WO2013150877A1 - 非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池 - Google Patents

非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池 Download PDF

Info

Publication number
WO2013150877A1
WO2013150877A1 PCT/JP2013/057416 JP2013057416W WO2013150877A1 WO 2013150877 A1 WO2013150877 A1 WO 2013150877A1 JP 2013057416 W JP2013057416 W JP 2013057416W WO 2013150877 A1 WO2013150877 A1 WO 2013150877A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
active material
electrode active
aqueous secondary
secondary batteries
Prior art date
Application number
PCT/JP2013/057416
Other languages
English (en)
French (fr)
Inventor
寛 北川
豊隆 湯浅
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201380023648.4A priority Critical patent/CN104272507A/zh
Priority to EP13772289.8A priority patent/EP2835849A4/en
Priority to JP2014509096A priority patent/JP5915732B2/ja
Priority to US14/390,273 priority patent/US20150140431A1/en
Priority to KR1020147027730A priority patent/KR20140148408A/ko
Publication of WO2013150877A1 publication Critical patent/WO2013150877A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • a x MD y O z (where A is an alkali metal or alkaline earth metal, M is a metal element containing at least one transition metal element, and D is a covalent bond with oxygen O Is a typical element that forms an anion, and 0 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, 3 ⁇ z ⁇ 7) or the chemical formula LiMPO 4 (where M is Fe, Mn, Co, and Ni)
  • the present invention relates to a method for producing a positive electrode active material for a non-aqueous secondary battery represented by (1), a positive electrode active material for a non-aqueous secondary battery, and a non-aqueous secondary battery.
  • lithium cobaltate As a positive electrode active material for a lithium secondary battery, lithium cobaltate has conventionally been the mainstream, and a lithium secondary battery using this has been widely used.
  • cobalt which is a raw material of lithium cobaltate, has a small yield and is expensive, and alternative materials are being studied.
  • Lithium manganate having a spinel structure which is listed as an alternative material, has a problem that the discharge capacity is not sufficient and manganese is eluted at high temperature. Further, lithium nickel oxide, which can be expected to have a high capacity, has a problem in thermal stability at high temperature.
  • olivine type positive electrode active materials (hereinafter referred to as “olivine”) are expected as positive electrode active materials.
  • the olivine is represented by a chemical formula LiMPO 4 (M is a transition metal), has a strong PO bond in the structure, and has high thermal stability and excellent safety because oxygen is not released even at high temperature.
  • olivine has disadvantages such as poor electron conductivity and ion conductivity. Therefore, there is a problem that the discharge capacity can not be sufficiently obtained. This is because electrons are localized due to the existence of strong PO bond in olivine.
  • olivine not only olivine but also polyanions including olivine (PO 4 3- , BO 3 3- , SiO 4 4- etc.
  • Active materials LiMPO 4 , Li 2 MSiO 4 , LiMBO 3 etc.
  • polyanion active material having an anion formed by binding oxygen, M being a transition metal
  • the polyanion-based active material has poor conductivity due to the localization of electrons, and has the same problem as the above-described olivine.
  • Patent Document 1 In order to improve the electron conductivity, there has been proposed a technique in which the surface of olivine is coated with carbon (carbon coating) to solve such problems (for example, Patent Document 1). Further, in order to improve electron conductivity and ion conductivity, a technique has been proposed in which the particle size of olivine is reduced to increase the reaction area and shorten the diffusion distance (for example, Non-Patent Document 1).
  • a method of carbon-coating olivine there is a method of mixing it with acetylene black or graphite, adhering it with a ball mill or the like, or mixing it with a sugar, an organic acid or an organic substance such as pitch and baking it.
  • a method of reducing the particle size of olivine there are a reduction in the firing temperature and a growth suppression by mixing with a carbon source.
  • simply reducing the particle size of olivine and carbon coating does not provide a high capacity. This indicates that grain size reduction and carbon coating alone are not sufficient to improve the properties of olivine.
  • a method for producing olivine there are known a method of synthesizing fine particles of LiFePO 4 and a technique for reducing the particle size to obtain particles whose conductivity is improved by carbon coating.
  • synthesized method is using an organic acid complex method.
  • the organic acid complex method is a synthesis method in which a raw material is dissolved using the chelating effect of an organic acid, and the solution is dried to burn the raw material powder in which the raw materials are mixed uniformly. By homogenizing the raw material, it is considered to be advantageous for improving the crystallinity.
  • the raw material powder is simply fired, the fired body has a coarse network structure.
  • the metal element which comprises olivine is bivalent as it exists in chemical formula.
  • the metal element is oxidized in the manufacturing process, it is not an olivine different phase (for example, Fe 2 O 3 , LiFeP 2 O 7 , Li 3 Fe 2 (PO 4 ) 3 , Mn 2 O 3 , MnO 2 , Mn 2 P 2 O 7 ) is formed.
  • Fe tends to be trivalent, and an inert gas or reducing gas which is an atmosphere in which Fe is not oxidized has been required in the manufacturing process.
  • the particle size reduction and the carbon coating alone are not sufficient to improve the properties of the olivine-type compound.
  • high performance can be obtained as long as particles having improved crystallinity can be obtained while performing particle size reduction and carbon coating.
  • methods for sufficiently improving the crystallinity while performing the particle size reduction and the carbon coating are not disclosed in the above-mentioned prior art documents.
  • the present invention has been made in view of the above circumstances, and is a non-aqueous secondary battery capable of providing a non-aqueous secondary battery having high capacity and high rate characteristics using a polyanion-based active material containing olivine. It is an object of the present invention to provide a positive electrode active material and a method for producing the same. Another object of the present invention is to provide a positive electrode for a non-aqueous secondary battery capable of providing a non-aqueous secondary battery with high capacity and high rate characteristics, and a non-aqueous secondary battery with high capacity and high rate characteristics.
  • a x MD y O z (wherein A is an alkali metal or alkaline earth metal, M is a metal element containing at least one transition metal element, and D is oxygen O
  • Mixing the raw materials of the positive electrode active material Pre-sintering the mixed raw materials at a temperature of 400 ° C.
  • the present invention provides a positive electrode active material for a non-aqueous secondary battery manufactured using the method for manufacturing a positive electrode active material for a non-aqueous secondary battery described above.
  • the present invention provides a positive electrode for a non-aqueous secondary battery using the above-described positive electrode active material for a non-aqueous secondary battery.
  • the present invention also provides a non-aqueous secondary battery using the above-described positive electrode for non-aqueous secondary battery.
  • a positive electrode active material for a non-aqueous secondary battery capable of providing a non-aqueous secondary battery having high capacity, high energy density and high rate characteristics using a polyanion-based positive electrode active material and a method for producing the same can be provided. Furthermore, a positive electrode for a non-aqueous secondary battery capable of providing a high capacity, high energy density and high rate characteristics non-aqueous secondary battery using a polyanion type positive electrode active material and high capacity, high energy density and high rate It is possible to provide a non-aqueous secondary battery of characteristics.
  • FIG. 2 is a flow diagram illustrating the method of the present invention.
  • 6 is a scanning electron micrograph of the positive electrode active material powder synthesized in Example 1.
  • the present invention can add the following improvement or change in the manufacturing method of the quality of cathode active material for nonaqueous secondary batteries mentioned above.
  • the A x MD y O z is LiMPO 4 (M is a metal element containing at least one of Fe, Mn, Co, and Ni).
  • the positive electrode active material contains divalent Fe.
  • the temperature in the pre-baking step is equal to or higher than the crystallization temperature of the target positive electrode active material, and does not exceed the crystallization temperature by 50 ° C. or more.
  • the temperature in the pre-baking step is in the range of 400 ° C. or more and 600 ° C. or less.
  • the temperature in the pre-baking step is in the range of 400 ° C. or more and 550 ° C. or less.
  • the positive electrode active material is a member selected from the group consisting of LiMnPO 4, LiFePO 4, LiFe 0.2 Mn 0.8 PO 4 and LiFe 0.2 Mn 0.77 Mg 0.03 PO 4 .
  • the positive electrode active material targeted by the present invention has a chemical formula A x MD y O z (A is an alkali metal or alkaline earth metal, M is a metal element containing at least one transition metal element, D Is a typical element that forms anions by covalent bonding with oxygen O, and 0 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, 3 ⁇ z ⁇ 7), in particular, the chemical formula LiMPO 4 (M is Fe, Or a metal element containing at least one of Mn, Co, and Ni).
  • LiMPO 4 of the present invention also includes a composition deviated from the stoichiometric ratio. Specifically, in the case of Li x M (PO 4 ) y , those containing 1.0 ⁇ x ⁇ 1.15 and 1.0 ⁇ y ⁇ 1.15 are included.
  • the present inventors clarified the physical properties of olivine which can not be improved by the particle size reduction and the carbon coating, and examined methods for improving the physical properties.
  • improvement in the crystallinity of the positive electrode active material is important in improving the characteristics, that is, the capacity of the low crystal positive electrode active material is reduced.
  • the main cause of lowering the crystallinity is impurities. If impurities are present, the ion diffusion path in the positive electrode active material may be disrupted to prevent diffusion.
  • grain boundaries may be generated in the grains, and regions in which both ends of the diffusion path are interrupted by grain boundaries may be inactivated.
  • a one-dimensional diffusion active material such as olivine
  • the presence of a slight impurity is considered to have a large effect because it causes inactivation of Li ions.
  • impurity is mixed in the crystal.
  • anions in metal salts used as raw materials acetate ions in acetates, oxalate ions in oxalate salts, etc.
  • impurities contained in the raw materials and other additives added for carbon source and particle size control It can be mentioned.
  • the carbon decomposition temperature is preferably 400 ° C. or higher.
  • the crystallization temperature is defined as the temperature of the peak appearing on the highest temperature side among the exothermic peaks resulting from the crystallization that appears when thermal analysis is performed by TG-DTA, DSC or the like in the firing process.
  • the pre-baking temperature is a temperature not lower than the crystallization temperature and not too high, particularly a temperature not exceeding 50 ° C. above the crystallization temperature. If the crystallization temperature is greatly exceeded, crystals will grow and the grain size will increase. If the temperature is lower than the crystallization temperature, a crystalline phase is not formed in the pre-baking, and there is a risk that grain growth may occur when subjected to a high-temperature main baking thereafter. When pre-baking is performed immediately above the crystallization temperature, microcrystals are formed, and at the time of main baking, since the microcrystals become nuclei, coarse particles are not generated.
  • the two-step baking consisting of a pre-baking step and a main baking step is performed.
  • the pre-baking temperature be higher than or equal to the crystallization temperature and not significantly exceed the crystallization temperature, as well as in an oxidizing atmosphere.
  • the second main baking step is performed at a higher temperature than the preliminary baking step, and is performed in an inert atmosphere or a reducing atmosphere.
  • the crystallinity of the active material can be increased by baking at a higher temperature than the pre-baking step.
  • the present synthesis method is applicable not only to olivine but also to a positive electrode active material A x MD y O z having other polyanions such as silicates and borates.
  • A is an alkali metal or alkaline earth metal
  • M is a metal element containing at least one transition metal element
  • D is a typical element which forms a covalent bond with oxygen
  • O is oxygen. 0 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, 3 ⁇ z ⁇ 7.
  • D and O combine to form an anion.
  • the positive electrode active material having these polyanions, like olivine, is characterized by low electron conductivity, and for this reason, particle size reduction and carbon coating are essential. The particle size reduction and the carbon coating may cause a decrease in crystallinity as described above. However, if the present synthesis method is applied, the particle size reduction and carbon coating of the polyanion-based active material become possible without reducing the crystallinity.
  • a polyanion-based active material such as olivine can be made to have a small particle size, high conductivity, and high crystallinity, and a high capacity and high rate characteristic positive electrode for nonaqueous secondary batteries and a nonaqueous secondary battery A battery can be provided.
  • the synthesis method of the present invention has two or more firing steps in the synthesis of a positive electrode active material such as olivine, and the final firing step is performed in an inert atmosphere or a reducing atmosphere, and at least once in the previous firing steps. It is carried out in an oxidizing atmosphere, and as shown in FIG. 1A, a positive electrode active material (excluding carbon or an organic substance) is mixed, and this is calcined in an oxidizing atmosphere at 440 ° C. for 10 hours. Next, 7% by mass of sucrose as a carbon source is added to the active material, the mixture is kneaded, ground in a ball mill, and this is sintered for 10 h at 700 ° C. in argon gas. The obtained fired body particles are coated with a carbon film.
  • a positive electrode active material such as olivine
  • the positive electrode active material and sucrose as a carbon source are mixed, and temporary firing is carried out at 440 ° C. for 10 h in an inert gas atmosphere such as argon gas.
  • the resultant is ball milled and subjected to main firing at 700 ° C. for 10 h in argon gas.
  • the particles of the positive electrode active material obtained by the above method are mostly carbon in the particles, as shown in FIG. It is not present, and the crystallinity is advanced. Then, by mixing sucrose and baking it, a positive electrode active material as shown in FIG. 2A is obtained.
  • FIG. 5A shows voltage-capacitance characteristics by charging and discharging a lithium secondary battery using a positive electrode active material according to a lithium secondary battery according to the present invention method (Example 5 described later) and a conventional method (Comparative Example 3 described later). The comparison is shown. According to FIG. 5A, it can be seen that the lithium secondary battery according to the present invention has higher voltage and capacity as compared to the conventional lithium secondary battery.
  • FIG. 5B shows a lithium secondary battery using a positive electrode active material (Example 5 described later) according to the method of the present invention and a lithium secondary battery using a positive electrode active material (Comparative Example 3 described later) according to the conventional method.
  • the specific capacity-current values are compared and shown, it can be seen that the lithium secondary battery according to the method of the present invention exhibits higher specific capacity than the lithium secondary battery according to the conventional method.
  • the specific capacity is a ratio to a discharge capacity of 0.1 mA.
  • the crystallinity of the positive electrode active material according to the present invention method and the crystallinity of the positive electrode active material according to the conventional method are shown by the XRD pattern, but the positive electrode active material according to the present invention method is according to the conventional method It shows that it has higher crystallinity (smaller integration width) than the positive electrode active material.
  • (020) indicates the face index of the XRD peak.
  • the particle diameter of the positive electrode active material according to the conventional method and the particle diameter of the positive electrode active material according to the present invention are also about 50 nm, whereas the integral width in the case of the conventional method is 0.42, It is 0.31.
  • the difference in integration width is considered to be due to the fact that the crystallinity in the conventional method does not increase due to carbon inside the crystal grains.
  • ⁇ Mixing of raw materials> By pre-baking at a temperature higher than the crystallization temperature and not significantly exceeding the crystallization temperature, fine crystals can be precipitated. At this time, since the size of the microcrystals depends on the particle size of the raw material, it is desirable that the particle size of the raw material of the positive electrode active material be as small as possible in order to reduce the microcrystals. In addition, when the raw materials are not mixed uniformly, it is preferable that the raw materials be mixed more uniformly because crystals precipitated at the time of calcination are coarsened or a different phase is generated.
  • a method of mechanically pulverizing and mixing the raw materials using a bead mill or a method of mixing by drying the raw materials in a solution state using an acid, an alkali, a chelating agent or the like is mentioned.
  • Be those in solution state are advantageous for the precipitation of microcrystals because the raw materials are mixed at the molecular level.
  • the salt which does not remain after baking.
  • the metal source of the raw material at least one of acetate, oxalate, citrate, carbonate, tartrate and the like can be used.
  • M transition metal
  • M includes at least one of transition elements such as Fe, Mn, Co, and Ni.
  • M can contain typical elements such as Mg, Al, Zn, Sn, and Ca within a range not exceeding 10% each. If it exceeds 10%, the proportion of elements contributing to charge and discharge due to the oxidation-reduction reaction is reduced, and the capacity is undesirably reduced.
  • lithium source lithium acetate, lithium carbonate, lithium hydroxide or the like is used.
  • phosphate ion source lithium dihydrogen phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate or the like is used.
  • the pre-baking temperature is preferably equal to or higher than the crystallization temperature in order to precipitate crystals. If the temperature is lower than the crystallization temperature, crystal growth does not occur, and the pre-sintered body becomes amorphous, and there is a possibility that the particles may become coarse because there is no seed crystal even if it is ground and fired. In addition, although the particle diameter after synthesis can be controlled by raising the pre-sintering temperature, if the pre-sintering temperature is too high, coarsening of the particles is caused.
  • the crystallization temperature is at most about 450 ° C. for olivine, and it is desirable that the crystallization temperature is not exceeded 50 ° C. or more.
  • the range of the pre-sintering temperature differs depending on the active material because the crystallization temperature and the growth rate differ depending on the active material.
  • the crystallization temperature is around 420 ° C. (Source: Robert Dominko, Marjan Bele, Jean-Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik 'Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4 Since it is' Chemistry of Materials 19 (2007), pp. 2960-2969.), It is necessary to bake at 420 ° C. or higher. If the temperature is 600 ° C. or less, particle growth can be suppressed. Temperatures higher than 600 ° C.
  • the desirable range of the pre-baking temperature is 440 ° C. or more and 500 ° C. or less for olivine. If the temperature is 440 ° C. or higher, the entire temperature is higher than the crystallization temperature even if there is some temperature unevenness in the sample. If the temperature is 500 ° C. or less, the particle diameter will be 100 nm or less, and by calcining this pre-sintered body, fine particles of several tens of nm can be synthesized by firing.
  • olivine LiMPO 4
  • the metal M is in a divalent state.
  • baking in an oxidizing atmosphere is considered to be unsuitable, and baking in a reducing atmosphere is generally performed.
  • the present inventors have found that it is possible to perform calcination temporarily in an oxidizing atmosphere and reduce at the time of main calcination, and at the same time, the effect of improving the crystallinity can be obtained.
  • the organic matter and added carbon disappear by combustion, but if the pre-baking temperature is appropriate, the space generated after the disappearance suppresses the growth of microcrystals. Furthermore, the disappearance of carbon can prevent carbon from being mixed inside the crystal. Therefore, in the oxidizing atmosphere, the crystallinity can be improved more than in the case of firing in an inert atmosphere or a reducing atmosphere.
  • the calcination temperature be 400 ° C. or higher regardless of the above-mentioned crystallization temperature.
  • the fine crystals thus produced by performing the pre-baking are coated with carbon according to the following procedure, and the main-baking is performed. Thereby, the crystallinity of the carbon-coated fine particles can be improved.
  • the network structure is a thin structure of 500 nm or less, the network structure is easily broken by applying mechanical pressure, and the microcrystals Can be miniaturized. It is desirable to apply mechanical pressure using a ball mill or bead mill as a method of coating and refining efficiently.
  • main firing heating is performed at a higher temperature than the calcination step to carbonize the organic substance to improve the conductivity, and to improve the crystallinity or to crystallize the active material particles.
  • the main firing is performed in an inert atmosphere or a reducing atmosphere.
  • the main-baking temperature is preferably 600 ° C. or more.
  • a desirable main firing temperature range is 600 ° C. or more and 850 ° C. or less in olivine.
  • carbon source can be carbonized and conductivity can be provided.
  • the temperature is 850 ° C. or less, the active material does not decompose. More desirably, the temperature is 700 ° C. or more and 750 ° C. or less. In this temperature range, the conductivity of carbon can be sufficiently improved, and the formation of impurities due to the reaction of carbon and olivine can be suppressed.
  • the crystallinity of particles having a small particle diameter and carbon coating can be further improved.
  • FIG. 3 shows an example of a lithium secondary battery to which the positive electrode for a lithium secondary battery according to the present invention is applied.
  • FIG. 3 illustrates a cylindrical lithium secondary battery.
  • the present lithium secondary battery comprises a positive electrode (a positive electrode for a lithium secondary battery according to the present invention) 10, a negative electrode 6, a separator 7, a positive electrode lead 3, a negative electrode lead 9, a battery lid 1, a gasket 2, insulating plates 4 and 8, and a battery
  • the can 5 is provided.
  • the positive electrode 10 and the negative electrode 6 are wound with a separator 7 interposed therebetween, and the separator 7 is impregnated with an electrolyte solution in which an electrolyte is dissolved in a solvent.
  • the positive electrode for a lithium secondary battery according to the present invention comprises a positive electrode active material, a binder, and a current collector, and a positive electrode mixture containing the positive electrode active material and the binder is on the current collector. Is formed. Moreover, in order to supplement electron conductivity, a conductive support material can also be added to positive electrode compound material as needed.
  • A) Positive Electrode Active Material The positive electrode active material according to the present invention uses an active material synthesized using the above-mentioned production method (synthesis method).
  • Binder is preferably a general binder such as PVDF (polyvinylidene fluoride) or polyacrylonitrile.
  • the type of binder is not limited as long as it has sufficient binding properties.
  • a carbon-based conductive additive such as acetylene black or graphite powder can be used. Since the olivine Mn-based positive electrode active material has a high specific surface area, it is desirable that the conductive support have a large specific surface area to form a conductive network, and specifically, acetylene black or the like is preferable. In some cases, the positive electrode active material is coated with carbon, but in this case, coated carbon can also be used as a conductive aid.
  • a conductive support such as aluminum foil can be used as the current collector.
  • an olivine Mn-based positive electrode active material is used as a positive electrode active material, and an acrylonitrile copolymer is used as a binder.
  • an acrylonitrile copolymer is used as a binder.
  • the negative electrode of the lithium secondary battery according to the present invention is composed of a negative electrode active material, a conductive additive, a binder, and a current collector.
  • the negative electrode active material may be any material capable of reversibly inserting and releasing Li by charge and discharge, for example, carbon materials, metal oxides, metal sulfides, lithium metal, and alloys of lithium metal and other metals. It can be used. As a carbon material, graphite, amorphous carbon, coke, pyrolytic carbon, etc. can be used.
  • conductive additive conventionally known materials can be optionally used, and carbon-based conductive additives such as acetylene black and graphite powder can be used.
  • binder conventionally known ones can be optionally used, and PVDF (polyvinylidene fluoride), SBR (styrene butadiene rubber), NBR (nitrile rubber) or the like can be used.
  • a conductive support such as copper foil can be used.
  • Separator for the separator, conventionally known materials can be used without particular limitation.
  • Polyolefin-based porous membranes such as polypropylene and polyethylene, glass fiber sheets, and the like can be used.
  • lithium salts such as LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 F) 2 can be used alone or in combination.
  • the solvent for dissolving the lithium salt include linear carbonates, cyclic carbonates, cyclic esters and nitrile compounds. Specifically, ethylene carbonate, propylene carbonate, diethyl carbonate, dimethoxyethane, ⁇ -butyrolactone, n-methyl pyrrolidine, acetonitrile and the like.
  • polymer gel electrolytes and solid electrolytes can also be used as electrolytes.
  • the above-described positive electrode, negative electrode, separator, and electrolyte can be used to form various types of non-aqueous secondary batteries such as cylindrical batteries, square batteries, and laminate batteries.
  • an olivine type positive electrode active material is synthesized. Then, it describes about the measurement result of the characteristic (a capacity
  • Example 1 ⁇ Synthesis of positive electrode active material> As in Example 1 to prepare all the metal ions Mn and the cathode active material (LiMnPO 4).
  • the weighed raw materials were mixed using a wet ball mill. After mixing, it was dried to obtain a raw material mixed powder. The raw material mixed powder was temporarily fired using a box-type electric furnace. The calcination atmosphere was air, the calcination temperature was 440 ° C., and the calcination time was 10 hours.
  • Sucrose was added as a carbon source and a particle size control agent to this calcined body at a ratio of 7% by weight. This was ground and mixed for 2 hours using a wet ball mill. Next, main firing was performed using a tubular furnace capable of controlling the atmosphere. The firing atmosphere was Ar atmosphere, the firing temperature was 700 ° C., and the firing time was 10 hours.
  • LiMnPO 4 LiMnPO 4.
  • An electrode positive electrode was produced using the synthesized active material, and the characteristics of the electrode, that is, the capacity and rate characteristics were measured. The method for producing the electrode will be described below.
  • the positive electrode active material, the conductive agent, the binder, and the solvent were mixed in a mortar to prepare a slurry.
  • Acetylene black (Denka Black (registered trademark) manufactured by Denki Kagaku Kogyo Co., Ltd.) was used as the conductive material, modified polyacrylonitrile as the binder, and N-methyl-2-pyrrolidone (NMP) as the solvent.
  • the binder was a solution dissolved in NMP.
  • the composition of the electrode was such that the weight ratio of the positive electrode active material, the conductive material, and the binder was 82.5: 10: 7.5.
  • the prepared slurry was coated on an aluminum foil with a thickness of 20 ⁇ m using a blade whose gap was set to 250 ⁇ m so that the coating amount was 5 to 6 mg / cm 2 . After drying this at 80 ° C. for 1 hour, it was punched into a disk shape of 15 mm in diameter using a punch. The punched electrode compressed the mixture using a hand press. The composite material thickness was 38 to 42 ⁇ m. All the electrodes were produced so as to fall within the above coating amount and thickness range, and the electrode structure was kept constant. The electrode was dried at 120 ° C. before assembling the model cell. In addition, in order to remove the influence of moisture, all the operations were done in the dry room.
  • the capacity and rate characteristics were evaluated using a three-pole model cell that simply reproduced the battery.
  • the tripolar model cell was produced as follows. The test electrode punched into a diameter of 15 mm, an aluminum current collector, metallic lithium for a counter electrode, and metallic lithium for a reference electrode were laminated via a separator impregnated with an electrolytic solution. Electrolyte solution dissolves LiPF 6 in the solvent which mixed ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in the ratio of 1: 2 (volume ratio), and makes it 1 M, 0.8 mass% VC (vinylene) The one to which carbonate was added was used. This laminate was sandwiched between two SUS end plates and tightened with a bolt. This was placed in a glass cell to make a tripolar model cell.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • the measurement test of capacity and rate characteristics was performed in a glove box under an Ar atmosphere.
  • constant-current charging is performed with a current value of 0.1 mA to 4.5 V, and after reaching 4.5 V, constant-voltage charging is performed until the current value decreases to 0.03 mA. went. Thereafter, the battery was discharged to a voltage of 0.1 mA at a constant current of 2 V, and the discharge capacity at that time was regarded as a capacity.
  • rate characteristics were evaluated under the following conditions.
  • the capacity of the model cell subjected to constant current charging and constant voltage charging in the same manner as in the capacity measurement was subjected to constant current discharge at a current value of 5 mA as a rate characteristic.
  • all the tests were performed at room temperature (25 degreeC).
  • Example 2 Except that the calcination temperature was 600 ° C., it was synthesized in the same manner as in Example 1 to obtain a LiMnPO 4. The measurement of capacity rate characteristics was also performed similarly.
  • Example 3 As a metal source, iron oxalate dihydrate (FeC 2 O 4 .2H 2 O) was used, and synthesis was performed in the same manner as in Example 1 except that all metal ions were changed to Fe, to obtain LiFePO 4 . Measurement of capacity rate characteristics was also performed in the same manner as in Example 1.
  • Example 4 The synthesis was performed in the same manner as in Example 3 except that the pre-baking temperature was set to 600 ° C., to obtain LiFePO 4 .
  • the measurement of capacity rate characteristics was also performed similarly.
  • the following reference example is not a known example because it satisfies the condition of temporary firing in an oxidizing atmosphere of the present invention, but is a reference example because the temporary firing temperature is slightly lower than the crystallization temperature of the target positive electrode active material.
  • the raw material mixed powder was temporarily fired using a box-type electric furnace.
  • the calcination atmosphere was air, the calcination temperature was 440 ° C., and the calcination time was 10 hours.
  • Sucrose was added as a carbon source and a particle size control agent to this calcined body at a ratio of 7% by weight. This was ground and mixed for 2 hours using a wet ball mill.
  • main firing was performed using a tubular furnace capable of controlling the atmosphere.
  • the firing atmosphere was Ar atmosphere, the firing temperature was 700 ° C., and the firing time was 10 hours.
  • LiFe 0.2 Mn 0.8 PO 4 was obtained by the above steps.
  • An electrode (positive electrode) was produced using the synthesized active material, and the characteristics of the electrode, that is, the capacity and rate characteristics were measured. Measurement of capacity rate characteristics was performed in the same manner as in Example 1.
  • Example 6 The synthesis was performed in the same manner as in Example 5 except that the pre-baking temperature was 600 ° C., to obtain LiFe 0.2 Mn 0.8 PO 4 . Measurement of capacity rate characteristics was also performed in the same manner as in Example 1.
  • Comparative Example 1 Except that the calcination atmosphere was Ar, it was synthesized in the same manner as in Example 1 to obtain a LiMnPO 4. The measurement of capacity rate characteristics was also performed similarly.
  • Comparative Example 3 Except that the calcination atmosphere was Ar, it was synthesized in the same manner as in Example 5 to give the LiFe 0.2 Mn 0.8 PO 4. The measurement of capacity rate characteristics was also performed similarly.
  • Comparative Example 4 Except that the calcination atmosphere was Ar is synthesized as in Example 7 to give the LiFe 0.2 Mn 0.77 Mg 0.03 PO 4 . The measurement of capacity rate characteristics was also performed similarly.
  • FIG. 4A The scanning electron microscope image of the sample synthesize
  • a scanning electron microscope S-4300 (manufactured by Hitachi High-Technologies Corporation) was used for observation.
  • composition and conditions of the active material, the capacity of the synthesized active material, and the rate characteristics of Examples 1 to 7 and Reference Examples 1 to 3 and Comparative Examples 1 to 4 are summarized in Table 1.
  • Table 1 it arranged for every composition of a positive electrode active material, The reason is because it is necessary in order to understand the effect of this invention to compare a characteristic for every composition.
  • the temporary firing atmosphere in Examples 1 to 7 and Reference Examples 1 to 3 was air, and in Comparative Examples 1, 2, 3 and 4, the temporary firing atmosphere was argon gas.
  • the pre-baking atmosphere is air
  • the pre-baking temperature is 380 ° C.
  • the rate characteristics are slightly lower than those of the examples.
  • the pre-sintering temperature of Examples 2, 4 and 6 is 600 ° C.
  • the rate characteristics may be slightly lowered, but the capacity and energy density at a low discharge rate have no problem in practical use.
  • the pre-baking temperature is preferably 400 ° C. or more and less than 600 ° C., particularly preferably in the range of 400 to 550 ° C.
  • Table 2 shows the capacity and energy density of a lithium secondary battery produced in the same manner as in Example 1 using a positive electrode active material obtained by temporarily sintering LiFe 0.2 Mn 0.8 PO 4 at 400 ° C., 500 ° C. and 550 ° C. And rate characteristics.
  • the energy density and capacity are values at the time of 0.1 C discharge.
  • the capacity, energy density, and rate characteristics exhibited high values in a well-balanced manner at a pre-baking temperature of 400 ° C. to 550 ° C. in particular.
  • the positive electrode active material to compare Example 1 and Comparative Example 1 and 2 is LiMnPO 4, in the case of Example capacitor, it is both superior to Comparative Example energy density in the rate characteristic.
  • the rate characteristics are particularly inferior.
  • the rate characteristics are generally higher than in the case of LiMnPO 4 .
  • the rate characteristics are lower than in Examples 3 and 4.
  • Example 7 Comparing Example 7 and Comparative Example 4 in which the positive electrode active material is LiFe 0.2 Mn 0.77 Mg 0.03 PO 4 , the example has a sufficiently higher rate characteristic.
  • Example 1 Comparing Example 1 with Comparative Example 1, Example 2 with Comparative Example 2, Example 3 with Comparative Example 3, and Example 4 with Comparative Example 4, when the calcination atmosphere is air, the calcination atmosphere is argon Superior in capacity and rate characteristics compared to the case of From this, it can be understood that the pre-baking in an oxidizing atmosphere is effective for the characteristic improvement in a wide range of composition range.
  • the method for producing a positive electrode active material for a non-aqueous secondary battery according to the present invention provides a non-aqueous secondary battery with high capacity, high energy density and high rate characteristics using a polyanion-based positive electrode active material. It was shown that it is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 ポリアニオン系正極活物質を用い、高容量、高エネルギー密度かつ高レート特性の非水二次電池を提供することが可能な非水二次電池用正極活物質とその製造方法を提供する。化学式AMD(Aは、アルカリ金属又はアルカリ土類金属であり、Mは、少なくとも1種の遷移金属元素を含む金属元素であり、Dは、酸素Oと共有結合してアニオンを形成する典型元素であり、0≦x≦2、1≦y≦2、3≦z≦7である。)で表される非水二次電池用正極活物質の製造方法であって、前記正極活物質の原料を混合する工程と、混合した前記原料を酸化雰囲気中、400℃以上の温度で仮焼成する工程と、前記仮焼成する工程により得た仮焼成体に炭素もしくは有機物を混合する工程と、 炭素もしくは有機物が混合された前記仮焼成体を還元雰囲気もしくは不活性雰囲気中で本焼成する工程とを有することを特徴とする。

Description

非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池
 本発明は、化学式AMD(Aは、アルカリ金属又はアルカリ土類金属であり、Mは、少なくとも1種の遷移金属元素を含む金属元素であり、Dは、酸素Oと共有結合してアニオンを形成する典型元素であり、0≦x≦2、1≦y≦2、3≦z≦7である。)又は化学式LiMPO(MはFe、Mn、Co、及びNiのうち少なくとも1つを含む金属元素である。)で表される非水二次電池用正極活物質の製造方法、非水二次電池用の正極活物質及び非水二次電池に関する。
 近年、高性能な非水二次電池、特にリチウム二次電池の開発が進められている。リチウム二次電池用の正極活物質としては、従来はコバルト酸リチウムが主流であり、これを用いたリチウム二次電池が広く用いられている。しかし、コバルト酸リチウムの原料であるコバルトは産出量が少なく高価であり、代替材料が検討されている。代替材料として挙げられているスピネル構造を持つマンガン酸リチウムは、放電容量が十分でなく、高温でマンガンが溶出することが問題となっている。また、高容量が期待できるニッケル酸リチウムは、高温時の熱安定性に課題を有する。
 このような理由から、オリビン型正極活物質(以下「オリビン」と称する)が正極活物質として期待されている。オリビンは、化学式LiMPO(Mは遷移金属)で表され、構造内に強固なP‐O結合を有し、高温時も酸素が脱離しないため熱安定性が高く安全性に優れる。
 しかし、オリビンは、電子伝導性とイオン伝導性に劣るといった欠点を有する。このため、放電容量を十分に取り出すことができないといった課題がある。これは、オリビンには強固なP‐O結合が存在するために、電子が局在化してしまうためである。
 さらに、オリビンのみならず、非水二次電池の安全性向上のために、オリビンをはじめとするポリアニオン(PO 3-、BO 3-、SiO 4-など、一種の典型元素と複数の酸素が結合してなるアニオン)を有する活物質(LiMPO、LiMSiO、LiMBOなどであり、Mは遷移金属である。以後、「ポリアニオン系活物質」と称する)が提案されている。ポリアニオン系活物質は、電子の局在化のために導電性が悪く、前述のオリビンと同様の課題を有する。
 このような課題に対し、電子導電性を向上させるために、オリビンの表面を炭素で被覆する(炭素被覆する)技術が提案されている(例えば、特許文献1)。また、電子伝導性とイオン伝導性を改善するため、オリビンを小粒径化して、反応面積を増加し拡散距離を短縮する技術が提案されている(例えば、非特許文献1)。
 オリビンを炭素被覆する方法には、アセチレンブラックや黒鉛と混合し、ボールミルなどによって密着させる方法や、糖、有機酸、またはピッチなどの有機物と混合し焼成する方法がある。オリビンを小粒径化する手法としては、焼成温度の低減、炭素源との混合による成長抑制がある。しかし、単にオリビンを小粒径化し炭素被覆しただけでは、高容量は得られない。このことは、オリビンの特性改善には、小粒径化や炭素被覆だけでは十分でないことを示している。
 オリビンの製造方法としては、LiFePOの微粒子を合成する方法や、小粒径化を行い、炭素被覆により導電性が向上した粒子を得るための技術が知られている。LiFePOの微粒子を合成する方法として、有機酸錯体法を用いた合成法がある。有機酸錯体法は、有機酸の持つキレート効果を利用して原料を溶解し、溶液を乾燥させることにより、均一に原料が混合された原料粉を焼成する合成法である。原料を均一化することにより、結晶性の向上に有利と考えられる。しかし、この原料粉を単純に焼成すると、焼成体は粗大な網目構造となる。また、オリビンを構成する金属元素は、化学式にある通り2価である。しかしながら、製造工程において金属元素が酸化されるとオリビンではない異相(例えば、Fe、LiFeP、LiFe(PO、Mn、MnO、Mn)が形成されてしまう。特に金属元素として少なくともFeを選択した場合、Feは3価になりやすく、製造工程においてFeが酸化しない雰囲気である不活性ガス、もしくは還元ガスが必要とされてきた。
特開2001-15111号公報
A. Yamada, S. C. Chung, and K. Hinokuma "Optimized LiFePO4 for Lithium Battery Cathodes" Journal of the Electrochemical Society 148(2001), pp. A224-A229
 上述したように、オリビン型化合物の特性改善には、小粒径化や炭素被覆だけでは不十分である。後述するように、小粒径化と炭素被覆を行いつつ、結晶性を向上させた粒子を得ることができれば、高い特性を得ることができる。しかし、小粒径化と炭素被覆を行いつつ、結晶性を十分に向上させる方法は、上記の先行技術文献には開示されていない。
 本発明は、上記事情に鑑みて行われたものであり、オリビンを含むポリアニオン系活物質を用い、高容量かつ高レート特性の非水二次電池を提供することが可能な非水二次電池用正極活物質とその製造方法を提供することを目的とする。さらに、高容量かつ高レート特性の非水二次電池を提供することが可能な非水二次電池用正極及び高容量かつ高レート特性の非水二次電池を提供することを目的とする。
 (I)本発明は、化学式AMD(Aは、アルカリ金属又はアルカリ土類金属であり、Mは、少なくとも1種の遷移金属元素を含む金属元素であり、Dは、酸素Oと共有結合してアニオンを形成する典型元素であり、0≦x≦2、1≦y≦2、3≦z≦7である。)で表される非水二次電池用正極活物質、又は化学式LiMPO(MはFe、Mn、Co、及びNiのうち少なくとも1種を含む金属元素である。)で表される非水二次電池用正極活物質の製造方法であって、
前記正極活物質の原料を混合する工程と、
混合した前記原料を酸化雰囲気中、400℃以上の温度で仮焼成する工程と、
前記仮焼成する工程により得た仮焼成体に炭素もしくは有機物を混合する工程と、
炭素もしくは有機物が混合された前記仮焼成体を還元雰囲気もしくは不活性雰囲気中で本焼成する工程とを有することを特徴とする非水二次電池用正極活物質の製造方法を提供する。
 (II)また本発明は、上述した非水二次電池用正極活物質の製造方法を用いて製造した非水二次電池用正極活物質を提供する。
 (III)また本発明は、上述した非水二次電池用正極活物質を用いた非水二次電池用正極を提供する。
 (IV)また本発明は、上述した非水二次電池用正極を用いた非水二次電池を提供する。
 本発明によれば、ポリアニオン系正極活物質を用い、高容量、高エネルギー密度かつ高レート特性の非水二次電池を提供することが可能な非水二次電池用正極活物質とその製造方法を提供することができる。さらに、ポリアニオン系正極活物質を用い、高容量、高エネルギー密度かつ高レート特性の非水二次電池を提供することが可能な非水二次電池用正極及び高容量、高エネルギー密度かつ高レート特性の非水二次電池を提供することができる。
本発明の方法を説明するフロー図。 従来法を説明するフロー図。 本発明法による正極活物質の構成を説明する模式図。 従来法による正極活物質の構成を説明する模式図。 本発明を適用したリチウム二次電池用正極を用いたリチウム二次電池。 実施例1で合成した正極活物質粉末の走査型電子顕微鏡写真。 公知の水熱合成法で合成した正極活物質粉末の走査型電子顕微鏡写真。 本発明法による正極活物質と従来法による正極活物質の電圧―容量の関係を示すグラフ。 本発明法による正極活物質と従来法による正極活物質の比容量―電流値の関係を示すグラフ。 本発明法による正極活物質と従来法による正極活物質のXRDパターン。
 本発明は、上述した非水二次電池用正極活物質の製造方法において、以下のような改良や変更を加えることができる。
(i)前記AMDは、LiMPO(MはFe、Mn、Co、及びNiのうち少なくとも1種を含む金属元素である。)である。
(ii)前記正極活物質は2価のFeが含まれる。
(iii)前記仮焼成する工程での温度が、目的の正極活物質の結晶化温度以上であり、かつ結晶化温度を50℃以上超えない。
(iv)前記仮焼成する工程での温度が400℃以上、600℃以下の範囲である。
(v)前記仮焼成する工程での温度が400℃以上、550℃以下の範囲である。
(vi)前記正極活物質が、LiMnPO、LiFePO、LiFe0.2Mn0.8PO及びLiFe0.2Mn0.77Mg0.03POからなる群から選ばれたものである。
本発明で目的とする正極活物質は、化学式AMD(Aは、アルカリ金属又はアルカリ土類金属であり、Mは、少なくとも1種の遷移金属元素を含む金属元素であり、Dは、酸素Oと共有結合してアニオンを形成する典型元素であり、0≦x≦2、1≦y≦2、3≦z≦7である。)、特に、化学式LiMPO(MはFe、Mn、Co、及びNiのうち少なくとも1種を含む金属元素である。)で表される。なお、本発明のLiMPOは、化学両論比からずれた組成も含むものとする。具体的には、LixM(POyとした場合、1.0≦x≦1.15、1.0≦y≦1.15であるものを含むものとする。
 上述したように、オリビンを小粒径化し炭素被覆しただけでは、高容量は得られない。そこで、本発明者らは、小粒径化と炭素被覆では改善できないオリビンの物性を明らかにし、その物性の改善法を検討した。その結果、正極活物質の結晶性の向上が特性向上において重要であること、すなわち、低結晶の正極活物質では容量が低下することを見出した。結晶性が容量に影響を与える理由は定かではないが、以下の理由が想定される。結晶性を低下させる主な原因は不純物である。不純物が存在すると正極活物質内のイオン拡散経路が分断され、拡散が妨げられる可能性がある。または、粒子内に結晶粒界が生じ、拡散経路の両端を粒界で遮られた領域が不活性化する可能性がある。オリビンなど一次元拡散の活物質では、わずかな不純物の存在がLiイオンの不活性化を招くので影響が大きいと考えられる。
 また、AMDで表されるポリアニオン系正極活物質は酸素がポリアニオンとして存在しており、電子が非局在化しやすいため電子伝導性が低い。そのために、電極材料として用いるためには炭素による導電性被覆が必要である。炭素の被覆は活物質内への不純物としての混入を招き、結晶性の低下を起こしやすい。そのため炭素被覆を行いつつ、結晶性を高める技術が必要である。
 以上の説明のように、オリビンをはじめとしたポリアニオン系正極活物質の特性向上には、炭素被覆による電子伝導性向上と、小粒径化による表面積増加及び拡散距離低減に加え、結晶性の向上が必要である。
 前述したように結晶性を低下させる原因としては不純物の結晶中への混入が考えられる。不純物としては原料として用いる金属塩におけるアニオン(酢酸塩における酢酸イオン、シュウ酸塩におけるシュウ酸イオンなど)や原料に含まれる不純物、さらには炭素源や粒径制御のために加えるその他の添加材が挙げられる。
 そこで、本発明では、酸化雰囲気中、前記正極活物質の結晶化温度以上、かつ炭素分解温度以上の温度で仮焼成を行う。具体的には炭素分解温度である400℃以上であることが好ましい。なお、本発明において結晶化温度とは、焼成過程においてTG-DTAやDSCなどで熱分析をしたときに現れる結晶化に起因する発熱ピークの内、最も高温側で現れるピークの温度と定義する。
 上記不純物に関し焼成時の雰囲気を比較した場合、分解力に優れる酸化雰囲気においては他の雰囲気に比べ不純物の低減が期待できる。特に炭素や炭化水素などの有機物の低減が期待できる。本発明者らはこのような狙いの元に、酸化雰囲気での仮焼成を行った場合、正極活物質の容量およびレート特性が向上することを見出した。酸化雰囲気での焼成で特性が向上する理由は完全には明らかでないが、前述の考察から酸化雰囲気での仮焼成をプロセス途中に組み入れることが不純物を低減し、特性を向上するのに有効に働いているためと考えられる。
 しかし酸化雰囲気で焼成した場合、構成金属元素の酸化が懸念される。その為、目的活物質において構成金属元素の価数が2価である場合は、酸化して3価もしくは4価に変化した金属元素を還元する必要がある。還元方法としては還元雰囲気での焼成に加え、不活性雰囲気で還元性物質と混合し焼成する方法が挙げられる。
 また、小粒径化のためには仮焼成温度は結晶化温度以上であって、かつ高すぎない温度、特に結晶化温度よりも50℃を越えない温度が望ましい。結晶化温度を大幅に超えると結晶が成長してしまい、粒径が増大する。結晶化温度未満であると仮焼成では結晶相が生成せず、その後に高温の本焼成にかけた場合粒成長する恐れがある。結晶化温度直上での仮焼成を行った場合は微結晶が生成し、本焼成時はこの微結晶が核となるため粗大な粒子が生じない。また、炭素不純物を除去するために、空気中など酸化雰囲気で焼成する場合は400℃以上であることが望ましい。この温度未満であると、たとえ結晶化温度以上でも不純物が残存する恐れがある。
 本発明の合成法では、電気炉等の加熱装置を用いて、仮焼成工程と本焼成工程からなる2段階の焼成を行う。1段階目の仮焼成工程では、酸化雰囲気で行うと共に、仮焼成温度は結晶化温度以上かつ結晶化温度を大きく超えないことが望ましい。2段階目の本焼成工程は、仮焼成工程より高温で行い、不活性雰囲気もしくは還元雰囲気で行う。仮焼成工程よりも高温で焼成することにより活物質の結晶性を高めることができる。
 目的物質に炭素を混合する場合は、仮焼成工程と本焼成工程の間に行い、炭素もしくは有機物を混合する。
 なお本合成法は、オリビンだけでなく、ケイ酸塩やホウ酸塩など他のポリアニオンを有する正極活物質AMDに関しても適用可能である。ここで、Aはアルカリ金属またはアルカリ土類金属であり、Mは少なくとも1種の遷移金属元素を含む金属元素であり、Dは酸素と共有結合を形成する典型元素であり、Oは酸素であり、0≦x≦2、1≦y≦2、3≦z≦7である。DとOが結合してアニオンを形成する。これらのポリアニオンを有する正極活物質は、オリビンと同様に、電子伝導性が低いという特徴があり、そのために小粒径化と炭素被覆が必須である。小粒径化と炭素被覆は、前述したように結晶性の低下を招く恐れがある。しかし、本合成法を適用すれば、結晶性を低下させることなく、ポリアニオン系活物質の小粒径化と炭素被覆が可能となる。
 本発明によると、オリビン等のポリアニオン系活物質を小粒子径、高導電率、かつ高結晶性とすることができ、高容量かつ高レート特性の非水二次電池用正極と非水二次電池を提供することができる。
 本発明の正極活物質粉末の合成方法を、図1A及び図1Bを用いて従来方法と比較して説明する。
 本発明の合成方法は、オリビン等の正極活物質の合成において2回以上の焼成工程を有し、最後の焼成工程は不活性雰囲気もしくは還元雰囲気で行い、それ以前の焼成工程の少なくとも一回は酸化雰囲気で行うものであって、図1Aに示すように、正極活物原料(但し炭素又は有機物質を含まない)を混合し、これを酸化性雰囲気中で440℃で10h仮焼成する。次いで、炭素源としてシュークロースを活物質の7質量%加え、混練して、ボールミルで粉砕し、アルゴンガス中において700℃で10h本焼成する。得られた焼成体粒子は炭素皮膜で被覆されている。
 従来一般に行われている方法では、図1Bに示すように、正極活物質及び炭素源であるシュークロースなどを混合し、アルゴンガスなどの不活性ガス雰囲気中で440℃で10h仮焼成する。これをボールミル粉砕し、アルゴンガス中で700℃で10h本焼成する。
 以上の方法で得られた正極活物質の粒子は、本発明方法の場合は、空気中など、酸化雰囲気中で仮焼成するために、図2Aに示すように、炭素分は粒内にほとんど存在せず、且つ結晶性が進んでいる。そして、シュークロースを混合して本焼成することにより、図2Aに示すような正極活物質が得られる。
 これに対し、従来方法によると、図2Bに示すように、仮焼成の前に、炭素分を混合しかつ非酸化性雰囲気中で仮焼成するために、得られる正極活物質の粒子内に炭素分が残留し、これが正極活物質の結晶化を阻害する。その構造を図2Bに示した。
 本発明法により合成した正極活物質の特性と従来法により合成した正極活物質を用いて非水二次電池を構成しその特性を比較した。図5Aには、本発明法によるリチウム二次電池(後述する実施例5)と従来法(後述する比較例3)による正極活物質を用いたリチウム二次電池の充電、放電による電圧‐容量特性を比較して示した。図5Aによれば、本発明によるリチウム二次電池は、従来法によるリチウム二次電池と比べて、電圧及び容量が高いことが分かる。
 また、図5Bには、本発明法による正極活物質(後述する実施例5)を用いたリチウム二次電池と従来法による正極活物質(後述する比較例3)を用いたリチウム二次電池の比容量‐電流値を比較して示したが、本発明法によるリチウム二次電池は、従来法によるリチウム二次電池よりも、高い比容量を示すことが分かる。ここで比容量とは、0.1mA放電容量に対する比である。
 さらに、図5Cに示すように、本発明法による正極活物質の結晶化度と従来法による正極活物質の結晶化度をXRDパターンで示したが、本発明法による正極活物質は従来法による正極活物質よりも、高い結晶化度(積分幅が小さい)を持つことを示している。図5Cにおいて、(020)はXRDピークの面指数を示す。
 従来法による正極活物質の粒径も本発明法による正極活物質の粒径も約50nmであるが、従来法の場合の積分幅は0.42であるのに対し、本発明法の場合は0.31である。積分幅の差は、従来法では結晶粒子内部の炭素が原因して結晶度が高くならないためと思われる。
 また、公知の水熱合成法であっても、結晶中の炭素を除去した活物質を作製することは可能である。後述する実施例1で合成した正極活物質の外観写真を図4Aに、水熱合成法で合成した正極活物質の外観写真を図4Bに示した。しかしながら、図4Bにおいては正極活物質粒子の表面は滑らかなのに対し、本実施例による正極活物質粒子は図4Aに示すように、表面に凹凸を多く持つ。従って、本実施例の方が同一粒子径での比表面積が大きいことが予測され、反応面積の増加が期待できるため好ましい。
 以下、本発明による正極活物質の好ましい製造方法を詳しく説明する。
 <原料の混合>
 結晶化温度以上でかつ結晶化温度を大幅に超えない温度で仮焼成を行うことにより、微結晶を析出させることができる。この時、微結晶の大きさは原料の粒子径に依存するため、微結晶を小さくするには正極活物質の原料の粒子径は小さいほど望ましい。また、原料を均一に混合していない場合、仮焼成時に析出する結晶が粗大化したり、異相が発生したりするため、より均一に混合されていることが望ましい。
 具体的には、ビーズミルなどを用いて機械的に原料を粉砕して混合する方法や、酸、アルカリ、キレート剤などを用いて原料を溶液状態にしたものを乾燥させることにより混合する方法が挙げられる。特に、溶液状態を経たものは、原料が分子レベルで混合するため、微結晶の析出に有利である。
 正極活物質の原料としては、焼成後に残留しない塩を用いることが望ましい。原料の金属源としては、酢酸塩、シュウ酸塩、クエン酸塩、炭酸塩、酒石酸塩などのうち、少なくとも1つを用いることができる。なお、金属とは、本明細書中のAMDにおけるM(遷移金属)に相当する。Mは、Fe、Mn、Co、Niなどの遷移元素の少なくとも1つを含む。さらに、Mには、それぞれが10%を超えない範囲で、Mg、Al、Zn、Sn、Caなどの典型元素を含めることができる。10%を超えると酸化還元反応によって充放電に寄与する元素の割合が減り、容量が低下するため望ましくない。リチウム源としては、酢酸リチウム、炭酸リチウム、水酸化リチウムなどを用いる。リン酸イオン源としては、リン酸二水素リチウム、リン酸二水素アンモニウム、リン酸水素二アンモニウムなどを用いる。
 <仮焼成>
 仮焼成温度は、結晶を析出させるために、結晶化温度以上であることが望ましい。結晶化温度より低いと結晶成長しないため、仮焼成体はアモルファス状となり、粉砕と本焼成をしても種結晶が存在しないため粒子が粗大になる恐れがある。また、仮焼成温度を上げていくことにより合成後の粒子径を制御可能であるが、仮焼成温度があまり高すぎると粒子の粗大化を招く。結晶化温度は、オリビンでは最高450℃程度であり、結晶化温度を50℃以上超えない程度が望ましい。
 仮焼成温度の範囲は、活物質によって結晶化温度及び成長速度が違うために、活物質により異なる。オリビンにおいては、結晶化温度が420℃付近(出典:Robert Dominko, Marjan Bele, Jean-Michel Goupil, Miran Gaberscek, Darko Hanzel, Iztok Arcon, and Janez Jamnik ’Wired Porous Cathode Materials: A Novel Concept for Synthesis of LiFePO4’ Chemistry of Materials 19(2007), pp. 2960-2969.)であるため、420℃以上で焼成することが必要である。また、600℃以下であれば、粒子成長を抑えることができる。600℃より大きい温度では、結晶成長が大きく促進されるため不適である。望ましい仮焼成温度の範囲は、オリビンにおいては、440℃以上500℃以下である。440℃以上であれば、試料中に多少温度むらがある場合でも、全体が結晶化温度以上になる。また、500℃以下であれば、粒子径が100nm以下となり、この仮焼成体を粉砕、本焼成することにより数十nmの微粒子を合成できる。
 また、仮焼成の雰囲気は、酸化雰囲気としては、酸素を含有したガスを用いるのが簡便である。コストを考慮すると、空気を用いることが望ましい。オリビン(LiMPO)中では、金属Mは2価の状態にある。例えばFeをMとして使用する場合、酸化雰囲気での焼成は不適当と考えられ、一般的には還元雰囲気での焼成が行われる。本発明者らは、酸化雰囲気下で仮焼成し、本焼成時に還元することが可能であるとともに、結晶性向上の効果が得られることを見出した。
 酸化雰囲気で仮焼成を行うと、前述したように有機物や添加炭素が燃焼により消失するが、仮焼成温度が適当ならば、消失後に生じた空間が微結晶の成長を抑制する。さらに、炭素が消失することにより、炭素の結晶内部への混入を防ぐことができる。従って、酸化雰囲気では、不活性雰囲気や還元雰囲気で焼成した場合よりも、結晶性を高めることができる。特に、溶液状態を経て均一に混合した場合には、炭素源と原料が均一に混ざっているので、不活性雰囲気や還元雰囲気では炭素が取り込まれやすい。このため、酸化雰囲気での焼成は、結晶性を高めるためにより有効である。炭素を十分に除去するために仮焼成温度は前述の結晶化温度にかかわらず400℃以上であることが望ましい。
 このように仮焼成を行って製造した微結晶を、以下に示す手順で炭素被覆し、本焼成する。これにより、炭素被覆された微粒子の結晶性を向上させることができる。
 <炭素源との混合、被覆>
 仮焼成によって生じた微結晶(仮焼成体)は結晶性が低いので、結晶性向上のためには、より高温での焼成が必要である。しかし、単に高温で本焼成した場合、微結晶同士が結合し、成長してしまう。仮焼成で生じた微結晶と有機物またはアセチレンブラックなどの微細な炭素を混合することにより、微結晶の周囲に有機物や炭素を密着させて、微結晶を有機物や炭素で被覆することにより、結晶の成長を抑えることができる。
 また、微結晶同士の一部が結合し網目構造となっている場合も、網目構造が500nm以下の細い構造であるならば、機械的圧力を加えることで容易に網目構造を破壊し、微結晶の微細化が可能である。効率よく被覆及び微細化する手法としては、ボールミルやビーズミルを用いて機械的圧力を加えることが望ましい。
 <本焼成>
 本焼成では、仮焼工程よりも高温で加熱し、有機物を炭化して導電性を向上させると共に、活物質粒子の結晶性向上もしくは結晶化を行う。金属元素の酸化を防ぐと共に炭素被覆を行うため、本焼成は、不活性雰囲気または還元雰囲気で行う。有機物を炭化して導電性を向上させるためには、本焼成温度は600℃以上が望ましい。また、本焼成は、活物質の熱分解が起きる温度以下で行うことが望ましい。望ましい本焼成温度の範囲は、オリビンにおいては、600℃以上850℃以下である。600℃以上ならば、炭素源を炭化して導電性を付与することができる。850℃以下ならば、活物質が分解を起こさない。さらに望ましくは、700℃以上750℃以下である。この温度範囲では、炭素の導電性を十分に向上できると共に、炭素とオリビンの反応による不純物の生成を抑えることができる。
 以上説明したように、本発明による正極活物質の製造方法を用いると、小粒径かつ炭素被覆された粒子の結晶性を、より向上させることができる。
 以下、本発明による非水二次電池の例として、リチウム二次電池用正極とリチウム二次電池について説明する。図3に、本発明によるリチウム二次電池用正極を適用したリチウム二次電池の例を示す。図3では、円筒型のリチウム二次電池を例示している。本リチウム二次電池は、正極(本発明によるリチウム二次電池用正極)10、負極6、セパレータ7、正極リード3、負極リード9、電池蓋1、ガスケット2、絶縁板4及び8、及び電池缶5を備える。正極10と負極6は、セパレータ7を間に介して捲回されており、セパレータ7には、電解質を溶媒に溶かした電解質溶液が含浸されている。
 以下、正極10、負極6、セパレータ7、及び電解質について詳細を述べる。
 (1)正極
 本発明によるリチウム二次電池用正極は、正極活物質、結着剤、及び集電体で構成され、正極活物質と結着剤とを含む正極合材が、集電体上に形成されている。また、電子伝導性を補うために、必要に応じて導電助材を正極合材に加えることもできる。
 以下、本発明による正極を構成する部材である正極活物質、結着剤、導電助材、及び集電体の詳細を説明する。
 A)正極活物質
 本発明による正極活物質には、上述した製造方法(合成法)を用いて合成される活物質を使用する。
 B)結着剤
 結着剤には、PVDF(ポリフッ化ビニリデン)やポリアクリロニトリルなど、一般の結着剤を用いるのが好ましい。十分な結着性を有するならば、結着剤の種類は制限されない。
 C)導電助材
 正極の構成として、上記のような密着性に優れた結着剤を用いると同時に、導電性付与のために導電助材を混合すると、強固な導電ネットワークが形成される。このため、正極の導電性が改善され、容量やレート特性が改善して望ましい。以下に、本発明による正極に用いる導電助材及びその添加量について示す。
 導電助材として、アセチレンブラックや黒鉛粉末などの炭素系導電助材を用いることができる。オリビンMn系正極活物質は高比表面積であるため、導電ネットワークを形成するためには導電助材は比表面積が大きいことが望ましく、具体的にはアセチレンブラックなどが望ましい。正極活物質が炭素被覆されている場合もあるが、この場合には、被覆炭素を導電助材として用いることもできる。
 D)集電体
 集電体としては、アルミ箔などの導電性を有する支持体を利用できる。
 以上のように、高容量かつ高レート特性の正極を得るためには、正極活物質としてオリビンMn系正極活物質を用い、結着剤としてはアクリロニトリル共重合体を用い、導電助材(正極活物質が炭素被覆されている場合は、活物質上の被覆炭素も含む)を用いることが望ましい。
 (2)負極
 本発明によるリチウム二次電池の負極は、負極活物質、導電助材、結着剤、及び集電体で構成される。
 負極活物質としては、充放電によりLiを可逆的に挿入脱離できるものならばよく、例えば、炭素材料、金属酸化物、金属硫化物、リチウム金属、及びリチウム金属と他種金属との合金を用いることができる。炭素材料としては、黒鉛、非晶質炭素、コークス、熱分解炭素などを用いることができる。
 導電助材には、従来公知のものを任意に用いることができ、アセチレンブラック、黒鉛粉末など炭素系導電助材を用いることができる。結着剤も同様に、従来公知のものを任意に用いることができ、PVDF(ポリフッ化ビニリデン)、SBR(スチレンブタジエンゴム)、NBR(ニトリルゴム)などを用いることができる。集電体も同様に、従来公知のものを任意に用いることができ、銅箔など導電性を有する支持体を利用できる。
 (3)セパレータ
 セパレータには、従来公知の材料が使用でき、特に制限はない。ポリプロピレンやポリエチレンなどのポリオレフィン系多孔質膜や、ガラス繊維シートなどを用いることができる。
 (4)電解質
 電解質として、LiPF、LiBF、LiCFSO、LiN(SOCF、LiN(SOF)などのリチウム塩を単独でまたは混合して用いることができる。リチウム塩を溶解する溶媒としては、鎖状カーボネート、環状カーボネート、環状エステル、ニトリル化合物などが挙げられる。具体的には、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ―ブチロラクトン、n-メチルピロリジン、アセトニトリルなどである。他に、ポリマーゲル電解質や固体電解質も、電解質として使用できる。
 以上に示した、正極、負極、セパレータ、及び電解質を用いて、円筒型電池、角型電池、ラミネート型電池など、各種形態の非水二次電池を構成することができる。
 以下に、実施例として、オリビン型正極活物質を合成した例を説明する。その後、合成した正極活物質を用いて作製した電極の特性(容量とレート特性)の測定結果について記載する。
 [実施例1]
 <正極活物質の合成>
 実施例1として、金属イオンを全てMnとした正極活物質(LiMnPO)を作製した。金属源として、シュウ酸マンガン二水和物(MnC・2HO)を用い、リン酸二水素リチウム(LiHPO)を金属イオンの合計と等モル加えた。すなわち仕込み組成は、Li:M(金属イオン):PO=1:1:1(モル比)とした。秤量した原料は湿式ボールミルを用いて混合した。混合後、乾燥して原料混合粉を得た。原料混合粉は箱型電気炉を用いて仮焼成した。仮焼成雰囲気は空気とし、仮焼成温度は440℃で、仮焼成時間は10時間とした。
 この仮焼成体に対し、炭素源及び粒径制御剤として、重量比7質量%の割合でシュークロースを添加した。これを、湿式ボールミルを用いて2時間粉砕、混合した。次に、雰囲気制御可能な管状炉を用いて、本焼成を行った。焼成雰囲気はAr雰囲気とし、焼成温度は700℃で、焼成時間は10時間とした。
 以上の工程により、LiMnPOを得た。合成した活物質を用いて電極(正極)を作製し、電極の特性、すなわち容量とレート特性を測定した。
以下に電極の作製方法を説明する。
 正極活物質、導電剤、バインダ、及び溶媒を乳鉢上で混錬して、スラリーを調製した。導電材としてアセチレンブラック(電気化学工業株式会社製デンカブラック(登録商標))、バインダとして変性ポリアクリロニトリル、溶媒としてN-メチル-2-ピロリドン(NMP)を用いた。なお、バインダは、NMPに溶解させた溶液を用いた。電極の組成は、正極活物質、導電材、バインダの重量比が82.5:10:7.5になるようにした。
 調整したスラリーを、厚さ20μmのアルミニウム箔上に、ギャップを250μmに設定したブレードを用いて、塗工量が5~6mg/cmになるように塗工した。これを80℃で1時間乾燥した後に、打ち抜き金具を用いて直径15mmの円盤状に打ち抜いた。打ち抜いた電極は、ハンドプレスを用いて合材を圧縮した。合材厚さは38~42μmとした。全ての電極は、以上の塗工量と厚さの範囲内に収まるよう作製し、電極構造を一定に保った。モデルセルを組み立たてる前に、120℃で電極を乾燥した。なお、水分の影響を除くため、全ての操作はドライルーム内の作業とした。
 容量とレート特性は、電池を簡易的に再現した三極式モデルセルを用いて評価した。三極式モデルセルは、次のようにして作製した。直径15mmに打ち抜いた試験電極、アルミニウム集電体、対極用金属リチウム、及び参照極用金属リチウムを、電解液を含侵させたセパレータを介して積層させた。電解液は、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とを1:2(容量比)の割合で混合した溶媒にLiPFを溶解させて1Mとし、0.8質量%のVC(ビニレンカーボネート)を添加したものを用いた。この積層体を、SUS製端板2枚を用いて挟み込み、ボルトで締め付けた。これをガラスセル中に入れ、三極式モデルセルとした。
 容量とレート特性の測定試験は、Ar雰囲気のグローブボックスで行った。容量測定では、モデルセルに対して、電流値を0.1mAとして4.5Vまで定電流充電を行い、4.5Vに達した後は、電流値が0.03mAに減衰するまで定電圧充電を行った。その後、2Vまで0.1mAの定電流で放電し、その際の放電容量を容量とした。
 上記の充放電サイクルを3サイクル繰り返した後、以下の条件でレート特性を評価した。容量測定と同様に定電流充電と定電圧充電を行ったモデルセルを、5mAの電流値で定電流放電したときの容量をレート特性とした。なお、全ての試験は、室温(25℃)で行った。
 [実施例2]
 仮焼成温度を600℃とした以外は、実施例1と同様に合成し、LiMnPOを得た。容量レート特性の測定も同様に行った。
 [実施例3]
 金属源として、シュウ酸鉄二水和物(FeC・2HO)を用い、金属イオンを全てFeとした以外は、実施例1と同様に合成し、LiFePOを得た。容量レート特性の測定も実施例1と同様に行った。
 [実施例4]
 仮焼成温度を600℃とした以外は、実施例3と同様に合成し、LiFePOを得た。容量レート特性の測定も同様に行った。
 以下の参考例は本発明の酸化雰囲気での仮焼成という条件を満たすので公知例ではないが、仮焼成温度が目的の正極活物質の結晶化温度よりも若干低いので、参考例とした。
 [参考例1]
 仮焼成温度を380℃にした以外は、実施例1と同様に合成し、LiMnPOを得た。容量レート特性の測定も同様に行った。
 [参考例2]
 仮焼成温度を380℃にした以外は、実施例3と同様に合成し、LiFePOを得た。容量レート特性の測定も同様に行った。
 [実施例5]
 <正極活物質の合成>
 金属源として、シュウ酸鉄二水和物(FeC・2HO)とシュウ酸マンガン二水和物(MnC・2HO)を用い、MnとFeが8:2(原子数比)となるように秤量した。次に、リン酸二水素リチウム(LiHPO)を金属イオンの合計と等モル加えた。すなわち仕込み組成は、Li:M(金属イオン):PO=1:1:1(モル比)とした。秤量した原料は湿式ボールミルを用いて混合した。混合後、乾燥して原料混合粉を得た。
 原料混合粉は箱型電気炉を用いて仮焼成した。仮焼成雰囲気は空気とし、仮焼成温度は440℃で、仮焼成時間は10時間とした。この仮焼成体に対し、炭素源及び粒径制御剤として、重量比7質量%の割合でシュークロースを添加した。これを、湿式ボールミルを用いて2時間粉砕、混合した。次に、雰囲気制御可能な管状炉を用いて、本焼成を行った。焼成雰囲気はAr雰囲気とし、焼成温度は700℃で、焼成時間は10時間とした。
 以上の工程により、LiFe0.2Mn0.8POを得た。合成した活物質を用いて電極(正極)を作製し、電極の特性、すなわち容量とレート特性を測定した。容量レート特性の測定を実施例1と同様に行った。
 [実施例6]
 仮焼成温度を600℃とした以外は、実施例5と同様に合成し、LiFe0.2Mn0.8POを得た。容量レート特性の測定も実施例1と同様に行った。
 [参考例3]
 仮焼成温度を380℃にした以外は、実施例5と同様に合成し、LiFe0.2Mn0.8POを得た。容量レート特性の測定も同様に行った。
 [実施例7]
 金属源として、シュウ酸鉄二水和物(FeC・2HO)とシュウ酸マンガン二水和物(MnC・2HO)と水酸化マグネシウム(Mg(OH))を用い、Fe:Mg:Mg=2:7.7:0.3とした以外は、実施例1と同様に合成し、LiFe0.2Mn0.77Mg0.03POを得た。容量レート特性の測定も実施例1と同様に行った。
 [比較例1]
 仮焼成雰囲気をArにした以外は、実施例1と同様に合成し、LiMnPOを得た。容量レート特性の測定も同様に行った。
 [比較例2]
 仮焼成雰囲気をArにした以外は、実施例3と同様に合成し、LiFePOを得た。容量レート特性の測定も同様に行った。
 [比較例3]
 仮焼成雰囲気をArにした以外は、実施例5と同様に合成し、LiFe0.2Mn0.8POを得た。容量レート特性の測定も同様に行った。
 [比較例4]
 仮焼成雰囲気をArにした以外は、実施例7と同様に合成し、LiFe0.2Mn0.77Mg0.03POを得た。容量レート特性の測定も同様に行った。
 図4Aに、実施例5で合成したサンプルの走査型電子顕微鏡像を示す。観察には、走査電子顕微鏡S-4300(株式会社日立ハイテクノロジーズ製)を用いた。
 実施例1~7、参考例1~3と比較例1~4について、活物質の組成と合成条件、合成した活物質の容量、レート特性をまとめて表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1では正極活物質の組成毎に配列したが、その理由は、組成毎に特性を比較することが本発明の作用効果を理解するために必要であるからである。実施例1~7及び参考例1~3の仮焼成雰囲気は空気で、比較例1,2,3、4では、仮焼成雰囲気をアルゴンガスとした。
 参考例1、2、3は仮焼成雰囲気が空気で、仮焼成温度が380℃で実施例と比べて若干レート特性が低い。また、実施例2、4、6の仮焼成温度が600℃であるため、レート特性が若干低くなる場合があるが、低い放電レートでの容量及びエネルギー密度は実用上は問題が無い。600℃での仮焼成によれば、結晶粒の成長が認められ、高放電レートでの容量は若干低下するが、成長した粒子を使うこともできる。従って、仮焼成温度は、400℃以上、600℃未満、特に400~550℃の範囲が好ましい。
 表2は、LiFe0.2Mn0.8POを400℃、500℃、550℃で仮焼成した正極活物質を用いて実施例1と同様に作製したリチウム二次電池の容量、エネルギー密度及びレート特性を示す。なお、エネルギー密度及び容量は、0.1C放電時の値である。表2~下記から明らかなように、仮焼成温度が特に400℃~550℃では容量、エネルギー密度、レート特性がバランス良く高い値を示した。
Figure JPOXMLDOC01-appb-T000002
 正極活物質がLiMnPOである実施例1、2と比較例1を比較すると、実施例の場合は容量、エネルギー密度、レート特性において比較例よりもともに優れている。仮焼成雰囲気がアルゴンガスの時は、特にレート特性が劣る。
 正極活物質がLiFePOである実施例3、4と比較例2を比較すると、LiMnPOの場合と比べてレート特性が全体的に高い。そして仮焼成雰囲気がアルゴンガスである比較例2の場合は、レート特性が、実施例3、4よりも低い。
 正極活物質がLiFe0.2Mn0.8POである実施例5、6と比較例3を比較すると、実施例の方が、レート特性が十分に高い。
 正極活物質がLiFe0.2Mn0.77Mg0.03POである実施例7と比較例4を比較すると、実施例の方が、レート特性が十分に高い。
 実施例1と比較例1、実施例2と比較例2、実施例3と比較例3、実施例4と比較例4をそれぞれ比較すると、仮焼成雰囲気が空気の場合は、仮焼成雰囲気がアルゴンの場合と比べ、容量、レート特性に優れる。このことから酸化雰囲気での仮焼成は幅広い組成領域において特性改善に効果があることがわかる。
 次に実施例2、4、6の仮焼成温度が目的とする正極活物質の結晶化温度より100℃以上高いので、前述のように容量に大きな影響はないが、レート特性が低下する場合が有る。これは粒子径が増大したためと考えられる。
 一方、参考例1、2、3では、仮焼成温度を結晶化温度以下にしたために、特に400℃未満の場合、容量、レート特性共に劣る。この原因として仮焼成で種結晶が生成しなかったために本焼成での良好な結晶成長が行われなかった可能性、さらには原料に含まれる有機成分が消失せず結晶内に取り込まれたために結晶性が低下した可能性が挙げられる。
 以上の結果から、本発明に係る非水二次電池用正極活物質の製造方法は、ポリアニオン系正極活物質を用い、高容量、高エネルギー密度かつ高レート特性の非水二次電池を提供することが可能であることが示された。
1…電池蓋、2…ガスケット、3…正極リード、4,8…絶縁板、5…電池缶、6…負極、7…セパレータ、9…負極リード、10…正極。

Claims (10)

  1.  化学式AMD(Aは、アルカリ金属又はアルカリ土類金属であり、Mは、少なくとも1種の遷移金属元素を含む金属元素であり、Dは、酸素Oと共有結合してアニオンを形成する典型元素であり、0≦x≦2、1≦y≦2、3≦z≦7である。)で表される非水二次電池用正極活物質の製造方法であって、
    前記正極活物質の原料を混合する工程と、
    混合した前記原料を酸化雰囲気中、400℃以上の温度で仮焼成する工程と、
    前記仮焼成する工程により得た仮焼成体に炭素もしくは有機物を混合する工程と、
    炭素もしくは有機物が混合された前記仮焼成体を還元雰囲気もしくは不活性雰囲気中で本焼成する工程とを有することを特徴とする非水二次電池用正極活物質の製造方法。
  2.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記AMDは、LiMPO(MはFe、Mn、Co、及びNiのうち少なくとも1種を含む金属元素である。)であることを特徴とする非水二次電池用正極活物質の製造方法。
  3.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記正極活物質は2価のFeが含まれることを特徴とする非水二次電池用正極活物質の製造方法。
  4.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記仮焼成する工程での温度が、目的の正極活物質の結晶化温度以上であり、かつ結晶化温度を50℃以上超えないことを特徴とする非水二次電池用正極活物質の製造方法。
  5.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記仮焼成する工程での温度が400℃以上、600℃以下の範囲であることを特徴とする非水二次電池用正極活物質の製造方法。
  6.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記仮焼成する工程での温度が400℃以上、550℃以下の範囲であることを特徴とする非水二次電池用正極活物質の製造方法。
  7.  請求項1に記載の非水二次電池用正極活物質の製造方法において、
    前記正極活物質が、LiMnPO、LiFePO、LiFe0.2Mn0.8PO及びLiFe0.2Mn0.77Mg0.03POからなる群から選ばれたものであることを特徴とする非水二次電池用正極活物質の製造方法。
  8.  請求項1に記載の非水二次電池用正極活物質の製造方法で製造したことを特徴とする非水二次電池用正極活物質。
  9.  正極活物質を含む正極合材と正極集電体とから形成された非水二次電池用正極であって、前記正極活物質は、請求項8記載の非水二次電池用正極活物質であることを特徴とする非水二次電池用正極。
  10.  正極と、負極と、前記正極と前記負極の間に位置するセパレータ及び電解質とを備える非水二次電池であって、前記正極は、請求項8記載の非水二次電池用正極であることを特徴とする非水二次電池。
PCT/JP2013/057416 2012-04-05 2013-03-15 非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池 WO2013150877A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201380023648.4A CN104272507A (zh) 2012-04-05 2013-03-15 非水二次电池用正极活性物质的制造方法、非水二次电池用正极、及非水二次电池
EP13772289.8A EP2835849A4 (en) 2012-04-05 2013-03-15 METHOD FOR MANUFACTURING POSITIVE ELECTRODE ACTIVE MATERIAL FOR NONAQUEOUS SECONDARY BATTERIES, POSITIVE ELECTRODE FOR NONAQUEOUS SECONDARY BATTERIES, AND NONAQUEOUS SECONDARY BATTERY
JP2014509096A JP5915732B2 (ja) 2012-04-05 2013-03-15 非水二次電池用正極活物質の製造方法、非水二次電池用正極の製造方法及び非水二次電池の製造方法
US14/390,273 US20150140431A1 (en) 2012-04-05 2013-03-15 Method for producing positive electrode active material for nonaqueous secondary batteries, positive electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
KR1020147027730A KR20140148408A (ko) 2012-04-05 2013-03-15 비수 이차전지용 양극 활물질의 제조 방법, 비수 이차전지용 양극, 및 비수 이차전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-086308 2012-04-05
JP2012086308 2012-04-05

Publications (1)

Publication Number Publication Date
WO2013150877A1 true WO2013150877A1 (ja) 2013-10-10

Family

ID=49300371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057416 WO2013150877A1 (ja) 2012-04-05 2013-03-15 非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池

Country Status (6)

Country Link
US (1) US20150140431A1 (ja)
EP (1) EP2835849A4 (ja)
JP (1) JP5915732B2 (ja)
KR (1) KR20140148408A (ja)
CN (1) CN104272507A (ja)
WO (1) WO2013150877A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743536A (zh) * 2015-02-10 2015-07-01 常州普格纳能源材料有限公司 一种磷酸盐系正极材料的制备方法
JP6288342B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP6288341B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101844774B1 (ko) * 2015-08-12 2018-04-04 서울대학교산학협력단 3차원 리튬 확산이 가능한 올리빈계 양극재 및 이의 제조방법
US10655479B2 (en) 2018-07-11 2020-05-19 Rolls-Royce Corporation Turbine wheel assembly with ceramic matrix composite blades
KR102565910B1 (ko) * 2019-01-21 2023-08-10 주식회사 엘지화학 이차전지용 양극 활물질의 제조방법
CN110400921A (zh) * 2019-07-17 2019-11-01 湖北锂诺新能源科技有限公司 一种碳包覆锑掺杂岩盐结构氟氧钒锂正极材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (ja) 1999-04-30 2001-01-19 Hydro Quebec 新しい高表面伝導率電極材料
WO2011013243A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 正極活物質及びその製造方法
JP2011238594A (ja) * 2010-04-13 2011-11-24 Nippon Electric Glass Co Ltd リチウムイオン二次電池正極材料およびその製造方法
JP2011249324A (ja) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置、及び電気推進車両、並びに蓄電装置の作製方法
JP2012248378A (ja) * 2011-05-27 2012-12-13 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2344903C (en) * 2000-04-25 2013-03-05 Sony Corporation Positive electrode active material and non-aqueous electrolyte cell
WO2007034823A1 (ja) * 2005-09-21 2007-03-29 Kanto Denka Kogyo Co., Ltd. 正極活物質の製造方法およびそれを用いた非水電解質電池
WO2009003093A1 (en) * 2007-06-26 2008-12-31 Tiax, Llc Metal phosphate compounds and batteries containing the same
CN101112979B (zh) * 2007-06-27 2010-05-19 广州市鹏辉电池有限公司 一种高密度类球形磷酸铁锂的固相制备方法
WO2009127901A1 (en) * 2008-04-14 2009-10-22 High Power Lithium S.A. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
CN102378738A (zh) * 2009-04-03 2012-03-14 旭硝子株式会社 磷酸铁锂颗粒的制造方法及二次电池的制造方法
CN101853936A (zh) * 2010-05-04 2010-10-06 苏州大学 锂离子电池正极材料磷酸锰锂的制备方法
CN101976734A (zh) * 2010-11-03 2011-02-16 江苏方舟新能源股份有限公司 高密度锂电池正极材料磷酸亚铁锂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015111A (ja) 1999-04-30 2001-01-19 Hydro Quebec 新しい高表面伝導率電極材料
WO2011013243A1 (ja) * 2009-07-31 2011-02-03 トヨタ自動車株式会社 正極活物質及びその製造方法
JP2011238594A (ja) * 2010-04-13 2011-11-24 Nippon Electric Glass Co Ltd リチウムイオン二次電池正極材料およびその製造方法
JP2011249324A (ja) * 2010-04-28 2011-12-08 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質、蓄電装置、及び電気推進車両、並びに蓄電装置の作製方法
JP2012248378A (ja) * 2011-05-27 2012-12-13 Hitachi Metals Ltd リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A. YAMADA; S. C. CHUNG; K. HINOKUMA: "Optimized LiFeP0 for Lithium Battery Cathodes", JOURNAL OF THE ELECTROCHEMICAL SOCIETY, vol. 148, 2001, pages A224 - A229
ROBERT DOMINKO; MARJAN BELE; JEAN-MICHEL GOUPIL; MIRAN GABERSCEK; DARKO HANZEL; IZTOK ARCON; JANEZ JAMNIK WIRED: "Porous Cathode Materials: A Novel Concept for Synthesis of LiFePo4", CHEMISTRY OF MATERIALS, vol. 19, 2007, pages 2960 - 2969
See also references of EP2835849A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743536A (zh) * 2015-02-10 2015-07-01 常州普格纳能源材料有限公司 一种磷酸盐系正极材料的制备方法
JP6288342B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP6288341B1 (ja) * 2017-03-30 2018-03-07 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2018170187A (ja) * 2017-03-30 2018-11-01 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池
JP2018170186A (ja) * 2017-03-30 2018-11-01 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN104272507A (zh) 2015-01-07
US20150140431A1 (en) 2015-05-21
EP2835849A1 (en) 2015-02-11
JPWO2013150877A1 (ja) 2015-12-17
JP5915732B2 (ja) 2016-05-11
KR20140148408A (ko) 2014-12-31
EP2835849A4 (en) 2015-11-25

Similar Documents

Publication Publication Date Title
JP5736965B2 (ja) リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、及びリチウム二次電池
JP7063981B2 (ja) 負極活物質、これを含む負極及びリチウム二次電池
JP5268134B2 (ja) 正極活物質の製造方法およびそれを用いた非水電解質電池
JP6094584B2 (ja) リチウム二次電池用正極活物質、それを用いたリチウム二次電池用正極及びリチウム二次電池、並びにリチウム二次電池用正極活物質の製造方法
JP5684915B2 (ja) リチウム2次電池用の陽極活物質とその製造方法およびそれを含むリチウム2次電池
WO2013150877A1 (ja) 非水二次電池用正極活物質の製造方法、非水二次電池用正極、及び非水二次電池
US9564641B2 (en) Active material, electrode, lithium ion secondary battery, and method for manufacturing active material
JP5928302B2 (ja) リチウム二次電池用正極活物質の製造方法
JP2007335325A (ja) 非水電解質二次電池用正極活物質及び電池
JP2009170401A (ja) 非水電解質二次電池
JP2014032803A (ja) リチウム二次電池用正極活物質、及びリチウム二次電池
JP6070222B2 (ja) 非水系二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いた非水系二次電池用正極を有する非水系二次電池
JP5909131B2 (ja) リチウム二次電池用活物質、それを用いたリチウム二次電池用電極及びリチウム二次電池
KR101186686B1 (ko) 리튬 이차 전지용 양극 활물질의 제조 방법
JP2015056223A (ja) 非水系二次電池用正極活物質、非水系二次電池用正極活物質の製造方法、非水系二次電池用正極および非水系二次電池
JP2012018832A (ja) リチウム二次電池用正極活物質とその製造方法、および該正極活物質の前駆体とその製造方法、ならびに該正極活物質を用いたリチウム二次電池
WO2013183661A1 (ja) 非水電解質二次電池用正極活物質、非水電解質二次電池用正極および非水電解質二次電池
JP2015002091A (ja) リチウムイオン二次電池用正極活物質、それを用いたリチウムイオン二次電池用正極、リチウムイオン二次電池、リチウムイオン二次電池モジュール、及びリチウムイオン二次電池用正極活物質の製造方法
JP2015002092A (ja) リチウムイオン二次電池用正極活物質及びリチウムイオン二次電池用正極活物質の製造方法
JP2010027604A (ja) リチウム二次電池用正極活物質及びリチウム二次電池
JP5598684B2 (ja) 非水電解質二次電池用正極活物質、正極及び電池
WO2023008098A1 (ja) 二次電池用負極活物質および二次電池
JP2015056222A (ja) 非水系二次電池用正極活物質、非水系二次電池用正極活物質の製造方法、非水系二次電池用正極および非水系二次電池
US9825295B2 (en) Positive electrode active material and lithium-ion secondary battery
JP2013086979A (ja) リチウムイオン電池用正極活物質及びその製造法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13772289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014509096

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147027730

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14390273

Country of ref document: US

Ref document number: 2013772289

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE