WO2012098750A1 - 分散剤,分散体,分散体の粘度の調整方法,可動装置,表面処理剤,電解液,セパレータ,およびリチウムイオン二次電池 - Google Patents
分散剤,分散体,分散体の粘度の調整方法,可動装置,表面処理剤,電解液,セパレータ,およびリチウムイオン二次電池 Download PDFInfo
- Publication number
- WO2012098750A1 WO2012098750A1 PCT/JP2011/075743 JP2011075743W WO2012098750A1 WO 2012098750 A1 WO2012098750 A1 WO 2012098750A1 JP 2011075743 W JP2011075743 W JP 2011075743W WO 2012098750 A1 WO2012098750 A1 WO 2012098750A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acrylate
- meth
- monomer
- dispersion
- group
- Prior art date
Links
- 239000006185 dispersion Substances 0.000 title claims abstract description 187
- 239000002270 dispersing agent Substances 0.000 title claims abstract description 141
- -1 mobile device Substances 0.000 title claims description 117
- 239000012756 surface treatment agent Substances 0.000 title claims description 52
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 44
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 44
- 238000000034 method Methods 0.000 title claims description 16
- 239000003792 electrolyte Substances 0.000 title description 12
- 239000000178 monomer Substances 0.000 claims abstract description 165
- 229920000642 polymer Polymers 0.000 claims abstract description 96
- 239000010419 fine particle Substances 0.000 claims abstract description 48
- 229920001577 copolymer Polymers 0.000 claims abstract description 21
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 91
- 239000012530 fluid Substances 0.000 claims description 85
- 125000000217 alkyl group Chemical group 0.000 claims description 80
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Natural products C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 52
- 125000004432 carbon atom Chemical group C* 0.000 claims description 51
- 229920001567 vinyl ester resin Polymers 0.000 claims description 42
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 41
- 229920001400 block copolymer Polymers 0.000 claims description 40
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 claims description 39
- 150000003440 styrenes Chemical class 0.000 claims description 32
- 239000003795 chemical substances by application Substances 0.000 claims description 31
- 239000004698 Polyethylene Substances 0.000 claims description 30
- 229920000573 polyethylene Polymers 0.000 claims description 30
- 239000008151 electrolyte solution Substances 0.000 claims description 25
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 22
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 22
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 19
- 239000005977 Ethylene Substances 0.000 claims description 19
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 19
- 125000003118 aryl group Chemical group 0.000 claims description 19
- 239000011976 maleic acid Substances 0.000 claims description 19
- 239000002612 dispersion medium Substances 0.000 claims description 18
- 125000006353 oxyethylene group Chemical group 0.000 claims description 18
- 230000003247 decreasing effect Effects 0.000 claims description 17
- 239000011737 fluorine Substances 0.000 claims description 17
- 229910052731 fluorine Inorganic materials 0.000 claims description 17
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 14
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims description 14
- 238000004381 surface treatment Methods 0.000 claims description 14
- 239000004711 α-olefin Substances 0.000 claims description 14
- 125000001153 fluoro group Chemical group F* 0.000 claims description 13
- 238000005259 measurement Methods 0.000 claims description 13
- 239000004743 Polypropylene Substances 0.000 claims description 12
- 150000002148 esters Chemical class 0.000 claims description 12
- 229920001155 polypropylene Polymers 0.000 claims description 12
- 239000004677 Nylon Substances 0.000 claims description 11
- 229920001778 nylon Polymers 0.000 claims description 11
- 230000007423 decrease Effects 0.000 claims description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 claims description 7
- 238000005192 partition Methods 0.000 claims description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- 229920002554 vinyl polymer Polymers 0.000 claims description 3
- 239000002253 acid Substances 0.000 claims description 2
- 239000011859 microparticle Substances 0.000 claims 2
- 238000006243 chemical reaction Methods 0.000 description 128
- DKPFZGUDAPQIHT-UHFFFAOYSA-N butyl acetate Chemical compound CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 115
- 230000005587 bubbling Effects 0.000 description 66
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 49
- 239000000243 solution Substances 0.000 description 45
- JTHZUSWLNCPZLX-UHFFFAOYSA-N 6-fluoro-3-methyl-2h-indazole Chemical compound FC1=CC=C2C(C)=NNC2=C1 JTHZUSWLNCPZLX-UHFFFAOYSA-N 0.000 description 42
- 238000012360 testing method Methods 0.000 description 32
- 239000007787 solid Substances 0.000 description 30
- 230000008859 change Effects 0.000 description 26
- 239000003921 oil Substances 0.000 description 18
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 16
- 239000000843 powder Substances 0.000 description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 13
- 239000000428 dust Substances 0.000 description 13
- 229920001519 homopolymer Polymers 0.000 description 13
- 229920001903 high density polyethylene Polymers 0.000 description 12
- 239000004700 high-density polyethylene Substances 0.000 description 12
- 230000004048 modification Effects 0.000 description 10
- 238000012986 modification Methods 0.000 description 10
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 229920005604 random copolymer Polymers 0.000 description 9
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920002545 silicone oil Polymers 0.000 description 8
- 125000006850 spacer group Chemical group 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 7
- 230000002829 reductive effect Effects 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000005038 ethylene vinyl acetate Substances 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 6
- 239000012085 test solution Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 239000000976 ink Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 4
- GCTPMLUUWLLESL-UHFFFAOYSA-N benzyl prop-2-enoate Chemical compound C=CC(=O)OCC1=CC=CC=C1 GCTPMLUUWLLESL-UHFFFAOYSA-N 0.000 description 4
- MGNZXYYWBUKAII-UHFFFAOYSA-N cyclohexa-1,3-diene Chemical compound C1CC=CC=C1 MGNZXYYWBUKAII-UHFFFAOYSA-N 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- PBOSTUDLECTMNL-UHFFFAOYSA-N lauryl acrylate Chemical compound CCCCCCCCCCCCOC(=O)C=C PBOSTUDLECTMNL-UHFFFAOYSA-N 0.000 description 4
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 4
- 239000003973 paint Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- MCKACQKLXKGBAT-UHFFFAOYSA-N butyl prop-2-enoate;octadecyl prop-2-enoate Chemical compound CCCCOC(=O)C=C.CCCCCCCCCCCCCCCCCCOC(=O)C=C MCKACQKLXKGBAT-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- HMZGPNHSPWNGEP-UHFFFAOYSA-N octadecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCOC(=O)C(C)=C HMZGPNHSPWNGEP-UHFFFAOYSA-N 0.000 description 3
- 229920000747 poly(lactic acid) Polymers 0.000 description 3
- 239000004626 polylactic acid Substances 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- OVQQQQUJAGEBHH-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,10,10,10-heptadecafluorodecyl prop-2-enoate Chemical compound FC(F)(F)CCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)OC(=O)C=C OVQQQQUJAGEBHH-UHFFFAOYSA-N 0.000 description 2
- UDWYGWMSVGVBCG-UHFFFAOYSA-N 2-(dimethylamino)prop-2-enoic acid Chemical compound CN(C)C(=C)C(O)=O UDWYGWMSVGVBCG-UHFFFAOYSA-N 0.000 description 2
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 125000005250 alkyl acrylate group Chemical group 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000010835 comparative analysis Methods 0.000 description 2
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- KHAYCTOSKLIHEP-UHFFFAOYSA-N docosyl prop-2-enoate Chemical compound CCCCCCCCCCCCCCCCCCCCCCOC(=O)C=C KHAYCTOSKLIHEP-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000002847 impedance measurement Methods 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229920000428 triblock copolymer Polymers 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical class ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- 239000004808 2-ethylhexylester Substances 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000002344 aminooxy group Chemical group [H]N([H])O[*] 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ZFMQKOWCDKKBIF-UHFFFAOYSA-N bis(3,5-difluorophenyl)phosphane Chemical compound FC1=CC(F)=CC(PC=2C=C(F)C=C(F)C=2)=C1 ZFMQKOWCDKKBIF-UHFFFAOYSA-N 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- QMCVOSQFZZCSLN-QXMHVHEDSA-N dihexyl (z)-but-2-enedioate Chemical compound CCCCCCOC(=O)\C=C/C(=O)OCCCCCC QMCVOSQFZZCSLN-QXMHVHEDSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HOSXICNCYBUYAW-UHFFFAOYSA-N dimethylamino prop-2-enoate Chemical compound CN(C)OC(=O)C=C HOSXICNCYBUYAW-UHFFFAOYSA-N 0.000 description 1
- MIMDHDXOBDPUQW-UHFFFAOYSA-N dioctyl decanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCCC(=O)OCCCCCCCC MIMDHDXOBDPUQW-UHFFFAOYSA-N 0.000 description 1
- XWVQUJDBOICHGH-UHFFFAOYSA-N dioctyl nonanedioate Chemical compound CCCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC XWVQUJDBOICHGH-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229940057995 liquid paraffin Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- UFWIBTONFRDIAS-UHFFFAOYSA-N naphthalene-acid Natural products C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000010702 perfluoropolyether Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920003216 poly(methylphenylsiloxane) Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- STCOOQWBFONSKY-UHFFFAOYSA-N tributyl phosphate Chemical compound CCCCOP(=O)(OCCCC)OCCCC STCOOQWBFONSKY-UHFFFAOYSA-N 0.000 description 1
- XHGIFBQQEGRTPB-UHFFFAOYSA-N tris(prop-2-enyl) phosphate Chemical compound C=CCOP(=O)(OCC=C)OCC=C XHGIFBQQEGRTPB-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M155/00—Lubricating compositions characterised by the additive being a macromolecular compound containing atoms of elements not provided for in groups C10M143/00 - C10M153/00
- C10M155/02—Monomer containing silicon
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/14—Derivatives of phosphoric acid
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K23/00—Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
- C09K23/54—Silicon compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M145/00—Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
- C10M145/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M145/10—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
- C10M145/12—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
- C10M145/14—Acrylate; Methacrylate
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M149/00—Lubricating compositions characterised by the additive being a macromolecular compound containing nitrogen
- C10M149/02—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- C10M149/04—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an amino group
Definitions
- the present invention relates to a dispersant used by adding to a dispersion in which fine particles of a crystalline polymer are dispersed as a dispersoid, a dispersion to which the dispersant is added, a method for adjusting the viscosity of the dispersion, a movable device, and
- the present invention relates to a surface treatment agent used for a separator of a lithium ion secondary battery.
- Dispersions in which crystalline polymer particles are dispersed in a dispersion medium are used in applications such as paints, inks, cosmetics, lubricants, and industrial oils.
- a dispersion medium if the amount of crystalline polymer particles is increased, In some cases, the viscosity of the dispersion suddenly increased, making handling difficult.
- increasing the amount of fine particles such as polyethylene increases the viscosity of the dispersion. Since it is difficult to use the body, there is a problem that it is difficult to increase the energy efficiency because the concentration of the dispersion cannot be increased.
- a dispersant for a dispersion of fine particles made of a crystalline polymer As a dispersant for a dispersion of fine particles made of a crystalline polymer, a dispersant that can be used as a dispersant for fine particles of polylactic acid has been proposed (see Patent Document 1). Further, a dispersant that can be used for the PTFE fine particle dispersion has also been proposed (see Patent Document 2).
- LiBF 4 Lithium ion secondary batteries using an aprotic organic solvent in which a lithium salt such as LiPF 6 is dissolved as an electrolyte (for example, see Patent Document 4) are widely used because high energy density can be obtained at high voltage. ing.
- the dispersant of Patent Document 1 can be used only for dispersion stabilization of a fine particle dispersion of 3 ⁇ m or less of polylactic acid, and is not used for viscosity reduction or viscosity adjustment of a polylactic acid fine particle dispersion or other fine particle dispersions. There wasn't.
- the preparation of the dispersion itself requires a process such as solvent substitution, and is not a technique that can be easily used.
- a device using an electrorheological fluid or a magnetic viscous fluid needs to be provided with a mechanism for performing complex control, and it is necessary to have a configuration capable of preventing electric shock as described in Patent Document 3. there were.
- the separator is made of weakly polar materials such as polyethylene and polypropylene, and the wettability of polar solutions such as ethylene carbonate, propylene carbonate, and dimethyl carbonate is poor. Therefore, it is difficult for the solution to penetrate into the porous separator, the electrical resistance between the positive and negative electrodes does not increase and the performance does not improve, or the electrolyte is sucked so that the electrolyte penetrates the separator. There was a problem that was necessary.
- a crystalline polymer porous material that exhibits a so-called shutdown mechanism in which the porous structure melts and closes by heat in order to prevent sudden rise in battery temperature due to overcharging and discharging of the battery and accompanying ignition.
- a membrane is used as a separator.
- the porous structure of the separator is melted / clogged, it cannot be used as a battery.
- the polymer of the melted separator recrystallizes and the cross-sectional area shrinks, so there is a risk of thermal runaway and ignition due to short circuit between the positive electrode and negative electrode. It has been pointed out. For this reason, complicated processing such as separately providing an electric circuit for preventing overcharge / discharge is performed.
- An object of the present invention is to propose a novel dispersant that can satisfactorily reduce the viscosity of a dispersion, a dispersion to which the dispersant is added, and a method for adjusting the viscosity of the dispersion.
- Another object of the present invention is to propose a movable device using the dispersion.
- Another object of the present invention is to provide a surface treatment agent capable of improving the wettability of a separator of a lithium ion secondary battery, a separator surface-treated with the surface treatment agent, an electrolytic solution to which the surface treatment agent is added, and the separator.
- a lithium ion secondary battery having an electrolytic solution is proposed.
- Another object of the present invention is to add a separator surface treatment agent capable of simplifying the structure of a lithium ion secondary battery and suppressing dangerous temperature rise, a separator surface-treated with the surface treatment agent, and the surface treatment agent. It is to propose a lithium ion secondary battery having the prepared electrolyte solution, the separator or the electrolyte solution.
- the dispersant according to the first aspect of the present invention is a dispersant used by being added to a dispersion in which fine particles made of a crystalline polymer are dispersed as a dispersoid, wherein the first monomer, the second monomer, Wherein the first monomer is a monomer that can be crystallized as a polymer having the same molecular structure as the dispersoid.
- the dispersant thus configured can significantly reduce the viscosity of a dispersion in which fine particles composed of a crystalline polymer having the same molecular structure as the polymer obtained by crystallizing the first monomer are dispersed as a dispersoid. it can.
- the first monomer described above can be any one or more selected from the group consisting of the following (A) to (D) like the dispersant of the second aspect of the present invention.
- (A) Ethylene (B) Any of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin, and substituted styrene having a linear alkyl group having at least 8 carbon atoms in the side chain (C) (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane having a linear alkyl group having at least 8 carbon atoms in the side chain and at least part of which is substituted with fluorine , ⁇ -olefin, or substituted styrene (D) Polypropylene
- the second monomer described above is selected from the group consisting of the following (E) to (N) as in the third aspect of the present invention. Any one or more of them can
- the dispersant according to the fifth aspect of the present invention is used in the dispersant according to any one of the first to fourth aspects for a dispersion in which fine particles made of a polyethylene-based or nylon-based crystalline polymer are used as a dispersoid. It is characterized by being able to.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 8 carbon atoms in the side chain, or ethylene
- the second monomer is a (meth) acrylate having a linear alkyl group having 7 or less carbon atoms, having a branched alkyl group, having an aryl group, or having an oxyethylene structure. It may be any of those having, or vinyl acetate.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 12 carbon atoms in the side chain.
- the dispersant according to the eighth aspect of the present invention is the dispersant according to any one of the first to fourth aspects with respect to a dispersion in which fine particles made of a polyfluoroethylene-based crystalline polymer are used as a dispersoid. It is used.
- the first monomer has a linear alkyl group having at least 8 carbon atoms in the side chain, and at least a part thereof is substituted with fluorine.
- (Meth) acrylate or ethylene may be used, and the second monomer is (meth) acrylate having a linear alkyl group having 7 or less carbon atoms, or having a branched alkyl group. And those having an aryl group and those having an oxyethylene structure.
- the dispersant according to the tenth aspect of the present invention is the dispersant according to any one of the first to ninth aspects, wherein the viscosity of the dispersion is reversibly increased as the temperature of the dispersion to which the dispersant is added is increased. It is characterized by raising.
- the dispersion according to the eleventh aspect of the present invention is a dispersion comprising fine particles made of a crystalline polymer, the dispersant according to any one of the first to fourth aspects, and a dispersion medium.
- the dispersion of the twelfth aspect of the present invention is a dispersion comprising fine particles comprising a polyethylene-based or nylon-based crystalline polymer, the dispersant according to any of the fifth to seventh aspects, and a dispersion medium. is there.
- the dispersion according to the thirteenth aspect of the present invention is a dispersion comprising fine particles made of a polyfluoroethylene-based crystalline polymer, a dispersant according to the eighth aspect or the ninth aspect, and a dispersion medium.
- the dispersion of the eleventh aspect to the thirteenth aspect can have a very low viscosity as compared with the dispersion when no dispersant is added.
- the viscosity is increased by increasing the temperature of the dispersion according to any of the eleventh to thirteenth aspects of the present invention.
- a method for adjusting the viscosity of a dispersion wherein the viscosity is lowered by lowering the temperature.
- the dispersion added with the dispersant of the present invention increases in viscosity when the temperature is increased, and decreases in viscosity when the temperature is decreased.
- the viscosity of the dispersion rapidly changes in a certain temperature range determined in advance by the composition of the dispersant. Therefore, the viscosity of the dispersion can be easily adjusted by changing the temperature of the dispersion.
- the dispersant of the fifteenth aspect of the present invention comprises the first monomer that is any one or more selected from the group consisting of the above-mentioned (A) to (D), and the above-mentioned (E) to (N). It is a dispersing agent characterized by containing the copolymer with the 2nd monomer which is any 1 or more types chosen from a group.
- a movable device includes a housing capable of being filled with a fluid, at least a part of which is disposed inside the housing, and a part different from the part is disposed outside the housing.
- a movable member comprising: a movable member held by the housing so as to be operable; and the dispersion according to any one of the eleventh to thirteenth aspects of the present invention, which is filled in the housing. Device.
- Such a movable device can use the dispersion of any of the eleventh to thirteenth aspects. Further, it is not necessary to provide a complicated control mechanism unlike a movable device using an electrorheological fluid or a magnetic viscous fluid, and it is not necessary to generate a high voltage.
- the dispersion has the property that the viscosity increases when the temperature is increased, the viscosity is changed by changing the temperature of the dispersion used in the movable device, thereby changing the operating characteristics of the movable device. Can do.
- the predetermined operation of the movable member may be, for example, an operation in a linear direction, that is, an operation such as a reciprocating motion, and an operation such as rotation around a predetermined axis.
- an operation in a linear direction that is, an operation such as a reciprocating motion
- an operation such as rotation around a predetermined axis.
- a complicated operation using a link mechanism may be used. Any operation may be performed as long as the characteristics of the operation change depending on the viscosity of the dispersion filled in the housing.
- a movable device is the movable device according to the sixteenth aspect, wherein the housing is formed in a cylindrical shape, and the movable member is fitted in the housing so as to be slidable in the axial direction of the housing.
- a partition portion that divides the housing into a first fluid chamber and a second fluid chamber; a projection portion that is connected to the partition portion and penetrates a wall surface of an end portion of the housing and protrudes outside the housing;
- An orifice provided in the partition and communicating the first fluid chamber and the second fluid chamber.
- the movable device according to an eighteenth aspect of the present invention is the movable device according to the sixteenth aspect, wherein the movable member is connected to the shaft portion that communicates the outside and the inside of the housing, and the shaft portion. And a rotor that is rotatably arranged with the portion as a rotation axis.
- a movable device can be used as a so-called rotary damper.
- a movable device is the movable device according to the sixteenth aspect, wherein the movable member is connected to the shaft portion that communicates the exterior and the interior of the housing, and the shaft portion, and the shaft is disposed inside the housing.
- a first rotating element that is rotatably arranged with the portion as a rotating shaft, and is rotatable with the same axis as the rotating shaft as the rotating shaft, and by the viscous friction of the dispersion filled in the housing
- a second rotating element that rotates in accordance with the rotation of the first rotating element.
- the second rotating element may be the housing as in the movable device of the twentieth aspect.
- the movable device according to a twenty-first aspect of the present invention is the movable device according to any one of the sixteenth to twentieth aspects, characterized by comprising a heater for heating the dispersion.
- the heater may be disposed on the outer surface of the housing.
- the movable device is the movable device according to any one of the twenty-first and twenty-second aspects, wherein the shaft portion is at a predetermined rotational speed.
- a control signal is output to the cooler to operate the cooler to lower the temperature of the dispersion, or a control signal is output to the drive unit to It is possible to perform stable operation by controlling the temperature of the dispersion in a certain temperature range, for example, by lowering the rotational speed of the part.
- a movable device is the movable device according to any one of the twenty-first and twenty-second aspects, in which the invention of the eighteenth and eighteenth aspects is cited, and applies a predetermined torque to the shaft portion.
- the rotational speed of the shaft portion to which a predetermined torque is applied changes.
- a predetermined output is output to operate the movable device appropriately.
- a control signal is output to the cooler to operate the cooler to lower the temperature of the dispersion, or a control signal is output to the drive unit to A stable operation can be achieved by controlling the temperature of the dispersion in a certain temperature range by reducing the torque applied to the part.
- the movable device is the twenty-first aspect, citing the twenty-first aspect, the nineteenth aspect or the twentieth aspect of the invention, which cites the nineteenth aspect, the twentieth aspect, the nineteenth aspect or the twentieth aspect.
- a drive unit that applies torque to the shaft unit so that the shaft unit rotates at a predetermined rotation speed, and a measurement unit that measures the rotation speed or torque of the second rotation element;
- An output unit that performs a predetermined output when the rotational speed or torque measured by the measurement unit reaches a predetermined value.
- the movable device of the twenty-sixth aspect of the present invention is the twenty-first aspect of the twenty-first aspect, the nineteenth aspect or the twentieth aspect of the invention, which cites the invention of the nineteenth aspect, the twentieth aspect, the nineteenth aspect or the twentieth aspect.
- a drive unit that applies a predetermined torque to the shaft unit
- a measurement unit that measures a rotation speed or torque of the second rotation element, and a rotation speed or torque that is measured by the measurement unit
- an output unit that performs a predetermined output when becomes a predetermined value.
- a control signal is output to the cooler to operate the cooler to lower the temperature of the dispersion, or a control signal is output to the drive unit to A stable operation can be achieved by controlling the temperature of the dispersion in a certain temperature range by reducing the torque applied to the part.
- the surface treating agent of the 27th aspect of the present invention is used for a separator for a lithium ion secondary battery having a crystalline polymer as a main component.
- the surface treatment agent includes a copolymer of a first monomer and a second monomer, and the first monomer can be crystallized as a polymer having the same molecular structure as the crystalline polymer constituting the separator. It is a monomer.
- the separator treated with the surface treating agent thus configured has good wettability between the separator and the electrolytic solution. Therefore, the electrolytic solution can be easily infiltrated into the separator, and effects such as suppression of performance deterioration of the separator and elimination of a special manufacturing process such as suction can be obtained.
- the first monomer described above can be any one or more selected from the group consisting of the following (A) to (D) as in the surface treating agent of the 28th aspect of the present invention.
- D Polypropylene
- the second monomer described above is as in the 29th aspect of the present invention
- the copolymer of the first monomer and the second monomer is a block copolymer.
- the copolymer of the first monomer and the second monomer may be a random copolymer or a triblock copolymer.
- the surface treating agent according to the 31st aspect of the present invention is characterized in that, in the surface treating agent according to any one of the 27th to 30th aspects, it is used for a separator made of a polyethylene-based or nylon-based crystalline polymer.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 8 carbon atoms in the side chain, or ethylene.
- the second monomer is a (meth) acrylate having a linear alkyl group having 7 or less carbon atoms, having a branched alkyl group, having an aryl group, oxyethylene structure Or may be vinyl acetate.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 12 carbon atoms in the side chain.
- a surface treating agent according to a thirty-fourth aspect of the present invention is characterized in that in the surface treating agent according to any one of the twenty-seventh to thirty aspects, the surface treating agent is used for a separator made of a polyfluoroethylene-based crystalline polymer.
- the first monomer has a linear alkyl group having at least 8 carbon atoms in the side chain, and at least a part thereof is substituted with fluorine.
- the second monomer may be (meth) acrylate having a linear alkyl group having 7 or less carbon atoms, or a branched alkyl group.
- One having an aryl group or one having an oxyethylene structure may be used.
- the surface treating agent according to a thirty-sixth aspect of the present invention is the surface treating agent according to any one of the twenty-seventh to thirty-fifth aspects, wherein the electrical resistance between the positive electrode and the negative electrode of the lithium ion secondary battery is set in a predetermined temperature range. It is characterized by being reversibly raised rapidly with increasing temperature and rapidly decreasing with decreasing temperature.
- the invention of the 37th aspect of the present invention is a lithium ion secondary battery separator that is surface-treated with the surface treatment agent of any of the 27th to 36th aspects.
- the invention of the thirty-eighth aspect of the present invention is a separator comprising a polyethylene-based or nylon-based crystalline polymer as a main component, and is lithium treated by the surface treating agent of any of the thirty-first to thirty-third aspects. It is a separator for an ion secondary battery.
- the invention of the thirty-ninth aspect of the present invention is a separator comprising a polyfluoroethylene-based crystalline polymer as a main component and is subjected to surface treatment with the surface treatment agent of any one of the thirty-fourth or thirty-fifth aspects. It is a separator for secondary batteries.
- the 40th aspect of the present invention is an electrolytic solution for a lithium ion secondary battery to which the surface treating agent according to any of the 27th to 36th aspects is added.
- the 41st aspect of the present invention is a lithium ion secondary battery comprising the separator according to any of the 37th to 39th aspects of the present invention.
- the invention of the forty-second aspect of the present invention is a lithium ion secondary battery characterized by having the electrolytic solution of the forty-sixth aspect of the present invention.
- the dispersant of the present invention can remarkably reduce the viscosity of a dispersion in which fine particles made of a crystalline polymer are dispersed as a dispersoid.
- Dispersions using the dispersant of the present invention can be advantageously applied in various applications. For example, in a process in which a conventional crystalline fine particle dispersion is handled, the dispersion can be handled with a very low viscosity, so that the pump used for the dispersion flow process can be replaced with a low-power pump. , Energy saving can be achieved.
- the diameter of the piping can be reduced, which is effective in saving space, and has an advantage that the apparatus can be downsized as a whole.
- the viscosity in a dispersion containing fine particles of a crystalline polymer having a predetermined concentration, the viscosity can be lowered by adding the dispersant of the present invention, and the dispersion can be achieved with the same viscosity by utilizing the effect. It is possible to increase the concentration of fine particles in the body. If this effect is utilized, it can be applied not only to durability but also to the provision of heavy or high-quality paint inks.
- the concentration of fine particles by waste plastic can be increased while keeping the viscosity low. Therefore, not only can the amount of waste plastic be increased, but also the combustion efficiency can be remarkably improved, and it can be applied to the environment and energy very beneficially.
- the dispersion using the dispersant of the present invention can freely adjust the viscosity depending on the temperature.
- the viscosity can be increased by raising the temperature, it is possible to control the viscosity during the drying process of the paint ink or coating.
- so-called thixotropy that is, a low viscosity in the coating process and a high viscosity in the drying process. It was a difficult problem to solve.
- the dispersant invented this time and the dispersion using the same can be used advantageously for solving this problem.
- the flow control of fluid it is possible to control the flow rate by controlling the temperature of the flow path through which the fluid passes, reducing the load of flow control by complicated electronic valves and valves, and simplifying the device And can save energy.
- electroviscous fluids and magnetic viscous fluids have been proposed for controlling the viscosity of fluids.
- these viscosity controls require complicated electronic or magnetic control, and dispersion effects exhibiting such effects are also required. Due to the limitations of the fine particles and the dispersion medium, it has been difficult to spread to general applications.
- a device using an electrorheological fluid or a magnetic viscous fluid needs to be provided with a mechanism for performing complex control, and furthermore, since the fluid itself is expensive, there is a problem that the price of the device is increased. It was.
- the dispersant of the present invention and the dispersion using the same are versatile because they can be applied to fine particles made of a general crystalline polymer, and further applied to places where electricity or magnetism cannot be used. Is possible.
- the dispersion itself can be manufactured at a low cost, and a device using the dispersion can be manufactured at a low cost because a complicated apparatus configuration for controlling electricity and magnetism is not necessary.
- actuators that can be used for variable viscosity lubricants, dampers, clutches, valves, engine mounts, artificial muscles, virtual reality that requires delicate expressions of force sensation, and precise control of position and speed. Can be used to advantage.
- the dispersant of the present invention is characterized in that the crystalline part constituting the dispersant is adsorbed on the surface of the material using crystalline particles (polymer) and the non-crystalline part covers the particle surface. It is presumed that. By utilizing this fact, it is possible to change the characteristics of the particle surface or the material surface by arbitrarily changing the second monomer.
- the particle surface in order to provide water repellency, can be subjected to water repellency by synthesizing a polymer using a fluorine-substituted monomer or a silicon-modified monomer as the second monomer.
- a polymer using a fluorine-substituted monomer or a silicon-modified monomer as the second monomer.
- surface treatment processes such as plasma treatment and participation treatment with strong acid or ozone are required to provide design and protective layers by printing or painting.
- the separator for a lithium ion secondary battery treated with the surface treating agent of the present invention can improve the wettability of the electrolytic solution.
- a separator whose main component is a crystalline polymer such as porous polyethylene (PE) can be used.
- PE porous polyethylene
- an electrolyte solution in which an electrolyte is dissolved in a highly polar organic solvent such as ethylene carbonate, propylene carbonate, and dimethyl carbonate is used by being impregnated and wetted in the porous PE.
- a material with poor polarity, such as PE is used for the separator, the highly polar electrolyte is very difficult to wet and impregnated / wet.
- the separator treated with the surface treating agent of the present invention improves the surface characteristics of the separator by using the first monomer having high affinity with the separator and the second monomer having high affinity with the electrolyte. By doing so, the wettability of the electrolyte can be improved.
- the electrical resistance increases rapidly, and thermal runaway due to temperature rise can be suppressed. Further, since the temperature rise can be detected because the electrical resistance has increased, the temperature rise can be detected without providing a separate temperature sensor. Thus, the structure of the lithium ion secondary battery can be simplified. Further, since the change in electric resistance occurs reversibly, the electric resistance rapidly decreases as the temperature decreases. That is, the lithium ion secondary battery can be reused without degrading the function.
- the graph which shows the relationship between the temperature and viscosity of the dispersion which added the dispersing agent of this invention The graph which shows the relationship between the temperature and viscosity of the dispersion which added the dispersing agent of this invention.
- the figure which shows the damper using the dispersion body of this invention The figure which shows the rotary damper using the dispersion body of this invention.
- the figure which shows the clutch using the dispersion body of this invention The figure which shows the modification of the rotary damper using the dispersion body of this invention
- the figure which shows the modification of the clutch using the dispersion body of this invention The figure which shows the lithium ion secondary battery in which the separator of this invention is used
- lithium ion secondary battery 133 ... positive electrode, 135 ... negative electrode, 137 ... separator, 139 ... housing, 141 ... positive electrode terminal, 143 ... negative electrode terminal, 145 ... flow path, 147 ... surface treatment agent
- the present invention relates to a copolymer of a first monomer having a high affinity with a crystalline polymer and a second monomer having a high affinity with a polar solvent as a crystalline polymer and an amorphous polymer.
- the main purpose is to change the contact state between the crystalline polymer and the non-crystalline polymer. Therefore, an example in which the above copolymer is used as a dispersant and an example in which the above copolymer is used as a surface treatment agent for a separator of a lithium ion secondary battery will be described.
- the dispersant of the present invention contains a copolymer of at least two types of monomers, a first monomer and a second monomer.
- the first monomer is a crystalline monomer
- the dispersion of the present invention is applied to a dispersion in which fine particles made of a crystalline polymer having the same molecular structure as the polymer crystallized from the first monomer are dispersed as a dispersoid.
- the first monomer is a monomer that can be crystallized as a polymer having the same molecular structure as the dispersoid.
- the dispersion in which the dispersant of the present invention exhibits a good viscosity-reducing function is a crystalline polymer having the same molecular structure as the first monomer as a dispersoid
- the second monomer the following can be used. Only one type of substances shown below may be used, or a plurality of types may be used simultaneously.
- E Any of (meth) acrylate, vinyl ether, vinyl ester, maleic ester, itaconic ester, acrylamide and substituted styrene having a linear alkyl group having 7 or less carbon atoms
- F Branched alkyl (Meth) acrylate, vinyl ether, vinyl ester, maleic acid ester, itaconic acid ester, acrylamide, or substituted styrene having a group
- G (meth) acrylate, vinyl ether, vinyl ester, maleic acid ester having an aryl group , Itaconic acid ester, Acrylamide (H) (Meth) acrylate, vinyl ether, vinyl ester, maleic acid ester, itaconic acid ester, acrylamide, oxyethylene structure or oxypropylene structure
- Any of styrene (I)
- the first monomer has at least 8 carbon atoms in the side chain.
- the second monomer is (meth) acrylate having a linear alkyl group having 7 or less carbon atoms Any of those having a branched alkyl group, those having an aryl group, those having an oxyethylene structure, or vinyl acetate may be used.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 12 carbon atoms in the side chain.
- the dispersant of the present invention when used for a dispersion in which fine particles made of a polyfluoroethylene-based crystalline polymer are used as a dispersoid, the first monomer has at least 8 carbon atoms in the side chain.
- (Meth) acrylate having a linear alkyl group and at least a part of which is substituted with fluorine, or ethylene may be used, and the second monomer may be (meth) acrylate having 7 carbon atoms.
- One having the following linear alkyl group, one having a branched alkyl group, one having an aryl group, or one having an oxyethylene structure may be used.
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- the chemical formula of SG-1-MA is shown in (Chemical Formula 1).
- the stearyl acrylate is an example of the first monomer of the present invention
- the benzyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- behenyl acrylate (50.0 g, 131.0 mmol)
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the behenyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- lauryl acrylate (50.0 g, 208.0 mmol)
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the lauryl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (30.0 g, 91.0 mmol)
- n-butyl acetate 7.5 g
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (50.0 g, 151.7 mmol)
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA 3.81 g, 10.0 mmol
- stearyl acrylate 50.0 g, 151.7 mmol
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the stearyl acrylate is an example of the first monomer of the present invention
- the dimethylamino acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (50.0 g, 151.7 mmol)
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the stearyl acrylate is an example of the first monomer of the present invention
- the stearyl acrylate is an example of the first monomer of the present invention
- the polydimethylsiloxane methacrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (30.0 g, 91.0 mmol)
- n-butyl acetate 7.5 g
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (30.0 g, 91.0 mmol)
- n-butyl acetate 7.5 g
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- stearyl acrylate (100.0 g, 308 mmol) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- stearyl acrylate (40.0 g, 121.3 mmol) and n-butyl acetate (10.0 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA (3.81 g, 10.0 mmol)
- heptadecafluorodecyl acrylate (50.0 g, 96 mmol)
- n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued.
- the heptadecafluorodecyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- Example 15 Reaction with iodine (1.27 g, 5.0 mmol), azobisisobutyronitrile (2.46 g, 15 mmol), stearyl methacrylate (50.0 g, 148 mmol), cyclohexadiene (0.04 g, 0.5 mmol), n-butyl acetate (50 g)
- the container was placed in a container and subjected to N 2 bubbling for 20 minutes.
- the stearyl methacrylate is an example of the first monomer of the present invention
- the normal butyl methacrylate is an example of the second monomer of the present invention.
- [Comparative Example 1] SG-1-MA (1.91 g, 5.0 mmol), stearyl acrylate (50.0 g, 151.7 mmol) and n-butyl acetate (12.5 g) were placed in a reaction vessel, and N 2 bubbling was performed for 20 minutes. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued. After 5 hours, the reaction was completed to obtain a stearyl acrylate homopolymer (dispersant). The weight average molecular weight of the homopolymer was Mw 10400.
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- SG-1-MA 3.81 g, 10.0 mmol
- normal butyl acrylate (10.0 g, 78.0 mmol)
- stearyl acrylate (90.0 g, 277.3 mmol)
- n-butyl acetate 25 g
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- stearyl acrylate (30.0 g, 91.0 mmol) n-butyl acetate (15 g) are placed in a reaction vessel and N for 20 minutes. 2 bubbling was performed. Thereafter, the reaction was continued while maintaining the temperature of the reaction solution at 118 ° C. while N 2 bubbling was continued. The reaction was terminated after 5 hours to obtain a stearyl acrylate-normal butyl acrylate random polymer (random array polymer) (dispersant).
- the stearyl acrylate is an example of the first monomer of the present invention
- the normal butyl acrylate is an example of the second monomer of the present invention.
- Example 19 After reacting stearyl acrylate (33.7 g), butyl acrylate (33.7 g), n-butyl acetate (72.5 g), azoisobutyronitrile (AIBN) (1.0 g) at 105 ° C. for 3.5 hours under N 2 bubbling Then, 0.15 g of azobisisobutyronitrile was added three times every 15 minutes, and then the reaction was terminated to obtain a random copolymer (dispersant).
- the stearyl acrylate is an example of the first monomer of the present invention
- the butyl acrylate is an example of the second monomer of the present invention.
- Example 20 After reacting stearyl acrylate (42.9 g), butyl acrylate (18.3 g), n-butyl acetate (75 g), azoisobutyronitrile (AIBN) (0.91 g) at 105 ° C. for 3.5 hours under N 2 bubbling, After 0.15 g of azobisisobutyronitrile was added three times every 15 minutes, the reaction was terminated to obtain a random copolymer (dispersant).
- the stearyl acrylate is an example of the first monomer of the present invention
- the butyl acrylate is an example of the second monomer of the present invention.
- the stearyl acrylate is an example of the first monomer of the present invention
- the butyl acrylate is an example of the second monomer of the present invention.
- Test 1 Performance evaluation test for a dispersion in which fine particles of polyethylene / polyamide crystalline polymer are dispersed as a dispersoid 2: Performance for a dispersion having a fine particle of a fluororesin (polytetrafluoroethylene) as a dispersoid Evaluation (change in viscosity with temperature)
- Test 3 Comparative evaluation when the dispersant is a block copolymer, random copolymer, or homopolymer, and Comparative evaluation tests when the dispersant is an acrylate or methacrylate system 4 to 6: Used as a dispersant Evaluation when the length of alkyl chain of alkyl acrylate is changed (viscosity change with temperature)
- Tests 7 to 9 Performance evaluation test when the dispersion medium is changed 10: Performance evaluation when EVA (ethylene-vinyl acetate copolymer) is used
- A Celite dust 3620 (HDPE (high density polyethylene) wax powder manufactured by Clariant)
- B ME0520 (LDPE (low density polyethylene) wax powder manufactured by Doirex)
- C Mipperon PM200 (ultra high molecular weight PE powder manufactured by Mitsui Chemicals)
- D GPA-500 (12 nylon powder manufactured by Ganz Kasei)
- the solid content in the dispersion was (a) 40 wt%, (b) 45 wt%, (c) 50 wt%, and (d) 52 wt%.
- Table 1 shows the measured viscosity and rate of change.
- Lubron L2 PTFE (polytetrafluoroethylene) powder made by Daikin
- n-butyl acetate as fine particles made of crystalline polymer
- an n-butyl acetate solution (solid content 50 wt%) of the resin (dispersant) synthesized in Example 14 was added so that the solid content of the dispersant was 1 wt% with respect to the total amount of the dispersion.
- the viscosity of the dispersion was measured by changing the temperature of the dispersion. Note that the viscosity of the dispersion of Lubron L2 before addition of the dispersant was 1,160 mPa ⁇ s at 25 ° C.
- Table 2 shows the measured viscosity and rate of change.
- Celite dust 3620 (HDPE powder manufactured by Clariant) was mixed with n-butyl acetate as fine particles composed of a crystalline polymer to prepare a dispersion having a solid content of 40%.
- the n-butyl acetate solution (solid content 50 wt%) of the dispersant shown in (e) to (k) below is added to the dispersion so that the solid content of the dispersant is 1 wt% with respect to the total amount of the dispersion.
- the change in viscosity before and after the addition was measured.
- the temperature of the dispersion was 25 ° C.
- Table 3 shows the measured viscosity.
- the viscosity could be reduced in any of the dispersions to which the dispersants (e) to (k) were added. In the dispersion added with the coalescing dispersant, the viscosity could be remarkably lowered.
- Table 4 shows the measured viscosities.
- Celite dust 3620 (HDPE powder manufactured by Clariant) was mixed with n-butyl acetate as fine particles composed of a crystalline polymer to prepare a dispersion having a solid content of 40%.
- StA-b-BA resin synthesized in Example 1 (dispersant, melting point 53 ° C.) in n-butyl acetate (solid content 50 wt%) was added to the total amount of the dispersion.
- the viscosity of the dispersion was measured by changing the temperature of the dispersion.
- the viscosity of the dispersion before addition of the dispersant was 1,430 mPa ⁇ s at 25 ° C.
- Table 5 shows the measured viscosities.
- Celite dust 3620 (HDPE powder manufactured by Clariant) was mixed with n-butyl acetate as fine particles composed of a crystalline polymer to prepare a dispersion having a solid content of 40%.
- a solution of VA-b-BA synthesized in Example 3 (dispersant, melting point 63 ° C.) in n-butyl acetate (solid content 50 wt%) was added to the total amount of the dispersion.
- the viscosity of the dispersion was measured by changing the temperature of the dispersion.
- the viscosity of the dispersion before addition of the dispersant was 1,430 mPa ⁇ s at 25 ° C.
- Table 6 shows the measured viscosities.
- the viscosity of the dispersion changed reversibly by changing the temperature. That is, the dispersion of the present invention can achieve viscosity adjustment in which the viscosity is increased by increasing the temperature of the dispersion and the viscosity is decreased by decreasing the temperature of the dispersion.
- Celite dust 3620 (HDPE powder manufactured by Clariant) was used as fine particles composed of a crystalline polymer and was mixed with the following dispersion media (l) to (q) to prepare a plurality of dispersions having a solid content of 40 wt%.
- Table 7 shows the measured viscosity and rate of change.
- Table 8 shows the viscosity of the dispersion when the dispersion is at 25 ° C. and the addition amount is changed.
- the added amount represents the ratio (wt%) of EVA solid part to the total amount of dispersion.
- VA represents a composition ratio (wt%) of vinyl acetate
- mp represents a melting point
- MFR represents a melt flow rate.
- Evaflex is a registered trademark of Mitsui DuPont Polychemical Co., Ltd.
- the dispersion to which the dispersant of the present invention is added can be favorably used for a movable device.
- the movable device include a damper, a rotary damper, and a clutch.
- a general organic solvent When used in a movable device, a general organic solvent can be used as a dispersion medium, but a high boiling point solvent having a low vapor pressure at room temperature can be preferably used.
- the high boiling point solvent include hydrocarbon oils, phenyl ethers, polyol polyesters, phosphate esters, silicon oil, fluorine oil, and the like.
- hydrocarbon oils include liquid paraffin, mineral oil, spindle oil, higher alkyl benzene, higher alkyl naphthalene, polybutene, poly ⁇ -olefin oil, and the like.
- phenyl ethers include alkyl diphenyl ether and alkyl triphenyl ether.
- polyol polyesters include dicarboxylic acid esters such as dioctyl azelate, dioctyl adipate, dioctyl sebacate, dibutyl phthalate, and dihexyl maleate, trimethylolpropane n-heptyl ester, pentaerythritol tetra-2-ethylhexyl ester, and the like.
- phosphate esters include tributyl phosphate, tri-2-ethylhexyl phosphate, tricresyl phosphate, trixyl phosphate, triallyl phosphate, and the like.
- silicone oil examples include dimethyl silicone oil, methyl hydrogen polysiloxane, methylphenyl silicone oil, ⁇ -methylstyrene modified silicone oil, alcohol modified silicone oil, amine modified silicone oil, polyether modified silicone oil, chlorinated silicone oil. And fluorinated silicone oils.
- fluorine oil include perfluoropolyether, trifluorinated ethylene chloride oil, and the like.
- silicon oils When silicon oils are used as the dispersion medium, it is considered to select (meth) acrylate having dimethylsiloxane in the side chain, which shows high affinity for silicon oils, as the second monomer in the present invention. It is done. Moreover, when using fluorine oil as a dispersion medium, selecting the (meth) acrylate which has a high affinity for fluorine oil and which has a fluorinated alkyl in a side chain as a 2nd monomer is considered.
- Example 22 An example of creating a dispersion for use in a movable device is shown below.
- TD oil 10 manufactured by JX Nippon Mining & Energy Corporation
- fine particles made of crystalline polymer of Celite dust 3620 (HDPE (high density polyethylene) wax powder manufactured by Clariant) are used.
- a dispersion having a solid content of 35 wt% was prepared by mixing with a dispersion medium.
- an n-butyl acetate solution (solid content: 50 wt%) of the resin (dispersant) synthesized in Example 5 was added so that the solid content of the dispersant was 2.9 wt% with respect to Celite dust 3620. .
- sample 1 an n-butyl acetate solution (solid content: 50 wt%) of the resin (dispersant) synthesized in Example 5 was added so that the solid content of the dispersant was 2.9 wt% with respect to Celite dust 3620. .
- the n-butyl acetate solution (solid content: 50 wt%) of the resin (dispersant) synthesized in Example 1 has a solid content of 2.9 wt% with respect to Celite dust 3620.
- the viscosity change was measured by changing the temperature of samples 1 and 2.
- the viscosity was measured with a B-type viscometer manufactured by Toki Sangyo Co., Ltd.
- the viscosity of Sample 1 before addition of the dispersant was 1531 mPa ⁇ s at 25 ° C.
- the viscosity of Sample 2 was 1840 mPa ⁇ s at 25 ° C.
- Table 9 shows the measured results. Moreover, the graph which shows the relationship between temperature and a viscosity is shown in FIG. Note that sample 3 in the table and drawings is a change in viscosity of the TD oil 10 alone, and sample 4 is a change in viscosity of the TD oil 10 to which celite dust 3620 is added.
- the damper 1 of this embodiment includes a housing 3, a movable member 5, a free piston 7, a heater 9, a fluid 33 and a gas 35 filled in the housing 3.
- the housing 3 includes a cylindrical cylinder 11 having one end (upper end in FIG. 3) opened and the other end (lower end in FIG. 3) closed, and an upper end plate 13 provided in the opening of the cylinder 11. .
- the upper end plate 13 is provided with a through hole 15. Further, a seal portion 17 that slides on the outer periphery of a piston rod 25 described later is provided on the inner wall of the through hole 15, and the housing 3 is sealed by being sealed by the seal portion 17.
- the movable member 5 is fitted into the housing 3 so as to be slidable in the axial direction (the arrow direction in FIG. 3) of the housing 3 (cylinder 11), and the housing 3 is inserted into the first fluid chamber 19 on the opening side and the second fluid on the back side.
- It has a piston 23 that is partitioned into a fluid chamber 21, and a piston rod 25 that is connected to the piston 23, passes through the through hole 15 of the upper end plate 13, and protrudes outside the housing 3.
- the piston 23 is provided with an orifice 27 that allows the first fluid chamber 19 and the second fluid chamber 21 to communicate with each other.
- the free piston 7 is fitted into the housing 3 so as to be slidable in the axial direction of the housing 3, and partitions the above-described second fluid chamber 21 and the gas chamber 31 filled with the gas 35.
- the heater 9 is provided along the outer surface of the housing 3. The heater 9 can be controlled ON / OFF by a control device (not shown). When the heater 9 is turned on, the fluid 33 filled in the housing 3 can be heated to raise the temperature of the fluid 33.
- the dispersion manufactured in Example 22 is used.
- the movable member 5 operates in the axial direction of the cylinder 11 to absorb the impact applied to the piston rod 25.
- the piston rod 25 moves to a position protruding out of the housing 3.
- the viscosity of the fluid 33 filled in the housing 3 reversibly increases as the temperature rises within a predetermined temperature range. Therefore, the damper 9 is adjusted in the buffering performance by turning on the heater 9 and heating the fluid 33 to increase the viscosity of the fluid 33, or turning off the heater 9 and lowering the temperature of the fluid 33 to decrease the viscosity. can do.
- the rotary damper 41 of the present embodiment includes a housing 43, a movable member 45, a heater 47, and a fluid 49 filled in the housing 43.
- the movable member 45 is rotatably inserted in the housing 43 and a part of the shaft 51 protrudes outside the housing 43, and a plurality of disks housed in the housing 43 and connected to one end of the shaft 51. And a rotor 53 having a shape.
- the housing 43 is arranged such that a plurality of annular plates 55 having a through-hole formed at the center and the inner periphery of the housing 43 are opposed to the outer periphery of the rotor 53. 4, an upper cover 59 stacked on the upper side of the uppermost spacer 57 in FIG. 4, and a lower cover 61 stacked on the lower side of the lowermost spacer 57. It is formed in a hollow substantially cylindrical shape.
- the through hole of the plate 55 provided in the housing 43 is set to a diameter that allows the shaft 51 to be inserted.
- the upper lid 59 is provided with a through hole 63 into which the shaft 51 is inserted.
- the inner wall of the through-hole 63 is provided with a seal portion 65 that is in sliding contact with the outer periphery of the shaft 51. By sealing with the seal portion 65, the inside of the housing 43 is sealed.
- the shaft 51 is inserted through the housing 43 and is rotatably supported by the upper lid 59.
- the rotor 53 is disposed at an interval along the axial direction of the shaft 51, and is disposed so that the outer periphery thereof faces the inner periphery of the spacer 57.
- the upper lid 59, the plate 55, and the lower lid 61 are respectively arranged. Is inserted through a gap. The fluid 49 described above is filled in the gap.
- the heater 47 is provided along the outer surface of the housing 43. This heater 47 can be turned on and off by a control device (not shown). When the heater 47 is turned on, the fluid 49 filled in the housing 43 can be heated to raise the temperature of the fluid 49.
- the dispersion manufactured in Example 22 is used as the fluid 49 filled in the housing 43.
- the rotary damper 41 of this embodiment configured as described above, when the shaft 51 rotates, the rotor 53 rotates accordingly. At that time, the rotational force applied to the shaft 51 is attenuated by receiving the viscous friction of the fluid 49 filled in the housing 43.
- the viscosity of the fluid 49 filled in the housing 43 reversibly increases as the temperature rises within a predetermined temperature range. Therefore, the rotational damping performance of the rotary damper 41 can be improved by turning on the heater 47 and heating the fluid 49 to increase the viscosity of the fluid 49, or turning off the heater 47 and lowering the temperature of the fluid 49 to decrease the viscosity. Can be adjusted.
- the clutch 71 As shown in FIG. 5, the clutch 71 according to the present embodiment includes a housing 73, a movable member 75, a pair of bearings 77 ⁇ / b> A and bearings 77 ⁇ / b> B, a heater 79, and a fluid 101 filled in the housing 73.
- the movable member 75 is rotatably inserted into the housing 73 and a part of the shaft 81 protrudes outside the housing 73 and a plurality of discs housed in the housing 73 and connected to one end of the shaft 81. And a rotor 83 having a shape.
- the housing 73 is arranged such that a plurality of annular plates 85 having a through-hole formed at the center and the inner periphery of the housing 73 are opposed to the outer periphery of the rotor 83. Is stacked on the annular spacer 87 sandwiched between the first cover 91 and the spacer 87 on one end (the right end in FIG. 5).
- the second lid portion 93 is formed, and is formed into a hollow, generally cylindrical shape as a whole.
- the through hole of the plate 85 provided in the housing 73 is set to a diameter that allows the shaft 81 to be inserted.
- the second lid portion 93 is provided with a through hole 95 into which the shaft 81 is inserted. Further, a seal portion 97 that is in sliding contact with the outer periphery of the shaft 81 is provided on the inner wall of the through hole 95, and the inside of the housing 73 is sealed by being sealed by the seal portion 97.
- the shaft 81 is inserted into the housing 73 and is pivotally supported by the second lid portion 93.
- the rotor 83 is disposed at an interval along the axial direction of the shaft 81, and is disposed so that the outer periphery thereof faces the inner periphery of the spacer 87.
- the first lid 91, the plate 85, and the second It is inserted between the lid portion 93 and a gap. And the fluid 101 mentioned above will be filled in the said clearance gap.
- the tip 81 ⁇ / b> A of the shaft 81 in the housing 73 is rotatably inserted into the groove 99 of the second lid portion 93.
- the bearing 77A and the bearing 77B support the shaft 81 and the shaft portion 89 so that the shaft 81 and the shaft portion 89 of the housing 73 can rotate coaxially.
- the heater 79 is provided along the outer surface of the housing 73.
- the heater 79 can be turned on / off by a control device (not shown). When the heater 79 is turned on, the fluid 101 filled in the housing 73 can be heated to increase the temperature of the fluid 101.
- the dispersion manufactured in Example 22 is used as the fluid 101 filled in the housing 73.
- the clutch 71 of the present embodiment configured as described above, when a rotational force is applied to the shaft 81 from a driving source (not shown), the housing 73 rotates due to the viscous friction of the fluid 101, and thereby the shaft portion 89 rotates. Thus, the rotational force of the drive source is transmitted to a drive target (not shown).
- the viscosity of the fluid 101 filled in the housing 73 increases reversibly as the temperature rises within a predetermined temperature range. Therefore, the magnitude of viscous friction is controlled by turning on the heater 79 and heating the fluid 101 to increase the viscosity of the fluid 101, or turning off the heater 79 and lowering the temperature of the fluid 101 to lower the viscosity.
- the power transmission performance (power loss) of the clutch can be adjusted.
- the housing 73 corresponds to the second rotating element of the present invention.
- the housing 73 is fixed so as not to rotate, and a rotating element different from the housing 73 is provided in the housing 73.
- a rotational force is applied to the shaft 81, the rotating element is rotated by viscous friction to rotate outside. You may comprise so that it may output to.
- the movable device is not limited to the damper and the clutch, and various devices can be targeted.
- the structure which does not use a heater may be sufficient as a movable apparatus.
- the temperature of the fluid filled in the housing can be raised by making available heat from another heat source such as an engine.
- the movable member in the movable device operates, that is, the fluid can be heated by friction between the movable member and the fluid, and the viscosity can be controlled by changing the temperature of the fluid without using a heat source.
- a cooling device for lowering the temperature of the fluid may be provided.
- Example 22 Although the structure which uses the dispersion manufactured in Example 22 as a fluid used for a movable apparatus was illustrated, it will not be limited to the dispersion, and if it is a dispersion of this invention, various things will be used. Can do.
- the movable device may be provided with a mechanism capable of detecting a change in viscosity caused by a temperature change of the dispersion, and may be configured to perform predetermined control when the viscosity changes.
- the device 103 that applies torque to the shaft 51 so that the shaft 51 rotates at a predetermined rotational speed, and the torque applied to the shaft 51.
- the device 107 When the viscosity of the fluid 49 filled in the housing 43 changes, the torque necessary for the shaft 51 to rotate at a predetermined rotational speed changes.
- the device 107 when the temperature of the fluid 49 filled in the housing changes and the viscosity changes, and thereby the torque applied to the shaft 51 changes, the device 107 performs a predetermined output, and the movable device is appropriately set. Can be operated. For example, when the temperature of the fluid 49 rises and the viscosity rises, a device 103 that outputs a control signal to the cooler 109 to operate the cooler 109 to lower the temperature of the fluid 49 or applies torque to the shaft 51.
- a stable operation can be performed by controlling the temperature of the fluid 49 to a certain temperature range by, for example, reducing the rotational speed of the shaft 51 by outputting a control signal.
- a device 111 for applying a predetermined torque to the shaft 51 and a rotational speed of the shaft 51 are measured.
- the device 113 transmits information on the measured rotation speed to the device 115.
- the rotational speed of the shaft 51 to which a predetermined torque is applied changes.
- the device 115 performs a predetermined output, and the movable device is appropriately Can be operated.
- a device 111 that outputs a control signal to the cooler 109 to operate the cooler 109 to lower the temperature of the fluid 49 or applies torque to the shaft 51.
- the control signal is output to the shaft 51, and the torque applied to the shaft 51 is reduced, so that the temperature of the fluid 49 can be controlled in a certain temperature range to perform stable operation.
- the clutch 71 of the twenty-fifth embodiment may be provided with a mechanism for detecting a change in viscosity so that predetermined control is performed when the viscosity changes.
- a device 121 that applies torque to the shaft 81 and a device 123 that measures the rotational speed or torque of the housing 73 (second rotating element) are further provided and further measured. It is conceivable to provide a device 125 that performs a predetermined output when the rotational speed or torque reaches a predetermined value.
- the device 121 that applies torque to the shaft 81 may be a device that applies torque so that the shaft 81 rotates at a predetermined rotational speed, or may be a device that applies predetermined torque to the shaft 81.
- the device 123 transmits the measured rotational speed or torque information to the device 125.
- the rotation speed and torque of the housing 73 that rotates as the shaft 81 rotates changes.
- the movable device described above when the temperature of the fluid 101 filled in the housing 73 changes and the viscosity changes, thereby the device 125 performs a predetermined output when the rotational speed or torque of the housing 73 changes, the movable device Can be operated properly.
- a device 121 that outputs a control signal to the cooler 127 to operate the cooler 127 to lower the temperature of the fluid 101 or applies torque to the shaft 81.
- the surface treating agent of the present invention is a surface treatment of a separator mainly composed of a crystalline polymer using the surface treating agent, or an electrolytic solution for a lithium ion secondary battery using a separator mainly composed of a crystalline polymer It can be used as an additive.
- the surface treatment agent of the present invention is a copolymer of a first monomer and a second monomer described later.
- This surface treatment agent has an adsorption interaction between a crystalline polymer up to a certain temperature and a site made of a monomer (first monomer) having a high affinity with the crystalline polymer in the copolymer,
- the surface state of the separator is converted to electrolyte compatibility. Therefore, the wettability becomes very good and the filling / wetting of the electrolytic solution becomes good, and as a result, the electrical resistance between the positive and negative electrodes decreases.
- a separator treated with this surface treatment agent or a lithium ion secondary battery using an electrolytic solution containing this surface treatment agent has high electrical resistance at a certain temperature or higher. Utilizing these phenomena, the electrical resistance between the electrodes senses the rise in the temperature of the lithium ion secondary battery, and when the temperature rises, the electrical resistance rises spontaneously. The self-temperature control function of lowering can be given to the lithium ion secondary battery.
- FIG. 1 A configuration example of a lithium ion secondary battery in which the separator of the present invention is used is shown in FIG.
- the lithium ion secondary battery 131 is in a state in which a belt-like positive electrode 133 and a belt-like negative electrode 135 are wound in close contact via a separator 137. These battery elements are housed inside a cylindrical housing 139, and a positive electrode terminal 141 connected to the positive electrode 133 and a negative electrode terminal 143 connected to the negative electrode 135 protrude from the housing 139.
- the structure of the lithium ion secondary battery is not limited to that shown in FIG. 8, and can be used for batteries having various structures. For example, it may have a flat housing.
- Non-aqueous solvents include cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate, and cyclic carboxylic acid esters such as ⁇ -butyrolactone and ⁇ -valerolactone. be able to.
- the separator of the present invention includes a crystalline polymer as a main component, and for example, a separator whose main component is a polyethylene-based or nylon-based crystalline polymer can be used. Of course, other than that, a composite separator in which polyethylene and polypropylene are combined can be used.
- the separator of the present invention is surface-treated with a surface treatment agent described later.
- the surface treatment agent may be treated on the separator before bringing the separator into contact with the electrolytic solution, or by adding a surface treatment agent to the electrolytic solution, the surface treatment of the separator can be performed at the stage of contact with the electrolytic solution. It may be made.
- the surface treating agent of the present invention contains a copolymer of at least two types of monomers, a first monomer and a second monomer.
- the first monomer is a crystalline monomer
- the polymer portion composed of the first monomer is adsorbed on the surface of the separator whose main component is a crystalline polymer having the same molecular structure as the crystallized polymer. Since the second monomer has an affinity for the solvent, the separator surface is transformed into a solvophilic property, thereby realizing the modification of the separator surface.
- the first monomer is a monomer that can be crystallized as a polymer having the same molecular structure as the crystalline polymer that is the main component of the separator.
- the following can be used as the first monomer. Only one type of substances shown below may be used, or a plurality of types may be used simultaneously.
- (A) Ethylene (B) Any of (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane, ⁇ -olefin, and substituted styrene having a linear alkyl group having at least 8 carbon atoms in the side chain (C) (meth) acrylate, (meth) acrylamide, vinyl ether, vinyl ester, siloxane having a linear alkyl group having at least 8 carbon atoms in the side chain and at least part of which is substituted with fluorine , ⁇ -olefin, or substituted styrene (D) Polypropylene
- the separator in which the surface treatment agent exhibits a surface modification function satisfactorily is a crystalline polymer whose main component has the same molecular structure as the first monomer. It is a separat
- the second monomer the following can be used. Only one type of substances shown below may be used, or a plurality of types may be used simultaneously.
- E Any of (meth) acrylate, vinyl ether, vinyl ester, maleic ester, itaconic ester, acrylamide and substituted styrene having a linear alkyl group having 7 or less carbon atoms
- F Branched alkyl (Meth) acrylate, vinyl ether, vinyl ester, maleic acid ester, itaconic acid ester, acrylamide, or substituted styrene having a group
- G (meth) acrylate, vinyl ether, vinyl ester, maleic acid ester having an aryl group , Itaconic acid ester, Acrylamide (H) (Meth) acrylate, vinyl ether, vinyl ester, maleic acid ester, itaconic acid ester, acrylamide, oxyethylene structure or oxypropylene structure
- Any of styrene (I)
- the first monomer is a straight chain having at least 8 carbon atoms in the side chain.
- (Meth) acrylate having an alkyl group or ethylene may be used, and the second monomer may be (meth) acrylate having a linear alkyl group having 7 or less carbon atoms, branched alkyl
- One having a group, one having an aryl group, one having an oxyethylene structure, or vinyl acetate may be used.
- the first monomer may be a (meth) acrylate having a linear alkyl group having at least 12 carbon atoms in the side chain.
- the surface treatment agent is used for a separator mainly composed of a polyfluoroethylene-based crystalline polymer
- the first monomer is a linear alkyl having at least 8 carbon atoms in the side chain.
- (Meth) acrylate having a group and at least a part of which is substituted with fluorine, or ethylene may be used
- the second monomer is (meth) acrylate and is a straight chain having 7 or less carbon atoms And those having a branched alkyl group, those having an aryl group, and those having an oxyethylene structure.
- FIG. 9 is a side sectional view conceptually showing the separator 137, the positive electrode 133, and the negative electrode 135 that have been surface-treated with the surface treatment agent described above. Since the separator 137 is a porous body, an infinite number of fine flow paths 145 that connect the positive electrode 133 and the negative electrode 135 are formed. The entire surface of the separator 137 including the surface of the flow path 145 is subjected to a surface treatment with a surface treatment agent 147.
- ethylene carbonate or propylene carbonate is used in which the first monomer has a high affinity with the separator 137 such as polyethylene, and the second monomer constitutes an electrolyte solution interposed between the positive electrode 133 and the negative electrode 135.
- dimethyl carbonate has a high affinity with a solvent. Therefore, the wettability of the electrolyte solution in the separator 137 is improved, and the electrolyte solution easily penetrates into the flow path 145.
- Example 26 Surface treatment of the separator made of polyethylene was performed using the block copolymer (dispersant) produced in Example 1 as a surface treatment agent. That is, the surface treatment agent of this example has the same configuration as the dispersant of Example 1, but the usage method is different.
- the lithium ion secondary battery shown in FIG. 8 was manufactured using the separator which surface-treated.
- the surface treatment of the separator was performed in the following procedure. First, the surface treatment agent was dissolved in a 1 wt% butyl acetate solution, a polyethylene separator was immersed in the solution for 24 hours, and the separator was air-dried and then vacuum-dried.
- the material of a general lithium ion secondary battery can be used for each component of a lithium ion secondary battery. Although it can be manufactured by a general manufacturing method, since the penetration of the electrolyte into the separator is good, the operation for penetrating the electrolyte should be deleted or changed to a simpler operation. Can do.
- the dispersant produced in Examples 1 to 21 can be used as a surface treatment agent for separator treatment.
- These surface treatment agents may be used in appropriate combinations using a material having affinity for the first monomer that is a component of each surface treatment material as a separator and a material having affinity for the second monomer as an electrolyte. it can.
- the surface treatment of the separator was performed in the following procedure.
- the above block polymer was dissolved in a butyl acetate solution to prepare two types of dilute solutions in which the block polymer was 2 wt% and 5 wt%.
- the separator was cut into 1 cm ⁇ 1 cm, immersed in the dilute solution for a predetermined time, and then vacuum-dried.
- the test pieces were immersed in a dilute solution for 3 hours, 6 hours, and 24 hours for each of the two types of dilute solutions.
- the test piece was subjected to the test piece and the test piece not subjected to surface modification, and the permeability was confirmed.
- the test results are shown in Table 10.
- a polyethylene porous filter (Mykrolis UPE CWAT04700, pore size 10 nm) was used as a separator.
- the surface treatment of the separator was performed in the following procedure.
- the block polymer was dissolved in a butyl acetate solution to prepare a solution in which the block polymer was 1 wt%.
- the separators were immersed in these solutions and dried in a vacuum after 24 hours.
- the electrolytic solution used in the test is a mixture of EC: PC: DMC 1: 1: 1 and dissolved so that LiPF 6 is 1 mol / L with respect to the total amount.
- the separator was sandwiched between stainless steel electrodes, and the impedance was measured under an inert gasification atmosphere.
- the impedance measuring device used was HIROKI3522-50, LCR-HITESTER. The measurement method was as follows.
- FIG. 10 A graph showing the measurement results is shown in FIG. FIG. 10 is normalized by a value of 35 ° C., and the temperature dependence of the impedance value when the surface treatment agent of the present invention is used and when it is not used is relatively evaluated.
- the sample subjected to the surface treatment with the surface treatment agent of (i) is “block 1” in the graph, and the sample subjected to the surface treatment with the surface treatment agent of (ii) is “block 2” in the graph. It is said. Samples that have not undergone surface treatment are regarded as “untreated”.
- the impedance shows a substantially constant value regardless of the temperature.
- the impedance is improved and the electric resistance is decreased due to the temperature rise, but a rapid transition appears at 55 ° C. and the electric resistance is increased by 5% or more. This phenomenon is reversibly reproduced.
- the separator treated with the surface treatment agent of the present invention can stop the battery before the separator melts, or can reduce the output by increasing the electric resistance, and can protect the battery itself.
- the temperature range where the impedance rapidly changes is not limited to the above-described range of around 55 ° C., and can be appropriately adjusted depending on the amount and type of the surface treatment agent added. Further, since the electrical resistance increases when the battery becomes high temperature, it is possible to determine an increase in temperature based on the value of the electrical resistance. That is, it is possible to prevent the battery from overheating by detecting an increase in temperature without using a separate temperature sensor and using an external cooling device.
- the electric resistance reversibly changes with respect to the temperature change, even if the electric resistance increases, if the temperature is lowered, the electric resistance can be lowered again and can be used repeatedly for a long time.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Engineering & Computer Science (AREA)
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
- Graft Or Block Polymers (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
このように、従来、結晶性高分子からなる微粒子が分散質として分散した分散体の粘度低下や粘度調整ができる分散剤は存在しなかった。
また本発明の他の目的は、上記分散体を利用した可動装置を提案することである。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(D)ポリプロピレン
また、上述した第2のモノマーとしては、本発明の第3局面のように、次に示す(E)~(N)からなる群より選ばれるいずれか1種以上とすることができる。
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドのいずれか
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート
本発明の第4局面の分散剤は、第1局面から第3局面のいずれかの分散剤において、第1のモノマーと第2のモノマーとの共重合体がブロック共重合体であることを特徴とする。もちろん、第4局面の分散剤とは異なる態様として、第1のモノマーと第2のモノマーとの共重合体はランダム共重合体や、トリブロック共重合体であってもよい。
また、本発明の第8局面の分散剤は、第1局面から第4局面のいずれかの分散剤において、ポリフルオロエチレン系の結晶性高分子からなる微粒子を分散質とする分散体に対して用いられることを特徴とする。
本発明の第12局面の分散体は、ポリエチレン系またはナイロン系の結晶性高分子からなる微粒子と、第5局面から第7局面のいずれかの分散剤と、分散媒と、からなる分散体である。
上記第11局面から第13局面の分散体は、分散剤を添加しない場合の分散体と比較して非常に粘度を低くすることができる。
本発明の第18局面の可動装置は、第16局面の可動装置において、前記可動部材が、前記ハウジング外部と内部とを連通する軸部と、前記軸部に連結され、前記ハウジング内部において前記軸部を回転軸として回転可能に配設されるロータと、を備えることを特徴とする。
本発明の第19局面の可動装置は、第16局面の可動装置において、前記可動部材が、前記ハウジング外部と内部とを連通する軸部と、前記軸部に連結され、前記ハウジング内部において前記軸部を回転軸として回転可能に配設される第1回転要素と、を備え、さらに、前記回転軸と同じ軸線を回転軸として回転可能であり、前記ハウジングに充填される分散体の粘性摩擦によって、前記第1回転要素の回転に伴って回転する第2回転要素と、を備えることを特徴とする。その場合、第20局面の可動装置のように、前記第2回転要素を前記ハウジングとしてもよい。
本発明の第21局面の可動装置は、第16局面から第20局面のいずれかの可動装置において、前記分散体を加熱するヒーターを備えることを特徴とする。その場合、第22局面の可動装置のように、前記ヒーターは、前記ハウジングの外側表面に配置されていてもよい。
本発明の第23局面の可動装置は、第18局面、および第18局面の発明を引用する、第21局面および第22局面、のいずれかの可動装置において、前記軸部が所定の回転速度で回転するように前記軸部にトルクを与える駆動部と、前記駆動部が前記軸部に与えるトルクを測定する測定部と、前記測定部により測定されるトルクが所定の値となったときに、所定の出力を行う出力部と、を備えることを特徴とする。
上述した本発明の第25局面および第26局面の可動装置では、ハウジングに充填される分散体の温度が変化して粘度が変化し、それにより第2回転要素の回転速度やトルクが変化したときに所定の出力を行い、可動装置を適切に動作させることができる。例えば、分散体の温度が上昇して粘度が上昇したときには、冷却器に制御信号を出力して分散体の温度を下げるように冷却器を動作させたり、駆動部に制御信号を出力して軸部に与えるトルクを小さくするなどして、分散体の温度を一定の温度領域に制御して安定運転をすることができる。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(D)ポリプロピレン
また、上述した第2のモノマーとしては、本発明の第29局面のように、次に示す(E)~(N)からなる群より選ばれるいずれか1種以上とすることができる。
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドからなる群より選ばれるいずれか1種以上
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート
本発明の第30局面の表面処理剤は、第27局面から第29局面のいずれかの表面処理剤において、第1のモノマーと第2のモノマーとの共重合体がブロック共重合体であることを特徴とする。もちろん、第4局面の分散剤とは異なる態様として、第1のモノマーと第2のモノマーとの共重合体はランダム共重合体や、トリブロック共重合体であってもよい。
本発明の第34局面の表面処理剤は、第27局面から第30局面のいずれかの表面処理剤において、ポリフルオロエチレン系の結晶性高分子からなるセパレータに用いられることを特徴とする。
本発明の第38局面の発明は、ポリエチレン系またはナイロン系の結晶性高分子を主成分とするセパレータであり、第31局面から第33局面のいずれかの表面処理剤により表面処理されてなるリチウムイオン二次電池用セパレータである。
本発明の第41局面の発明は、本発明の第37局面から第39局面のいずれかのセパレータを有することを特徴とするリチウムイオン二次電池である。
また本発明の分散剤は、分散剤を構成する結晶性部位が結晶性粒子(高分子)を用いた素材の表面に吸着し、非結晶性部位が粒子表面を覆うことで特性を出しているのではないか、と推測される。このことを利用し第2のモノマーを任意に変化させることで粒子表面あるいは素材表面の特性を変化させることが可能である。
また、結晶性高分子を用いた素材の表面の改質が可能となり、従来、印刷や塗装により意匠性や保護層を設けるのにプラズマ処理,強酸やオゾンによる参加処理などの表面処理工程が必要であったが、その工程を省略しコストダウンが可能となり、環境・エネルギー的にも非常に有益なものとなる。
本発明は、結晶性高分子との親和性の高い第1のモノマーと、極性溶媒との親和性の高い第2のモノマーと、の共重合体を、結晶性高分子と非結晶性高分子とが混在する環境において用いることにより、結晶性高分子と非結晶性高分子と接触状態などを変化させることを主眼とする。そこで、上記の共重合体を分散剤として用いる例と、上記の共重合体をリチウムイオン二次電池のセパレータの表面処理剤として用いる例と、を説明する。
本発明の分散剤は、第1のモノマーと、第2のモノマーと、の少なくとも2種類のモノマーの共重合体を含むものである。第1のモノマーは結晶性のモノマーであり、第1のモノマーが結晶化したポリマーと同一の分子構造を有する結晶性高分子からなる微粒子が分散質として分散した分散体に対して本発明の分散剤を添加することにより、その粘度を顕著に低下させることができる。第1のモノマーは、換言すると、分散質と同一の分子構造を有するポリマーとして結晶化可能なモノマーである。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(D)ポリプロピレン
本発明の分散剤が粘度低下機能を良好に発揮する分散体は、分散質として第1のモノマーと同一の分子構造を有する結晶性高分子からなる微粒子を分散質として含有する分散体である。
(E)炭素数が7以下の直鎖状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドのいずれか
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート
第2のモノマーは、第1のモノマーと共重合体を形成できるものであればよい。なお、分散剤を添加する分散体の分散媒との親和性が良いものを第2のモノマーとして用いてもよい。
また、本発明の分散剤をポリフルオロエチレン系の結晶性高分子からなる微粒子を分散質とする分散体に対して用いる場合には、第1のモノマーを、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された(メタ)アクリレート、またはエチレンとしてもよく、また第2のモノマーを、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれかとしてもよい。
[実施例1]
2-メチル-2-[N-(t-ブチル)-N-(ジエトキシホスホニル-2-2-ジメチルプロピル)アミノキシ]プロピオン酸(略称:SG-1-MA、3.81g、10.0mmol)、ステアリルアクリレート (50.0g、151.7mmol)、n-酢酸ブチル (12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(50.0g、390.1mmol)、n-酢酸ブチル (12.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=11800であった。
上記SG-1-MAの化学式を(化1)に示す。
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5 g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったベンジルアクリレート(50.0g、308.2mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ベンジルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=12600であった。
[実施例3]
SG-1-MA(3.81g、10.0mmol)、ベヘニルアクリレート(50.0g、131.0mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート (50.0g、390.1mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=12500であった。
[実施例4]
SG-1-MA(3.81g、10.0mmol)、ラウリルアクリレート(50.0g、208.0mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(50.0g、390.1mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=11500であった。
[実施例5]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(30.0g、91.0mmol)、n-酢酸ブチル(7.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(50.0g、390.1mmol)、n-酢酸ブチル(12.5 g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=10800であった。
[実施例6]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(30.0g、234.0mmol)、n-酢酸ブチル(7.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから4時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=9500であった。
[実施例7]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったジメチルアミノアクリレート(30.0g、175.0mmol)、n-酢酸ブチル(7.5g)を反応容器に加え再び118℃で反応を続けた。ジメチルアミノアクリレートを加えてから4時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=7670であった。
[実施例8]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行った末端メトキシポリエチレングリコール(n=9)アクリレート(25.0g、55.0mmol)とノルマルブチルアクリレート(25.0g、195.0mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレート等を加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=11300であった。
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったポリジメチルシロキサンメタクリレート(分子量約1000)(50.0g、50.0mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ポリジメチルシロキサンメタクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=14300であった。
[実施例10]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(30.0g、91.0mmol)、n-酢酸ブチル(7.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(370.0g、2886mmol)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから6時間後にアゾビスイソブチロニトリル0.15gを15分おきに3回添加した後反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=56000であった。
[実施例11]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(30.0g、91.0mmol)、n-酢酸ブチル(7.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(170.0g、1326mmol)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから6時間後にアゾビスイソブチロニトリル0.15gを15分おきに3回添加した後反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=27400であった。
[実施例12]
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(100.0g、308mmol)、n-酢酸ブチル(25g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(50.0g、390mmol) を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=9900であった。
[実施例13]
SG-1-MA(7.63g、20.0mmol)、ステアリルアクリレート(40.0g、121.3mmol)、n-酢酸ブチル(10.0g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。3.5時間後、20分間 N2バブリング処理を行ったノルマルブチルアクリレート(60.0g、468.1mmol)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから3時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=6500であった。
[実施例14]
SG-1-MA(3.81g、10.0mmol)、へプタデカフルオロデシルアクリレート(50.0g、96mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(50.0g、390mmol)、n-酢酸ブチル(12.5g)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=9100であった。
[実施例15]
ヨウ素(1.27g、5.0mmol)、アゾビスイソブチロニトリル(2.46g、15mmol)、ステアリルメタクリレート(50.0g、148mmol)、シクロヘキサジエン(0.04g、0.5mmol)、n-酢酸ブチル(50g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を80℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルメタクリレート(50.0g、352mmol)、アゾビスイソブチロニトリル(0.33g、2.0mmol)、シクロヘキサジエン(0.04g、0.5mmol)、n-酢酸ブチル(50g)を反応容器に加え再び80℃で反応を続けた。ノルマルブチルメタクリレートを加えてから3時間後に反応を終了し、ブロック共重合体(分散剤)を得た。当該ブロック共重合体の重量平均分子量はMw=11700であった。
[比較例1]
SG-1-MA(1.91g、5.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ステアリルアクリレートホモポリマー(分散剤)を得た。当該ホモポリマーの重量平均分子量はMw=10400であった。
SG-1-MA(3.81g、10.0mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ステアリルアクリレートホモポリマー(分散剤)を得た。当該ホモポリマーの重量平均分子量はMw=6900であった。
SG-1-MA(6.34g、16.6mmol)、ステアリルアクリレート(50.0g、151.7mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後に反応を終了し、ステアリルアクリレートホモポリマー(分散剤)を得た。当該ホモポリマーの重量平均分子量はMw=4600であった。
SG-1-MA(3.81g、10.0mmol)、ラウリルアクリレート(50.0g、208.0mmol)、n-酢酸ブチル(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ラウリルアクリレートホモポリマー(分散剤)を得た。当該ホモポリマーの重量平均分子量はMw=6700であった。
SG-1-MA(3.81g、10.0mmol)、ノルマルブチルアクリレート(30.0g、234.0mmol)、ステアリルアクリレート(70.0g、215.7mmol)、n-酢酸ブチル(25g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ステアリルアクリレート‐ノルマルブチルアクリレートランダムポリマー(分散剤、ランダム配列ポリマー)を得た。当該ランダムポリマーの重量平均分子量はMw=11400であった。
[実施例17]
SG-1-MA(3.81g、10.0mmol)、ノルマルブチルアクリレート(10.0g、78.0mmol)、ステアリルアクリレート(90.0g、277.3mmol)、n-酢酸ブチル(25g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ステアリルアクリレート‐ノルマルブチルアクリレートランダムポリマー(ランダム配列ポリマー)(分散剤)を得た。当該ランダムポリマーの重量平均分子量はMw=11400であった。
[実施例18]
SG-1-MA(2.29g、6.0mmol)、ノルマルブチルアクリレート(30.0g、234.0mmol)、ステアリルアクリレート(30.0g、91.0mmol)、n-酢酸ブチル(15g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。5時間後に反応を終了し、ステアリルアクリレート‐ノルマルブチルアクリレートランダムポリマー(ランダム配列ポリマー)(分散剤)を得た。当該ランダムポリマーの重量平均分子量はMw=11600であった。
[実施例19]
ステアリルアクリレート(33.7g)、ブチルアクリレート(33.7g)、n-酢酸ブチル(72.5g)、アゾイソブチロニトリル(AIBN)(1.0g)をN2バブリング下で105℃で3.5時間反応させた後、アゾビスイソブチロニトリル0.15gを15分おきに3回添加した後反応を終了しランダム共重合体(分散剤)を得た。当該ランダム共重合体の重量平均分子量はMw=13200であった。
[実施例20]
ステアリルアクリレート(42.9g)、ブチルアクリレート(18.3g)、n-酢酸ブチル(75g)、アゾイソブチロニトリル(AIBN)(0.91g)をN2バブリング下で105℃で3.5時間反応させた後、アゾビスイソブチロニトリル0.15gを15分おきに3回添加した後反応を終了しランダム共重合体(分散剤)を得た。当該ランダム共重合体の重量平均分子量はMw=14300であった。
[実施例21]
ステアリルアクリレート(18.36g)、ブチルアクリレート(42.84g)、n-酢酸ブチル(75g)、アゾイソブチロニトリル(AIBN)(0.91 g)をN2バブリング下で105℃で3.5時間反応させた後、アゾビスイソブチロニトリル0.15gを15分おきに3回添加した後反応を終了しランダム共重合体(分散剤)を得た。当該ランダム共重合体の重量平均分子量はMw=15700であった。
[比較例5]
ブチルアクリレート(61.2g)、n-酢酸ブチル(75g)、アゾイソブチロニトリル(AIBN)(0.91g)をN2バブリング下で105℃で3.5時間反応させた後、アゾビスイソブチロニトリル0.15 gを15分おきに3回添加した後反応を終了しホモポリマー(分散剤)を得た。当該ホモポリマーの重量平均分子量はMw=16900であった。
分散剤の性能を、以下に示す各試験により評価した。各試験の概要を以下に示す。
試験1:ポリエチレン系・ポリアミド系の結晶性高分子からなる微粒子が分散質として分散した分散体に対する性能評価
試験2:フッ素系樹脂(ポリテトラフルオロエチレン)の微粒子を分散質として有する分散体に対する性能評価(温度による粘度変化)
試験3:分散剤を、ブロック共重合体,ランダム共重合体,ホモポリマーとした場合の比較評価、および分散剤をアクリレート系,メタクリレート系とした場合の比較評価
試験4~6:分散剤に用いられるアルキルアクリレートのアルキル鎖の長さを変えた場合の性能評価(温度による粘度変化)
試験7~9:分散媒を変えた場合の性能評価
試験10:分散剤としてEVA(エチレン‐酢酸ビニル共重合体)を使用した場合の性能評価
以下に、詳細な試験内容を説明する。
分散媒として酢酸n-ブチルを用い、以下の(a)~(d)の結晶性高分子からなる微粒子を分散媒に混和して固形分40~52wt%の分散体を作成した。
(b)ME0520(ドイレックス社製 LDPE(低密度ポリエチレン)ワックスパウダー)
(c)ミペロンPM200(三井化学社製超高分子量PEパウダー)
(d)GPA-500(ガンツ化成社製 12ナイロンパウダー)
分散体における固形分は(a)40wt%,(b)45wt%,(c)50wt%,(d)52wt%とした。これら分散体(a)~(d)に、実施例1で合成した樹脂(分散剤)の酢酸n-ブチル溶液(固形分50wt%)を、分散体全体量に対して分散剤の固形分が1wt%となるように添加し、添加前後の粘度変化を測定した。分散体の温度は25℃であり、粘度は東機産業株式会社製のB型粘度計にて測定した(以下の試験においても同様)。
結晶性高分子からなる微粒子としてルブロンL2(ダイキン製 PTFE(ポリテトラフルオロエチレン)パウダー)を酢酸n-ブチルと混和し、固形分 40%の分散体を作成した。この分散体に、実施例14で合成した樹脂(分散剤)の酢酸n-ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加したうえ分散体の温度を変化させて分散体の粘度変化を測定した。なお、分散剤添加前のルブロンL2の分散体の粘度は、25℃で1,160mPa・sであった。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を酢酸n-ブチルと混和し、固形分 40%の分散体を作成した。その分散体に以下の(e)~(k)に示す分散剤の酢酸n-ブチル溶液(固形分50wt%)を分散体全体量に対し分散剤の固形分が1wt%となるように添加し、添加前後の粘度変化を測定した。分散体の温度は25℃とした。
(f)StA-b-BzA(実施例2)
(g)SMA-b-BMA(実施例15)
(h)ランダムStA/BA(5/5)(実施例18)
(i)ランダムStA/BA(7/3)(実施例16)
(j)StAホモポリマー(比較例1)
(k)BAホモポリマー(比較例5)
なお、StAはステアリルアクリレートを指し、BAはノルマルブチルアクリレートを指し、BzAはベンジルアクリレートを指し、SMAはステアリルメタクリレートを指し、BMAはノルマルブチルメタクリレートを指す。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を酢酸n-ブチルと混和し、固形分 40%の分散体を作成した。この分散体に実施例4で合成したLA-b-BAの樹脂(分散剤、融点11℃)の酢酸n-ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加したうえ分散体の温度を変化させて分散体の粘度変化を測定した。なお、分散剤添加前の分散体の粘度は、25℃で1,430mPa・sであった。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を酢酸n-ブチルと混和し、固形分 40%の分散体を作成した。この分散体に実施例1で合成したStA-b-BAの樹脂(分散剤、融点53℃)の酢酸n-ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加したうえ分散体の温度を変化させて分散体の粘度変化を測定した。なお、分散剤添加前の分散体の粘度は、25℃で1,430mPa・sであった。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を酢酸n-ブチルと混和し、固形分 40%の分散体を作成した。この分散体に実施例3で合成したVA-b-BAの樹脂(分散剤、融点63℃)の酢酸n-ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加したうえ分散体の温度を変化させて分散体の粘度変化を測定した。なお、分散剤添加前の分散体の粘度は、25℃で1,430mPa・sであった。
また、アルキルアクリレートのアルキル鎖の長さが長いほど粘度変化の温度領域が高温側へ移動することがわかった。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を用い、それを以下の(l)~(q)の分散媒に混和して固形分40wt%の分散体を複数作成した。
(m)メチルシクロヘキサン(MCH)
(n)酢酸エチル
(o)メチルエチルケトン(MEK)
(p)ブチルセロソルブ
(q)イソプロピルアルコール(IPA)
これらの分散体に、実施例1で合成した樹脂(分散剤)のn-酢酸ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加し、添加前後の粘度変化を測定した。分散体の温度は25℃とした。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)をペンタエリスリトールテトラエトキシアクリレート(ダイセルサイテック社製 Ebecryl40)と混和し、PE固形分30wt%の分散体を作成した(粘度34,000mPa・s)。それに実施例8で合成した樹脂(分散剤)のn-酢酸ブチル溶液(固形分50wt%)を、分散体全体量に対し分散剤の固形分が1wt%となるように添加すると粘度が 25 ℃で1,258mPa・sとなった。
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を270gと実施例8で合成した樹脂30gと水300gとガラス容器に計量し、攪拌下60℃まで加温した後、水冷しPEパウダーの水分散体を得た。粘度は201mPa・sであった。
[試験10]
結晶性高分子からなる微粒子としてセリダスト3620(クラリアント社製 HDPEパウダー)を酢酸n-ブチルと混和し、固形分40wt%の分散体を作成した。この分散体に、EVA(エチレン‐酢酸ビニル共重合体)を加熱溶解させた酢酸n-ブチル溶液(固形分20wt%)を所定量添加したうえ分散体の温度を変化させて分散体の粘度変化を測定した。
また、VAは酢酸ビニルの組成比(wt%)を示し、mpは融点、MFRはメルトフローレイトをそれぞれ示す。なお、エバフレックスは三井デュポンポリケミカル株式会社の登録商標である。
本発明の分散剤が添加された分散体は、可動装置に良好に用いることができる。可動装置とは、例えばダンパ,ロータリーダンパ,クラッチなどが一例として挙げられる。
[実施例22]
分散媒として、炭化水素系油であるTDオイル10(JX日鉱日石エネルギー株式会社製)を用い、セリダスト3620 (クラリアント社製 HDPE(高密度ポリエチレン)ワックスパウダー)の結晶性高分子からなる微粒子を分散媒に混和して固形分35wt%の分散体を作成した。
[実施例23]
本実施例のダンパ1は、図3に示すように、ハウジング3,可動部材5,フリーピストン7,ヒーター9,およびハウジング3に充填される流体33およびガス35などにより構成される。
ヒーター9は、ハウジング3の外表面に沿って設けられている。このヒーター9は図示しない制御装置によってON/OFFの制御が可能となっている。ヒーター9がONとなると、ハウジング3内部に充填される流体33を加熱して流体33の温度を上昇させることができる。
上述したように構成された本実施例のダンパ1は、可動部材5がシリンダ11の軸方向に動作して、ピストンロッド25に加えられた衝撃を吸収する。また、ピストン23に加わるガス圧力の2室間の差異により、ピストンロッド25に外力が加えられないときは、ピストンロッド25がハウジング3外に突出した位置に移動する。
本実施例のロータリーダンパ41は、図4に示すように、ハウジング43,可動部材45,ヒーター47,およびハウジング43に充填される流体49などにより構成される。
上述したように構成された本実施例のロータリーダンパ41は、シャフト51が回転するとそれに伴ってロータ53も回転する。その際に、ハウジング43に充填された流体49の粘性摩擦を受けて、シャフト51に加えられた回転力を減衰する。
本実施例のクラッチ71は、図5に示すように、ハウジング73,可動部材75,一対の軸受け77Aおよび軸受け77B,ヒーター79,およびハウジング73に充填される流体101などにより構成される。
上述したように構成された本実施例のクラッチ71は、シャフト81に図示しない駆動源から回転力が加えられると、流体101の粘性摩擦によってハウジング73が回転し、それにより軸部89が回転して、図示しない駆動対象物に駆動源の回転力を伝達する。
なお、ハウジング73は回転不能となるように固定し、ハウジング73とは別の回転要素をハウジング73内に設け、シャフト81に回転力が加えられると、粘性摩擦によってその回転要素が回転して外部に出力するように構成してもよい。
以上、本発明の分散体を用いた可動装置の実施例23~25について説明したが、本発明は、上記実施例に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の形態をとり得ることはいうまでもない。
また、可動装置はヒーターを用いない構成であってもよい。その場合、例えばエンジンのような他の熱源からの熱を利用できるようにすることで、ハウジングに充填される流体の温度を上昇させることができる。また、可動装置における可動部材が動作すること、即ち可動部材と流体との摩擦によって流体を加熱させることも可能であり、熱源を用いずに流体の温度を変化させて粘度を制御することもできる。また、流体の温度を下げるための冷却装置を設けてもよい。
具体的には、実施例24のロータリーダンパ41において、図6に示すように、シャフト51が所定の回転速度で回転するようにシャフト51にトルクを与える装置103と、シャフト51に与えられるトルクを測定する装置105と、を備え、さらに、測定されるトルクが所定の値となったときに、所定の出力を行う装置107を備えるように構成することが考えられる。装置105は、測定したトルクの情報を装置107に送信する。
上述した可動装置では、ハウジング73に充填される流体101の温度が変化して粘度が変化し、それによりハウジング73の回転速度やトルクが変化したときに装置125が所定の出力を行い、可動装置を適切に動作させることができる。例えば、流体101の温度が上昇して粘度が上昇したときには、冷却器127に制御信号を出力して流体101の温度を下げるように冷却器127を動作させたり、シャフト81にトルクを与える装置121に制御信号を出力してシャフト81に与えるトルクを小さくしたり回転速度を下たりするなどして、流体101の温度を一定の温度領域に制御して安定運転をすることができる。
本発明の表面処理剤は、それを用いて結晶性高分子を主体としたセパレータの表面処理をすること、または結晶性高分子を主体としたセパレータを用いているリチウムイオン二次電池の電解液の添加剤として用いることができる。
これらの現象を利用し、電極間の電気抵抗からリチウムイオン二次電池の温度上昇を感知したり、温度が上昇すると自発的に電気抵抗が上昇し、またそれに伴う温度低下に伴い、電気抵抗が低下するという、自己温度制御機能をリチウムイオン二次電池に与えることができるようになる。
本発明のセパレータが用いられるリチウムイオン二次電池の構成例を図8に示す。
本発明のセパレータは、結晶性高分子を主成分とするものであって、例えばポリエチレン系またはナイロン系の結晶性高分子が主成分であるものを用いることができる。もちろんそれ以外にも、ポリエチレンとポリプロピレンとを組み合わせた複合系のセパレータなどを用いることができる。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンのいずれか
(D)ポリプロピレン
上記表面処理剤が表面改質機能を良好に発揮するセパレータは、主成分が第1のモノマーと同一の分子構造を有する結晶性高分子からなるセパレータである。
(E)炭素数が7以下の直鎖状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドのいずれか
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンのいずれか
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート
第2のモノマーは、第1のモノマーと共重合体を形成できるものであればよい。なお、リチウムイオン二次電池の電解液を構成する非水溶媒との親和性が良いものを第2のモノマーとして用いてもよい。
また、上記表面処理剤をポリフルオロエチレン系の結晶性高分子を主成分とするセパレータに対して用いる場合には、第1のモノマーを、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された(メタ)アクリレート、またはエチレンとしてもよく、また第2のモノマーを、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれかとしてもよい。
[実施例26]
実施例1で製造したブロック共重合体(分散剤)を表面処理剤としてポリエチレン製のセパレータの表面処理を行った。即ち、本実施例の表面処理剤は実施例1の分散剤と構成は同じであるが、使用方法が異なる。表面処理を行ったセパレータを用いて、図8に示すリチウムイオン二次電池を製造した。
評価試験には、セパレータの代用品として、ポリプロピレン、ポリエチレン、ポリプロピレンの各層からなる膜厚20μmの3層多孔質フィルム(UPORE UP3074、宇部興産株式会社製)を用いた。
本発明のセパレータを介して配置される正極、負極間のインピーダンスの温度による変化を測定した。
表面改質剤は、(i)実施例1で作成したもの(ステアリルアクリレート-b-ブチルアクリレート(StA/BA=3000/5000)、StAブロックが分子量3000でBAブロックが分子量5000のブロックポリマー)と、(ii)ステアリルアクリレート-b-ブチルアクリレート(StA/BA=3000/3000)、StAブロックが分子量3000でBAブロックが分子量3000のブロックポリマー、の2種類を準備した。上記(ii)の製造について、次の実施例27に示す。
SG-1-MA(0.762g、2.0mmol)、ステアリルアクリレート (10.0g、30mmol)、n-酢酸ブチル
(12.5g)を反応容器に取り、20分間N2バブリングを行った。その後N2バブリングを継続したまま、反応液の温度を118℃に保ち反応を行った。4時間後、20分間N2バブリング処理を行ったノルマルブチルアクリレート(10.0g、78mmol)を反応容器に加え再び118℃で反応を続けた。ノルマルブチルアクリレートを加えてから5時間後に反応を終了し、ブロック共重合体を得た。当該ブロック共重合体の重量平均分子量はMw=5910であった。このブロック共重合体を(ii)とした。
ステンレス電極間に上記セパレータを挟み、不活性ガス化雰囲気の元でインピーダンスを測定した。インピーダンス測定装置はHIROKI3522-50, LCR-HITESTERを用いた。測定方法は以下のようにした。
従来、ポリエチレン系のセパレータは、熱暴走を起こしたときにポリエチレンが溶融することによりリチウムイオンが移動する孔を塞ぎ熱暴走を抑制するシャットダウン効果があるが、溶融後に再度冷却することによる体積収縮により内部短絡を引き起こすことや電池自体が再利用できなくなるといった課題があった。
また、電池が高温になると電気抵抗が上昇するため、電気抵抗の値に基づき温度の上昇を判断することができる。即ち、別途温度センサを設けることなく温度の上昇を検知して、外部の冷却装置を用いるなどして電池の過熱を防止することができる。
Claims (42)
- 結晶性高分子からなる微粒子が分散質として分散した分散体に添加して用いられる分散剤であって、
第1のモノマーと、第2のモノマーと、の共重合体を含み、
前記第1のモノマーは、前記分散質と同一の分子構造を有するポリマーとして結晶化可能なモノマーである
ことを特徴とする分散剤。 - 前記第1のモノマーは、次に示す(A)~(D)からなる群より選ばれるいずれか1種以上であることを特徴とする請求項1に記載の分散剤。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(D)ポリプロピレン - 前記第2のモノマーは、次に示す(E)~(N)からなる群より選ばれるいずれか1種以上であることを特徴とする請求項2に記載の分散剤。
(E)炭素数が7以下の直鎖状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドからなる群より選ばれるいずれか1種以上
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート - 前記第1のモノマーと前記第2のモノマーと、の共重合体は、ブロック共重合体である
ことを特徴とする請求項1から請求項3のいずれか1項に記載の分散剤。 - 前記分散剤は、ポリエチレン系またはナイロン系の結晶性高分子からなる微粒子を分散質とする分散体に対して用いられるものである
ことを特徴とする請求項1から請求項4のいずれか1項に記載の分散剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する(メタ)アクリレート、またはエチレンであり、
前記第2のモノマーは、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれか、あるいは、酢酸ビニルである
ことを特徴とする請求項5に記載の分散剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が12個の直鎖状アルキル基を有する(メタ)アクリレートである
ことを特徴とする請求項6に記載の分散剤。 - 前記分散剤は、ポリフルオロエチレン系の結晶性高分子からなる微粒子を分散質とする分散体に対して用いられるものである
ことを特徴とする請求項1から請求項4のいずれか1項に記載の分散剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された(メタ)アクリレート、またはエチレンであり、
前記第2のモノマーは、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれかである
ことを特徴とする請求項8に記載の分散剤。 - 前記分散剤は、当該分散剤が添加された分散体の温度上昇に伴って可逆的に当該分散体の粘度を上昇させる
ことを特徴とする請求項1から請求項9のいずれか1項に記載の分散剤。 - 結晶性高分子からなる微粒子と、
請求項1から請求項4のいずれか1項に記載された分散剤と、
分散媒と、からなる
ことを特徴とする分散体。 - ポリエチレン系またはナイロン系の結晶性高分子からなる微粒子と、
請求項5から請求項7のいずれか1項に記載された分散剤と、
分散媒と、からなる
ことを特徴とする分散体。 - ポリフルオロエチレン系の結晶性高分子からなる微粒子と、
請求項8または請求項9に記載された分散剤と、
分散媒と、からなる
ことを特徴とする分散体。 - 請求項11から請求項13のいずれか1項に記載の分散体の温度を上昇させることにより粘度を上昇させる、あるいは、前記分散体の温度を低下させることにより粘度を低下させる
ことを特徴とする分散体の粘度の調整方法。 - 以下に示す(A)~(D)からなる群より選ばれるいずれか1種以上である第1のモノマーと、以下に示す(E)~(N)からなる群より選ばれるいずれか1種以上である第2のモノマーと、の共重合体を含有することを特徴とする分散剤。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(D)ポリプロピレン
(E)炭素数が7以下の直鎖状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドからなる群より選ばれるいずれか1種以上
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート - 流体を充填可能なハウジングと、
少なくとも一部が前記ハウジングの内部に配設され、前記一部とは異なる部分が前記ハウジング外部に配設され、所定の動作が可能となるように前記ハウジングに保持される可動部材と、
前記ハウジングに充填される請求項11から請求項13のいずれか1項に記載される分散体と、を備える
ことを特徴とする可動装置。 - 前記ハウジングは筒状に形成されており、
前記可動部材は、
前記ハウジングの軸方向に摺動自在に当該ハウジングに内嵌し、当該ハウジングを第1流体室と第2流体室に区画する区画部と、
前記区画部に連結され、前記ハウジングの端部の壁面を貫通して前記ハウジングの外部に突出する突出部と、
前記区画部に設けられ、前記第1流体室と前記第2流体室とを連通させるオリフィスと、を備える
ことを特徴とする請求項16に記載の可動装置。 - 前記可動部材は、
前記ハウジング外部と内部とを連通する軸部と、
前記軸部に連結され、前記ハウジング内部において前記軸部を回転軸として回転可能に配設されるロータと、を備える
ことを特徴とする請求項16に記載の可動装置。 - 前記可動部材は、
前記ハウジング外部と内部とを連通する軸部と、
前記軸部に連結され、前記ハウジング内部において前記軸部を回転軸として回転可能に配設される第1回転要素と、を備え、
さらに、前記回転軸と同じ軸線を回転軸として回転可能であり、前記ハウジングに充填される前記分散体の粘性摩擦によって、前記第1回転要素の回転に伴って回転する第2回転要素と、を備える
ことを特徴とする請求項16に記載の可動装置。 - 前記第2回転要素は前記ハウジングである
ことを特徴とする請求項19に記載の可動装置。 - 前記分散体を加熱するヒーターを備える
ことを特徴とする請求項16から請求項20のいずれか1項に記載の可動装置。 - 前記ヒーターは、前記ハウジングの外側表面に配置される
ことを特徴とする請求項21に記載の可動装置。 - 前記軸部が所定の回転速度で回転するように前記軸部にトルクを与える駆動部と、
前記駆動部が前記軸部に与えるトルクを測定する測定部と、
前記測定部により測定されるトルクが所定の値となったときに、所定の出力を行う出力部と、を備える
ことを特徴とする請求項18、請求項18を引用する請求項21、請求項18を引用する請求項22、のいずれか1項に記載の可動装置。 - 前記軸部に所定のトルクを与える駆動部と、
前記駆動部によって回転する前記軸部の回転速度を測定する測定部と、
前記測定部により測定される回転速度が所定の値となったときに、所定の出力を行う出力部と、を備える
ことを特徴とする請求項18、請求項18を引用する請求項21、請求項18を引用する請求項22、のいずれか1項に記載の可動装置。 - 前記軸部が所定の回転速度で回転するように前記軸部にトルクを与える駆動部と、
前記第2回転要素の回転速度またはトルクを測定する測定部と、
前記測定部により測定される回転速度またはトルクが所定の値となったときに、所定の出力を行う出力部と、を備える
ことを特徴とする請求項19、請求項20、請求項19または請求項20を引用する請求項21、請求項19または請求項20を引用する請求項22、のいずれか1項に記載の可動装置。 - 前記軸部に所定のトルクを与える駆動部と、
前記第2回転要素の回転速度またはトルクを測定する測定部と、
前記測定部により測定される回転速度またはトルクが所定の値となったときに、所定の出力を行う出力部と、を備える
ことを特徴とする請求項19、請求項20、請求項19または請求項20を引用する請求項21、請求項19または請求項20を引用する請求項22、のいずれか1項に記載の可動装置。 - 結晶性高分子を主成分とするリチウムイオン二次電池用のセパレータに用いられる表面処理剤であって、
第1のモノマーと、第2のモノマーと、の共重合体を含み、
前記第1のモノマーは、前記セパレータを構成する前記結晶性高分子と同一の分子構造を有するポリマーとして結晶化可能なモノマーである
ことを特徴とする表面処理剤。 - 前記第1のモノマーは、次に示す(A)~(D)からなる群より選ばれるいずれか1種以上であることを特徴とする請求項27に記載の表面処理剤。
(A)エチレン
(B)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(C)側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された、(メタ)アクリレート,(メタ)アクリルアミド,ビニルエーテル,ビニルエステル,シロキサン,α-オレフィン,置換スチレンからなる群より選ばれるいずれか1種以上
(D)ポリプロピレン - 前記第2のモノマーは、次に示す(E)~(N)からなる群より選ばれるいずれか1種以上であることを特徴とする請求項28に記載の表面処理剤。
(E)炭素数が7以下の直鎖状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(F)分岐状のアルキル基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(G)アリール基を有する、(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミドからなる群より選ばれるいずれか1種以上
(H)オキシエチレン構造またはオキシプロピレン構造を有する,(メタ)アクリレート,ビニルエーテル,ビニルエステル,マレイン酸エステル,イタコン酸エステル,アクリルアミド,置換スチレンからなる群より選ばれるいずれか1種以上
(I)スチレン
(J)アクリル酸
(K)メタクリル酸
(L)酢酸ビニル
(M)側鎖にジメチルシロキサンを有する(メタ)アクリレート
(N)側鎖にフッ素化アルキルを有する(メタ)アクリレート - 前記第1のモノマーと前記第2のモノマーと、の共重合体は、ブロック共重合体である
ことを特徴とする請求項27から請求項29のいずれか1項に記載の表面処理剤。 - ポリエチレン系またはナイロン系の結晶性高分子を主成分とするセパレータに用いられるものである
ことを特徴とする請求項27から請求項30のいずれか1項に記載の表面処理剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有する(メタ)アクリレート、またはエチレンであり、
前記第2のモノマーは、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれか、あるいは、酢酸ビニルである
ことを特徴とする請求項31に記載の表面処理剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が12個の直鎖状アルキル基を有する(メタ)アクリレートである
ことを特徴とする請求項32に記載の表面処理剤。 - ポリフルオロエチレン系の結晶性高分子を主成分とするセパレータに用いられるものである
ことを特徴とする請求項27から請求項30のいずれか1項に記載の表面処理剤。 - 前記第1のモノマーは、側鎖に少なくとも炭素数が8個の直鎖状アルキル基を有しており少なくとも一部がフッ素に置換された(メタ)アクリレート、またはエチレンであり、
前記第2のモノマーは、(メタ)アクリレートであって、炭素数が7以下の直鎖状のアルキル基を有するもの,分岐状のアルキル基を有するもの,アリール基を有するもの,オキシエチレン構造を有するもの,のいずれかである
ことを特徴とする請求項34に記載の表面処理剤。 - リチウムイオン二次電池の正極と負極との間の電気抵抗を、所定の温度領域において、可逆的に、温度上昇に伴って急激に上昇させ、また温度低下に伴って急激に低下させる
ことを特徴とする請求項27から請求項35のいずれか1項に記載の表面処理剤。 - 請求項27から請求項36のいずれか1項に記載の表面処理剤により表面処理されてなるリチウムイオン二次電池用セパレータ。
- ポリエチレン系またはナイロン系の結晶性高分子を主成分とするセパレータであって、請求項31から請求項33のいずれか1項に記載の表面処理剤により表面処理されてなるリチウムイオン二次電池用セパレータ。
- ポリフルオロエチレン系の結晶性高分子を主成分とするセパレータであって、請求項34または請求項35に記載の表面処理剤により表面処理されてなるリチウムイオン二次電池用セパレータ。
- 請求項27から請求項36のいずれか1項に記載の表面処理剤が添加されてなるリチウムイオン二次電池用電解液。
- 請求項37から請求項39のいずれか1項に記載のセパレータを有するリチウムイオン二次電池。
- 請求項40に記載の電解液を有するリチウムイオン二次電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/980,845 US9212333B2 (en) | 2011-01-21 | 2011-11-08 | Dispersant, dispersion, method for adjusting viscosity of dispersant, mobile device, surface treatment agent, electrolytic solution, separator, and rechargeable lithium ion battery |
JP2012553564A JP5997055B2 (ja) | 2011-01-21 | 2011-11-08 | 分散剤,分散体,分散体の粘度の調整方法,可動装置,表面処理剤,電解液,セパレータ,およびリチウムイオン二次電池 |
EP11856150.5A EP2666538B1 (en) | 2011-01-21 | 2011-11-08 | Dispersing agent, dispersion, method for adjusting viscosity of dispersion, mobile device, surface treatment agent, electrolytic solution, separator, and rechargeable lithium ion battery |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPPCT/JP2011/051129 | 2011-01-21 | ||
PCT/JP2011/051129 WO2012098686A1 (ja) | 2011-01-21 | 2011-01-21 | 分散剤,分散体および分散体の粘度の調整方法 |
JPPCT/JP2011/066250 | 2011-07-15 | ||
PCT/JP2011/066250 WO2012098711A1 (ja) | 2011-01-21 | 2011-07-15 | 分散剤,分散体,分散体の粘度の調整方法,および可動装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012098750A1 true WO2012098750A1 (ja) | 2012-07-26 |
Family
ID=46515337
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051129 WO2012098686A1 (ja) | 2011-01-21 | 2011-01-21 | 分散剤,分散体および分散体の粘度の調整方法 |
PCT/JP2011/066250 WO2012098711A1 (ja) | 2011-01-21 | 2011-07-15 | 分散剤,分散体,分散体の粘度の調整方法,および可動装置 |
PCT/JP2011/075743 WO2012098750A1 (ja) | 2011-01-21 | 2011-11-08 | 分散剤,分散体,分散体の粘度の調整方法,可動装置,表面処理剤,電解液,セパレータ,およびリチウムイオン二次電池 |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/051129 WO2012098686A1 (ja) | 2011-01-21 | 2011-01-21 | 分散剤,分散体および分散体の粘度の調整方法 |
PCT/JP2011/066250 WO2012098711A1 (ja) | 2011-01-21 | 2011-07-15 | 分散剤,分散体,分散体の粘度の調整方法,および可動装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9212333B2 (ja) |
EP (1) | EP2666538B1 (ja) |
JP (2) | JP5997055B2 (ja) |
WO (3) | WO2012098686A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015061900A (ja) * | 2013-08-19 | 2015-04-02 | 学校法人福岡大学 | 組成物、リチウム2次電池用セパレータ、リチウム2次電池用固体電解質、及びポリエチレン製品 |
WO2015186828A1 (ja) * | 2014-06-05 | 2015-12-10 | 学校法人福岡大学 | 表面修飾材料、表面修飾用組成物、及び復元方法 |
JP2016079389A (ja) * | 2014-10-21 | 2016-05-16 | 学校法人福岡大学 | 共重合体およびフッ素樹脂改質剤、フッ素樹脂改質方法、ならびにフッ素樹脂改質用の共重合体の製造方法 |
JP2018080329A (ja) * | 2016-11-04 | 2018-05-24 | 学校法人福岡大学 | 共重合体および共重合体の製造方法、ならびに前記共重合体を含有するメッキ助剤、ポリエチレン系樹脂の成形品 |
JP2019050174A (ja) * | 2017-09-12 | 2019-03-28 | 関西ペイント株式会社 | 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池 |
CN109888385A (zh) * | 2019-01-25 | 2019-06-14 | 厦门大学 | 一种锂金属二次电池用电解液及锂金属二次电池 |
JP2020063328A (ja) * | 2018-10-15 | 2020-04-23 | 大日本印刷株式会社 | ブロック共重合体、表面調整剤、粘着組成物、粘着シート、粘着保護シート、積層体、光学部材及び電子部材 |
WO2022025124A1 (ja) * | 2020-07-29 | 2022-02-03 | 学校法人福岡大学 | 改質ポリエチレンテレフタレート成形体およびその製造方法、ならびに共重合体溶液 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014163512A (ja) * | 2013-02-28 | 2014-09-08 | Kayaba Ind Co Ltd | ダンパ |
US9634707B2 (en) * | 2014-07-11 | 2017-04-25 | Superior Communications, Inc. | Mobile device case and armband with fluid chamber |
JP6785090B2 (ja) | 2015-08-19 | 2020-11-18 | Eneos株式会社 | 潤滑油組成物および潤滑油の消泡方法 |
JP6695759B2 (ja) | 2015-08-19 | 2020-05-20 | Jxtgエネルギー株式会社 | 消泡剤および潤滑油組成物 |
JP6695761B2 (ja) * | 2015-08-19 | 2020-05-20 | Jxtgエネルギー株式会社 | 消泡剤および潤滑油組成物 |
EP3357946A1 (en) * | 2017-02-07 | 2018-08-08 | Daikin Industries, Ltd. | Water- and oil-repellent resin composition |
US11046907B2 (en) | 2017-02-22 | 2021-06-29 | Eneos Corporation | Defoaming agent and lubricating oil composition |
JP7083483B2 (ja) | 2018-02-09 | 2022-06-13 | 学校法人福岡大学 | ポリプロピレン樹脂成形体の改質方法および、改質ポリプロピレン樹脂成形体ならびにその製造方法 |
PL3761404T3 (pl) * | 2018-03-02 | 2023-08-14 | Lg Chem, Ltd. | Kompozycja pasty anodowej oraz anoda i akumulator wtórny wytworzone z jej zastosowaniem |
JP7556678B2 (ja) * | 2019-07-18 | 2024-09-26 | 株式会社Adeka | アクリレート共重合体からなる有機モリブデン化合物の基油への溶解分散安定化剤、潤滑油組成物及び有機モリブデン化合物の基油への溶解分散安定性を向上させる方法 |
WO2021014836A1 (ja) * | 2019-07-22 | 2021-01-28 | 学校法人福岡大学 | フッ素樹脂改質剤、改質フッ素樹脂成形体及びその製造方法 |
CN111893582B (zh) * | 2020-08-11 | 2021-08-24 | 山东莱威新材料有限公司 | 一种防静电的超高分子量聚乙烯纤维的加工装置及方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001283811A (ja) | 2000-03-31 | 2001-10-12 | Sony Corp | セパレータ及び非水電解質電池 |
JP2004026887A (ja) * | 2002-06-21 | 2004-01-29 | Mitsui Chemicals Inc | 顔料分散剤およびマスターバッチ組成物 |
JP2005291338A (ja) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | ダンパ |
JP4017746B2 (ja) | 1998-06-01 | 2007-12-05 | 不二ラテックス株式会社 | 回転ダンパ |
JP2009056444A (ja) | 2007-09-03 | 2009-03-19 | Osaka Gas Co Ltd | 分散剤およびこの分散剤を含むポリ乳酸系複合樹脂粒子 |
JP2010090338A (ja) | 2008-10-10 | 2010-04-22 | Dic Corp | フッ素樹脂粒子用分散剤、フッ素樹脂粒子分散液及びフッ素樹脂塗料 |
JP2010099593A (ja) * | 2008-10-23 | 2010-05-06 | Toagosei Co Ltd | 分散剤及びその製造方法 |
JP2010170878A (ja) * | 2009-01-23 | 2010-08-05 | Nec Tokin Corp | リチウムイオン電池 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7708006A (nl) * | 1976-08-02 | 1978-02-06 | Goodrich Co B F | Werkwijze voor de bereiding van nieuwe oplos- bare polymere oppervlakaktieve middelen. |
JPH0823005B2 (ja) * | 1983-05-17 | 1996-03-06 | 株式会社リコー | 非水溶媒系分散液 |
JPH0931138A (ja) * | 1995-07-24 | 1997-02-04 | Sanyo Chem Ind Ltd | 増粘性バインダー組成物 |
JP2000102727A (ja) * | 1998-09-29 | 2000-04-11 | Dainippon Ink & Chem Inc | フッ素系界面活性剤及びその組成物 |
JP2000213563A (ja) * | 1999-01-26 | 2000-08-02 | Matsushita Electric Works Ltd | 電気粘性流体を利用したトルク伝達装置 |
US7776804B2 (en) * | 2005-03-16 | 2010-08-17 | The Lubrizol Corporation | Viscosity improver compositions providing improved low temperature characteristics to lubricating oil |
JP4889190B2 (ja) * | 2003-04-16 | 2012-03-07 | スリーエム イノベイティブ プロパティズ カンパニー | アクリル系熱伝導性組成物及び熱伝導性シート |
JP4560815B2 (ja) * | 2004-07-27 | 2010-10-13 | 日本純薬株式会社 | 粉末状(メタ)アクリル酸系共重合体の製造方法及びその共重合体、並びに高分子乳化剤 |
JP4743747B2 (ja) * | 2004-12-08 | 2011-08-10 | 日立マクセル株式会社 | セパレータおよびその製造方法、並びに非水電解質電池 |
KR100770105B1 (ko) * | 2005-07-06 | 2007-10-24 | 삼성에스디아이 주식회사 | 리튬 이차 전지 |
KR101000171B1 (ko) * | 2006-12-21 | 2010-12-10 | 주식회사 엘지화학 | 겔 폴리머 전해질용 조성물 및 이로부터 제조된 겔 폴리머전해질과 이를 포함하는 전기화학소자 |
JP2008287888A (ja) * | 2007-05-15 | 2008-11-27 | Asahi Kasei Chemicals Corp | 非水電解液二次電池用コーティング組成物 |
US7914963B2 (en) * | 2007-12-12 | 2011-03-29 | Eastman Kodak Company | Toner composition |
EP2372811B1 (en) * | 2008-12-26 | 2015-02-25 | Zeon Corporation | Separator for lithium ion secondary battery, and lithium ion secondary battery |
US9139740B2 (en) * | 2009-03-03 | 2015-09-22 | Kansai Paint Co., Ltd. | Flow modifier for water-based coating material and water-based coating composition containing same |
-
2011
- 2011-01-21 WO PCT/JP2011/051129 patent/WO2012098686A1/ja active Application Filing
- 2011-07-15 WO PCT/JP2011/066250 patent/WO2012098711A1/ja active Application Filing
- 2011-11-08 EP EP11856150.5A patent/EP2666538B1/en active Active
- 2011-11-08 US US13/980,845 patent/US9212333B2/en not_active Expired - Fee Related
- 2011-11-08 JP JP2012553564A patent/JP5997055B2/ja active Active
- 2011-11-08 WO PCT/JP2011/075743 patent/WO2012098750A1/ja active Application Filing
-
2016
- 2016-08-25 JP JP2016164636A patent/JP6310020B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4017746B2 (ja) | 1998-06-01 | 2007-12-05 | 不二ラテックス株式会社 | 回転ダンパ |
JP2001283811A (ja) | 2000-03-31 | 2001-10-12 | Sony Corp | セパレータ及び非水電解質電池 |
JP2004026887A (ja) * | 2002-06-21 | 2004-01-29 | Mitsui Chemicals Inc | 顔料分散剤およびマスターバッチ組成物 |
JP2005291338A (ja) * | 2004-03-31 | 2005-10-20 | Hitachi Ltd | ダンパ |
JP2009056444A (ja) | 2007-09-03 | 2009-03-19 | Osaka Gas Co Ltd | 分散剤およびこの分散剤を含むポリ乳酸系複合樹脂粒子 |
JP2010090338A (ja) | 2008-10-10 | 2010-04-22 | Dic Corp | フッ素樹脂粒子用分散剤、フッ素樹脂粒子分散液及びフッ素樹脂塗料 |
JP2010099593A (ja) * | 2008-10-23 | 2010-05-06 | Toagosei Co Ltd | 分散剤及びその製造方法 |
JP2010170878A (ja) * | 2009-01-23 | 2010-08-05 | Nec Tokin Corp | リチウムイオン電池 |
Non-Patent Citations (1)
Title |
---|
SHIGERU YAO: "A Novel Dispersant for High Content Polyethylene Particle Dispersion", JOURNAL OF THE SOCIETY OF RHEOLOGY, vol. 39, no. 4, 15 September 2011 (2011-09-15), JAPAN, pages 181 - 182, XP055127185 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015061900A (ja) * | 2013-08-19 | 2015-04-02 | 学校法人福岡大学 | 組成物、リチウム2次電池用セパレータ、リチウム2次電池用固体電解質、及びポリエチレン製品 |
WO2015186828A1 (ja) * | 2014-06-05 | 2015-12-10 | 学校法人福岡大学 | 表面修飾材料、表面修飾用組成物、及び復元方法 |
JP2015229725A (ja) * | 2014-06-05 | 2015-12-21 | 学校法人福岡大学 | 表面修飾材料、表面修飾用組成物、及び復元方法 |
US20180327561A1 (en) * | 2014-06-05 | 2018-11-15 | Fukuoka University | Surface-modified material, composition for surface modification, and method for restoration |
JP2016079389A (ja) * | 2014-10-21 | 2016-05-16 | 学校法人福岡大学 | 共重合体およびフッ素樹脂改質剤、フッ素樹脂改質方法、ならびにフッ素樹脂改質用の共重合体の製造方法 |
JP2018080329A (ja) * | 2016-11-04 | 2018-05-24 | 学校法人福岡大学 | 共重合体および共重合体の製造方法、ならびに前記共重合体を含有するメッキ助剤、ポリエチレン系樹脂の成形品 |
JP7090869B2 (ja) | 2016-11-04 | 2022-06-27 | 学校法人福岡大学 | 樹脂成形品のメッキ処理方法、およびメッキ助剤、ならびにポリエチレン系樹脂の成形品 |
JP2019050174A (ja) * | 2017-09-12 | 2019-03-28 | 関西ペイント株式会社 | 二次電池用硫黄化合物固体電解質分散ペースト、これを用いた二次電池用硫黄化合物固体電解質層及びこれを用いた全固体二次電池 |
JP2020063328A (ja) * | 2018-10-15 | 2020-04-23 | 大日本印刷株式会社 | ブロック共重合体、表面調整剤、粘着組成物、粘着シート、粘着保護シート、積層体、光学部材及び電子部材 |
JP7215061B2 (ja) | 2018-10-15 | 2023-01-31 | 大日本印刷株式会社 | ブロック共重合体、表面調整剤、粘着組成物、粘着シート、粘着保護シート、積層体、光学部材及び電子部材 |
CN109888385A (zh) * | 2019-01-25 | 2019-06-14 | 厦门大学 | 一种锂金属二次电池用电解液及锂金属二次电池 |
WO2022025124A1 (ja) * | 2020-07-29 | 2022-02-03 | 学校法人福岡大学 | 改質ポリエチレンテレフタレート成形体およびその製造方法、ならびに共重合体溶液 |
Also Published As
Publication number | Publication date |
---|---|
EP2666538B1 (en) | 2019-04-17 |
WO2012098686A1 (ja) | 2012-07-26 |
JP5997055B2 (ja) | 2016-09-21 |
JP6310020B2 (ja) | 2018-04-11 |
JP2016209879A (ja) | 2016-12-15 |
EP2666538A4 (en) | 2017-06-07 |
US9212333B2 (en) | 2015-12-15 |
EP2666538A1 (en) | 2013-11-27 |
US20140045053A1 (en) | 2014-02-13 |
WO2012098711A1 (ja) | 2012-07-26 |
JPWO2012098750A1 (ja) | 2014-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6310020B2 (ja) | 分散剤,分散体,分散体の粘度の調整方法,可動装置,表面処理剤,電解液,セパレータ,およびリチウムイオン二次電池 | |
JP7447135B2 (ja) | グラフェン炭素ナノ粒子及び分散剤樹脂を含有する分散液 | |
KR102075178B1 (ko) | 전지 전극용 바인더, 및 그것을 사용한 전극 그리고 전지 | |
US10483545B2 (en) | Binder for battery electrodes, and electrode and battery using same | |
US9440849B2 (en) | Nanoparticle organic hybrid materials (NOHMS) | |
Zhao et al. | Improved single-ion conductivity of polymer electrolyte via accelerated segmental dynamics | |
JP6268988B2 (ja) | 電池電極用バインダー、およびそれを用いた電極ならびに電池 | |
EP2941455A1 (en) | Heat transfer-fluid with electrical insulating properties | |
Guan et al. | Star brush block copolymer electrolytes with high ambient-temperature ionic conductivity for quasi-solid-state lithium batteries | |
EP3067974A1 (en) | Battery electrode binder and battery and electrode using same | |
CN108807812A (zh) | 非水电解液二次电池用绝缘性多孔层 | |
CN107732101B (zh) | 非水电解液二次电池用层叠间隔件、非水电解液二次电池用构件及非水电解液二次电池 | |
Zhao et al. | Preparation and performance of the polyethylene-supported polyvinylidene fluoride/cellulose acetate butyrate/nano-SiO 2 particles blended gel polymer electrolyte | |
EP2923396A1 (en) | Separator coated with polymer and conductive salt and electrochemical device using the same | |
JP2020102421A (ja) | 全固体二次電池電極用導電性ペースト及び全固体二次電池 | |
TW201724626A (zh) | 非水電解質二次電池用正極材料 | |
JP7185997B2 (ja) | リチウムイオン電池正極用導電ペースト及びリチウムイオン電池正極用合材ペーストの製造方法 | |
KR102451851B1 (ko) | 바인더 조성물, 전극 합제 및 비수 전해질 이차전지 | |
Naboulsi et al. | Correlation between Ionic Conductivity and Mechanical Properties of Solid-like PEO-based Polymer Electrolyte | |
Yeo et al. | Alternatives to fluorinated binders: recyclable copolyester/carbonate electrolytes for high-capacity solid composite cathodes | |
JP2007226974A (ja) | リチウムイオン二次電池 | |
TW202313773A (zh) | 用於固態鋰金屬二次電池之固體聚合物電解質 | |
JP2003249266A (ja) | ポリマー固体電解質およびポリマー固体電解質電池 | |
JP2007087737A (ja) | リチウムイオン導電性材料及びリチウム二次電池 | |
JP2005183249A (ja) | ゲル状電解質及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11856150 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012553564 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011856150 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13980845 Country of ref document: US |