WO2012008423A1 - 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法 - Google Patents

活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法 Download PDF

Info

Publication number
WO2012008423A1
WO2012008423A1 PCT/JP2011/065832 JP2011065832W WO2012008423A1 WO 2012008423 A1 WO2012008423 A1 WO 2012008423A1 JP 2011065832 W JP2011065832 W JP 2011065832W WO 2012008423 A1 WO2012008423 A1 WO 2012008423A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
electrode
temperature
livopo
lithium
Prior art date
Application number
PCT/JP2011/065832
Other languages
English (en)
French (fr)
Inventor
佐野 篤史
佳太郎 大槻
浩司 時田
友彦 加藤
樋口 章二
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to US13/810,464 priority Critical patent/US8993171B2/en
Priority to CN2011800350194A priority patent/CN103003990A/zh
Publication of WO2012008423A1 publication Critical patent/WO2012008423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an active material, an electrode including the active material, a lithium secondary battery including the electrode, and a method for manufacturing the active material.
  • LiVOPO 4 is known as a compound that can realize a charge / discharge voltage of 4 V class among phosphoric acid positive electrode materials. However, even in a lithium ion secondary battery using LiVOPO 4 , sufficient reversible capacity and rate characteristics are not obtained.
  • the above positive electrode materials are described in, for example, the following patent documents 1 and 2 and the following non-patent documents 1 to 4.
  • the crystal represented by the structural formula LiVOPO 4 it is known that lithium ions are reversibly inserted and desorbed. According to Patent Document 1, the non-aqueous discharge capacity of electrolyte secondary battery, compared with the LiVOPO 4 of ⁇ -type crystal structure (triclinic), the larger LiVOPO 4 of ⁇ -type crystal structure.
  • an active material containing LiVOPO 4 having a ⁇ -type crystal structure obtained by a conventional method cannot obtain a sufficient discharge capacity.
  • an object of the present invention is to provide an active material capable of obtaining a sufficient discharge capacity, an electrode including the active material, a lithium secondary battery including the electrode, and a method for producing the active material.
  • the inventors of the present invention have found that two ⁇ -type crystal structures with different shapes can be obtained by controlling the heating rate in hydrothermal synthesis so that it is initially high and then slow. It was found that an active material in which the fine particles were mixed was obtained, and the discharge capacity of the active material was sufficiently high.
  • the active material according to the present invention includes ⁇ -type LiVOPO 4 particles having an aspect ratio of 1 to 0.7 and an average particle diameter of 0.4 to 1 ⁇ m, an average ratio of 0.3 or less and a major axis having an average particle diameter of 0.1.
  • Such an active material is obtained by the above-described method for producing an active material, and has a high discharge capacity.
  • the electrode according to the present invention is an electrode including a current collector and an active material layer including the above-described active material and provided on the current collector.
  • the active material according to the present invention is a lithium secondary battery including the above-described electrode.
  • the method for producing an active material of the present invention further includes a step of firing LiVOPO 4 having a ⁇ -type crystal structure obtained in the above-described step.
  • an active material capable of obtaining a sufficient discharge capacity an electrode including the active material, a lithium secondary battery including the electrode, and a method for producing the active material can be provided.
  • FIG. 2 is an electron micrograph of the active material obtained in Example 1.
  • FIG. It is a schematic cross section of the lithium ion secondary battery according to the present embodiment.
  • 3 is a chart showing a temperature rise profile of Example 1.
  • FIG. 1 is a scanning electron micrograph showing an example of the active material according to the present embodiment.
  • the active material 30 according to the present embodiment is a mixture of rod-like particles 10 and spherical particles 20, and these are usually aggregated in a mixed state.
  • the rod-shaped particles 10 are particles having an aspect ratio of 0.3 or less, an average particle diameter of a major axis of 0.2 to 0.9 ⁇ m, and ⁇ -type LiVOPO 4 as a main component.
  • the spherical particles 20 have an aspect ratio of 1 to 0.7, an average particle size of 0.4 to 1 ⁇ m, and have ⁇ -type LiVOPO 4 as a main component.
  • the aspect ratio of the particle can be calculated by (short side / long side) when each particle is surrounded by a rectangle having a minimum area circumscribing each particle in the SEM photograph.
  • the mixing ratio of the rod-shaped particles 10 and the spherical particles 20 is not particularly limited, but the number ratio can be 10: 1 to 1:10.
  • the average particle diameter of the spherical particles is a predetermined maximum distance in the A direction in the SEM photograph, that is, a distance between lines (so-called Feret diameter) when sandwiched between parallel outer tangents orthogonal to the A direction. expressed.
  • the average particle diameter of the long axis of the rod-like particles can be more easily measured as the length of the long side of the rectangle in the SEM photograph. These may be averaged, for example, about 100 particle sizes.
  • the LiVOPO 4 of ⁇ -type crystal structure based on the sum of the LiVOPO 4 of LiVOPO 4 and ⁇ -type crystal structure of the ⁇ -type crystal structure It means containing 80 mass% or more.
  • the amount of LiVOPO 4 having a ⁇ -type crystal structure or LiVOPO 4 having an ⁇ -type crystal structure in the active material can be measured by, for example, an X-ray diffraction method.
  • LiVOPO 4 of ⁇ -type crystal structure peaks appear in 2 [Theta] 27.2 degrees.
  • the active material 1 may contain a small amount of unreacted raw material components in addition to the ⁇ -type crystal structure LiVOPO 4 and the ⁇ -type crystal structure LiVOPO 4 .
  • the manufacturing method of the active material according to the present embodiment includes the following temperature raising step.
  • the temperature raising step is a step of heating a mixture containing a lithium source, a pentavalent vanadium source, a phosphoric acid source, water, and a reducing agent in a sealed container. By using an airtight container, the inside of a container will be in a pressurized state with heating.
  • lithium source examples include lithium compounds such as LiNO 3 , Li 2 CO 3 , LiOH, LiCl, Li 2 SO 4, and CH 3 COOLi. Among these, LiNO 3 and Li 2 CO 3 are preferable.
  • pentavalent vanadium source examples include vanadium compounds such as V 2 O 5 and NH 4 VO 3 .
  • the phosphoric acid source examples include PO 4 -containing compounds such as H 3 PO 4 , NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4, and Li 3 PO 4 . Among these, H 3 PO 4 and (NH 4 ) 2 HPO 4 are preferable.
  • the concentration of the lithium source is not particularly limited, but it is preferably blended so that the ratio of the number of moles of lithium atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2.
  • the concentration of the phosphoric acid source is not particularly limited, but it is preferably blended so that the ratio of the number of moles of phosphorus atoms to the number of moles of pentavalent vanadium atoms is 0.95 to 1.2.
  • the blending ratio of at least one of lithium atoms and phosphorus atoms is less than 0.95, the discharge capacity of the obtained active material tends to decrease, and the rate characteristics tend to decrease.
  • the blending ratio of at least one of lithium atoms and phosphorus atoms is more than 1.2, the discharge capacity of the obtained active material tends to decrease.
  • the reducing agent is not particularly limited, and examples thereof include organic acids such as citric acid, ascorbic acid, tartaric acid, hydrazine, hydrogen peroxide, and the like.
  • the blending amount of the reducing agent is not particularly limited, but the reducing agent is preferably 0.1 to 1 mol / L based on the total amount of the mixture.
  • the ratio of the number of moles of the reducing agent to the number of moles of pentavalent vanadium atoms is preferably 10 to 100 mol%.
  • a conductive material such as a carbon material is usually brought into contact with the surface of the active material in order to increase conductivity.
  • the active material and the conductive material may be mixed after the production of the active material to form the active material-containing layer.
  • the carbon material is used as the conductive material in the mixture as a raw material for hydrothermal synthesis. It can also be added to cause carbon to adhere to the active material.
  • Examples of the conductive material in the case where a conductive material that is a carbon material is added to the mixture include activated carbon, graphite, soft carbon, and hard carbon. Among these, it is preferable to use activated carbon that can easily disperse carbon particles in a mixture during hydrothermal synthesis.
  • the conductive material is not necessarily mixed in the mixture at the time of hydrothermal synthesis, and it is preferable that at least a part of the conductive material is mixed in the mixture at the time of hydrothermal synthesis. Thereby, the binder at the time of forming an active material content layer can be reduced, and a capacity density can be increased.
  • the content of the conductive material such as carbon particles in the mixture in the hydrothermal synthesis step is as follows: the number of moles C of carbon atoms constituting the carbon particles and the number of moles M of vanadium atoms contained in a pentavalent vanadium compound, for example. It is preferable to prepare such that the ratio C / M satisfies 0.04 ⁇ C / M ⁇ 4. When there is too little content (mole number C) of an electrically conductive material, there exists a tendency for the electronic conductivity and capacity density of the electrode active material comprised with an active material and an electrically conductive material to fall.
  • the amount of water in the mixture is not particularly limited as long as hydrothermal synthesis is possible, but the ratio of substances other than water in the mixture is preferably 35% by mass or less.
  • the order in which the raw materials are charged when adjusting the mixture is not particularly limited.
  • the raw materials of the above mixture may be mixed together, and first, a pentavalent vanadium compound is added to the mixture of water and PO 4 -containing compound, then a reducing agent is added, and then A lithium compound may be added.
  • a pentavalent vanadium compound is added to the mixture of water and PO 4 -containing compound, then a reducing agent is added, and then A lithium compound may be added.
  • the mixture is preferably a suspension.
  • the mixture (lithium compound, pentavalent) described above is placed in a reaction vessel (for example, an autoclave) having a function of heating the mixture containing moisture in a sealed vessel to make the inside hot and pressurized.
  • a reaction vessel for example, an autoclave
  • vanadium compound PO 4 -containing compound, water, reducing agent, etc.
  • the reaction vessel is sealed, and the mixture is heated at a heating rate T1 from 25 ° C. to 110 ° C., and then heated from 110 ° C. to a predetermined final temperature of 200 ° C. or higher at a heating rate T2.
  • T1-T2 ⁇ 1 ° C./min is preferable, T1-T2 ⁇ 2 ° C./min is more preferable, and T1-T2 ⁇ 3 ° C./min is further preferable.
  • the rate of temperature increase at 25 ° C. or lower is not particularly limited.
  • the temperature increase rate may fluctuate, the temperature increase rate T in that case is a time average value in each temperature section. In this case, it is preferable that the maximum value and the minimum value of the temperature in each temperature section fall within the above-described temperature ranges. As the temperature in the reaction vessel rises, the reaction vessel is pressurized by the water vapor pressure.
  • the predetermined final temperature is not particularly limited, but is preferably 200 to 300 ° C., and more preferably 220 to 280 ° C. from the viewpoint of improving the discharge capacity of the obtained active material. If the predetermined final temperature is too low, the crystallinity of the obtained LiVOPO 4 having a ⁇ -type crystal structure is lowered, and the capacity density of the active material tends to be reduced. If the predetermined final temperature is too high, the reaction vessel is required to have high heat resistance, and the production cost of the active material tends to increase. By setting the temperature of the mixture within the above range, these tendencies can be suppressed.
  • the pressure in the reaction vessel is preferably 0.1 to 30 MPa.
  • the pressure applied to the mixture is too low, the crystallinity of the obtained LiVOPO 4 having a ⁇ -type crystal structure is lowered, and the capacity density of the active material tends to be reduced.
  • the pressure applied to the mixture is too high, the reaction vessel is required to have high pressure resistance, and the active material production cost tends to increase. By setting the pressure applied to the mixture within the above range, these tendencies can be suppressed. And it is thought that the hydrothermal reaction of a mixture advances by such a temperature rising process, and the above-mentioned active material is formed.
  • the maintenance time is not particularly limited, but is preferably 1 to 30 hours. By maintaining, there is an effect that crystal growth proceeds.
  • the reaction is then cooled.
  • the cooling rate is not particularly limited, and it is sufficient to stop heating and obtain a temperature near room temperature.
  • the obtained active material is usually precipitated as a solid in the liquid after hydrothermal synthesis.
  • the liquid after the hydrothermal synthesis is filtered, for example, to collect the solid, and the collected solid is washed with water, acetone or the like, and then dried to obtain the ⁇ -type crystal structure as described above. and the LiVOPO 4 as a main component, the active material containing both spherical particles and rod-shaped particles can be obtained efficiently.
  • the method for producing an active material according to the present embodiment may further include a step of heating the active material obtained by hydrothermal synthesis (hereinafter may be referred to as “firing step”). In this step, it is considered that a phenomenon occurs in which impurities remaining in the active material obtained through the hydrothermal synthesis step are removed.
  • the above active material may be heated to 400 ° C. to 600 ° C. If the heating temperature is too high, grain growth of the active material proceeds and the particle size (primary particle size) increases, so that lithium diffusion in the active material is slowed and the capacity density of the active material tends to decrease. On the other hand, if the heating temperature is too low, the firing effect cannot be obtained. By setting the heating temperature within the above range, these tendencies can be suppressed.
  • the heating time is not particularly limited, but is preferably 3 to 8 hours.
  • the atmosphere of the firing step is not particularly limited, but is preferably an air atmosphere in order to facilitate the removal of the reducing agent. On the other hand, it can also be performed in an inert atmosphere such as argon gas or nitrogen gas.
  • an active material that is a mixture of rod-like particles and spherical particles containing LiVOPO 4 having a ⁇ -type crystal structure as a main component.
  • the electrode using such an active material and the lithium secondary battery using the said electrode can obtain big discharge capacity.
  • Such knowledge has not been obtained so far, and such an effect is a remarkable effect as compared with the prior art.
  • the reason why such a result is obtained is unclear, but it is considered that one of the reasons is that particles having high crystallinity and small particle size can be obtained by specifying the hydrothermal synthesis conditions.
  • FIG. 2 is a schematic cross-sectional view of a lithium ion secondary battery 100 according to this embodiment using the electrode.
  • the lithium ion secondary battery 100 mainly includes a laminate 30, a case 50 that accommodates the laminate 30 in a sealed state, and a pair of leads 60 and 62 connected to the laminate 30.
  • the laminated body 30 is configured such that a pair of positive electrodes 10 and negative electrodes 20 are arranged to face each other with a separator 18 interposed therebetween.
  • the positive electrode 10 is obtained by providing a positive electrode active material layer 14 on a plate-like (film-like) positive electrode current collector 12.
  • the negative electrode 20 is obtained by providing a negative electrode active material layer 24 on a plate-like (film-like) negative electrode current collector 22.
  • the positive electrode active material layer 14 and the negative electrode active material layer 24 are in contact with both sides of the separator 18.
  • Leads 60 and 62 are connected to the end portions of the positive electrode current collector 12 and the negative electrode current collector 22, respectively, and the end portions of the leads 60 and 62 extend to the outside of the case 50.
  • the positive electrode 10 and the negative electrode 20 are collectively referred to as electrodes 10 and 20, and the positive electrode current collector 12 and the negative electrode current collector 22 are collectively referred to as current collectors 12 and 22, and the positive electrode active material layer 14 and the negative electrode
  • the active material layers 24 are collectively referred to as active material layers 14 and 24.
  • the positive electrode current collector 12 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the positive electrode active material layer 14 includes an active material according to the present embodiment, a binder, and a conductive material in an amount as necessary.
  • the binder binds the active materials to each other and binds the active material to the positive electrode current collector 12.
  • the material of the binder is not particularly limited as long as the above-described bonding is possible.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer
  • ETFE ethylene-tetrafluoroethylene copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE ethylene-chlorotrifluoroethylene copolymer
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoro Ethylene-perfluoroalkyl vinyl ether copolymer
  • EFE ethylene-tetrafluoroethylene cop
  • binders for example, vinylidene fluoride-hexafluoropropylene fluorine rubber (VDF-HFP fluorine rubber), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-HFP) -TFE fluorine rubber), vinylidene fluoride-pentafluoropropylene fluorine rubber (VDF-PFP fluorine rubber), vinylidene fluoride-pentafluoropropylene-tetrafluoroethylene fluorine rubber (VDF-PFP-TFE fluorine rubber) , Vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene fluoro rubber (VDF-PFMVE-TFE fluoro rubber), vinylidene fluoride-chlorotrifluoroethylene fluoro rubber It may be used vinylidene fluoride-based fluorine rubbers such as rubber (VDF-HFP fluorine rubber
  • polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, cellulose, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and the like may be used as the binder.
  • thermoplastic elastomeric polymers such as styrene / butadiene / styrene block copolymers, hydrogenated products thereof, styrene / ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers, and hydrogenated products thereof. May be used.
  • syndiotactic 1,2-polybutadiene, ethylene / vinyl acetate copolymer, propylene / ⁇ -olefin (2 to 12 carbon atoms) copolymer, and the like may be used.
  • an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder.
  • the electron conductive conductive polymer include polyacetylene. In this case, since the binder exhibits the function of the conductive material, it is not necessary to add the conductive material.
  • the ion-conductive conductive polymer for example, those having ion conductivity such as lithium ion can be used.
  • polymer compounds polyether-based polymer compounds such as polyethylene oxide and polypropylene oxide
  • Examples include Li (CF 3 SO 2 ) 2 N, LiN (C 2 F 5 SO 2 ) 2 lithium salt, or a composite of alkali metal salt mainly composed of lithium.
  • the polymerization initiator used for the combination include a photopolymerization initiator or a thermal polymerization initiator that is compatible with the above-described monomer.
  • the content of the binder contained in the positive electrode active material layer 14 is preferably 0.5 to 6% by mass based on the mass of the active material layer.
  • the binder content is less than 0.5% by mass, the amount of the binder is too small and a tendency to fail to form a strong active material layer increases.
  • the content rate of a binder exceeds 6 mass%, the quantity of the binder which does not contribute to an electric capacity will increase, and the tendency for it to become difficult to obtain sufficient volume energy density becomes large. In this case, particularly, when the electronic conductivity of the binder is low, the electric resistance of the active material layer is increased, and a tendency that a sufficient electric capacity cannot be obtained increases.
  • Examples of the conductive material include carbon blacks, carbon materials, metal fine powders such as copper, nickel, stainless steel, and iron, a mixture of carbon materials and metal fine powders, and conductive oxides such as ITO.
  • the negative electrode current collector 22 may be a conductive plate material, and for example, a thin metal plate of aluminum, copper, or nickel foil can be used.
  • the negative electrode active material is not particularly limited, and a known negative electrode active material for a battery can be used. Examples of the negative electrode active material include graphite, non-graphitizable carbon, graphitizable carbon, and low-temperature calcined carbon that can occlude / release (intercalate / deintercalate or dope / dedope) lithium ions.
  • grains containing are mentioned.
  • the binder and the conductive material the same materials as those for the positive electrode can be used.
  • the method for manufacturing the electrodes 10 and 20 according to this embodiment includes a step of applying a coating material, which is a raw material of the electrode active material layers 14 and 24, onto the aggregate (hereinafter, also referred to as “coating step”), and a collector. And a step of removing the solvent in the paint applied on the electric body (hereinafter, also referred to as “solvent removal step”).
  • a coating material which is a raw material of the electrode active material layers 14 and 24 onto the aggregate
  • solvent removal step a step of removing the solvent in the paint applied on the electric body
  • the paint contains the active material, the binder, and the solvent.
  • the coating material may contain, for example, a conductive material for increasing the conductivity of the active material.
  • the solvent for example, N-methyl-2-pyrrolidone, N, N-dimethylformamide and the like can be used.
  • the mixing method of the components constituting the paint such as the active material, the binder, the solvent, and the conductive material is not particularly limited, and the mixing order is not particularly limited. For example, first, an active material, a conductive material, and a binder are mixed, and N-methyl-2-pyrrolidone is added to the obtained mixture and mixed to prepare a paint.
  • solvent removal step Subsequently, the solvent in the paint applied on the current collectors 12 and 22 is removed.
  • the removal method is not particularly limited, and the current collectors 12 and 22 coated with the paint may be dried in an atmosphere of, for example, 80 ° C. to 150 ° C.
  • the electrodes on which the active material layers 14 and 24 are formed in this way may be pressed by a roll press device or the like, if necessary.
  • the linear pressure of the roll press can be, for example, 10 to 50 kgf / cm.
  • the electrode according to this embodiment can be produced.
  • the active material according to the present embodiment is used as the positive electrode active material, an electrode having a sufficient discharge capacity can be obtained.
  • the electrolyte is contained in the positive electrode active material layer 14, the negative electrode active material layer 24, and the separator 18.
  • the electrolyte is not particularly limited, and, for example, in the present embodiment, an electrolyte solution containing a lithium salt (electrolyte aqueous solution, electrolyte solution using an organic solvent) can be used.
  • the electrolyte aqueous solution is preferably an electrolyte solution (non-aqueous electrolyte solution) using an organic solvent because the electrochemical decomposition voltage is low, and the withstand voltage during charging is limited to a low level.
  • a lithium salt dissolved in a non-aqueous solvent is preferably used as the electrolyte solution.
  • lithium salt examples include LiPF 6 , LiClO 4 , LiBF 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CF 2 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN Salts such as (CF 3 CF 2 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiN (CF 3 CF 2 CO) 2 , LiBOB can be used.
  • these salts may be used individually by 1 type, and may use 2 or more types together.
  • organic solvent propylene carbonate, ethylene carbonate, diethyl carbonate, etc. are mentioned preferably, for example. These may be used alone or in combination of two or more at any ratio.
  • the electrolyte may be a gel electrolyte obtained by adding a gelling agent in addition to liquid.
  • a solid electrolyte (a solid polymer electrolyte or an electrolyte made of an ion conductive inorganic material) may be contained.
  • the separator 18 is an electrically insulating porous body, for example, a single layer of a film made of polyethylene, polypropylene or polyolefin, a stretched film of a laminate or a mixture of the above resins, or a group consisting of cellulose, polyester and polypropylene. Examples thereof include a nonwoven fabric made of at least one selected constituent material.
  • the case 50 seals the laminate 30 and the electrolyte solution therein.
  • the case 50 is not particularly limited as long as it can prevent leakage of the electrolytic solution to the outside and entry of moisture and the like into the electrochemical device 100 from the outside.
  • a metal laminate film in which a metal foil 52 is coated with a polymer film 54 from both sides can be used as the case 50.
  • an aluminum foil can be used as the metal foil 52 and a film such as polypropylene can be used as the polymer film 54.
  • the material of the outer polymer film 54 is preferably a polymer having a high melting point such as polyethylene terephthalate (PET) or polyamide, and the material of the inner polymer film 54 is polyethylene (PE) or polypropylene (PP). preferable.
  • PET polyethylene terephthalate
  • PP polypropylene
  • the leads 60 and 62 are made of a conductive material such as aluminum.
  • the leads 60 and 62 are welded to the positive electrode current collector 12 and the negative electrode current collector 22 by a known method, respectively, and a separator is provided between the positive electrode active material layer 14 of the positive electrode 10 and the negative electrode active material layer 24 of the negative electrode 20.
  • 18 may be inserted into the case 50 together with the electrolytic solution with the 18 interposed therebetween, and the entrance of the case 50 may be sealed.
  • the preferred embodiment of the active material of the present invention, the electrode using the same, the lithium ion secondary battery including the electrode, and the manufacturing method thereof has been described in detail. It is not limited.
  • an electrode using the active material of the present invention can be used for an electrochemical element other than a lithium ion secondary battery.
  • Electrochemical elements include secondary batteries other than lithium ion secondary batteries such as metal lithium secondary batteries (those using the active material of the present invention as the cathode and metal lithium as the anode), and electric batteries such as lithium capacitors. Examples include chemical capacitors. These electrochemical elements can be used for power sources such as self-propelled micromachines and IC cards, and distributed power sources arranged on or in a printed circuit board.
  • Example 1 [Hydrothermal synthesis process] In a glass inner cylinder of a 500 mL autoclave, 18.38 g (0.10 mol) of V 2 O 5 (manufactured by Nacalai Tesque, purity 99%), 200 g of distilled water (manufactured by Nacalai Tesque, HPLC), and 23. 06 g (0.20 mol) of H 3 PO 4 (manufactured by Nacalai Tesque, 85% purity) was put in this order, and the mixture was stirred with a magnetic stirrer. Subsequently, 2.55 g (0.05 mol) of hydrazine monohydrate was added as a reducing agent. The pH was 3.
  • the glass inner cylinder was sealed and maintained at 95 ° C. for 16 hours in an autoclave while stirring. Then, after cooling to room temperature, when the glass inner cylinder was opened, it was a light blue paste without fluidity. At this time, the pH of the solution was 3. To the obtained paste-like substance, 8.48 g (0.20 mol) of LiOH.H 2 O (manufactured by Nacalai Tesque, purity 99%) was added. LiOH.H 2 O remained on the paste and there was no change in hue. The pH immediately after the addition was 11. The glass inner tube was sealed, and while stirring, the temperature was increased from the start temperature (25 ° C.) to 110 ° C. at 4 ° C./min, and then from 110 ° C. to 250 ° C. at 0.5 ° C./min. The temperature pattern is shown in FIG. After reaching 250 ° C., it was maintained at 250 ° C. for 10 hours.
  • the container was allowed to cool to room temperature to obtain a suspension solution containing a brown precipitate.
  • the pH of this substance was measured and found to be 7.
  • about 200 ml of distilled water was added, and the precipitate in the container was washed with stirring (pH 7). Thereafter, suction filtration was performed (washing with water). Thereafter, about 700 ml of acetone was added, and the precipitate was washed in the same manner as the above water washing.
  • the filtered material was dried to give 31.78 g of a brown solid.
  • the yield was 94.1% in terms of LiVOPO 4 (97% when 0.97 g of coarse particles were included).
  • Examples 2, 3, 4, 5, 6 The same procedure as in Example 1 was carried out except that the heating rate from 110 ° C. to 250 ° C. was 0.1, 0.2, 0.3, 0.8, and 2.2 ° C./min, respectively.
  • Example 7 The same procedure as in Example 1 was carried out except that the temperature increase rate from 25 ° C. to 110 ° C. was set to 3, 10 ° C./min, respectively.
  • Example 9 The amount of hydrazine charged was 15/25 times and 35/25 times that of Example 1, respectively, except that the reducing agent concentrations were 0.15 mol / L and 0.35 mol / L, respectively. Same as 1.
  • Example 11 As a reducing agent, the same procedure as in Example 1 was carried out except that the same moles of citric acid and ascorbic acid were added instead of hydrazine.
  • Example 13 The same procedure as in Example 1 was performed except that the temperature increase rate from 25 ° C. to 110 ° C. was 0.5 ° C./min.
  • Example 1 The same procedure as in Example 1 was performed except that the temperature increase rate from 110 ° C. to 250 ° C. was 3 ° C./min.
  • Example 2 The same procedure as in Example 1 was performed except that the temperature increase rate from 25 ° C. to 110 ° C. was 12 ° C./min.
  • Example 3 The same procedure as in Example 1 was performed except that the temperature increase rate from 25 ° C. to 110 ° C. was 0.4 ° C./min.
  • Example 4 The same procedure as in Example 1 was performed except that the temperature increase rate from 110 ° C. to 250 ° C. was set to 0.05 ° C./min.
  • the shape of the active material of each Example and Comparative Example was observed using a scanning electron microscope. An electron micrograph of the active material of Example 1 is shown in FIG.
  • the active material of each example was a mixture of rod-like particles 10 and spherical particles 20. Based on the SEM photograph, the average major axis diameter of the rod-shaped particles of each example and the average particle diameter of the spherical particles were measured. In the comparative example, amorphous particles were obtained.
  • PVDF polyvinylidene fluoride
  • NMP N-methyl-2-pyrrolidone
  • the obtained electrode and the Li foil as the counter electrode were laminated with a separator made of a polyethylene microporous film interposed therebetween to obtain a laminate (element body).
  • This laminate was put in an aluminum laminate pack, and after pouring a 1M LiPF 6 solution as an electrolyte into the aluminum laminate pack, the laminate was vacuum-sealed to produce evaluation cells for the examples and comparative examples.
  • Active material positive electrode (electrode) ... 10, 12 ... Current collector, 14 ... Active material layer, 100 ... Lithium ion secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供する。 【解決手段】リチウム源と、5価のバナジウム源と、リン酸源と、水と、還元剤と、を含む混合物を、密閉容器内で、25℃から110℃まで昇温速度T1で昇温し、その後、110℃から、200℃以上の所定の温度まで昇温速度T2で昇温する昇温工程を備え、T1>T2であり、T1=0.5~10℃/minであり、T2=0.1~2.2℃/minである、活物質の製造方法である。

Description

活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
 本発明は、活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法に関する。
 リン酸系正極材料の中でも4V級の充放電電圧を実現し得る化合物として、LiVOPOが知られている。しかし、LiVOPOを用いたリチウムイオン二次電池においても、十分な可逆容量やレート特性が得られていない。上記の正極材料は、例えば、下記特許文献1,2及び下記非特許文献1~4に記載されている。構造式LiVOPOで表される結晶においては、リチウムイオンが可逆的に挿入脱離することが知られている。特許文献1によれば、非水電解質二次電池の放電容量は、α型結晶構造(三斜晶)のLiVOPOに比べ、β型結晶構造のLiVOPOの方が大きい。
特開2004-303527号公報 特開2003-68304号公報
J.Solid State Chem.,95,352(1991) N.Dupre et al.,Solid State Ionics, 140 pp.209-221(2001) N. Dupre et al.,J. Power Sources, 97-98,pp.532-534 (2001) J.Baker et al.,J.Electrochem. Soc.,151,A796(2004)
 しかしながら、従来の方法により得られたβ型結晶構造のLiVOPOを含む活物質は、十分な放電容量を得られるものではなかった。
 そこで、本発明は、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、水熱合成における昇温速度を、最初は速く、後は遅くなるように制御すると、形状の異なる二つのβ型結晶構造の微小粒子が混合された活物質が得られ、この活物質の放電容量が十分に高くなることを見出した。
 本発明に係る活物質の製造方法は、リチウム源と、バナジウム源と、リン酸源と、水と、還元剤と、を含む混合物を25℃から110℃まで昇温速度T1で昇温し、その後、110℃から、200℃以上の所定の温度まで昇温速度T2で昇温する昇温工程を備え、T1>T2であり、T1=0.5~10℃/minであり、T2=0.1~2.2℃/minである。
 本発明にかかる活物質は、アスペクト比が1~0.7であり平均粒径0.4~1μmのβ型LiVOPO粒子と、アスペクト比0.3以下であり長軸の平均粒径0.2~0.9μmのβ型LiVOPO粒子と、を含む。
 このような活物質は、上述の活物質の製造方法により得られるものであり、放電容量が高い。
 本発明にかかる電極は、集電体と、上述の活物質を含み前記集電体上に設けられた活物質層と、を備える電極である。
 本発明に係る活物質は、上述の電極を備えるリチウム二次電池である。
 ここで、本発明の活物質の製造方法は、上述の工程で得られたβ型結晶構造のLiVOPOを焼成する工程をさらに備えることが好ましい。
 本発明によれば、十分な放電容量を得られる活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法を提供することができる。
実施例1により得られた活物質の電子顕微鏡写真である。 本実施形態に係るリチウムイオン二次電池の模式断面図である。 実施例1の昇温プロファイルを示すチャートである。
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。なお、以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
 <活物質>
 まず、本実施形態に係る活物質について説明する。図1は、本実施形態に係る活物質の一例を示す走査型電子顕微鏡写真である。本実施形態に係る活物質30は、棒状粒子10と、球状粒子20との混合物であり、通常これらが混合状態で凝集している。棒状粒子10とは、アスペクト比が0.3以下の粒子であり、長軸の平均粒径が0.2~0.9μmであり、β型LiVOPOを主成分とする。球状粒子20とは、アスペクト比が1~0.7のものであり、平均粒径が0.4~1μmであり、β型LiVOPOを主成分とする。
 粒子のアスペクト比は、SEM写真において、各粒子を、各粒子に外接する最小面積の長方形で囲んだ場合の、(短辺/長辺)により計算できる。棒状粒子10と、球状粒子20との混合比率は特に限定されないが、個数割合で、10:1~1:10とすることができる。
 本実施形態において、球状粒子の平均粒子径は、SEM写真において、予め定められたA方向における最大距離、すなわち、A方向と直交する平行外接線ではさんだ場合の線間距離(いわゆるFeret径)で表される。棒状粒子の長軸の平均粒径は、SEM写真における上述の長方形の長辺の長さとしてより容易に測定できる。これらは、例えば、100個程度の粒径を平均すればよい。
 ここで、「β型結晶構造のLiVOPOを主成分とする」とは、β型結晶構造のLiVOPOを、β型結晶構造のLiVOPOとα型結晶構造のLiVOPOとの総和に対して80質量%以上含むことを意味する。ここで、活物質におけるβ型結晶構造のLiVOPOやα型結晶構造のLiVOPO等の量は、例えば、X線回折法により測定することができる。通常、β型結晶構造のLiVOPOは2θ=27.0度にピークが現れ、α型結晶構造のLiVOPOは2θ=27.2度にピークが現れる。なお、活物質1は、β型結晶構造のLiVOPO及びα型結晶構造のLiVOPO以外にも、未反応の原料成分等を微量含んでもよい。
 <活物質の製造方法>
 本実施形態に係る活物質の製造方法について説明する。本実施形態に係る活物質の製造方法は、以下の昇温工程を備える。
 [昇温工程]
 昇温工程は、リチウム源と、5価のバナジウム源と、リン酸源と、水と、還元剤とを含む混合物を、密閉容器内で加熱する工程である。密閉容器を用いることにより、加熱と共に容器内が加圧状態となる。
 (混合物)
 リチウム源としては、例えば、LiNO、LiCO、LiOH、LiCl、LiSO及びCHCOOLi等のリチウム化合物が挙げられる。これらの中でも、LiNO、LiCOが好ましい。
 5価のバナジウム源としては、V及びNHVO等のバナジウム化合物が挙げられる。
 リン酸源としては、例えば、HPO、NHPO、(NHHPO及びLiPO等のPO含有化合物が挙げられる。これらの中でも、HPO、(NHHPOが好ましい。
 リチウム源の濃度は特に限定されないが、5価のバナジウム原子のモル数に対するリチウム原子のモル数の割合が0.95~1.2となるように配合することが好ましい。また、リン酸源の濃度も特に限定されないが、5価のバナジウム原子のモル数に対するリン原子のモル数の割合が0.95~1.2となるように配合することが好ましい。リチウム原子及びリン原子の少なくとも一方の配合比率が0.95より少ないと、得られる活物質の放電容量は減少する傾向があり、レート特性は低下する傾向がある。リチウム原子及びリン原子の少なくとも一方の配合比率が1.2よりも多いと、得られる活物質の放電容量は減少する傾向がある。
 還元剤は、特に限定されないが、例えば、クエン酸、アスコルビン酸、酒石酸等の有機酸、ヒドラジン、過酸化水素等が挙げられる。還元剤の配合量は特に限定されないが、還元剤は、混合物全量を基準として、0.1~1mol/Lであることが好ましい。また、5価のバナジウム原子のモル数に対して還元剤のモル数の割合は10~100mol%であることが好ましい。
 ところで、得られた活物質を用いて電極の活物質含有層を作製する場合、導電性を高めるべく、通常この活物質の表面に炭素材料等の導電材を接触させることが多い。この方法として、活物質の製造後に活物質と導電材とを混合して活物質含有層を形成してもよいが、例えば、水熱合成の原料となる混合物中に、炭素材料を導電材として添加して活物質に炭素を付着させることもできる。
 混合物中に炭素材料である導電材を添加する場合の導電材としては、例えば、活性炭、黒鉛、ソフトカーボン、ハードカーボン等が挙げられる。これらの中でも水熱合成時に炭素粒子を混合物に容易に分散させることができる、活性炭を用いることが好ましい。ただし、導電材は必ずしも水熱合成時に混合物に全量混合されている必要はなく、少なくとも一部が水熱合成時に混合物に混合されることが好ましい。これにより、活物質含有層を形成する際の結合剤を低減して容量密度を増加させることができる場合がある。
 水熱合成工程における混合物中の炭素粒子等の上記導電材の含有量は、炭素粒子を構成する炭素原子のモル数Cと、例えば5価のバナジウム化合物に含まれるバナジウム原子のモル数Mとの比C/Mが、0.04≦C/M≦4を満たすように調製することが好ましい。導電材の含有量(モル数C)が少なすぎる場合、活物質と導電材により構成される電極活物質の電子伝導性及び容量密度が低下する傾向がある。導電材の含有量が多すぎる場合、電極活物質に占める活物質の重量が相対的に減少し、電極活物質の容量密度が減少する傾向がある。導電材の含有量を上記の範囲内とすることにより、これらの傾向を抑制できる。
 混合物中における水の量は水熱合成が可能であれば特に限定されないが、混合物中の水以外の物質の割合は35質量%以下となることが好ましい。
 混合物を調整する際の、原料の投入順序は特に制限されない。例えば、上記混合物の原料をまとめて混合してもよく、また、最初に、水とPO含有化合物の混合物に対して5価のバナジウム化合物を添加し、その後、還元剤を添加し、さらにその後、リチウム化合物を加えてもよい。さらに、混合物を十分に混合させ、添加成分を十分に分散させておくことが好ましく、リチウム化合物、5価のバナジウム化合物、及びPO含有化合物の少なくとも一部は、水に溶解しておらず、混合物は懸濁液であることが好ましい。
 昇温工程では、まず、密閉容器内で水分を含む混合物を加熱することによって内部を高温加圧にできる機能を有する反応容器(例えば、オートクレーブ等)内に、上述した混合物(リチウム化合物、5価のバナジウム化合物、PO含有化合物、水、還元剤等)を投入する。なお、反応容器内で、混合物を調整してもよい。
 次に、反応容器を密閉し、混合物を25℃から110℃になるまで昇温速度T1で昇温し、その後、110℃から、200℃以上の所定の最終温度まで昇温速度T2で昇温する。
 ここで、T1>T2である。T1-T2≧1℃/minが好ましく、T1-T2≧2℃/minがより好ましく、T1-T2≧3℃/minがさらに好ましい。また、T1=0.5~10℃/minであり、好ましくはT1=3~5℃/minである。25℃以下の温度では特に水熱合成反応は殆ど起こらないので、25℃以下における昇温速度は特に限定されない。T2=0.1~2.2℃/minであり、好ましくは、T2=0.1~0.5℃/minである。なお、昇温速度は、変動することがあるが、その場合の昇温速度Tは各温度区間における時間平均値である。この場合、各温度区間における温度の最大値、最小値は、上述の各温度範囲に入ることが好ましい。反応容器内の温度が上がるにつれ、水の蒸気圧により反応容器内が加圧される。
 所定の最終温度は特に限定されないが、200~300℃とすることが好ましく、得られた活物質の放電容量を向上させる観点から、220~280℃とすることがより好ましい。所定の最終温度が低すぎると、得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。所定の最終温度が高すぎると、反応容器に高い耐熱性が求められ、活物質の製造コストが増大する傾向がある。混合物の温度を上記の範囲内とすることによって、これらの傾向も抑制できる。
 この場合、反応容器内の圧力は、0.1~30MPaとすることが好ましい。混合物に加える圧力が低すぎると、得られるβ型結晶構造のLiVOPOの結晶性が低下し、活物質の容量密度が減少する傾向がある。混合物に加える圧力が高すぎると、反応容器に高い耐圧性が求められ、活物質製造コストが増大する傾向がある。混合物に加える圧力を上記の範囲内とすることによって、これらの傾向を抑制できる。
 そして、このような昇温工程により、混合物の水熱反応が進行し、上述の活物質が形成されるものと考えられる。
 (維持工程)
 引き続いて、必要に応じて、所定の最終温度を維持する工程を行なうことが好ましい。維持時間は特に限定されないが、1~30時間が好ましい。維持を行なうことにより、結晶の成長が進むと言う効果がある。
 (冷却工程)
 その後、反応物を冷却する。冷却速度は特に限定されず、加熱をやめて常温付近まで得冷却すればよい。
 得られた活物質は、通常、水熱合成後の液中に固体として沈殿する。そして、水熱合成後の液を、例えば、ろ過して固体を捕集し、捕集された固体を水やアセトン等で洗浄し、その後乾燥させることにより、上述のような、β型結晶構造のLiVOPOを主成分とし、球状粒子と棒状粒子とを両方含む活物質を効率よく得ることができる。
 [焼成工程]
 本実施形態に係る活物質の製造方法は、水熱合成により得られた活物質を加熱する工程をさらに備えていてもよい(以下、「焼成工程」という場合がある。)。この工程においては、水熱合成工程を経て得られた活物質に残留した不純物等が除去される現象が起こるものと考えられる。
 ここで、焼成工程では、上述の活物質を400℃~600℃に加熱すればよい。加熱温度が高すぎると、活物質の粒成長が進み粒径(一次粒子径)が増大する結果、活物質におけるリチウムの拡散が遅くなり、活物質の容量密度が減少する傾向がある。一方、加熱温度が低すぎると、焼成の効果が得られない。加熱温度を上記の範囲内とすることによって、これらの傾向を抑制できる。加熱時間は特に限定されないが、3~8時間とすることが好ましい。
 焼成工程の雰囲気は特に限定されないが、還元剤の除去を行い易くするためには、大気雰囲気であることが好ましい。一方、アルゴンガス、窒素ガス等の不活性雰囲気中で行うこともできる。
 本実施形態に係る活物質の製造方法によれば、上述の、β型結晶構造のLiVOPOを主成分として含有する棒状粒子及び球状粒子の混合物である活物質を得ることができる。そして、このような活物質を用いた電極、及び当該電極を用いたリチウム二次電池は、大きな放電容量を得ることができる。このような知見は従来得られておらず、このような効果は、従来技術と比較して顕著な効果である。このような結果が得られる原因は不明であるが、水熱合成条件の特定により、結晶性が高く、粒径の小さい粒子が得られることが一因と考えられる。
 <電極及び当該電極を用いたリチウム二次電池>
 次に、本実施形態に係る活物質を用いた電極、及び当該電極を用いたリチウムイオン二次電池について説明する。本実施形態に係る電極は、集電体と、上記活物質を含み上記集電体上に設けられた活物質層と、を備える電極である。図2は、当該電極を用いた本実施形態に係るリチウムイオン二次電池100の模式断面図である。
 リチウムイオン二次電池100は、主として、積層体30、積層体30を密閉した状態で収容するケース50、及び積層体30に接続された一対のリード60,62を備えている。
 積層体30は、一対の正極10、負極20がセパレータ18を挟んで対向配置されたものである。正極10は、板状(膜状)の正極集電体12上に正極活物質層14が設けられたものである。負極20は、板状(膜状)の負極集電体22上に負極活物質層24が設けられたものである。正極活物質層14及び負極活物質層24がセパレータ18の両側にそれぞれ接触している。正極集電体12及び負極集電体22の端部には、それぞれリード60,62が接続されており、リード60,62の端部はケース50の外部にまで延びている。
 以下、正極10及び負極20を総称して、電極10、20といい、正極集電体12及び負極集電体22を総称して集電体12、22といい、正極活物質層14及び負極活物質層24を総称して活物質層14、24という。
 まず、電極10、20について具体的に説明する。
 (正極10)
 正極集電体12は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
 正極活物質層14は、本実施形態に係る活物質、結合剤、必要に応じた量の導電材を含むものである。
 結合剤は、活物質同士を結合すると共に、活物質と正極集電体12とを結合している。
 結合剤の材質としては、上述の結合が可能であればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、エチレン-テトラフルオロエチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂が挙げられる。
 また、上記の他に、結合剤として、例えば、ビニリデンフルオライド-ヘキサフルオロプロピレン系フッ素ゴム(VDF-HFP系フッ素ゴム)、ビニリデンフルオライド-ヘキサフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-HFP-TFE系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン系フッ素ゴム(VDF-PFP系フッ素ゴム)、ビニリデンフルオライド-ペンタフルオロプロピレン-テトラフルオロエチレン系フッ素ゴム(VDF-PFP-TFE系フッ素ゴム)、ビニリデンフルオライド-パーフルオロメチルビニルエーテル-テトラフルオロエチレン系フッ素ゴム(VDF-PFMVE-TFE系フッ素ゴム)、ビニリデンフルオライド-クロロトリフルオロエチレン系フッ素ゴム(VDF-CTFE系フッ素ゴム)等のビニリデンフルオライド系フッ素ゴムを用いてもよい。
 更に、上記の他に、結合剤として、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、芳香族ポリアミド、セルロース、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等を用いてもよい。また、スチレン・ブタジエン・スチレンブロック共重合体、その水素添加物、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体、その水素添加物等の熱可塑性エラストマー状高分子を用いてもよい。更に、シンジオタクチック1,2-ポリブタジエン、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン(炭素数2~12)共重合体等を用いてもよい。
 また、結合剤として電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン等が挙げられる。この場合は、結合剤が導電材の機能も発揮するので導電材を添加しなくてもよい。
 イオン伝導性の導電性高分子としては、例えば、リチウムイオン等のイオンの伝導性を有するものを使用することができ、例えば、高分子化合物(ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物、ポリエーテル化合物の架橋体高分子、ポリエピクロルヒドリン、ポリフォスファゼン、ポリシロキサン、ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリル等)のモノマーと、LiClO、LiBF、LiPF、LiAsF、LiCl、LiBr、Li(CFSON、LiN(CSOリチウム塩又はリチウムを主体とするアルカリ金属塩と、を複合化させたもの等が挙げられる。複合化に使用する重合開始剤としては、例えば、上記のモノマーに適合する光重合開始剤または熱重合開始剤が挙げられる。
 正極活物質層14に含まれる結合剤の含有率は、活物質層の質量を基準として0.5~6質量%であることが好ましい。結合剤の含有率が0.5質量%未満となると、結合剤の量が少なすぎて強固な活物質層を形成できなくなる傾向が大きくなる。また、結合剤の含有率が6質量%を超えると、電気容量に寄与しない結合剤の量が多くなり、十分な体積エネルギー密度を得ることが困難となる傾向が大きくなる。また、この場合、特に結合剤の電子伝導性が低いと活物質層の電気抵抗が上昇し、十分な電気容量が得られなくなる傾向が大きくなる。
 導電材としては、例えば、カーボンブラック類、炭素材料、銅、ニッケル、ステンレス、鉄等の金属微粉、炭素材料及び金属微粉の混合物、ITO等の導電性酸化物が挙げられる。
 (負極20)
 負極集電体22は、導電性の板材であればよく、例えば、アルミ、銅、ニッケル箔の金属薄板を用いることができる。
 負極活物質は特に限定されず、公知の電池用の負極活物質を使用できる。負極活物質としては、例えば、リチウムイオンを吸蔵・放出(インターカレート・デインターカレート、或いはドーピング・脱ドーピング)可能な黒鉛、難黒鉛化炭素、易黒鉛化炭素、低温度焼成炭素等の炭素材料、Al、Si、Sn等のリチウムと化合することのできる金属、SiO、SnO等の酸化物を主体とする非晶質の化合物、チタン酸リチウム(LiTi12)等を含む粒子が挙げられる。
 結合材、導電材は、それぞれ、正極と同様のものを使用できる。
 次に、本実施形態に係る電極10,20の製造方法について説明する。
 (電極10,20の製造方法)
 本実施形態に係る電極10,20の製造方法は、電極活物質層14,24の原料である塗料を、集体上に塗布する工程(以下、「塗布工程」ということがある。)と、集電体上に塗布された塗料中の溶媒を除去する工程(以下、「溶媒除去工程」ということがある。)と、を備える。
 (塗布工程)
 塗料を集電体12、22に塗布する塗布工程について説明する。塗料は、上記活物質、結合剤、及び溶媒を含む。塗料には、これらの成分の他に、例えば、活物質の導電性を高めるための導電材が含まれていてもよい。溶媒としては、溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド等を用いることができる。
 活物質、結合剤、溶媒、導電材等の塗料を構成する成分の混合方法は特に制限されず、混合順序もまた特に制限されない。例えば、まず、活物質、導電材及び結合剤を混合し、得られた混合物に、N-メチル-2-ピロリドンを加えて混合し、塗料を調整する。
 上記塗料を、集電体12、22に塗布する。塗布方法としては、特に制限はなく、通常電極を作製する場合に採用される方法を用いることができる。例えば、スリットダイコート法、ドクターブレード法が挙げられる。
 (溶媒除去工程)
 続いて、集電体12、22上に塗布された塗料中の溶媒を除去する。除去法は特に限定されず、塗料が塗布された集電体12、22を、例えば80℃~150℃の雰囲気下で乾燥させればよい。
 そして、このようにして活物質層14、24が形成された電極を、その後、必要に応じて例えば、ロールプレス装置等によりプレス処理すればよい。ロールプレスの線圧は例えば、10~50kgf/cmとすることができる。
 以上の工程を経て、本実施形態に係る電極を作製することができる。
 本実施形態に係る電極によれば、正極活物質として本実施形態に係る活物質を用いるため、十分な放電容量の電極が得られる。
 ここで、上述のように作製した電極を用いたリチウムイオン二次電池100の他の構成要素を説明する。
 電解質は、正極活物質層14、負極活物質層24、及び、セパレータ18の内部に含有させるものである。電解質としては、特に限定されず、例えば、本実施形態では、リチウム塩を含む電解質溶液(電解質水溶液、有機溶媒を使用する電解質溶液)を使用することができる。ただし、電解質水溶液は電気化学的に分解電圧が低いことにより、充電時の耐用電圧が低く制限されるので、有機溶媒を使用する電解質溶液(非水電解質溶液)であることが好ましい。電解質溶液としては、リチウム塩を非水溶媒(有機溶媒)に溶解したものが好適に使用される。リチウム塩としては、例えば、LiPF、LiClO、LiBF、LiAsF、LiCFSO、LiCFCFSO、LiC(CFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)、LiN(CFCFCO)、LiBOB等の塩が使用できる。なお、これらの塩は1種を単独で使用してもよく、2種以上を併用してもよい。
 また、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、及び、ジエチルカーボネート等が好ましく挙げられる。これらは単独で使用してもよく、2種以上を任意の割合で混合して使用してもよい。
 なお、本実施形態において、電解質は液状以外にゲル化剤を添加することにより得られるゲル状電解質であってもよい。また、電解質溶液に代えて、固体電解質(固体高分子電解質又はイオン伝導性無機材料からなる電解質)が含有されていてもよい。
 セパレータ18は、電気絶縁性の多孔体であり、例えば、ポリエチレン、ポリプロピレン又はポリオレフィンからなるフィルムの単層体、積層体や上記樹脂の混合物の延伸膜、或いは、セルロース、ポリエステル及びポリプロピレンからなる群より選択される少なくとも1種の構成材料からなる繊維不織布が挙げられる。
 ケース50は、その内部に積層体30及び電解質溶液を密封するものである。ケース50は、電解液の外部への漏出や、外部からの電気化学デバイス100内部への水分等の侵入等を抑止できる物であれば特に限定されない。例えば、ケース50として、図2に示すように、金属箔52を高分子膜54で両側からコーティングした金属ラミネートフィルムを利用できる。金属箔52としては例えばアルミ箔を、高分子膜54としてはポリプロピレン等の膜を利用できる。例えば、外側の高分子膜54の材料としては融点の高い高分子例えばポリエチレンテレフタレート(PET)、ポリアミド等が好ましく、内側の高分子膜54の材料としてはポリエチレン(PE)、ポリプロピレン(PP)等が好ましい。
 リード60,62は、アルミ等の導電材料から形成されている。
 そして、公知の方法により、リード60、62を正極集電体12、負極集電体22にそれぞれ溶接し、正極10の正極活物質層14と負極20の負極活物質層24との間にセパレータ18を挟んだ状態で、電解液と共にケース50内に挿入し、ケース50の入り口をシールすればよい。
 以上、本発明の活物質、それを用いた電極、当該電極を備えるリチウムイオン二次電池、及び、それらの製造方法の好適な一実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。
 例えば、本発明の活物質を用いた電極は、リチウムイオン二次電池以外の電気化学素子にも用いることができる。電気化学素子としては、金属リチウム二次電池(カソードとして本発明の活物質を用い、アノードに金属リチウムを用いたもの)等のリチウムイオン二次電池以外の二次電池や、リチウムキャパシタ等の電気化学キャパシタ等が挙げられる。これらの電気化学素子は、自走式のマイクロマシン、ICカードなどの電源や、プリント基板上又はプリント基板内に配置される分散電源の用途に使用することが可能である。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 [水熱合成工程]
 500mLのオートクレーブのガラス内筒に、18.38g(0.10mol)のV(ナカライテスク社製、純度99%)、200gの蒸留水(ナカライテスク社製、HPLC用)、及び23.06g(0.20mol)のHPO(ナカライテスク社製、純度85%)をこの順に入れ、マグネチックスターラーで攪拌した。続いて、還元剤としてヒドラジン1水和物2.55g(0.05mol)を加えた。pHは3であった。続いて、ガラス内筒を密閉し、攪拌しながらオートクレーブ内で16時間95℃に維持した。その後室温まで冷却してからガラス内筒を開放したところ、水色の流動性のないペーストであった。このとき、液のpHは3であった。
 得られたペースト状の物質に、8.48g(0.20mol)のLiOH・HO(ナカライテスク社製、純度99%)を加えた。LiOH・HOは、ペーストの上に乗ったままであり、色相の変化もなかった。投入直後のpHは11であった。
 ガラス内筒を密閉し、攪拌しながら、開始温度(25℃)から110℃まで4℃/minで昇温し、その後、110℃から250℃まで0.5℃/minで昇温した。温度パターンを、図3にしめす。250℃に到達後、250℃に10時間維持した。
 ヒータのスイッチをオフにした後、容器内の温度が常温になるまで放冷し、茶色の沈殿を含む懸濁溶液を得た。この物質のpHを測定したところ、pHは7であった。上澄みを除去した後、約200mlの蒸留水を加え、攪拌しながら容器内の沈殿物を洗浄した(pH7)。その後、吸引濾過を行った(水洗)。その後、約700mlのアセトンを加え、上記水洗と同様にして沈殿物の洗浄を行った。濾過後の物質を乾燥させて、31.78gの茶色の固体を得た。収率は、LiVOPO換算で94.1%(粗大粒子0.97gを含めると97%)であった。
 [焼成工程]
 上記アセトンを用いて洗浄した後の物質のうち3.00gをアルミナ坩堝に入れ、大気雰囲気中、室温から450℃まで45分かけて昇温し、450℃で4時間熱処理することにより、2.96gの粉体を得た。
 (実施例2,3,4,5,6)
 110℃から250℃までの昇温速度を、それぞれ、0.1、0.2、0.3、0.8、2.2℃/minとする以外は、実施例1と同様にした。
 (実施例7,8)
 25℃から110℃までの昇温速度を、それぞれ、3、10℃/minとする以外は、実施例1と同様にした。
 (実施例9,10)
 ヒドラジンの仕込み量を、実施例1に比して、それぞれ15/25倍、35/25倍して、還元剤濃度をそれぞれ0.15mol/L、0.35mol/Lとする以外は、実施例1と同様とした。
 (実施例11、12)
 還元剤として、ヒドラジンに代えて、クエン酸、アスコルビン酸を同モル加える以外は実施例1と同様とした。
 (実施例13)
 25℃から110℃までの昇温速度を、0.5℃/minとする以外は、実施例1と同様にした。
 (比較例1)
 110℃から250℃までの昇温速度を、3℃/minとする以外は、実施例1と同様にした。
 (比較例2)
 25℃から110℃までの昇温速度を、12℃/minとする以外は、実施例1と同様にした。
 (比較例3)
 25℃から110℃までの昇温速度を、0.4℃/minとする以外は、実施例1と同様にした。
 (比較例4)
 110℃から250℃までの昇温速度を、0.05℃/minとする以外は、実施例1と同様にした。
 (評価)
 [結晶構造の確認]
 各実施例の活物質に対して、X線回折測定を行った。複数のピークのうち、2θ=26.966°、27.582°、28.309°において、強度が相対的に高いピークが得られ、活物質は主にβ型結晶構造のLiVOPOから構成されることが確認された。
 [活物質の形状の観察]
 走査型電子顕微鏡を用いて、各実施例、比較例の活物質の形状を観察した。実施例1の活物質の電子顕微鏡写真を図1に示す。各実施例の活物質は、棒状粒子10、及び、球状粒子20の混合物であった。SEM写真に基づいて各実施例の棒状粒子の平均長軸径と、球状粒子の平均粒径を測定した。比較例では、不定形の粒子が得られた。
 [放電容量の測定]
 各実施例及び比較例の活物質と、結合剤であるポリフッ化ビニリデン(PVDF)と、導電材であるアセチレンブラックと、を混合したものを、溶媒であるN-メチル-2-ピロリドン(NMP)中に分散させてスラリーを調製した。なお、スラリーにおいて活物質とアセチレンブラックとPVDFとの重量比が84:8:8となるように、スラリーを調製した。このスラリーを集電体であるアルミニウム箔上に塗布し、乾燥させた後、圧延を行い、活物質を含む活物質層が形成された電極(正極)を得た。
 次に、得られた電極と、その対極であるLi箔とを、それらの間にポリエチレン微多孔膜からなるセパレータを挟んで積層し、積層体(素体)を得た。この積層体を、アルミラミネートパックに入れ、このアルミラミネートパックに、電解液として1MのLiPF溶液を注入した後、真空シールし、各実施例及び比較例の評価用セルを作製した。
 各評価用セルを用いて、25℃で、放電レートを1C(定電流放電を行ったときに1時間で放電終了となる電流値)とした場合の放電容量(単位:mAh/g)を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 30…活物質、正極(電極)…10、12…集電体、14…活物質層、100…リチウムイオン二次電池。

Claims (6)

  1.  リチウム源と、5価のバナジウム源と、リン酸源と、水と、還元剤と、を含む混合物を、密閉容器内で、25℃から110℃まで昇温速度T1で昇温し、その後、110℃から、200℃以上の所定の温度まで昇温速度T2で昇温する昇温工程を備え、
     T1>T2であり、
     T1=0.5~10℃/minであり、
     T2=0.1~2.2℃/minである、活物質の製造方法。
  2.  前記昇温工程の後に、前記所定の温度を維持する工程をさらに備える、請求項1記載の活物質の製造方法。
  3.  前記昇温工程で得られたβ型結晶構造のLiVOPOを焼成する焼成工程をさらに備える、請求項1又は2記載の活物質の製造方法。
  4.  アスペクト比が1~0.7であり平均粒径が0.4~1μmのβ型LiVOPOを主成分とする粒子と、アスペクト比が0.3以下であり長軸の平均粒径が0.2~0.9μmのβ型LiVOPOを主成分とする粒子と、を含む活物質。
  5.  集電体と、請求項4に記載の活物質を含み前記集電体上に設けられた活物質層と、を備える電極。
  6.  請求項5に記載の電極を備えるリチウムイオン二次電池。
PCT/JP2011/065832 2010-07-16 2011-07-12 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法 WO2012008423A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/810,464 US8993171B2 (en) 2010-07-16 2011-07-12 Active material, electrode containing the active material, lithium secondary battery including the electrode, and method for making active material
CN2011800350194A CN103003990A (zh) 2010-07-16 2011-07-12 活性物质、含该活性物质的电极、具有该电极的锂二次电池以及活性物质的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010162085A JP2012022995A (ja) 2010-07-16 2010-07-16 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP2010-162085 2010-07-16

Publications (1)

Publication Number Publication Date
WO2012008423A1 true WO2012008423A1 (ja) 2012-01-19

Family

ID=45469421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065832 WO2012008423A1 (ja) 2010-07-16 2011-07-12 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法

Country Status (4)

Country Link
US (1) US8993171B2 (ja)
JP (1) JP2012022995A (ja)
CN (1) CN103003990A (ja)
WO (1) WO2012008423A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821877B2 (ja) * 2012-03-27 2015-11-24 Tdk株式会社 リチウムイオン二次電池
JP5594309B2 (ja) * 2012-03-27 2014-09-24 Tdk株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極及びリチウムイオン二次電池
JP6098382B2 (ja) * 2013-06-07 2017-03-22 Tdk株式会社 正極活物質及びリチウムイオン二次電池
CN103682339B (zh) * 2013-12-24 2016-08-24 中南大学 一种磷酸氧钒锂正极材料的制备方法
JP6132164B2 (ja) * 2014-04-25 2017-05-24 株式会社豊田自動織機 非水系二次電池用正極及び非水系二次電池
US11289700B2 (en) 2016-06-28 2022-03-29 The Research Foundation For The State University Of New York KVOPO4 cathode for sodium ion batteries
US11830672B2 (en) 2016-11-23 2023-11-28 KYOCERA AVX Components Corporation Ultracapacitor for use in a solder reflow process
KR102133916B1 (ko) 2016-12-28 2020-07-15 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
WO2018124593A1 (ko) * 2016-12-28 2018-07-05 주식회사 엘지화학 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
US11251430B2 (en) 2018-03-05 2022-02-15 The Research Foundation For The State University Of New York ϵ-VOPO4 cathode for lithium ion batteries

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (ja) * 2003-03-31 2004-10-28 Yusaku Takita 非水電解質二次電池用電極活物質、非水電解質二次電池用電極及び非水電解質二次電池
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells
JP2009298687A (ja) * 2008-05-16 2009-12-24 Nagaoka Univ Of Technology 結晶化ガラスおよびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5002098B2 (ja) 2001-08-30 2012-08-15 祐作 滝田 非水電解質二次電池用電極活物質、それを含む電極及び電池
JP5223281B2 (ja) * 2007-09-28 2013-06-26 Tdk株式会社 リチウムイオン二次電池又はリチウム二次電池の正極用複合粒子、及びリチウムイオン二次電池又はリチウム二次電池
US8821763B2 (en) * 2008-09-30 2014-09-02 Tdk Corporation Active material and method of manufacturing active material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004303527A (ja) * 2003-03-31 2004-10-28 Yusaku Takita 非水電解質二次電池用電極活物質、非水電解質二次電池用電極及び非水電解質二次電池
WO2009032808A1 (en) * 2007-09-06 2009-03-12 Valence Technology, Inc. Method of making active materials for use in secondary electrochemical cells
JP2009298687A (ja) * 2008-05-16 2009-12-24 Nagaoka Univ Of Technology 結晶化ガラスおよびその製造方法

Also Published As

Publication number Publication date
US20130130106A1 (en) 2013-05-23
JP2012022995A (ja) 2012-02-02
CN103003990A (zh) 2013-03-27
US8993171B2 (en) 2015-03-31

Similar Documents

Publication Publication Date Title
JP5699754B2 (ja) 活物質、電極、リチウムイオン二次電池、及び、活物質の製造方法
WO2012008423A1 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5396942B2 (ja) 活物質の製造方法、活物質、当該活物質を用いた電極、及び当該電極を備えたリチウムイオン二次電池
JP4317571B2 (ja) 活物質、電極、電池、及び活物質の製造方法
US8734987B2 (en) Active material, electrode containing same, lithium-ion secondary battery with the electrode, and method of manufacturing active material
JP5487676B2 (ja) 活物質、これを含む電極、当該電極及びリチウム塩を含む電解質溶液を備える電気化学デバイス
JP6020580B2 (ja) リチウムイオン二次電池
JP5347604B2 (ja) α型結晶構造のLiVOPO4を主成分とする活物質粒子、これを含む電極、当該電極を備えるリチウム二次電池、及びこの活物質粒子の製造方法
JP5347605B2 (ja) 活物質、これを含む電極、当該電極を含むリチウムイオン二次電池、及び活物質の製造方法
WO2019194150A1 (ja) リチウムイオン二次電池用正極活物質及びその製造方法
JP5375446B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
US20110052995A1 (en) Active material, electrode containing the same, lithium secondary battery provided therewith and method for manufacture of the active material
JP5609299B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5609300B2 (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5617744B2 (ja) 活物質粒子、活物質、電極及びリチウムイオン二次電池
JP5888046B2 (ja) 正極活物質、正極及びリチウムイオン二次電池
JP6236956B2 (ja) 正極活物質、正極並びにリチウムイオン二次電池及びナトリウムイオン二次電池
JP2012212634A (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP5609915B2 (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池
JP2019175658A (ja) リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池。
JP2017152363A (ja) リチウムイオン二次電池用正極活物質、これを用いたリチウムイオン二次電池用正極及びリチウムイオン二次電池
US9825295B2 (en) Positive electrode active material and lithium-ion secondary battery
JP2018156823A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池
JP2012212635A (ja) 活物質、これを含む電極、当該電極を備えるリチウム二次電池、及び活物質の製造方法
JP2018156930A (ja) 正極活物質、それを用いた正極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11806753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13810464

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11806753

Country of ref document: EP

Kind code of ref document: A1