheet in a lighting device, for example.
  • the lighting device 24 includes a light emitting structure 25 in which a blue light emitting element is covered with a convex surface-shaped transparent resin, a substrate 26 on which the light emitting structure 25 is two-dimensionally arranged, and blue A diffusing plate 27 that diffuses blue light of the light emitting element, a phosphor sheet 28 that is disposed apart from the substrate 26 and contains powdered phosphor that obtains white light from the blue light of the blue light emitting element, and an optical film 29 With.
  • the substrate 26 and the phosphor sheet 28 are spaced apart by about 10 to 50 mm, and the lighting device 24 constitutes a so-called remote phosphor structure.
  • the gap between the substrate 26 and the phosphor sheet 28 is held by a plurality of support pillars and reflectors, and is provided so that the support pillars and reflectors surround the space formed by the substrate 26 and the phosphor sheet 28 in all directions. .
  • the light emitting structure 25 constitutes a so-called LED package having, for example, an InGaN-based blue LED (Light Emitting Diode) chip as a blue light emitting element.
  • LED package having, for example, an InGaN-based blue LED (Light Emitting Diode) chip as a blue light emitting element.
  • the substrate 26 is composed of a glass cloth base material using a resin such as phenol, epoxy, polyimide, polyester, bismaleimide triazine, allylated polyphenylene oxide.
  • the light emitting structures 25 are two-dimensionally arranged corresponding to the entire surface of the phosphor sheet 28 at equal intervals with a predetermined pitch. Moreover, you may perform a reflection process to the mounting surface of the light emission structure 25 on the board
  • the diffusion plate 27 diffuses the radiated light from the light emitting structure 25 over a wide range so that the shape of the light source becomes invisible.
  • the diffusing plate 27 one having a total light transmittance of 20% or more and 80% or less is used.
  • the phosphor sheet 28 contains a powdered phosphor that obtains white light from the blue light of the blue light emitting element.
  • the phosphor powder having an average particle size of several ⁇ m to several tens of ⁇ m is used. Thereby, the light scattering effect of the phosphor sheet 28 can be improved.
  • the optical film 29 is composed of, for example, a reflective polarizing film, a lens film, a diffusion film, etc. for improving the visibility of the liquid crystal display device.
  • the lens film is an optical film in which minute lenses are arrayed on one surface, and is for increasing the directivity of diffused light in the front direction and increasing the luminance.
  • the coated phosphor 1 to the white light source 10, the illuminating device 22, and the illuminating device 24, for example, the release of sulfur-based gas from the sulfide phosphor 2 under high temperature and high humidity is suppressed. Can do. Thereby, it can prevent that an electrode etc. are corroded in the white light source 10, the illuminating device 22, and the illuminating device 24, and the deterioration of electroconductivity etc. is caused.
  • Example 1 In a resin container (PE), a first compound (sulfide phosphor (SrGa 2 S 4 : Eu) 10 g, ethanol 80 g, pure water 5 g, 28% ammonia water 6 g) and a particle size of 0.1-0. 0.1 g of 2 ⁇ m zinc oxide powder (K-FRESH MZO, manufactured by Teika) (1 part by mass with respect to 100 parts by mass of the sulfide phosphor) is introduced, a magnetic stirrer is introduced, and a constant temperature bath at 40 ° C. is introduced. After stirring for 10 minutes, the second compound (5 g of tetraethoxysilane, 35 g of ethanol) was added.
  • a first compound sulfide phosphor (SrGa 2 S 4 : Eu) 10 g, ethanol 80 g, pure water 5 g, 28% ammonia water 6 g
  • K-FRESH MZO 2 ⁇ m zinc oxide powder
  • Example 2 In Example 2, 0.5 g of zinc oxide powder (K-FRESH MZO, manufactured by Teika) having a particle size of 0.1 to 0.2 ⁇ m was used (5 parts by mass with respect to 100 parts by mass of the sulfide phosphor). Except for the above, a coated phosphor was obtained in the same manner as in Example 1.
  • K-FRESH MZO zinc oxide powder having a particle size of 0.1 to 0.2 ⁇ m
  • Example 3 In Example 3, 1.0 g of zinc oxide powder having a particle size of 0.1 to 0.2 ⁇ m (K-FRESH MZO, manufactured by Teica) was used (10 parts by mass with respect to 100 parts by mass of the sulfide phosphor). Except for the above, a coated phosphor was obtained in the same manner as in Example 1.
  • K-FRESH MZO manufactured by Teica
  • Example 4 In Example 4, 2.0 g (20 parts by mass with respect to 100 parts by mass of the sulfide phosphor) of zinc oxide powder having a particle size of 0.1 to 0.2 ⁇ m (K-FRESH MZO, manufactured by Teika) was used. Except for the above, a coated phosphor was obtained in the same manner as in Example 1.
  • Example 5 In Example 5, 5.0 g of zinc oxide powder (K-FRESH MZO, manufactured by Teika) having a particle size of 0.1 to 0.2 ⁇ m was used (50 parts by mass with respect to 100 parts by mass of the sulfide phosphor). Except for the above, a coated phosphor was obtained in the same manner as in Example 1.
  • K-FRESH MZO zinc oxide powder having a particle size of 0.1 to 0.2 ⁇ m
  • Example 6 In Example 6, 10.0 g (100 parts by mass with respect to 100 parts by mass of the sulfide phosphor) of zinc oxide powder (K-FRESH MZO, manufactured by Teica) having a particle size of 0.1 to 0.2 ⁇ m was used. Except for the above, a coated phosphor was obtained in the same manner as in Example 1.
  • Example 7 Example 7 was carried out except that 0.5 g of zinc oxide powder (manufactured by Sakai Chemical) having a particle size of 0.6 to 0.8 ⁇ m was used (5 parts by mass with respect to 100 parts by mass of the sulfide phosphor). A coated phosphor was obtained in the same manner as in Example 1.
  • Example 8 In Example 8, except that 0.5 g of zinc oxide powder (FINEX, manufactured by Sakai Chemical Co., Ltd.) having a particle size of 0.02 to 0.03 ⁇ m was used (5 parts by mass with respect to 100 parts by mass of the sulfide phosphor). In the same manner as in Example 1, a coated phosphor was obtained.
  • FINEX zinc oxide powder
  • Example 9 In Example 9, a total of 1.0 g of zinc oxide powder (K-FRESH MZO, manufactured by Teica) having a particle size of 0.1 to 0.2 ⁇ m (a total of 10 parts by mass with respect to 100 parts by mass of the sulfide phosphor) is used.
  • the coated phosphor was obtained in the same manner as in Example 1 except that the coating treatment was performed twice.
  • the coated phosphor 1 obtained in Example 9 includes a two-layered silicon dioxide film, that is, a silicon dioxide film containing zinc oxide powder on a sulfide phosphor, and zinc oxide.
  • the silicon dioxide film containing the powder is coated in this order.
  • Example 10 In Example 10, 0.5 g of zinc oxide powder (K-FRESH MZO, manufactured by Teika) having a particle size of 0.1 to 0.2 ⁇ m was used (5 parts by mass with respect to 100 parts by mass of the sulfide phosphor). A coated phosphor was obtained in the same manner as in Example 1 except that the coating treatment was performed twice. As shown in FIG. 4, the coated phosphor 1 obtained in Example 10 includes a two-layered silicon dioxide film, that is, a silicon dioxide film containing zinc oxide powder on a sulfide phosphor, and zinc oxide. A silicon dioxide film containing no powder is coated in this order.
  • K-FRESH MZO manufactured by Teika
  • Example 11 In Example 11, 0.5 g of zinc oxide powder having a particle size of 0.1 to 0.2 ⁇ m (K-FRESH MZO, manufactured by Teika) was used (5 parts by mass with respect to 100 parts by mass of the sulfide phosphor). A coated phosphor was obtained in the same manner as in Example 1 except that the coating treatment was performed twice. As shown in FIG. 5, the coated phosphor 1 obtained in Example 11 includes a two-layered silicon dioxide film on the sulfide phosphor, that is, a silicon dioxide film not containing zinc oxide powder, and an oxidized material. The silicon dioxide film containing the zinc powder is coated in this order.
  • Comparative Example 1 In Comparative Example 1, 10 g of a phosphor not subjected to coating treatment (uncoated phosphor) (SrGa 2 S 4 : Eu) was used as it was.
  • Comparative Example 2 In Comparative Example 2, a coated phosphor was obtained in the same manner as in Example 1 except that no zinc oxide powder was used.
  • Table 1 shows a summary of Examples 1 to 11 and Comparative Examples 1 and 2.
  • the circled numbers (1, 2) in the column of the coating process indicate the first coating process or the second coating process, respectively.
  • ZnO mixture is a silicon dioxide film containing zinc oxide powder
  • sica is a silicon dioxide film containing no zinc oxide powder.
  • FP6500 manufactured by JASCO Corporation
  • the emission characteristics of the uncoated phosphor or the coated phosphor obtained in Examples 1 to 11 and Comparative Examples 1 and 2 were evaluated.
  • Table 1 shows the results of the evaluation of the light emission characteristics.
  • luminance, peak wavelength, peak intensity, sample absorption rate, internal quantum efficiency, and external quantum efficiency were evaluated.
  • the peak intensity represents the peak intensity of each coated phosphor when the peak intensity of the uncoated phosphor (Comparative Example 1) is 1.
  • the sample absorption rate is a ratio of incident light that is reduced by the sample of excitation light.
  • the internal quantum efficiency is a value obtained by dividing the number of photons of excitation light absorbed by the sample from the number of photons of fluorescence emitted from the sample.
  • the external quantum efficiency is a value obtained by multiplying the sample absorption rate by the internal quantum efficiency ((sample absorption rate) ⁇ (internal quantum efficiency)).
  • Example 2 The coated phosphors obtained in Example 2, Example 3, and Example 11 were found to be equivalent to the uncoated phosphor (Comparative Example 1) in terms of light emission characteristics.
  • Example 1 It was also found that the coated phosphors obtained in Example 1, Example 7, Example 8, and Example 10 were better than the uncoated phosphor (Comparative Example 1) with respect to the light emission characteristics. This is presumably because light is easily incident from the outside to the inside of the coated phosphor due to the lens effect of the silicon dioxide film, and light is easily emitted from the inside to the outside of the coated phosphor.
  • Example 9 Furthermore, the coated phosphor obtained in Example 9, that is, the coated phosphor that was coated twice (total 10 parts by mass) with 5 parts by mass of zinc oxide with respect to 100 parts by mass of the sulfide phosphor.
  • the emission characteristics were found to be equivalent to or better than the coated phosphor (Example 3) that was coated once with 10 parts by mass of zinc oxide.
  • the coated phosphors obtained in Examples 4 to 6 in which the blending amount of zinc oxide is 20 parts by mass or more are lower than the uncoated phosphor (Comparative Example 1) in terms of light emission characteristics. I understood that.
  • the coated phosphors (Examples 1 to 9) coated with the silicon dioxide film containing the zinc oxide powder can maintain the emission intensity maintenance rate at about 100%, and are obtained in Comparative Example 2. It was found that there are some which have a better emission intensity maintenance rate than the coated phosphors obtained. From these results, it was found that zinc oxide does not adversely affect the silicon dioxide film with respect to the emission intensity maintenance rate in a high temperature and high humidity environment.
  • ⁇ Silver piece corrosion test> A silver piece test was conducted as an index of hydrogen sulfide gas release. Polishing a piece of silver with a diameter of 15 mm and a thickness of 2 mm (silver bullion (purity 99.95% or more) specified in JIS H 2141 “silver bullion”) with a metal abrasive (Pical, manufactured by Nippon Abrasives Co., Ltd.) And ultrasonically cleaned in acetone. As shown in FIG. 10, the silver piece 30 after ultrasonic cleaning was stuck to the back 32A of the lid 32 of the sealed bottle 31 (100 ml glass weighing bottle) with double-sided tape.
  • the coated phosphors obtained in Examples 1 to 11 coated with a silicon dioxide film containing zinc oxide had an average of about twice or more that of the uncoated phosphor obtained in Comparative Example 1. It was found that reflectance was obtained and corrosion could be further suppressed. This is thought to be because the sulfur-based gas released from the sulfide phosphor by the hydrolysis of the sulfide phosphor in the coated phosphor was adsorbed by the zinc oxide powder and the release of the sulfur-based gas could be suppressed. .
  • Example 7 The coated phosphor obtained in Example 7 is the same result as the coated phosphor obtained in Comparative Example 2 with respect to the result of the average reflectance, but the visual appearance evaluation is obtained in Comparative Example 2. Better than the coated phosphor.
  • Example 8 The coated phosphor obtained in Example 8 using zinc oxide having a small particle size (0.02 to 0.03 ⁇ m) was used in Examples 1 to 3 using zinc oxide having a particle size of 0.1 to 0.2 ⁇ m. It was found that an average reflectance equivalent to that of the coated phosphor obtained in Example 6 was obtained.
  • the coated phosphor (Example 9) which was coated twice using 5 parts by mass of zinc oxide with respect to 100 parts by mass of the sulfide phosphor, was coated with 10 parts by mass of zinc oxide in terms of emission characteristics. It was found that the average reflectance was improved as compared with the coated phosphor (Example 3) that was processed once.
  • Example 10 Among the coated phosphors obtained in Example 2, Example 10 and Example 11 using the same amount of zinc oxide powder (5 parts by mass with respect to 100 parts by mass of sulfide phosphor), Example 2 When the average reflectances of the obtained coated phosphor and the coated phosphor obtained in Example 10 were compared, it was found to be the same. Moreover, when the average reflectance of the coated phosphor obtained in Example 2 and the coated phosphor obtained in Example 11 is compared, the coated phosphor obtained in Example 11 has better results. I understood that. From these results, among the coated phosphors obtained in Example 2, Example 10, and Example 11, the coated phosphor obtained in Example 11 has the highest average reflectivity, and exhibits corrosion. It turned out that it can suppress more. This is because in the coated phosphor, the sulfide phosphor is coated with two or more layers of silicon dioxide film, and the zinc oxide powder, which is a metal oxide powder, is contained in the outermost silicon dioxide film. This is probably because of this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Abstract

 高温高湿下において硫黄系ガスの放出を抑制することができる被覆蛍光体を提供する。被覆蛍光体(1)は、金属酸化物粉末(3)が含有された二酸化ケイ素膜(4)によって、硫化物蛍光体(2)が被覆されている。被覆蛍光体(1)は、硫化物蛍光体(2)とアルコキシシランと金属酸化物粉末(3)と触媒とを溶媒中で混合し、金属酸化物粉末(3)が含有されアルコキシシランから形成される二酸化ケイ素膜(4)によって硫化物蛍光体(2)を被覆させることによって得ることができる。

Description

被覆蛍光体及び被覆蛍光体の製造方法
 本発明は、被覆材料によって蛍光体が被覆されている被覆蛍光体及び被覆蛍光体の製造方法に関するものである。本出願は、日本国において2011年12月7日に出願された日本特許出願番号特願2011-267680を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。
 従来、硫化物蛍光体は、水などによって加水分解反応が起こり、酸化物や水酸化物に変化してしまい、著しく発光強度、輝度等の特性が落ちることが知られている。
 特許文献1及び特許文献2には、ゾルゲル法により、金属アルコキシドを用いて蛍光体表面を二酸化ケイ素で被覆することによって、蛍光体を水と触れさせないようにし、加水分解による蛍光体の劣化を防ぎ、蛍光体の特性(発光強度、輝度等)を維持することが記載されている。
 しかしながら、特許文献1及び特許文献2に記載の方法により耐湿を行ったとしても、耐湿が不完全であり、高温高湿下においては、硫化物蛍光体が水と反応してしまい、硫化物蛍光体から硫化水素等の硫黄系ガスが放出されてしまう。硫黄系ガスが放出されてしまうと、電子材料系において電極等が腐食され、導電性の悪化等を招いてしまう。
特開平01-284583号公報 特開2007-23221号公報
 本発明は、このような実情に鑑みて提案されたものであり、高温高湿下において硫黄系ガスの放出を抑制することができる被覆蛍光体及び被覆蛍光体の製造方法を提供することを目的とする。
 本発明に係る被覆蛍光体は、金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている。
 本発明に係る被覆蛍光体の製造方法は、硫化物蛍光体とアルコキシシランと金属酸化物粉末と触媒とを溶媒中で混合し、金属酸化物粉末が含有されアルコキシシランから形成される二酸化ケイ素膜によって硫化物蛍光体を被覆させる混合工程を有する。
 本発明に係る白色光源は、素子基板上に形成された青色発光素子と、青色発光素子上に配置され、赤色蛍光体と緑色蛍光体又は黄色蛍光体とを透明樹脂に混練した混練物とを有し、緑色蛍光体は、金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている。
 本発明に係る照明装置は、青色発光素子が透明樹脂で包含された発光構造体と、発光構造体が二次元配置された基板と、基板と離間して配置され、青色発光素子の青色光から白色光を得る粉末状の蛍光体を含有する蛍光体シートとを備え、蛍光体は、金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている。
 本発明によれば、硫化物蛍光体の加水分解によって硫化物蛍光体から放出される硫黄系ガスが金属酸化物粉末に吸着されるため、高温高湿下において硫黄系ガスの放出を抑制することができる。
図1は、本発明の一実施の形態に係る被覆蛍光体の一例を示す断面図である。 図2は、本発明の一実施の形態に係る被覆蛍光体の一例を示す断面図である。 図3は、本発明の一実施の形態に係る被覆蛍光体の一例を示す断面図である。 図4は、本発明の一実施の形態に係る被覆蛍光体の一例を示す断面図である。 図5は、本発明の一実施の形態に係る被覆蛍光体の一例を示す断面図である。 図6は、本発明の一実施の形態に係る白色光源の一例を示す断面図である。 図7Aは、白色光源を正方格子配列した照明装置の一例を示す平面図であり、図7Bは、白色光源を1行おきに1/2ピッチずつずらして配列した照明装置の一例を示す平面図である。 図8は、本発明の一実施の形態に係る照明装置の一例を示す断面図である。 図9は、高温高湿試験の結果を示すグラフである。 図10は、銀片試験の方法を説明するための図である。
 以下、本発明の実施の形態(以下、「本実施の形態」という。)について、図面を参照しながら下記順序にて詳細に説明する。
1.被覆蛍光体(図1~図5)
2.被覆蛍光体の製造方法
3.被覆蛍光体の適用例(図6~図8)
4.実施例(図9、図10)
<1.被覆蛍光体>
 本実施の形態に係る被覆蛍光体1は、例えば図1に示すように、硫化物蛍光体2が、金属酸化物粉末3が含有された二酸化ケイ素膜4によって被覆されている。金属酸化物粉末3が含有された二酸化ケイ素膜4によって硫化物蛍光体2が被覆されていることにより、硫化物蛍光体2の加水分解によって硫化物蛍光体2から放出される硫黄系ガスが、金属酸化物粉末3に吸着される。そのため、例えば高温高湿下において硫化物蛍光体2からの硫黄系ガスの放出を抑制することができる。したがって、例えば、電子材料系において電極等が腐食され、導電性の悪化等を招いてしまうことを防止することができる。なお、被覆蛍光体1は、図1に示すように、単位粒子と考えられるものを一次粒子としたときに、図2に示すように、一次粒子が2以上連結した二次粒子であってもよい。
 硫化物蛍光体2としては、特に限定されないが、例えば、SrGa:EuやCaS:Euが用いられる。硫化物蛍光体2は、例えば、メジアン径(d50)が、5~15μm程度のものを用いることができる。
 金属酸化物粉末3としては、硫黄系ガス、例えば、硫化水素を吸着する能力に優れ、硫黄系ガスの抑制効果を奏することができるものが好ましい。このような金属酸化物粉末3としては、例えば、酸化亜鉛粉末や酸化アルミニウム(Al)粉末が挙げられ、特に、硫黄系ガスの抑制効果をより効果的に奏することができる観点から、酸化亜鉛粉末を用いることが好ましい。また、金属酸化物粉末3としては、表面処理を施したものを用いてもよい。
 金属酸化物粉末3は、粒径が0.2μm以下であることが好ましい。金属酸化物粉末3の粒径を0.2μm以下とすることにより、硫化物蛍光体2の加水分解によって硫化物蛍光体2から放出される硫黄系ガスを、金属酸化物粉末3が吸着する能力が乏しくならないようにすることができる。これにより、硫化物蛍光体2からの硫黄系ガスの放出を効果的に抑制することができる。
 金属酸化物粉末3の量は、100質量部の硫化物蛍光体2に対して、1質量部以上、20質量部未満とすることが好ましく、5質量部以上、10質量部以下とすることがより好ましい。100質量部の硫化物蛍光体2に対して、金属酸化物粉末3の量を1質量部以上とすることにより、金属酸化物粉末3の有効な吸着作用を得ることができる、すなわち、金属酸化物粉末3が硫黄系ガスを吸着する能力が乏しくならないようにすることができる。また、100質量部の硫化物蛍光体2に対して、金属酸化物粉末3の量を20質量部未満とすることにより、硫化物蛍光体2の特性、例えばピーク強度や輝度が低下してしまうことを防止することができる。
 二酸化ケイ素膜4は、硫化物蛍光体2の表面に形成され、硫化物蛍光体2の表面を被覆する。硫化物蛍光体2を二酸化ケイ素膜4によって被覆させることにより、硫化物蛍光体2が水と触れないようにして、加水分解によって硫化物蛍光体2が劣化してしまうことを防止することができる。これにより、硫化物蛍光体2の特性、例えば、発光強度や輝度が低下してしまうことを防止することができ、硫化物蛍光体2の特性を維持することができる。二酸化ケイ素膜4は、例えば、アルコキシシランの加水分解(ゾルゲル法)によって生成されている。
 二酸化ケイ素膜4の厚さは、二酸化ケイ素膜4によって金属酸化物粉末3が覆われる程度とすることが好ましい。例えば、粒径が0.2μm以下の金属酸化物粉末3を用いた場合には、二酸化ケイ素膜4の厚さは、50~150nmとすることが好ましい。二酸化ケイ素膜4の厚さを50nm以上とすることにより、加水分解によって硫化物蛍光体2が劣化してしまうことをより効果的に防止することができる。また、二酸化ケイ素膜4の厚さを150nm以下とすることにより、硫化物蛍光体2の特性、例えばピーク強度や輝度が低下してしまうことを防止することができる。
 上述したように、被覆蛍光体1は、金属酸化物粉末3が含有された二酸化ケイ素膜4によって硫化物蛍光体2が被覆されていることにより、硫化物蛍光体2の加水分解によって硫化物蛍光体2から放出される硫黄系ガスが金属酸化物粉末3に吸着される。そのため、例えば高温高湿下において硫化物蛍光体2からの硫黄系ガスの放出を抑制することができる。
 また、被覆蛍光体1は、金属酸化物粉末3が含有された二酸化ケイ素膜4によって硫化物蛍光体2が被覆されていることにより、硫化物蛍光体2が水と触れないようにして、加水分解によって硫化物蛍光体2が劣化してしまうことを防止することができる。これにより、硫化物蛍光体2の特性が低下してしまうことを防止することができる。
 なお、被覆蛍光体1は、図3~図5に示すように、硫化物蛍光体2が、二層以上の二酸化ケイ素膜4によって被覆されており、少なくともいずれかの二酸化ケイ素膜4中に金属酸化物粉末3が含有されていてもよい。
 図3に示すように、被覆蛍光体1は、硫化物蛍光体2上に、二層の二酸化ケイ素膜4、すなわち、金属酸化物粉末3が含有された二酸化ケイ素膜4Aと、金属酸化物粉末3が含有された二酸化ケイ素膜4Bとがこの順番で被覆されていてもよい。また、図4に示すように、被覆蛍光体1は、硫化物蛍光体2上に、金属酸化物粉末3が含有された二酸化ケイ素膜4Aと、シリカ皮膜、すなわち、金属酸化物粉末3が含有されていない二酸化ケイ素膜4Bとがこの順番で被覆されていてもよい。さらに、図5に示すように、被覆蛍光体1は、硫化物蛍光体2上に、金属酸化物粉末3が含有されていない二酸化ケイ素膜4Aと、金属酸化物粉末3が含有された二酸化ケイ素膜4Bとがこの順番で被覆されていてもよい。
 これらの図3~図5に示す被覆蛍光体1の中では、例えば高温高湿下において硫化物蛍光体2からの硫黄系ガスの放出をより効果的に抑制する観点から、少なくとも二酸化ケイ素膜4Bに金属酸化物粉末3が含有されている図3及び図5に示すものが好ましい。すなわち、最表面側の二酸化ケイ素膜4Bに金属酸化物粉末3が含有されている被覆蛍光体1が好ましい。
<2.被覆蛍光体の製造方法>
 本実施の形態に係る被覆蛍光体の製造方法は、硫化物蛍光体2と、アルコキシシランと、金属酸化物粉末3と、触媒とを溶媒中で混合し、金属酸化物粉末3が含有されアルコキシシランから形成される二酸化ケイ素膜4によって硫化物蛍光体2を被覆させる混合工程を有する。次いで、本実施の形態に係る被覆蛍光体の製造方法は、混合液を固相と液相とに分離する分離工程を有する。
(混合工程)
 アルコキシシランは、エトキシド、メトキシド、イソプロポキシド等から選択することができ、例えば、テトラエトキシシランやテトラメトキシシランが挙げられる。また、アルコキシシランは、ポリエチルシリケート等のアルコキシシランオリゴマーや加水分解縮合物であってもよい。さらに、アルコキシシランは、アルキルアルコキシシラン等のように、ゾルゲル反応に寄与しないアルキル基、アミノ基、メルカプト基等を有するシランカップリング剤を用いてもよい。
 溶媒は、特に限定されず、例えば、水、有機溶媒等を用いることができる。有機溶媒としては、アルコール、エーテル、ケトン、多価アルコール類等を用いることができる。アルコールとしては、メタノール、エタノール、プロパノール、ペンタノール等を用いることができる。多価アルコール類としては、エチレングリコール、プロピレングリコール、ジエチレングリコール等を用いることができる。また、溶媒は、二種以上を組み合わせたものを用いてもよい。
 触媒は、アルコキシシランの加水分解や重縮合反応を開始させるためのものであり、例えば、酸性触媒や塩基性触媒を用いることができる。酸性触媒しては、塩酸、硫酸、ホウ酸、硝酸、過塩素酸、テトラフルオロホウ酸、ヘキサフルオロ砒素酸、臭化水素酸、酢酸、シュウ酸、メタンスルホン酸等が挙げられる。塩基性触媒としては、水酸化ナトリウムなどのアルカリ金属の水酸化物、アンモニア等が挙げられる。これらの触媒の中では、硫化物蛍光体2の劣化を効果的に防止する観点から、塩基性触媒を用いることが好ましい。
なお、触媒としては、これらの酸性触媒や塩基性触媒を二種以上併用してもよい。
 硫化物蛍光体2と、金属酸化物粉末3との配合量は、100質量部の硫化物蛍光体2に対して、1質量部以上、20質量部未満以下の金属酸化物粉末3を配合することが好ましい。上述したように、100質量部の硫化物蛍光体2に対して、1質量部以上の金属酸化物粉末3を配合することにより、金属酸化物粉末3の有効な吸着作用を得ることができる。また、100質量部の硫化物蛍光体2に対して、20質量部未満の金属酸化物粉末3を配合することにより、硫化物蛍光体2の特性、例えばピーク強度や輝度が低下してしまうことを防止することができる。
(分離工程)
 分離工程では、上述した混合工程において、硫化物蛍光体2とアルコキシシランとを溶媒中で混合させた混合液を固相と液相とに分離することにより、固相である被覆蛍光体を混合液中から得る。
 例えば、分離工程においては、吸引濾過器を用いて、混合液を固相と液相とに分離し、分離した固相を乾燥し、乾燥して得られた試料を解砕し、焼成処理を行う。これにより、金属酸化物粉末3が含有された二酸化ケイ素膜4によって硫化物蛍光体2が被覆された被覆蛍光体1を得ることができる。
 分離した固相を乾燥させる温度は、使用する溶媒に応じて変更することが可能であるが、80~110℃とすることが好ましい。また、分離した固相を乾燥させる時間は、2時間以上とすることが好ましい。
 試料を焼成する温度は、150~250℃とすることが好ましい。また、粉砕した試料を焼成する時間は、8時間以上とすることが好ましい。
 なお、上述した説明では、被覆蛍光体1を製造する際に、硫化物蛍光体2に対する二酸化ケイ素膜4の被覆処理を1回だけ行う方法、すなわち、硫化物蛍光体2に二酸化ケイ素膜4を一層だけ被覆させる方法について説明したが、この例に限定されるものではない。例えば、二酸化ケイ素膜4の被覆処理を繰り返し行って、硫化物蛍光体2に二層以上の二酸化ケイ素膜4を被覆させるようにしてもよい。本実施の形態に係る被覆蛍光体の製造方法では、硫化物蛍光体2に多層の二酸化ケイ素膜4を被覆させると、硫化物蛍光体2のピーク強度が低下してしまうため、被覆処理の回数を2~3回とすることが好ましい。
<3.被覆蛍光体の適用例>
 上述した被覆蛍光体の製造方法で得られる被覆蛍光体1は、例えば、白色光源や照明装置に適用することができる。
<3-1.白色光源>
 まず、本実施の形態に係る白色光源を、図6に示す断面図を用いて説明する。図6に示すように、白色光源10は、素子基板11上に形成されたパッド部12上に青色発光素子13を有している。素子基板11には、青色発光素子13を駆動するための電力を供給する電極14、15が絶縁性を保って形成され、それぞれの電極14、15は、例えばリード線16、17によって青色発光素子13に接続されている。
 また、青色発光素子13の周囲には、例えば樹脂層18が設けられ、その樹脂層18には、青色発光素子13上を開口する開口部19が形成されている。この開口部19には、青色発光素子13の発光方向に開口面積が広くなる傾斜面に形成され、その傾斜面には反射膜20が形成されている。すなわち、すり鉢状の開口部19を有する樹脂層18において、開口部19の反射膜20で覆われ、開口部19の底面に青色発光素子13が配置された状態となっている。そして、開口部19内に、赤色蛍光体と緑色蛍光体とを透明樹脂に混線した混練物21が、青色発光素子13を覆う状態で埋め込まれて白色光源10が構成されている。
 緑色蛍光体としては、上述した被覆蛍光体1が用いられる。この緑色蛍光体は、緑色波長帯でピーク発光波長が得られ、発光強度が強く、輝度が高い。そのため、青色発光素子の青色光、赤色蛍光体による赤色光、および緑色蛍光体による緑色光からなる光の3原色による色域が広い明るい白色光を得ることができる。
<3-2.照明装置>
 次に、本実施の形態に係る照明装置を、図7を用いて説明する。図7に示すように、照明装置22は、照明基板23上に図6を用いて説明した白色光源10が複数配置されている。その配置例は、例えば、図7(A)に示すように、正方格子配列としてもよく、または図7(B)に示すように、1行おきに例えば1/2ピッチずつずらした配列としてもよい。また、ずらすピッチは、1/2に限らず、1/3ピッチ、1/4ピッチであってもよい。さらには、1行ごとに、もしくは複数行(例えば2行)ごとにずらしてもよい。
 また、図示はしていないが、1列おきに例えば1/2ピッチずつずらした配列としてもよい。ずらすピッチは、1/2に限らず、1/3ピッチ、1/4ピッチであってもよい。さらに、1行ごとに、もしくは複数行(例えば2行)ごとにずらしてもよい。すなわち、白色光源10のずらし方は、限定されるものではない。
 白色光源10は、図6を参照して説明したものと同様な構成を有するものである。すなわち、白色光源10は、青色発光素子13上に、赤色蛍光体と緑色蛍光体を透明樹脂に混練した混練物21を有するものである。緑色蛍光体には、上述した緑色蛍光体が用いられる。
 また、照明装置22は、点発光とほぼ同等の白色光源10が照明基板23上に、縦横に複数配置されていることから、面発光と同等になるので、例えば液晶表示装置のバックライトとして用いることができる。また、照明装置22は、通常の照明装置、撮影用の照明装置、工事現場用の照明装置等、種々の用途の照明装置に用いることができる。
 照明装置22は、白色光源10を用いているため、色域が広い明るい、白色光を得ることができる。例えば、液晶表示装置のバックライトに用いた場合に、表示画面において輝度の高い純白色を得ることができ、表示画面の品質の向上を図ることができる。
 また、本実施の形態に係る被覆蛍光体1は、例えば、照明装置における蛍光体シートに適用することができる。例えば図8に示すように、照明装置24は、青色発光素子が凸型の表面形状の透明樹脂で包含された発光構造体25と、発光構造体25が二次元配置された基板26と、青色発光素子の青色光を拡散する拡散板27と、基板26と離間して配置され、青色発光素子の青色光から白色光を得る粉末状の蛍光体を含有する蛍光体シート28と、光学フィルム29とを備える。
 基板26と蛍光体シート28とは、約10~50mm程度離間して配置され、照明装置24は、いわゆるリモート蛍光体構造を構成する。基板26と蛍光体シート28との間隙は、複数の支持柱や反射板によって保持され、基板26と蛍光体シート28とがなす空間を支持柱や反射板が四方で囲むように設けられている。
 発光構造体25は、青色発光素子として例えばInGaN系の青色LED(Light Emitting Diode)チップを有する、いわゆるLEDパッケージを構成する。
 基板26は、フェノール、エポキシ、ポリイミド、ポリエステル、ビスマレイミドトリアジン、アリル化ポリフェニレンオキサイドなどの樹脂を利用したガラス布基材から構成される。基板26上には、所定ピッチで等間隔に発光構造体25が、蛍光体シート28の全面に対応して二次元に配置される。また、必要に応じて、基板26上の発光構造体25の搭載面に反射処理を施してもよい。
 拡散板27は、発光構造体25からの放射光を光源の形状が見えなくなる程度に広範囲に拡散するものである。拡散板27としては、全光線透過率が20%以上80%以下のものが用いられる。
 蛍光体シート28は、青色発光素子の青色光から白色光を得る粉末状の蛍光体を含有する。蛍光体の粉末は、平均粒径が数μm~数十μmのものを用いる。これにより蛍光体シート28の光散乱効果を向上させることができる。
 光学フィルム29は、例えば液晶表示装置の視認性を向上させるための反射型偏光フィルム、レンズフィルム、拡散フィルムなどで構成される。ここで、レンズフィルムは、一方の面に微小なレンズが配列形成された光学フィルムであり、拡散光の正面方向の指向性を高めて輝度を高めるためのものである。
 以上説明したように、被覆蛍光体1を白色光源10、照明装置22及び照明装置24に適用することにより、例えば高温高湿下において硫化物蛍光体2からの硫黄系ガスの放出を抑制することができる。これにより、白色光源10、照明装置22及び照明装置24において電極等が腐食され、導電性の悪化等を招いてしまうことを防止することができる。
 以下、本発明の実施例について説明する。本実施例では、実施例1~実施例9、比較例1、比較例2において得られた未被覆蛍光体又は被覆蛍光体について、発光特性評価、高温高湿環境試験及び銀片腐食試験を行った。なお、本発明は、これらの実施例に限定されるものではない。
(実施例1)
 樹脂容器(PE)に、第一配合物(硫化物蛍光体(SrGa:Eu)10g、エタノール80g、純水5g、28%のアンモニア水6g)と、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)0.1g(硫化物蛍光体100質量部に対して1質量部)を投入し、マグネチックスターラーを投入し、40℃の恒温槽にて10分間攪拌後、第二配合物(テトラエトキシシラン5g、エタノール35g)を投入した。第二配合物の投入が完了した時点を0分として3時間攪拌を行った。攪拌終了後、真空ポンプを用いて吸引濾過を行い、回収したサンプルをビーカーに移し、水やエタノールで洗浄後、再度濾過を行い、サンプルを回収した。回収したサンプルを85℃で2時間乾燥し、200℃で8時間焼成を行い、被覆蛍光体を得た。
(実施例2)
 実施例2では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を0.5g(硫化物蛍光体100質量部に対して5質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例3)
 実施例3では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を1.0g(硫化物蛍光体100質量部に対して10質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例4)
 実施例4では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を2.0g(硫化物蛍光体100質量部に対して20質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例5)
 実施例5では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を5.0g(硫化物蛍光体100質量部に対して50質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例6)
 実施例6では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を10.0g(硫化物蛍光体100質量部に対して100質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例7)
 実施例7では、粒径が0.6~0.8μmの酸化亜鉛粉末(堺化学製)を0.5g(硫化物蛍光体100質量部に対して5質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例8)
 実施例8では、粒径が0.02~0.03μmの酸化亜鉛粉末(FINEX、堺化学製)を0.5g(硫化物蛍光体100質量部に対して5質量部)用いたこと以外は、実施例1と同様にして被覆蛍光体を得た。
(実施例9)
 実施例9では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を合計1.0g(硫化物蛍光体100質量部に対して合計10質量部)用いたこと、2回被覆処理を行ったこと以外は、実施例1と同様にして被覆蛍光体を得た。実施例9で得られた被覆蛍光体1は、図3に示すように、硫化物蛍光体上に、二層の二酸化ケイ素膜、すなわち、酸化亜鉛粉末が含有された二酸化ケイ素膜と、酸化亜鉛粉末が含有された二酸化ケイ素膜とがこの順番で被覆されている。
(実施例10)
 実施例10では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を0.5g(硫化物蛍光体100質量部に対して5質量部)用いたこと、2回被覆処理を行ったこと以外は、実施例1と同様にして被覆蛍光体を得た。実施例10で得られた被覆蛍光体1は、図4に示すように、硫化物蛍光体上に、二層の二酸化ケイ素膜、すなわち、酸化亜鉛粉末が含有された二酸化ケイ素膜と、酸化亜鉛粉末が含有されていない二酸化ケイ素膜とがこの順番で被覆されている。
(実施例11)
 実施例11では、粒径が0.1~0.2μmの酸化亜鉛粉末(K-FRESH MZO、テイカ製)を0.5g(硫化物蛍光体100質量部に対して5質量部)用いたこと、2回被覆処理を行ったこと以外は、実施例1と同様にして被覆蛍光体を得た。実施例11で得られた被覆蛍光体1は、図5に示すように、硫化物蛍光体上に、二層の二酸化ケイ素膜、すなわち、酸化亜鉛粉末が含有されていない二酸化ケイ素膜と、酸化亜鉛粉末が含有された二酸化ケイ素膜とがこの順番で被覆されている。
(比較例1)
 比較例1では、被覆処理を施していない蛍光体(未被覆蛍光体)(SrGa:Eu)10gをそのまま用いた。
(比較例2)
 比較例2では、酸化亜鉛粉末を用いなかったこと以外は、実施例1と同様にして被覆蛍光体を得た。
 実施例1~実施例11及び比較例1、比較例2についてまとめたものを表1に示す。表1において、被覆処理の欄の丸数字(1、2)は、それぞれ1回目の被覆処理又は2回目の被覆処理のことを示す。また、表1において、「ZnO混合」とは、酸化亜鉛粉末が含有された二酸化ケイ素膜であり、「シリカ」とは、酸化亜鉛粉末が含有されていない二酸化ケイ素膜である。
Figure JPOXMLDOC01-appb-T000001
<発光特性評価>
 FP6500(日本分光(株)製)を用いて、実施例1~実施例11及び比較例1、比較例2で得られた未被覆蛍光体又は被覆蛍光体の発光特性を評価した。発光特性評価の結果を表1に示す。発光特性としては、輝度、ピーク波長、ピーク強度、試料吸収率、内部量子効率及び外部量子効率を評価した。ピーク強度は、未被覆蛍光体(比較例1)のピーク強度を1としたときの各被覆蛍光体のピーク強度を表す。試料吸収率は、励起光の試料による減少分の入射光の比である。また、内部量子効率は、試料から放出される蛍光の光子数から、試料に吸収される励起光の光子数を割った値である。外部量子効率は、試料吸収率に内部量子効率を乗じた値((試料吸収率)×(内部量子効率))である。
 実施例2、実施例3、実施例11で得られた被覆蛍光体は、発光特性に関して、未被覆蛍光体(比較例1)と同等であることが分かった。
 また、実施例1、実施例7、実施例8、実施例10で得られた被覆蛍光体は、発光特性に関して、未被覆蛍光体(比較例1)よりも良好であることが分かった。これは、二酸化ケイ素膜によるレンズ効果により、被覆蛍光体の外部から内部に光が入射しやすくなり、また、被覆蛍光体の内部から外部に光が出射しやすくなったためと考えられる。
 さらに、実施例9で得られた被覆蛍光体、すなわち硫化物蛍光体100質量部に対して5質量部の酸化亜鉛を用いて被覆処理を2回(合計10質量部)行った被覆蛍光体は、発光特性に関して、10質量部の酸化亜鉛を用いて被覆処理を1回行った被覆蛍光体(実施例3)と同等以上であることが分かった。
 一方、酸化亜鉛の配合量が20質量部以上である実施例4~実施例6で得られた被覆蛍光体は、発光特性に関して、未被覆の蛍光体(比較例1)よりも低下してしまうことが分かった。
<高温高湿環境試験>
 高温高湿環境変化試験では、実施例1~実施例9、比較例1、比較例2で得られた評価サンプルについて、60℃、90%RHの高温高湿試験により、初期発光強度等から試験終了後500時間後までの変化を確認した。発光強度測定には、分光光度計FP-6500(日本分光(株)製)を用いた。高温高湿環境変化試験の結果を表2及び図9に示す。
Figure JPOXMLDOC01-appb-T000002
 未被覆蛍光体(比較例1)は、60℃、90%RHの高温高湿試験の500時間後において発光強度が半減してしまうことが分かった。一方、二酸化ケイ素膜によって被覆された被覆蛍光体(比較例2)は、発光強度を略100%維持することができることが分かった。
 酸化亜鉛粉末が含有された二酸化ケイ素膜によって被覆された被覆蛍光体(実施例1~実施例9)は、発光強度維持率を略100%に維持することができ、また、比較例2で得られた被覆蛍光体よりも発光強度維持率が良好となるものがあることが分かった。これらの結果から、酸化亜鉛は、高温高湿環境下における発光強度維持率に関して、二酸化ケイ素膜に悪影響を及ぼさないことが分かった。
<銀片腐食試験>
 硫化水素ガスの放出の指標として銀片試験を行った。直径15mm、厚さ2mmの銀片(JIS H 2141 「銀地金」に規定されている銀地金(純度99.95%以上))を金属研磨剤(ピカール、日本磨料工業社製)で研磨し、アセトン中で超音波洗浄した。図10に示すように、超音波洗浄後の銀片30を密閉ビン31(100mlのガラス製秤量ビン)の蓋32の裏32Aに両面テープで張り付けた。湿度100%RHとするために、ガラスセル33に水を加え、密閉ビン31に入れた。また、密閉ビン31内部の低面上に、実施例1~実施例11及び比較例1、比較例2で得られた被覆蛍光体(未被覆蛍光体)34を置いた。密閉ビン31の蓋32を閉め、パラフィルム、ポリイミドテープで止め、85℃で6時間オーブンに入れた。
 銀片試験の評価は、FP6500にて380~780nmの波長での反射率を測定して平均化することで求めた平均反射率を評価した。平均反射率の結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 比較例1で得られた未被覆蛍光体を用いたときと、比較例2で得られた被覆蛍光体を用いたときを比較すると、比較例2で得られた被覆蛍光体を用いたときは、硫化物蛍光体が二酸化ケイ素膜で被覆されているため、銀の腐食が若干改善されていることが分かった。
 酸化亜鉛が含有された二酸化ケイ素膜によって被覆した実施例1~実施例11で得られた被覆蛍光体では、比較例1で得られた未被覆蛍光体と比較して、約2倍以上の平均反射率が得られ、腐食をより抑えることができることが分かった。これは、被覆蛍光体中の硫化物蛍光体の加水分解によって硫化物蛍光体から放出される硫黄系ガスが酸化亜鉛粉末に吸着され、硫黄系ガスの放出を抑制することができたためと考えられる。
 実施例7で得られた被覆蛍光体は、平均反射率の結果に関して、比較例2で得られた被覆蛍光体と同等の結果であるが、目視による外観評価については、比較例2で得られた被覆蛍光体よりも良好であった。
 粒径の小さい酸化亜鉛(0.02~0.03μm)を用いた実施例8で得られた被覆蛍光体は、粒径が0.1~0.2μmの酸化亜鉛を用いた実施例1~実施例6で得られた被覆蛍光体と同等の平均反射率が得られることが分かった。
 硫化物蛍光体100質量部に対して5質量部の酸化亜鉛を用いて被覆処理を2回行った被覆蛍光体(実施例9)は、発光特性に関して、10質量部の酸化亜鉛を用いて被覆処理を1回行った被覆蛍光体(実施例3)よりも、平均反射率が向上することが分かった。
 同じ量の酸化亜鉛粉末(硫化物蛍光体100質量部に対して5質量部)を用いた実施例2、実施例10、実施例11で得られた被覆蛍光体の中では、実施例2で得られた被覆蛍光体と実施例10で得られた被覆蛍光体の平均反射率を比較すると、同じであることが分かった。また、実施例2で得られた被覆蛍光体と、実施例11で得られた被覆蛍光体の平均反射率を比較すると、実施例11で得られた被覆蛍光体の方が結果が良好であることが分かった。これらの結果から、実施例2、実施例10、実施例11で得られた被覆蛍光体の中では、実施例11で得られた被覆蛍光体は、最も高い平均反射率が得られ、腐食をより抑えることができることが分かった。これは、被覆蛍光体において、硫化物蛍光体が、二層以上の二酸化ケイ素膜によって被覆されており、最表面側の二酸化ケイ素膜中に金属酸化物粉末である酸化亜鉛粉末が含有されているためと考えられる。
1 被覆蛍光体、2 硫化物蛍光体、3 金属酸化物粉末、4 二酸化ケイ素膜、10 白色光源、11 素子基板、12 パッド部、13 青色発光素子、14 電極、15 電極、16 リード線、17 リード線、18 樹脂層、19 開口部、20 反射膜、21 混練物、22 照明装置、23 照明基板、24 照明装置、25 発光構造体、26 基板、27 拡散板、28 蛍光体シート、29 光学フィルム、30 銀片、31 密閉ビン、32 蓋、33 ガラスセル、34 被覆蛍光体

Claims (10)

  1.  金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている被覆蛍光体。
  2.  上記金属酸化物粉末が、酸化亜鉛粉末である請求項1記載の被覆蛍光体。
  3.  上記硫化物蛍光体100質量部に対して、1質量部以上、20質量部未満以下の上記酸化亜鉛粉末が配合されている請求項2記載の被覆蛍光体。
  4.  上記酸化亜鉛粉末の粒径が0.2μm以下である請求項3記載の被覆蛍光体。
  5.  上記硫化物蛍光体が、二層以上の二酸化ケイ素膜によって被覆されており、少なくともいずれかの二酸化ケイ素膜中に上記金属酸化物粉末が含有されている請求項4記載の被覆蛍光体。
  6.  最表面側の二酸化ケイ素膜中に上記金属酸化物粉末が含有されている請求項5記載の被覆蛍光体。
  7.  上記硫化物蛍光体は、SrGa:Euである請求項1乃至6のうちいずれか1項記載の被覆蛍光体。
  8.  硫化物蛍光体とアルコキシシランと金属酸化物粉末と触媒とを溶媒中で混合し、上記金属酸化物粉末が含有され上記アルコキシシランから形成される二酸化ケイ素膜によって上記硫化物蛍光体を被覆させる混合工程を有する被覆蛍光体の製造方法。
  9.  素子基板上に形成された青色発光素子と、
     上記青色発光素子上に配置され、赤色蛍光体と緑色蛍光体又は黄色蛍光体とを透明樹脂に混練した混練物とを有し、
     上記緑色蛍光体は、金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている白色光源。
  10.  青色発光素子が透明樹脂で包含された発光構造体と、
     上記発光構造体が二次元配置された基板と、
     上記基板と離間して配置され、上記青色発光素子の青色光から白色光を得る粉末状の蛍光体を含有する蛍光体シートと
     を備え、
     上記蛍光体は、金属酸化物粉末が含有された二酸化ケイ素膜によって、硫化物蛍光体が被覆されている照明装置。
PCT/JP2012/081477 2011-12-07 2012-12-05 被覆蛍光体及び被覆蛍光体の製造方法 WO2013084921A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/363,577 US9540563B2 (en) 2011-12-07 2012-12-05 Coated phosphor and method for producing coated phosphor
EP12856565.2A EP2789671B1 (en) 2011-12-07 2012-12-05 Coated phosphor and method for producing coated phosphor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011267680A JP2013119581A (ja) 2011-12-07 2011-12-07 被覆蛍光体及び被覆蛍光体の製造方法
JP2011-267680 2011-12-07

Publications (1)

Publication Number Publication Date
WO2013084921A1 true WO2013084921A1 (ja) 2013-06-13

Family

ID=48574279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081477 WO2013084921A1 (ja) 2011-12-07 2012-12-05 被覆蛍光体及び被覆蛍光体の製造方法

Country Status (5)

Country Link
US (1) US9540563B2 (ja)
EP (1) EP2789671B1 (ja)
JP (1) JP2013119581A (ja)
TW (2) TWI597347B (ja)
WO (1) WO2013084921A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418529B2 (en) 2013-12-19 2019-09-17 Osram Opto Semiconductors Gmbh Conversion element, method of producing a conversion element, optoelectronic device comprising a conversion element

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6038524B2 (ja) * 2012-07-25 2016-12-07 デクセリアルズ株式会社 蛍光体シート
JP6122747B2 (ja) * 2013-09-25 2017-04-26 三井金属鉱業株式会社 蛍光体
KR102122359B1 (ko) 2013-12-10 2020-06-12 삼성전자주식회사 발광장치 제조방법
JP6428194B2 (ja) * 2014-11-21 2018-11-28 日亜化学工業株式会社 波長変換部材及びその製造方法ならびに発光装置
US10899965B2 (en) 2015-03-30 2021-01-26 Nichia Corporation Fluorescent material particles, method for producing the same, and light emitting device
JP2018056512A (ja) 2016-09-30 2018-04-05 デクセリアルズ株式会社 発光装置、及び発光装置の製造方法
US10584280B2 (en) 2016-10-31 2020-03-10 Intematix Corporation Coated narrow band green phosphor
KR102448122B1 (ko) * 2017-05-23 2022-09-27 인터매틱스 코포레이션 컬러 액정 디스플레이 및 디스플레이 백라이트
WO2019107080A1 (ja) 2017-11-30 2019-06-06 デクセリアルズ株式会社 被覆蛍光体、その製造方法、並びに、蛍光体シート、及び発光装置
JP6932679B2 (ja) 2017-11-30 2021-09-08 デクセリアルズ株式会社 被覆蛍光体、その製造方法、並びに、蛍光体シート、及び発光装置
JP7161100B2 (ja) * 2018-09-25 2022-10-26 日亜化学工業株式会社 発光装置及びその製造方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284583A (ja) 1988-05-12 1989-11-15 Mitsubishi Metal Corp ZnS分散型EL蛍光体
JPH0665570A (ja) * 1992-06-17 1994-03-08 Toshiba Corp 電場発光蛍光体およびその製造方法
JPH07188650A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 陰極線管用蛍光体
JPH09272866A (ja) * 1996-04-03 1997-10-21 Toshiba Corp 電場発光蛍光体およびその製造方法
JP2003213257A (ja) * 2002-01-17 2003-07-30 Matsushita Electric Ind Co Ltd 赤色蛍光体、赤色蛍光体を用いた蛍光ランプ、および、赤色蛍光体の製造方法
JP2006188700A (ja) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd 硫化物系蛍光体の被膜形成方法及び表面コーティング硫化物系蛍光体
JP2007023221A (ja) 2005-07-20 2007-02-01 Bando Chem Ind Ltd 被覆発光体およびその利用
JP2007091874A (ja) * 2005-09-28 2007-04-12 Toda Kogyo Corp 耐湿性蛍光体粒子粉末及び該耐湿性蛍光体粒子粉末を用いたled素子または分散型el素子
JP2008115223A (ja) * 2006-11-01 2008-05-22 Nec Lighting Ltd 蛍光体含有ガラスシート、その製造方法及び発光装置
JP2008205437A (ja) * 2007-02-20 2008-09-04 Samsung Electro Mech Co Ltd 白色発光装置
JP2008308510A (ja) * 2007-06-12 2008-12-25 Sony Corp 発光組成物及びこれを用いた光学装置並びにこれを用いた表示装置
JP2010209194A (ja) * 2009-03-10 2010-09-24 Toshiba Corp 赤色発光蛍光体およびそれを用いた発光装置
WO2012077656A1 (ja) * 2010-12-09 2012-06-14 三井金属鉱業株式会社 ZnO化合物被覆硫黄含有蛍光体
WO2012137552A1 (ja) * 2011-04-05 2012-10-11 三井金属鉱業株式会社 発光デバイス
WO2013021990A1 (ja) * 2011-08-11 2013-02-14 三井金属鉱業株式会社 赤色蛍光体及び発光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7737715B2 (en) * 2006-07-31 2010-06-15 Marvell Israel (M.I.S.L) Ltd. Compensation for voltage drop in automatic test equipment
KR101414243B1 (ko) * 2007-03-30 2014-07-14 서울반도체 주식회사 황화물 형광체 코팅 방법 및 코팅된 황화물 형광체를채택한 발광 소자
JP5249894B2 (ja) * 2009-09-25 2013-07-31 パナソニック株式会社 被覆蛍光体、波長変換部材、led発光装置
JP5250520B2 (ja) * 2009-09-25 2013-07-31 パナソニック株式会社 被覆蛍光体及びled発光装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01284583A (ja) 1988-05-12 1989-11-15 Mitsubishi Metal Corp ZnS分散型EL蛍光体
JPH0665570A (ja) * 1992-06-17 1994-03-08 Toshiba Corp 電場発光蛍光体およびその製造方法
JPH07188650A (ja) * 1993-12-27 1995-07-25 Toshiba Corp 陰極線管用蛍光体
JPH09272866A (ja) * 1996-04-03 1997-10-21 Toshiba Corp 電場発光蛍光体およびその製造方法
JP2003213257A (ja) * 2002-01-17 2003-07-30 Matsushita Electric Ind Co Ltd 赤色蛍光体、赤色蛍光体を用いた蛍光ランプ、および、赤色蛍光体の製造方法
JP2006188700A (ja) * 2005-01-03 2006-07-20 Samsung Electro Mech Co Ltd 硫化物系蛍光体の被膜形成方法及び表面コーティング硫化物系蛍光体
JP2007023221A (ja) 2005-07-20 2007-02-01 Bando Chem Ind Ltd 被覆発光体およびその利用
JP2007091874A (ja) * 2005-09-28 2007-04-12 Toda Kogyo Corp 耐湿性蛍光体粒子粉末及び該耐湿性蛍光体粒子粉末を用いたled素子または分散型el素子
JP2008115223A (ja) * 2006-11-01 2008-05-22 Nec Lighting Ltd 蛍光体含有ガラスシート、その製造方法及び発光装置
JP2008205437A (ja) * 2007-02-20 2008-09-04 Samsung Electro Mech Co Ltd 白色発光装置
JP2008308510A (ja) * 2007-06-12 2008-12-25 Sony Corp 発光組成物及びこれを用いた光学装置並びにこれを用いた表示装置
JP2010209194A (ja) * 2009-03-10 2010-09-24 Toshiba Corp 赤色発光蛍光体およびそれを用いた発光装置
WO2012077656A1 (ja) * 2010-12-09 2012-06-14 三井金属鉱業株式会社 ZnO化合物被覆硫黄含有蛍光体
WO2012137552A1 (ja) * 2011-04-05 2012-10-11 三井金属鉱業株式会社 発光デバイス
WO2013021990A1 (ja) * 2011-08-11 2013-02-14 三井金属鉱業株式会社 赤色蛍光体及び発光素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10418529B2 (en) 2013-12-19 2019-09-17 Osram Opto Semiconductors Gmbh Conversion element, method of producing a conversion element, optoelectronic device comprising a conversion element
EP3084848B1 (de) * 2013-12-19 2020-04-01 OSRAM Opto Semiconductors GmbH Konversionselement, verfahren zur herstellung eines konversionselements, optoelektronisches bauelement umfassend ein konversionselement

Also Published As

Publication number Publication date
US9540563B2 (en) 2017-01-10
EP2789671B1 (en) 2017-04-26
TW201341502A (zh) 2013-10-16
EP2789671A4 (en) 2015-11-11
US20140293609A1 (en) 2014-10-02
JP2013119581A (ja) 2013-06-17
EP2789671A1 (en) 2014-10-15
TW201704447A (zh) 2017-02-01
TWI621690B (zh) 2018-04-21
TWI597347B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
WO2013084921A1 (ja) 被覆蛍光体及び被覆蛍光体の製造方法
TWI680180B (zh) 被覆螢光體
JP5966501B2 (ja) 波長変換用無機成形体及びその製造方法、並びに発光装置
JP5468985B2 (ja) 照明装置
JP2013067710A (ja) 被覆蛍光体の製造方法、被覆蛍光体及び白色光源
US11760927B2 (en) Green phosphor, phosphor sheet, and light-emitting device
KR20170085168A (ko) 불화물계 형광체, 불화물계 형광체 제조방법 및 발광장치
JP6258418B2 (ja) 被覆蛍光体の製造方法
JP6949806B2 (ja) 緑色蛍光体、蛍光体シート、及び発光装置
WO2020189290A1 (ja) Led発光装置
JP2016028170A (ja) 被覆蛍光体の製造方法、被覆蛍光体及び白色光源
KR20140135638A (ko) 발광장치
JP2014040492A (ja) 蛍光体、蛍光体含有組成物、発光モジュール、ランプおよび照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12856565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14363577

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012856565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012856565

Country of ref document: EP