WO2012115065A1 - 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 - Google Patents
電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 Download PDFInfo
- Publication number
- WO2012115065A1 WO2012115065A1 PCT/JP2012/054031 JP2012054031W WO2012115065A1 WO 2012115065 A1 WO2012115065 A1 WO 2012115065A1 JP 2012054031 W JP2012054031 W JP 2012054031W WO 2012115065 A1 WO2012115065 A1 WO 2012115065A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- resin composition
- crystalline polyester
- phenol
- sealing
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L65/00—Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
- C08L65/04—Polyxylenes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L71/00—Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
- C08L71/08—Polyethers derived from hydroxy compounds or from their metallic derivatives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/10—Materials in mouldable or extrudable form for sealing or packing joints or covers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/29—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
- H01L23/293—Organic, e.g. plastic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/28—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
- H01L23/31—Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
- C08L23/0807—Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
- C08L23/0815—Copolymers of ethene with aliphatic 1-olefins
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0615—Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C09K2200/0617—Polyalkenes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0645—Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
- C09K2200/0655—Polyesters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2200/00—Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
- C09K2200/06—Macromolecular organic compounds, e.g. prepolymers
- C09K2200/0645—Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
- C09K2200/067—Condensation polymers of aldehydes or ketones
- C09K2200/0672—Phenol-aldehyde condensation polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present invention relates to a sealed electric and electronic part sealed with a resin composition, a method for producing the same, and a resin composition suitable for this application.
- Hot melt resins that can be sealed with reduced viscosity simply by heating and melting solidify and form a sealed body just by cooling after sealing, so that productivity is also high, and in addition, generally thermoplastic resins Therefore, even after the end of the product life, the member can be easily recycled by heating to melt and remove the resin.
- Polyester which has both high electrical insulation and water resistance, is considered to be a very useful material for this application, but generally has a high melt viscosity and injection at a high pressure of several hundred MPa or more to seal parts with complex shapes. Molding is required, and there is a risk of destroying electrical and electronic parts.
- Patent Document 1 discloses a structural adhesive composition comprising a specific polytetramethylene glycol copolymer polyether ester elastomer and an epoxy compound having a glycidyl group of at least number average 1.2 or more in the molecule.
- the polyester resin used here has good initial adhesion, but tends to have high crystallinity, and therefore, after adhesion, strain energy is generated when changing from an amorphous state to a crystalline state. There was a tendency to decrease significantly, and it was inappropriate as a sealing material for electric and electronic parts.
- Patent Documents 2 and 3 propose hot-melt resin compositions for sealing having a melt viscosity that enables sealing at low pressure without damaging electrical and electronic parts.
- this resin composition With this resin composition, a molded product with good initial adhesion can be obtained, and the polyester resin composition can be applied to general electric and electronic parts.
- the adhesion strength is greatly reduced and the sealed state may not be maintained. .
- Patent Document 4 discloses a resin composition for sealing electrical and electronic parts in which a crystalline polyester resin, an epoxy resin, and a polyolefin resin are blended. Although this composition has high adhesive strength and is strong against a cooling cycle load, there is a problem in that a formulation having a glycidyl group may cause gelation or hardening aggregation when retained at high temperatures.
- Patent Document 5 shows that a hot melt adhesive composition containing a specific polyester resin and a phenol-modified xylene resin exhibits good adhesion to tin-plated copper and a biaxially stretched polyethylene terephthalate film. Yes.
- This adhesive composition also has a problem that the durability of adhesion in a cooling / heating cycle such as ⁇ 40 ° C. for 30 minutes and 80 ° C. for 30 minutes as in an automobile application is insufficient.
- JP 60-18562 A Japanese Patent No. 3553559 JP 2004-83918 A JP 2010-150471 A Patent No. 4389144
- the first problem of the present invention is to provide an electrical and electronic component sealing body that has less concern about gelation even if it remains at high temperatures, and that is excellent in durability against environmental loads such as a thermal cycle load. It is an object to provide a suitable method for producing an encapsulated body for electric and electronic parts and a resin composition for encapsulating electric and electronic parts. More specifically, the elongation and strength do not drop significantly after 1000 cycles of a cooling cycle of ⁇ 40 ° C. for 30 minutes and 80 ° C. for 30 minutes, and the environment requires high durability against the cooling cycle load. Is to provide a resin composition for sealing electric and electronic parts.
- the second problem of the present invention is to provide a sealed electrical and electronic component that is less susceptible to gelation even if it remains at a high temperature, and is excellent in durability against a cold cycle load and a high temperature long time load
- An object of the present invention is to provide a method for producing an encapsulated body for electric and electronic parts and a resin composition for encapsulating electric and electronic parts. More specifically, the elongation and strength are not significantly reduced even after a 1000 cycle load at -40 ° C. for 30 minutes and 150 ° C. for 30 minutes, and a high temperature long time load at 150 ° C.
- the present invention (1) Crystalline polyester elastomer (A), Phenol-modified alkylbenzene resin (B1) and / or phenol resin (B2), Polyolefin resin (C), Containing Electricity having a melt viscosity of 5 dPa ⁇ s or more and 3000 dPa ⁇ s or less when dried to a moisture content of 0.1% or less, heated to 220 ° C., applied with a pressure of 1 MPa, and extruded from a die having a pore diameter of 1.0 mm and a thickness of 10 mm. Resin composition for sealing electronic parts.
- the crystalline polyester elastomer (A) includes a crystalline polyester resin (A1) in which a polyether component is copolymerized, a crystalline polyester resin (A2) in which a polycarbonate component is copolymerized, and a polylactone component.
- the resin composition for sealing electrical and electronic parts according to (1) which is one or a mixture of two or more selected from the group consisting of polymerized crystalline polyester resin (A3).
- the total of the phenol-modified alkylbenzene resin (B1) and the phenol resin (B2) is 0.1 to 100 parts by weight and the polyolefin resin (C) is 0.1 to 100 parts by weight with respect to 100 parts by weight of the crystalline polyester elastomer (A).
- the resin composition for encapsulating electrical and electronic parts of the present invention is excellent in melt fluidity, and therefore, when used as an electrical and electronic parts sealing material, it can be molded without causing a short shot even at a relatively low pressure. Moreover, it is excellent in the initial adhesion strength to various members including an aluminum material, and maintains a high degree of adhesion even after being subjected to a thermal cycle load, and can exhibit a high level of adhesion durability against a thermal cycle. For this reason, the electrical and electronic component sealing body sealed using the electrical and electronic component sealing resin composition of the present invention exhibits durability against the severe environmental load of the cooling and heating cycle.
- the resin composition for sealing electric and electronic parts according to a specific embodiment of the present invention is excellent in melt fluidity, when used as a sealing material in an electric and electronic parts sealing body, a short shot is generated even at a relatively low pressure. Can be molded without any problems.
- it has excellent initial adhesion to various materials including aluminum materials, and has high thermal cycle durability that maintains the adhesive strength even after passing through 1000 cycles of thermal cycle at -40 ° C for 30 minutes and 150 ° C for 30 minutes.
- it exhibits high heat aging resistance in which the elongation at break is maintained even after a high temperature and long time load at 150 ° C. for 1000 hours.
- the electrical and electronic component sealing body sealed using the electrical and electronic component sealing resin composition of the present invention exhibits durability against severe environmental loads such as a cooling cycle and a high temperature and long time load.
- the encapsulated body for electric and electronic parts according to the present invention is a resin or resin composition that is fluidized by heating and kneading at a low pressure of 0.1 to 10 MPa in a mold in which the electric and electronic parts are set inside the mold. It can be manufactured by injection injection.
- the electric and electronic parts are encapsulated and sealed by the injected resin in whole or in part. Compared to injection molding at a high pressure of 40 MPa or higher, which is generally used for molding plastics in the past, it is performed at a much lower pressure, so it is sealed by injection molding, but limited to heat resistance and pressure resistance. It is possible to seal an electrical / electronic component without breaking it.
- sealing resin or a sealing resin composition By properly selecting a sealing resin or a sealing resin composition, it has adhesion durability that can withstand environmental loads such as a cold cycle load and a high-temperature long-time load even for metal members such as aluminum materials. A sealing body can be obtained. The details of the embodiments of the invention will be sequentially described below.
- the resin composition for sealing electric and electronic parts of the present invention contains a crystalline polyester elastomer (A), a phenol-modified alkylbenzene resin (B1) and / or a phenol resin (B2), and a polyolefin resin (C), and contains moisture.
- the melt viscosity is 5 dPa ⁇ s or more and 3000 dPa ⁇ s or less when extruding from a die having a pore diameter of 1.0 mm and a thickness of 10 mm by heating to 220 ° C. by drying to a rate of 0.1% or less and applying a pressure of 1 MPa.
- the crystalline polyester elastomer (A) in the present invention is a polyester having a chemical structure obtained by polycondensation of a polycarboxylic acid compound and a polyhydric alcohol compound, having a glass transition temperature of 0 ° C. or less and a melting point. It is polyester which is 100 degree
- Typical examples of the crystalline polyester elastomer (A) in the present invention include a crystalline polyester resin (A1) in which a polyether component is copolymerized and a crystalline polyester resin (A2) in which a polycarbonate component is copolymerized. And a crystalline polyester resin (A3) in which a polylactone component is copolymerized.
- aliphatic dicarboxylic acids having 10 or more carbon atoms such as dimer acid and hydrogenated dimer acid and / or aliphatic and / or alicyclic diols having 10 or more carbon atoms such as dimer diol and hydrogenated dimer diol.
- a crystalline polyester elastomer can also be obtained by copolymerizing and introducing block-like segments into the polyester resin.
- Preferred examples of the crystalline polyester elastomer (A) used in the present invention include a crystalline polyester resin (A1) in which a polyether component is copolymerized.
- a polyether component By copolymerizing the polyether component, characteristics such as low melt viscosity, high flexibility, and high adhesion are imparted to the crystalline polyester resin (A1).
- the polyether component is typically copolymerized with the crystalline polyester resin (A1) using polyether diol as a raw material.
- the copolymerization ratio of the polyether component is preferably 1 mol% or more, and more preferably 5 mol% or more when the entire glycol component constituting the crystalline polyester resin (A1) is 100 mol%.
- the number average molecular weight of the polyether component is preferably 400 or more, and more preferably 800 or more.
- the number average molecular weight of the polyether component is preferably 5000 or less, and more preferably 3000 or less. If the number average molecular weight is too high, the compatibility with other components is poor, and there is a tendency to cause a problem that copolymerization is impossible.
- Specific examples of the raw material of the polyether component include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol and the like. The effect of increasing the flexibility of the resulting crystalline polyester resin (A1), melting Polytetramethylene glycol is most preferable in terms of the effect of lowering the viscosity.
- the crystalline polyester elastomer (A) used in the present invention by adjusting the composition ratio of the aliphatic component and / or the alicyclic component and the aromatic component, it is widely used as an engineering plastic.
- Low melt viscosity and two-component curing not found in general-purpose crystalline polyester resins such as polyethylene terephthalate (hereinafter sometimes abbreviated as PET) and polybutylene terephthalate (hereinafter sometimes abbreviated as PBT). It is possible to achieve both heat resistance, high-temperature and high-humidity resistance, cold-heat cycle resistance, and the like comparable to the type epoxy resin.
- terephthalic acid and ethylene glycol, terephthalic acid and 1,4-butanediol, naphthalene dicarboxylic acid and ethylene glycol, naphthalene dicarboxylic acid and 1,4-butanediol are used to exhibit high heat resistance of 150 ° C. or higher.
- a copolymerized polyester based is suitable.
- rapid crystal solidification after molding improves mold releasability and is a desirable characteristic from the viewpoint of productivity improvement. Therefore, terephthalic acid and 1,4-butanediol, naphthalenedicarboxylic acid and 1,4- It is preferable that butanediol is the main component.
- the copolymerization ratio is preferably 65 mol% or more, more preferably 70 mol% or more, especially 80 mol% or more when the total amount of terephthalic acid and naphthalenedicarboxylic acid is 100 mol%. It is preferable that If the total of terephthalic acid and naphthalenedicarboxylic acid is too low, the heat resistance required for electrical and electronic parts may be insufficient.
- the glycol component constituting the crystalline polyester elastomer (A) contains both or one of ethylene glycol and 1,4-butanediol from the viewpoint of maintaining crystallinity during copolymerization.
- the copolymerization ratio is preferably 40 mol% or more, more preferably 45 mol% or more, particularly preferably 45 mol% or more when the total amount of ethylene glycol and 1,4-butanediol is 100 mol% of the total amount of glycol components. 50 mol% or more is preferable, and most preferably 55 mol% or more.
- the basic composition comprising the above acid component and glycol component giving high heat resistance has adipic acid, azelaic acid, sebacic acid, 1,4-cyclohexanedicarboxylic acid.
- Aliphatic or alicyclic dicarboxylic acids such as 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 4-methyl-1,2-cyclohexanedicarboxylic acid, dimer acid, hydrogenated dimer acid, 2-propanediol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol , 3-methyl-1,5-pentanediol, neopentyl glycol, diethylene glycol , Dipropylene glycol, 2,2,4-trimethyl-1,3-pentanediol, cyclohexanedimethanol, tricyclodecane dimethanol, neopentylglycol hydroxypivalate, 1,9-nonane
- the crystalline polyester elastomer (A) used in the present invention includes an aliphatic and / or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid and hydrogenated dimer acid, and / or dimer diol, water.
- an aliphatic and / or alicyclic diol having 10 or more carbon atoms such as an additive dimer diol is copolymerized, the glass transition temperature is lowered while maintaining a high melting point, and the heat resistance and electrical / electronic component of the resin composition of the present invention are reduced. In some cases, it is possible to further improve the compatibility of the adhesion to the surface.
- dimer acid, aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer diol and / or aliphatic or alicyclic diol having 10 or more carbon atoms
- polyalkylene such as polytetramethylene glycol
- the term “cooling cycle durability” as used herein means that even if the temperature is raised and lowered repeatedly between high and low temperatures, peeling of the interface part between the electronic component having a different linear expansion coefficient and the sealing resin, or cracking of the sealing resin It is performance that is hard to occur. If the elastic modulus of the resin is significantly increased during cooling, peeling or cracking is likely to occur.
- the glass transition temperature is preferably ⁇ 10 ° C. or lower in order to provide a material that can withstand the cooling and heating cycle. More preferably, it is ⁇ 20 ° C. or less, more preferably ⁇ 40 ° C. or less, and most preferably ⁇ 50 ° C. or less.
- the lower limit is not particularly limited, but a temperature of ⁇ 100 ° C. or more is realistic in consideration of adhesion and blocking resistance.
- the dimer acid is an aliphatic or alicyclic dicarboxylic acid produced by dimerization of an unsaturated fatty acid by polymerization or Diels-Alder reaction (most of the dimer, trimer, monomer, etc.).
- the hydrogenated dimer acid refers to one obtained by adding hydrogen to the unsaturated bond portion of the dimer acid.
- the dimer diol and hydrogenated dimer diol are those obtained by reducing the two carboxyl groups of the dimer acid or the hydrogenated dimer acid to hydroxyl groups. Specific examples of the dimer acid or dimer diol include Copolis' Enpol (registered trademark) or Sobamol (registered trademark) and Unikema's Prepol.
- the polylactone is a polymer or oligomer having a structure obtained by ring-opening polymerization of a lactone such as ⁇ -butyrolactone, ⁇ -valerolactone, or ⁇ -caprolactone. Is mentioned.
- an aromatic copolymer component in the crystalline polyester elastomer (A) used in the present invention, a small amount of an aromatic copolymer component can be used as long as it has a low melt viscosity.
- Preferred examples of the aromatic copolymer component include aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid, and aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
- aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid
- aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
- an aliphatic component having a relatively high molecular weight such as dimer acid or dimer diol
- the upper limit of the ester group concentration of the crystalline polyester-based elastomer (A) is 8000 equivalents in order to provide hydrolysis resistance that can withstand high temperature and high humidity in providing long-term durability to the encapsulated electrical and electronic parts.
- / 10 6 g is desirable.
- a preferable upper limit is 7500 equivalent / 10 ⁇ 6 > g, More preferably, it is 7000 equivalent / 10 ⁇ 6 > g.
- the lower limit is desirably 1000 equivalents / 10 6 g.
- a preferred lower limit is 1500 equivalents / 10 6 g, more preferably 2000 equivalents / 10 6 g.
- the unit of ester group concentration is represented by the number of equivalents per 10 6 g of resin, and is a value calculated from the composition of the polyester resin and its copolymerization ratio.
- the block-like segment is introduced into the polyester resin (A) of the present invention, it is preferably 2 mol% or more when the total of all the acid components and all glycol components of the polyester resin (A) is 200 mol%. More preferably, it is 5 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more.
- the upper limit is 70 mol% or less, preferably 60 mol% or less, more preferably 50 mol% or less in consideration of handling properties such as heat resistance and blocking.
- Preferred examples of the crystalline polyester elastomer (A) used in the present invention include a crystalline polyester resin (A2) in which a polycarbonate component is copolymerized.
- the crystalline polyester resin (A2) preferably has a chemical structure in which a hard segment mainly composed of a polyester segment and a soft segment mainly composed of a polycarbonate segment are bonded by an ester bond.
- the soft segment mainly comprising a polycarbonate segment constituting the crystalline polyester resin (A2) used in the present invention can be formed by copolymerizing a polycarbonate component, typically a polycarbonate diol. Due to the copolymerization of the polycarbonate component, characteristics such as low melt viscosity, high flexibility, and high adhesion are exhibited.
- the soft segment is preferably 25% by weight or more, more preferably 30% by weight or more, and 35% by weight. The above is particularly preferable.
- the soft segment is preferably 75% by weight or less, more preferably 70% by weight or less, and particularly preferably 65% by weight or less.
- the polycarbonate component constituting the soft segment is preferably an aliphatic polycarbonate component mainly composed of a poly (alkylene carbonate) component.
- “mainly” means that the poly (alkylene carbonate) component occupies 50% by weight or more of the aliphatic polycarbonate component, more preferably 75% by weight or more, and more preferably 90% by weight or more. preferable.
- the alkylene group constituting the poly (alkylene carbonate) is more preferably a linear alkylene group having 4 to 16 carbon atoms, and a longer chain alkylene group tends to be excellent in durability against cold cycle load. Considering availability, it is preferably a tetramethylene group, a pentamethylene group, a hexamethylene group, an octamethylene group, or a nonamethylene group.
- the copolymer type polycarbonate in which the alkylene group which comprises poly (alkylene carbonate) is 2 or more types of mixtures may be sufficient.
- heat resistance such as polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), etc.
- PET polyethylene terephthalate
- PBT polybutylene terephthalate
- PEN polyethylene naphthalate
- PBN polybutylene naphthalate
- a crystalline polyester segment is preferred. More preferred are PBT and PBN. When other crystalline polyesters are used, heat resistance may be insufficient, durability, and low temperature characteristics may deteriorate.
- an aromatic copolymer component in the crystalline polyester resin (A2) used in the present invention, a small amount of an aromatic copolymer component can be used as long as it is within a range that maintains a low melt viscosity.
- Preferred examples of the aromatic copolymer component include aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid, and aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
- aromatic dicarboxylic acids such as isophthalic acid and orthophthalic acid
- aromatic glycols such as ethylene oxide adduct and propylene oxide adduct of bisphenol A.
- an aliphatic component having a relatively high molecular weight such as dimer acid or dimer diol, good mold releasability may be obtained by rapid solidification after molding.
- an aliphatic or alicyclic dicarboxylic acid having 10 or more carbon atoms such as dimer acid, hydrogenated dimer acid, dimer diol, hydrogenated dimer diol and / or carbon.
- the total of all acid components and all glycol components of the polyester resin (A) is calculated.
- it is 200 mol%, it is preferably 2 mol% or more, more preferably 5 mol% or more, more preferably 10 mol% or more, and most preferably 20 mol% or more.
- the upper limit is 70 mol% or less, preferably 60 mol% or less, more preferably 50 mol% or less in consideration of handling properties such as heat resistance and blocking.
- the number average molecular weight of the crystalline polyester elastomer (A) used in the present invention is preferably 3000 or more, more preferably 5000 or more, and further preferably 7000 or more.
- the upper limit of the number average molecular weight is preferably 50000 or less, more preferably 40000 or less, and still more preferably 30000 or less. If the number average molecular weight is less than 3000, the sealing resin composition may be insufficient in hydrolysis resistance and high elongation at high temperature and high humidity. If it exceeds 50,000, the melt viscosity at 220 ° C. May be higher.
- the crystalline polyester elastomer (A) used in the present invention is preferably a saturated polyester resin containing no unsaturated group. If the unsaturated polyester contains an unsaturated group at a high concentration, there is a possibility that crosslinking occurs at the time of melting, and the melt stability may be inferior. Further, the crystalline polyester elastomer (A) used in the present invention may contain an unsaturated group in a very small amount.
- the crystalline polyester elastomer (A) used in the present invention is copolymerized with a trifunctional or higher polycarboxylic acid such as trimellitic anhydride or trimethylolpropane or a polyol, if necessary, and has a branched polyester. It does not matter.
- the phenol-modified alkylbenzene resin (B1) used in the resin composition of the present invention is a product obtained by modifying an alkylbenzene resin with phenol and / or alkylphenol, and preferably has a number average molecular weight in the range of 450 to 40,000.
- the phenol-modified alkylbenzene resin (B1) is prepared by reacting an alkylbenzene such as xylene or mesitylene with an aldehyde such as formaldehyde in the presence of an acidic catalyst to produce an alkylbenzene resin, which is then phenols in the presence of an acidic catalyst. And can be produced by reacting with aldehydes.
- the phenol-modified alkylbenzene resin (D2) is preferably an alkylphenol-modified xylene resin or an alkylphenol-modified mesitylene resin.
- a xylene resin is a multimer composition having a basic structure in which a xylene structure is crosslinked by a methylene group or an ether bond, and can be typically obtained by heating meta-xylene and formaldehyde in the presence of sulfuric acid.
- the mesitylene resin is a multimer composition having a basic structure in which the mesitylene structure is cross-linked by a methylene group or an ether bond. Typically, the mesitylene resin can be obtained by heating mesitylene and formaldehyde in the presence of sulfuric acid.
- Xylene resins and mesitylene resins are typical of alkylbenzene resins.
- the phenol-modified xylene resin (B1) of the present invention preferably has a hydroxyl value of 100 equivalents / 10 6 g or more, more preferably 1000 equivalents / 10 6 g or more, and 5000 equivalents / 10 6 g or more. Is more preferable. Also, preferably not more than 20000 equivalents / 10 6 g, more preferably 15000 or less equivalent / 10 6 g. If the hydroxyl value is too low, the adhesion to the aluminum material tends to be poor, and if the hydroxyl value is too high, the water absorption tends to increase and the insulating property tends to decrease.
- the hydroxyl value referred to here is measured by the JIS K1557-1: 2007A method.
- the phenol resin (B2) used in the resin composition of the present invention is a resin obtained by the reaction of phenols and aldehydes, and may be a novolak type phenol resin or a cresol type phenol resin, and has a number average molecular weight of 450 to 40,000. Those within the range are preferred.
- Phenols that can be used as starting materials for phenol resins include bifunctional compounds such as o-cresol, p-cresol, p-tert-butylphenol, p-ethylphenol, 2,3-xylenol and 2,5-xylenol.
- Trifunctional phenols such as phenol, phenol, m-cresol, m-ethylphenol, 3,5-xylenol and m-methoxyphenol, tetrafunctional phenols such as bisphenol A and bisphenol F, and these various phenols 1 type, or 2 or more types combined use can be mentioned.
- formaldehyde used for manufacture of a phenol resin 1 type, or 2 or more types, such as formaldehyde, paraformaldehyde, a trioxane, can be used together.
- Other examples include phenol-modified resins such as phenol aralkyl and phenol-modified xylene resins.
- the phenol resin (B2) of the present invention preferably has a hydroxyl value of 100 equivalents / 10 6 g or more, more preferably 500 equivalents / 10 6 g or more, and 1000 equivalents / 10 6 g or more. Is more preferable. Further, preferably 10000 or less equivalent / 10 6 g, more preferably not more than 5000 equivalents / 10 6 g.
- the hydroxyl value referred to here is measured by the JIS K1557-1: 2007A method.
- the sealing resin composition by blending the phenol-modified xylene resin (B1) and / or the phenol resin (B2) into the sealing resin composition, good initial adhesion and adhesion to the thermal cycle when sealing electrical and electronic parts. Excellent properties such as durability can be imparted.
- the phenol-modified xylene resin (B1) and / or the phenol resin (B2) is a stress relaxation effect due to crystallization delay of the crystalline polyester elastomer (A), and the dispersion of the crystalline polyester elastomer (A) and the polyolefin resin (C). It is considered that the effect as an auxiliary agent and the effect of improving the wettability to the base material by introducing a functional group are exhibited.
- the amount of the phenol-modified xylene resin (B1) and / or phenol resin (B2) in the present invention is preferably 0.1 parts by weight or more with respect to 100 parts by weight of the crystalline polyester elastomer (A). More preferably, it is more than 3 parts by weight. Further, it is preferably 100 parts by weight or less, more preferably 50 parts by weight or less, and further preferably 20 parts by weight or less.
- the blending ratio of the phenol-modified xylene resin (B1) and / or the phenol resin (B2) is too low, the stress relaxation effect due to crystallization delay may not be exhibited, and the polyolefin resin (C) and the crystalline polyester elastomer ( The function of A) as a dispersion aid may not be expressed.
- the productivity of the resin composition may be inferior, and further, the flexibility characteristics as a sealing body may be inferior.
- the polyolefin resin (C) used in the present invention is not particularly limited, but a low crystalline polyolefin resin is preferably used. Low crystalline polyolefin resin density than ordinary polyolefin resin is in a low tendency, ones density is less than 0.75 g / cm 3 or more 0.91 g / cm 3 are preferred.
- the polyolefin resin (C) can be easily produced with respect to the originally incompatible crystalline polyester elastomer (A). It can be finely dispersed and mixed, and a homogeneous resin composition can be obtained with a general twin screw extruder.
- the polyolefin resin (C) by using a low density and low crystallinity as the polyolefin resin (C), it also acts appropriately on the temporal relaxation of the residual stress at the time of injection molding generated in the crystalline polyester elastomer (A), As a sealing resin, it exhibits desirable characteristics such as long-term adhesion durability and reduction of stress generated by environmental load.
- polyethylene and ethylene copolymers are particularly preferable because they are readily available and inexpensive and do not adversely affect the adhesion to metals and films. More specifically, low density polyethylene, ultra low density polyethylene, linear low density polyethylene, ethylene- ⁇ -olefin copolymer, ethylene propylene elastomer, ethylene-butene copolymer and the like can be mentioned.
- the polyolefin resin (C) preferably does not contain a polar group such as a carboxyl group or a glycidyl group. If a polar group is present, the compatibility with the crystalline polyester elastomer (A) changes, and the strain energy during crystallization of the polyester resin (A) may not be alleviated. Generally, a polyolefin having a polar group tends to have a higher compatibility with a polyester resin than a polyolefin having no polar group. However, in the present invention, when the compatibility is higher, the adhesion deterioration with time tends to increase. .
- a polar group such as a carboxyl group or a glycidyl group.
- the polyolefin resin (C) of the present invention has a melt mass flow rate (hereinafter sometimes abbreviated as MFR) measured according to JIS K 7210-1999, Condition D (test temperature 190 ° C., nominal load 2.16 kg). It is preferably ⁇ 20 g / 10 min. If the MFR is less than 5, the melt viscosity is too high, the compatibility with the crystalline polyester elastomer (A) may be reduced, and the adhesion may be impaired. If the MFR is 20 or more, the viscosity is low and the adhesive composition is low. It is very easy to soften and the mechanical properties may be inferior.
- MFR melt mass flow rate
- the compounding of the polyolefin resin (C) into the sealing resin composition has excellent properties such as good initial adhesion and adhesion durability against an environmental load such as a thermal cycle when encapsulating electrical and electronic parts. Demonstrate.
- the polyolefin resin (C) is considered to exhibit a strain energy relaxation effect by crystallization of the crystalline polyester elastomer (A) and enthalpy relaxation.
- the blending amount of the polyolefin resin (C) in the present invention is preferably 0.5 parts by weight or more and more preferably 3 parts by weight or more with respect to 100 parts by weight of the crystalline polyester elastomer (A). More preferably, it is 5 parts by weight or more.
- the blending ratio of the polyolefin resin (C) is preferably 50 parts by mass or less, more preferably 30 parts by weight or less, and further preferably 15 parts by weight or less. If the blending ratio of the polyolefin resin (C) is too low, it is difficult to relieve strain energy due to crystallization and enthalpy relaxation of the crystalline polyester elastomer (A), so that the adhesion strength tends to decrease. In addition, when the blending ratio of the polyolefin resin (C) is too high, there is a tendency that the adhesiveness and the resin physical properties are decreased, and the crystalline polyester elastomer (A) and the polyolefin resin (C) are macroscopic. In some cases, phase separation occurs, the elongation at break decreases, and the moldability is adversely affected such that a smooth surface cannot be obtained.
- the sealing resin composition of the present invention does not correspond to any of the crystalline polyester elastomer (A), the phenol-modified xylene resin (B1), the phenol resin (B2), and the polyolefin resin (C) of the present invention.
- Other resins such as polyester, polyamide, polyolefin, polycarbonate, acrylic, ethylene vinyl acetate, isocyanate compounds, curing agents such as melamine, fillers such as talc and mica, pigments such as carbon black and titanium oxide, antimony trioxide, A flame retardant such as brominated polystyrene may be blended at all. By blending these components, adhesion, flexibility, durability and the like may be improved.
- the crystalline polyester elastomer (A) at that time is preferably contained in an amount of 50% by weight or more, more preferably 60% by weight or more, and further preferably 70% by weight or more based on the entire resin composition of the present invention. .
- the content of the crystalline polyester elastomer (A) is less than 50% by weight, the crystalline polyester elastomer (A) itself has excellent adhesion to electrical and electronic parts, adhesion durability, elongation retention, resistance to resistance. Hydrolysis and water resistance may be reduced.
- an antioxidant for example, as a hindered phenol, 1,3,5-tris (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 1,1,3-tri (4-hydroxy-2-methyl- 5-t-butylphenyl) butane, 1,1-bis (3-t-butyl-6-methyl-4-hydroxyphenyl) butane, 3,5-bis (1,1-dimethylethyl) -4-hydroxy- Benzenepropanoic acid, pentaerythrityltetrakis (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 3- (1,1-dimethylethyl) -4-hydroxy-5-methyl-benzenepropano Icic acid, 3,9-bis [1,1-dimethyl-2-[(3-tert-butyl-4-hydroxy-5-
- the addition amount is preferably 0.1% by weight or more and 5% by weight or less with respect to the whole sealing resin composition. If it is less than 0.1% by weight, the effect of preventing thermal deterioration may be poor. If it exceeds 5% by weight, the adhesion may be adversely affected.
- Examples of the method for determining the composition and composition ratio of the polyester resin include 1 H-NMR and 13 C-NMR, which are measured by dissolving the polyester resin in a solvent such as deuterated chloroform, and quantification by gas chromatography which is measured after the methanolysis of the polyester resin. (Hereinafter, it may be abbreviated as methanolysis-GC method).
- methanolysis-GC method when there is a solvent that can dissolve the crystalline polyester elastomer (A) and is suitable for 1 H-NMR measurement, the composition and composition ratio are determined by 1 H-NMR.
- 13 C-NMR or methanolysis-GC method is adopted or used in combination.
- the dicarboxylic acid and the diol component are esterified at 150 to 250 ° C., and then reduced in pressure.
- the target polyester resin can be obtained by polycondensation at 230 to 300 ° C.
- the target polyester resin is obtained by performing a transesterification reaction at 150 ° C. to 250 ° C. using a derivative such as dimethyl ester of the above dicarboxylic acid and a diol component, and then performing polycondensation at 230 ° C. to 300 ° C. under reduced pressure. be able to.
- the sealing resin composition of the present invention preferably has a melt viscosity of 5 to 3000 dPa ⁇ s at 220 ° C., and is a crystalline polyester elastomer (A), a phenol-modified xylene resin (B1) and / or a phenol resin ( This can be achieved by appropriately adjusting the type and blending ratio of B2) and polyolefin resin (C).
- melt viscosity at 220 ° C. is a value measured as follows. That is, the sealing resin composition was dried to a moisture content of 0.1% or less, and then heated and stabilized at 220 ° C.
- melt viscosity when a 10 mm thick die having a hole diameter of 1.0 mm is passed at a pressure of 98 N / cm 2 .
- melt viscosity 3000 dPa ⁇ s or higher, high resin cohesive strength and durability can be obtained, but high-pressure injection molding is required when sealing to parts with complex shapes, so the parts can be destroyed. May occur.
- a sealing resin composition having a melt viscosity of 2000 dPa ⁇ s or less, preferably 1000 dPa ⁇ s or less, a molded part having excellent electrical insulation can be obtained at a relatively low injection pressure of 0.1 to 100 MPa.
- the melt viscosity at 220 ° C. is low, but considering the adhesiveness and cohesive force of the resin composition, the lower limit is preferably 5 dPa ⁇ s or more, and more preferably Is 10 dPa ⁇ s or more, more preferably 50 dPa ⁇ s or more, and most preferably 100 dPa ⁇ s or more.
- the upper limit of the melting point of the polyester resin (A) is 210 ° C. is desirable. More preferably, it is 200 degreeC.
- the lower limit is preferably 5 to 10 ° C. higher than the heat-resistant temperature required for the corresponding application. Considering handling at normal temperature and normal heat resistance, it is 70 ° C. or higher, preferably 100 ° C. or higher, more preferably 120 ° C. or higher, particularly preferably 140 ° C. or higher, and most preferably 150 ° C. or higher.
- the adhesion strength between a specific member and the sealing resin composition is obtained by preparing a measurement sample piece in which two plate-like members are bonded with the sealing resin composition, and measuring the shear fracture strength thereof. Determine by doing.
- the method for preparing the test specimen for measurement and the method for measuring the shear fracture strength are performed according to the methods described in the examples described later.
- the sealing resin composition of the present invention is typically molded by pouring it into a mold in which electric and electronic parts are set.
- a resin composition in which a crystalline polyester elastomer (A) is a crystalline polyester resin (A1) in which a polyether component is copolymerized is obtained at 130 to 220 ° C. using a screw type hot melt molding process applicator. It can be heated and melted before and after, injected into a mold through an injection nozzle, and after a certain cooling time, the molded product can be removed from the mold to obtain a molded product.
- An appropriate temperature for heating and melting the resin composition varies depending on the resin composition.
- the resin composition is a crystalline polyester resin (A2) in which the crystalline polyester elastomer (A) is copolymerized with a polycarbonate component.
- the heating and melting temperature is preferably about 200 to 280 ° C.
- the type of the applicator for hot melt molding processing is not particularly limited, and examples thereof include Nordson ST2 and Imoto Seisakusho IMC-18F9.
- the normal temperature and normal humidity refers to an environment having a temperature of about 23 ° C. and a relative humidity of about 65%.
- a sealing resin composition is injected from a gate provided at the center of a 100 mm ⁇ 100 mm surface, and molding is performed. went.
- the molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and a discharge rotation set to 50% (maximum discharge was set to 100%).
- the molded product was released from the mold and cut into a strip shape with a width of 20 mm each having a cellophane tape-attached portion to obtain an adhesion strength test piece.
- Thermal cycle test I The environmental load of 1000 cycles, where one cycle consists of an adhesion strength test piece prepared in the same way as the initial adhesion was evaluated for 30 minutes at ⁇ 40 ° C. and then at 80 ° C. for 30 minutes. And then allowed to stand at room temperature and humidity for a day and night, and then measured for T-type peel strength.
- the T-type peel degree retention I defined by the following formula (1) was calculated and displayed according to the following evaluation criteria.
- T-type peel strength retention I is 80% or more AA: T-type peel strength retention I is less than 80% 70% or more A: T-type peel strength retention I is less than 70% 50% or more B: T Mold peel strength retention I is less than 50%
- Thermal cycle test II An environmental load of 1000 cycles, where one cycle is an adhesion strength test piece prepared in the same way as the initial adhesion was evaluated and placed in an environment at ⁇ 40 ° C. for 30 minutes and then at 150 ° C. for 30 minutes. And then allowed to stand at room temperature and humidity for a day and night, and then measured for T-type peel strength.
- the T-type peel degree retention rate II defined by the following mathematical formula (2) was calculated and displayed according to the following evaluation criteria.
- T-type peel strength retention II is 80% or more AA: T-type peel strength retention II is less than 80% 70% or more A: T-type peel strength retention II is less than 70% 50% or more B: T Mold peel strength retention II is less than 50%
- Low pressure moldability evaluation method A flat plate (100 mm x 100 mm x 10 mm) made of a resin composition for sealing using a flat mold and a low pressure molding applicator IMC-18F9 manufactured by Imoto Seisakusho as an applicator for hot melt molding. After molding, the flat plate after mold release was visually observed, and the presence or absence of burrs, sink marks and short shots was displayed according to the following evaluation criteria.
- the gate position was the center of a 100 mm ⁇ 100 mm surface, and the molding conditions were a molding resin temperature of 220 ° C., a molding pressure of 3 MPa, a holding pressure of 3 MPa, a cooling time of 15 seconds, and a discharge rotation of 50%.
- Evaluation Criteria AAA Completely filled with no burrs or sink marks. AA: Filled completely, but some burrs are generated. A: Filled without a short shot, but with sink marks. B: There is a short shot.
- dumbbell and the tensile breaking elongation was measured according to the measuring method of JIS K6251, and the value was defined as “initial tensile breaking elongation”.
- the dumbbell prepared in the same manner was treated in a 150 ° C. atmosphere for 1000 hours and left standing at room temperature and humidity for one day and night, and then the tensile elongation at break was measured in the same manner.
- the tensile elongation at break after the test ”.
- the tensile elongation at break was calculated according to the following formula 2 and displayed according to the following evaluation criteria.
- Evaluation criteria AAA Tensile rupture elongation retention ratio 65% or more AA: Tensile rupture elongation retention ratio less than 65% 50% or more A: Tensile rupture elongation retention ratio less than 50% 30% or more B: Tensile rupture elongation retention ratio 30 %Less than
- TPA terephthalic acid
- NDC naphthalene dicarboxylic acid
- BD 1,4-butanediol
- PTMG1000 polytetramethylene ether glycol (number average molecular weight 1000)
- PTMG2000 Polytetramethylene ether glycol (number average molecular weight 2000)
- PCL polycaprolactone (number average molecular weight 850)
- PBT Polybutylene terephthalate
- PBN Polybutylene naphthalate
- Polyolefin A Exelen VL EUL731, manufactured by Sumitomo Chemical Co., Ltd., ethylene- ⁇ -olefin copolymer, density 0.90, MFR 10 g / 10 min.
- Polyolefin B Admer SF-600, manufactured by Mitsui Chemicals, adhesive polyolefin, density 0.88, MFR 3.3 g / 10 min.
- Polyolefin C Hi-Zex 2100J, manufactured by Prime Polymer Co., Ltd., high-density polyethylene, density 0.93, MFR 5.8 g / 10 min.
- Phenol-modified alkylbenzene resin A Nikanol HP-150, manufactured by Fudou Co., Ltd., phenol-modified xylene resin, hydroxyl value 3035 equivalent / 10 6 g.
- Phenol-modified alkylbenzene resin B Nikanol HP-100, manufactured by Fudou Co., Ltd., phenol-modified xylene resin, hydroxyl value 2500 equivalent / 10 6 g.
- Phenol-modified alkylbenzene resin C Nikanol L5, manufactured by Fudou Co., Ltd., phenol-modified xylene resin (EO addition type), hydroxyl value 625 equivalent / 10 6 g.
- Phenol resin A CKM2400 Showa Highpolymer Co., Ltd., novolac type phenol resin, hydroxyl value 9000 equivalent / 10 6 g.
- Phenol resin B EP4020 manufactured by Asahi Organic Materials Co., Ltd., cresol novolac type phenol resin, hydroxyl value 9250 equivalent / 10 6 g.
- polyester resin IA 1,4-butanediol when the total amount of glycol components is 100 mol% with respect to 100 mol% of terephthalic acid in a reaction vessel equipped with a stirrer, thermometer, and condenser for distillation Charge 60 mol%. Thereafter, when the total amount of tetrabutyl titanate was 100 parts by mass, 0.25 part by mass was added, and the esterification reaction was performed at 170 to 220 ° C. for 2 hours. After completion of the esterification reaction, the remaining 40 mol% of polytetramethylene glycol “PTMG1000” (Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of 1000 was charged.
- PTMG1000 polytetramethylene glycol
- hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Corp.) was added to 0.5 parts by mass, and the temperature was raised to 255 ° C., while the pressure in the system was slowly reduced to 665 Pa at 255 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin IA.
- This polyester resin IA had a melting point of 165 ° C. and a melt viscosity of 500 dPa ⁇ s.
- Polyester Resins IB to D were obtained in the same manner as in Production Examples of Polyester Resin IA, except that the types and ratios of raw materials were changed.
- the compositions and physical properties of these polyester resins IBD are shown in Table 1.
- Resin composition I-1 for encapsulating electrical and electronic parts comprises 100 parts by mass of polyester resin IA, 20 parts by mass of polyolefin resin A, and epoxy resin A. After uniformly mixing 10 parts by mass, it was obtained by melt-kneading at a die temperature of 220 ° C. using a twin screw extruder. Polyester resin compositions I-2 to 26 were prepared in the same manner as polyester resin composition I-1, except that the blending components and ratios were changed. The respective compositions are shown in Tables 2 and 3.
- Example I-1 Using the sealing resin composition I-1 as the sealing resin composition, ⁇ melting characteristic test> and ⁇ adhesion strength test> were performed. In ⁇ melting characteristic test>, it was 846 dPa ⁇ s and good melting characteristic. In ⁇ Adhesion Strength Test>, for the aluminum plate adhesion test piece, the initial adhesion strength was 1.2 MPa, and after the thermal cycle test, 1.0 MPa, and a good result showing high adhesion strength retention in all items was obtained. . The results are shown in Table 2.
- Examples I-2 to 9 Using the sealing resin compositions I-2 to 9 as the sealing resin composition, the ⁇ melting characteristic test> and the ⁇ adhesion strength test> were performed in the same manner as in Example I-1. The evaluation results are shown in Table 2.
- Example I-1 Using the sealing resin composition I-10 as the sealing resin composition, a ⁇ melting characteristic test> and an ⁇ adhesion strength test> were performed in the same manner as in Example I-1.
- ⁇ melting characteristic test> it is 3414 dPa ⁇ s, which is outside the moldable range.
- ⁇ adhesion strength test> the initial adhesion strength of the aluminum plate adhesion test piece is 0.9 MPa, and 0.7 MPa after the thermal cycle test. Although the required characteristics were satisfied and the adhesion strength retention rate was also satisfied, in the low-pressure molding evaluation, a molding defect due to a short occurred and became defective.
- the evaluation results are shown in Table 3.
- Comparative Example I-2 Using the sealing resin composition I-11 as the sealing resin composition, a ⁇ melting characteristic test> and an ⁇ adhesion strength test> were performed in the same manner as in Example I-1.
- ⁇ Melting Properties Test> it is possible to mold at 273 dPa ⁇ s.
- ⁇ Adhesion Strength Test> the initial adhesion strength of the aluminum plate adhesion test piece is 0.8 MPa, and after the cooling cycle test, it is 0.1 MPa. It became defective without satisfying.
- the evaluation results are shown in Table 3.
- Comparative Examples I-3 to 6 Using the sealing resin compositions I-12 to 15 as the sealing resin composition, a ⁇ melting characteristic test> and an ⁇ adhesion strength test> were performed in the same manner as in Example I-1. The evaluation results are shown in Table 2. The evaluation results are shown in Table 3.
- Polyester Resin Composition II-A 100 parts by mass of polybutylene terephthalate (PBT) having a number average molecular weight of 20,000 as a hard segment component and 150 parts by mass of aliphatic polycarbonate diol A as a soft segment component are 230 ° C. to 245 ° C. The mixture was stirred at 130 Pa for 1 hour to confirm that the resin became transparent. Thereafter, 60 ppm of phenylphosphonic acid as a phosphorus atom was added under a nitrogen stream and stirred for 10 minutes under slightly reduced pressure (> 300 Pa), and then the contents were taken out and cooled.
- PBT polybutylene terephthalate
- the polyester resin composition A was mainly composed of a crystalline polyester resin having a terminal vinyl group 13 eq / ton.
- Polyester Resin Composition F In a reaction vessel equipped with a stirrer, a thermometer and a condenser for distillation, 100 mol parts of terephthalic acid, 75 mol parts of 1,4-butanediol, terephthalic acid and 1,4-butane 0.25% by weight of tetrabutyl titanate with respect to the total weight of the diol was charged, and esterification was performed at 170 to 220 ° C. for 2 hours.
- polyester resin F After completion of the esterification reaction, 25 mol parts of polytetramethylene glycol “PTMG1000” (Mitsubishi Chemical Co., Ltd.) having a number average molecular weight of 1000 and 0.5% of hindered phenol antioxidant “Irganox 1330” (Ciba Geigy Co., Ltd.) were added. The weight was charged and the temperature was raised to 250 ° C., while the pressure in the system was slowly reduced to 665 Pa at 250 ° C. over 60 minutes. Further, a polycondensation reaction was performed at 133 Pa or less for 30 minutes to obtain a polyester resin F. This polyester resin composition F had a melting point of 190 ° C. and a melt viscosity of 500 dPa ⁇ s.
- Polyester Resin Composition G was obtained in the same manner as in Production Example of Polyester Resin Composition F except that terephthalic acid was changed to naphthalenedicarboxylic acid.
- the composition and physical properties of the polyester resin composition G are shown in Table 1.
- Example II-1 100 parts by weight of polyester resin composition A, 20 parts by weight of polyolefin resin A, and 10 parts by weight of epoxy resin A are uniformly mixed, and then melt-kneaded at a die temperature of 220 ° C. to 240 ° C. using a twin screw extruder, thereby A sealing resin composition II-1 was obtained.
- the melting characteristics, initial adhesion, cold cycle durability and heat aging resistance of the resin composition II-1 for sealing electrical and electronic parts were evaluated. In the ⁇ melting characteristic test>, it was a favorable melting characteristic of 1000 dPa ⁇ s.
- the initial adhesion strength was 0.8 MPa in ⁇ Adhesion Strength Test>, and 0.7 MPa after the thermal cycle test, which was excellent in initial adhesion and thermal cycle durability. Although 80% was satisfied and the required condition was satisfied, the melt viscosity was high at 3017dPa ⁇ s in the ⁇ melting characteristic test> and out of the moldable range, and a molding failure due to a short occurred in the low-pressure molding evaluation. As a resin composition for sealing electrical and electronic parts, it was not practically usable. The evaluation results are shown in Table 3.
- Polyester Resins III-A to C were obtained in the same manner as in the production example of Polyester Resin IA, except that the types and ratios of raw materials were changed.
- the compositions and physical properties of these polyester resins IBD are shown in Table 1.
- the resin composition for sealing electric and electronic parts of the present invention is excellent in melt fluidity and initial adhesion strength to an aluminum material, and exhibits high adhesion durability even after being subjected to a thermal cycle load.
- the resin composition for sealing an electric / electronic part according to a specific embodiment of the present invention further has an adhesive strength after being subjected to a 1000 cycle cooling / heating cycle load of ⁇ 40 ° C. for 30 minutes and 80 ° C. or 150 ° C. for 30 minutes. It exhibits a high degree of thermal cycle durability that is maintained, and also exhibits a high degree of heat aging resistance in which the elongation at break is maintained even after high-temperature and long-term loading at 150 ° C. for 1000 hours.
- the resin composition for encapsulating electrical and electronic parts of the present invention and the sealed body sealed thereby can seal electrical and electronic parts that may be exposed to severe environmental loads such as a thermal cycle and a high temperature and long time load.
- it is useful as a molded product of a switch or a sensor having various types of connectors, harnesses or electronic components, printed circuit boards, and sensors for automobiles, communications, computers, and home appliances.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Polyesters Or Polycarbonates (AREA)
- Sealing Material Composition (AREA)
Abstract
Description
(1)
結晶性ポリエステル系エラストマー(A)、
フェノール変性アルキルベンゼン樹脂(B1)および/またはフェノール樹脂(B2)、
ポリオレフィン樹脂(C)、
を含有し、
水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である電気電子部品封止用樹脂組成物。
(2)
前記結晶性ポリエステル系エラストマー(A)が、ポリエーテル成分が共重合されている結晶性ポリエステル樹脂(A1)、ポリカーボネート成分が共重合されている結晶性ポリエステル樹脂(A2)、および、ポリラクトン成分が共重合されている結晶性ポリエステル樹脂(A3)からなる群から選ばれる1種または2種以上の混合物である、(1)に記載の電気電子部品封止用樹脂組成物。
(3)
前記フェノール変性アルキルベンゼン樹脂(B1)がアルキルフェノール変性型アルキルベンゼン樹脂であり水酸基価が100当量/106g以上である(1)または(2)に記載の樹脂組成物。
(4)
前記フェノール樹脂(B2)がノボラック型フェノール樹脂であり水酸基価が100当量/106g以上である(1)~(3)のいすれかに記載の樹脂組成物。
(5)
前記結晶性ポリエステル系エラストマー(A)100重量部に対し、フェノール変性アルキルベンゼン樹脂(B1)とフェノール樹脂(B2)の合計が0.1~100重量部、およびポリオレフィン樹脂(C)が0.1~100重量部配合されている(1)~(4)のいずれかに記載の樹脂組成物。
(6)
アルミニウム板に対する、-40℃30分と80℃30分の冷熱サイクルを1000サイクル付加前後のT型剥離強度保持率が50%以上である(1)~(5)のいずれかに記載の電気電子部品封止用樹脂組成物。
(7)
アルミニウム板に対する初期T型剥離強度が0.5N/mm以上である、(1)~(6)のいずれかに記載の電気電子部品封止用樹脂組成物。
(8)
(1)~(7)のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。
(9)
(1)~(7)のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
セイコー電子工業株式会社製の示差走査熱量分析計「DSC220型」にて、測定試料5mgをアルミパンに入れ、蓋を押さえて密封し、一度250℃で5分ホールドした後、液体窒素で急冷して、その後-150℃から250℃まで、20℃/minの昇温速度で測定した。得られた曲線の変曲点をガラス転移温度、吸熱ピークを融点とした。
<密着強度試験>
密着強度試験片の作成方法
0.5mm厚のアルミ板(TP技研株式会社製A5052)を70mm×70mmの大きさに切断し、表面をアセトンで拭いて油分を取り除いた。次いでこのアルミ板を平板成型用金型(金型内面寸法:幅100mm×長さ100mm×厚み5mm)の内部に固定し、アルミ板の一辺に幅10mmのセロハンテープを貼りつけた。次いでスクリュー型ホットメルト成型加工用アプリケーター(井元製作所製竪型低圧押し出し成型機IMC-18F9)を用いて100mm×100mmの面の中心に設けたゲートから封止用樹脂組成物を注入し、成型を行った。成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転を50%設定(最大吐出を100%として)とした。成型物を離型し、各々がセロハンテープ貼りつけ部を有する幅20mmの短冊状となるように切断し、密着強度試験片を得た。
前記密着試験片を23℃、相対湿度50%の雰囲気下にて3時間以上100時間以内保管した。次いで、セロハンテープ貼りつけ部よりアルミ板と樹脂を剥離させ、T型剥離強度を測定した。引張速度は50mm/分とした。
評価基準 AAA:T型剥離強度2.0N/mm以上
AA :T型剥離強度2.0N/mm未満1.0N/mm以上
A :T型剥離強度1.0N/mm未満0.5N/mm以上
B :T型剥離強度0.5N/mm未満
初期密着性を評価したのと同様にして作成した密着強度試験片に対して、-40℃で30分、次いで80℃で30分の環境下におくことを1サイクルとする1000サイクルの環境負荷を与え、次いで常温常湿で一昼夜静置した後、T型剥離強度を測定した。下記数式(1)で定義されるT型剥離度保持率Iを算出し、下記評価基準に従って表示した。
AA :T型剥離強度保持率Iが80%未満70%以上
A :T型剥離強度保持率Iが70%未満50%以上
B :T型剥離強度保持率Iが50%未満
初期密着性を評価したのと同様にして作成した密着強度試験片に対して、-40℃で30分、次いで150℃で30分の環境下におくことを1サイクルとする1000サイクルの環境負荷を与え、次いで常温常湿で一昼夜静置した後、T型剥離強度を測定した。下記数式(2)で定義されるT型剥離度保持率IIを算出し、下記評価基準に従って表示した。
AA :T型剥離強度保持率IIが80%未満70%以上
A :T型剥離強度保持率IIが70%未満50%以上
B :T型剥離強度保持率IIが50%未満
樹脂および封止用樹脂組成物の溶融粘度の評価方法
島津製作所製、フローテスター(CFT-500C型)にて、220℃に設定した加熱体中央のシリンダー中に水分率0.1%以下に乾燥した樹脂または封止用樹脂組成物を充填し、充填1分経過後、プランジャーを介して試料に荷重を加え、圧力1MPaで、シリンダー底部のダイ(孔径:1.0mm、厚み:10mm)より、溶融した試料を押出し、プランジャーの降下距離と降下時間を記録し、溶融粘度を算出した。
平板成型用金型を使用し、ホットメルト成型加工用アプリケーターとして井元製作所製低圧成型アプリケーターIMC-18F9を用いて封止用樹脂組成物からなる平板(100mm×100mm×10mm)を成型し、離型後の平板を目視観察してバリ、ヒケおよびショートショットの有無を下記評価基準に従って表示した。なお、ゲート位置は100mm×100mmの面の中心とし、成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転50%設定とした。
評価基準 AAA:完全に充填され、バリもヒケもない。
AA :完全に充填されるが、若干のバリが発生する。
A :ショートショット無く充填されるが、ヒケ有り。
B :ショートショット有り。
スクリュー型ホットメルト成型加工用アプリケーター(井元製作所製竪型低圧押し出し成型機IMC-18F9)を用いて100mm×100mmの面の中心に設けたゲートから封止用樹脂組成物を注入し、成型を行い、2mm厚の平板を作製した。成型条件は、成型樹脂温度220℃、成型圧力3MPa、保圧圧力3MPa、冷却時間15秒、吐出回転を50%設定(最大吐出を100%として)とした。得られた平板を打ち抜き加工してJIS3号型ダンベルを作製し、JIS K6251の測定方法に従って引張破断伸度を測定し、その値を「初期引張破断伸度」とした。また、同様に作成したダンベルを150℃雰囲気下で1000時間処理し、一昼夜常温常湿下に静置した後に、同様に引張破断伸度測定を実施し、その値を「150℃、1000時間負荷試験後の引張破断伸度」とした。引張破断伸度保持率は下記の式2に従って算出し、下記評価基準に従って表示した。
AA :引張破断伸度保持率65%未満50%以上
A :引張破断伸度保持率50%未満30%以上
B :引張破断伸度保持率30%未満
TPA:テレフタル酸
NDC:ナフタレンジカルボン酸
BD:1,4-ブタンジオール
PTMG1000:ポリテトラメチレンエーテルグリコール(数平均分子量1000)
PTMG2000:ポリテトラメチレンエーテルグリコール(数平均分子量2000)
PCL:ポリカプロラクトン(数平均分子量850)
PBT:ポリブチレンテレフタレート
PBN:ポリブチレンナフタレート
ポリオレフィンA:エクセレンVL EUL731、住友化学(株)製、エチレン-α-オレフィン共重合体、密度0.90、MFR10g/10分。
ポリオレフィンB:アドマーSF-600、三井化学(株)製、接着性ポリオレフィン、密度0.88、MFR3.3g/10分。
ポリオレフィンC:ハイゼックス 2100J、(株)プライムポリマー製、高密度ポリエチレン、密度0.93、MFR5.8g/10分。
フェノール変性アルキルベンゼン樹脂A:ニカノールHP-150、フドー(株)製、フェノール変性キシレン樹脂、水酸基価3035当量/106g。
フェノール変性アルキルベンゼン樹脂B:ニカノールHP-100、フドー(株)製、フェノール変性キシレン樹脂、水酸基価2500当量/106g。
フェノール変性アルキルベンゼン樹脂C:ニカノールL5、フドー(株)製、フェノール変性キシレン樹脂(EO付加タイプ)、水酸基価625当量/106g。
フェノール樹脂A:CKM2400 昭和高分子(株)製、ノボラック型フェノール樹脂、水酸基価9000当量/106g。
フェノール樹脂B:EP4020 旭有機材工業(株)製、クレゾールノボラック型フェノール樹脂、水酸基価9250当量/106g。
撹拌機、温度計、溜出用冷却器を装備した反応缶内にテレフタル酸100mol%に対し、グリコール成分のトータルを100mol%としたとき、1,4-ブタンジオール60mol%量仕込む。その後、テトラブチルチタネートトータル仕込み量を100質量部としたとき、0.25質量部を加え、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を残り40mol%分仕込み、さらに、ヒンダードフェノール系酸化防止剤「イルガノックス1330」(チバガイギー社製)を0.5質量部投入し、255℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて255℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂I-Aを得た。このポリエステル樹脂I-Aの融点は165℃で、溶融粘度は500dPa・sであった。
ポリエステル樹脂I-Aの製造例と同様にして、但し原料の種類と比率を変更して反応を行い、ポリエステル樹脂I-B~Dを得た。これらのポリエステル樹脂I-B~Dの組成と物性を表1に示した。
電気電子部品封止用樹脂組成物I-1は、ポリエステル樹脂I-A100質量部、ポリオレフィン樹脂Aを20質量部、エポキシ樹脂Aを10質量部を均一に混合した後、二軸押し出し機を用いてダイ温度220℃において溶融混練することによって得た。ポリエステル樹脂組成物I-2~26は、ポリエステル樹脂組成物I-1と同様な方法によって、但し配合成分および比率を変更して、調製した。それぞれの組成を表2および表3に示した。
封止用樹脂組成物として封止用樹脂組成物I-1を用い、<溶融特性試験>、<密着強度試験>を実施した。<溶融特性試験>において、846dPa・sと良好な溶融特性であった。<密着強度試験>において、アルミ板密着試験片について、初期密着強度は1.2MPa、冷熱サイクル試験後は1.0MPa、と、すべての項目において高い密着強度保持率を示す良好な結果となった。結果を表2に示した。
封止用樹脂組成物として封止用樹脂組成物I-2~9を用い、実施例I-1と同様にして<溶融特性試験>、<密着強度試験>を実施した。評価結果を表2に示した。
封止用樹脂組成物として封止用樹脂組成物I-10を用い、実施例I-1と同様にして<溶融特性試験>、<密着強力試験>を実施した。<溶融特性試験>において、3414dPa・sであり成型可能範囲外であり、<密着強度試験>において、アルミ板密着試験片について、初期密着強度は0.9MPa、冷熱サイクル試験後は0.7MPaと必要特性を満たし、かつ密着強度保持率も満たすが、低圧成型評価にて、ショートによる成型不良が発生し不良となった。評価結果を表3に示した。
封止用樹脂組成物として封止用樹脂組成物I-11を用い、実施例I-1と同様にして<溶融特性試験>、<密着強度試験>を実施した。<溶融特性試験>において、273dPa・sで成型可能範囲であり、<密着強度試験>において、アルミ板密着試験片について、初期密着強度は0.8MPa、冷熱サイクル試験後は0.1MPaとなり必要特性を満たさず不良となった。評価結果を表3に示した。
封止用樹脂組成物として封止用樹脂組成物I-12~15を用い、実施例I-1と同様にして<溶融特性試験>、<密着強度試験>を実施した。評価結果を表2に示した。評価結果を表3に示した。
ポリ(ヘキサメチレンカーボネート)ジオール(数平均分子量2000)100質量部とジフェニルカーボネート9.6質量部とを反応容器に仕込み、温度205℃、130Paで反応させた。2時間後、内容物を冷却し、生成したポリマーを取り出し、脂肪族ポリカーボネートジオールAを得た。脂肪族ポリカーボネートジオールAの数平均分子量は13000であった。
脂肪族ポリカーボネートジオールAの製造例において、ポリ(ヘキサメチレンカーボネート)ジオールをポリ(テトラメチレンカーボネート)ジオール(数平均分子量2000)に変更し、その他は同様にして、脂肪族ポリカーボネートジオールBを得た。脂肪族ポリカーボネートジオールBの数平均分子量は13000であった。
ハードセグメント成分である数平均分子量20000のポリブチレンテレフタレート(PBT)100質量部とソフトセグメント成分である脂肪族ポリカーボネートジオールA150質量部とを、230℃~245℃、130Pa下で1時間攪拌し、樹脂が透明になったことを確認した。その後、窒素気流下でフェニルホスホン酸をリン原子として60ppm添加し、微減圧下(>300Pa)で10分撹拌した後、内容物を取り出し冷却した。次いで、ラスミットLGを0.3部、Irganox1010を0.3部を加え、250℃で混練して、ポリエステル樹脂組成物II-Aを得た。ポリエステル樹脂組成物Aは主に末端ビニル基13eq/tonを有する結晶性ポリエステル樹脂からなるものであった。
ポリエステル樹脂組成物II-Aの製造例と同様にして、但しハードセグメント成分とソフトセグメント成分の種類と配合量を変更し、ポリエステル樹脂組成物II-B~Eを得た。ポリエステル樹脂組成物II-B~Eの組成と物性を表1に示した。
撹拌機、温度計、溜出用冷却器を装備した反応缶内にテレフタル酸100モル部、1,4-ブタンジオール75モル部、テレフタル酸と1,4-ブタンジオールの合計重量に対して0.25重量%のテトラブチルチタネートを仕込み、170~220℃で2時間エステル化反応を行った。エステル化反応終了後、数平均分子量1000のポリテトラメチレングリコール「PTMG1000」(三菱化学社製)を25モル部、ヒンダードフェノール系酸化防止剤「イルガノックス1330」(チバガイギー社製)を0.5重量%投入し、250℃まで昇温する一方、系内をゆっくり減圧にしてゆき、60分かけて250℃で665Paとした。そしてさらに133Pa以下で30分間重縮合反応を行い、ポリエステル樹脂Fを得た。このポリエステル樹脂組成物Fの融点は190℃で、溶融粘度は500dPa・sであった。
ポリエステル樹脂組成物Fの製造例と同様にして、但し、テレフタル酸をナフタレンジカルボン酸に変更して、樹脂組成物Gを得た。ポリエステル樹脂組成物Gの組成と物性を表1に示した。
ポリエステル樹脂組成物A100質量部、ポリオレフィン樹脂A20質量部、エポキシ樹脂A10質量部を均一に混合した後、二軸押し出し機を用いてダイ温度220℃~240℃において溶融混練することによって、電気電子部品封止用樹脂組成物II-1を得た。別記した方法により、電気電子部品封止用樹脂組成物II-1の溶融特性、初期密着性、冷熱サイクル耐久性および耐熱老化性を評価した。<溶融特性試験>において、1000dPa・sと良好な溶融特性であった。<密着強度試験>において、初期密着強度は1.0MPa、冷熱サイクル試験後は1.0MPa、T型剥離強度保持率は100%となった。また、<高温長時間負荷試験>において、引張破断伸度保持率は75%であった。評価結果を表5に示した。
実施例II-1と同様にして、但し配合を表5~表7のように変更し、電気電子部品封止用樹脂組成物II-2~16を製造し、評価した。評価結果を表5~表7に示した。
ポリエステル樹脂I-Aの製造例と同様にして、但し原料の種類と比率を変更して反応を行い、ポリエステル樹脂III-A~Cを得た。これらのポリエステル樹脂I-B~Dの組成と物性を表1に示した。
実施例I-1と同様にして、但し配合を表9のように変更して、電気電子部品封止用樹脂組成物II-2~16を製造し、評価した。評価結果を表9に示した。
Claims (9)
- 結晶性ポリエステル系エラストマー(A)、
フェノール変性アルキルベンゼン樹脂(B1)および/またはフェノール樹脂(B2)、
ポリオレフィン樹脂(C)、
を含有し、
水分率0.1%以下に乾燥して220℃に加熱し圧力1MPaを付与し、孔径1.0mm、厚み10mmのダイより押し出したときの溶融粘度が5dPa・s以上3000dPa・s以下である電気電子部品封止用樹脂組成物。 - 前記結晶性ポリエステル系エラストマー(A)が、ポリエーテル成分が共重合されている結晶性ポリエステル樹脂(A1)、ポリカーボネート成分が共重合されている結晶性ポリエステル樹脂(A2)、および、ポリラクトン成分が共重合されている結晶性ポリエステル樹脂(A3)からなる群から選ばれる1種または2種以上の混合物である、請求項1に記載の電気電子部品封止用樹脂組成物。
- 前記フェノール変性アルキルベンゼン樹脂(B1)がアルキルフェノール変性型アルキルベンゼン樹脂であり水酸基価が100当量/106g以上である請求項1または2に記載の樹脂組成物。
- 前記フェノール樹脂(B2)がノボラック型フェノール樹脂であり水酸基価が100当量/106g以上である請求項1~3のいずれかに記載の樹脂組成物。
- 前記結晶性ポリエステル系エラストマー(A)100重量部に対し、フェノール変性アルキルベンゼン樹脂(B1)とフェノール樹脂(B2)の合計が0.1~100重量部、およびポリオレフィン樹脂(C)が0.1~100重量部配合されている請求項1~4のいずれかに記載の樹脂組成物。
- アルミニウム板に対する、-40℃30分と80℃30分の冷熱サイクルを1000サイクル付加前後のT型剥離強度保持率が50%以上である請求項1~5のいずれかに記載の電気電子部品封止用樹脂組成物。
- アルミニウム板に対する初期T型剥離強度が0.5N/mm以上である、請求項1~6のいずれかに記載の電気電子部品封止用樹脂組成物。
- 請求項1~7のいずれかに記載の樹脂組成物を、加熱して混練した後、電気電子部品を挿入した金型に樹脂組成物温度130℃以上260℃以下かつ樹脂組成物圧力0.1MPa以上10MPa以下で注入する、電気電子部品封止体の製造方法。
- 請求項1~7のいずれかに記載の樹脂組成物で封止された電気電子部品封止体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012510462A JP5077502B2 (ja) | 2011-02-23 | 2012-02-21 | 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 |
KR1020137023308A KR101823722B1 (ko) | 2011-02-23 | 2012-02-21 | 전기 전자 부품 밀봉용 수지 조성물, 전기 전자 부품의 제조 방법 및 전기 전자 부품 밀봉체 |
CN201280009837.1A CN103380189B (zh) | 2011-02-23 | 2012-02-21 | 电气电子部件封装用树脂组合物、电气电子部件的制造方法以及电气电子部件封装体 |
EP12749238.7A EP2679651A4 (en) | 2011-02-23 | 2012-02-21 | RESIN COMPOSITION FOR SEALING ELECTRICAL / ELECTRONIC COMPONENTS, METHOD FOR PRODUCING ELECTRICAL / ELECTRONIC COMPONENT, AND SEALED ELECTRICAL / ELECTRONIC COMPONENT |
US14/000,943 US9139729B2 (en) | 2011-02-23 | 2012-02-21 | Resin composition for sealing electrical electronic components, method of producing electrical electronic component, and sealed electrical electronic component |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-036955 | 2011-02-23 | ||
JP2011036955 | 2011-02-23 | ||
JP2011078162 | 2011-03-31 | ||
JP2011-078162 | 2011-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012115065A1 true WO2012115065A1 (ja) | 2012-08-30 |
Family
ID=46720842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/054031 WO2012115065A1 (ja) | 2011-02-23 | 2012-02-21 | 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 |
Country Status (7)
Country | Link |
---|---|
US (1) | US9139729B2 (ja) |
EP (1) | EP2679651A4 (ja) |
JP (1) | JP5077502B2 (ja) |
KR (1) | KR101823722B1 (ja) |
CN (1) | CN103380189B (ja) |
TW (1) | TWI530528B (ja) |
WO (1) | WO2012115065A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014167940A1 (ja) * | 2013-04-11 | 2014-10-16 | 東洋紡株式会社 | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 |
WO2014185325A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 電気電子部品の封止方法及び封止体 |
WO2014185326A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 電気電子部品の封止方法及び封止体 |
JP2017171877A (ja) * | 2016-03-18 | 2017-09-28 | 東洋紡株式会社 | ワイヤハーネス封止用樹脂組成物 |
WO2018225471A1 (ja) * | 2017-06-09 | 2018-12-13 | 東洋紡株式会社 | 封止用樹脂組成物 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI530528B (zh) | 2011-02-23 | 2016-04-21 | Toyo Boseki | Resin composition for electrical and electronic component packaging, manufacturing method of electrical and electronic parts, and electrical and electronic component package |
TWI530530B (zh) | 2011-03-17 | 2016-04-21 | Toyo Boseki | Polyester resin composition, package and method for manufacturing the same for electrical and electronic parts |
KR101644246B1 (ko) * | 2014-11-19 | 2016-08-01 | 주식회사 엘지화학 | 가교 폴리에틸렌 수지 조성물 |
DE112017007979T5 (de) * | 2017-08-30 | 2020-06-10 | Mitsubishi Electric Corporation | Elektrische Leistungsumwandlungsvorrichtung |
JP7070804B2 (ja) * | 2019-12-27 | 2022-05-18 | Dic株式会社 | 複合構造体およびその製造方法 |
JP7515268B2 (ja) * | 2020-02-19 | 2024-07-12 | 日東電工株式会社 | ホットメルト型粘着剤組成物および粘着シート |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6018562A (ja) | 1983-07-13 | 1985-01-30 | Mitsui Toatsu Chem Inc | 構造用の接着剤組成物 |
JPH01236268A (ja) * | 1988-01-08 | 1989-09-21 | Raychem Ltd | 封入用アレンジメント |
JPH05175371A (ja) * | 1991-12-25 | 1993-07-13 | Hitachi Chem Co Ltd | 電子部品封止用エポキシ樹脂成形材料 |
JP2000178420A (ja) * | 1998-12-21 | 2000-06-27 | Toray Ind Inc | トランス部材用難燃性ポリブチレンテレフタレート樹脂組成物およびそれからなるトランス部材 |
JP2004083918A (ja) | 2001-09-18 | 2004-03-18 | Toyobo Co Ltd | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 |
JP3553559B2 (ja) | 2001-09-18 | 2004-08-11 | 東洋紡績株式会社 | モールディング用ポリエステル樹脂組成物及びそれを用いた成型品 |
JP4389144B2 (ja) | 2002-05-16 | 2009-12-24 | 東洋紡績株式会社 | 接着剤組成物、接着テープ、フレキシブルフラットケーブルおよびフレキシブルフラットケーブル補強板 |
JP2010150471A (ja) | 2008-12-26 | 2010-07-08 | Toyobo Co Ltd | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 |
Family Cites Families (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2825712A (en) | 1954-03-08 | 1958-03-04 | Gen Electric | Modified aromatic hydrocarbon-aldehyde resins |
US3954689A (en) * | 1973-12-10 | 1976-05-04 | E. I. Du Pont De Nemours And Company | Segmented thermoplastic copolyester elastomers |
DE2712435A1 (de) | 1977-03-22 | 1978-09-28 | Bayer Ag | Verfahren zur herstellung von kohlensaeurearylestern von ueber carbonat- gruppen-verlaengerten polyesterdiolen |
US4297455A (en) | 1977-03-22 | 1981-10-27 | Bayer Aktiengesellschaft | Process for the preparation of carbonic acid aryl esters of polyester-diols lengthened via carbonate groups and their use for the preparation of polyester-diol bis-diphenol carbonates and polyester/polycarbonates |
DE2726417A1 (de) | 1977-06-11 | 1978-12-21 | Bayer Ag | Verfahren zur herstellung von kohlensaeure-bis-diphenolestern von ueber carbonat-gruppen-verlaengerten polyesterdiolen und ihre verwendung zur herstellung von hochmolekularen, segmentierten, thermoplastisch verarbeitbaren polyester- polycarbonaten |
US4254001A (en) * | 1980-01-30 | 1981-03-03 | The Goodyear Tire & Rubber Company | Random elastomeric copolyesters |
JPS59177391U (ja) | 1983-05-12 | 1984-11-27 | タカラベルモント株式会社 | タオルハンガ−付洗面ボウル |
JPS6274955A (ja) | 1985-09-30 | 1987-04-06 | Unitika Ltd | 封止用ポリエステル樹脂組成物 |
JPH078944B2 (ja) | 1985-11-12 | 1995-02-01 | ユニチカ株式会社 | 封止用ポリエステル樹脂組成物 |
US5304593A (en) * | 1986-09-30 | 1994-04-19 | Sumitomo Chemical Co., Ltd. | Blends of dispersing phase of polyphenylene ether, a crystalline thermoplastic matrix resin and a mutual compatiblizer |
JPH062549A (ja) | 1991-07-25 | 1994-01-11 | Mazda Motor Corp | エンジンの燃料供給装置 |
JPH05295094A (ja) | 1992-04-16 | 1993-11-09 | Teijin Ltd | ポリカーボネートエステルブロック共重合体およびその製造法 |
US5698632A (en) * | 1995-06-07 | 1997-12-16 | General Electric Company | Compatible compositions of poly(phenylene ether) resins and semi-crystalline resins |
JP3487083B2 (ja) | 1996-02-09 | 2004-01-13 | 日立化成工業株式会社 | 熱硬化性樹脂組成物及びその硬化物 |
US5852164A (en) | 1996-04-16 | 1998-12-22 | Mitsubishi Chemical Corporation | Polyester, process for producing the same and molding product therefrom |
JP2000178351A (ja) | 1998-12-18 | 2000-06-27 | Nippon Steel Chem Co Ltd | 共重合樹脂及びそれを用いた塗膜 |
JP2001206939A (ja) | 2000-01-24 | 2001-07-31 | Toyobo Co Ltd | 熱可塑性ポリエステルエラストマー |
JP4543293B2 (ja) | 2000-03-01 | 2010-09-15 | 東洋紡績株式会社 | 熱可塑性ポリエステルエラストマー |
EP1167448A3 (en) | 2000-06-28 | 2002-05-15 | Idemitsu Petrochemical Co., Ltd. | Polycarbonate resin composition and shaped article |
MY142518A (en) * | 2001-01-10 | 2010-12-15 | Hitachi Chemical Co Ltd | Dihydrobenzoxazine ring-containing resin, phenolic-triazine-aldehyde condensate and epoxy resin |
EP1293526B1 (en) | 2001-09-18 | 2005-07-06 | Toyo Boseki Kabushiki Kaisha | Low Pressure Injection Molding Method for Polyester Resin and Resin Composition |
JP2003192778A (ja) | 2001-12-28 | 2003-07-09 | Daicel Chem Ind Ltd | 高分子量ポリエステルエラストマーおよびその製造方法 |
US6942922B2 (en) | 2002-02-15 | 2005-09-13 | Kansai Paint Co., Ltd. | Cationic paint composition |
JP4277174B2 (ja) | 2003-03-06 | 2009-06-10 | 東洋紡績株式会社 | 樹脂組成物 |
JP2005068576A (ja) | 2003-08-21 | 2005-03-17 | Kaneka Corp | 難燃性ポリエステル系人工毛髪用繊維 |
US20090215933A1 (en) | 2005-07-12 | 2009-08-27 | Mitsubishi Chemical Corporation | Alicyclic Polyester and Process for Producing the Same, and Resin Composition Using the Same |
JP2007138139A (ja) | 2005-07-12 | 2007-06-07 | Mitsubishi Chemicals Corp | 脂環式ポリエステル及びその製造方法ならびに樹脂組成物 |
JP2007191664A (ja) | 2006-01-23 | 2007-08-02 | Toyobo Co Ltd | 熱可塑性ポリエステルエラストマーの製造方法および熱可塑性ポリエステルエラストマー |
JP2007191665A (ja) | 2006-01-23 | 2007-08-02 | Toyobo Co Ltd | 熱可塑性ポリエステルエラストマーの製造方法および熱可塑性ポリエステルエラストマー |
JP5130455B2 (ja) | 2006-12-28 | 2013-01-30 | 東洋紡株式会社 | パッキン材 |
CN101605833B (zh) | 2007-01-29 | 2012-03-07 | 东洋纺织株式会社 | 聚酯聚碳酸酯型热塑性聚酯弹性体的制造方法及聚酯聚碳酸酯型热塑性聚酯弹性体 |
TWI530528B (zh) | 2011-02-23 | 2016-04-21 | Toyo Boseki | Resin composition for electrical and electronic component packaging, manufacturing method of electrical and electronic parts, and electrical and electronic component package |
-
2012
- 2012-02-20 TW TW101105466A patent/TWI530528B/zh active
- 2012-02-21 JP JP2012510462A patent/JP5077502B2/ja active Active
- 2012-02-21 CN CN201280009837.1A patent/CN103380189B/zh active Active
- 2012-02-21 WO PCT/JP2012/054031 patent/WO2012115065A1/ja active Application Filing
- 2012-02-21 KR KR1020137023308A patent/KR101823722B1/ko active IP Right Grant
- 2012-02-21 EP EP12749238.7A patent/EP2679651A4/en active Pending
- 2012-02-21 US US14/000,943 patent/US9139729B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6018562A (ja) | 1983-07-13 | 1985-01-30 | Mitsui Toatsu Chem Inc | 構造用の接着剤組成物 |
JPH01236268A (ja) * | 1988-01-08 | 1989-09-21 | Raychem Ltd | 封入用アレンジメント |
JPH05175371A (ja) * | 1991-12-25 | 1993-07-13 | Hitachi Chem Co Ltd | 電子部品封止用エポキシ樹脂成形材料 |
JP2000178420A (ja) * | 1998-12-21 | 2000-06-27 | Toray Ind Inc | トランス部材用難燃性ポリブチレンテレフタレート樹脂組成物およびそれからなるトランス部材 |
JP2004083918A (ja) | 2001-09-18 | 2004-03-18 | Toyobo Co Ltd | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 |
JP3553559B2 (ja) | 2001-09-18 | 2004-08-11 | 東洋紡績株式会社 | モールディング用ポリエステル樹脂組成物及びそれを用いた成型品 |
JP4389144B2 (ja) | 2002-05-16 | 2009-12-24 | 東洋紡績株式会社 | 接着剤組成物、接着テープ、フレキシブルフラットケーブルおよびフレキシブルフラットケーブル補強板 |
JP2010150471A (ja) | 2008-12-26 | 2010-07-08 | Toyobo Co Ltd | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2679651A4 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014167940A1 (ja) * | 2013-04-11 | 2014-10-16 | 東洋紡株式会社 | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 |
JPWO2014167940A1 (ja) * | 2013-04-11 | 2017-02-16 | 東洋紡株式会社 | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 |
WO2014185325A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 電気電子部品の封止方法及び封止体 |
WO2014185326A1 (ja) * | 2013-05-16 | 2014-11-20 | 東洋紡株式会社 | 電気電子部品の封止方法及び封止体 |
JP2017171877A (ja) * | 2016-03-18 | 2017-09-28 | 東洋紡株式会社 | ワイヤハーネス封止用樹脂組成物 |
WO2018225471A1 (ja) * | 2017-06-09 | 2018-12-13 | 東洋紡株式会社 | 封止用樹脂組成物 |
JPWO2018225471A1 (ja) * | 2017-06-09 | 2020-04-16 | 東洋紡株式会社 | 封止用樹脂組成物 |
US11414579B2 (en) | 2017-06-09 | 2022-08-16 | Toyobo Co., Ltd. | Sealing resin composition |
JP7140116B2 (ja) | 2017-06-09 | 2022-09-21 | 東洋紡株式会社 | 封止用樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2012115065A1 (ja) | 2014-07-07 |
US20130331521A1 (en) | 2013-12-12 |
CN103380189A (zh) | 2013-10-30 |
CN103380189B (zh) | 2015-11-25 |
JP5077502B2 (ja) | 2012-11-21 |
KR20140047022A (ko) | 2014-04-21 |
TW201247772A (en) | 2012-12-01 |
KR101823722B1 (ko) | 2018-01-30 |
EP2679651A4 (en) | 2016-12-21 |
TWI530528B (zh) | 2016-04-21 |
EP2679651A1 (en) | 2014-01-01 |
US9139729B2 (en) | 2015-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5077502B2 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 | |
JP6269783B2 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
JP5359263B2 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
JP3553559B2 (ja) | モールディング用ポリエステル樹脂組成物及びそれを用いた成型品 | |
US7381358B2 (en) | Polyester resin and resin composition for molding, and formed product thereof | |
JP6098521B2 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
WO2013031593A1 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
WO2014167993A1 (ja) | 熱伝導性樹脂組成物およびそれを使用した熱伝導性封止体 | |
WO2012165206A1 (ja) | 電気電子部品封止用樹脂組成物、電気電子部品の製造方法および電気電子部品封止体 | |
JP4534115B2 (ja) | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 | |
CN113652189B (zh) | 密封用树脂组合物 | |
JP2013112772A (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
JP2013112771A (ja) | 電気電子部品封止用樹脂組成物、電気電子部品封止体の製造方法および電気電子部品封止体 | |
JP5293754B2 (ja) | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 | |
TWI627228B (zh) | 電氣電子零件封裝用樹脂組成物、電氣電子零件封裝體之製造方法及電氣電子零件封裝體 | |
TW201400546A (zh) | 電氣電子零件封裝用樹脂組成物、電氣電子零件之製造方法及電氣電子零件封裝體 | |
JP2010043286A (ja) | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 | |
JP2004277640A (ja) | モールディング用ポリエステル樹脂、樹脂組成物及びそれを用いた成型品 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2012510462 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12749238 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14000943 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012749238 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20137023308 Country of ref document: KR Kind code of ref document: A |