WO2012133729A1 - 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法 - Google Patents

活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法 Download PDF

Info

Publication number
WO2012133729A1
WO2012133729A1 PCT/JP2012/058506 JP2012058506W WO2012133729A1 WO 2012133729 A1 WO2012133729 A1 WO 2012133729A1 JP 2012058506 W JP2012058506 W JP 2012058506W WO 2012133729 A1 WO2012133729 A1 WO 2012133729A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon powder
active material
powder
ratio
livopo
Prior art date
Application number
PCT/JP2012/058506
Other languages
English (en)
French (fr)
Inventor
佳太郎 大槻
佐野 篤史
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to CN201280016817.7A priority Critical patent/CN103460458B/zh
Priority to US14/005,385 priority patent/US9564641B2/en
Publication of WO2012133729A1 publication Critical patent/WO2012133729A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an active material, an electrode, a lithium ion secondary battery, and a method for producing the active material.
  • LiVOPO 4 is known as a compound that can realize a charge / discharge voltage of 4 V class among phosphoric acid positive electrode materials. However, even in a lithium ion secondary battery using LiVOPO 4 , sufficient reversible capacity and rate characteristics are not obtained.
  • the above positive electrode materials are described in, for example, the following patent documents 1 and 2 and the following non-patent documents 1 to 4. In the crystal represented by the structural formula LiVOPO 4 , it is known that lithium ions are reversibly inserted and desorbed.
  • the LiVOPO 4 powder obtained by the conventional method has not had a sufficient discharge capacity at a high discharge rate.
  • an object of the present invention is to provide an active material capable of obtaining a sufficient discharge capacity at a high discharge rate, an electrode including the active material, a lithium secondary battery including the electrode, and a method for producing the active material.
  • the active material according to the present invention includes LiVOPO 4 powder, first carbon powder, and second carbon powder,
  • the ratio of the G band peak height observed near 1580 cm ⁇ 1 in the Raman spectrum of the first carbon powder to the 2D band peak height observed near 2700 cm ⁇ 1 in the Raman spectrum of the first carbon powder is expressed as A1.
  • age The ratio of the G band peak height observed near 1580 cm ⁇ 1 in the Raman spectrum of the second carbon powder to the 2D band peak height observed near 2700 cm ⁇ 1 in the Raman spectrum of the second carbon powder is expressed as A2 When 0.05 ⁇ A1 / A2 ⁇ 0.5 is satisfied.
  • the method for producing an active material according to the present invention includes a step of mixing LiVOPO 4 powder, first carbon powder, and second carbon powder,
  • the ratio of the G band peak height observed near 1580 cm ⁇ 1 in the Raman spectrum of the first carbon powder to the 2D band peak height observed near 2700 cm ⁇ 1 in the Raman spectrum of the first carbon powder is expressed as A1.
  • age The ratio of the G band peak height observed near 1580 cm ⁇ 1 in the Raman spectrum of the second carbon powder to the 2D band peak height observed near 2700 cm ⁇ 1 in the Raman spectrum of the second carbon powder is expressed as A2 When 0.05 ⁇ A1 / A2 ⁇ 0.5 is satisfied.
  • the ratio of the weight of the first carbon powder to the total weight of the first carbon powder and the second carbon powder is M1, it is preferable that 0.02 ⁇ M1 ⁇ 0.98 is satisfied. .
  • the ratio of the weight of the first carbon powder and the second carbon powder to the total weight of the LiVOPO 4 powder, the first carbon powder, and the second carbon powder is M2, 0.03 It is preferable to satisfy ⁇ M2 ⁇ 0.2.
  • the LiVOPO 4 powder is preferably obtained by hydrothermal synthesis.
  • an active material capable of obtaining a sufficient discharge capacity at a high discharge rate an electrode including the active material, a lithium secondary battery including the electrode, and an active material manufacturing method can be provided.
  • This active material is a mixture containing LiVOPO 4 powder, first carbon powder, and second carbon powder.
  • the LiVOPO 4 powder is not particularly limited as long as it has a LiVOPO 4 structure, but is preferably obtained by hydrothermal synthesis.
  • the crystal structure is not particularly limited, and may be any of ⁇ type, ⁇ type, a mixed type, an amorphous type, and the like.
  • the LiVOPO 4 powder is composed of LiVOPO 4 but may contain a small amount of unreacted raw material components and the like in addition to this.
  • the average diameter of LiVOPO 4 powder is not particularly limited, but is preferably 50 nm to 5 ⁇ m.
  • the average diameter is represented by an average value of a predetermined maximum distance in the A direction, that is, an average distance between lines (so-called Feret diameter) between parallel tangents orthogonal to the A direction, for example, 100. Can do.
  • the first carbon powder and the second carbon powder are different from each other in the ratio A of the G band peak height observed near 1580 cm ⁇ 1 to the 2D band peak height observed near 2700 cm ⁇ 1 in the Raman spectrum. .
  • the G band peak height observed in the vicinity of 1580 cm ⁇ 1 in the Raman spectrum of the first carbon powder relative to the 2D band peak height observed in the vicinity of 2700 cm ⁇ 1 in the Raman spectrum of the first carbon powder.
  • the ratio be A1
  • the second carbon powder, for 2D band peak height observed in the vicinity of 2700 cm -1 in the Raman spectrum, the G-band peak height ratio of the observed near 1580 cm -1 in the Raman spectrum of the second carbon powder A2 In this case, 0.05 ⁇ A1 / A2 ⁇ 0.5 is satisfied. Preferably, 0.1 ⁇ A1 / A2 ⁇ 0.2 is satisfied.
  • the ratio A was measured by the method of Examples described later, the ratio A of “DENKA BLACK FX-35” manufactured by Denki Kagaku Kogyo was 2.00, and the ratio A of “Carbon Black DAB” manufactured by Denki Kagaku Kogyo was 2. 19, the ratio A of TIMCAL “artificial graphite KS-6” is 1.60, the ratio A of MMMCarbon SuperP is 11.19, the ratio A of Mitsubishi Chemical “Oil Furnace Black # 3400B” is 13.89, Ketjen The ratio A of “Ketjen Black EC600JD” manufactured by Black International was 14.41. Thus, for example, any combination of FX-35, DAB, KS-6 or SuperP and either 3400B or EC600JD can satisfy the above formula.
  • the particle size of the carbon powder is not particularly limited, but is preferably a size capable of functioning as a conductive auxiliary, and specifically, the median average diameter is preferably 20 to 150 nm.
  • the mixing ratio of the first carbon powder and the second carbon powder is not particularly limited, but when the ratio A1 of the first carbon powder is smaller than the ratio A2 of the second carbon powder (A1 ⁇ A2),
  • the ratio M1 of the weight of the first carbon powder to the total weight of the one carbon powder and the second carbon powder preferably satisfies 0.02 ⁇ M1 ⁇ 0.98, and preferably 0.1 ⁇ M1 ⁇ 0.95. 0.5 ⁇ M1 ⁇ 0.8 is preferable.
  • the mixing ratio of the first carbon powder and the second carbon powder with respect to the LiVOPO 4 powder is not particularly limited, but the first carbon powder and the second carbon powder with respect to the total weight of the LiVOPO 4 powder, the first carbon powder, and the second carbon powder.
  • the weight ratio of the carbon powder is M2, 0.03 ⁇ M2 ⁇ 0.2 is preferable, 0.05 ⁇ M2 ⁇ 0.15 is more preferable, and 0.06 ⁇ M2 ⁇ 0.12 is more preferable. .
  • the LiVOPO 4 powder, the first carbon powder, and the second carbon powder are preferably mixed by a planetary ball mill.
  • the active material according to this embodiment has a high discharge capacity at a high discharge rate.
  • the reason why such a result is obtained is unknown, but it is considered that the first carbon powder and the second carbon powder each constitute a conductive network and effectively cover the active material.
  • Method of manufacturing an active material according to the present embodiment first, comprising the steps of obtaining a LiVOPO 4 powder, and mixing the carbon powder LiVOPO 4 flour obtained, the.
  • Step of obtaining LiVOPO 4 powder The method for obtaining the LiVOPO 4 powder is not particularly limited, but is preferably a hydrothermal synthesis method.
  • the hydrothermal synthesis method will be described. It should be noted that the present invention can also be carried out with products manufactured by other methods such as a solid phase method.
  • lithium source examples include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
  • pentavalent vanadium source examples include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
  • the phosphoric acid source examples include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.
  • the concentration of the lithium source is not particularly limited, but it is preferably blended so that the ratio of the number of moles of lithium atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2.
  • the concentration of the phosphoric acid source is not particularly limited, but it is preferably blended so that the ratio of the number of moles of phosphorus atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2.
  • the blending ratio of at least one of lithium atoms and phosphorus atoms is less than 0.95, the discharge capacity of the obtained active material tends to decrease, and the rate characteristics tend to decrease.
  • the blending ratio of at least one of lithium atoms and phosphorus atoms is more than 1.2, the discharge capacity of the obtained active material tends to decrease.
  • the reducing agent is not particularly limited, and examples thereof include organic acids such as citric acid, ascorbic acid, tartaric acid, hydrazine, hydrogen peroxide, and the like.
  • the blending amount of the reducing agent is not particularly limited, but the reducing agent is preferably 0.1 to 1 mol / L based on the total amount of the mixture.
  • the ratio of the number of moles of the reducing agent to the number of moles of pentavalent vanadium atoms is preferably 10 to 100 mol%.
  • the amount of water in the mixture is not particularly limited as long as hydrothermal synthesis is possible, but the ratio of substances other than water in the mixture is preferably 35% by mass or less.
  • the order in which the raw materials are charged when adjusting the mixture is not particularly limited.
  • the raw materials of the above mixture may be mixed together, and first, a pentavalent vanadium compound is added to the mixture of water and PO 4 -containing compound, and then the reducing agent and lithium compound are added in this order. Or may be added together.
  • the mixture is preferably a suspension.
  • the above-described mixture (lithium compound) is put in a reaction vessel (for example, an autoclave) having a function of heating the mixture containing moisture in a sealed vessel to a high temperature and pressure inside.
  • a reaction vessel for example, an autoclave
  • a pentavalent vanadium compound, a PO 4 -containing compound, water, a reducing agent, etc. a pentavalent vanadium compound, a PO 4 -containing compound, water, a reducing agent, etc.
  • the heating temperature is not particularly limited, but is preferably 130 to 250 ° C., and more preferably 150 to 200 ° C. from the viewpoint of improving the discharge rate characteristics of the obtained active material.
  • the pressure in the reaction vessel varies with temperature, but is preferably 0.1 to 30 MPa. And it is thought that the hydrothermal reaction of a mixture advances by such a temperature rising process, and the above-mentioned active material is formed.
  • the time for maintaining the predetermined heating temperature is not particularly limited, but is preferably 1 to 30 hours. By such heating step, hydrothermal reaction proceeds the mixture, LiVOPO 4 powder is formed.
  • the high temperature and high pressure as described above is preferably maintained for a predetermined time.
  • the maintenance time is not particularly limited, but is preferably 1 to 30 hours.
  • the reaction is then cooled.
  • the cooling rate is not particularly limited, and it is sufficient to stop heating and obtain a temperature near room temperature.
  • the obtained LiVOPO 4 powder usually precipitates as a solid in the liquid after hydrothermal synthesis.
  • the liquid after hydrothermal synthesis is filtered, for example, to collect solids, and the collected solids are washed with water, acetone or the like, and then dried to efficiently obtain LiVOPO 4 powder. it can.
  • LiVOPO 4 powder obtained by hydrothermal synthesis may be annealed. Thereby, crystallization may progress.
  • annealing can be performed at a temperature of 400 ° C. to 650 ° C.
  • the annealing time is not particularly limited, but can be 3 to 8 hours.
  • the atmosphere in the annealing step is not particularly limited, but is preferably an air atmosphere in order to facilitate the removal of the reducing agent. On the other hand, it can also be performed in an inert atmosphere such as argon gas or nitrogen gas.
  • the crystal structure of the LiVOPO 4 powder can be controlled by the mixing order of raw materials, the type of reducing agent, the hydrothermal synthesis temperature, the presence or absence of annealing, conditions, and the like.
  • the obtained LiVOPO 4 powder is mixed with the above-mentioned first carbon powder and second carbon powder.
  • the mixing method is not particularly limited, but it is preferable to mix with a planetary ball mill. By mixing with a planetary ball mill, the effect of pulverization and the like is high and the dispersibility is good.
  • the mixing time in the planetary ball mill is not particularly limited, but can be 1 to 30 minutes, preferably 3 to 10 minutes. It is also possible to use a mixing means other than the planetary ball mill.
  • FIG. 1 is a schematic cross-sectional view of a lithium ion secondary battery 100 according to this embodiment using the electrode.
  • the lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.
  • the laminated body 30 is configured such that a pair of positive electrodes 10 and negative electrodes 20 are arranged to face each other with a separator 18 interposed therebetween.
  • the positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12.
  • the negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22.
  • the positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18.
  • Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.
  • the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode
  • the active material layers 24 are collectively referred to as active material layers 14 and 24.
  • the positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the positive electrode active material layer 14 includes an active material according to the present embodiment, a binder, and a conductive material in an amount as necessary.
  • the binder binds the active materials to each other and binds the active material to the positive electrode current collector 12.
  • the material of the binder is not particularly limited as long as the above-described bonding is possible.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer
  • EFE ethylene-tetrafluoroethylene cop
  • binders for example, vinylidene fluoride-hexafluoropropylene fluorine rubber (VDF-HFP fluorine rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) , Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber It may be used vinylidene fluoride-based fluorine rubbers such as rubber (VDF-HFP fluorine rubber
  • polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used as the binder.
  • thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used.
  • syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / ⁇ -olefin (2 to 12 carbon atoms) copolymer, and the like may be used.
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer include polyacetylene. In this case, since the binder exhibits the function of the conductive material, it is not necessary to add the conductive material.
  • the ion-conductive conductive polymer for example, those having ion conductivity such as lithium ion can be used.
  • polymer compounds polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide
  • Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of alkali metal salt mainly composed of lithium.
  • the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.
  • the content of the binder contained in the positive electrode active material layer 14 is preferably 0.5 to 6% by mass based on the mass of the active material layer.
  • the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases.
  • the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electric capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and a tendency that a sufficient electric capacity cannot be obtained increases.
  • Examples of the conductive material include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.
  • the negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the negative electrode active material is not particularly limited, and a known negative electrode active material for a battery can be used. Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate or dope / dedope) lithium ions.
  • grains containing are mentioned.
  • the binder and the conductive material the same materials as those for the positive electrode can be used.
  • the method for manufacturing the electrodes 10 and 20 according to this embodiment includes a step of applying a coating material, which is a raw material of the electrode active material layers 14 and 24, onto the aggregate (hereinafter, also referred to as “coating step”), and a collector. And a step of removing the solvent in the paint applied on the electric body (hereinafter, also referred to as “solvent removal step”).
  • a coating material which is a raw material of the electrode active material layers 14 and 24 onto the aggregate
  • solvent removal step a step of removing the solvent in the paint applied on the electric body
  • the paint contains the active material, the binder, and the solvent.
  • the coating material may contain, for example, a conductive material for increasing the conductivity of the active material.
  • the solvent for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.
  • the mixing method of the components constituting the paint such as the active material, the binder, the solvent, and the conductive material is not particularly limited, and the mixing order is not particularly limited. For example, first, an active material, a conductive material, and a binder are mixed, and N-methyl-2-pyrrolidone is added to the obtained mixture and mixed to prepare a paint.
  • solvent removal step Subsequently, the solvent in the paint applied on the current collectors 12 and 22 is removed.
  • the removal method is not particularly limited, and the current collectors 12 and 22 coated with the paint may be dried in an atmosphere of, for example, 80 ° C. to 150 ° C.
  • the electrodes on which the active material layers 14 and 24 are formed in this way may be pressed by a roll press device or the like, if necessary.
  • the linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.
  • the electrode according to this embodiment can be produced.
  • the active material according to the present embodiment is used as the positive electrode active material, an electrode having a sufficient discharge capacity can be obtained.
  • the electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18.
  • the electrolyte is not particularly limited, and, for example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used.
  • the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level.
  • a lithium salt dissolved in a non-aqueous solvent is preferably used as the electrolyte solution.
  • lithium salt examples include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN Salts such as (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used.
  • these salts may be used individually by 1 type, and may use 2 or more types together.
  • organic solvent propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.
  • the electrolyte may be a gel electrolyte obtained by adding a gelling agent in addition to liquid.
  • a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.
  • the separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.
  • the case 50 seals the laminate 30 and the electrolyte solution therein.
  • the case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside.
  • a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used as the case 50.
  • an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54.
  • the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). preferable.
  • PET polyethylene terephthalate
  • PP polypropylene
  • the leads 60 and 62 are made of a conductive material such as aluminum.
  • the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20.
  • 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.
  • the preferred embodiment of the active material of the present invention, the electrode using the same, the lithium ion secondary battery including the electrode, and the manufacturing method thereof has been described in detail. It is not limited.
  • an electrode using the active material of the present invention can be used for an electrochemical element other than a lithium ion secondary battery.
  • Electrochemical elements include secondary batteries other than lithium ion secondary batteries such as metal lithium secondary batteries (those using the active material of the present invention as the cathode and metal lithium as the anode), and electric batteries such as lithium capacitors. Examples include chemical capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.
  • Example A1 [Production of ⁇ -type LiVOPO 4 powder by hydrothermal synthesis]
  • a glass inner cylinder of a 500 mL autoclave an aqueous solution containing 200 g of distilled water (Nacalai Tesque, HPLC) and 23.08 g (0.20 mol) of H 3 PO 4 (Nacalai Tesque, purity 85%) 18.37 g (0.10 mol) of V 2 O 5 (Nacalai Tesque, purity 99%) was gradually added. Thereafter, the container was sealed and stirred at 95 ° C. for 16 hours.
  • the raw Raman spectrum data obtained for FX-35 is shown in FIG. 2, and the data after moving average processing and background removal are shown in FIG. The same sample was measured 5 times, and the average value of the ratio A was 2.00.
  • a mixture of the obtained active material and polyvinylidene fluoride (PVDF) as a binder was dispersed in N-methyl-2-pyrrolidone (NMP) as a solvent to prepare a slurry.
  • NMP N-methyl-2-pyrrolidone
  • the slurry was prepared so that the weight ratio of the active material to PVDF was 90:10 in the slurry.
  • This slurry was applied on an aluminum foil as a current collector, dried, and then rolled to obtain an electrode (positive electrode) on which an active material layer containing an active material was formed.
  • the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body).
  • EC ethylene carbonate
  • DEC diethyl carbonate
  • Example A9 The same procedure as in Example 2 was performed except that “carbon black DAB” manufactured by Denki Kagaku Kogyo was used as the first carbon powder.
  • the ratio A of the first carbon powder was 2.19.
  • Example A10 Example 1 was repeated except that “artificial graphite KS-6” manufactured by TIMCAL was used as the first carbon powder.
  • the ratio A of the first carbon powder was 1.60.
  • Example 2 was the same as Example 2 except that “Oil Furnace Black # 3400B” manufactured by Mitsubishi Chemical was used as the second carbon powder.
  • the ratio A of the second carbon powder was 13.89.
  • Example 2 was the same as Example 2 except that SuperP manufactured by MMMCarbon was used as the second carbon powder.
  • the ratio A of the second carbon powder was 11.19.
  • Example A13 The same as Example 2 except that “Carbon Black DAB” manufactured by Denki Kagaku Kogyo was used as the first carbon powder and “Oil Furnace Black # 3400B” manufactured by Mitsubishi Chemical was used as the second carbon powder.
  • Example 2 was repeated except that the mixing time was 5 minutes, 10 minutes, 30 minutes, 45 minutes, and 60 minutes.
  • Comparative Example A2 Comparative Example 1 was performed except that the mixing time was 3 minutes.
  • Example A3 The same procedure as in Example 2 was performed except that SuperP manufactured by MMMCarbon was used as the first carbon powder, and “Ketjen Black EC600JD” manufactured by Ketjen Black International was used as the second carbon powder.
  • Example A4 The same procedure as in Example 2 was performed except that “artificial graphite KS-6” manufactured by TIMCAL was used as the first carbon powder and “Ketjen Black EC600JD” manufactured by Ketjen Black International was used as the second carbon powder.
  • Example B1 [Production of ⁇ -type LiVOPO 4 powder by hydrothermal synthesis]
  • a glass inner cylinder of a 500 mL autoclave an aqueous solution containing 200 g of distilled water (Nacalai Tesque, HPLC) and 23.08 g (0.20 mol) of H 3 PO 4 (Nacalai Tesque, purity 85%) 18.37 g (0.10 mol) of V 2 O 5 (manufactured by Nacalai Tesque, purity 99%) was added and stirred for 2.5 hours, resulting in a yellow-orange suspension.
  • Example B2 to B17, Comparative Examples B1 to B4 Example A2 to A17 and Comparative Examples A1 to A4 were the same as in Example B1 except that the ⁇ -type LiVOPO 4 powder prepared as in Example B1 was used. The conditions and results are shown in Tables 1 and 2.
  • Active material positive electrode (electrode) ... 10, 12 ... Current collector, 14 ... Active material layer, 100 ... Lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】高放電レートでの十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供する。 【解決手段】LiVOPO粉と、第一炭素粉と、第二炭素粉と、を含む活物質である。第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、第二炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、0.05≦A1/A2≦0.5を満たす。

Description

活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法
 本発明は、活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法に関する。
 リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOが知られている。しかし、LiVOPOを用いたリチウムイオン二次電池においても、十分な可逆容量やレート特性が得られていない。上記の正極材料は、例えば、下記特許文献1,2及び下記非特許文献1~4に記載されている。構造式LiVOPOで表される結晶においては、リチウムイオンが可逆的に挿入脱離することが知られている。
特開2004-303527号公報 特開2003-68304号公報
J.Solid State Chem.,95,352(1991) N.Dupre et al.,Solid State Ionics, 140 pp.209-221(2001) N. Dupre et al.,J. Power Sources, 97-98,pp.532-534 (2001) J.Baker et al.,J.Electrochem. Soc.,151,A796(2004)
 しかしながら、従来の方法により得られたLiVOPO粉は、高放電レートでの放電容量が十分ではなかった。
 そこで、本発明は、高放電レートでの十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することを目的とする。
 本発明にかかる活物質は、LiVOPO粉と、第一炭素粉と、第二炭素粉と、を含み、
 前記第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、
 前記第二炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、
 0.05≦A1/A2≦0.5を満たす。
 0.1≦A1/A2≦0.2を満たす請求項1記載の活物質。
 本発明にかかる活物質の製造方法は、LiVOPO粉と、第一炭素粉と、第二炭素粉と、を混合する工程を含み、
 前記第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、
 前記第二炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、
 0.05≦A1/A2≦0.5を満たす。
 ここで、前記第一炭素粉及び前記第二炭素粉の合計重量に対する前記第一炭素粉の重量の比をM1としたときに、0.02≦M1≦0.98を満たすことがこのましい。
 また、前記LiVOPO粉、前記第一炭素粉、及び、前記第二炭素粉の合計重量に対する、前記第一炭素粉及び前記第二炭素粉の重量の比をM2としたときに、0.03≦M2≦0.2を満たすことが好ましい。
 また、前記LiVOPO粉は水熱合成により得られたものであることが好ましい。
 また、遊星ボールミルにより混合されることが好ましい。
 本発明によれば、高放電レートで十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することができる。
本実施形態に係るリチウムイオン二次電池の模式断面図である。 FX-35(炭素粉)のラマン生チャートである。 図2のチャートを移動平均し、直線法によりバックグラウンドを除去したチャートである。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
 <活物質>
 まず、本実施形態に係る活物質について説明する。この活物質は、LiVOPO粉、第一炭素粉、及び、第二炭素粉を含む混合物である。
 LiVOPO粉は、LiVOPOの構造を有すれば特に限定されないが、水熱合成により得られるものであることが好ましい。結晶構造も特に限定されず、例えば、α型、β型、これらの混合型、アモルファス型などのいずれでもよい。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。LiVOPO粉は、LiVOPOから構成されるが、これ以外にも、未反応の原料成分等を微量含んでもよい。
 LiVOPO粉の平均径も特に限定されないが、50nm~5μmが好ましい。
 平均径は、SEM写真において、予め定められたA方向における最大距離、すなわち、A方向と直交する平行外接線ではさんだ場合の線間距離(いわゆるFeret径)の平均値、例えば100個で表すことができる。
 第一炭素粉、及び、第二炭素粉は、ラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、1580cm-1付近に観察されるGバンドピーク高さの比Aが互いに異なる。
 具体的には、第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、
 第二炭素粉の、ラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、0.05≦A1/A2≦0.5を満たす。好ましくは、0.1≦A1/A2≦0.2を満たす。
 たとえば、後述の実施例の方法で比Aを測定したところ、電気化学工業製「デンカブラックFX-35」の比Aは2.00、電気化学工業製「カーボンブラックDAB」の比Aは2.19、TIMCAL製「人造黒鉛KS-6」の比Aは1.60、MMMCarbon製SuperPの比Aは11.19、三菱化学製「オイルファーネスブラック#3400B」の比Aは13.89、ケッチェンブラックインターナショナル製「ケッチェンブラックEC600JD」の比Aは14.41、であった。従って、例えば、FX-35、DAB、KS-6又はSuperPのいずれかと、3400B又はEC600JDのいずれかとの組み合わせは、上述の式を満たすことができる。
 炭素粉の粒径は特に限定されないが、導電助剤として機能しうる大きさが好ましく、具体的には、中央平均径が20~150nmであることが好ましい。
 第一炭素粉と、第二炭素粉との混合比率は特に限定されないが、第一炭素粉の比A1が、第二炭素粉の比A2よりも小さいとしたときに(A1<A2)、第一炭素粉及び第二炭素粉の合計重量量に対する第一炭素粉の重量の比M1が、0.02≦M1≦0.98を満たすことが好ましく、0.1≦M1≦0.95が好ましく、0.5≦M1≦0.8が好ましい。
 LiVOPO粉に対する、第一炭素粉及び第二炭素粉の混合比率も特に限定されないが、LiVOPO粉、第一炭素粉、及び、第二炭素粉の合計重量に対する、第一炭素粉及び第二炭素粉の重量の比をM2としたときに、0.03≦M2≦0.2が好ましく、0.05≦M2≦0.15がより好ましく、0.06≦M2≦0.12がさらに好ましい。
 特に、LiVOPO粉と、第一炭素粉及び第二炭素粉とが、遊星ボールミルにより混合されていることが好ましい。
 本実施形態にかかる活物質は、高放電レートでの放電容量が高い。このような結果が得られる理由は不明であるが、第一炭素粉と第二炭素粉がそれぞれ導電ネットワークを構成し、且つ活物質を効果的に覆っているということが考えられる。
 <活物質の製造方法>
 本実施形態に係る活物質の製造方法の一例について説明する。本実施形態に係る活物質の製造方法は、まず、LiVOPO粉を得る工程と、得られたLiVOPO粉を炭素粉と混合する工程と、を備える。
 [LiVOPO粉を得る工程]
 LiVOPO粉を得る方法は特に限定されないが、水熱合成法によることが好ましい。以下では水熱合成法について説明する。なお、固相法等の他の方法で製造した物でも実施は可能である。
 (水熱合成法)
 まず、リチウム源と、5価のバナジウム源と、リン酸源と、水と、還元剤とを含む混合物を、密閉容器内で加熱する。密閉容器を用いることにより、加熱と共に容器内が加圧状態となる。
 (混合物)
 リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
 5価のバナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
 リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
 リチウム源の濃度は特に限定されないが、5価のバナジウム原子のモル数に対するリチウム原子のモル数の割合が0.95~1.2となるように配合することが好ましい。また、リン酸源の濃度も特に限定されないが、5価のバナジウム原子のモル数に対するリン原子のモル数の割合が0.95~1.2となるように配合することが好ましい。リチウム原子及びリン原子の少なくとも一方の配合比率が0.95より少ないと、得られる活物質の放電容量は減少する傾向があり、レート特性は低下する傾向がある。リチウム原子及びリン原子の少なくとも一方の配合比率が1.2よりも多いと、得られる活物質の放電容量は減少する傾向がある。
 還元剤は、特に限定されないが、例えば、クエン酸、アスコルビン酸、酒石酸等の有機酸、ヒドラジン、過酸化水素等が挙げられる。還元剤の配合量は特に限定されないが、還元剤は、混合物全量を基準として、0.1~1mol/Lであることが好ましい。また、5価のバナジウム原子のモル数に対して還元剤のモル数の割合は10~100mol%であることが好ましい。
 混合物中における水の量は水熱合成が可能であれば特に限定されないが、混合物中の水以外の物質の割合は35質量%以下となることが好ましい。
 混合物を調整する際の、原料の投入順序は特に制限されない。例えば、上記混合物の原料をまとめて混合してもよく、また、最初に、水とPO含有化合物の混合物に対して5価のバナジウム化合物を添加し、その後、還元剤及びリチウム化合物をこの順に、又は、一緒に加えてもよい。さらに、混合物を十分に混合させ、添加成分を十分に分散させておくことが好ましく、リチウム化合物、5価のバナジウム化合物、及びPO含有化合物の少なくとも一部は、水に溶解しておらず、混合物は懸濁液であることが好ましい。
 水熱合成工程では、まず、例えば、密閉容器内で水分を含む混合物を加熱することによって内部を高温加圧にできる機能を有する反応容器(例えば、オートクレーブ等)内に、上述した混合物(リチウム化合物、5価のバナジウム化合物、PO含有化合物、水、還元剤等)を投入する。なお、反応容器内で、混合物を調整してもよい。
 次に、反応容器を密閉し加熱する。加熱温度は特に限定されないが、130~250℃とすることが好ましく、得られた活物質の放電レート特性を向上させる観点から、150~200℃とすることがより好ましい。
 この場合、反応容器内の圧力は、温度と共に変わるが、0.1~30MPaとすることが好ましい。そして、このような昇温工程により、混合物の水熱反応が進行し、上述の活物質が形成されるものと考えられる。所定の加熱温度に維持する時間も特に限定されないが、1~30時間が好ましい。
 そして、このような昇温工程により、混合物の水熱反応が進行し、LiVOPO粉が形成される。また、水熱合成工程は、バッチ式でなく連続式で行ってもよい。上述のような高温高圧は、所定の時間維持することが好ましい。維持時間は特に限定されないが、1~30時間が好ましい。なお、水熱合成工程は、バッチ式でなく連続式で行ってもよい。
 その後、反応物を冷却する。冷却速度は特に限定されず、加熱をやめて常温付近まで得冷却すればよい。
 得られたLiVOPO粉は、通常、水熱合成後の液中に固体として沈殿する。そして、水熱合成後の液を、例えば、ろ過して固体を捕集し、捕集された固体を水やアセトン等で洗浄し、その後乾燥させることにより、LiVOPO粉を効率よく得ることができる。
 水熱合成により得られたLiVOPO粉をアニーリングしてもよい。これにより、結晶化が進むことがある。例えば、400℃~650℃の温度でアニーリングすることができる。加熱温度が高くなると、活物質の粒成長が進み粒径(一次粒子径)が増大する傾向がある。一方、加熱温度が低すぎると結晶化が抑制される傾向がある。アニーリング時間は特に限定されないが、3~8時間とすることができる。
 アニーリング工程の雰囲気は特に限定されないが、還元剤の除去を行い易くするためには、大気雰囲気であることが好ましい。一方、アルゴンガス、窒素ガス等の不活性雰囲気中で行うこともできる。
 LiVOPO粉の結晶構造は、原料の混合の順序、還元剤の種類、水熱合成温度、アニーリングの有無や条件等により制御できる。
 続いて、得られたLiVOPO粉を、上述の第一炭素粉及び第二炭素粉と混合する。混合方法は特に限定されないが、遊星ボールミルで混合することが好ましい。遊星ボールミルで混合することにより、粉砕等の効果が高く、分散性がよいという効果がある。遊星ボールミルでの混合時間は特に限定されないが、1~30分間とすることができ、3~10分間とすることが好適である。なお、遊星ボールミル以外の混合手段を用いても実施は可能である。
 <電極及び当該電極を用いたリチウム二次電池>
 次に、本実施形態に係る活物質を用いた電極、及び当該電極を用いたリチウムイオン二次電池について説明する。本実施形態に係る電極は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極である。図1は、当該電極を用いた本実施形態に係るリチウムイオン二次電池100の模式断面図である。
 リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。
 積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。
 以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24という。
 まず、電極10、20について具体的に説明する。
 (正極10)
 正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
 正極活物質層14は、本実施形態に係る活物質、結合剤、必要に応じた量の導電材を含むものである。
 結合剤は、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。
 結合剤の材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
 また、上記の他に、結合剤として、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。
 更に、上記の他に、結合剤として、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2-ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン(炭素数2~12)共重合体等を用いてもよい。
 また、結合剤として電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結合剤が導電材の機能も発揮するので導電材を添加しなくてもよい。
イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、Li(CFSON、LiN(CSOリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
 正極活物質層14に含まれる結合剤の含有率は、活物質層の質量を基準として0.5~6質量%であることが好ましい。結合剤の含有率が0.5質量%未満となると、結合剤の量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、結合剤の含有率が6質量%を超えると、電気容量に寄与しない結合剤の量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特に結合剤の電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。
 導電材としては、例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
 (負極20)
 負極集電体22は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
 負極活物質は特に限定されず、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
 結合材、導電材は、それぞれ、正極と同様のものを使用できる。
 次に、本実施形態に係る電極10,20の製造方法について説明する。
 (電極10,20の製造方法)
 本実施形態に係る電極10,20の製造方法は、電極活物質層14,24の原料である塗料を、集体上に塗布する工程(以下、「塗布工程」ということがある。)と、集電体上に塗布された塗料中の溶媒を除去する工程(以下、「溶媒除去工程」ということがある。)と、を備える。
 (塗布工程)
 塗料を集電体12、22に塗布する塗布工程について説明する。塗料は、上記活物質、結合剤、及び溶媒を含む。塗料には、これらの成分の他に、例えば、活物質の導電性を高めるための導電材が含まれていてもよい。溶媒としては、溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。
 活物質、結合剤、溶媒、導電材等の塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。例えば、まず、活物質、導電材及び結合剤を混合し、得られた混合物に、N-メチル-2-ピロリドンを加えて混合し、塗料を調整する。
 上記塗料を、集電体12、22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。
 (溶媒除去工程)
 続いて、集電体12、22上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体12、22を、例えば80℃~150℃の雰囲気下で乾燥させればよい。
 そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10~50kgf/cmとすることができる。
 以上の工程を経て、本実施形態に係る電極を作製することができる。
 本実施形態に係る電極によれば、正極活物質として本実施形態に係る活物質を用いるため、十分な放電容量の電極が得られる。
 ここで、上述のように作製した電極を用いたリチウムイオン二次電池100の他の構成要素を説明する。
 電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。
 なお、本実施形態において、電解質は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。
 セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
 ケース50は、その内部に積層体30及び電解質溶液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図2に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。
 リード60,62は、アルミ等の導電材料から形成されている。
 そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。
 以上、本発明の活物質、それを用いた電極、当該電極を備えるリチウムイオン二次電池、及び、それらの製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、本発明の活物質を用いた電極は、リチウムイオン二次電池以外の電気化学素子にも用いることができる。電気化学素子としては、金属リチウム二次電池(カソードとして本発明の活物質を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例A1)
 [水熱合成によるα型LiVOPO粉の製造]
 500mLのオートクレーブのガラス内筒において、200gの蒸留水(ナカライテスク社製、HPLC用)及び23.08g(0.20mol)のHPO(ナカライテスク社製、純度85%)を含む水溶液に、18.37g(0.10mol)のV(ナカライテスク社製、純度99%)を徐々に加えた。その後、容器を密閉し、95℃で16時間攪拌した。
 つづいて、液を室温まで冷やしたところpH=1であった。つぎに、ガラス内筒を開放して、液に、8.48g(0.20mol)のLiOH・HO(ナカライテスク社製、純度99%)、及び、L(+)アスコルビン酸7.13g(0.04mol)を徐々に加えた。pHは4であり、くすんだ緑色であった。つぎに、容器を密閉して、160℃で8時間攪拌し、その後、145℃で8時間攪拌した。
 その後、液を室温まで冷やし、ガラス内筒の内容物(青色でpH=4)をバットに広げ、90℃のオーブンで蒸発乾固させ、乾固物を乳鉢で粉砕して灰水色粉体47.29gを得た。
 得られたサンプルの内3.00gをアルミナ坩堝に入れ、大気雰囲気中、室温から450℃まで45分かけて昇温し、450℃で4時間熱処理することにより、2.09gの粉体を得た。
 得られた粒子のX線回折測定を行った結果、この粒子は主にα型結晶構造のLiVOPOから構成されることが確認された。
 [α型LiVOPO粉と2種類の炭素粉との混合]
 第一炭素粉として電気化学工業製「デンカブラックFX-35」を、第二炭素粉としてケッチェンブラックインターナショナル製「ケッチェンブラックEC600JD」を用いた。ここで、重量比は、LiVOPO粉、第一炭素粉、第二炭素粉=90:5:5とした。混合は、回転数550rpmの遊星ボールミル中で3分間行い、活物質を得た。
 [炭素粉の比Aの測定]
 使用機器:JOBIN YVON社 LabRam 1B
光源:10mWのArレーザー、波長514.5nm
フィルタ:D0.6、開口1000μm、スリット200μm、サンプリング:15s×2回、回折格子;1800g/mm
スキャン範囲:700~3100cm-1
 炭素粉を粘着性銅箔テープに塗布し、スパチュラで炭素粉を押しつぶした。
 炭素粉を上述のスキャン範囲でスキャンすると、概ね、1350nm付近にDバンド、1580nm付近にGバンド、及び、2700nm付近に2Dバンドのピークが現れる。そして、生データの9点移動平均をとり、1000cm-1を始点、1800cm-1を終点とする直線法によりGバンド及びDバンドの付近のバックグラウンドを除去し、ピークの極大値に基づいてGバンドのピーク高さを得た。また、9点移動平均データから、2550cm-1を始点、2850cm-1を終点とする直線法により2Dバンド付近のバックグラウンドを除去し、ピークの極大値に基づいて2Dバンドのピーク高さを得た。
 FX-35について得られたラマンスペクトルの生データを図2に、移動平均処理及びバックグラウンド除去後のデータを図3に示す。同一サンプルについて5回測定を行い、比Aの平均値は2.00であった。
 [放電容量の測定]
 得られた活物質と、結合剤であるポリフッ化ビニリデン(PVDF)と、を混合したものを、溶媒であるN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とPVDFとの重量比が90:10となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、活物質を含む活物質層が形成された電極(正極)を得た。
 次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPFの溶液(溶媒は、EC(エチレンカーボネート):DEC(ジエチルカーボネート)の容量比が=30:70)を注入した後、真空シールし、評価用セルを作製した。
 各評価用セルを用いて、25℃で、電圧範囲4.3~2.8Vで、放電レートを1C(定電流放電を行ったときに1時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。
 (実施例A2~8)
 重量比を、LiVOPO粉、第一炭素粉、第二炭素粉=90:6:4、90:7:3、90:8:2、90:9.5:0.5、90:4:6、90:3:7、90:1:9とする以外は実施例1と同様にした。
 (実施例A9)
 第一炭素粉として電気化学工業製「カーボンブラックDAB」を使用する以外は、実施例2と同様にした。第一炭素粉の比Aは2.19であった。
 (実施例A10)
 第一炭素粉としてTIMCAL製「人造黒鉛KS-6」を使用する以外は実施例2と同様にした。第一炭素粉の比Aは1.60であった。
 (実施例A11)
 第二炭素粉として三菱化学製「オイルファーネスブラック#3400B」を使用する以外は、実施例2と同様とした。第二炭素粉の比Aは13.89であった。
 (実施例A12)
 第二炭素粉としてMMMCarbon製SuperPを使用する以外は、実施例2と同様とした。第二炭素粉の比Aは11.19であった。
 (実施例A13)
 第一炭素粉として電気化学工業製「カーボンブラックDAB」を使用し、第二炭素粉として三菱化学製「オイルファーネスブラック#3400B」を使用する以外は、実施例2と同様とした。
 (実施例A14~17)
 混合時間を5分、10分、30分、45分、60分とする以外は、実施例2と同様とした。
 (比較例A1)
 第二炭素粉を使用せず、混合時の重量比を、LiVOPO粉、第一炭素粉=90:10とし、混合時間を60分とする以外は、実施例9と同様とした。
 (比較例A2)
 混合時間を3分とする以外は比較例1と同様にした。
 (比較例A3)
 第一炭素粉としてMMMCarbon製SuperPを使用し、第二炭素粉としてケッチェンブラックインターナショナル製「ケッチェンブラックEC600JD」を使用する以外は、実施例2と同様とした。
 (比較例A4)
 第一炭素粉としてTIMCAL製「人造黒鉛KS-6」を使用し、第二炭素粉としてケッチェンブラックインターナショナル製「ケッチェンブラックEC600JD」を使用する以外は、実施例2と同様とした。
 (実施例B1)
 [水熱合成によるβ型LiVOPO粉の製造]
 500mLのオートクレーブのガラス内筒において、200gの蒸留水(ナカライテスク社製、HPLC用)及び23.08g(0.20mol)のHPO(ナカライテスク社製、純度85%)を含む水溶液に、18.37g(0.10mol)のV(ナカライテスク社製、純度99%)を加え、2.5時間攪拌したところ黄橙色の懸濁液となった。その後、攪拌しながらヒドラジン一水和物(NHNH・HO)を2.55g(0.05mol)滴下したところ、くすんだ緑色に変化した。その後、1時間攪拌を続けてると、からし色の流動性のあるペーストとなった。続いて、8.48g(0.20mol)のLiOH・HO(ナカライテスク社製、純度99%)を10分かけて徐々に加えた。pHは7~8となった。次に、容器を密閉し、160℃で16時間攪拌した。
 その後、液を室温まで冷やし、ガラス内筒の内容物(水色ペーストでpH=7)をバットに広げ、90℃のオーブンで蒸発乾固させ、乾固物をコーヒーミルで粉砕して水色粉体38.27gを得た。
 得られたサンプルの内3.00gをアルミナ坩堝に入れ、大気雰囲気中、室温から600
℃まで45分かけて昇温し、600℃で4時間熱処理することにより、2.567gの粉体
を得た。
 得られた粒子のX線回折測定を行った結果、この粒子は主にβ型結晶構造のLiVOPOから構成されることが確認された。
 このβ型結晶構造のLiVOPO粉を用いる以外は実施例A1と同様にした。
 (実施例B2~B17、比較例B1~B4)
 実施例B1のように作成したβ型LiVOPO粉を用いる以外は、実施例A2~A17及び、比較例A1~A4と同様とした。
 条件及び結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 30…活物質、正極(電極)…10、12…集電体、14…活物質層、100…リチウムイオン二次電池。

Claims (14)

  1.  LiVOPO粉と、第一炭素粉と、第二炭素粉と、を含み、
     前記第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、
     前記第二炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、
     0.05≦A1/A2≦0.5を満たす活物質。
  2.  0.1≦A1/A2≦0.2を満たす請求項1記載の活物質。
  3.  前記第一炭素粉及び前記第二炭素粉の合計重量に対する前記第一炭素粉の重量の比をM1としたときに、0.02≦M1≦0.98を満たす請求項1又は2記載の活物質。
  4.  前記LiVOPO粉、前記第一炭素粉、及び、前記第二炭素粉の合計重量に対する、前記第一炭素粉及び前記第二炭素粉の重量の比をM2としたときに、0.03≦M2≦0.2を満たす、請求項1~3のいずれか一項に記載の活物質。
  5.  前記LiVOPO粉は水熱合成により得られたものである請求項1~4のいずれか一項記載の活物質。
  6.  遊星ボールミルにより混合された請求項1~4のいずれか一項記載の活物質。
  7.  請求項1~6のいずれか一項記載の活物質を備える電極。
  8.  請求項7記載の電極を備えるリチウムイオン二次電池。
  9.  LiVOPO粉と、第一炭素粉と、第二炭素粉と、を混合する工程を含み、
     前記第一炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第一炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA1とし、
     前記第二炭素粉のラマンスペクトルにおける2700cm-1付近に観察される2Dバンドピーク高さに対する、前記第二炭素粉のラマンスペクトルにおける1580cm-1付近に観察されるGバンドピーク高さの比をA2とした時に、
     0.05≦A1/A2≦0.5を満たす活物質の製造方法。
  10.  0.1≦A1/A2≦0.2を満たす請求項9記載の方法。
  11.  前記第一炭素粉及び前記第二炭素粉の合計重量量に対する前記第一炭素粉の重量の比をM1とし、かつ、A1<A2としたときに、0.02≦M1≦0.98を満たす請求項9又は10記載の方法。
  12.  前記LiVOPO粉、前記第一炭素粉、及び、前記第二炭素粉の合計重量に対する、前記第一炭素粉及び前記第二炭素粉の重量の比をM2としたときに、0.03≦M2≦0.2を満たす、請求項9~11のいずれか一項に記載の方法。
  13.  前記LiVOPO粉は水熱合成により得られたものである請求項9~12のいずれか一項記載の方法。
  14.  前記混合を遊星ボールミルで行う請求項9~13のいずれか一項記載の方法。
PCT/JP2012/058506 2011-03-31 2012-03-30 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法 WO2012133729A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280016817.7A CN103460458B (zh) 2011-03-31 2012-03-30 活性物质、电极、锂离子二次电池、以及活性物质的制造方法
US14/005,385 US9564641B2 (en) 2011-03-31 2012-03-30 Active material, electrode, lithium ion secondary battery, and method for manufacturing active material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080654 2011-03-31
JP2011080654A JP5699754B2 (ja) 2011-03-31 2011-03-31 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法

Publications (1)

Publication Number Publication Date
WO2012133729A1 true WO2012133729A1 (ja) 2012-10-04

Family

ID=46931427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058506 WO2012133729A1 (ja) 2011-03-31 2012-03-30 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法

Country Status (4)

Country Link
US (1) US9564641B2 (ja)
JP (1) JP5699754B2 (ja)
CN (1) CN103460458B (ja)
WO (1) WO2012133729A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203695A1 (ja) * 2015-06-15 2016-12-22 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6093533A (ja) * 1983-10-27 1985-05-25 Matsushita Electric Ind Co Ltd 基準電圧回路
JP5617744B2 (ja) * 2011-03-31 2014-11-05 Tdk株式会社 活物質粒子、活物質、電極及びリチウムイオン二次電池
JP6197541B2 (ja) * 2013-09-30 2017-09-20 Tdk株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP5988269B2 (ja) * 2013-09-30 2016-09-07 株式会社 東北テクノアーチ バナジウム固体塩電池
CN103682339B (zh) * 2013-12-24 2016-08-24 中南大学 一种磷酸氧钒锂正极材料的制备方法
JP6349825B2 (ja) * 2014-03-20 2018-07-04 Tdk株式会社 正極及びそれを用いたリチウムイオン二次電池
US10243215B2 (en) * 2015-03-27 2019-03-26 Tdk Corporation Positive electrode active material including lithium transition metal particles with graphene coating layer positive electrode and lithium ion secondary battery including the same
JP2016189321A (ja) * 2015-03-27 2016-11-04 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
JP6176761B2 (ja) * 2016-08-02 2017-08-09 株式会社 東北テクノアーチ バナジウム固体塩電池
CN106948200B (zh) * 2017-04-17 2023-07-04 济南大学 一种基于刮、磨、搅的无注水组合式制浆设备
CN107845783B (zh) * 2017-09-15 2020-07-14 深圳市德方纳米科技股份有限公司 纳米磷酸氧钒锂正极材料及其制备方法、锂离子电池
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries
JP6885487B1 (ja) * 2020-03-30 2021-06-16 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317583A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2010086777A (ja) * 2008-09-30 2010-04-15 Tdk Corp 活物質及び活物質の製造方法
JP2010218830A (ja) * 2009-03-16 2010-09-30 Tdk Corp 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
JP2011034675A (ja) * 2009-07-29 2011-02-17 Sony Corp 二次電池用正極および二次電池
JP2011054559A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd 正極用粉末および正極合剤

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002098B2 (ja) 2001-08-30 2012-08-15 祐作 滝田 非水電解質二次電池用電極活物質、それを含む電極及び電池
US20040016632A1 (en) * 2002-07-26 2004-01-29 Jeremy Barker Methods of making transition metal compounds useful as cathode active materials using electromagnetic radiation
JP4314859B2 (ja) 2003-03-31 2009-08-19 祐作 滝田 非水電解質二次電池用電極活物質、非水電解質二次電池用電極及び非水電解質二次電池
JP5167703B2 (ja) * 2007-06-20 2013-03-21 日産自動車株式会社 電池用電極
WO2009127901A1 (en) * 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
JP4834030B2 (ja) * 2008-04-22 2011-12-07 第一工業製薬株式会社 リチウム二次電池用正極及びこれを用いたリチウム二次電池
US8821763B2 (en) * 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material
US20100233545A1 (en) * 2009-03-16 2010-09-16 Tdk Corporation Active material, method of manufacturing active material, electrode, and lithium-ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007317583A (ja) * 2006-05-29 2007-12-06 Hitachi Vehicle Energy Ltd リチウム二次電池
JP2010086777A (ja) * 2008-09-30 2010-04-15 Tdk Corp 活物質及び活物質の製造方法
JP2010218830A (ja) * 2009-03-16 2010-09-30 Tdk Corp 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
JP2011034675A (ja) * 2009-07-29 2011-02-17 Sony Corp 二次電池用正極および二次電池
JP2011054559A (ja) * 2009-08-04 2011-03-17 Sumitomo Chemical Co Ltd 正極用粉末および正極合剤

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016203695A1 (ja) * 2015-06-15 2016-12-22 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
JP2017004895A (ja) * 2015-06-15 2017-01-05 信越化学工業株式会社 非水電解質二次電池用負極活物質、非水電解質二次電池用負極、及び非水電解質二次電池、並びに非水電解質二次電池用負極材の製造方法
US20180226648A1 (en) * 2015-06-15 2018-08-09 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP5699754B2 (ja) 2015-04-15
JP2012216409A (ja) 2012-11-08
US20140001413A1 (en) 2014-01-02
CN103460458B (zh) 2016-04-13
CN103460458A (zh) 2013-12-18
US9564641B2 (en) 2017-02-07

Similar Documents

Publication Publication Date Title
JP5699754B2 (ja) 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法
JP5223281B2 (ja) リチウムイオン二次電池又はリチウム二次電池の正極用複合粒子、及びリチウムイオン二次電池又はリチウム二次電池
JP5396942B2 (ja) 活物質の製造方法、活物質、当該活物質を用いた電極、及び当該電極を備えたリチウムイオン二次電池
US8734987B2 (en) Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
WO2012008423A1 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP2015092462A (ja) 正極及びそれを用いたリチウムイオン二次電池
JP5347605B2 (ja) 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
JP5347604B2 (ja) α型結晶構造のLiVOPO4を主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法
WO2013150877A1 (ja) 非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池
JP5375446B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5609299B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP2017188424A (ja) リチウムイオン二次電池用正極活物質、及びそれを用いたリチウムイオン二次電池用正極並びにリチウムイオン二次電池
JP5609300B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
WO2014112329A1 (ja) リチウムイオン二次電池用正極及びリチウムイオン二次電池
WO2018021480A1 (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
JP5617744B2 (ja) 活物質粒子、活物質、電極及びリチウムイオン二次電池
JP5888046B2 (ja) 正極活物質、正極及びリチウムイオン二次電池
JP2012212634A (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP6197540B2 (ja) リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2019175658A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池。
JP2017152363A (ja) リチウムイオン二次電池用正極活物質、これを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
JP2017152119A (ja) 正極活物質、及びそれを用いた正極ならびにリチウムイオン二次電池
JP6349825B2 (ja) 正極及びそれを用いたリチウムイオン二次電池
JP2018156823A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池
JP2013232288A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765054

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005385

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765054

Country of ref document: EP

Kind code of ref document: A1