WO2012128356A1 - 鉛フリーはんだ合金 - Google Patents

鉛フリーはんだ合金 Download PDF

Info

Publication number
WO2012128356A1
WO2012128356A1 PCT/JP2012/057540 JP2012057540W WO2012128356A1 WO 2012128356 A1 WO2012128356 A1 WO 2012128356A1 JP 2012057540 W JP2012057540 W JP 2012057540W WO 2012128356 A1 WO2012128356 A1 WO 2012128356A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
mass
lead
solder alloy
amount
Prior art date
Application number
PCT/JP2012/057540
Other languages
English (en)
French (fr)
Inventor
将人 島村
大西 司
光弘 高斎
和順 高木
朋子 野中
誠之 鈴木
達 林田
世子 石橋
俊策 吉川
芳恵 山中
Original Assignee
千住金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 千住金属工業株式会社 filed Critical 千住金属工業株式会社
Priority to KR1020137027507A priority Critical patent/KR101551050B1/ko
Priority to ES12761518.5T priority patent/ES2624621T3/es
Priority to DK12761518.5T priority patent/DK2689885T3/en
Priority to JP2013506040A priority patent/JP5660199B2/ja
Priority to BR112013024398-8A priority patent/BR112013024398B1/pt
Priority to CN201280024986.5A priority patent/CN103561903B/zh
Priority to US14/006,538 priority patent/US9844837B2/en
Priority to EP12761518.5A priority patent/EP2689885B1/en
Publication of WO2012128356A1 publication Critical patent/WO2012128356A1/ja
Priority to TW102109284A priority patent/TWI603803B/zh
Priority to TW105133059A priority patent/TW201706068A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0227Rods, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • B23K35/025Pastes, creams, slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • B23K35/3618Carboxylic acids or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C13/00Alloys based on tin
    • C22C13/02Alloys based on tin with antimony or bismuth as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12222Shaped configuration for melting [e.g., package, etc.]

Definitions

  • the present invention relates to a lead-free solder alloy suitable for a solder alloy containing no lead, particularly a solder paste used for a surface mounting board or a grease-containing solder for correction.
  • solder paste consisting of solder powder and flux is applied only to the necessary parts of the printed circuit board by the printing method or the discharge method, and electronic components are mounted on the application part, and then the solder paste is heated by a heating device such as a reflow furnace.
  • a heating device such as a reflow furnace.
  • the electronic component is soldered to the printed circuit board.
  • This reflow method is not only capable of soldering a large number of locations in a single operation, but also does not generate bridges even when soldering electronic components with a narrow pitch, and the solder does not adhere to unnecessary locations. It can perform soldering with excellent reliability.
  • Pb—Sn alloy has been used for the solder.
  • This Pb-Sn alloy has an eutectic composition (Pb-63Sn) with a melting point of 183 ° C, has little thermal effect on heat-sensitive electronic components, and has excellent solderability. It has the feature that there are few occurrences of soldering defects such as dewetting.
  • lead-free solder not containing Pb has been strongly demanded by the electronic equipment industry due to the problem of toxicity of Pb.
  • the lead-free solder that is widely used at present is an Sn-Ag-Cu composition containing 3 to 5% by mass of Ag and 0.5 to 3% by mass of Cu as disclosed in JP-A-5-050286.
  • Lead-free solder This lead-free solder is popular because it is superior in temperature cycle characteristics and creep characteristics as compared to conventional Sn-Pb solder. In particular, the temperature cycle characteristic is an important factor in evaluating the lifetime of electronic equipment and guaranteeing products.
  • solder paste, solder balls, solder preforms, and the like are used for the substrate to be soldered by reflow soldering.
  • fat-containing solder is used for correcting the soldering portion. The problem of interfacial delamination is particularly likely to occur on printed circuit boards using these solder materials.
  • solder alloy resistant to drop impact used for soldering Cu land has a solder Ag content of 0.8 to 2.0 mass% and a Cu content of 0.05 to 0.3 mass.
  • solder alloy (WO2006 / 129713A1) to which In, Ni, Pt, Sb, Bi, Fe, Al, and P are added.
  • an alloy structure comprising a Sn—Ag—Cu based solder alloy containing a solid solution element and a supersaturated solid solution or a solid solution in which a solid solution element is precipitated at room temperature.
  • Sn-Ag-Cu-Bi based lead-free solder consisting of an alloy with an alloy structure consisting of a solid solution in which a solid solution element precipitated at low temperature is re-dissolved in the Sn matrix at high temperatures in a heat cycle environment WO2009 / 011341A1) is disclosed.
  • Bi or Sb is added to the Sn-Ag-Cu solder composition to form a solid solution with Bi, Sb and Sn, and Ag or Cu forms an intermetallic compound with Sn, and the solid solution or metal
  • a solder alloy Japanese Patent Laid-Open No. 9-327790
  • Lead-free solder does not have strong drop impact resistance, especially drop impact resistance of soldered parts with a small soldering area.
  • Recent electronic devices have become more sophisticated and smaller in size, and electronic components incorporated in them have become smaller and more functional.
  • the number of electrodes in electronic devices has increased. On the contrary, the size of is smaller.
  • the soldering parts formed on the electrodes of electronic parts that have become smaller in this way are also small, but if the solder of the small lead-free soldering parts is weak in drop impact resistance, the electronic device will cause an impact like dropping. When it is received, the soldering part is easily peeled off, and the function as an electronic device cannot be performed.
  • the temperature cycle characteristics of electronic devices are important factors related to the lifespan of electronic devices, and mobile phones and mobile PCs are not always used in air-conditioned rooms. It is not uncommon to use it in a high-temperature environment or a low-temperature environment such as outdoors in snowy weather. Therefore, it is an essential condition that the temperature cycle characteristics are excellent, and the solder used for the portable device must also have excellent temperature cycle characteristics.
  • soldering portion that joins the electronic device repeatedly expands and contracts, cracks in the solder portion, and finally the solder portion is destroyed. This is generally called thermal fatigue.
  • a solder alloy used for a mobile phone or a mobile personal computer a solder alloy that does not generate thermal fatigue and has good temperature cycle characteristics is required.
  • solder having excellent drop impact resistance is excellent in temperature cycle characteristics at the same time.
  • a conventional solder alloy considering drop impact resistance such as Patent Document 1 reduces the Ag and Cu contents of Sn-Ag-Cu solder and is generated at the interface between the electrode and the soldered portion. By suppressing the increase in the thickness of intermetallic compounds such as Cu6Sn5 and Ag3Sn, it is possible to prevent delamination from the interface between the electrode and the soldered part and to ensure the drop impact resistance.
  • the amount of Ag or Cu in the conventional Sn-Ag-Cu solder alloy is reduced, the drop impact resistance is improved, but the temperature cycle characteristics that are the superiority of the Sn-Ag-Cu solder alloy are deteriorated. The problem of end up occurs. Thus, until now, no solder alloy having both temperature cycle characteristics and drop impact resistance characteristics has been developed.
  • the problem to be solved by the present invention is to provide a solder alloy having excellent drop impact resistance while maintaining the temperature cycle characteristics that are characteristic of the Sn—Ag—Cu based solder alloy.
  • the present inventors show that the temperature cycle characteristics deteriorate when Cu is away from the vicinity of the eutectic, and that Ag is also away from the vicinity of the eutectic.
  • the present inventors have found that the temperature cycle characteristics are less deteriorated than Cu and that the temperature cycle characteristics are improved by adding In to Bi and Sb instead of reducing the amount of Ag, and the present invention has been completed.
  • the present invention contains 0.2 to 1.2% by mass of Ag, 0.6 to 0.9% by mass of Cu, 1.2 to 3.0% by mass of Bi, 0.02 to 1.0% of Sb, 0.01 to 2.0% by mass of In, and the balance is Sn.
  • This is a lead-free solder alloy.
  • the temperature cycle characteristic is excellent when the solder structure is fine.
  • the amount of Ag of the solder alloy used in the examples is 3.0 mass% or 3.4 mass%
  • the amount of Ag is a technique of a solder alloy near the eutectic
  • the amount of Ag is set to 0.2 to 1.2% by mass in order to give the drop impact resistance, and the temperature cycle characteristic cannot be said to be good in the solder alloy composition composed of Sn, Ag, Cu, Bi, and Sb. It was.
  • the conventional Sn—Ag—Cu can be obtained even if the amount of Ag is reduced to 0.2 to 1.2 mass%. Similar to the -Bi-Sb composition, it not only has low thermal fatigue, but it is unexpectedly a solder alloy with good temperature cycle characteristics.
  • the In added to the solder alloy of the present invention is a metal that forms a solid solution with Sn in the same manner as Bi and Sb. Since the In added to the solder alloy of the present invention has a smaller atomic weight than Bi and Sb, which form a solid solution with the same Sn, it penetrates between Bi and Sb and is a solid solution strengthened type with better temperature cycle characteristics. It is possible to form a solder alloy. In particular, if the content of Bi, which has the largest atomic weight among Bi, Sb, and In, is more than twice as much as In% of In, that is, more than about 4 times more than in% by mass, the gap between Bi atoms When In enters, the temperature cycle resistance becomes better. More preferably, the Bi content is at least three times as atomic percent as In.
  • solder paste is very reactive like Zn and so on, and when used in solder paste, the solder paste is likely to cause a change in viscosity over time and is difficult to handle.
  • solder alloy of the present invention it is possible to obtain a portable device having excellent drop impact resistance that does not break the soldered portion even if a portable device having a fine soldering pattern falls.
  • thermal fatigue does not occur even in a high temperature environment such as in a car under hot weather, or in a low temperature environment such as outdoors in snowy weather, and it has excellent temperature cycle characteristics.
  • Portable device can be obtained.
  • solder alloy of the present invention contains In, even if the solder alloy of the present invention is made into a powder and solder paste, there is little change in viscosity with time, and an excellent solder paste can be obtained.
  • the addition amount of Ag is set to 1.2% by mass or less.
  • the addition amount of Ag in the solder alloy of the present invention is 0.2 to 1.2% by mass, and the more preferable addition amount of Ag in the solder alloy of the present invention is 0.5 to 1.0% by mass.
  • the amount of Sn-Cu intermetallic compound in the solder alloy is small, and the effect of miniaturizing the solder structure does not appear and the temperature cycle resistance is improved. The effect of does not appear.
  • the added amount of Cu is more than 0.9 mass%, the intermetallic compound layer of Cu6Sn5 becomes the primary crystal at the time of solder solidification and the meltability is hindered. Therefore, the amount of Cu added in the solder alloy of the present invention is 0.6 to 09% by mass, more preferably 0.7 to 0.8% by mass.
  • the Bi content of the present invention is less than 1.2% by mass, the amount of Bi dissolved in Sn in the solder alloy is small, so there is no effect in improving the temperature cycle characteristics.
  • the amount of Bi added is 3.0% by mass or less.
  • the addition amount of Bi in the solder alloy of the present invention is 1.2 to 3.0% by mass, and the addition amount of Bi in the solder alloy of the present invention is more preferably 1.5 to 2.0% by mass. More preferably, the lower limit of Bi is 1.6% by mass.
  • the Sb content of the present invention is less than 0.02% by mass, the solid solution amount of Sb in Sn in the solder alloy is small, so there is no effect in improving temperature cycle characteristics, and the Sb content is 1.0.
  • the amount is more than mass%, an AgSb intermetallic compound is formed in the solder, and the drop impact resistance is deteriorated.
  • the Sb content is more than 1.0% by mass, the wettability of the solder deteriorates and the voids increase. Therefore, the amount of Sb added is 1.0% by mass or less.
  • the amount of Sb added in the solder alloy of the present invention is 0.02 to 1.0 mass%, and the amount of Sb added in the preferred solder alloy of the present invention is 0.15 to 0.5 mass%.
  • Addition of In in solder alloy is effective for improving temperature cycle characteristics.
  • In is a metal that is easily oxidized, its solder alloy is easily oxidized. Since the oxidation of In causes yellowing of the solder alloy or voids in the soldered joint, the amount of In added needs to be limited.
  • solder solder containing In is powdered and mixed with flux to form a solder paste, In and the flux react, so the viscosity of the solder paste tends to change over time.
  • the In content of the present invention is less than 0.01% by mass, the amount of solid solution of Sn and In in the solder alloy is small, so there is no effect in improving temperature cycle characteristics, and if the In content is more than 2.0% by mass This is not preferable because a yellow change occurs on the surface of the solder bump after reflow and the void generation rate increases.
  • the amount of In added in the solder alloy of the present invention is 0.1 to 2.0% by mass, and more preferably the amount of In added in the solder alloy of the present invention is 0.2 to 0.5% by mass.
  • solder alloy solder paste containing In is prone to change in viscosity over time because In is a highly reactive metal.
  • the solder alloy of the present invention prevents the solder paste from changing over time by limiting the amount of In. However, by using a flux dedicated to In, the reaction between the flux and the In-containing solder powder can be prevented.
  • the flux of the present invention is rosin, a solvent, a thixotropic agent, a flux containing an organic acid as an activator and an auxiliary activator, and the organic acid used as the auxiliary activator is reactive with In of succinic acid, adipic acid and azelaic acid.
  • a small amount of organic acid is selected and used, and the flux does not react with the solder powder to cause a change in viscosity over time.
  • Auxiliary activator is added to enhance wettability when the amount of halide of the main activator is limited to enhance corrosion reliability. It is added as an activator that does not contain halogen components. Has been.
  • succinic acid, adipic acid and azelaic acid used in the flux of the present invention are less than 0.5% by mass in total, the effect as an auxiliary activator does not appear, the wettability is poor, and there are many problems such as solder ball generation. Further, when added in an amount of 5% by mass or more, even an organic acid having low reactivity with In of the succinic acid, adipic acid, and azelaic acid of the present invention reacts with In and changes with time. Therefore, the total amount of succinic acid, adipic acid and azelaic acid added to the present invention is 0.5% by mass or more and less than 5.0% by mass.
  • solder alloy according to the present invention can be used not only as a solder paste as described above, but also as a solder ball, a solder containing fat, or in the form of a preform solder.
  • Example 1 and Comparative Example of Table 1 Solder powders of the solder composition (mass%) and fluxes of Example 13 of Table 2 are mixed to produce a solder paste, and the resistance of a 3216 size Sn plating electrode is printed. A temperature cycle test was conducted when the substrate was mounted. Furthermore, a CSP mounted with a 0.3 mm diameter ball was similarly mounted, and a drop impact test was conducted.
  • Table 1 shows the results of the temperature cycle test and the drop impact test.
  • Comparative Example 2 is the solder alloy composition of Patent Document 1
  • Comparative Examples 3 and 4 are the solder alloy composition of Patent Document 2
  • Comparative Example 5 is the solder alloy composition of Patent Document 3.
  • Drop impact test A shock is applied between the CSP on which the solder bump is formed and the printed circuit board, and the number of drops until the crack occurs in the soldered part is measured.
  • the substrate used was left at room temperature for 5 days after soldering.
  • Judgment on crack growth is recorded as the number of drops at the point where the electrical resistance value increased by 50% from the initial value.
  • the drop impact test process is performed as follows. 1.) A flux is printed on a CSP of electrolytic Ni / Au plating having a 12 ⁇ 12 (mm) outer shape and 196 electrode bumps, and a 0.3 mm diameter solder ball having the composition shown in Table 1 is placed thereon.
  • Temperature cycle test This is a test method stipulated in JIS C0025, in which the soldered portion is examined for the influence exerted by repeated temperature changes at high and low temperatures, and is used as an index for the lifetime of electronic equipment.
  • the temperature cycle test process is performed as follows. 1.) Mount an Sn plating resistance of outline 3.2 x 1.6 (mm) on a glass epoxy printed circuit board coated with solder paste, and heat and solder in a reflow oven.
  • soldered printed circuit board into a two-tank automatic test equipment at -40 ° C for the low temperature condition and + 85 ° C for the high temperature condition for 30 minutes each, initial, 800th cycle, 1200th cycle, The printed circuit board was taken out at the 1600th cycle and 2000th cycle, and 150 points of the shear strength test of the soldered portion were performed to confirm the transition of the strength.
  • the lead-free solder alloy of the present invention is superior to the lead-free solder of the comparative example in the drop impact test at each stage, and the temperature cycle characteristics are also in a long temperature cycle. No significant strength deterioration occurs.
  • solder powder was prepared with the solder composition of Example 4 in Table 1, and mixed with the flux having the flux composition (mass%) shown in Table 2, to prepare a solder paste, and a solder ball test and solder Changes in the viscosity of the paste over time were confirmed.
  • the solder ball test was in accordance with JIS Z3284 Annex 11.
  • categories 1 and 2 were marked with ⁇ , category 3 with ⁇ , and category 4 with x.
  • the change with time in the viscosity of the solder paste was measured according to JIS Z3284 Annex 6 using a Malcolm viscometer PCU-205 at a measurement temperature of 25 ° C. and a rotation speed of 10 RPM for 10 hours.
  • the viscosity was evaluated as x, the viscosity increase was 10% or more and less than 20%, and the viscosity increase was less than 10%.
  • Table 2 shows the results of the solder ball test and the solder paste viscosity change test.
  • the present invention can obtain a solder paste having a stable viscosity despite containing In, which tends to change with time.
  • the purpose of the present invention is to improve the impact resistance at the minute soldering part, and as a suitable application for this purpose, even if it is used for general soldering including solder bumps, the drop impact resistance To be effective.
  • solder bump formation it is often used as solder balls or solder paste, but these micro soldered parts are also used with greased solder for correction. Appears to appear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

 Agが0.2~1.2質量%、Cuが0.6~0.9質量%、Biが1.2~3.0質量%、Sbが0.02~1.0質量%、Inを0.01~2.0質量%含有し、残部Snで構成されるはんだ合金を使用することにより、耐落下衝撃性に優れ、また炎天下の車内などの高温の環境下でも、雪天の野外などの低温下の環境で用いても、熱疲労が発生しない、温度サイクル特性に優れた携帯機器を得ることができる。

Description

鉛フリーはんだ合金
 本発明は、鉛を含まないはんだ合金、特に面実装基板に用いるソルダペーストや修正用の脂入りはんだに適した鉛フリーはんだ合金に関する。
 電子部品のはんだ付け方法としては、鏝付け法、フロー法、リフロー法、等がある。
 リフロー法は、はんだ粉とフラックスからなるソルダペーストをプリント基板の必要箇所だけに印刷法や吐出法で塗布し、該塗布部に電子部品を搭載してからリフロー炉のような加熱装置でソルダペーストを溶融させて電子部品をプリント基板にはんだ付けする方法である。このリフロー法は、一度の作業で多数箇所のはんだ付けができるばかりでなく、狭いピッチの電子部品をはんだ付けしてもブリッジの発生がなく、しかも不要箇所にははんだが付着しないという生産性と信頼性に優れたはんだ付けが行えるものである。
 ところで、従来、はんだには、Pb-Sn合金が用いられていた。このPb-Sn合金は、共晶組成(Pb-63Sn)では融点が183℃であり、熱に弱い電子部品に対しても熱影響が少なく、またはんだ付け性に優れているため、未はんだやディウエット等のはんだ付け不良の発生も少ないという特長を有している。
 しかし、近年Pbの毒性の問題から、電子機器業界からはPbを含まない所謂「鉛フリーはんだ」が強く要求されてきている。
 現在多く使用されている鉛フリーはんだは、特開平5-050286号公報に開示されているようなAgを3~5質量%、Cuを0.5~3質量%含有したSn-Ag-Cu組成の鉛フリーはんだである。この鉛フリーはんだは、従来のSn-Pbはんだよりも温度サイクル特性に優れ、またクリープ特性に優れているので普及している。特に温度サイクル特性は、電子機器の寿命を評価したり、製品保証をする上で、重要な要素である。
 ところが、現在使用されているSn-Ag-Cu組成の鉛フリーはんだ合金は、従来使用されてきたSn-Pbはんだに比べて硬いために、携帯電話などの小型機器に使用されると誤って携帯機器を落とすと、部品とはんだ付けした部分との界面で割れる、所謂「界面剥離」が発生し易いことが問題となっている。この界面剥離は、接合部のはんだの量が比較的多いフローソルダリングを用いた基板では起こり難いが、接合部のはんだ量が少なく、接合部が微細なリフローソルダリングではんだ付けした基板で発生し易い。
 なお、リフローソルダリングではんだ付けする基板には、ソルダペーストやはんだボール、ソルダプリフォームなどが用いられる。また、はんだ付け部の修正には、脂入りはんだが用いられる。これらのはんだ材料が使用されたプリント基板には、特に界面剥離の問題が発生し易い。
 本出願人は、Cuランドのはんだ付けに用いる落下衝撃に強いはんだ合金として、はんだのAgの含有量が0.8~2.0質量%、Cuの含有量が0.05~0.3質量%でIn、Ni、Pt、Sb、Bi、Fe、Al、Pを添加したはんだ合金(WO2006/129713A1)を開示している。
 また、温度サイクル特性に優れたはんだ合金として、固溶元素を含有するSn-Ag-Cu系はんだ合金であって、且つ、室温では過飽和固溶体、もしくは、固溶元素が析出した固溶体からなる合金組織を有し、ヒートサイクル環境における高温時には、低温で析出した固溶元素がSnマトリックス中に再固溶する固溶体からなる合金組織を有する合金からなる、Sn-Ag-Cu-Bi系鉛フリーはんだ(WO2009/011341A1)を開示している。
 さらに、Sn-Ag-Cuはんだ組成にBiやSbを添加してBiやSbとSnとで固溶体を形成し、また、AgやCuは、Snと金属間化合物を形成して、その固溶体や金属間化合物のミクロ組織によって、機械的な強度を保っているはんだ合金(特開平9-327790号公報)もある。
WO2006/129713A1 WO2009/011341A1 特開平9-327790号公報
 鉛フリーはんだは、耐落下衝撃性、特にはんだ付け面積の小さいはんだ付け部の耐落下衝撃性、が強いとは言えない。最近の電子機器は高性能・小型化されてきているから、それに組み込まれる電子部品も小型化で高機能化されてきており、近年の電子機器は電極数が増えているにもかかわらず、全体の大きさは逆に小さくなっている。このように小さくなった電子部品の電極に形成するはんだ付け部も小さくなっているが、小さな鉛フリーはんだはんだ付け部のはんだが耐落下衝撃性に弱いと、落下のような衝撃を電子機器が受けたときに、はんだ付け部が簡単に剥離して、電子機器としての機能が果たせなくなってしまう。
 携帯機器でも、リモコンのように電子機器のプリント基板のサイズが比較的大きく、はんだが多く付着するフローソルダリングではんだ付けさせている電子機器は問題となり難いが、携帯電話やモバイルパソコンのように、小型で密集度が高い製品はソルダペーストやはんだボールなどを使ったリフローソルダリングのはんだ付けしか行えず、はんだ接合に使用されるはんだ量も微少量になっている。
 次に、電子機器の温度サイクル特性はその電子機器の寿命に関係する重要な要素であり、携帯電話やモバイルパソコンは、常時空調の効いた室内で使用させる訳ではなく、自動車の車内のような高温環境下や雪天の野外のような低温環境下で使用されることも珍しくもない。そのために、温度サイクル特性に優れていることは必須の条件であり、携帯機器に使用されるはんだも優れた温度サイクル特性を有していなければならない。
 すなわち、電子機器が使用される環境によって、電子機器を接合するはんだ付け部は膨張・収縮を繰り返し、はんだ部分に亀裂が入り、最後にははんだ部分が破壊してしまう。これを一般的に熱疲労と呼んでいる。携帯電話やモバイルパソコンに使用させるはんだ合金としては、熱疲労が発生しない、温度サイクル特性の良いはんだ合金が求められている。
 しかし、耐落下衝撃性に優れたはんだが、同時に、温度サイクル特性に優れているとは言えなかった。例えば特許文献1のような、従来の耐落下衝撃性を考慮したはんだ合金は、Sn-Ag-CuはんだのAgやCuの含有量を少なくして、電極とはんだ付け部との界面に発生するCu6Sn5やAg3Snなどの金属間化合物が厚くなることを抑制することで、電極とはんだ付け部との界面から剥離が起こることを防止して耐落下衝撃性を確保している。しかし、従来のSn-Ag-Cu系はんだ合金のAgやCuの量を減少させると耐落下衝撃性は向上するが、Sn-Ag-Cu系はんだ合金の優位性である温度サイクル特性が悪くなってしまうという問題が発生する。このように、今までは温度サイクル特性と耐落下衝撃性の両方の特性をともに有するはんだ合金は開発されていなかった。
 本発明が解決しようとする課題は、Sn-Ag-Cu系はんだ合金の特徴である温度サイクル特性を維持しながら、耐落下衝撃性に優れたはんだ合金を提供することである。
 本発明者らは、Sn-Ag-Cu系はんだ合金組成において、Cuが共晶付近から離れた組成としてしまうと温度サイクル特性が低下してしまうこと、Agは共晶付近から離れた組成としてもCuに比べて温度サイクル特性の低下が少ないこと、Agの量を減少させた代わりにBiとSbにInを加えることにより温度サイクル特性が向上することを見いだし、本発明を完成させた。
 本発明は、Agが0.2~1.2質量%、Cuが0.6~0.9質量%、Biが1.2~3.0質量%、Sbが0.02~1.0、Inを0.01~2.0質量%含有し、残部Snで構成されることを特徴とする鉛フリーはんだ合金である。
 電子機器のはんだ付け部に温度サイクルが加わると、接合部のはんだ組織は粗大化を起こすので、一般的に温度サイクル特性は、はんだ組織が微細のものが優れている。特許文献3では、実施例で使用するはんだ合金のAgの量が3.0質量%又は3.4質量%であることから考えて、Agの量が共晶付近のはんだ合金の技術であるのに対して、本発明では耐落下衝撃特性を持たせるために、Agの量を0.2~1.2質量%としており、SnとAgとCuとBiとSbからなるはんだ合金組成では、温度サイクル特性が良好とは言えなかった。そこで、本発明ではSn-Ag-Cuのはんだ合金組成にBiとSbの他にInを添加することによって、Agの量が0.2~1.2質量%と少なくしても、従来のSn-Ag-Cu-Bi-Sb組成と同様に熱疲労が少ないばかりでなく、予想外に、温度サイクル特性が良好なはんだ合金となっている。
 本発明のはんだ合金に添加したInは、BiとSbと同じようにSnと固溶体を形成する金属である。本発明のはんだ合金に添加したInは同じSnと固溶体を形成するBiやSbに比較して原子量が小さいので、BiやSbの間に入り込んでより耐温度サイクル特性が良好な固溶強化型のはんだ合金を形成することが可能である。特に、Bi、Sb、Inの中で一番原子量が大きいBiの含有量がInより原子%で2倍より多く含まれている、つまり質量%で約4倍以上多いと、Biの原子の隙間にInが入り込んでより耐温度サイクル特性が良好になる。
より好ましくは、Biの含有量がInより原子%で3倍以上のときである。
 しかし、InはZnなどに似て反応性が激しく、ソルダペーストに用いるとソルダペーストが粘度の経時変化を起こし易く、扱いが難いとされていた。本発明では、はんだ合金中に添加するInの量を限定すること、及びソルダペーストのフラックスに用いる有機酸を限定することによって、ソルダペーストへの使用も可能となっている。
 本発明のはんだ合金を使用することにより、微細なはんだ付けパターンを持った携帯機器などが落下してもはんだ付け部が破損しない耐落下衝撃性に優れた携帯機器を得ることができる。また、本発明のはんだ合金を使用することにより、炎天下の車内などの高温の環境下でも、雪天の野外などの低温下の環境で用いても、熱疲労が発生しない、温度サイクル特性に優れた携帯機器を得ることができる。
 また、本発明のはんだ合金はInが含まれているが、本発明のはんだ合金を粉末にしてソルダペーストにしても粘度の経時変化が少なく、優れたソルダペーストを得ることが可能である。
 一般的にSn主成分の鉛フリーはんだにおいて、Agは耐温度サイクル性に効果があるが、逆に多く添加すると耐落下衝撃性が低下する。本発明の鉛フリーはんだでは、Agの添加量が0.2質量%よりも少ないとはんだ合金中のSn-Agの金属間化合物の生成量が少なく、はんだ組織の微細化効果が現れずに耐温度サイクル性向上の効果が現れない。また、Agの添加量が1.2質量%を超えるとはんだ内部にAg3Snの金属間化合物の生成量が多くなり、網目状の構造が得られるため、材料の強度が上がり、耐衝撃性が悪くなる。そのためAgの添加量は、1.2質量%以下とする。本発明のはんだ合金におけるAgの添加量は0.2~1.2質量%であり、より好ましい本発明のはんだ合金におけるAgの添加量は0.5~1.0質量%である。
 また本発明の鉛フリーはんだにおいて、Cuが0.6質量%よりも少ないとはんだ合金中のSn-Cuの金属間化合物の生成量が少なく、はんだ組織の微細化効果が現れずに耐温度サイクル性向上の効果が現れない。Cuの添加量が0.9質量%よりも多くなると、はんだ凝固時にCu6Sn5の金属間化合物層が初晶となり、溶融性が阻害される。そのため、本発明のはんだ合金におけるCuの添加量は0.6~09質量%であり、より好ましくは0.7~0.8質量%である。
 本発明のBiの含有量は、1.2質量%より少ないと、はんだ合金中のSnに対するBiの固溶量が少ないので、温度サイクル特性の向上に効果がない。しかし、Biの含有量が3.0質量%より多いと、はんだの硬度が急激に増し、延性がなくなるために耐落下衝撃性を悪くしてしまう。そのために、Biの添加量は3.0質量%以下とする。本発明のはんだ合金におけるBiの添加量は1.2~3.0質量%であり、より好ましい本発明のはんだ合金におけるBiの添加量は1.5~2.0質量%である。さらに好ましくはBiの下限は1.6質量%である。
 次に、本発明のSbの含有量は、0.02質量%より少ないとはんだ合金中のSnへのSbの固溶量が少ないので、温度サイクル特性の向上に効果がなく、Sbの含有量が1.0質量%より多いと、はんだ中にAgSbの金属間化合物が生成して、耐落下衝撃性悪くしてしまう。
また、Sbの含有量が1.0質量%より多いとはんだのぬれ性が悪くなり、ボイドが増加する。そのために、Sbの添加量は1.0質量%以下とする。本発明のはんだ合金におけるSbの添加量は0.02~1.0質量%であり、好ましい本発明のはんだ合金におけるSbの添加量は0.15~0.5質量%である。
 はんだ合金におけるInの添加は、温度サイクル特性向上に効果がある。しかしInは酸化しやすい金属であるため、そのはんだ合金も容易に酸化してしまう。Inの酸化によって、はんだ合金の黄変が起こり、またはんだ接合部にボイドが発生してしまうので、Inの添加量は限定する必要がある。さらに、Inを含有するはんだ合金を粉末にして、フラックスと混和しソルダペーストを作るとInとフラックスが反応するので、ソルダペーストの粘度が経時変化を起こし易い。
 本発明のInの含有量は、0.01質量%より少ないとはんだ合金中のSnとInの固溶体量が少ないので、温度サイクル特性の向上に効果がなく、Inの含有量が2.0質量%より多いと、リフロー後にはんだバンプ表面に黄色変化が生じ、またボイド発生率も高くなる為、好ましくない。本発明のはんだ合金におけるInの添加量は0.1~2.0質量%であり、より好ましくは本発明のはんだ合金におけるInの添加量は0.2~0.5質量%である。
 Inを含有しているはんだ合金のソルダペーストは、Inが反応性の高い金属であるので粘度の経時変化を起こし易い。本発明のはんだ合金は、Inの量を限定することによってソルダペーストの経時変化を防止しているが、In専用のフラックスを用いる事によってフラックスとIn含有はんだ粉末との反応を防ぐことができる。
 本発明のフラックスは、ロジン、溶剤、チキソ剤、活性剤と補助活性剤として有機酸を含有するフラックスにおいて、補助活性剤として用いる有機酸にコハク酸、アジピン酸、アゼライン酸のInと反応性が少ない有機酸を選択して用いており、フラックスとはんだ粉末が反応して粘度の経時変化を起こすことがない。補助活性剤とは、腐食信頼性を高めるために主活性剤のハロゲン化物等の量を制限されるときに、ぬれ性を高めるために添加されるもので、ハロゲン成分を含まない活性剤として添加されている。
 本発明のフラックスに用いるコハク酸、アジピン酸、アゼライン酸は、合わせて0.5質量%未満では補助活性剤としての効果が現れず、ぬれ性が悪く、はんだボール発生などの不具合が多くなる。また、5質量%以上添加すると、本発明のコハク酸、アジピン酸、アゼライン酸のInと反応性の少ない有機酸でもInと反応して経時変化が起きてしまう。従って、本発明に添加するコハク酸、アジピン酸、アゼライン酸の量は、合計で0.5質量%以上、5.0質量%未満である。
  本発明にかかるはんだ合金は、上述のようにソルダペーストとして用いられるだけでなく、はんだボールとして、脂(ヤニ)入りはんだとして、あるいは、プリフォームはんだの形態で用いることができる。
 表1の実施例及び比較例はんだ組成(質量%)のはんだ粉末と表2の実施例13のフラックス組成のフラックスを混和してソルダペーストを作製して、3216サイズのSnめっき電極の抵抗をプリント基板の搭載した場合の、温度サイクル試験を行った。さらに、直径0.3mmボールで実装したCSPを同様に搭載し、落下衝撃試験を行った。
 温度サイクル試験及び落下衝撃試験の結果を、表1に示す。
 ここで、比較例2は特許文献1のはんだ合金組成であり、比較例3、4は特許文献2のはんだ合金組成、比較例5は特許文献3のはんだ合金組成である。
 落下衝撃試験
 1.はんだバンプを形成したCSPとプリント基板間に、落下による衝撃を加え、はんだ付け部に亀裂が発生するまでの落下回数を測定する。基板は、はんだ付け後に室温で5日間放置したものを用いた。亀裂進展についての判断は、電気抵抗値が、初期値から50%上昇した点を落下回数として記録する。
 2.落下衝撃試験の工程は以下のとおりに行う。
 1.)外形12×12(mm)、電極196個のバンプを有する電解Ni/AuめっきのCSPに、フラックスを印刷し、表1の組成をもった直径0.3mmのはんだボールを載置する。
 2.)はんだボールが載置されたCSPをリフロー炉で加熱して電極にはんだバンプを形成する。
 3.)はんだバンプが形成されたCSPを30×120(mm)のソルダペーストが塗布されたガラスエポキシプリント基板中央に搭載し、リフロー炉で加熱してCSPをプリント基板にはんだ付けする。
 4.)CSPがはんだ付けされたプリント基板の両端を、落下治具上に治具と1cmの間隔をあけて固定する。
 5.)落下治具に加速度1500Gが負荷する高さから落下させてプリント基板に衝撃を与える。このとき両端を治具に固定されたプリント基板は、中央部が振動し、プリント基板とCSPのはんだ付け部は、この振動による衝撃を受ける。この落下試験でCSPのはんだ付け部にき裂が生じるまでの落下回数を測定する。試験記録は、6点試験を行い、最低値を記録する。
 温度サイクル試験
 1.JIS C0025に規定された試験方法であり、はんだ付け部が高温、低温の温度変化の繰り返しによって、与えられる影響について調べるもので、電子機器の寿命の指数として、用いられている。
 2.温度サイクル試験の工程は以下の通りに行う。
 1.)外形3.2×1.6(mm)のSnめっき抵抗をソルダペーストが塗布されたガラスエポキシプリント基板に搭載し、リフロー炉で加熱してはんだ付けする。
 2.)はんだ付けされたプリント基板を低温条件が-40℃、高温条件が、+85℃、各30分の二槽式の自動試験装置に投入して、初期、800サイクル目、1200サイクル目、1600サイクル目、2000サイクル目でプリント基板を取り出して、はんだ付け部のせん断強度試験を150点行い、強度の推移を確認した。
 3.)各サイクルでの最低強度において、強度の低下率が著しい(初期値より50%以下)、もしくは強度が10N以下になる段階で劣化したと見なし、そのサイクル数を表に記載する。
 表1から分かるように、本発明の鉛フリーはんだ合金は、耐落下衝撃試験において比較例の鉛フリーはんだよりも各段に優れているものであり、また温度サイクル特性も長時間の温度サイクルにおいても著しい強度劣化の発生がないものである。
 粘度経時変化試験
 次に、表1の実施例4のはんだ組成ではんだ粉末を作製し、表2のフラックス組成(質量%)のフラックスと混和して、ソルダペーストを作製し、はんだボール試験とソルダペーストの粘度経時変化を確認した。
 はんだボール試験は、JIS Z3284 付属書11に従った。JIS Z3284 付属書11の図1において、カテゴリー1及び2を◎とし、カテゴリー3を○とし、カテゴリー4を×とした。
 ソルダペーストの粘度経時変化は、JIS Z3284 付属書6に従い、マルコム社製粘度計PCU-205を用いて測定温度25℃、回転速度10RPMで10時間測定して、初期粘度から20%以上粘度が上昇したものを×、粘度の上昇が10%以上、20%未満のものを○、粘度の上昇が10%未満のものを◎と判定した。はんだボール試験及びソルダペーストの粘度経時変化試験の結果は、表2に記載する。
 表2から分かるように、本発明はソルダペーストの経時変化が発生し易いInを含有しているにも関わらず、安定した粘度のソルダペーストを得ることができる。また、リフロー後のはんだボールが少なく、不具合の無いはんだ接合を得ることが可能になる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、微小はんだ付け部における耐衝撃性の向上を目的としたものであり、この目的に適した用途としてははんだバンプをはじめとする、一般のはんだ付けに使用しても耐落下衝撃性に効果を発揮する。はんだバンプ形成には、はんだボールやソルダペーストとして使用することが多いが、これらの微小はんだ付け部分は、修正用として脂入りはんだも使用されるものであり、脂入りはんだでも本発明の作用効果が現れると考えられる。

Claims (6)

  1. Agが0.2~1.2質量%、Cuが0.6~0.9質量%、Biが1.2~3.0質量%、Sbが0.02~1.0質量%、Inを0.01~2.0質量%含有し、残部Snで構成されることを特徴とする鉛フリーはんだ合金。
  2. Agが0.2~1.0質量%、Cuが0.6~0.9質量%、Biが1.2~2.0質量%、Sbが0.1~0.5質量%、Inを0.01~0.3質量%含有し、残部Snで構成されることを特徴とする請求項1に記載の鉛フリーはんだ合金。
  3. 請求項1に記載の鉛フリーはんだ合金のはんだ粉末とフラックスを混和した鉛フリーソルダペーストにおいて、該フラックスに用いられる有機酸としてコハク酸、アジピン酸、アゼライン酸から選択された1種以上の有機酸を合計で0.5質量%以上、5質量%未満を用いた鉛フリーソルダペースト。
  4. 請求項1に記載の鉛フリーはんだ合金からなるはんだ線の中心部にフラックスを充填した脂入りはんだにおいて、該フラックスに用いられる有機酸としてコハク酸、アジピン酸、アゼライン酸から選択された1種以上の有機酸を用いた鉛フリー脂入りはんだ。
  5. 請求項1に記載の鉛フリーはんだ合金からなるはんだボール。
  6. 請求項1に記載の鉛フリーはんだ合金からなるソルダプリフォーム。
PCT/JP2012/057540 2011-03-23 2012-03-23 鉛フリーはんだ合金 WO2012128356A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
KR1020137027507A KR101551050B1 (ko) 2011-03-23 2012-03-23 납 프리 땜납 합금
ES12761518.5T ES2624621T3 (es) 2011-03-23 2012-03-23 Aleación de soldadura libre de plomo
DK12761518.5T DK2689885T3 (en) 2011-03-23 2012-03-23 STAINLESS STEEL METAL ALLOY
JP2013506040A JP5660199B2 (ja) 2011-03-23 2012-03-23 鉛フリーはんだ合金
BR112013024398-8A BR112013024398B1 (pt) 2011-03-23 2012-03-23 liga de solda, pasta de solda, solda com núcleo de fluxo, esfera de solda e pré-forma sem chumbo
CN201280024986.5A CN103561903B (zh) 2011-03-23 2012-03-23 无铅焊料合金
US14/006,538 US9844837B2 (en) 2011-03-23 2012-03-23 Lead-free solder alloy
EP12761518.5A EP2689885B1 (en) 2011-03-23 2012-03-23 Lead-free solder alloy
TW102109284A TWI603803B (zh) 2012-03-23 2013-03-15 Lead-free solder alloy
TW105133059A TW201706068A (zh) 2011-03-23 2013-03-15 無鉛銲錫合金

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2011/056903 WO2012127642A1 (ja) 2011-03-23 2011-03-23 鉛フリーはんだ合金
JPPCT/JP2011/056903 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128356A1 true WO2012128356A1 (ja) 2012-09-27

Family

ID=46878835

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/056903 WO2012127642A1 (ja) 2011-03-23 2011-03-23 鉛フリーはんだ合金
PCT/JP2012/057540 WO2012128356A1 (ja) 2011-03-23 2012-03-23 鉛フリーはんだ合金

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/056903 WO2012127642A1 (ja) 2011-03-23 2011-03-23 鉛フリーはんだ合金

Country Status (12)

Country Link
US (1) US9844837B2 (ja)
EP (1) EP2689885B1 (ja)
JP (1) JP5660199B2 (ja)
KR (1) KR101551050B1 (ja)
CN (1) CN103561903B (ja)
BR (1) BR112013024398B1 (ja)
DK (1) DK2689885T3 (ja)
ES (1) ES2624621T3 (ja)
HU (1) HUE033232T2 (ja)
MY (1) MY162706A (ja)
TW (1) TW201706068A (ja)
WO (2) WO2012127642A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152259A1 (ja) * 2015-03-24 2016-09-29 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP6292342B1 (ja) * 2017-09-20 2018-03-14 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
WO2018164171A1 (ja) * 2017-03-10 2018-09-13 株式会社タムラ製作所 鉛フリーはんだ合金、ソルダペースト及び電子回路基板
WO2020241436A1 (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、およびはんだ継手
CN114227057A (zh) * 2021-12-10 2022-03-25 北京康普锡威科技有限公司 无铅焊料合金及其制备方法、用途

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015077601A (ja) * 2013-04-02 2015-04-23 千住金属工業株式会社 鉛フリーはんだ合金
US10076808B2 (en) * 2013-08-05 2018-09-18 Senju Metal Industry Co., Ltd. Lead-free solder alloy
EP3278920B1 (en) * 2014-04-02 2020-03-04 Senju Metal Industry Co., Ltd. Use of a solder alloy for bonding in a module
CN105377503B (zh) * 2014-06-24 2016-10-12 播磨化成株式会社 焊料合金、钎焊膏以及电子线路基板
WO2016012754A2 (en) * 2014-07-21 2016-01-28 Alpha Metals, Inc. Low temperature high reliability alloy for solder hierarchy
KR20220135252A (ko) * 2015-05-05 2022-10-06 인듐 코포레이션 전자장치 적용을 위한 무연 땜납 합금
CN105047247B (zh) * 2015-07-13 2018-01-23 东莞市同亚电子科技有限公司 一种电线镀锡用锡组合物及其制备方法和用途
US10195698B2 (en) * 2015-09-03 2019-02-05 AIM Metals & Alloys Inc. Lead-free high reliability solder alloys
CN108500499B (zh) * 2016-03-22 2019-10-22 株式会社田村制作所 无铅软钎料合金、电子电路基板和电子控制装置
JP6745453B2 (ja) * 2016-05-18 2020-08-26 パナソニックIpマネジメント株式会社 はんだ合金およびそれを用いた実装構造体
TWI602929B (zh) * 2017-05-17 2017-10-21 Solder composition
KR102286739B1 (ko) * 2017-08-17 2021-08-05 현대자동차 주식회사 무연 솔더 조성물
US10456872B2 (en) 2017-09-08 2019-10-29 Tamura Corporation Lead-free solder alloy, electronic circuit substrate, and electronic device
US11123823B2 (en) 2017-11-08 2021-09-21 Alpha Assembly Solutions Inc. Cost-effective lead-free solder alloy for electronic applications
US11732330B2 (en) 2017-11-09 2023-08-22 Alpha Assembly Solutions, Inc. High reliability lead-free solder alloy for electronic applications in extreme environments
US11577343B2 (en) * 2017-11-09 2023-02-14 Alpha Assembly Solutions Inc. Low-silver alternative to standard SAC alloys for high reliability applications
CN108788512A (zh) * 2018-08-24 2018-11-13 东莞市仁信电子有限公司 一种低熔点低空洞率无铅环保焊锡膏
US20210283727A1 (en) * 2018-10-24 2021-09-16 Alpha Assembly Solutions Inc. Low temperature soldering solutions for polymer substrates, printed circuit boards and other joining applications
CN113441865B (zh) * 2019-03-20 2022-12-13 中山翰华锡业有限公司 一种高活性的无铅锡膏及其制备方法
JP6649597B1 (ja) * 2019-05-27 2020-02-19 千住金属工業株式会社 はんだ合金、はんだ粉末、およびはんだ継手
CN110064864B (zh) * 2019-05-29 2020-07-31 南京达迈科技实业有限公司 一种用于多晶硅与金属连接的钎料、采用该钎料制备的焊膏与制法及用其焊接的方法
CN110744220B (zh) * 2019-11-15 2021-10-22 北京康普锡威科技有限公司 低飞溅焊丝及其制备方法
CN115768591A (zh) * 2020-04-10 2023-03-07 千住金属工业株式会社 软钎料合金、软钎料粉末、焊膏、焊料球、预成型软钎料和钎焊接头
TWI728842B (zh) * 2020-06-12 2021-05-21 大陸商重慶群崴電子材料有限公司 無鉛焊料及其製造方法
CN113458650B (zh) * 2021-07-05 2022-10-14 云南锡业锡材有限公司 一种Sn-Ag-Cu-Ce高可靠性无铅焊料
CN115815870A (zh) * 2022-11-07 2023-03-21 江苏科技大学 Sn基高温高热稳定焊料合金及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550286A (ja) 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
JPH09327790A (ja) 1996-06-12 1997-12-22 Uchihashi Estec Co Ltd 無鉛はんだ合金
JPH1043882A (ja) * 1996-08-05 1998-02-17 Hitachi Ltd はんだペースト
JP2002018590A (ja) * 2000-07-06 2002-01-22 Nippon Steel Corp ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
JP2005254298A (ja) * 2004-03-12 2005-09-22 Nippon Steel Corp 半導体実装用半田合金とその製造方法、及び半田ボール、電子部材
WO2006129713A1 (ja) 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. 鉛フリーはんだ合金
JP2007237251A (ja) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd 鉛フリーハンダ合金、ハンダボール及び電子部材
JP2008290150A (ja) * 2007-05-25 2008-12-04 Korea Inst Of Industrial Technology 錫・銀・銅・インジウムの4元系鉛フリー半田組成物
WO2009011341A1 (ja) 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. 車載実装用鉛フリーはんだと車載電子回路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2898255A (en) * 1958-06-30 1959-08-04 Ibm Soldering flux composition
US3235414A (en) * 1962-01-11 1966-02-15 Continental Can Co Organic flux for soldering
US4561913A (en) * 1984-03-12 1985-12-31 At&T Technologies, Inc. Soldering flux additive
JP4106504B2 (ja) * 1999-03-11 2008-06-25 荒川化学工業株式会社 クリームはんだ及びクリームはんだ用フラックス
JP2001334385A (ja) * 2000-05-22 2001-12-04 Hitachi Ltd 電子機器用Sn−Ag−Cu−Bi−In系はんだ
DK2147740T3 (en) * 2001-03-01 2015-08-03 Senju Metal Industry Co Lead-free solder paste
GB2380964B (en) * 2001-09-04 2005-01-12 Multicore Solders Ltd Lead-free solder paste
JP2004188453A (ja) * 2002-12-11 2004-07-08 Harima Chem Inc Sn系はんだ合金
GB2419137A (en) * 2004-10-15 2006-04-19 Alpha Fry Ltd Solder alloy
GB2421030B (en) * 2004-12-01 2008-03-19 Alpha Fry Ltd Solder alloy
CN100336626C (zh) * 2005-08-12 2007-09-12 北京工业大学 无铅焊膏用松香型无卤素助焊剂
US8641964B2 (en) * 2005-08-24 2014-02-04 Fry's Metals, Inc. Solder alloy
BRPI0718265B1 (pt) * 2006-12-12 2015-04-14 Senju Metal Industry Co Fluxo para solda livre de chumbo e método de soldagem
WO2012131861A1 (ja) * 2011-03-28 2012-10-04 千住金属工業株式会社 鉛フリーはんだボール

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550286A (ja) 1991-07-08 1993-03-02 Senju Metal Ind Co Ltd 高温はんだ
JPH09327790A (ja) 1996-06-12 1997-12-22 Uchihashi Estec Co Ltd 無鉛はんだ合金
JPH1043882A (ja) * 1996-08-05 1998-02-17 Hitachi Ltd はんだペースト
JP2002018590A (ja) * 2000-07-06 2002-01-22 Nippon Steel Corp ハンダ合金、ハンダボール及びハンダバンプを有する電子部材
JP2005254298A (ja) * 2004-03-12 2005-09-22 Nippon Steel Corp 半導体実装用半田合金とその製造方法、及び半田ボール、電子部材
WO2006129713A1 (ja) 2005-06-03 2006-12-07 Senju Metal Industry Co., Ltd. 鉛フリーはんだ合金
JP2007237251A (ja) * 2006-03-09 2007-09-20 Nippon Steel Materials Co Ltd 鉛フリーハンダ合金、ハンダボール及び電子部材
JP2008290150A (ja) * 2007-05-25 2008-12-04 Korea Inst Of Industrial Technology 錫・銀・銅・インジウムの4元系鉛フリー半田組成物
WO2009011341A1 (ja) 2007-07-13 2009-01-22 Senju Metal Industry Co., Ltd. 車載実装用鉛フリーはんだと車載電子回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2689885A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016152259A1 (ja) * 2015-03-24 2016-09-29 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
JP2016179479A (ja) * 2015-03-24 2016-10-13 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
US10213880B2 (en) 2015-03-24 2019-02-26 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
US10300562B2 (en) 2015-03-24 2019-05-28 Harima Chemicals, Incorporated Solder alloy, solder paste, and electronic circuit board
WO2018164171A1 (ja) * 2017-03-10 2018-09-13 株式会社タムラ製作所 鉛フリーはんだ合金、ソルダペースト及び電子回路基板
JP6292342B1 (ja) * 2017-09-20 2018-03-14 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
WO2019058650A1 (ja) * 2017-09-20 2019-03-28 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
JP2019055410A (ja) * 2017-09-20 2019-04-11 千住金属工業株式会社 Cu管及び/又はFe管接合用はんだ合金、プリフォームはんだ、やに入りはんだおよびはんだ継手
WO2020241436A1 (ja) * 2019-05-27 2020-12-03 千住金属工業株式会社 はんだ合金、ソルダペースト、はんだボール、ソルダプリフォーム、およびはんだ継手
CN114227057A (zh) * 2021-12-10 2022-03-25 北京康普锡威科技有限公司 无铅焊料合金及其制备方法、用途

Also Published As

Publication number Publication date
ES2624621T3 (es) 2017-07-17
CN103561903A (zh) 2014-02-05
JPWO2012128356A1 (ja) 2014-07-24
US20140141273A1 (en) 2014-05-22
MY162706A (en) 2017-07-14
WO2012127642A1 (ja) 2012-09-27
JP5660199B2 (ja) 2015-01-28
EP2689885A1 (en) 2014-01-29
US9844837B2 (en) 2017-12-19
BR112013024398B1 (pt) 2018-11-06
KR20140044801A (ko) 2014-04-15
EP2689885B1 (en) 2017-02-22
HUE033232T2 (hu) 2017-11-28
EP2689885A4 (en) 2015-04-01
TW201706068A (zh) 2017-02-16
BR112013024398A2 (pt) 2016-12-13
CN103561903B (zh) 2017-03-22
KR101551050B1 (ko) 2015-09-07
DK2689885T3 (en) 2017-05-01

Similar Documents

Publication Publication Date Title
JP5660199B2 (ja) 鉛フリーはんだ合金
JP5664664B2 (ja) 接合方法、電子装置の製造方法、および電子部品
JP4787384B1 (ja) 低銀はんだ合金およびはんだペースト組成物
JP2021178364A (ja) はんだ組成物
JPWO2004089573A1 (ja) ソルダペーストおよびプリント基板
US9175368B2 (en) MN doped SN-base solder alloy and solder joints thereof with superior drop shock reliability
JP2006255784A (ja) 無鉛ハンダ合金
CN111230355B (zh) 无铅焊料合金
KR102342394B1 (ko) 땜납 합금, 땜납 페이스트, 프리폼 땜납, 땜납 볼, 선 땜납, 수지 플럭스 코어드 땜납, 땜납 이음매, 전자 회로 기판 및 다층 전자 회로 기판
JP4453473B2 (ja) 鉛フリーはんだ合金と、それを用いたはんだ材料及びはんだ接合部
EP2747933B1 (en) A mn doped sn-base solder alloy and solder joints thereof with superior drop shock reliability
WO2019094242A1 (en) Low-silver tin based alternative solder alloy to standard sac alloys for high reliability applications
JP2008221330A (ja) はんだ合金
JP5051633B2 (ja) はんだ合金
TWI603803B (zh) Lead-free solder alloy
KR102667732B1 (ko) 고 신뢰성 응용을 위한 표준 sac 합금에 대한 저은 주석계 대안 땜납 합금
JP2022140163A (ja) はんだ接合法
WO2016157971A1 (ja) はんだペースト
CN115178910A (zh) 用于电子应用的具有成本效益的无铅焊料合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761518

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2013506040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005289

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 20137027507

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012761518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012761518

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14006538

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013024398

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013024398

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130923