WO2012105547A1 - 硬化性樹脂組成物およびその硬化物 - Google Patents

硬化性樹脂組成物およびその硬化物 Download PDF

Info

Publication number
WO2012105547A1
WO2012105547A1 PCT/JP2012/052127 JP2012052127W WO2012105547A1 WO 2012105547 A1 WO2012105547 A1 WO 2012105547A1 JP 2012052127 W JP2012052127 W JP 2012052127W WO 2012105547 A1 WO2012105547 A1 WO 2012105547A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
mass
resin composition
parts
bis
Prior art date
Application number
PCT/JP2012/052127
Other languages
English (en)
French (fr)
Inventor
亮 津布久
健人 池野
誠之 片桐
辻本 智雄
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to KR1020137020316A priority Critical patent/KR20140005949A/ko
Priority to US13/978,310 priority patent/US9657173B2/en
Priority to CN201280007631.5A priority patent/CN103347930B/zh
Priority to JP2012555890A priority patent/JP5796788B2/ja
Priority to EP12742765.6A priority patent/EP2671904B1/en
Publication of WO2012105547A1 publication Critical patent/WO2012105547A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/02Polycondensates containing more than one epoxy group per molecule
    • C08G59/04Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof
    • C08G59/06Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols
    • C08G59/08Polycondensates containing more than one epoxy group per molecule of polyhydroxy compounds with epihalohydrins or precursors thereof of polyhydric phenols from phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J179/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09J161/00 - C09J177/00
    • C09J179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0645Macromolecular organic compounds, e.g. prepolymers obtained otherwise than by reactions involving carbon-to-carbon unsaturated bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention relates to a curable resin composition, and more specifically, a curable resin composition capable of suppressing the occurrence of cracks during curing and improving the thermal expansion coefficient and water absorption rate of the cured product, and It relates to the cured product.
  • thermosetting resin composition typified by an epoxy resin
  • an epoxy resin is usually used for the insulating layer.
  • thermosetting resins have a problem of internal stress accumulation due to free volume reduction during curing. Therefore, if a thermosetting resin is used as the insulating material for the printed wiring board, cracks and warpage may occur in the molded product due to curing shrinkage, and the reliability as a printed wiring board is reduced due to accumulation of internal strain. There is a case. Accordingly, there is a need for a curable resin composition that has less internal stress accumulation during curing and less cracking.
  • the mounting temperature is as high as 250 ° C. or more
  • the warpage of the multilayer printed wiring board is increased during mounting.
  • the degree of warpage is further increased when the resin absorbs moisture. Therefore, there is a demand for a resin composition that is less susceptible to cracking during curing and that is excellent in low thermal expansion and low water absorption.
  • cyanate ester resins have been conventionally known as thermosetting resins having excellent heat resistance and low dielectric constant and low dielectric loss.
  • a resin composition using a bisphenol A type cyanate resin and a bismaleimide compound as proposed in Japanese Patent Publication No. 54-30440 is called “BT resin”.
  • BT resin a resin composition using a bisphenol A type cyanate resin and a bismaleimide compound as proposed in Japanese Patent Publication No. 54-30440
  • BT resin a resin excellent in electrical characteristics, mechanical characteristics, chemical resistance, and the like
  • it is used in an insulating layer of a multilayer wiring board.
  • a resin composition containing a bisphenol A-type cyanate ester resin is excellent in electrical properties, mechanical properties, and chemical resistance, but has a high water absorption rate, and further improvements in heat resistance and thermal expansion are required. Development of cyanate ester resins having other structures is underway.
  • a novolac-type cyanate ester resin is proposed in Japanese Patent Application Laid-Open No. 11-124433 (Patent Document 2).
  • Patent Document 2 a cured product using a novolac-type cyanate ester resin has a higher water absorption rate than BT resin, and may deteriorate moisture absorption heat resistance.
  • JP-A-2006-169317 discloses that a resin cured product used in combination with a triphenylmethane type cyanate ester compound and a bismaleimide compound is excellent in thermal expansion.
  • JP-A-2006-143874 discloses that a resin cured product using a triphenylmethane type cyanate ester compound and a novolac type cyanate ester compound is excellent in water absorption. ing.
  • a cured product using a resin proposed in Japanese Patent Application Laid-Open No. 11-124433 has a larger water absorption rate than that of BT resin, and sometimes has a reduced moisture absorption heat resistance.
  • a cured resin using a resin proposed in Japanese Patent Application Laid-Open No. 2006-169317 has excellent thermal expansibility, but has not been studied for water absorption.
  • the cured resin using the resin proposed in Japanese Patent Application Laid-Open No. 2006-143874 cannot be said to have sufficient thermal expansibility, and there is room for improvement in water absorption.
  • the present inventors use a specific bifunctional cyanate ester compound, a metal complex catalyst, and a specific additive in combination, thereby suppressing the occurrence of cracks during curing, and having a low coefficient of thermal expansion and a low water absorption.
  • achieved was acquired.
  • the present invention is based on this finding.
  • an object of the present invention is to provide a curable resin composition capable of obtaining a cured product having both a low coefficient of thermal expansion and a low water absorption while suppressing the occurrence of cracks during curing.
  • the cyanate ester compound according to the present invention has the following formula (I): A cyanate ester compound (A) represented by: A metal complex catalyst (B); Additive (C); Comprising at least The additive (C) comprises at least one selected from the group consisting of a compound represented by the following general formula (II), a compound represented by the following general formula (III), and a tertiary amine.
  • Curable resin composition (Wherein R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 6 to 12 carbon atoms, at least one of which is an alkyl having 1 or more carbon atoms) Group or an aryl group having 6 or more carbon atoms.) (Wherein R 6 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a hydroxy group) .)
  • a cured product obtained by curing the curable resin composition is also provided.
  • a sealing material comprising the curable resin composition is also provided.
  • an adhesive comprising the curable resin composition is also provided.
  • a casting material comprising the curable resin composition is also provided.
  • a prepreg obtained by impregnating or applying the above curable resin composition to a substrate is also provided.
  • a laminate obtained by laminating at least one or more of the prepregs and arranging metal foil on one or both sides thereof.
  • a curable resin composition using the specific bifunctional cyanate ester compound as described above, a metal complex catalyst, and a specific additive in combination, generation of cracks during curing is caused.
  • curing material which makes low thermal expansion coefficient and low water absorption compatible is realizable, suppressing this.
  • FIG. 1 is a 1 H-NMR chart of bis (4-cyanatophenyl) phenylmethane obtained in Synthesis Example 1.
  • FIG. 2 is a 1 H-NMR chart of ⁇ , ⁇ -bis (4-cyanatophenyl) ethylbenzene obtained in Synthesis Example 2.
  • FIG. 3 is a 1 H-NMR chart of bis (4-cyanatophenyl) ether obtained in Synthesis Example 3.
  • 4 is a 1 H-NMR chart of 1,1-bis (4-cyanatophenyl) ethane obtained in Synthesis Example 5.
  • FIG. FIG. 5 is a 1 H-NMR chart of 1,1-bis (4-cyanatophenyl) isobutane obtained in Synthesis Example 6.
  • 6 is a 1 H-NMR chart of 1,1,1-tris (4-cyanatophenyl) ethane obtained in Synthesis Example 8.
  • FIG. 8 is a 1 H-NMR chart of 1,1,1-tris (4-cyana
  • the curable resin composition according to the present invention contains a specific cyanate ester compound (A), a metal complex catalyst (B), and a specific additive (C) as essential components.
  • a specific cyanate ester compound (A) a specific cyanate ester compound (A)
  • B metal complex catalyst
  • C a specific additive
  • each component will be described.
  • the cyanate ester compound (A) contained in the curable resin composition according to the present invention is represented by the following formula (I).
  • the curable resin composition containing bis (4-cyanatophenyl) phenylmethane represented by the above formula (I) as the cyanate ester compound is more cured than the resin compositions containing other cyanate esters. Further, since the cured product has a low coefficient of water absorption and a low coefficient of linear expansion even in a high temperature environment, it can be used as a resin for an insulating layer of a multilayer printed wiring board having a high density. In particular, when used in combination with the metal complex catalyst and the additives described later, a cast product having a good appearance with suppressed cracking and no occurrence of cracks can be obtained.
  • the production method of the cyanate ester compound represented by the above formula (I) is not particularly limited, and a desired method can be obtained by applying a known method as a cyanate synthesis method from a phenol represented by the following formula (VIII). A compound can be obtained.
  • cyanate of the above formula (VIII) is obtained by cyanating the phenol of the above formula (VIII) by the method described in IAN HAMERTON, “Chemistry and Technology of Cyanate Esters Resins”, BLACKIE ACADEMIC & PROFESSIONAL. be able to.
  • a method of reacting in a solvent in the presence of a base so that cyan halide is always present in excess of the base (US Pat. No. 3,553,244), using a tertiary amine as the base, which is more than the cyan halide.
  • a method of synthesizing while using excessively Japanese Patent Laid-Open No.
  • the above-mentioned cyanate ester compound is produced by a known method such as a method in which a tertiary amine is reacted in a two-phase solvent of water and an organic solvent under acidic conditions (Japanese Patent Laid-Open No. 2007-277102). can do.
  • the cyanate ester compound obtained by the above method can be identified by a known method such as NMR.
  • Metal complex catalyst (B) contained in the curable resin composition according to the present invention has a function of catalyzing polymerization of the above-described cyanate ester compound and the like.
  • a conventionally well-known thing can be used as a metal complex catalyst (B).
  • organic metal salts such as Zn, Cu, Fe, Co, Mn, Al, etc.
  • the content of the metal complex catalyst (B) is preferably in the range of 0.01 to 5 parts by mass with respect to 100 parts by mass of the cyanate ester compound (A). By including the metal complex catalyst (B) within the above range, a cured product having excellent heat resistance can be obtained even under low temperature curing conditions.
  • the curable resin composition according to the present invention includes at least one additive selected from the group consisting of a compound represented by the following general formula (II), a compound represented by the following general formula (III), and a tertiary amine Contains agent (C).
  • R 1 to R 5 each independently represents a hydrogen atom, an alkyl group having 1 to 15 carbon atoms, or an aryl group having 6 to 12 carbon atoms, at least one of which is an alkyl having 1 or more carbon atoms) Group or an aryl group having 6 or more carbon atoms.
  • R 6 to R 10 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, an aryl group having 6 to 15 carbon atoms, or a hydroxy group.
  • Examples of the compound represented by the general formula (II) include phenol compounds such as ethyl phenol, butyl phenol, octyl phenol, nonyl phenol, and 4- ⁇ -cumyl phenol. Among these, butylphenol, octylphenol, nonylphenol and 4- ⁇ -cumylphenol are preferable, and octylphenol and nonylphenol are more preferable. Moreover, you may use these compounds 1 type or in mixture of 2 or more types.
  • Examples of the compound represented by the general formula (III) include 1-naphthol, 2-naphthol, 4-methoxy-1-naphthol, 6-methyl-2-naphthol, 7-methoxy-2-naphthol, 2,2 ′.
  • naphthalene 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxy And naphthalene compounds such as naphthalene, 2,6-dihydroxynaphthalene and 2,7-dihydroxynaphthalene.
  • tertiary amine known ones can be used without particular limitation, and examples thereof include triethylamine, tributylamine, N, N-diisopropylmethylamine, N, N-dicyclohexylmethylamine, N, N-dimethylaminoethanol, triethylamine.
  • tributylamine, N, N-diisopropylmethylamine, N, N-dicyclohexylmethylamine, N, N-dimethylaminoethanol, triethanolamine, 4-dimethylaminopyridine, N-methylmorpholine, N-methylhexa Methyleneimine and 1,8-diazabicyclo [5.4.0] -7-undecene are preferred, and tributylamine, N, N-dimethylaminoethanol, triethanolamine, 4-dimethylaminopyridine, 1,8-diazabicyclo [5 4.0] -7-undecene is more preferred. Moreover, you may use these compounds 1 type or in mixture of 2 or more types.
  • the content of the additive (C) is preferably in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the cyanate ester compound (A). By containing an additive (C) in the said range, it can be set as the curable resin composition which was further excellent in the external appearance of cured
  • the curable resin composition according to the present invention may further contain another cyanate ester compound (D) in addition to the above-described cyanate ester compound (A).
  • a cyanate ester compound (D) compounds represented by the following general formulas (IV) to (VI) can be preferably used.
  • R 11 represents the following general formulas (i) to (vi): [Wherein R 12 , R 13 and R 14 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or a trifluoromethyl group, and l is an integer of 4 to 7]. ] Selected from the group consisting of )
  • R 15 represents a hydrogen atom or a methyl group, and m represents an integer of 1 to 50.
  • R 16 to R 18 each independently represents a hydrogen atom, a methyl group, an ethyl group, a propyl group, a butyl group or a phenyl group, and n represents an integer of 1 to 50
  • the cyanate ester compound represented by the general formula (IV) can be obtained by cyanating a phenol represented by the following general formula (IX) by the same method as the above-described cyanate ester compound (A). .
  • the cyanate ester compound represented by the general formula (V) is obtained by cyanating a phenol represented by the following general formula (X) by the same method as the above-described cyanate ester compound (A). Can do.
  • the cyanate ester compound represented by the above general formula (VI) is obtained by cyanating a phenol represented by the following general formula (XI) by the same method as the above cyanate ester compound (A). Can do.
  • cyanate ester compound represented by the general formula (IV) generally known compounds can be used.
  • Examples of the cyanate ester compound represented by the general formula (V) include conventionally known naphthol aralkyl type cyanate resins. Among these, a cyanate ester compound in which R 15 in the formula is a hydrogen atom or a methyl group can be preferably used.
  • examples of the cyanate ester compound represented by the general formula (VI) include conventionally known phenol novolac type cyanate resins, cresol novolac type cyanate resins, and phenol aralkyl type cyanate resins. Among these, a phenol novolac type cyanate resin and a cresol novolac type cyanate resin are preferable, and a phenol novolak type cyanate resin is particularly preferable.
  • the cyanate ester compounds (D) represented by the general formulas (IV) to (VI) can be used singly or in combination of two or more.
  • the content of the cyanate ester compound (D) is preferably in the range of 1 to 250 parts by mass with respect to 100 parts by mass of the cyanate ester compound (A).
  • the curable resin composition according to the present invention may contain an epoxy resin (E).
  • the epoxy resin (E) generally known compounds can be used as long as they are compounds having two or more epoxy groups in one molecule.
  • bisphenol A type epoxy resin bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, brominated bisphenol A type epoxy resin, brominated phenol novolac type epoxy resin, naphthalene type epoxy resin, Anthracene type epoxy resin, biphenyl type epoxy resin, phenol aralkyl type epoxy resin, biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, alicyclic epoxy resin, polyol type epoxy resin, phosphorus-containing epoxy resin, glycidylamine, glycidyl ester, etc.
  • Bisphenol A type epoxy resin bisphenol F type epoxy resin, naphthalene type epoxy resin, anthracene type epoxy resin, dihydro Naphthalene type epoxy resins, biphenyl type epoxy resins, phenol novolak type epoxy resins, phenol aralkyl type epoxy resin, a biphenyl aralkyl type epoxy resin, naphthol aralkyl type epoxy resins, alicyclic epoxy resins are more preferable. These epoxy resins can be used alone or in combination.
  • the content of the epoxy resin (E) is preferably in the range of 1 to 250 parts by mass with respect to 100 parts by mass of the cyanate ester compound (A).
  • the curable resin composition according to the present invention may contain a maleimide compound (F).
  • a maleimide compound (F) any compound having one or more maleimide groups in one molecule can be used without particular limitation.
  • bismaleimide represented by the following general formula (VII) m-phenylene bismaleimide, 4-methyl-1,3-phenylene bismaleimide, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] Examples include propane, 1,6-bismaleimide- (2,2,4-trimethyl) hexane, polyphenylmethane maleimide, N-phenylmaleimide and the like.
  • Examples of the bismaleimide represented by the general formula (VII) include 4,4′-diphenylmethane bismaleimide, 3,3′-dimethyl-5,5′-diethyl-4,4′-diphenylmethane bismaleimide, and 4,4 ′.
  • maleimide compounds described above 4,4′-diphenylmethane bismaleimide, m-phenylene bismaleimide, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane, 3,3′-dimethyl-5 , 5′-diethyl-4,4′-diphenylmethane bismaleimide, 4-methyl-1,3-phenylenebismaleimide, etc.
  • maleimide compound (F) examples include the maleimide compound prepolymer described above, or a maleimide compound and an amine compound prepolymer. These compounds and prepolymers may be used alone or in combination of two or more. It is also possible to do.
  • the content of the maleimide compound (F) is preferably in the range of 1 to 100 parts by mass with respect to 100 parts by mass of the cyanate ester compound (A). By using the maleimide compound (F) in the above range, the castability of the resin composition can be further improved.
  • the curable resin composition according to the present invention further includes a benzoxazine compound and / or a polymerizable unsaturated group. It may contain the compound which has.
  • a benzoxazine compound generally known compounds can be used as long as they have two or more dihydrobenzoxazine rings in one molecule. Examples thereof include benzoxazine compounds described in JP-A-2009-096874. These benzoxazine compounds can be used alone or in combination.
  • the compound having a polymerizable unsaturated group generally known compounds can be used, for example, vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl.
  • vinyl compounds such as ethylene, propylene, styrene, divinylbenzene, divinylbiphenyl, methyl (meth) acrylate, 2-hydroxyethyl.
  • the curable resin composition according to the present invention may further contain another polymerization catalyst in addition to the above-described catalyst.
  • Any other polymerization catalyst can be used without particular limitation as long as it has a function of catalyzing the polymerization of a cyanate ester, an epoxy resin, an oxetane resin, a benzoxazine compound, or a compound having a polymerizable unsaturated group.
  • These polymerization catalysts include alcohols such as 1-butanol and 2-ethylhexanol, 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl.
  • Examples include imidazole derivatives such as -2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, and 2-phenyl-4-methyl-5-hydroxymethylimidazole, and phosphine and phosphonium phosphorus compounds. It is done. Also, peroxides such as epoxy-imidazole adduct compounds, benzoyl peroxide, p-chlorobenzoyl peroxide, di-t-butyl peroxide, diisopropyl peroxycarbonate, di-2-ethylhexyl peroxycarbonate, or azobis An azo compound such as isobutyronitrile may be used.
  • polymerization catalysts may be commercially available, for example, Amicure PN-23 (Ajinomoto Fine Techno Co., Ltd.), NovaCure HX-3721 (Asahi Kasei Co., Ltd.), Fujicure FX-1000 (Fuji Kasei Kogyo Co., Ltd.) Etc.
  • the curable resin composition according to the present invention may contain an inorganic filler.
  • inorganic fillers include silicates such as talc, calcined clay, unfired clay, mica and glass, oxides such as titanium oxide, alumina, silica and fused silica, and carbonates such as calcium carbonate, magnesium carbonate and hydrotalcite.
  • hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide, sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite, zinc borate, barium metaborate, aluminum borate, calcium borate And borate salts such as sodium borate, nitrides such as aluminum nitride, boron nitride, silicon nitride, and carbon nitride, and titanates such as strontium titanate and barium titanate.
  • silica is particularly preferable, and fused silica is preferable in that it has excellent low thermal expansion. Further, although crushed and spherical silica exists, spherical silica is preferable in terms of lowering the melt viscosity of the resin composition.
  • the spherical silica may be further treated with a treatment agent for surface treatment in advance.
  • a treatment agent for surface treatment at least one compound selected from the group consisting of functional group-containing silanes, cyclic oligosiloxanes, organohalosilanes, and alkylsilazanes can be suitably used.
  • the surface treatment of spherical silica using organohalosilanes and alkylsilazanes is suitable for hydrophobizing the silica surface, and improves the dispersibility of the spherical silica in the curable resin composition. It is preferable in terms of superiority.
  • the functional group-containing silanes used as the treatment agent are not particularly limited, and examples thereof include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropylmethyl.
  • Diethoxysilane, and epoxysilane compounds such as 2- (3,4-epoxycyclohexyl) ethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane And (meth) acrylic silane such as 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptopropyltriethoxysilane, and 3-mercaptopropylmethyldimethoxysilane.
  • Vinylsilanes such as captosilane, vinyltriethoxysilane, vinyltrimethoxysilane, and vinyltrichlorosilane, isocyanate silanes such as 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrimethoxysilane, and 3-ureidopropyltriethoxysilane (5-norbornene-, such as ureidosilane, (5-norbornen-2-yl) trimethoxysilane, (5-norbornen-2-yl) triethoxysilane, and (5-norbornen-2-yl) ethyltrimethoxysilane) 2-yl) alkylsilane, phenyltrimethoxysilane, and other phenylsilanes.
  • isocyanate silanes such as 3-isocyanatopropyltriethoxysilane, 3-ureidopropyltrimethoxys
  • the curable resin composition according to the present invention may further contain a silicone resin powder.
  • the silicone resin powder is a cured product powder having a structure in which a siloxane bond is cross-linked in a three-dimensional network represented by (RSiO 3/2 ) n , and a powder having an average particle size of 0.1 to 10 ⁇ m is preferable. It is.
  • KMP-590 (Shin-Etsu Silicone), KMP-701 (Shin-Etsu Silicone), X-52-854 (Shin-Etsu Silicone), X-52-1621 (Shin-Etsu Silicone), XC99-B5664 (Momentive) ⁇ Performance Materials), XC99-A8808 (Momentive Performance Materials), Tospearl 120 (Momentive Performance Materials), etc. It is also possible to use it.
  • the curable resin composition according to the present invention comprises the above-described cyanate ester compound (A), metal complex catalyst (B), additive (C), and, if necessary, the above general formulas (VI) and (VII). And a cyanate ester compound (D) represented by (VIII), an epoxy resin (E), a maleimide compound (F), a benzoxazine compound and / or a compound having a polymerizable unsaturated group and various additives together with a solvent And a known mixer such as a high speed mixer, a nauter mixer, a ribbon blender, a kneader, an intensive mixer, a universal mixer, a dissolver, and a static mixer.
  • the mixing method of the cyanate ester compound, various additives, and the solvent during mixing is not particularly limited.
  • the curable resin composition according to the present invention can be made into a cured product by curing with heat or light.
  • the cured product can be obtained by melting or dissolving the curable resin composition in a solvent, pouring it into a mold, and curing it under normal conditions.
  • thermosetting if the curing temperature is too low, curing does not proceed, and if it is too high, the cured product is deteriorated. Therefore, it is preferably in the range of 120 ° C to 300 ° C.
  • a prepreg can be produced by impregnating or coating the above-described curable resin composition on a substrate.
  • the base material of the prepreg is not particularly limited, but glass fiber base materials such as glass woven fabric and glass non-woven fabric, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers and wholly aromatic polyamide resin fibers, polyester resins Synthetic fiber substrate, kraft paper, composed of woven fabric or nonwoven fabric mainly composed of fibers, aromatic polyester resin fibers, polyester resin fibers such as wholly aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, etc.
  • Examples thereof include organic fiber base materials such as paper base materials mainly composed of cotton linter paper, mixed paper of linter and kraft pulp, and the like.
  • glass which comprises the above-mentioned glass fiber base material
  • E glass, C glass, A glass, S glass, D glass, NE glass, T glass, H glass etc. are mentioned.
  • the method for producing the prepreg is not particularly limited.
  • the method of immersing the base material in the resin varnish is preferable.
  • the impregnation property of the resin composition with respect to a base material can be improved.
  • a normal impregnation coating equipment can be used.
  • a method in which an inorganic and / or organic fiber base material is impregnated with a resin composition varnish, dried, and B-staged into a prepreg can be applied.
  • the curable resin composition according to the present invention can be used for the production of metal-clad laminates and multilayer boards.
  • the manufacturing method of these laminated sheets etc. is not specifically limited, A laminated sheet can be obtained by heat-pressing what laminated the above-mentioned prepreg and metal foil.
  • the heating temperature is not particularly limited, but is preferably 65 to 300 ° C, and particularly preferably 120 to 270 ° C.
  • the pressure to be applied is not particularly limited, but is preferably 2 to 5 MPa, more preferably 2.5 to 4 MPa.
  • a sealing material can be produced using the curable resin composition according to the present invention.
  • the manufacturing method of a sealing material is not specifically limited, It can obtain by mixing each above-described component using a well-known mixer.
  • the mixing method of the cyanate ester compound, various additives, and the solvent during mixing is not particularly limited.
  • a fiber-reinforced composite material can be produced using the curable resin composition according to the present invention.
  • the reinforcing fibers include carbon fibers, glass fibers, aramid fibers, boron fibers, PBO fibers, high-strength polyethylene fibers, alumina fibers, and silicon carbide fibers.
  • the form and arrangement of the reinforcing fibers are not particularly limited, and can be appropriately selected from woven fabrics, nonwoven fabrics, mats, knits, braids, unidirectional strands, rovings, choppeds, and the like.
  • a preform (a laminate of woven fabrics made of reinforcing fibers, or a structure in which these are stitched together with stitch yarn, or a fiber structure such as a three-dimensional woven fabric or a braid) is applied as a form of reinforcing fibers.
  • a preform a laminate of woven fabrics made of reinforcing fibers, or a structure in which these are stitched together with stitch yarn, or a fiber structure such as a three-dimensional woven fabric or a braid
  • the resin transfer molding method which is one of the liquid composite molding methods, can set materials other than preforms such as metal plates, foam cores, and honeycomb cores in the mold in advance. Since it can be applied to various applications, it is suitable for mass production of relatively complex composite materials in a short time.
  • the curable resin composition according to the present invention has excellent low thermal expansion, high heat resistance, and low water absorption, it is extremely useful as a high-functional polymer material and has excellent thermal, electrical and mechanical properties.
  • electrical insulating materials and semiconductor encapsulating materials, adhesives for electronic components, aircraft structural members, satellite structural members, and railway vehicle structures that require castability, low thermal expansion, flame resistance, and high mechanical strength. Suitable for members.
  • Synthesis Example 2 Synthesis of ⁇ , ⁇ -bis (4-cyanatophenyl) ethylbenzene (abbreviated as Bis-AP CN) ⁇ , ⁇ -bis (4-hydroxyphenyl) instead of bis (4-hydroxyphenyl) phenylmethane
  • the procedure was the same as in Synthesis Example 1 except that ethylbenzene (manufactured by Wako Pure Chemical Industries, Ltd.) was used, to obtain 23.1 g of ⁇ , ⁇ -bis (4-cyanatophenyl) ethylbenzene.
  • the structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 2.18 (s, 3H), 7.00 (d, 2H), 7.01-7.34 (complex, 11H)
  • Synthesis Example 3 Synthesis of bis (4-cyanatophenyl) ether (abbreviated as Bis-Ether CN) Bis (4-hydroxyphenyl) ether (Tokyo Chemical Industry Co., Ltd.) instead of bis (4-hydroxyphenyl) phenylmethane ) was used in the same manner as in Synthesis Example 1 to obtain 22.0 g of bis (4-cyanatophenyl) ether.
  • the structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 7.07 (d, 4H), 7.31 (d, 4H)
  • Synthesis Example 4 Synthesis of 1,3-bis [2- (4- cyanatophenyl ) -2-propyl] benzene (abbreviated as Bis-M CN) Method described in Example 1 of JP-A-4-221355 1,3-bis [2- (4-cyanatophenyl) -2-propyl] benzene was obtained.
  • Synthesis Example 5 Synthesis of 1,1-bis (4-cyanatophenyl) ethane (abbreviated as Bis-E CN) 1,1-bis (4-hydroxyphenyl) instead of bis (4-hydroxyphenyl) phenylmethane The procedure was carried out in the same manner as in Synthesis Example 1 except that ethane (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and 23.1 g of 1,1-bis (4-cyanatophenyl) ethane was obtained. The structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG. 1H-NMR: (270 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 1.62 (d, 3H), 4.22 (q, 1H), 7.42 (complex, 8H)
  • Synthesis Example 6 Synthesis of 1,1-bis (4-cyanatophenyl) isobutane (abbreviated as Bis-IB CN) 1,1-bis (4-hydroxyphenyl) instead of bis (4-hydroxyphenyl) phenylmethane
  • the reaction was conducted in the same manner as in Synthesis Example 1 except that isobutane (manufactured by Wako Pure Chemical Industries, Ltd.) was used, and 28.3 g of 1,1-bis (4-cyanatophenyl) isobutane was obtained.
  • the structure of the compound obtained as described above was identified by NMR spectrum. The NMR spectrum was as shown in FIG.
  • Synthesis Example 7 Synthesis of tris (4-cyanatophenyl) -1,1,1-methane (abbreviated as TRPCN) Based on the method described in the synthesis example of JP-A-2006-290933, tris (4-hydroxyphenyl) ) -1,1,1-methane to give tris (4-cyanatophenyl) -1,1,1-methane.
  • TRPCN tris (4-cyanatophenyl) -1,1,1-methane
  • Synthesis Example 8 Synthesis of 1,1,1-tris (4-cyanatophenyl) ethane (abbreviated as TRPECN) 1,1,1-tris (4 -hydroxyphenyl) instead of bis (4-hydroxyphenyl) phenylmethane )
  • TRPECN 1,1,1-tris (4 -hydroxyphenyl) instead of bis (4-hydroxyphenyl) phenylmethane
  • the reaction was conducted in the same manner as in Synthesis Example 1 except that ethane (manufactured by Wako Pure Chemical Industries, Ltd.) was used, to obtain 33.0 g of 1,1,1-tris (4-cyanatophenyl) ethane.
  • the structure of the compound obtained as described above was identified by NMR spectrum.
  • the NMR spectrum was as shown in FIG. 1H-NMR: (300 MHz, chloroform-d, internal standard TMS) ⁇ (ppm) 2.19 (s, 3H), 7.13 (d, 6H), 7.26 (d,
  • Synthesis Example 9 Synthesis of naphthol aralkyl cyanate ester (abbreviated as SNCN)
  • SNCN naphthol aralkyl cyanate ester
  • Example 1 100 parts by mass of Bis-BA CN obtained in Synthesis Example 1, 0.02 parts by mass of zinc octylate (trade name: zinc niccaoctate, metal content 18%, manufactured by Nippon Chemical Industry Co., Ltd.), 4-nonylphenol (Tokyo) 1 part by mass (made by Kasei Kogyo Co., Ltd.) was heated and degassed with a vacuum pump to obtain a composition.
  • zinc octylate trade name: zinc niccaoctate, metal content 18%, manufactured by Nippon Chemical Industry Co., Ltd.
  • 4-nonylphenol (Tokyo) 1 part by mass (made by Kasei Kogyo Co., Ltd.) was heated and degassed with a vacuum pump to obtain a composition.
  • Example 2 A cured product was obtained in the same manner as in Example 1 except that 1 part by weight of 1-naphthol was used instead of 1 part by weight of 4-nonylphenol.
  • Example 3 A cured product was obtained in the same manner as in Example 1 except that 1 part by mass of 1,6-dihydroxynaphthalene (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1 part by mass of 4-nonylphenol in Example 1.
  • Example 4 A cured product was obtained in the same manner as in Example 1, except that 1 part by mass of 2,7-dihydroxynaphthalene (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1 part by mass of 4-nonylphenol.
  • Example 5 A cured product was obtained in the same manner as in Example 1 except that 2 parts by mass of 2,7-dihydroxynaphthalene (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1 part by mass of 4-nonylphenol.
  • Example 6 A cured product was obtained in the same manner as in Example 1 except that 0.5 part by mass of tributylamine (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of 1 part by mass of 4-nonylphenol.
  • tributylamine manufactured by Wako Pure Chemical Industries, Ltd.
  • Example 7 In Example 1, instead of using 1 part by mass of 4-nonylphenol, a cured product was obtained in the same manner as in Example 1 except that 0.5 part by mass of N, N-dimethylaminoethanol (Mitsubishi Gas Chemical Co., Ltd., abbreviated as DMAE) was used. Got.
  • N, N-dimethylaminoethanol Mitsubishi Gas Chemical Co., Ltd., abbreviated as DMAE
  • Example 8 In Example 1, instead of using 1 part by mass of 4-nonylphenol, a cured product was obtained in the same manner as in Example 1 except that 0.2 part by mass of 4-dimethylaminopyridine (Tokyo Chemical Industry Co., Ltd., abbreviated as DMAP) was used. It was.
  • DMAP 4-dimethylaminopyridine
  • Example 9 In Example 1, instead of using 1 part by mass of 4-nonylphenol, 0.1 part by mass of 1,8-diazabicyclo [5.4.0] -7-undecene (Tokyo Chemical Industry Co., Ltd., abbreviated as DBU) was used. Cured in the same manner as in Example 1.
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • Example 10 A cured product was obtained in the same manner as in Example 1 except that 1.5 parts by weight of nonylphenol and 0.5 parts by weight of 2,7-dihydroxynaphthalene were used instead of 1 part by weight of 4-nonylphenol. .
  • Example 11 A cured product was obtained in the same manner as in Example 1 except that 1 part by mass of 4-nonylphenol was not used.
  • Example 12 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 85 parts by mass of Bis-BA CN and 2,2-bis (4-cyanatophenyl) propane (Mitsubishi Gas Chemical Co., Ltd., Bis-A A cured product was obtained in the same manner as in Example 4 except that 15 parts by mass of CN was abbreviated.
  • Example 13 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 70 parts by mass of Bis-BA CN and 30 parts by mass of Bis-Ether CN obtained in Synthesis Example 3 were used. A cured product was obtained.
  • Example 14 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 80 parts by mass of Bis-BA CN and 20 parts by mass of Bis-M CN obtained in Synthesis Example 4 were used. A cured product was obtained.
  • Example 15 In Example 4, instead of using 100 parts by mass of Bis-BA CN, the same as Example 4 except that 50 parts by mass of Bis-BA CN and 50 parts by mass of Bis-IB CN obtained in Synthesis Example 6 were used. A cured product was obtained.
  • Example 16 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 65 parts by mass of Bis-BA CN, 25 parts by mass of Bis-IB CN obtained in Synthesis Example 6, and a phenol novolac-type cyanate ester resin A cured product was obtained in the same manner as in Example 4 except that 10 parts by mass (trade name PRIMASET PT-15, abbreviated as PT-15 manufactured by Lonza) was used.
  • PRIMASET PT-15 abbreviated as PT-15 manufactured by Lonza
  • Example 17 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 80 parts by mass of Bis-BA CN and 20 parts by mass of bisphenol A type epoxy resin (trademark jER828, abbreviated as DGEBA manufactured by Mitsubishi Chemical Corporation) were used. A cured product was obtained in the same manner as in Example 4 except that the amount of zinc octylate added was changed from 0.02 parts by mass to 0.016 parts by mass and the curing temperature in the oven was 200 ° C.
  • DGEBA bisphenol A type epoxy resin
  • Example 18 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 70 parts by mass of Bis-BA CN, 10 parts by mass of TRPCN obtained in Synthesis Example 7, and a cresol novolac type epoxy resin (manufactured by DIC Corporation) The amount of zinc octylate added using 8 parts by mass of the trademark Epiclon N-680 (abbreviated as ECN) and 12 parts by mass of biphenyl aralkyl type epoxy resin (Nippon Kayaku Co., Ltd., trademarks NC-3000 and NC-3000) was changed from 0.02 parts by mass to 0.017 parts by mass, and a cured product was obtained in the same manner as in Example 4 except that the curing temperature in the oven was 200 ° C.
  • ECN the trademark Epiclon N-680
  • biphenyl aralkyl type epoxy resin Nippon Kayaku Co., Ltd., trademarks NC-3000 and NC-3000
  • Example 19 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 60 parts by mass of Bis-BA CN, 10 parts by mass of Bis-A CN, 4,4′-bismaleimide diphenylmethane (Tokyo Chemical Industry Co., Ltd.) Manufactured, abbreviated as BMI), and a cured product was obtained in the same manner as in Example 4 except that the amount of zinc octylate added was changed from 0.02 parts by mass to 0.014 parts by mass.
  • BMI 4,4′-bismaleimide diphenylmethane
  • Example 20 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 30 parts by mass of Bis-BA CN, 30 parts by mass of PT-15, 10 parts by mass of NC-3000, maleimide compound (Kay Kasei Co., Ltd.) Except for using 30 parts by mass of the trade name BMI-70), changing the addition amount of zinc octylate from 0.02 parts by mass to 0.012 parts by mass, and setting the curing temperature in the oven to 200 ° C. In the same manner as in Example 4, a cured product was obtained.
  • Example 21 In Example 4, instead of using 100 parts by mass of Bis-BA CN, Example 4 except that 60 parts by mass of Bis-BA CN, 10 parts by mass of Bis-E CN, and 30 parts by mass of SNCN obtained in Synthesis Example 9 were used. In the same manner as above, a cured product was obtained.
  • Example 22 In Example 4, a cured product was obtained in the same manner as in Example 4 except that 100 parts by mass of Bis-AP CN obtained in Synthesis Example 2 was used instead of 100 parts by mass of Bis-BA CN.
  • Example 23 A cured product was obtained in the same manner as in Example 4 except that 100 parts by mass of Bis-BA CN was used instead of 100 parts by mass of Bis-BA CN.
  • Example 24 In Example 4, a cured product was obtained in the same manner as in Example 4 except that 100 parts by mass of TRPCN obtained in Synthesis Example 7 was used instead of 100 parts by mass of Bis-BA CN.
  • Example 25 In Example 4, a cured product was obtained in the same manner as in Example 4 except that 100 parts by mass of TRPECN obtained in Synthesis Example 8 was used instead of 100 parts by mass of Bis-BA CN.
  • Example 26 In Example 4, a cured product was obtained in the same manner as in Example 4 except that 100 parts by mass of PT-15 was used instead of 100 parts by mass of Bis-BA CN.
  • Example 27 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 65 parts by mass of Bis-A CN and 35 parts by mass of Bis-E CN obtained in Synthesis Example 5 were used. To obtain a cured product.
  • Example 28 Instead of using 100 parts by mass of Bis-BA CN in Example 4, 40 parts by mass of Bis-M CN obtained in Synthesis Example 4 and 30 parts by mass of Bis-E CN obtained in Synthesis Example 5 were synthesized. A cured product was obtained in the same manner as in Example 4 except that 30 parts by mass of SNCN obtained in Example 9 was used.
  • Example 29 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 50 parts by mass of Bis-Ether CN obtained in Synthesis Example 3 and 50 parts by mass of ECN were used, and the amount of zinc octylate added was 0.02%. A cured product was obtained in the same manner as in Example 4 except that the content was changed from 0.01 parts by mass to 0.01 parts by mass and the curing temperature in the oven was 200 ° C.
  • Example 30 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 70 parts by mass of Bis-A CN and 30 parts by mass of BMI were used, and the amount of zinc octylate added was 0.02 parts by mass to 0.014 parts by mass. A cured product was obtained in the same manner as in Example 4 except for changing to part.
  • Example 31 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 70 parts by mass of Bis-A CN and 30 parts by mass of bisphenol F type epoxy resin (trademark jER806, abbreviated as DGEBF manufactured by Mitsubishi Chemical Corporation) were used. A cured product was obtained in the same manner as in Example 4 except that the amount of zinc octylate added was changed from 0.02 parts by mass to 0.014 parts by mass, and the curing temperature in the oven was 200 ° C.
  • bisphenol F type epoxy resin trademark jER806, abbreviated as DGEBF manufactured by Mitsubishi Chemical Corporation
  • Example 32 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 80 parts by mass of Bis-A CN and 20 parts by mass of DGEBA were used, and the amount of zinc octylate added was 0.02 parts by mass to 0.016 parts by mass. The cured product was obtained in the same manner as in Example 4 except that the curing temperature in the oven was changed to 200 ° C.
  • Example 33 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 30 parts by mass of Bis-A CN, 30 parts by mass of PT-15, 10 parts by mass of NC-3000, and 30 parts by mass of BMI-70 The amount of zinc octylate added was changed from 0.02 parts by mass to 0.016 parts by mass, and the cured product was obtained in the same manner as in Example 4 except that the curing temperature in the oven was 200 ° C. .
  • Example 34 In Example 4, instead of using 100 parts by mass of Bis-BA CN, 60 parts by mass of Bis-A CN, 10 parts by mass of Bis-E CN obtained in Synthesis Example 5, and SNCN obtained in Synthesis Example 9 were used. A cured product was obtained in the same manner as in Example 4 except that 30 parts by mass was used.
  • Formability evaluation As for formability, the appearance of the obtained cured product (40 mm ⁇ 40 mm ⁇ 2 mm) was observed, and the presence or absence of cracks was confirmed visually. The judgment criteria were as follows. OK: No crack is found NG: Crack is found
  • the glass transition temperature was measured according to JIS-K7244-7-2007, and a dynamic viscoelasticity measuring device (AR2000, manufactured by TA Instruments Inc.) was used.
  • the dynamic viscoelasticity measurement is performed under the measurement conditions of a start temperature of 100 ° C., an end temperature of 400 ° C., a temperature increase rate of 3 ° C./min, and a measurement frequency of 1 Hz. It was temperature.
  • the linear expansion coefficient was measured in accordance with JIS-K-7197-1991, and a test piece (TMA / SS7100, manufactured by SII Nanotechnology Co., Ltd.) was used. 5mm ⁇ 5mm ⁇ 2mm) is set, and thermomechanical analysis is performed in the expansion / compression mode under the measurement conditions of a start temperature of 100 ° C., an end temperature of 300 ° C., a temperature increase rate of 5 ° C./min, and a weight of 0.05 N. The average amount of thermal expansion per 1 ° C. at a predetermined temperature was measured. Except for Examples 17, 18, 20, 29, 31, 32, and 33, the average linear expansion coefficient at 200 ° C. to 300 ° C. was measured, and Examples 17, 18, 20, 29, 31, 32, and 33 were measured. With respect to, the average linear expansion coefficient at 150 ° C. to 250 ° C. was measured.
  • the water absorption rate was calculated by calculating the weight increase rate when a test piece (40 mm ⁇ 40 mm ⁇ 2 mm) was immersed in boiling water for 300 hours, and the obtained value was taken as the water absorption rate.
  • Tables 1 to 3 The measurement results were as shown in Tables 1 to 3 below.
  • the unit of numerical values in Table 1 represents parts by mass, and the portion indicated by “-” means that the corresponding raw material is not blended.
  • Tg glass transition temperature
  • “> 400” means that the maximum peak value of tan ⁇ is not clear within the measurement temperature range (25 ° C. to 400 ° C.), and Tg is confirmed within that range. It means that it was not possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Epoxy Resins (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 硬化時のクラックの発生を抑制しつつ、低熱膨張率および低吸水性を両立する硬化物が得られる硬化性樹脂組成物を提供する。下記式(I):で示されるシアン酸エステル化合物(A)と、金属錯体触媒(B)と、添加剤(C)と、を少なくとも含んでなり、前記添加剤(C)が、下記一般式(II)で示される化合物、下記一般式(III)で示される化合物、および三級アミンからなる群より選択されるいずれか1種以上を含んでなる、硬化性樹脂組成物とする。

Description

硬化性樹脂組成物およびその硬化物 発明の背景
発明の分野
 本発明は、硬化性樹脂組成物に関し、より詳細には、硬化時のクラック発生が抑制され、硬化物の熱膨張率および吸水率を改善することができる硬化性樹脂組成物、およびその硬化物に関する。
背景技術
 近年、半導体関連材料の分野においては携帯電話、超薄型の液晶やプラズマTV、軽量ノート型パソコンなど、軽・薄・短・小がキーワードとなるような電子機器があふれ、これらに使用される電子部品の高密度集積化、さらには高密度実装化等が進んでいる。したがって、これら電子部品に使用される高密度実装対応のプリント配線板等には、従来にも増して小型化かつ高密度化が求められている。
 プリント配線板の高密度化には、ビルドアップ方式による多層プリント配線板が採用されることが多く、その絶縁層には、通常、エポキシ樹脂に代表される熱硬化性樹脂組成物が用いられる。しかしながら、熱硬化性樹脂は、硬化の際の自由体積減少による内部応力蓄積という問題を有している。そのため、プリント配線板の絶縁材料として熱硬化性樹脂を用いると、硬化収縮によって成形品にクラックや反りが発生する場合があり、また、内部歪みの蓄積によってプリント配線板としての信頼性が低下する場合がある。したがって、硬化時に内部応力の蓄積が少なく、クラックの発生が少ない硬化性樹脂組成物が希求されている。
 また、樹脂の硬化後においても、半導体装置の製造時における多層プリント配線板に半導体素子を実装する工程では、実装温度が250℃以上と高いことから、実装時に多層プリント配線板の反りが増大する場合がある。また、樹脂が吸湿すると、反りの程度が更に大きくなることが知られている。したがって、硬化時にクラック発生が少なく、低熱膨張性および低吸水性に優れる樹脂組成物が求められている。
 ところで、シアン酸エステル樹脂は、耐熱性に優れるとともに、低誘電率、低誘電損失である熱硬化性樹脂として従来から知られている。特に、特公昭54-30440号公報(特許文献1)において提案されているような、ビスフェノールA型シアン酸エステル樹脂とビスマレイミド化合物とを併用した樹脂組成物は、“BTレジン”と称され、電気特性、機械特性、耐薬品性などに優れる樹脂として、多層配線板の絶縁層に用いられている。しかしながら、ビスフェノールA型シアン酸エステル樹脂を含有する樹脂組成物は、電気特性、機械特性、耐薬品性に優れているが、吸水率が高く、耐熱性や熱膨張性においても更なる改善が求められており、他の構造を有するシアン酸エステル樹脂の開発が進められている。
 例えば、特開平11-124433号公報(特許文献2)にはノボラック型シアン酸エステル樹脂が提案されている。しかしながら、ノボラック型シアン酸エステル樹脂を用いた硬化物は、BTレジンに比べて吸水率が大きく、吸湿耐熱性が低下する場合がある。
 また、特開2006-169317号公報(特許文献3)には、トリフェニルメタン型のシアン酸エステル化合物とビスマレイミド化合物と併用した樹脂硬化物は、熱膨張性に優れることが開示されている。さらに、特開2006-143874号公報(特許文献4)には、トリフェニルメタン型のシアン酸エステル化合物とノボラック型シアン酸エステル化合物とを併用した樹脂硬化物は、吸水性に優れることが開示されている。
特公昭54-30440号公報 特開平11-124433号公報 特開2006-169317号公報 特開2006-143874号公報
 しかしながら、特開平11-124433号公報で提案されている樹脂を用いた硬化物は、BTレジンに比べて吸水率が大きく、吸湿耐熱性が低下する場合があった。また、特開2006-169317号公報で提案されている樹脂を用いた樹脂硬化物は、熱膨張性に優れるものの吸水性についての検討がなされていない。さらに、特開2006-143874号公報提案されている樹脂を用いた樹脂硬化物は、熱膨張性が十分とは言えず、また、吸水性についても改善の余地があった。
 本発明者らは、特定の2官能型シアン酸エステル化合物と、金属錯体触媒と、特定の添加剤とを併用することにより、硬化時のクラックの発生を抑制しつつ、低熱膨張率および低吸水性を両立する硬化物を実現できるとの知見を得た。本発明はかかる知見によるものである。
 したがって、本発明の目的は、硬化時のクラックの発生を抑制しつつ、低熱膨張率および低吸水性を両立する硬化物が得られる硬化性樹脂組成物を提供することである。
 本発明によるシアン酸エステル化合物は、下記式(I):
Figure JPOXMLDOC01-appb-C000009
で示されるシアン酸エステル化合物(A)と、
 金属錯体触媒(B)と、
 添加剤(C)と、
を少なくとも含んでなり、
 前記添加剤(C)が、下記一般式(II)で示される化合物、下記一般式(III)で示される化合物、および三級アミンからなる群より選択されるいずれか1種以上を含んでなる、硬化性樹脂組成物:
Figure JPOXMLDOC01-appb-C000010
(式中、R~Rは、各々独立して水素原子、炭素数1~15のアルキル基、または炭素数6~12のアリール基を表すが、少なくとも一つは炭素数1以上のアルキル基または炭素数6以上のアリール基である。)
Figure JPOXMLDOC01-appb-C000011
(式中、R~R10は、各々独立して水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数6~15のアリール基、またはヒドロキシ基を表す。)。
 また、本発明の別の態様においては、上記硬化性樹脂組成物を硬化させてなる硬化物も提供される。
 また、本発明の別の態様においては、上記硬化性樹脂組成物を含んでなる封止用材料も提供される。
 また、本発明の別の態様においては、上記硬化性樹脂組成物を含んでなる接着剤も提供される。
 また、本発明の別の態様においては、上記硬化性樹脂組成物を含んでなる注型材料も提供される。
 また、本発明の別の態様においては、上記硬化性樹脂組成物を、基材に含浸または塗布してなるプリプレグも提供される。
 また、本発明の別の態様においては、上記プリプレグを、少なくとも1枚以上重ね、その片面もしくは両面に金属箔を配して積層成形して得られる積層板も提供される。
 本発明によれば、上記のような特定の2官能型シアン酸エステル化合物と、金属錯体触媒と、特定の添加剤とを併用した硬化性樹脂組成物とすることにより、硬化時のクラックの発生を抑制しつつ、低熱膨張率および低吸水性を両立する硬化物を実現できる。
図1は、合成例1で得たビス(4-シアナトフェニル)フェニルメタンのH-NMRチャートである。 図2は、合成例2で得たα,α-ビス(4-シアナトフェニル)エチルベンゼンのH-NMRチャートである。 図3は、合成例3で得たビス(4-シアナトフェニル)エーテルのH-NMRチャートである。 図4は、合成例5で得た1,1-ビス(4-シアナトフェニル)エタンのH-NMRチャートである。 図5は、合成例6で得た1,1-ビス(4-シアナトフェニル)イソブタンのH-NMRチャートである。 図6は、合成例8で得た1,1,1-トリス(4-シアナトフェニル)エタンのH-NMRチャートである。
発明の具体的説明
<硬化性樹脂組成物>
 本発明による硬化性樹脂組成物は、特定のシアン酸エステル化合物(A)と、金属錯体触媒(B)と、特定の添加剤(C)とを必須成分として含むものである。以下、各成分について説明する。
<シアン酸エステル化合物(A)>
 本発明による硬化性樹脂組成物に含まれるシアン酸エステル化合物(A)は、下記式(I)で示されるものである。
Figure JPOXMLDOC01-appb-C000012
 シアン酸エステル化合物として、上記式(I)で示されるビス(4-シアナトフェニル)フェニルメタンを含む硬化性樹脂組成物は、他のシアン酸エステルを含む樹脂組成物と比較して、硬化物の吸水性が小さく、また、高温環境下においても硬化物の線膨張係数が小さいため、高密度化された多層プリント配線板の絶縁層用の樹脂とすることができる。とりわけ、金属錯体触媒および後記する添加剤と併用することにより、硬化収縮が抑制されてクラック発生のない外観の良好な注型品を得ることができる。
 上記式(I)で示されるシアン酸エステル化合物の製造方法は、特に制限されるものではなく、下記式(VIII)で示されるフェノールからシアネート合成法として公知の方法を適用することにより、所望の化合物を得ることができる。
Figure JPOXMLDOC01-appb-C000013
 例えば、IAN HAMERTON,“Chemistry and Technology of Cyanate Ester Resins”,BLACKIE ACADEMIC & PROFESSIONALに記載された方法により、上記式(VIII)のフェノールをシアネート化して、上記式(I)のシアン酸エステル化合物を得ることができる。また、溶媒中、塩基の存在下で、ハロゲン化シアンが常に塩基より過剰に存在するようにして反応させる方法(米国特許3553244号)、塩基として3級アミンを用い、これをハロゲン化シアンよりも過剰に用いながら合成する方法(特開平7-53497号公報)、連続プラグフロー方式で、トリアルキルアミンとハロゲン化シアンを反応させる方法(特表2000-501138号公報)、フェノールとハロゲン化シアンとを、tert-アミンの存在下、非水溶液中で反応させる際に副生するtert-アンモニウムハライドを、カチオンおよびアニオン交換対で処理する方法(特表2001-504835号公報)、フェノール化合物を、水と分液可能な溶媒の存在下で、3級アミンとハロゲン化シアンとを同時に添加して反応させた後、水洗分液し、得られた溶液から2級または3級アルコール類もしくは炭化水素の貧溶媒を用いて沈殿精製する方法(特許2991054号公報)、さらには、ナフトール類、ハロゲン化シアン、および3級アミンを、水と有機溶媒との二相系溶媒中で、酸性条件下で反応させる方法(特開2007-277102公報)等の公知の方法によって、上記したシアン酸エステル化合物を製造することができる。上記のような方法により得られたシアン酸エステル化合物は、NMR等の公知の方法により同定することができる。
<金属錯体触媒(B)>
 本発明による硬化性樹脂組成物に含まれる金属錯体触媒(B)は、上記したシアン酸エステル化合物等の重合を触媒する機能を有するものである。金属錯体触媒(B)としては、従来公知のものを使用することができる。例えば、オクチル酸、ステアリン酸、アセチルアセトネート、ナフテン酸、サリチル酸等の有機酸のZn、Cu、Fe、Co、Mn、Al等の有機金属塩等が挙げられ、これらの中でもオクチル酸亜鉛、オクチル酸銅、オクチル酸コバルト、オクチル酸アルミニウム、ステアリン酸亜鉛、ステアリン酸銅、ステアリン酸コバルト、ステアリン酸アルミニウム、アセチルアセトン亜鉛、アセチルアセトン銅、アセチルアセトン鉄、アセチルアセトンマンガン、アセチルアセトンコバルト、アセチルアセトンアルミニウム、ナフテン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸アルミニウムが好ましく、オクチル酸亜鉛、オクチル酸銅、オクチル酸コバルト、ステアリン酸亜鉛、ステアリン酸コバルト、アセチルアセトン亜鉛、アセチルアセトン銅、アセチルアセトンマンガン、アセチルアセトンコバルト、ナフテン酸亜鉛、ナフテン酸銅、ナフテン酸コバルト、ナフテン酸アルミニウムがより好ましい。これらの金属錯体触媒は1種または2種以上混合して用いることができる。金属錯体触媒(B)を添加することによって、硬化性樹脂組成物の硬化温度を下げることができる。
 金属錯体触媒(B)の含有量は、シアン酸エステル化合物(A)100質量部に対して、0.01~5質量部の範囲であることが好ましい。上記範囲で金属錯体触媒(B)を含むことにより、より一層、低温の硬化条件でも耐熱性の優れた硬化物を得ることができる。
<添加剤(C)>
 本発明による硬化性樹脂組成物は、下記一般式(II)で示される化合物、下記一般式(III)で示される化合物、および三級アミンからなる群より選択されるいずれか1種以上の添加剤(C)を含む。
Figure JPOXMLDOC01-appb-C000014
(式中、R~Rは、各々独立して水素原子、炭素数1~15のアルキル基、または炭素数6~12のアリール基を表すが、少なくとも一つは炭素数1以上のアルキル基または炭素数6以上のアリール基である。)
Figure JPOXMLDOC01-appb-C000015
(式中、R~R10は、各々独立して水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数6~15のアリール基、またはヒドロキシ基を表す。)
 上記した一般式(II)で示される化合物としては、エチルフェノ-ル、ブチルフェノ-ル、オクチルフェノール、ノニルフェノール、4-α-クミルフェノール等のフェノール化合物が挙げられる。これらの中でも、ブチルフェノ-ル、オクチルフェノール、ノニルフェノール、4-α-クミルフェノールが好ましく、オクチルフェノール、ノニルフェノールがより好ましい。また、これら化合物を、1種または2種以上混合して用いてもよい。
 また、一般式(III)で示される化合物としては、1-ナフトール、2-ナフトール、4-メトキシ-1-ナフトール、6-メチル-2-ナフトール、7-メトキシ-2-ナフトール、2,2’-ジヒドロキシ-1,1’-ビナフチル、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン等のナフタレン化合物が挙げられる。こられの中でも、1-ナフトール、4-メトキシ-1-ナフトール、6-メチル-2-ナフトール、7-メトキシ-2-ナフトール、2,2’-ジヒドロキシ-1,1’-ビナフチル、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンが好ましく、1-ナフトール、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレンがより好ましい。また、これら化合物を、1種または2種以上混合して用いてもよい。
 さらに、三級アミンとしては、特に制限なく公知のものを使用でき、例えば、トリエチルアミン、トリブチルアミン、N,N-ジイソプロピルメチルアミン、N,N-ジシクロヘキシルメチルアミン、N,N-ジメチルアミノエタノール、トリエタノールアミン、トリベンジルアミン、N,N-ジメチル-4-メチル-ベンジルアミン、4-ジメチルアミノピリジン、N-メチルピペリジン、N-メチルモルホリン、N-メチルヘキサメチレンイミン、N-(2-ヒドロキシエチル)ヘキサメチレンイミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,4-ジザビシクロ[2.2.2]オクタン、3-キヌクリジノン等が挙げられる。これらの中でも、トリブチルアミン、N,N-ジイソプロピルメチルアミン、N,N-ジシクロヘキシルメチルアミン、N,N-ジメチルアミノエタノール、トリエタノールアミン、4-ジメチルアミノピリジン、N-メチルモルホリン、N-メチルヘキサメチレンイミン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンが好ましく、トリブチルアミン、N,N-ジメチルアミノエタノール、トリエタノールアミン、4-ジメチルアミノピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセンがより好ましい。また、これら化合物を、1種または2種以上混合して用いてもよい。
 添加剤(C)の含有量は、シアン酸エステル化合物(A)100質量部に対して、0.01~10質量部の範囲であることが好ましい。上記範囲で添加剤(C)を含むことにより、より一層、硬化物の外観が良好で、耐熱に優れた硬化性樹脂組成物とすることができる。
<その他の成分>
 本発明による硬化性樹脂組成物は、上記したシアン酸エステル化合物(A)に加えて、さらに他のシアン酸エステル化合物(D)を含んでいてもよい。このようなシアン酸エステル化合物(D)としては、下記一般式(IV)~(VI)で示される化合物を好適に使用することができる。
Figure JPOXMLDOC01-appb-C000016
(式中、R11は、下記一般式(i)~(vi):
Figure JPOXMLDOC01-appb-C000017
[式中、R12、R13、R14は、各々独立して水素原子、炭素数1~8のアルキル基またはトリフルオロメチル基であり、lは4~7の整数である。]からなる群より選択されるいずれかである。)
Figure JPOXMLDOC01-appb-C000018
(式中、R15は水素原子またはメチル基を示し、mは1~50の整数を示す。)
Figure JPOXMLDOC01-appb-C000019
(式中、R16~R18は、各々独立して水素原子、メチル基、エチル基、プロピル基、ブチル基またはフェニル基であり、nは1~50の整数を示す。)
 上記一般式(IV)で示されるシアン酸エステル化合物は、下記一般式(IX)で示されるフェノールを、上記したシアン酸エステル化合物(A)と同様の方法によりシアネート化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000020
(式中、R11は上記の定義と同じである。)
 また、上記一般式(V)で示されるシアン酸エステル化合物は、下記一般式(X)で示されるフェノールを、上記したシアン酸エステル化合物(A)と同様の方法によりシアネート化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000021
(式中、R15およびmは、上記の定義と同じである。)
 また、上記一般式(VI)で示されるシアン酸エステル化合物は、下記一般式(XI)で示されるフェノールを、上記したシアン酸エステル化合物(A)と同様の方法によりシアネート化することにより得ることができる。
Figure JPOXMLDOC01-appb-C000022
(式中、R16~R18およびnは、上記の定義と同じである。)
 上記一般式(IV)で示されるシアン酸エステル化合物としては、一般に公知のものを使用することができ、例えば、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)-2-メチルプロパン、1,1-ビス(4-シアナトフェニル)ブタン、1,1-ビス(4-シアナトフェニル)ペンタン、1,1-ビス(4-シアナトフェニル)-3-メチルブタン、1,1-ビス(4-シアナトフェニル)-2-メチルブタン、1,1-ビス(4-シアナトフェニル)-2,2-ジメチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ペンタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-3-メチルブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)ヘプタン、3,3-ビス(4-シアナトフェニル)オクタン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルペンタン、4,4-ビス(4-シアナトフェニル)-3-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2-メチルヘプタン、3,3-ビス(4-シアナトフェニル)-2,2-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,4-ジメチルヘキサン、3,3-ビス(4-シアナトフェニル)-2,2,4-トリメチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサンが挙げられる。これらの中でも、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、1,1-ビス(4-シアナトフェニル)プロパン、2,2-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)-2-メチルプロパン、1,1-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)ヘキサン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-3,3-ジメチルブタン、3,3-ビス(4-シアナトフェニル)ヘキサン、3,3-ビス(4-シアナトフェニル)-2-メチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、1,1-ビス(4-シアナトフェニル)シクロペンタン、1,1-ビス(4-シアナトフェニル)シクロヘキサンが好ましく、特に、ビス(4-シアナトフェニル)メタン、2,4’-ジシアナトジフェニルメタン、1,1-ビス(4-シアナトフェニル)エタン、2,2-ビス(4-シアナトフェニル)プロパン、1,1-ビス(4-シアナトフェニル)-2-メチルプロパン、2,2-ビス(4-シアナトフェニル)ブタン、2,2-ビス(4-シアナトフェニル)-4-メチルペンタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン、ビス(4-シアナトフェニル)エーテル、ビス(4-シアナトフェニル)スルフィド、1,1-ビス(4-シアナトフェニル)シクロヘキサンが好ましい。
 また、上記一般式(V)で示されるシアン酸エステル化合物としては、従来公知のナフトールアラルキル型シアネート樹脂が挙げられる。これらの中でも、式中のR15が水素原子またはメチル基であるシアン酸エステル化合物を好適に使用することができる。
 また、上記一般式(VI)で示されるシアン酸エステル化合物としては、従来公知のフェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂、フェノールアラルキル型シアネート樹脂が挙げられる。これらの中でも、フェノールノボラック型シアネート樹脂、クレゾールノボラック型シアネート樹脂が好ましく、特にフェノールノボラック型シアネート樹脂が好ましい。上記した一般式(IV)~(VI)で示されるシアン酸エステル化合物(D)は1種または2種以上混合して用いることができる。
 シアン酸エステル化合物(D)の含有量は、シアン酸エステル化合物(A)100質量部に対して、1~250質量部の範囲であることが好ましい。上記範囲でシアン酸エステル化合物(D)を併用することにより、硬化物の耐熱性および吸水性をより一層改善することができる。
 本発明による硬化性樹脂組成物は、エポキシ樹脂(E)を含んでいてもよい。エポキシ樹脂(E)は、1分子中に2個以上のエポキシ基を有する化合物であれば、一般に公知のものを用いることができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、3官能フェノール型エポキシ樹脂、4官能フェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル、ブタジエンなどの2重結合をエポキシ化した化合物、水酸基含有シリコーン樹脂類とエピクロルヒドリンとの反応により得られる化合物等が挙げられる。これらのなかでも、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、臭素化フェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂、ポリオール型エポキシ樹脂、リン含有エポキシ樹脂、グリシジルアミン、グリシジルエステル等が好ましく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、脂環式エポキシ樹脂等がより好ましい。これらのエポキシ樹脂は1種または2種以上混合して用いることができる。
 エポキシ樹脂(E)の含有量は、シアン酸エステル化合物(A)100質量部に対して、1~250質量部の範囲であることが好ましい。上記範囲でエポキシ樹脂(E)を併用することにより、硬化物の耐熱性および吸水性をより一層改善することができる。
 また、本発明による硬化性樹脂組成物は、マレイミド化合物(F)を含んでいてもよい。マレイミド化合物(F)としては、1分子中に1個以上のマレイミド基を有する化合物であれば特に制限なく使用することができる。例えば、下記一般式(VII)で示されるビスマレイミド、m-フェニレンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン、ポリフェニルメタンマレイミド、N-フェニルマレイミド等が挙げられる。
Figure JPOXMLDOC01-appb-C000023
(式中、R19およびR20は、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~3のアルキル基を示し、p+q=4であり、R21は、単結合、エーテル結合、スルフィド結合、スルホン結合、炭素数1~5のアルキレン基、アルキリデン基、炭素数6~14のアリーレン基、またはアリーレンオキシ基を示す。)
 上記一般式(VII)で示されるビスマレイミドとしては、4,4’-ジフェニルメタンビスマレイミド、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼン等が挙げられる。
 上記したマレイミド化合物の中でも、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド等が好ましく、4,4’-ジフェニルメタンビスマレイミド、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド等がより好ましい。また、マレイミド化合物(F)としては、上記したマレイミド化合物のプレポリマー、もしくはマレイミド化合物とアミン化合物のプレポリマーなどが挙げられ、これら化合物およびプレポリマーを1種または2種以上を適宜混合して使用することも可能である。
 マレイミド化合物(F)の含有量は、シアン酸エステル化合物(A)100質量部に対して、1~100質量部の範囲であることが好ましい。上記範囲でマレイミド化合物(F)を併用することにより、樹脂組成物の注型性をより一層改善することができる。
 本発明による硬化性樹脂組成物は、上記したシアン酸エステル化合物(D)、エポキシ樹脂(E)、および マレイミド化合物(F)に加えて、さらにベンゾオキサジン化合物および/または重合可能な不飽和基を有する化合物等を含んでいてもよい。ベンゾオキサジン化合物としては、1分子中に2個以上のジヒドロベンゾオキサジン環を有していれば一般に公知のものを用いることができる。例えば、特開2009-096874号公報に記載のベンゾオキサジン化合物が挙げられる。これらのベンゾオキサジン化合物は1種または2種以上混合して用いることができる。
 また、重合可能な不飽和基を有する化合物としては、一般に公知のものが使用でき、例えば、エチレン、プロピレン、スチレン、ジビニルベンゼン、ジビニルビフェニル等のビニル化合物、メチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の1価または多価アルコールの(メタ)アクリレート類、ビスフェノールA型エポキシ(メタ)アクリレート、ビスフェノールF型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート類、ベンゾシクロブテン樹脂等が挙げられる。これらの重合可能な不飽和基を有する化合物は1種または2種以上混合して用いることができる。
 また、本発明による硬化性樹脂組成物は、上記した触媒に加えて、さらに、他の重合触媒が含まれていてもよい。他の重合触媒としては、シアン酸エステル、エポキシ樹脂、オキセタン樹脂、ベンゾオキサジン化合物、重合可能な不飽和基を有する化合物の重合を触媒する機能を有するものであれば、特に制限なく使用できる。これら重合触媒としては、1-ブタノール、2-エチルヘキサノール等のアルコール類、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール誘導体、ホスフィン系やホスホニウム系のリン化合物が挙げられる。また、エポキシ-イミダゾールアダクト系化合物、ベンゾイルパーオキサイド、p-クロロベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジイソプロピルパーオキシカーボネート、ジ-2-エチルヘキシルパーオキシカーボネート等の過酸化物、またはアゾビスイソブチロニトリル等のアゾ化合物等を使用してもよい。これらの重合触媒は市販のものを使用してもよく、例えば、アミキュアPN-23(味の素ファインテクノ社製)、ノバキュア HX-3721(旭化成社製)、フジキュアFX-1000(富士化成工業社製)等が挙げられる。
 本発明による硬化性樹脂組成物は、無機充填材を含んでいてもよい。無機充填材としては、タルク、焼成クレー、未焼成クレー、マイカ、ガラス等のケイ酸塩、酸化チタン、アルミナ、シリカ、溶融シリカ等の酸化物、炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイト等の炭酸塩、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等の水酸化物、硫酸バリウム、硫酸カルシウム、亜硫酸カルシウム等の硫酸塩または亜硫酸塩、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウム等のホウ酸塩、窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素等の窒化物、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸塩等を挙げることができる。これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらの中でも特に、シリカが好ましく、溶融シリカが低熱膨張性に優れる点で好ましい。また、破砕状、球状のシリカが存在するが、樹脂組成物の溶融粘度を下げる点において、球状シリカが好ましい。
 球状シリカは、さらに予め表面処理する処理剤で処理されたものであってよい。処理剤としては、官能基含有シラン類、環状オリゴシロキサン類、オルガノハロシラン類、およびアルキルシラザン類からなる群から選ばれる少なくとも1種類以上の化合物を好適に使用することができる。これらのなかでも、オルガノハロシラン類およびアルキルシラザン類を用いて球状シリカの表面処理することは、シリカ表面を疎水化するのに好適であり、硬化性樹脂組成物中における球状シリカの分散性に優れる点において好ましい。
 上記した処理剤として用いる官能基含有シラン類は、特に限定されるものではなく、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、および2-(3、4-エポキシシクロヘキシル)エチルジメトキシシラン等のエポキシシラン化合物、3-メタクロキシプロピルトリメトキシシラン、3-メタクロキシプロピルメチルジメトキシシラン、3-メタクロキシプロピルトリエトキシシラン、および3-メタクロキシプロピルメチルジエトキシシラン等の(メタ)アクリルシラン、3-メルカトプロピルトリメトキシシラン、3-メルカトプロピルトリエトキシシラン、および3-メルカプトプロピルメチルジメトキシシラン等のメルカプトシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、およびビニルトリクロロシラン等のビニルシラン、3-イソシアネートプロピルトリエトキシシラン等のイソシアネートシラン、3-ウレイドプロピルトリメトキシシラン、および3-ウレイドプロピルトリエトキシシラン等のウレイドシラン、(5-ノルボルネン-2-イル)トリメトキシシラン、(5-ノルボルネン-2-イル)トリエトキシシラン、および(5-ノルボルネン-2-イル)エチルトリメトキシシラン等の(5-ノルボルネン-2-イル)アルキルシラン、フェニルトリメトキシシラン等のフェニルシランなどを挙げることができる。
 本発明による硬化性樹脂組成物は、シリコーンレジンパウダーをさらに含んでいてもよい。シリコーンレジンパウダーは、シロキサン結合が(RSiO3/2で表わさせる三次元網目状に架橋した構造を持つ硬化物粉末であり、その平均粒子径は、0.1~10μmのパウダーが好適である。具体的には、KMP-590(信越シリコーン製)、KMP-701(信越シリコーン製)、X-52-854(信越シリコーン製)、X-52-1621(信越シリコーン製)、XC99-B5664(モメンティブ・パフォーアンス・マテリアルズ製)、XC99-A8808(モメンティブ・パフォーアンス・マテリアルズ製)、トスパール120(モメンティブ・パフォーマンス・マテリアルズ製)などが挙げられ、1種もしくは2種以上を適宜混合して使用することも可能である。
<硬化性樹脂組成物の製造方法>
 本発明による硬化性樹脂組成物は、上記したシアン酸エステル化合物(A)、金属錯体触媒(B)、および添加剤(C)、さらに必要に応じて、上記一般式(VI)、(VII)および(VIII)で表わされるシアン酸エステル化合物(D)、エポキシ樹脂(E)、マレイミド化合物(F)、ベンゾオキサジン化合物および/または重合可能な不飽和基を有する化合物や各種添加剤を、溶媒とともに、公知のミキサー、例えば高速ミキサー、ナウターミキサー、リボン型ブレンダー、ニーダー、インテンシブミキサー、万能ミキサー、ディゾルバー、スタティックミキサーなどを用いて混合して得ることができる。混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、特に限定されるものではない。
<硬化物>
 本発明による硬化性樹脂組成物は、熱や光などによって硬化させることにより硬化物とすることができる。硬化物は、硬化性樹脂組成物を溶融または溶媒に溶解させた後、型内に流し込み、通常の条件で硬化させることにより得ることができる。熱硬化の場合、硬化温度は、低すぎると硬化が進まず、高すぎると硬化物の劣化が起こることから、120℃から300℃の範囲内が好ましい。
<硬化性樹脂組成物の用途>
 上記した硬化性樹脂組成物を、基材に含浸または塗布することにより、プリプレグを製造することができる。
 プリプレグの基材としては、特に限定されないが、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等が挙げられる。これにより、プリプレグの強度が向上し、吸水率を下げることができ、また熱膨張係数を小さくすることができる。
 上記したガラス繊維基材を構成するガラスとしては、特に限定されないが、例えば、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラス、Hガラス等が挙げられる。
 プリプレグを製造する方法は、特に限定されないが、例えば、前述したエポキシ樹脂組成物を用いて樹脂ワニスを調製し、基材を樹脂ワニスに浸漬する方法、各種コーターにより塗布する方法、スプレーにより吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。例えば、樹脂組成物ワニスを無機および/または有機繊維基材に含浸させて乾燥し、Bステージ化してプリプレグとする方法などが適用できる。
 また、本発明による硬化性樹脂組成物は、金属張積層板および多層板の製造に使用することができる。これらの積層板等の製造方法は、特に限定されるものでなく、上記したプリプレグと金属箔とを重ねたものを加熱加圧成形することで積層板を得ることができる。加熱する温度は、特に限定されるものではないが、65~300℃が好ましく、特に120~270℃が好ましい。また、加圧する圧力は、特に限定されるものではないが、2~5MPaであることが好ましく、2.5~4MPaであることがより好ましい。
 また、本発明による硬化性樹脂組成物を用いて、封止材料を製造することができる。封止材料の製造方法は特に限定されるものでなく、上記した各成分を、公知のミキサーを用いて混合して得ることができる。混合の際の、シアン酸エステル化合物、各種添加剤、溶媒の添加方法は、特に限定されるものではない。
 また、本発明による硬化性樹脂組成物を用いて繊維強化複合材料を製造することができる。強化繊維としては、炭素繊維、ガラス繊維、アラミド繊維、ボロン繊維、PBO繊維、高強力ポリエチレン繊維、アルミナ繊維、および炭化ケイ素繊維などの繊維が挙げられる。強化繊維の形態や配列については、特に限定されず、織物、不織布、マット、ニット、組み紐、一方向ストランド、ロービング、チョップド等から適宜選択できる。また、強化繊維の形態としてプリフォーム(強化繊維からなる織物基布を積層したもの、またはこれをステッチ糸により縫合一体化したもの、あるいは立体織物・編組物などの繊維構造物)を適用することもできる。これら繊維強化複合材料の製造方法として、具体的には、リキッド・コンポジット・モールディング法、レジン・フィルム・インフュージョン法、フィラメント・ワインディング法、ハンド・レイアップ法、プルトルージョン法等が挙げられる。これらの中でも、リキッド・コンポジット・モールディング法の一つであるレジン・トランスファー・モールディング法は、金属板、フォームコア、ハニカムコア等、プリフォーム以外の素材を成形型内に予めセットしておくことができることから、種々の用途に対応可能であるため、比較的、形状が複雑な複合材料を短時間で大量生産する場合に好適である。
 本発明による硬化性樹脂組成物は、優れた低熱膨張性、高い耐熱性、および低吸水性を有するため、高機能性高分子材料として極めて有用であり、熱的、電気的および機械物性に優れた材料として電気絶縁材料、封止材料、接着剤、積層材料、レジスト、ビルドアップ積層板材料のほか、土木・建築、電気・電子、自動車、鉄道、船舶、航空機、スポーツ用品、美術・工芸などの分野における固定材、構造部材、補強剤、型どり材などに好ましく使用される。これらの中でも、注型性、低熱膨張性、耐燃性、高度の機械強度およびが要求される電気絶縁材料や半導体封止材料、電子部品の接着剤、航空機構造部材、衛星構造部材および鉄道車両構造部材に好適である。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。
<シアン酸エステル化合物の合成>
合成例1:ビス(4-シアナトフェニル)フェニルメタン(Bis-BA CNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタン(和光純薬工業株式会社製)27.6g(100mmol)およびトリエチルアミン28.3g(280mmol)をテトラヒドロフラン100mLに溶解させた(溶液1)。塩化シアン18.4g(300mmol)の塩化メチレン溶液46.2gとテトラヒドロフラン100mLを混合させた液に-10℃で溶液1を1.5時間かけて滴下した。反応の完結が確認されたところで反応液を濃縮し、得られた粗製物を塩化メチレン300mLに溶解した。これを1M塩酸、蒸留水で洗浄し、無水硫酸マグネシウムで乾燥した。塩化メチレンを留去することで、目的とするビス(4-シアナトフェニル)フェニルメタンを30.0g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図1に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)5.59(s,1H)、7.04(d,2H)、7.06-7.36(complex,11H)
合成例2:α,α-ビス(4-シアナトフェニル)エチルベンゼン(Bis-AP CNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタンの代わりにα,α-ビス(4-ヒドロキシフェニル)エチルベンゼン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、α,α-ビス(4-シアナトフェニル)エチルベンゼンを23.1g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図2に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)2.18(s,3H)、7.00(d,2H)、7.01-7.34(complex,11H)
合成例3:ビス(4-シアナトフェニル)エーテル(Bis-Ether CNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタンの代わりにビス(4-ヒドロキシフェニル)エーテル(東京化成工業株式会社製)を用いた以外は合成例1と同様に実施し、ビス(4-シアナトフェニル)エーテルを22.0g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図3に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)7.07(d,4H)、7.31(d,4H)
合成例4:1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼン(Bis-M CNと略記)の合成
 特開平4-221355号公報の実施例1に記載の方法に基づき、1,3-ビス[2-(4-シアナトフェニル)-2-プロピル]ベンゼンを得た。
合成例5:1,1-ビス(4-シアナトフェニル)エタン(Bis-E CNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタンの代わりに1,1-ビス(4-ヒドロキシフェニル)エタン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、1,1-ビス(4-シアナトフェニル)エタンを23.1g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図4に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)1.62(d,3H)、4.22(q,1H)、7.42(complex,8H)
合成例6:1,1-ビス(4-シアナトフェニル)イソブタン(Bis-IB CNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタンの代わりに1,1-ビス(4-ヒドロキシフェニル)イソブタン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、1,1-ビス(4-シアナトフェニル)イソブタンを28.3g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図5に示される通りであった。
1H-NMR:(270MHz、クロロホルム-d、内部標準TMS)
δ(ppm)0.88(d,6H)、2.41(m,1H)、3.51(d,1H)、7.20-7.35(complex,8H)
合成例7:トリス(4-シアナトフェニル)-1,1,1-メタン(TRPCNと略記)の合成
 特開2006-290933号公報の合成例に記載の方法に基づき、トリス(4-ヒドロキシフェニル)-1,1,1-メタンからトリス(4-シアナトフェニル)-1,1,1-メタンを得た。
合成例8:1,1,1-トリス(4-シアナトフェニル)エタン(TRPECNと略記)の合成
 ビス(4-ヒドロキシフェニル)フェニルメタンの代わりに1,1,1-トリス(4-ヒドロキシフェニル)エタン(和光純薬工業株式会社製)を用いた以外は合成例1と同様に実施し、1,1,1-トリス(4-シアナトフェニル)エタンを33.0g得た。上記のようにして得られた化合物の構造をNMRスペクトルにより同定した。NMRスペクトルは、図6に示される通りであった。
1H-NMR:(300MHz、クロロホルム-d、内部標準TMS)
δ(ppm)2.19(s,3H)、7.13(d,6H)、7.26(d,6H)
合成例9:ナフトールアラルキル型シアン酸エステル(SNCNと略記)の合成
 特開2006-193607号公報の合成例1に記載の方法に基づき、α-ナフトールアラルキル樹脂からナフトールアラルキル型シアン酸エステルを得た。
<硬化性樹脂組成物の調製>
例1
 合成例1で得られたBis-BA CN100質量部とオクチル酸亜鉛(日本化学産業株式会社製、商標ニッカオクチック酸亜鉛、金属含有量18%)0.02質量部と、4-ノニルフェノール(東京化成工業株式会社製)1質量部とを加熱して、真空ポンプで脱気して組成物を得た。
<硬化物の作製>
 上記のようにして得られた組成物を、再度加熱し、アルミニウム板(120mm×120mm×5mm)、とPTFE板で作製した型に注型し、オーブンで250℃、4時間加熱して硬化させ、1辺80mm、厚さ2mmの硬化物を得た。
例2
 例1において、4-ノニルフェノール1質量部用いる代わりに、1-ナフトール1質量部用いた以外は例1と同様にして硬化物を得た。
例3
 例1において、4-ノニルフェノール1質量部用いる代わりに、1,6-ジヒドロキシナフタレン(和光純薬工業株式会社製)1質量部用いた以外は例1と同様にして硬化物を得た。
例4
 例1において、4-ノニルフェノール1質量部用いる代わりに、2,7-ジヒドロキシナフタレン(和光純薬工業株式会社製)1質量部用いた以外は例1と同様にして硬化物を得た。
例5
 例1において、4-ノニルフェノール1質量部用いる代わりに、2,7-ジヒドロキシナフタレン(和光純薬工業株式会社製)2質量部用いた以外は例1と同様にして硬化物を得た。
例6
 例1において、4-ノニルフェノール1質量部用いる代わりに、トリブチルアミン(和光純薬工業株式会社製、)0.5質量部用いた以外は例1と同様にして硬化物を得た。
例7
 例1において、4-ノニルフェノール1質量部用いる代わりに、N,N-ジメチルアミノエタノール(三菱瓦斯化学株式会社製、DMAEと略記)0.5質量部用いた以外は例1と同様にして硬化物を得た。
例8
 例1において、4-ノニルフェノール1質量部用いる代わりに、4-ジメチルアミノピリジン(東京化成工業株式会社製、DMAPと略記)0.2質量部用いた以外は例1と同様にして硬化物を得た。
例9
 例1において、4-ノニルフェノール1質量部用いる代わりに、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(東京化成工業株式会社製、DBUと略記)0.1質量部用いた以外は例1と同様にして硬化物を得た。
例10
 例1において、4-ノニルフェノール1質量部用いる代わりに、ノニルフェノール1.5質量部と、2,7-ジヒドロキシナフタレン0.5質量部とを用いた以外は例1と同様にして硬化物を得た。
例11
 例1において、4-ノニルフェノール1質量部用いない以外は例1と同様にして硬化物を得た。
例12
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを85質量部と、2,2-ビス(4-シアナトフェニル)プロパン(三菱瓦斯化学株式会社製、Bis-A CNと略記)を15質量部とを用いた以外は例4と同様にして硬化物を得た。
例13
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを70質量部と、合成例3で得られたBis-Ether CNを30質量部を用いた以外は例4と同様にして硬化物を得た。
例14
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを80質量部と、合成例4で得られたBis-M CNを20質量部を用いた以外は例4と同様にして硬化物を得た。
例15
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを50質量部と、合成例6で得られたBis-IB CNを50質量部を用いた以外は例4と同様にして硬化物を得た。
例16
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを65質量部と、合成例6で得られたBis-IB CNを25質量部と、フェノールノボラック型シアン酸エステル樹脂(ロンザ社製 商標PRIMASET PT-15、PT-15と略記)を10質量部用いた以外は例4と同様にして硬化物を得た。
例17
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを80質量部と、ビスフェノールA型エポキシ樹脂(三菱化学株式会社製 商標jER828、DGEBAと略記)を20質量部を用い、オクチル酸亜鉛の添加量を0.02質量部から0.016質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例18
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを70質量部と、合成例7で得られたTRPCNを10質量部と、クレゾールノボラック型エポキシ樹脂(DIC株式会社製 商標Epiclon N-680、ECNと略記)を8質量部と、ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社 商標NC-3000、NC-3000と略記)を12質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.017質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例19
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CNを60質量部と、Bis-A CNを10質量部と、4,4’-ビスマレイミドジフェニルメタン(東京化成工業株式会社製、BMIと略記)を30質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.014質量部に変更した以外は例4と同様にして硬化物を得た。
例20
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CN30質量部と、PT-15を30質量部と、NC-3000を10質量部と、マレイミド化合物(ケイ・アイ化成株式会社製 商標BMI-70)を30質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.012質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例21
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-BA CN60質量部と、Bis-E CN10質量部と、合成例9で得られたSNCNを30質量部用いた以外は例4と同様にして硬化物を得た。
例22
 例4において、Bis-BA CNを100質量部用いる代わりに、合成例2で得られたBis-AP CNを100質量部用いた以外は例4と同様にして硬化物を得た。
例23
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを100質量部用いた以外は例4と同様にして硬化物を得た。
例24
 例4において、Bis-BA CNを100質量部用いる代わりに、合成例7で得られたTRPCNを100質量部用いた以外は例4と同様にして硬化物を得た。
例25
 例4において、Bis-BA CNを100質量部用いる代わりに、合成例8で得られたTRPECNを100質量部用いた以外は例4と同様にして硬化物を得た。
例26
 例4において、Bis-BA CNを100質量部用いる代わりに、PT-15を100質量部用いた以外は例4と同様にして硬化物を得た。
例27
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを65質量部と、合成例5で得られたBis-E CNを35質量部用いた以外は例4と同様にして硬化物を得た。
例28
 例4において、Bis-BA CNを100質量部用いる代わりに、合成例4で得られたBis-M CNを40質量部と、合成例5で得られたBis-E CNを30質量部と合成例9で得られたSNCNを30質量部用いた以外は例4と同様にして硬化物を得た。
例29
 例4において、Bis-BA CNを100質量部用いる代わりに、合成例3で得られたBis-Ether CNを50質量部と、ECNを50質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.01質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例30
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを70質量部と、BMIを30質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.014質量部に変更した以外は例4と同様にして硬化物を得た。
例31
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを70質量部と、ビスフェノールF型エポキシ樹脂(三菱化学株式会社製 商標jER806、DGEBFと略記)を30質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.014質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例32
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを80質量部と、DGEBAを20質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.016質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例33
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CNを30質量部と、PT-15を30質量部と、NC-3000を10質量部と、BMI-70を30質量部用い、オクチル酸亜鉛の添加量を0.02質量部から0.016質量部に変更し、かつ、オーブンでの硬化温度を200℃とした以外は例4と同様にして硬化物を得た。
例34
 例4において、Bis-BA CNを100質量部用いる代わりに、Bis-A CN60質量部と、合成例5で得られたBis-E CNを10質量部と、合成例9で得られたSNCNを30質量部用いた以外は例4と同様にして硬化物を得た。
<硬化物の評価>
 上記のようにして得られた各硬化物について、成型性、ガラス転移温度、線膨張係数および吸水率の測定を下記のようにして行った。
(1)成型性評価
 成型性は、得られた硬化物(40mm×40mm×2mm)の外観を観察し、クラック発生の有無を目視にて確認した。判定基準は以下の通りとした。
 OK:クラック発生が認められないもの
 NG:クラック発生が認められたもの
(2)ガラス転移温度の測定
 ガラス転移温度は、JIS-K7244-7-2007に準拠して測定を行い、動的粘弾性測定装置(AR2000、ティー・エイ・インスツルメント社製)を用い、開始温度100℃、終了温度400℃、昇温速度3℃/分、測定周波数1Hzの測定条件において動的粘弾性測定を実施し、その際得られた損失正接(tanδ)の最大値をガラス転移温度とした。
(3)線膨張係数の測定
 線膨張係数は、JIS-K-7197-1991に準拠して測定を行い、熱機械分析装置(TMA/SS7100、エスアイアイ・ナノテクノロジー株式会社製)に試験片(5mm×5mm×2mm)をセットし、開始温度100℃、終了温度300℃、昇温速度5℃/分、加重0.05Nの測定条件において、膨張・圧縮モードでの熱機械分析を実施し、所定の温度における1℃当たりの平均熱膨張量を測定した。なお、例17、18、20、29、31、32、および33以外については、200℃~300℃における平均線膨張係数を測定し、例17、18、20、29、31、32、および33については、150℃~250℃における平均線膨張係数の測定を行った。
(4)吸水率の測定
 吸水率は、試験片(40mm×40mm×2mm)を沸騰水中に300時間浸漬したときの重量増加率を算出し、得られた値を吸水率とした。
 測定結果は、下記の表1~3に示される通りであった。なお、表1中の数値の単位は質量部表し、「-」の記載部分は該当する原料の配合がないことを意味する。また、表1中のガラス転移温度(Tg)において、「>400」とは、測定温度範囲(25℃~400℃)内においてtanδの最大ピーク値が明瞭でなく、その範囲内でTgが確認できなかったことを意味する。
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026

Claims (18)

  1.  下記式(I):
    Figure JPOXMLDOC01-appb-C000001
    で示されるシアン酸エステル化合物(A)と、
     金属錯体触媒(B)と、
     添加剤(C)と、
    を少なくとも含んでなり、
     前記添加剤(C)が、下記一般式(II)で示される化合物、下記一般式(III)で示される化合物、および三級アミンからなる群より選択されるいずれか1種以上を含んでなる、硬化性樹脂組成物:
    Figure JPOXMLDOC01-appb-C000002
    (式中、R~Rは、各々独立して水素原子、炭素数1~15のアルキル基、または炭素数6~12のアリール基を表すが、少なくとも一つは炭素数1以上のアルキル基または炭素数6以上のアリール基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R~R10は、各々独立して水素原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数6~15のアリール基、またはヒドロキシ基を表す。)。
  2.  下記一般式(IV):
    Figure JPOXMLDOC01-appb-C000004
    (式中、R11は、下記一般式(i)~(vi):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R12、R13、R14は、各々独立して水素原子、炭素数1~8のアルキル基またはトリフルオロメチル基であり、lは4~7の整数である。]からなる群より選択されるいずれかである。)、
     下記一般式(V):
    Figure JPOXMLDOC01-appb-C000006
    (式中、R15は水素原子またはメチル基を示し、mは1~50の整数を示す。)、または
     下記一般式(VI):
    Figure JPOXMLDOC01-appb-C000007
    (式中、R16~R18は、各々独立して水素原子、メチル基、エチル基、プロピル基、ブチル基またはフェニル基であり、nは1~50の整数を示す。)
    で示される、シアン酸エステル化合物(D)、
     エポキシ樹脂(E)、および
     マレイミド化合物(F)、
    からなる群より選択される1種以上を、さらに含んでなる、請求項1に記載の硬化性樹脂組成物。
  3.  前記金属錯体触媒(B)が、マンガン、鉄、コバルト、ニッケル、銅、または亜鉛の、オクチル酸塩、ナフテン酸塩、およびアセチルアセトン錯体からなる群より選択される1種類以上である、請求項1または2に記載の硬化性樹脂組成物。
  4.  前記添加剤(C)が、炭素数2~10のアルキル基を有するモノアルキルフェノール、1-ナフトール、2-ナフトール、ジヒドロキシナフタレン、トリアルキルアミン、N,N-ジメチルアミノエタノール、4-ジメチルアミノピリジン、および1,8-ジアザビシクロ[5.4.0]-7-ウンデセンからなる群より選択される1種類以上である請求項1~3のいずれか一項に記載の硬化性樹脂組成物。
  5.  前記エポキシ樹脂(E)が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、および脂環式エポキシ樹脂からなる群より選択される1種以上である、請求項2~4のいずれか一項に記載の硬化性樹脂組成物。
  6.  前記マレイミド化合物(F)が、下記一般式(VII): 
    Figure JPOXMLDOC01-appb-C000008
    (式中、
     R19およびR20は、各々独立して水素原子、ハロゲン原子、炭素数1~3のアルキル基を示し、
     p+q=4であり、
     R21は、単結合、エーテル結合、スルフィド結合、スルホン結合、炭素数1~5のアルキレン基、アルキリデン基、炭素数6~14のアリーレン基、またはアリーレンオキシ基を示す。)
    で示される化合物である、請求項2~5のいずれか一項に記載の硬化性樹脂組成物。
  7.  前記マレイミド化合物(F)が、4,4’-ジフェニルメタンビスマレイミド、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、および3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミドからなる群より選択される少なくとも1種である、請求項6に記載の硬化性樹脂組成物。
  8.  前記金属錯体触媒(B)が、前記シアン酸エステル化合物(A)100質量部に対して、0.01~5質量部含まれてなる、請求項1~7のいずれか一項に記載の硬化性樹脂組成物。
  9.  前記添加剤(C)が、前記シアン酸エステル化合物(A)100質量部に対して、0.01~10質量部含まれてなる、請求項1~8のいずれか一項に記載の硬化性樹脂組成物。
  10.  前記シアン酸エステル化合物(D)が、前記シアン酸エステル化合物(A)100質量部に対して、1~250質量部含まれてなる、請求項2~9のいずれか一項に記載の硬化性樹脂組成物。
  11.  前記エポキシ樹脂(E)が、前記シアン酸エステル化合物(A)100質量部に対して、1~250質量部含まれてなる、請求項2~10のいずれか一項に記載の硬化性樹脂組成物。
  12.  前記マレイミド化合物(F)が、前記シアン酸エステル化合物(A)100質量部に対して、1~100質量部含まれてなる、請求項2~11のいずれか一項に記載の硬化性樹脂組成物。
  13.  請求項1~12のいずれか一項に記載の硬化性樹脂組成物を硬化させてなる硬化物。
  14.  請求項1~12のいずれか一項に記載の硬化性樹脂組成物を含んでなる、封止用材料。
  15.  請求項1~12のいずれかに一項に記載の硬化性樹脂組成物を含んでなる、接着剤。
  16.  請求項1~12のいずれかに一項に記載の硬化性樹脂組成物を含んでなる、注型材料。
  17.  請求項1~12のいずれかに一項に記載の硬化性樹脂組成物を、基材に含浸または塗布してなるプリプレグ。
  18.  請求項17に記載のプリプレグを、少なくとも1枚以上重ね、その片面もしくは両面に金属箔を配して積層成形して得られる、積層板。
PCT/JP2012/052127 2011-02-04 2012-01-31 硬化性樹脂組成物およびその硬化物 WO2012105547A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137020316A KR20140005949A (ko) 2011-02-04 2012-01-31 경화성 수지 조성물 및 그 경화물
US13/978,310 US9657173B2 (en) 2011-02-04 2012-01-31 Curable resin composition and cured product thereof
CN201280007631.5A CN103347930B (zh) 2011-02-04 2012-01-31 固化性树脂组合物及其固化物
JP2012555890A JP5796788B2 (ja) 2011-02-04 2012-01-31 硬化性樹脂組成物およびその硬化物
EP12742765.6A EP2671904B1 (en) 2011-02-04 2012-01-31 Curable resin composition and cured product thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-022763 2011-02-04
JP2011022763 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105547A1 true WO2012105547A1 (ja) 2012-08-09

Family

ID=46602759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052127 WO2012105547A1 (ja) 2011-02-04 2012-01-31 硬化性樹脂組成物およびその硬化物

Country Status (7)

Country Link
US (1) US9657173B2 (ja)
EP (1) EP2671904B1 (ja)
JP (1) JP5796788B2 (ja)
KR (1) KR20140005949A (ja)
CN (1) CN103347930B (ja)
TW (1) TW201237067A (ja)
WO (1) WO2012105547A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125657A1 (ja) * 2015-02-03 2016-08-11 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
JP2017195334A (ja) * 2016-04-22 2017-10-26 三菱瓦斯化学株式会社 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、及びプリント配線板
WO2019031178A1 (ja) * 2017-08-08 2019-02-14 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
WO2019039135A1 (ja) 2017-08-21 2019-02-28 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019189765A (ja) * 2018-04-26 2019-10-31 信越化学工業株式会社 熱硬化性樹脂組成物
JP2020033493A (ja) * 2018-08-31 2020-03-05 三菱瓦斯化学株式会社 シアン酸エステル化合物の混合物及び硬化性組成物
KR20220116436A (ko) 2019-12-17 2022-08-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 시트, 및 프린트 배선판

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103748140B (zh) * 2011-07-11 2016-03-09 三菱瓦斯化学株式会社 固化性树脂组合物以及使用其的固化物的制造方法
SG11201502157VA (en) * 2012-10-26 2015-05-28 Mitsubishi Gas Chemical Co Method for producing cyanogen halide, cyanateester compound and method for producing the same,and resin composition
JP6397205B2 (ja) * 2014-04-01 2018-09-26 Jxtgエネルギー株式会社 プリプレグ、炭素繊維強化複合材料、ロボットハンド部材及びその原料樹脂組成物
CN104927742B (zh) * 2015-06-23 2017-05-17 上海东和胶粘剂有限公司 聚氨酯木结构胶及其制备方法
US20190112410A1 (en) * 2016-03-31 2019-04-18 Mitsubishi Gas Chemical Company, Inc. Cyanic acid ester compound, method for producing same, resin composition, cured product, prepreg, material for encapsulation, fiber-reinforced composite material, adhesive, metal foil-clad laminate, resin sheet, and printed circuit board
JP6465463B1 (ja) * 2017-08-21 2019-02-06 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
CN115566335A (zh) 2018-02-16 2023-01-03 H.B.富乐公司 电池单元灌封化合物及其制造方法
CN110330445A (zh) * 2019-07-18 2019-10-15 扬州天启新材料股份有限公司 一种三酚a型氰酸酯及其制备方法
CN110919810B (zh) * 2019-12-05 2022-08-12 大亚木业(江西)有限公司 一种carb级低吸胀纤维板制造工艺及其应用于高模压地板基材
CN115073633A (zh) * 2021-08-31 2022-09-20 乐凯光电材料有限公司 一种聚乙烯醇缩醛树脂及其制备方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JPS5430440A (en) 1977-08-10 1979-03-06 Japan Storage Battery Co Ltd Inverter
JPS6322821A (ja) * 1986-06-30 1988-01-30 チバ―ガイギー アクチエンゲゼルシャフト トリス(シアナトフェニル)アルカンとビス(シアナトフェニル)アルカンとのブレンド
JPH05301852A (ja) * 1991-12-27 1993-11-16 Kanegafuchi Chem Ind Co Ltd シアン酸エステルおよびシアン酸エステルプレポリマーならびにそれから製造した電気用積層板
JPH0673177A (ja) * 1992-08-25 1994-03-15 Kanegafuchi Chem Ind Co Ltd 芳香族二官能シアン酸エステル硬化性樹脂組成物
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JPH11124433A (ja) 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc フェノールノボラック型シアン酸エステルプレポリマー
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JP2006143874A (ja) 2004-11-19 2006-06-08 Mitsubishi Gas Chem Co Inc 樹脂組成物及び硬化物
JP2006169317A (ja) 2004-12-14 2006-06-29 Mitsubishi Gas Chem Co Inc 樹脂組成物及びその硬化物
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2009096874A (ja) 2007-10-16 2009-05-07 Japan Aerospace Exploration Agency 熱硬化性樹脂組成物及びその硬化物並びに繊維強化複合材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068309A (en) 1990-03-29 1991-11-26 Hi-Tek Polymers, Inc. Low temperature curable dicyanate ester of dihydric phenol composition
TW541323B (en) * 1998-05-13 2003-07-11 Sumitomo Chemical Co Cyanate ester composition and cured product thereof
JP4843944B2 (ja) 2005-01-13 2011-12-21 三菱瓦斯化学株式会社 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP4752308B2 (ja) 2005-04-06 2011-08-17 三菱瓦斯化学株式会社 樹脂組成物及びそれを用いた硬化物
JP5104312B2 (ja) 2005-10-25 2012-12-19 三菱瓦斯化学株式会社 シアン酸エステル重合体
JP2010191156A (ja) * 2009-02-18 2010-09-02 Toyobo Co Ltd 光導波路形成用ドライフィルム、およびそれを用いてなる光導波路
CN103748140B (zh) * 2011-07-11 2016-03-09 三菱瓦斯化学株式会社 固化性树脂组合物以及使用其的固化物的制造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3553244A (en) 1963-02-16 1971-01-05 Bayer Ag Esters of cyanic acid
JPS5430440A (en) 1977-08-10 1979-03-06 Japan Storage Battery Co Ltd Inverter
JPS6322821A (ja) * 1986-06-30 1988-01-30 チバ―ガイギー アクチエンゲゼルシャフト トリス(シアナトフェニル)アルカンとビス(シアナトフェニル)アルカンとのブレンド
JPH05301852A (ja) * 1991-12-27 1993-11-16 Kanegafuchi Chem Ind Co Ltd シアン酸エステルおよびシアン酸エステルプレポリマーならびにそれから製造した電気用積層板
JPH0673177A (ja) * 1992-08-25 1994-03-15 Kanegafuchi Chem Ind Co Ltd 芳香族二官能シアン酸エステル硬化性樹脂組成物
JPH0753497A (ja) 1993-08-20 1995-02-28 Sumitomo Chem Co Ltd シアネート化合物の製造方法
JP2991054B2 (ja) 1994-09-20 1999-12-20 住友化学工業株式会社 シアネート化合物の製造方法
JP2000501138A (ja) 1995-11-27 2000-02-02 アライドシグナル・インコーポレーテッド 独特の組成を有するシアネートエステル樹脂の改良された製造方法
JP2001504835A (ja) 1996-11-29 2001-04-10 ロンザ アーゲー アリールシアネートの製造方法
JPH11124433A (ja) 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc フェノールノボラック型シアン酸エステルプレポリマー
JP2006143874A (ja) 2004-11-19 2006-06-08 Mitsubishi Gas Chem Co Inc 樹脂組成物及び硬化物
JP2006169317A (ja) 2004-12-14 2006-06-29 Mitsubishi Gas Chem Co Inc 樹脂組成物及びその硬化物
JP2007277102A (ja) 2006-04-03 2007-10-25 Mitsubishi Gas Chem Co Inc 高純度シアン酸エステルの製造方法
JP2009096874A (ja) 2007-10-16 2009-05-07 Japan Aerospace Exploration Agency 熱硬化性樹脂組成物及びその硬化物並びに繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2671904A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016125657A1 (ja) * 2015-02-03 2016-08-11 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
JP6010874B1 (ja) * 2015-02-03 2016-10-19 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂複合シート、及びプリント配線板
US9974169B2 (en) 2015-02-03 2018-05-15 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminate, resin composite sheet, and printed wiring board
JP2017195334A (ja) * 2016-04-22 2017-10-26 三菱瓦斯化学株式会社 プリント配線板用樹脂組成物、プリプレグ、レジンシート、積層板、金属箔張積層板、及びプリント配線板
WO2019031178A1 (ja) * 2017-08-08 2019-02-14 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7052797B2 (ja) 2017-08-08 2022-04-12 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JPWO2019031178A1 (ja) * 2017-08-08 2020-07-02 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
KR20200003207A (ko) 2017-08-21 2020-01-08 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그, 금속박 피복 적층판, 수지 시트 및 프린트 배선판
US11118012B2 (en) 2017-08-21 2021-09-14 Mitsubishi Gas Chemical Company, Inc. Resin composition, prepreg, metal-foil-clad laminate, resin sheet, and printed wiring board
WO2019039135A1 (ja) 2017-08-21 2019-02-28 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2019189761A (ja) * 2018-04-25 2019-10-31 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7026887B2 (ja) 2018-04-25 2022-03-01 三菱瓦斯化学株式会社 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019189765A (ja) * 2018-04-26 2019-10-31 信越化学工業株式会社 熱硬化性樹脂組成物
JP2020033493A (ja) * 2018-08-31 2020-03-05 三菱瓦斯化学株式会社 シアン酸エステル化合物の混合物及び硬化性組成物
JP7148859B2 (ja) 2018-08-31 2022-10-06 三菱瓦斯化学株式会社 シアン酸エステル化合物の混合物及び硬化性組成物
KR20220116436A (ko) 2019-12-17 2022-08-23 미츠비시 가스 가가쿠 가부시키가이샤 수지 시트, 및 프린트 배선판

Also Published As

Publication number Publication date
EP2671904A1 (en) 2013-12-11
CN103347930B (zh) 2015-06-24
TW201237067A (en) 2012-09-16
EP2671904A4 (en) 2015-10-21
US20130288063A1 (en) 2013-10-31
JP5796788B2 (ja) 2015-10-21
CN103347930A (zh) 2013-10-09
KR20140005949A (ko) 2014-01-15
EP2671904B1 (en) 2016-07-27
US9657173B2 (en) 2017-05-23
JPWO2012105547A1 (ja) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5796788B2 (ja) 硬化性樹脂組成物およびその硬化物
JP5861942B2 (ja) シアン酸エステル化合物、シアン酸エステル化合物を含む硬化性樹脂組成物、およびその硬化物
WO2013008667A1 (ja) 硬化性樹脂組成物およびそれを用いた硬化物の製造方法
TWI530526B (zh) Resin composition, prepreg and laminate
JP5239743B2 (ja) 樹脂組成物並びにこれを用いたプリプレグ及び積層板
JP7116370B2 (ja) 樹脂組成物、プリプレグ、レジンシート、積層板、及びプリント配線板
JP2014019815A (ja) 硬化性樹脂組成物、およびその硬化物
JP6699076B2 (ja) 樹脂組成物、プリプレグ、樹脂シート、金属箔張積層板及びプリント配線板
JP7457288B2 (ja) 樹脂組成物、硬化物、成形体、プリプレグ、レジンシート、金属箔張積層板、プリント配線板、半導体装置、封止用材料、繊維強化複合材料及び接着剤
JPWO2019031178A1 (ja) 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP7305108B2 (ja) シアン酸エステル化合物、樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料、及び接着剤
KR102178991B1 (ko) 프린트 배선판용 수지 조성물, 프리프레그, 수지 시트, 적층판, 금속박 피복 적층판, 프린트 배선판, 및 다층 프린트 배선판
JP6829808B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板
JP2020045429A (ja) 樹脂組成物、硬化物、単層樹脂シート、積層樹脂シート、プリプレグ、金属箔張積層板、プリント配線板、封止用材料、繊維強化複合材料及び接着剤
JP2019094471A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート及びプリント配線板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12742765

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978310

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012742765

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012742765

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137020316

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012555890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE