WO2012090935A1 - フェライト焼結磁石及びその製造方法 - Google Patents

フェライト焼結磁石及びその製造方法 Download PDF

Info

Publication number
WO2012090935A1
WO2012090935A1 PCT/JP2011/080069 JP2011080069W WO2012090935A1 WO 2012090935 A1 WO2012090935 A1 WO 2012090935A1 JP 2011080069 W JP2011080069 W JP 2011080069W WO 2012090935 A1 WO2012090935 A1 WO 2012090935A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
ferrite
atomic
mass
sintered
Prior art date
Application number
PCT/JP2011/080069
Other languages
English (en)
French (fr)
Inventor
義徳 小林
川田 常宏
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to EP11852251.5A priority Critical patent/EP2660830B1/en
Priority to CN201180063132.3A priority patent/CN103282977B/zh
Priority to US13/976,841 priority patent/US9401235B2/en
Priority to BR112013016925-7A priority patent/BR112013016925B1/pt
Priority to KR1020137016953A priority patent/KR101858484B1/ko
Priority to JP2012550936A priority patent/JP5929764B2/ja
Publication of WO2012090935A1 publication Critical patent/WO2012090935A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0311Compounds
    • H01F1/0313Oxidic compounds
    • H01F1/0315Ferrites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • C01G49/0054Mixed oxides or hydroxides containing one rare earth metal, yttrium or scandium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • C01G51/68Cobaltates containing alkaline earth metals, e.g. SrCoO3 containing rare earth, e.g. La0.3Sr0.7CoO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2608Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead
    • C04B35/2633Compositions containing one or more ferrites of the group comprising manganese, zinc, nickel, copper or cobalt and one or more ferrites of the group comprising rare earth metals, alkali metals, alkaline earth metals or lead containing barium, strontium or calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3409Boron oxide, borates, boric acids, or oxide forming salts thereof, e.g. borax
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6585Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage above that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/85Intergranular or grain boundary phases

Definitions

  • the present invention relates to a sintered ferrite magnet and a method for manufacturing the same.
  • Ferrite sintered magnets are used in various applications such as various motors, generators, and speakers.
  • Sr ferrite (SrFe 12 O 19 ) and Ba ferrite (BaFe 12 O 19 ) having a hexagonal M-type magnetoplumbite structure are known.
  • These sintered ferrite magnets are manufactured at a relatively low cost by powder metallurgy using iron oxide and strontium (Sr) or barium (Ba) carbonate as raw materials.
  • Sr ferrite in which a part of Sr is substituted with a rare earth element such as La and a part of Fe is substituted with Co or the like (hereinafter referred to as “SrLaCo ferrite”). ) Is excellent in magnet properties, so that it is widely used in various applications in place of conventional Sr ferrite and Ba ferrite, but further improvement in magnet properties is also desired.
  • Ca ferrite is also known as a ferrite sintered magnet together with the Sr ferrite and Ba ferrite.
  • Ca ferrite has a stable structure represented by a composition formula of CaO—Fe 2 O 3 or CaO-2Fe 2 O 3 and is known to form hexagonal ferrite by adding La.
  • the obtained magnet characteristics are similar to those of the conventional Ba ferrite and are not sufficiently high.
  • Patent No. 3181559 the improvement of B r and H cJ of the Ca ferrite, and for improving the temperature characteristics of the H cJ, were replaced with rare earth elements of La such a portion of Ca, Co, etc. for a portion of Fe in was replaced, 20 Ca ferrite having the above anisotropy field H a kOe (hereinafter referred to as "CaLaCo ferrite") discloses, the anisotropic magnetic field H a of 10% or higher value as compared with Sr ferrite It is described that.
  • CaLaCo ferrite the anisotropic magnetic field H a of 10% or higher value as compared with Sr ferrite It is described that.
  • CaLaCo ferrite although an anisotropic magnetic field H A in excess of SrLaCo ferrite, B r and H cJ are comparable to SrLaCo ferrite, while the squareness ratio is very poor, high coercivity and high angular The mold ratio cannot be satisfied, and it has not yet been applied to various uses such as motors.
  • Japanese Patent Laid-Open No. 2006-104050 proposes a CaLaCo ferrite containing a specific ratio of La and Co by optimizing the composition ratio and molar ratio (n) of each constituent element.
  • 2007/060757 proposes a CaLaCo ferrite in which a part of Ca is replaced by La and Ba
  • International Publication No. 2007/077811 proposes a CaLaCo ferrite in which a part of Ca is replaced by La and Sr. ing.
  • JP 2006-104050, International Publication No. 2007/060757, and International Publication No. 2007/077811 are all improved in magnetic properties compared to the CaLaCo ferrite proposed by Patent No. 3181559, but with higher performance.
  • Patent No. 3181559 proposes a CaLaCo ferrite proposed by Patent No. 3181559.
  • magnet characteristics there has been an increasing demand for further improvement of magnet characteristics.
  • H cJ in order to obtain high H cJ , it is effective to increase the amount of sintering aid added or increase the proportion of SiO 2 added compared to CaCO 3 , but the increase in non-magnetic components and sinterability B r decreases due to a decrease in the squareness ratio H k / H cJ
  • H k is the second quadrant of the J (magnetization magnitude) -H (magnetic field strength) curve
  • J is 0.95 B r
  • H k / H cJ Is lowered.
  • an object of the present invention by improving the H cJ and H k / H cJ while maintaining high B r, is to provide a CaLaCo ferrite sintered magnet and a production method thereof enabling thinner .
  • the inventors focused on the sintering aid added in the pulverization step, and in CaLaCo ferrite, when SiO 2 is added in excess of 1% by mass as a sintering aid, H cJ is increased. specifically improved, whereby, by the addition of CaCO 3 in 1 mass% or more depending on the additive amount of SiO 2, the decrease in B r and H k / H cJ found that can be prevented as much as possible.
  • the inventors conducted research on the relationship between the composition and structure of the CaLaCo ferrite sintered magnet, and as a result, calcined by mixing more La than Ca at the time of raw material blending, the obtained calcined body to the SiO 2 CaLaCo ferrite phase (ferrite phase with hexagonal M-type magnetoplumbite structure) that becomes the main phase in the obtained sintered magnet by adding 2 and CaCO 3 and crushing, molding, and firing
  • a grain boundary phase (second phase) containing Si and Ca and having a lower atomic ratio of La than the main phase and a third phase containing La and having a higher atomic ratio of La than the main phase are generated. I found out. Then, we found that H k / H cJ of the sintered magnet when the third phase is present is greatly improved, and accomplished the present invention.
  • H cJ when SiO 2 is added in excess of 1% by mass is a phenomenon peculiar to CaLaCo ferrite.
  • SrLaCo ferrite described in JP-A-10-149910 and JP-A-11-154604, exceed 1 wt% significantly B r and H k / H cJ on a small improvement in H cJ be added SiO 2 and CaCO 3 may lower.
  • the value of the magnetic field HA is 2.1 MA / m (about 26.4 kOe)
  • the value was higher than 1.8 MA / m (about 22.6 kOe).
  • the H cJ of CaLaCo ferrite magnets having a Co atomic ratio of 0.3 described in the examples of JP-A-2006-104050 and International Publication No. 2007/060757 is 400 kA / m (about 5 kOe) even if it is high. Degree. H cJ of about 400 kA / m is obtained even with SrLaCo ferrite (Co atomic ratio is 0.2).
  • anisotropic magnetic field H A can Notwithstanding higher than SrLaCo ferrite, H cJ is SrLaCo It is comparable to ferrite, HcJ has not improved to the expected level, and the original potential of the material has not been fully demonstrated.
  • the phenomenon peculiar to CaLaCo ferrite in which H cJ is specifically improved when SiO 2 is added in excess of 1% by mass in the present invention is an epoch-making approach that approaches the original potential of the material.
  • Japanese Patent Application Laid-Open No. 11-154604 states that when the ratio of R element (which necessarily contains La) is large, orthoferrite containing R element, etc. It is described that a lot of non-magnetic hetero phases are generated and the saturation magnetization is lowered (paragraphs [0034 and [0038]), suggesting the existence of ortho-ferrite containing La.
  • orthoferrite is a heterogeneous phase and causes a decrease in magnet characteristics. It was done. That is, it has been a common technical knowledge of those skilled in the art to prevent generation of orthoferrite as much as possible.
  • the presence of a third phase containing La and having a higher atomic ratio of La than the main phase greatly improves the H k / H cJ of the sintered magnet. is there.
  • the sintered ferrite magnet of the present invention is a main phase composed of ferrite having a hexagonal M-type magnetoplumbite structure, a grain boundary phase containing Si and Ca and having a lower atomic ratio of La than the main phase, And a third phase containing La and having a higher atomic ratio of La than the main phase.
  • the abundance of the third phase is preferably 0.5% to 5% by volume ratio.
  • the amount of the third phase present is more preferably 1% to 3% by volume ratio.
  • the third phase contains La, Ca, Si, and Fe, and the total amount of the elements is 100 atomic%, 8 atomic% to 50 atomic% La, 20 atomic% to 45 atomic% Ca, 20 atomic% Preferably, it has a composition ratio of about 45 atomic% Si and 4 atomic% to 20 atomic% Fe.
  • the ferrite sintered magnet includes Ca, La, Ba and / or A element which is Ba and / or Sr, Fe and Co, and the composition ratio of the metal elements is expressed by the general formula: Ca 1-xy La x A y Fe 2n-z Co z , the 1-xy, x, y and z, and n representing the molar ratio are 0.3 ⁇ 1-xy ⁇ 0.75, 0.2 ⁇ x ⁇ 0.65, 0 ⁇ y ⁇ 0.2, 0.25 ⁇ z ⁇ 0.65, and 3 ⁇ n ⁇ 6 It is a numerical value satisfying the above, and it is preferable to contain SiO 2 in excess of 1% by mass and 1.8% by mass or less.
  • the method for producing a sintered ferrite magnet of the present invention includes a main phase composed of ferrite having a hexagonal M-type magnetoplumbite structure, and a grain boundary phase containing Si and Ca and having a lower atomic ratio of La than the main phase. And a third phase containing La and having a higher atomic ratio of La than the main phase, and sintered with ferrite containing Ca, La, Ba and / or Sr element A, Fe, and Co.
  • a method for producing a magnet the general formula Ca 1-xy La x A y Fe 2n-z Co z representing the composition ratio of the metal elements in terms of atomic ratio, the 1-xy, x, y and z, and N representing the molar ratio is 0.3 ⁇ 1-xy ⁇ 0.65, 0.3 ⁇ x ⁇ 0.65, 1-xy ⁇ x, 0 ⁇ y ⁇ 0.2, 0.25 ⁇ z ⁇ 0.65, and 4.5 ⁇ n ⁇ 7
  • Preparing raw material powder to satisfy Calcining the raw material powder to obtain a calcined body, Crushing the calcined body to obtain a powder, A molding step of molding the powder and obtaining a molded body, Including a firing step of firing the molded body to obtain a sintered body; Prior to said crushing step, said the calcined body, with respect to the calcined 100 mass%, 1 mass% beyond 1.8 mass% of SiO 2 and CaO in terms 1 wt% or more
  • the addition amount of the SiO 2 is preferably 1.1% by mass or more and 1.6% by mass or less.
  • the amount of CaCO 3 added is preferably 1.2% by mass or more and 2% by mass or less in terms of CaO.
  • the ferrite sintered magnet according to the present invention By using the ferrite sintered magnet according to the present invention, it is possible to provide various electric motor parts such as various motors, generators, and speakers, electric equipment parts, etc., which are reduced in size, weight and efficiency.
  • FIG. 2 is a photograph showing a backscattered electron image by a FE-SEM of a surface (c surface) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 6 is a photograph showing another field of view of a backscattered electron image obtained by FE-SEM of a surface perpendicular to the axial direction (c-plane) of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 4 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM on a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 4 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM on a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 2 is a photograph showing a backscattered electron image by a FE-SEM of a surface (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 6 is a photograph showing another field of view of a backscattered electron image obtained by FE-SEM of a plane (ab plane) parallel to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 2 is a photograph showing a backscattered electron image by a FE-SEM of a surface (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 6 is a photograph showing another field of view of a backscattered electron image obtained by FE-SEM of
  • FIG. 4 is a photograph showing still another field of view of a backscattered electron image by FE-SEM of a plane (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 4 is a photograph showing still another field of view of a backscattered electron image by FE-SEM of a plane (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Example 1.
  • FIG. 6 is a photograph showing a backscattered electron image by a FE-SEM of a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing another field of view of a backscattered electron image obtained by FE-SEM of a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM of a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM of a plane (c-plane) perpendicular to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • FIG. 6 is a photograph showing a backscattered electron image by a FE-SEM of a surface (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • FIG. 6 is a photograph showing another field of view of a backscattered electron image obtained by FE-SEM of a surface (ab surface) parallel to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM of a plane (ab plane) parallel to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing still another field of view of a backscattered electron image obtained by FE-SEM of a plane (ab plane) parallel to the axial direction of the cylindrical ferrite sintered magnet of Comparative Example 1.
  • 6 is a photograph showing a result of FE-TEM structure observation of a ferrite sintered magnet of Example 2.
  • FIG. 6 is another photograph showing the result of FE-TEM structure observation of the sintered ferrite magnet of Example 2.
  • FIG. 6 is still another photograph showing the FE-TEM structure observation result of the ferrite sintered magnet of Example 2.
  • the ferrite sintered magnet of the present invention has a ferrite phase having a hexagonal M-type magnetoplumbite structure as a main phase, contains Si and Ca, and has an atomic ratio of La as compared with the main phase. It has a low grain boundary phase and a third phase containing La and having a higher atomic ratio of La than the main phase.
  • the main phase constituting the sintered ferrite magnet of the present invention is a ferrite phase having a hexagonal M-type magnetoplumbite structure.
  • a magnetic material particularly a sintered magnet
  • main phase a compound that determines the properties (physical properties, magnet properties, etc.) of the magnetic material.
  • the main phase in the present invention that is, the ferrite phase having a hexagonal M-type magnetoplumbite structure also determines basic parts such as physical properties and magnet characteristics of the sintered ferrite magnet of the present invention.
  • Having hexagonal M magnetoplumbite structure means that the X diffraction pattern of hexagonal M magnetoplumbite structure is mainly observed when X diffraction of sintered ferrite magnets is measured under general conditions. That means.
  • the sintered ferrite magnet of the present invention has a grain boundary phase containing Si and Ca and having a lower atomic ratio of La than the main phase.
  • the calcined body is more than 1% by mass of SiO 2 and 100% by mass of SiO 2 and Add 1 to 2% by weight of CaCO 3 in terms of CaO.
  • These SiO 2 and CaCO 3 mainly form a grain boundary phase. Accordingly, the grain boundary phase always contains Si and Ca. Since the grain boundary phase is difficult to observe with an X-ray diffraction pattern, it is preferably confirmed with a transmission electron microscope or the like.
  • the atomic ratio of La in the grain boundary phase is lower than the atomic ratio of La contained in the main phase (atomic ratio of metal elements excluding oxygen).
  • the grain boundary phase basically does not contain La, but if the composition of the sintered magnet is relatively large, there may be a small amount of La in the grain boundary phase that was not acceptable in the main phase and the third phase. is there.
  • La contained in the main phase or the third phase existing around the grain boundary phase or in the lower layer of the grain boundary phase may be detected.
  • the sintered ferrite magnet of the present invention there is a third phase containing La and having a higher atomic ratio of La than the atomic ratio of La contained in the main phase (the atomic ratio of metal elements excluding oxygen).
  • the third phase means "third phase” when the main phase is the first phase and the grain boundary phase is the second phase, and the composition ratio, precipitation order, etc. are defined. It is not a thing.
  • orthoferrite As described above, the existence of ortho-ferrite has been recognized in prior art documents related to SrLaCo ferrite and CaLaCo ferrite proposed in recent years, including JP-A-11-154604. However, since orthoferrite is a heterogeneous phase that lowers the magnet characteristics, it has been considered that orthoferrite should not be included as a constituent phase. That was the common technical knowledge of those skilled in the art. In contrast, the present invention is based on the finding that the presence of a third phase that necessarily contains La and has a higher atomic ratio of La than the main phase greatly improves the H k / H cJ of the sintered magnet. It is obtained.
  • Orthoferrite is a compound having a perovskite structure containing rare earth element (R) represented by “RFeO 3 ” and Fe.
  • the third phase is not composed only of orthoferrite, but orthoferrite may partially exist.
  • the third phase as a result of measurement by EDS (energy dispersive X-ray spectroscopy) analysis of FE-TEM (field emission transmission electron microscope), including La, Ca, Si and Fe, the composition ratio of each element
  • EDS energy dispersive X-ray spectroscopy
  • FE-TEM field emission transmission electron microscope
  • the grain boundary phase and the third phase contain oxygen in addition to the above elements, when composition analysis is performed by EDS, boron (B), carbon (C), nitrogen (N), oxygen (O Since it is difficult to quantify light elements such as), the composition is expressed in the present application in terms of atomic ratios of elements other than light elements that can be quantified by EDS.
  • the sintered ferrite magnet of the present invention as shown in the manufacturing method described later, calcined raw material powder blended so that the amount of La is larger than the amount of Ca, to the calcined body, to 100% by mass of the calcined body On the other hand, it is produced by adding SiO 2 exceeding 1 mass% and 1.8 mass% or less and CaCO 3 of 1 mass% or more and 2 mass% or less in terms of CaO.
  • the amount of SiO 2 and CaCO 3 added is larger than the amount added to general SrLaCo ferrite and CaLaCo ferrite.
  • the third phase containing a specific amount of La, Ca, Si, Fe is considered to be caused by such a unique manufacturing method, and the presence of the third phase is H k / H of the sintered magnet. It is thought that cJ is improved.
  • the third phase when the third phase is present in the sintered magnet in a volume ratio of 0.5% to 5%, the effect of improving the H k / H cJ of the sintered magnet is observed. . In particular, when the volume ratio is 1% to 3%, the improvement of H k / H cJ is remarkable.
  • the volume ratio of the third phase is obtained by processing the reflected electron image (BSE image) of the cross section of the sintered magnet by FE-SEM (field emission scanning electron microscope). An area ratio is obtained, and the area ratio is a volume ratio.
  • a phase may be present.
  • a method such as Rietveld analysis can be applied to the quantification of heterogeneous phases by X-ray diffraction.
  • the sintered ferrite magnet having a main phase, a grain boundary phase and a third phase of the present invention is preferably composed of the following composition. Outside the composition range shown below, at least one of B r , H cJ , and H k / H cJ decreases, so that a preferable ferrite sintered magnet cannot be obtained. The reason for limiting the composition range of each element will be described in detail in a method for manufacturing a sintered ferrite magnet described later.
  • the sintered ferrite magnet of the present invention includes Ca, La, A element which is Ba and / or Sr, Fe, and Co, and the composition ratio of the metal elements is represented by the general formula: Ca 1 -xy La x A y Fe 2n-z Co z 1-xy, x, y and z, and n representing a molar ratio are 0.3 ⁇ 1-xy ⁇ 0.75, 0.2 ⁇ x ⁇ 0.65, 0 ⁇ y ⁇ 0.2, 0.25 ⁇ z ⁇ 0.65, and 3 ⁇ n ⁇ 6 And contains SiO 2 in excess of 1% by mass and 1.8% by mass or less.
  • Step of preparing raw material powders Ca compound, La compound, Ba and / or Sr compound, Fe compound and Co compound are represented by the general formula: Ca 1-xy La x A y Fe 2n -z Co z (atomic ratio) [where 1-xy, x, y and z and n representing the molar ratio are 0.3 ⁇ 1-xy ⁇ 0.65, 0.3 ⁇ x ⁇ 0.65, 1-xy ⁇ x, 0 ⁇ y ⁇ 0.2, 0.25 ⁇ z ⁇ 0.65, and 4.5 ⁇ n ⁇ 7 It is a numerical value that satisfies ] To prepare a raw material powder.
  • the Ca content (1-xy) in the raw material powder is 0.3 ⁇ 1-xy ⁇ 0.65.
  • Ca is less than 0.3 is not preferable because the B r and H k / H cJ is reduced.
  • a Ca content of 0.65 or more is not preferable because the Ca content is larger than the La content (x), and the third phase is not formed in the sintered ferrite magnet.
  • the content (x) of La in the raw material powder is 0.3 ⁇ x ⁇ 0.65.
  • the Ca content is larger than the La content (x), and the third phase is not formed in the sintered ferrite magnet.
  • An La content of 0.65 or more is not preferable because the La content in the grain boundary phase or the third phase increases excessively and Br decreases.
  • a part of La may be substituted with at least one rare earth element other than La. The amount of substitution is preferably 50% or less of La by molar ratio.
  • the La content (x) of the sintered ferrite magnet is set to 0.2 ⁇ x ⁇ 0.65.
  • the Ca content (1-xy) and the La content (x) in the raw powder are 1-xy ⁇ x, that is, if the La content is not larger than the Ca content, the ferrite
  • the third phase is not formed in the sintered magnet, and the improvement effect of H k / H cJ cannot be obtained. This is the first feature in the production method of the present invention.
  • the element A is Ba and / or Sr.
  • the content (y) of element A in the raw material powder is 0 ⁇ y ⁇ 0.2. Even if it does not contain the A element, the effect of the present invention is not impaired, but by adding the A element, the crystal in the calcined body is refined and the aspect ratio is reduced, so that H cJ is further improved. The effect that can be obtained.
  • the content of element A also tends to decrease in the sintered ferrite magnet after firing due to the addition of CaCO 3 before the pulverization process, but since the addition amount is small and the amount of change is also small, The content range is the same.
  • the Co content (z) in the raw material powder is 0.25 ⁇ z ⁇ 0.65. If Co is less than 0.25, the effect of improving magnetic properties by adding Co cannot be obtained. In addition, since unreacted ⁇ -Fe 2 O 3 remains in the calcined body, slurry leakage occurs from the mold cavity during wet molding. If Co exceeds 0.65, a heterogeneous phase containing a large amount of Co is generated and the magnetic properties are greatly deteriorated.
  • a part of Co can be substituted with at least one selected from Zn, Ni and Mn.
  • the manufacturing cost can be reduced without deteriorating the magnet characteristics.
  • H cJ is slightly lowered, thereby improving the B r.
  • the total substitution amount of Zn, Ni and Mn is preferably 50% or less of Co in molar ratio.
  • the molar ratio n of the raw material powder is preferably 4.5 ⁇ n ⁇ 7.
  • n is less than 4.5, the ratio of the nonmagnetic portion increases, and the form of the calcined particles becomes excessively flat, resulting in a significant decrease in HcJ . If n exceeds 7, unreacted ⁇ -Fe 2 O 3 remains in the calcined body, and slurry leakage occurs from the mold cavity during wet molding, which is not preferable.
  • the molar ratio n of the sintered ferrite magnet is 3 ⁇ x ⁇ 6.
  • the value of the molar ratio x / z between La and Co in the raw material powder is preferably 1 ⁇ x / z ⁇ 3.
  • a more preferable range is 1.2 ⁇ x / z ⁇ 2.
  • the above composition is indicated by the atomic ratio of metal elements.
  • the present invention relates to a sintered ferrite magnet, and “ferrite” is a general term for compounds formed by an oxide of a divalent cationic metal and trivalent iron. Therefore, the calcined body (ferrite) in the production method of the present invention necessarily contains oxygen (O).
  • the composition of the calcined body containing oxygen (O) is represented by the following general formula.
  • the number of moles of oxygen varies depending on the valence of Fe and Co, the n value, and the like.
  • the ratio of oxygen to metal elements changes due to oxygen vacancies when fired in a reducing atmosphere, changes in the valence of Fe in the ferrite phase, changes in the valence of Co, etc. To do. Therefore, the actual mole number ⁇ of oxygen may deviate from 19. Therefore, in this application, a composition is described by the atomic ratio of the metal element whose composition is most easily specified.
  • the raw material powder can be constituted by using a compound such as an oxide, carbonate, hydroxide, nitrate, or chloride of each metal without any restriction.
  • the compound is not limited to powder and may be a solution.
  • the Ca compound Ca carbonate, oxide, chloride or the like is used.
  • La compounds include oxides such as La 2 O 3 , hydroxides such as La (OH) 3 , carbonates such as La 2 (CO 3 ) 3 / 8H 2 O, or hydrates thereof. use.
  • the element A compound Ba and / or Sr carbonate, oxide, chloride and the like are used.
  • As the iron compound iron oxide, iron hydroxide, iron chloride, mill scale or the like is used.
  • Co compounds include CoO, Co 3 O 4 , Co 2 O 3 and other oxides, CoOOH, Co (OH) 2 and other hydroxides, CoCO 3 and other carbonates, and Co 3 O 4 ⁇ m 1 H 2 O (m 1 is a positive number), m 2 CoCO 3 ⁇ m 3 Co (OH) 2 ⁇ m 4 H 2 O etc. (m 2 , m 3 , m 4 are positive numbers) To do.
  • Raw material powders other than CaCO 3 , Fe 2 O 3 and La 2 O 3 may be added from the time of raw material mixing, or may be added after calcination.
  • CaCO 3 , Fe 2 O 3 , La 2 O 3 and Co 3 O 4 are blended, mixed and calcined, then the calcined body is pulverized, molded and sintered to produce a ferrite sintered magnet
  • a compound containing B such as B 2 O 3 or H 3 BO 3 may be added in an amount of about 1% by mass as necessary.
  • H 3 BO 3 is effective in further improvement of H cJ and B r.
  • the amount of H 3 BO 3 added is preferably 0.3% by mass or less, and most preferably about 0.2% by mass with respect to the total amount of the raw material powder. Amount of H 3 BO 3 is less effect of improving low and B r than 0.1 wt%, B r is reduced as more than 0.3 mass%.
  • H 3 BO 3 also has the effect of controlling the shape and size of crystal grains during sintering, so it may be added after calcination (before pulverization or before sintering), before calcination and after calcination Both of them may be added.
  • the mixing and mixing of the raw material powders may be performed either wet or dry.
  • the raw material powder can be mixed more uniformly.
  • water it is preferable to use water as the solvent.
  • a known dispersant such as ammonium polycarboxylate or calcium gluconate may be used.
  • the mixed raw material slurry is dehydrated to obtain a mixed raw material powder.
  • the calcination step is preferably performed in an atmosphere having an oxygen concentration of 5% or more. If the oxygen concentration is less than 5%, abnormal grain growth, generation of a heterogeneous phase, and the like are caused. A more preferable oxygen concentration is 20% or more.
  • the solid phase reaction in which the ferrite phase is formed proceeds with increasing temperature and is completed at about 1100 ° C.
  • the calcining temperature is less than 1100 ° C., unreacted hematite (iron oxide) remains, resulting in poor magnet characteristics.
  • the calcining temperature exceeds 1450 ° C., crystal grains grow too much, and thus, it may take a long time for the grinding in the grinding process.
  • the calcination temperature is preferably 1100 to 1450 ° C, more preferably 1200 to 1350 ° C.
  • the calcination time is preferably 0.5 to 5 hours.
  • the production method of the present invention is 1% in terms of SiO 2 and CaO of more than 1% by mass and less than 1.8% by mass with respect to 100% by mass of the calcined body.
  • the addition amount of SiO 2 can not be obtained the effect of improving the H cJ at most 1 mass%, with H cJ is reduced when it exceeds 1.8 mass%, undesirably drops B r and H k / H cJ.
  • a more preferable addition amount is 1.1 to 1.6% by mass.
  • SiO 2 is most preferably added to the calcined body, a part of the total addition amount can be added before calcining (when the raw material powder is blended). By adding before calcination, the size control of crystal grains during calcination can be performed.
  • CaCO 3 is added in an amount of 1% by mass to 2% by mass in terms of CaO with respect to 100% by mass of the calcined body according to the amount of SiO 2 added.
  • the addition of CaCO 3, can prevent a decrease in B r and H k / H cJ, high synergistic effect with the first feature of many to contain La than Ca described above, it could not be conventionally obtained while maintaining the B r, sintered ferrite magnet having a high H cJ and high H k / H cJ can be obtained.
  • Amount of CaCO 3 (CaO equivalent) is not preferable because the B r and H k / H cJ exceeds and 2% by weight less than 1% by weight decreases.
  • a more preferable addition amount is 1.2 to 2% by mass.
  • the magnet characteristics can be further improved by setting [CaCO 3 addition amount (CaO equivalent) / SiO 2 addition amount] to 0.8-2.
  • Pulverization process The calcined body is pulverized with a vibration mill, ball mill, attritor or the like to obtain pulverized powder.
  • the average particle size of the pulverized powder is preferably about 0.4 to 0.8 ⁇ m (air permeation method).
  • the pulverization step may be either dry pulverization or wet pulverization, but is preferably performed in combination.
  • the wet pulverization is performed using water and / or a non-aqueous solvent (an organic solvent such as acetone, ethanol, xylene).
  • a non-aqueous solvent an organic solvent such as acetone, ethanol, xylene.
  • a slurry in which water (solvent) and the calcined body are mixed is generated. It is preferable to add a known dispersant and / or surfactant to the slurry in a solid content ratio of 0.2 to 2% by mass. After the wet pulverization, it is preferable to concentrate and knead the slurry.
  • Cr 2 O 3 , Al 2 O 3 or the like can be added to improve the magnet characteristics in addition to the above-described SiO 2 and CaCO 3 .
  • These addition amounts are each preferably 5% by mass or less.
  • the first finely pulverizing step the step of subjecting the powder obtained by the first finely pulverized step to heat treatment, and the second finely pulverizing step of pulverizing the heat-treated powder again.
  • heat treatment re-pulverizing step it can be improved further H cJ addition to H cJ improvement by the addition of SiO 2 and CaCO 3.
  • the heat treatment re-pulverization step is a practically meaningful step.
  • the first fine pulverization is the same as the normal pulverization described above, and is performed using a vibration mill, a jet mill, a ball mill, an attritor or the like.
  • the average particle size of the pulverized powder is preferably about 0.4 to 0.8 ⁇ m (air permeation method).
  • the pulverization step may be either dry pulverization or wet pulverization, but is preferably performed in combination.
  • the heat treatment performed after the first pulverization step is preferably performed at 600 to 1200 ° C., more preferably 800 to 1100 ° C.
  • the heat treatment time is not particularly limited, but is preferably 1 second to 100 hours, and more preferably about 1 to 10 hours.
  • the second fine pulverization performed after the heat treatment step is performed using a vibration mill, a jet mill, a ball mill, an attritor or the like, similarly to the first fine pulverization. Since almost the desired particle size has already been obtained in the first pulverization step, particle size adjustment and necking removal are mainly performed in the second pulverization step. Therefore, it is preferable to reduce the pulverization conditions by shortening the pulverization time or the like than the first fine pulverization step. If pulverization is performed under the same conditions as in the first pulverization step, ultrafine powder is generated again, which is not preferable.
  • the average particle size of the powder after the second fine pulverization is about 0.4 to 0.8 ⁇ m (air permeation) as in the normal pulverization process, in order to obtain H cJ higher than the ferrite sintered magnet obtained by the normal pulverization process. If you want to take advantage of advantages such as shortening the pulverization time, further improving dewaterability, and improving the press cycle, it is about 0.8 to 1.2 ⁇ m, preferably about 0.8 to 1.0 ⁇ m (air permeation method) Is preferable.
  • Firing step The molded body obtained by press molding is degreased if necessary and then fired. Firing is performed using an electric furnace, a gas furnace, or the like. Firing is preferably performed in an atmosphere having an oxygen concentration of 10% or more. If the oxygen concentration is less than 10%, abnormal grain growth, generation of a heterogeneous phase, and the like are caused, and the magnet characteristics are deteriorated. The oxygen concentration is more preferably 20% or more, and most preferably 100%.
  • the firing temperature is preferably 1150 ° C to 1250 ° C.
  • the firing time is preferably 0.5 to 2 hours.
  • the average crystal grain size of the sintered magnet obtained by the firing process is about 0.5-2 ⁇ m.
  • a ferrite sintered magnet is finally manufactured through known manufacturing processes such as a processing step, a cleaning step, and an inspection step.
  • This raw material powder was mixed in a wet ball mill for 4 hours, dried and sized. Subsequently, it was calcined at 1300 ° C. for 3 hours in the atmosphere, and the obtained calcined body was coarsely pulverized with a hammer mill to obtain a coarsely pulverized powder.
  • 1.2 wt% SiO 2 powder and 1.5 wt% CaCO 3 (CaO equivalent) are added to 100 wt% of the coarsely pulverized powder, and a wet ball mill using water as a solvent has an average particle size of 0.55 by the air permeation method.
  • the obtained finely pulverized slurry was molded at a pressure of about 50 MPa while applying a magnetic field of about 1.3 T so that the pressure direction and the magnetic field direction were parallel while removing the solvent.
  • the obtained compact was fired at 1210 ° C. for 1 hour in the air to obtain a cylindrical sintered magnet (the axial direction is the magnetic field direction).
  • the La distribution of the obtained cylindrical sintered magnet was obtained by observing the structure with the composition contrast of the reflected electron image (BSE image) using FE-SEM (field emission scanning electron microscope).
  • the structure of La was observed on a plane (c-plane) perpendicular to the axial direction of the cylindrical sintered magnet (ab-plane) and a plane parallel to the axial direction (ab-plane).
  • FIGS. 1A to 1D show the c-plane
  • FIGS. 2A to 2D show the ab-plane.
  • the bright part (white part) is a phase having a higher atomic ratio of La than the main phase, that is, the third phase in the present application. is there. From FIGS. 1 (A) to (D) and FIGS. 2 (A) to (D), it can be seen that the third phase is dispersed in the sintered magnet.
  • a cylindrical sintered magnet was obtained.
  • the La distribution of the obtained cylindrical sintered magnet was determined using FE-SEM (field emission scanning electron microscope) in the same manner as in Example 1. The results are shown in FIGS. 3 (A) to (D) and FIGS. 4 (A) to (D).
  • 3 (A) to (D) show the c-plane
  • FIGS. 4 (A) to (D) show the ab-plane.
  • Example 1 the volume ratio of the third phase occupying the observation region was determined and found to be 0% in any field of view in FIGS. 3 (A) to (D) and FIGS. 4 (A) to (D). Or less than 0.5%.
  • Example 2 In Example 1, FIB (focused ion beam) processing was performed on the third phase and its periphery, in which the atomic ratio of La is higher than the main phase obtained from the composition contrast of the backscattered electron image, and the surface was cut. Structure observation by -TEM (field emission transmission electron microscope) and composition analysis by EDS (energy dispersive X-ray spectroscopy) were performed. The results of the tissue observation are shown in FIGS. 5 to 7, and the results of the composition analysis are shown in Table 2. All numerical values in Table 2 are expressed in atomic ratios (%).
  • the parts indicated by a, b, c and h in FIG. 5, the parts indicated by d, e, f and i in FIG. 6, and the part indicated by g in FIG. 7 are the third phase. Further, the main phase is the portion indicated as main phase 1 in FIG. 5, main phase 2 in FIG. 6, and main phase 3 in FIG.
  • (a), (b), and (c) are the results of FE-TEM observation of the structure and composition analysis by EDS for the grain boundary phase (particularly the grain boundary triple point) different from those shown in FIGS. is there.
  • Ca, La, Co, and Fe are included in the main phase parts indicated by main phases 1 to 3 in FIGS. 5 to 7, and in particular, Co and Fe are present in other parts.
  • the main phase is CaLaCo-based ferrite.
  • the third phase portion indicated by a to i in FIGS. 5 to 7 is contained in the third phase portion indicated by a to i in FIGS. 5 to 7, and the atomic ratio of La in particular is the main phase. Higher than the atomic ratio of La contained in. That is, it can be seen that the third phase necessarily contains La and has a higher atomic ratio of La than the main phase.
  • the third phase part indicated by a to i in FIGS. 5 to 7 has a relatively high atomic ratio of La to the third phase (a to g part) and La atomic ratio.
  • the third phase with a relatively high atomic ratio of La is 21 atomic% to 25 atomic% Ca, 21 atomic% to 38 atomic% Si, 33 atomic% to 46 atomic% La, and 4 atomic% to 11 atoms.
  • % Fe is included.
  • the third phase with a relatively low atomic ratio of La is 40 atomic% to 42 atomic% Ca, 39 atomic% to 41 atomic% Si, 8 atomic% to 13 atomic% La, and 6 atomic% to Contains 10 atomic% Fe.
  • the composition is slightly different between each part of a to i, Ca, Si, La and Fe are necessarily contained in all parts, and La is higher than the atomic ratio of La contained in the main phase. It has become.
  • the third phase includes a phase in which the atomic ratio of La is relatively high and a phase in which the atomic ratio of La is relatively low, and its composition is 8 atomic% to 50 atomic% of La, 20 It is in the range of atomic percent to 45 atomic percent Ca, 20 atomic percent to 45 atomic percent Si, and 4 atomic percent to 20 atomic percent Fe.
  • a to i may or may not contain a small amount of Co, but in EDS analysis, the peaks of Fe-K ⁇ and Co-K ⁇ overlap. In addition, since it is difficult to separate them, a certain amount of error is picked up. Therefore, when the amount of Co is less than 1 atomic%, it is considered that Co is hardly contained. It is not known exactly whether Co is contained in the third phase, but even if Co is contained, since it is a very small amount, it has almost no effect on the atomic ratio of Ca, Si, La and Fe. do not do.
  • the composition of the grain boundary phase obtained by observing the structure with FE-TEM and analyzing the composition with EDS in a different field of view (especially the triple boundary of grain boundaries).
  • La is included in the main phase. It can be seen that it is lower than the atomic ratio of La. That is, it can be seen that the grain boundary phase in the present invention necessarily contains Si and Ca and has a lower atomic ratio of La than the main phase.
  • the sintered ferrite magnet of the present invention includes a main phase composed of CaLaCo ferrite, that is, a ferrite phase having a hexagonal M-type magnetoplumbite structure, and Si and Ca. It can be seen that it has a grain boundary phase with a low atomic ratio and a third phase that contains La and has a higher atomic ratio of La than the main phase.
  • Example 3 Composition formula: Ca 1-xy La x Sr y ′ Bay y ′′ Fe 2n-z Co z O ⁇ ( ⁇ ⁇ 0), 1-xy, x, y ′, y ′′, z and n are in Table 3.
  • CaCO 3 powder so that the values shown in, La (OH) 3 powder, Fe 2 O 3 were blended powders and Co 3 O 4 powder, the amount of SiO 2 and CaCO 3 to be added during pulverization, and calcination temperature
  • a sintered magnet was obtained in the same manner as in Example 1 except that the changes were made as shown in Table 3.
  • the presence or absence of the third phase is evaluated by the composition contrast of the backscattered electron image in the same manner as in Example 1.
  • H k is, J in the second quadrant of the (magnetization magnitude) -H (field strength) curve, J is the value of the position of H to a value of 0.95B r is there.
  • ferrite of sample No. 17 (0.7% by mass of CaO and 0.6% by mass of SiO 2 ) corresponding to a conventional CaLaCo ferrite sintered magnet with a relatively small amount of CaO and SiO 2 added.
  • Sample No. 11 (1.5% by mass of CaO and 1.2% by mass of SiO 2 ) in which the added amount of SiO 2 exceeds 1% by mass and the added amount of CaO is 1% by mass or more with respect to the sintered magnet.
  • H cJ from 351 kA / m to 476 kA / m.
  • the ferrite sintered magnet of the sample No.11 is, B r is decreased slightly, H k / H cJ was reduced to 81.6% from 84.3%.
  • the amount of SiO 2 added exceeds 1% by mass, and the addition of CaO the amount is at least 1 wt% and ferrite sintered magnet of sample No.2 of the present invention comprising a third phase, (0.448 T against 0.458 T), H cJ (351 kA high B r while maintaining the 455 kA / m) and H k / H cJ (89.3% vs. 84.3%).
  • the sintered ferrite magnet of the present invention has two effects, that is, an improvement effect of H k / H cJ based on the third phase and an improvement effect of H cJ based on a large amount of addition of SiO 2 and CaCO 3 . while maintaining a high B r that could not be conventionally obtained, it can be seen to exhibit a high H cJ and high H k / H cJ.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Hard Magnetic Materials (AREA)
  • Magnetic Ceramics (AREA)
  • Compounds Of Iron (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

 六方晶のM型マグネトプランバイト構造を有するフェライトからなる主相と、Si及びCaを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有することを特徴とするフェライト焼結磁石、及び原料配合時にCaよりもLaを多く配合して仮焼し、得られた仮焼体に1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加して、粉砕、成形、焼成することにより、前記第3相を含有するフェライト焼結磁石を製造する方法。

Description

フェライト焼結磁石及びその製造方法
 本発明は、フェライト焼結磁石及びその製造方法に関する。
 フェライト焼結磁石は、各種モータ、発電機、スピーカ等、種々の用途に使用されている。代表的なフェライト焼結磁石として、六方晶のM型マグネトプランバイト構造を有するSrフェライト(SrFe12O19)及びBaフェライト(BaFe12O19)が知られている。これらのフェライト焼結磁石は、酸化鉄とストロンチウム(Sr)又はバリウム(Ba)の炭酸塩等とを原料とし、粉末冶金法によって比較的安価に製造される。
 近年、環境に対する配慮などから、自動車用電装部品、電気機器用部品等において、部品の小型・軽量化及び高効率化を目的として、フェライト焼結磁石の高性能化が要望されている。特に、自動車用電装部品に用いられるモータには、高い残留磁束密度Br(以下、単に「Br」という)を保持しながら、薄型化しても減磁しない高い保磁力HcJ(以下、単に「HcJ」という)を有するフェライト焼結磁石が要望されている。
 特開平10-149910号や特開平11-154604号は、SrフェライトにおけるSrの一部をLa等の希土類元素で置換し、Feの一部をCoで置換することにより、HcJ及びBrを向上させたフェライト焼結磁石を提案している。
 特開平10-149910号及び特開平11-154604号に記載の、Srの一部をLa等の希土類元素で置換し、Feの一部をCo等で置換したSrフェライト(以下「SrLaCoフェライト」という)は磁石特性に優れることから、従来のSrフェライトやBaフェライトに代わり各種用途に多用されつつあるものの、さらなる磁石特性の向上も望まれている。
 一方、フェライト焼結磁石として、上記SrフェライトやBaフェライトとともに、Caフェライトも知られている。Caフェライトは、CaO-Fe2O3又はCaO-2Fe2O3の組成式で表される構造が安定であり、Laを添加することによって六方晶フェライトを形成することが知られている。しかし、得られる磁石特性は、従来のBaフェライトの磁石特性と同程度であり、充分に高くはなかった。
 特許第3181559号は、CaフェライトのBr及びHcJの向上、並びにHcJの温度特性の改善を図るため、Caの一部をLa等の希土類元素で置換し、Feの一部をCo等で置換した、20 kOe以上の異方性磁界HAを有するCaフェライト(以下「CaLaCoフェライト」という)を開示しており、この異方性磁界HAはSrフェライトに比べて10%以上高い値であると記載している。
 しかしながら、CaLaCoフェライトは、SrLaCoフェライトを上回る異方性磁界HAを有するものの、Br及びHcJはSrLaCoフェライトと同程度であり、一方で角型比が非常に悪く、高い保磁力と高い角型比とを満足することができず、モータ等の各種用途に応用されるまでには至っていない。
 CaLaCoフェライトの磁石特性を改良すべく、種々の提案がなされている。例えば、特開2006-104050号は、各構成元素の組成比及びモル比(n)の値を最適化し、La及びCoを特定の比率で含有させたCaLaCoフェライトを提案しており、国際公開第2007/060757号は、Caの一部をLaとBaで置換したCaLaCoフェライトを提案しており、国際公開第2007/077811号は、Caの一部をLa及びSrで置換したCaLaCoフェライトを提案している。
 特開2006-104050号、国際公開第2007/060757号及び国際公開第2007/077811号は、特許第3181559号が提案したCaLaCoフェライトに対していずれも磁石特性は向上しているものの、高性能化の要求は近年益々強くなる一方であり、さらなる磁石特性の向上が要望されている。
 フェライト焼結磁石において、トレードオフの関係にあるBrとHcJとのバランスを変化させようとする場合、焼結助剤としてSiO2、CaCO3等を添加することが知られている。高いBrを得るには、非磁性成分となる焼結助剤の添加量を焼結に必要な液相成分を確保できる範囲で少なくしたり、SiO2に比べCaCO3の添加割合を増やしたりすることが有効であるが、微細な焼結組織を維持することが困難になりHcJが低下する。一方、高いHcJを得るには、焼結助剤の添加量を増やしたり、CaCO3に比べSiO2の添加割合を増やしたりすることが有効であるが、非磁性成分の増加や焼結性の低下によりBrが低下し、角型比Hk/HcJ[Hkは、J(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.95Brの値になる位置のHの値。以下、単に「Hk/HcJ」という。]の低下を招く。
 従来のフェライト焼結磁石、特に近年提案されたSrLaCoフェライト及びCaLaCoフェライトにおいては、高いBrを維持する必要性から、SiO2、CaCO3等の焼結助剤の添加量をできるだけ少なくすることが一般的であった。例えば、特開2006-104050号は、仮焼体の粉砕時に、CaO換算で0.3~1.5質量%のCaCO3、及び0.2~1.0質量%のSiO2を添加するのが好ましいと記載しており、国際公開第2007/060757号は、仮焼体の粉砕時に、0.2~1.5質量%(CaO換算で0.112~0.84質量%)のCaCO3、0.1~1.5質量%のSiO2を添加するのが好ましいと記載している。
 しかしながら、特開2006-104050号及び国際公開第2007/060757号の実施例には、SiO2及びCaCO3(CaO換算)の添加量がそれぞれ0.9質量%以下であるCaLaCoフェライト磁石しか記載されていない。つまりこれらのフェライト磁石はBrの向上を重視しているため、0.9質量%を超えてSiO2及びCaCO3を添加することは想定されておらず、そのようなCaLaCoフェライト磁石の磁気性能(Br、HcJ及びHk/HcJ)については全く知見がない。
 従って、本発明の目的は、高いBrを維持したままHcJとHk/HcJを向上させることにより、薄型化を可能にしたCaLaCoフェライト焼結磁石及びその製造方法を提供することである。
 上記目的に鑑み鋭意研究の結果、発明者らは、粉砕工程において添加する焼結助剤に着目し、CaLaCoフェライトにおいて、焼結助剤として1質量%を超えてSiO2を添加するとHcJが特異的に向上し、その際、SiO2の添加量に応じて1質量%以上のCaCO3を添加することによって、BrやHk/HcJの低下を極力防止できることを見出した。
 さらに、発明者らは、CaLaCoフェライト焼結磁石の組成と組織の関係について研究を行った結果、原料配合時にCaよりもLaを多く配合して仮焼し、得られた仮焼体に前記SiO2及びCaCO3を添加して、粉砕、成形、及び焼成することにより、得られた焼結磁石中に、主相となるCaLaCoフェライト相(六方晶のM型マグネトプランバイト構造を有するフェライト相)以外に、SiとCaを含み前記主相よりもLaの原子比率が低い粒界相(第2相)と、Laを含み前記主相よりもLaの原子比率が高い第3相とが生成されることを見出した。そして、この第3相が存在すると焼結磁石のHk/HcJが大きく向上することを見出し、本発明を完成した。
 1質量%を超えてSiO2を添加したときのHcJの特異的な向上効果はCaLaCoフェライト特有の現象であり、特開平10-149910号及び特開平11-154604号に記載のSrLaCoフェライトでは、1質量%を超えてSiO2及びCaCO3を添加してもHcJの向上が少ない上に著しくBr及びHk/HcJが低下する。
 発明者らがSPD(Singular Point Detection)法により測定した結果では、組成式:Ca1-xLaxFe2n-yCoyにおいてCoの原子比率(y)を0.3としたCaLaCoフェライトの異方性磁界HAの値は2.1 MA/m(約26.4 kOe)であり、組成式:Sr1-xLaxFe2n-yCoyにおいてCoの原子比率(y)を0.2とした一般的なSrLaCoフェライトの1.8 MA/m(約22.6 kOe)に比べ高い値を示した。すなわち、CaLaCoフェライトではSrLaCoフェライトよりも高いHcJが期待できる。なおSPD法の詳細は、Asti and S. Rinaldi, J. Appl. Phys., 45 (1974), pp. 3600-3610に記載されている。
 しかしながら、特開2006-104050号及び国際公開第2007/060757号の実施例に記載のCoの原子比率を0.3としたCaLaCoフェライト磁石のHcJは、高いものでも400 kA/m(約5 kOe)程度である。400 kA/m程度のHcJはSrLaCoフェライト(Coの原子比率が0.2)でも得られている。すなわち、特開2006-104050号及び国際公開第2007/060757号の実施例に記載のCaLaCoフェライト磁石では、異方性磁界HAがSrLaCoフェライトよりも高いにもかからわず、HcJはSrLaCoフェライトと同等程度であり、HcJが期待されるレベルに向上しておらず、材料本来のポテンシャルが十分に発揮されていない。本発明における、1質量%を超えてSiO2を添加するとHcJが特異的に向上するというCaLaCoフェライト特有の現象は、材料本来のポテンシャルに近づく画期的なものである。
 Laを含み主相よりもLaの原子比率が高い第3相については、例えば、特開平11-154604号は、R元素(Laを必ず含む)の比率が大きい場合、R元素を含むオルソフェライト等の非磁性の異相が多く生成し、飽和磁化が低くなると記載しており(段落[0034及び[0038])、Laを含むオルソフェライトの存在を示唆している。
 特開平11-154604号に限らず多くの先行技術文献に記載されているように、オルソフェライトは異相であり、磁石特性を低下させる原因となるため、得られる磁石には不必要な相と考えられていた。つまり、オルソフェライトをできるだけ生成させないようにすることが当業者の技術常識であった。本発明における、Laを含み前記主相よりもLaの原子比率が高い第3相が存在すると焼結磁石のHk/HcJが大きく向上するという効果は、当業者の技術常識を覆すものである。
 すなわち、本発明のフェライト焼結磁石は、六方晶のM型マグネトプランバイト構造を有するフェライトからなる主相と、SiとCaを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有することを特徴とする。
 前記第3相の存在量は、体積比率で0.5%~5%であるのが好ましい。
 前記第3相の存在量は、体積比率で1%~3%であるのがさらに好ましい。
 前記第3相は、La、Ca、Si及びFeを含み、前記元素の合計量を100原子%として、8原子%~50原子%のLa、20原子%~45原子%のCa、20原子%~45原子%のSi、及び4原子%~20原子%のFeからなる構成比率を有するが好ましい。
 前記フェライト焼結磁石は、Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含み、前記金属元素の組成比が、原子比率で一般式:Ca1-x-yLaxAyFe2n-zCozにより表され、前記1-x-y、x、y及びz、並びにモル比を表わすnが、
0.3≦1-x-y≦0.75、
0.2≦x≦0.65、
0≦y≦0.2、
0.25≦z≦0.65、及び
3≦n≦6
を満足する数値であり、1質量%を超え1.8質量%以下のSiO2を含有するのが好ましい。
 本発明のフェライト焼結磁石の製造方法は、六方晶のM型マグネトプランバイト構造を有するフェライトからなる主相と、SiとCaを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有し、Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含むフェライト焼結磁石の製造方法であって、前記金属元素の組成比を原子比率で表す一般式:Ca1-x-yLaxAyFe2n-zCozにおいて、前記1-x-y、x、y及びz、並びにモル比を表わすnが、
0.3≦1-x-y<0.65、
0.3<x≦0.65、
1-x-y<x、
0≦y≦0.2、
0.25≦z≦0.65、及び
4.5≦n≦7
を満足するように原料粉末を準備する工程、
前記原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、粉末を得る粉砕工程、
前記粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記粉砕工程の前に、前記仮焼体に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加することを特徴とする。
 前記SiO2の添加量は、1.1質量%以上1.6質量%以下であるのが好ましい。
 前記CaCO3の添加量は、CaO換算で1.2質量%以上2質量%以下であるのが好ましい。
 本発明によれば、高いBrを維持したままHcJ及びHk/HcJを著しく向上させることができるため、薄型化しても減磁しないフェライト焼結磁石を提供することができる。
 本発明によるフェライト焼結磁石を使用することにより、小型・軽量化、高能率化された各種モータ、発電機、スピーカ等の自動車用電装部品、電気機器用部品等を提供することができる。
実施例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像の他の視野を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像の他の視野を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 実施例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像の他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に垂直な面(c面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像の他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 比較例1の円柱状フェライト焼結磁石の軸方向に平行な面(ab面)のFE-SEMによる反射電子像のさらに他の視野を示す写真である。 実施例2のフェライト焼結磁石のFE-TEMの組織観察結果を示す写真である。 実施例2のフェライト焼結磁石のFE-TEMの組織観察結果を示す他の写真である。 実施例2のフェライト焼結磁石のFE-TEMの組織観察結果を示すさらに他の写真である。
[1]フェライト焼結磁石
 本発明のフェライト焼結磁石は、六方晶のM型マグネトプランバイト構造を有するフェライト相を主相とし、SiとCaとを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相を有することを特徴とする。
 本発明のフェライト焼結磁石を構成する主相は、六方晶のM型マグネトプランバイト構造を有するフェライト相である。一般に、磁性材料、特に焼結磁石は、複数の化合物から構成されており、その磁性材料の特性(物性、磁石特性等)を決定づけている化合物が「主相」と定義される。本発明における主相、すなわち、六方晶のM型マグネトプランバイト構造を有するフェライト相も、本発明のフェライト焼結磁石の物性、磁石特性等の基本部分を決定づけている。
 「六方晶のMマグネトプランバイト構造を有する」とは、フェライト焼結磁石のX回折を一般的な条件で測定した場合に、六方晶のMマグネトプランバイト構造のX回折パターンが主として観察されることをいう。
 本発明のフェライト焼結磁石は、SiとCaとを含み前記主相よりもLaの原子比率が低い粒界相を有する。本発明においては、後述するフェライト焼結磁石の製造方法に示す通り、製造過程において、仮焼体に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加する。それらのSiO2及びCaCO3が主として粒界相を形成している。従って、粒界相にはSiとCaとが必ず含まれる。前記粒界相は、X線回折パターンで観察することが困難であるため、透過電子顕微鏡等で確認するのが好ましい。
 粒界相におけるLaの原子比率は、主相に含有されるLaの原子比率(酸素を除く金属元素の原子比率)よりも低い。粒界相は、基本的にLaを含有しないが、焼結磁石の組成としてLaが比較的多い場合、主相及び第3相に許容できなかったLaが粒界相に少量含有されることがある。なお透過電子顕微鏡等で観察する際に、粒界相の周囲あるいは粒界相の下層に存在する主相又は第3相に含有されるLaを検出してしまうような場合がある。
 本発明のフェライト焼結磁石には、Laを含み前記主相に含有されるLaの原子比率(酸素を除く金属元素の原子比率)よりもLaの原子比率が高い第3相が存在する。これが本発明のフェライト焼結磁石の主たる特徴である。なお、第3相とは、前記主相を第1相、前記粒界相を第2相とした場合における「3つ目の相」という意味であって、構成比率や析出順序などを定義したものではない。
 先述の通り、特開平11-154604号をはじめとして、近年提案されたSrLaCoフェライト及びCaLaCoフェライトに関する先行技術文献において、オルソフェライトの存在は認識されていた。しかし、オルソフェライトは、磁石特性を低下させる異相であるため、構成相として含まれない方がよいと考えられていた。それが当業者の技術常識であった。これに対して、本発明は、Laを必ず含み前記主相よりもLaの原子比率が高い第3相が存在すると焼結磁石のHk/HcJが大きく向上することを見出したことによりなし得たものである。
 オルソフェライト(orthoferrite)とは、「RFeO3」で表わされる希土類元素(R)とFeを含むペロブスカイト構造を有する化合物である。前記第3相は、オルソフェライトのみから構成されるものではないが、部分的にオルソフェライトが存在している可能性がある。
 前記第3相は、FE-TEM(電界放射型透過電子顕微鏡)のEDS(エネルギー分散型X線分光法)分析で測定した結果、La、Ca、Si及びFeを含み、前記各元素の構成比率が、前記元素の合計量(La、Ca、Si及びFeの各元素の合計量)を100原子%として、8原子%~50原子%のLa、20原子%~45原子%のCa、20原子%~45原子%のSi、及び4原子%~20原子%のFeからなる構成比率を有することが判明した。
 なお、前記粒界相及び第3相には上記元素以外に酸素が含有されるが、EDSによって組成分析を行った場合、硼素(B)、炭素(C)、窒素(N)、酸素(O)等の軽元素を定量することは困難であるため、本願においては、軽元素以外の、EDSにより定量が可能な元素の原子比率で組成を表記する。
 本発明のフェライト焼結磁石は、後述する製造方法に示す通り、Ca量よりもLa量が多くなるように配合した原料粉末を仮焼し、前記仮焼体に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加して製造される。前記SiO2及びCaCO3の添加量は、一般的なSrLaCoフェライトやCaLaCoフェライトに添加される量よりも多い。特定量のLa、Ca、Si、Feが含まれる第3相は、このような特有な製造方法に起因していると考えられ、、前記第3相の存在が焼結磁石のHk/HcJを向上させていると考えられる。
 従来から知られるSrLaCoフェライト及びCaLaCoフェライトに基づく焼結磁石においても、Laの含有量が比較的多い場合にはオルソフェライトか相が形成されていると考えられるが、これらの焼結磁石では、0.9質量%を超えてSiO2及びCaCO3を添加することは想定されていなかったため、前記オルソフェライト相にはSi及びCaが含有されていなかったと考えられる。すなわち、Si及びCaが含有されていないLa及びFeのみのオルソフェライト(LaFeO3)相は、Hk/HcJの向上させる効果を有しておらず、磁石特性を低下させる異相に過ぎないと考えられる。
 本発明のフェライト焼結磁石は、前記第3相が、焼結磁石中に体積比率で0.5%~5%存在している場合に、焼結磁石のHk/HcJの向上効果が見られる。特に、体積比率が1%~3%の場合にHk/HcJの向上が顕著である。第3相の体積比率は、FE-SEM(電界放射型走査電子顕微鏡)による焼結磁石断面の反射電子像(BSE像)の画像を処理し、主相よりもLaの原子比率が高い相の面積比率を求め、その面積比率を体積比率とした値である。
 本発明のフェライト焼結磁石には、前記の主相、粒界相及び第3相以外に、X線回折等により観察される極少量(5質量%以下程度)の異相(スピネル相等)や不純物相が存在してもよい。X線回折による異相の定量はリートベルト解析のような手法を適用ができる。
 本発明の、主相、粒界相及び第3相を有するフェライト焼結磁石は、以下の組成から構成されるのが好ましい。以下に示す組成範囲外では、Br、HcJ、及びHk/HcJの少なくとも一つが低下するため好ましいフェライト焼結磁石が得られない。各元素の組成範囲の限定理由については、後述するフェライト焼結磁石の製造方法にて詳述する。
 本発明のフェライト焼結磁石は、Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含み、前記金属元素の組成比が、原子比率で一般式:Ca1-x-yLaxAyFe2n-zCozにより表され、
前記1-x-y、x、y及びz、並びにモル比を表わすnが、
0.3≦1-x-y≦0.75、
0.2<x≦0.65、
0≦y≦0.2、
0.25≦z≦0.65、及び
3≦n≦6
を満足する数値であり、1質量%を超え1.8質量%以下のSiO2を含有する。
[2]フェライト焼結磁石の製造方法
 Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含み、主相、粒界相及び第3相を有する本発明のフェライト焼結磁石を製造する方法は、
前記金属元素の組成比を原子比率で表す一般式:Ca1-x-yLaxAyFe2n-zCozにおいて、前記1-x-y、x、y及びz、並びにモル比を表わすnが、
0.3≦1-x-y<0.65、
0.3<x≦0.65、
1-x-y<x、
0≦y≦0.2、
0.25≦z≦0.65、及び
4.5≦n≦7
を満足するように原料粉末を準備する工程、
前記原料粉末を仮焼し、仮焼体を得る仮焼工程、
前記仮焼体を粉砕し、粉末を得る粉砕工程、
前記粉末を成形し、成形体を得る成形工程、
前記成形体を焼成し、焼結体を得る焼成工程を含み、
前記粉砕工程の前に、前記仮焼体に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加することを特徴とする。各工程について以下に説明する。
(a)原料粉末を準備する工程
 Caの化合物、Laの化合物、Ba及び/又はSrの化合物、Feの化合物及びCoの化合物を、金属元素が一般式:Ca1-x-yLaxAyFe2n-zCoz(原子比率)[ただし、1-x-y、x、y及びz並びにモル比を表わすnは、
0.3≦1-x-y<0.65、
0.3<x≦0.65、
1-x-y<x、
0≦y≦0.2、
0.25≦z≦0.65、及び
4.5≦n≦7
を満足する数値である。]で表される組成比となるように混合し、原料粉末を準備する。
 原料粉末中のCaの含有量(1-x-y)は、0.3≦1-x-y<0.65である。Caが0.3未満では、Br及びHk/HcJが低下するため好ましくない。Caが0.65以上になると、Laの含有量(x)よりもCaの含有量が多くなり、フェライト焼結磁石に第3相が形成されなくなるため好ましくない。なお、焼成後のフェライト焼結磁石においては、粉砕工程前に仮焼体に添加するCaCO3(仮焼体100質量%に対してCaO換算で1質量%以上2質量%以下の添加量)により、Caの含有量が増加するので、フェライト焼結磁石のCaの含有量(1-x-y)は、0.3≦1-x-y≦0.75とした。
 原料粉末中のLaの含有量(x)は、0.3<x≦0.65である。Laが0.3以下ではLaの含有量(x)よりもCaの含有量が多くなりフェライト焼結磁石に第3相が形成されなくなるため好ましくない。Laが0.65以上では粒界相又は第3相のLa含有量が増え過ぎてBrが低下するため好ましくない。Laの一部を、Laを除く希土類元素の少なくとも1種で置換してもよい。その置換量はモル比でLaの50%以下であるのが好ましい。なお、焼成後のフェライト焼結磁石においては、粉砕工程前に仮焼体に添加するCaCO3(仮焼体100質量%に対してCaO換算で1質量%以上2質量%以下の添加量)により、Caの含有量が増加し、それに伴ってLaの含有量が減少するので、フェライト焼結磁石のLaの含有量(x)は、0.2≦x≦0.65とした。
 原料粉末中のCaの含有量(1-x-y)とLaの含有量(x)は、1-x-y<xの関係、すなわち、Caの含有量よりもLaの含有量を大きくしなければ、フェライト焼結磁石に第3相を形成しなくなり、Hk/HcJの向上効果が得られない。これが本発明の製造方法における第1の特徴である。
 従来から知られるCaLaCoフェライトにおいては、例えば、特開2006-104050号に示されるようにLa(x)とCo(y)の比をx/y=1.4~2.5としてCoよりもLaを多く含有させることが提案されているが、CaよりもLaを多く含有させることは全く考慮されていない。これは、CaよりもLaを多く含有させるとオルソフェライトが生成し、磁石特性が低下すると考えられていたためである。
 A元素は、Ba及び/又はSrである。原料粉末中のA元素の含有量(y)は、0≦y≦0.2である。A元素を含有しなくても本発明の効果が損なわれることはないが、A元素を添加することにより、仮焼体における結晶が微細化されアスペクト比が小さくなるため、HcJがさらに向上するという効果を得ることができる。A元素の含有量も、粉砕工程前のCaCO3の添加により、焼成後のフェライト焼結磁石においては減少する傾向にあるが、元々添加量が少なく変化量も小さいため、フェライト焼結磁石においても同じ含有量の範囲としている。
 原料粉末中のCoの含有量(z)は、0.25≦z≦0.65である。Coが0.25未満ではCoの添加による磁気特性の向上効果が得られない。また仮焼体に未反応のα-Fe2O3が残存するので、湿式成形時に成形型のキャビティからスラリー漏れが発生する。Coが0.65を超えるとCoを多く含む異相が生成して磁気特性が大きく低下するため好ましくない。
 Coはその一部をZn、Ni及びMnから選ばれた少なくとも1種で置換することもできる。特に、Coの一部をNi及びMnで置換することにより、磁石特性を低下させずに製造コストを低減することができる。また、Coの一部をZnで置換すると、HcJは若干低下するが、Brを向上させることができる。Zn、Ni及びMnの合計の置換量はモル比でCoの50%以下であるのが好ましい。
 nは(Fe+Co)と(Ca+La+A)とのモル比を反映する値で、2n=(Fe+Co)/(Ca+La+A)で表される。原料粉末のモル比nは4.5≦n≦7であるのが好ましい。nが4.5未満では非磁性部分の比率が多くなるとともに、仮焼体粒子の形態が過度に扁平になりHcJが大きく低下してしまう。nが7を超えると仮焼体に未反応のα-Fe2O3が残存し、湿式成形時の成形型のキャビティからスラリー漏れが発生するため好ましくない。なお、焼成後のフェライト焼結磁石においては、粉砕工程前に仮焼体に添加するCaCO3(仮焼体100質量%に対してCaO換算で1質量%以上2質量%以下の添加量)により、Caの含有量が増加し、それに伴ってnが小さくなる。従って、フェライト焼結磁石のモル比nは、3≦x≦6とした。
 原料粉末中のLaとCoとのモル比x/zの値は、1≦x/z≦3であるのが好ましい。より好ましい範囲は1.2≦x/z≦2である。これらの値を満たす組成を選択することにより、磁石特性をより向上させることができる。
 原料粉末中のLa、Co及びA元素の含有量の関係が、La含有量>Co含有量>A元素含有量であるとき、すなわち、x>z>yであるとき、磁石特性の向上効果が大きい。また、原料粉末中のCa及びA元素の含有量の関係が、Ca含有量>A元素含有量であるとき、すなわち1-x-y>yであるとき、磁石特性の向上効果が大きい。 
 前記の組成は、金属元素の原子比率で示したが、本発明はフェライト焼結磁石に関し、「フェライト」とは二価の陽イオン金属の酸化物と三価の鉄とが作る化合物の総称であるので、本発明の製造方法における仮焼体(フェライト)は酸素(O)を必ず含む。酸素(O)を含む仮焼体の組成は以下の一般式で表される。
一般式:Ca1-x-yLaxAyFe2n-zCozOα(原子比率)[ただし、1-x-y、x、y、z及びα、並びにモル比を表わすnは、
0.3≦1-x-y<0.65、
0.3<x≦0.65、
1-x-y<x、
0≦y≦0.2、
0.25≦z≦0.65、及び
4.5≦n≦7
を満たし、LaとFeが3価でCoが2価であり、x=yでかつn=6の時の化学量論組成比を示した場合はα=19である。]
 前記酸素(O)を含めたフェライト仮焼体の組成において、酸素のモル数は、Fe及びCoの価数、n値などによって異なってくる。またフェライト焼結磁石においては、還元性雰囲気で焼成した場合の酸素の空孔(ベイカンシー)、フェライト相におけるFeの価数の変化、Coの価数の変化等により金属元素に対する酸素の比率が変化する。従って、実際の酸素のモル数αは19からずれる場合がある。そのため、本願においては、最も組成が特定し易い金属元素の原子比率で組成を表記している。
 原料粉末は、価数にかかわらず、それぞれの金属の酸化物、炭酸塩、水酸化物、硝酸塩、塩化物等の化合物を制約なく使用して構成することができる。前記化合物は粉末に限らず、溶液であってもよい。例えば、Ca化合物としては、Caの炭酸塩、酸化物、塩化物等を使用する。Laの化合物としては、La2O3等の酸化物、La(OH)3等の水酸化物、La2(CO3)3・8H2O等の炭酸塩、又はそれらの水和物等を使用する。A元素の化合物としては、Ba及び/又はSrの炭酸塩、酸化物、塩化物等を使用する。鉄化合物としては、酸化鉄、水酸化鉄、塩化鉄、ミルスケール等を使用する。Co化合物としては、CoO、Co3O4、Co2O3等の酸化物、CoOOH、Co(OH)2等の水酸化物、CoCO3等の炭酸塩、及びCo3O4・m1H2O(m1は正の数である)、m2CoCO3・m3Co(OH)2・m4H2O等(m2、m3、m4は正の数である)を使用する。
 CaCO3、Fe2O3及びLa2O3以外の原料粉末は、原料混合時から添加しておいてもよいし、仮焼後に添加してもよい。例えば、(1)CaCO3、Fe2O3、La2O3及びCo3O4を配合し、混合及び仮焼した後、仮焼体を粉砕し、成形及び焼結してフェライト焼結磁石を製造しても良いし、(2)CaCO3、Fe2O3及びLa2O3を配合し、混合及び仮焼した後、仮焼体にCo3O4を添加し、粉砕、成形及び焼結してフェライト焼結磁石を製造しても良い。
 仮焼時の反応促進のため、必要に応じてB2O3、H3BO3等のBを含む化合物を1質量%程度添加しても良い。特にH3BO3の添加は、HcJ及びBrのさらなる向上に有効である。H3BO3の添加量は、原料粉末の合計量に対して、0.3質量%以下であるのが好ましく、0.2質量%程度が最も好ましい。H3BO3の添加量が0.1質量%よりも少ないとBrの向上効果が小さく、0.3質量%よりも多いとBrが低下する。またH3BO3は、焼結時に結晶粒の形状やサイズを制御する効果も有するため、仮焼後(微粉砕前や焼結前)に添加してもよく、仮焼前及び仮焼後の両方で添加してもよい。
 原料粉末の配合、混合は、湿式及び乾式のいずれで行ってもよい。スチールボール等の媒体とともに撹拌すると原料粉末をより均一に混合することができる。湿式の場合は、溶媒に水を用いるのが好ましい。原料粉末の分散性を高める目的でポリカルボン酸アンモニウム、グルコン酸カルシウム等の公知の分散剤を用いてもよい。混合した原料スラリーは脱水して混合原料粉末とする。
(b)仮焼工程
 混合後の原料粉末は、電気炉、ガス炉等を用いて加熱することによって、固相反応し、六方晶のM型マグネトプランバイト構造のフェライト化合物を形成する。このプロセスを「仮焼」と呼び、得られた化合物を「仮焼体」と呼ぶ。
 仮焼工程は、酸素濃度が5%以上の雰囲気中で行うのが好ましい。酸素濃度が5%未満であると、異常粒成長、異相の生成等を招く。より好ましい酸素濃度は20%以上である。
 仮焼工程では、フェライト相が形成される固相反応が温度の上昇とともに進行し、約1100℃で完了する。仮焼温度が1100℃未満では、未反応のヘマタイト(酸化鉄)が残存するため磁石特性が低くなる。一方、仮焼温度が1450℃を超えると結晶粒が成長し過ぎるため、粉砕工程において粉砕に多大な時間を要することがある。従って、仮焼温度は1100~1450℃であるのが好ましく、1200~1350℃であるのがより好ましい。仮焼時間は0.5~5時間であるのが好ましい。
 仮焼前にH3BO3を添加した場合は、フェライト化反応が促進されるため、1100℃~1300℃で仮焼を行うことができる。
(c)SiO2及びCaCO3の添加
 本発明の製造方法は、粉砕工程の前に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加する。これが本発明の製造方法における第2の特徴である。これによって、HcJが特異的に向上する。
 SiO2の添加量が1質量%以下ではHcJの向上効果が得られず、1.8質量%を超えるとHcJが低下するとともに、Br及びHk/HcJも低下するため好ましくない。より好ましい添加量は1.1~1.6質量%である。なお、SiO2は仮焼体に対して添加するのが最も好ましいが、全添加量のうちの一部を仮焼前(原料粉末を配合するとき)に添加することもできる。仮焼前に添加することにより、仮焼時の結晶粒のサイズ制御を行うことができる。
 CaCO3は、SiO2の添加量に応じて、仮焼体100質量%に対してCaO換算で1質量%以上2質量%以下添加する。CaCO3の添加によって、Br及びHk/HcJの低下を防止でき、上述したCaよりもLaを多く含有させるという第1の特徴との相乗効果により、従来は得ることができなかった高いBrを維持しつつ、高いHcJ及び高いHk/HcJを有するフェライト焼結磁石が得られる。CaCO3の添加量(CaO換算)が1質量%未満及び2質量%を超えるとBr及びHk/HcJが低下するため好ましくない。より好ましい添加量は1.2~2質量%である。
 SiO2及びCaCO3は、[CaCO3添加量(CaO換算)/SiO2添加量]を0.8~2にすることによって磁石特性をさらに向上させることができる。
(d)粉砕工程
 仮焼体は、振動ミル、ボールミル、アトライター等によって粉砕し、粉砕粉とする。粉砕粉の平均粒度は0.4~0.8μm程度(空気透過法)にするのが好ましい。粉砕工程は、乾式粉砕及び湿式粉砕のいずれもよいが、双方を組み合わせて行うのが好ましい。
 湿式粉砕は、水及び/又は非水系溶剤(アセトン、エタノール、キシレン等の有機溶剤)を用いて行う。湿式粉砕により、水(溶剤)と仮焼体とが混合されたスラリーが生成される。スラリーには公知の分散剤及び/又は界面活性剤を固形分比率で0.2~2質量%を添加するのが好ましい。湿式粉砕後は、スラリーを濃縮、混練するのが好ましい。
 粉砕工程において、上述したSiO2及びCaCO3の他に、磁石特性向上のためにCr2O3、Al2O3等を添加することもできる。これらの添加量は、それぞれ5質量%以下であるのが好ましい。
 粉砕した粉末に含まれる、脱水性悪化や成形不良の原因となる0.1μm未満の超微粉を除去するために、粉砕した粉末に熱処理を施すのが好ましい。熱処理を施した粉末は再度粉砕するのが好ましい。このように、第一の微粉砕工程と、前記第一の微粉砕工程とによって得られた粉末に熱処理を施す工程と、前記熱処理が施された粉末を再度粉砕する第二の微粉砕工程とからなる粉砕工程(以下「熱処理再粉砕工程」という)を採用することにより、SiO2及びCaCO3の添加によるHcJ向上効果に加えさらにHcJを向上させることができる。
 通常の粉砕工程においては0.1μm未満の超微粉が不可避的に生じ、その超微粉の存在によってHcJが低下したり、成形工程において脱水性が悪くなり、成形体に不良を生じたり、脱水に多くの時間がかかることによってプレスサイクルが低下したりする。第一の微粉砕工程によって得られた超微粉を含む粉末に熱処理を施すと、比較的粒径の大きい粉末と超微粉との間で反応が起こり、超微粉の量を減少させることができる。そして、第二の微粉砕工程によって粒度調整やネッキングの除去を行い、所定粒度の粉末を作製する。これによって、超微粉の量が少なく、粒度分布に優れた粉末を得ることができ、HcJを向上させることができるとともに、成形工程における上記の問題を解決することができる。
 熱処理再粉砕工程によるHcJの向上効果を利用すると、第二の微粉砕工程による粉末の粒径を比較的大きく設定しても(例えば平均粒度0.8~1.0μm程度)、通常の粉砕工程によって得られる粉末(平均粒度0.4~0.8μm程度)を用いた場合と同等のHcJが得られる。従って、第二の微粉砕工程による時間短縮が図れるとともに、さらなる脱水性の向上、プレスサイクルの向上を図ることができる。
 このように、熱処理再粉砕工程によれば、種々の利点は得られるものの、製造工程の増加に伴うコストアップは避けることができない。しかしながら、熱処理再粉砕工程を採用した場合に得られる磁石特性の改良効果は、従来のフェライト焼結磁石を製造する場合に比べ非常に大きいので、前記コストアップを相殺することができる。従って、本発明において、熱処理再粉砕工程は実用的にも有意義な工程である。
 第一の微粉砕は、前述した通常の粉砕と同様であり、振動ミル、ジェットミル、ボールミル、アトライター等を用いて行う。粉砕後の粉末の平均粒度は0.4~0.8μm程度(空気透過法)が好ましい。粉砕工程は、乾式粉砕及び湿式粉砕のいずれでもよいが、双方を組み合わせて行うのが好ましい。
 第一の微粉砕工程後に行う熱処理は、600~1200℃で行うのが好ましく、800~1100℃で行うのがより好ましい。熱処理の時間は特に限定しないが、1秒~100時間が好ましく、1~10時間程度がより好ましい。
 熱処理工程後に行う第二の微粉砕は、第一の微粉砕と同様に、振動ミル、ジェットミル、ボールミル、アトライター等を用いて行う。第一の微粉砕工程においてすでに所望の粒径はほとんど得られているので、第二の微粉砕工程においては、主として粒度調整やネッキングの除去を行う。従って、第一の微粉砕工程よりも粉砕時間の短縮等により粉砕条件を軽減するのが好ましい。第一の微粉砕工程と同程度の条件で粉砕を行うと再度超微粉が生成されるため好ましくない。
 第二の微粉砕後の粉末の平均粒度は、通常の粉砕工程によって得られるフェライト焼結磁石よりも高いHcJを得たい場合は、通常の粉砕工程と同様に0.4~0.8μm程度(空気透過法)にするのが好ましく、粉砕工程の時間短縮、さらなる脱水性の向上、プレスサイクルの向上等の利点を活用したい場合は、0.8~1.2μm、好ましくは0.8~1.0μm程度(空気透過法)にするのが好ましい。
(e)成形工程
 粉砕後のスラリーは、水(溶剤)を除去しながら磁界中又は無磁界中でプレス成形する。磁界中でプレス成形することにより、粉末粒子の結晶方位を整列(配向)させることができ、磁石特性を飛躍的に向上させることができる。さらに、配向を向上させるために、分散剤、潤滑剤を0.01~1質量%添加しても良い。また成形前にスラリーを必要に応じて濃縮してもよい。濃縮は遠心分離、フィルタープレス等により行うのが好ましい。
(f)焼成工程
 プレス成形により得られた成形体は、必要に応じて脱脂した後、焼成する。焼成は、電気炉、ガス炉等を用いて行う。焼成は、酸素濃度が10%以上の雰囲気中で行うのが好ましい。酸素濃度が10%未満であると、異常粒成長、異相の生成等を招き、磁石特性が劣化する。酸素濃度は、より好ましくは20%以上であり、最も好ましくは100%である。焼成温度は、1150℃~1250℃が好ましい。焼成時間は、0.5~2時間が好ましい。焼成工程によって得られる焼結磁石の平均結晶粒径は約0.5~2μmである。
 焼成工程の後は、加工工程、洗浄工程、検査工程等の公知の製造プロセスを経て、最終的にフェライト焼結磁石を製造する。
実施例
 本発明を実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。
 実施例1
 組成式:Ca1-x-yLaxAyFe2n-zCozOδにおいて、x=0.55、y=0、z=0.3、n=5.2及びδ≧0になるようにCaCO3粉末、La(OH)3粉末、Fe2O3粉末及びCo3O4粉末を配合し、前記配合後の粉末の合計100質量%に対してH3BO3粉末を0.1質量%添加し原料粉末を得た。この原料粉末を湿式ボールミルで4時間混合し、乾燥して整粒した。次いで、大気中において1300℃で3時間仮焼し、得られた仮焼体をハンマーミルで粗粉砕して粗粉砕粉を得た。
 前記粗粉砕粉100質量%に対して、1.2質量%のSiO2粉末及び1.5質量%のCaCO3(CaO換算)を添加し、水を溶媒とした湿式ボールミルで、空気透過法による平均粒度が0.55μmになるまで微粉砕した。得られた微粉砕スラリーを、溶媒を除去しながら、加圧方向と磁場方向とが平行になるように約1.3 Tの磁場をかけながら約50 MPaの圧力で成形した。得られた成形体を大気中で、1210℃で1時間焼成し、円柱状の焼結磁石(軸方向が磁場方向)を得た。
 得られた円柱状の焼結磁石のLa分布を、FE-SEM(電界放射型走査電子顕微鏡)を用いて、反射電子像(BSE像)の組成コントラストによる組織観察を行って求めた。Laの組織観察は、円柱状焼結磁石の軸方向に垂直な面(c面)及び軸方向に平行な面(ab面)で行い、各面で任意の4箇所の組織写真を撮影した。それらの結果を図1(A)~(D)及び図2(A)~(D)に示す。図1(A)~(D)がc面、及び図2(A)~(D)がab面を示す。
 図1(A)~(D)及び図2(A)~(D)において、明るい部位(白色の部位)は、主相よりもLaの原子比率が高い相、すなわち、本願における第3相である。図1(A)~(D)及び図2(A)~(D)から、第3相が焼結磁石内に分散して存在していることが分かる。
 上記組織写真を2値化処理して、第3相を背景画像とを切離し、観察領域中に占める第3相の面積比率を求め、それを第3相の体積比率とした。その結果を表1に示す。表1から、第3相は焼結磁石中に体積比率で1%~3%の範囲で存在していることが分かる。
Figure JPOXMLDOC01-appb-T000001
 比較例1
 組成式:Ca1-x-yLaxAyFe2n-zCozOδにおいて、x=0.5、y=0、z=0.3、n=5.2及びδ≧0、すなわちCa含有量 (1-x-y)とLa含有量 (x)とが同じ値になるようにCaCO3粉末、La(OH)3粉末、Fe2O3粉末及びCo3O4粉末を配合した以外は実施例1と同様にして、円柱状の焼結磁石を得た。得られた円柱状の焼結磁石のLa分布を、実施例1と同様にして、FE-SEM(電界放射型走査電子顕微鏡)を用いて求めた。結果を図3(A)~(D)及び図4(A)~(D)に示す。図3(A)~(D)がc面、及び図4(A)~(D)がab面を示す。
 図3(A)~(D)及び図4(A)~(D)からわかるように、明るい部位(白色の部位)はほとんど観察されなかった。すなわち、Ca量よりもLa量が多くなるように原料粉末を配合しなかった場合は、主相よりもLaの原子比率が高い第3相はほとんど形成されないことがわかる。
 実施例1と同様に、観察領域中に占める第3相の体積比率を求めたところ、図3(A)~(D)及び図4(A)~(D)のいずれの視野においても0%か0.5%未満であった。
 実施例2
 実施例1において、反射電子像の組成コントラストにより求めた主相よりもLaの原子比率が高い第3相及びその周辺に対して、FIB(収束イオンビーム)加工を施して表面を切削し、FE-TEM(電界放射型透過電子顕微鏡)による組織観察、及びEDS(エネルギー分散型X線分光法)による組成分析を行った。前記組織観察の結果を図5~7に示し、前記組成分析の結果を表2に示す。なお、表2の数値は全て原子比率(%)で示した。
 図5においてa、b、c及びhで示す部位、図6においてd、e、f及びiで示す部位、並びに図7においてgで示す部位が第3相である。また図5において主相1、図6において主相2、及び図7において主相3として示す部位が主相である。なお、表2におけるイ、ロ及びハは、図5~7とは別の視野の粒界相(特に粒界3重点)について、FE-TEMによる組織観察とEDSによる組成分析を行った結果である。
Figure JPOXMLDOC01-appb-T000002
 表2の1~3から分かるように、図5~7の主相1~3で示す主相の部位には、Ca、La、Co及びFeが含まれ、特にCo及びFeは他の部位に比べて多く含まれている。すなわち、主相はCaLaCo系フェライトであることが分かる。
 表2のa~iから分かるように、図5~7のa~iで示す第3相の部位には、Ca、Si、La及びFeが含まれ、特にLaの原子比率は、前記主相に含まれるLaの原子比率よりも高い。すなわち、第3相は、Laを必ず含み前記主相よりもLaの原子比率が高いことが分かる。
 表2のa~iから、図5~7のa~iで示す第3相の部位には、Laの原子比率が比較的高い第3相(a~gの部位)とLaの原子比率が比較的低い第3相(h及びiの部位)が存在する。Laの原子比率が比較的高い第3相は、21原子%~25原子%のCa、21原子%~38原子%のSi、33原子%~46原子%のLa、及び4原子%~11原子%のFeが含まれている。また、Laの原子比率が比較的低い第3相は、40原子%~42原子%のCa、39原子%~41原子%のSi、8原子%~13原子%のLa、及び6原子%~10原子%のFeが含まれている。
 このように、a~iの各部位の間で組成は若干異なるものの、全ての部位においてCa、Si、La及びFeが必ず含まれ、Laは前記主相に含まれるLaの原子比率よりも高くなっている。本発明のフェライト焼結磁石においてはそれらを第3相と定義する。前述のように、前記第3相は、Laの原子比率が比較的高い相とLaの原子比率が比較的低い相とが存在するが、その組成は8原子%~50原子%のLa、20原子%~45原子%のCa、20原子%~45原子%のSi、及び4原子%~20原子%のFeの範囲にある。
 なお、表2のa~iには、少量のCoが含まれている場合とCoが含まれていない場合があるが、EDS分析においては、Fe-KβとCo-Kαとのピークが重なっており、それらの分離が困難であるため、ある程度の誤差を拾ってしまう。従って、Co量が1原子%未満である場合は、ほとんどCoは含まれていないと考えられる。第3相にCoが含有されているかどうかは厳密には分からないが、たとえCoが含有されていても、極少量であるため、上記Ca、Si、La及びFeの各原子比率にはほとんど影響しない。
 また、表2のイ~ハに示す通り、図5~7とは別の視野(特に粒界3重点)でFE-TEMによる組織観察及びEDSによる組成分析を行って求めた粒界相の組成は、58原子%~67原子%のCa、31原子%~33原子%のSi、1原子%以下のLa、及び2原子%~9原子%のFeが含まれ、Laは前記主相に含まれるLaの原子比率よりも低いことが分かる。すなわち、本発明における粒界相は、SiとCaを必ず含み前記主相よりもLaの原子比率が低いことが分かる。
 以上の通り、本発明のフェライト焼結磁石は、CaLaCoフェライトからなる主相、すなわち、六方晶のM型マグネトプランバイト構造を有するフェライト相と、SiとCaとを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有することが分かる。
 実施例3
 組成式:Ca1-x-yLaxSry'Bay''Fe2n-zCozOδ(δ≧0)において、1-x-y、x、y’、y’’、z及びnが表3に示す値となるようにCaCO3粉末、La(OH)3粉末、Fe2O3粉末及びCo3O4粉末を配合し、粉砕時に添加するSiO2及びCaCO3の添加量、及び焼成温度を表3に示すように変更した以外は、実施例1と同様にして焼結磁石を得た。第3相の有無は、実施例1と同様の方法で反射電子像の組成コントラストにより評価し、体積比率で0.5%~5%存在するものを「有」、及び体積比率で0.5%未満のものを「無」とした。得られた焼結磁石の磁石特性を表3に示す。なお、Hk/HcJにおいて、Hkは、J(磁化の大きさ)-H(磁界の強さ)曲線の第2象限において、Jが0.95Brの値になる位置のHの値である。
Figure JPOXMLDOC01-appb-T000003
表3(続き)
Figure JPOXMLDOC01-appb-I000004
 表3に示す通り、例えば、CaO及びSiO2の添加量が比較的少ない従来のCaLaCoフェライト焼結磁石に相当する試料No.17(0.7質量%のCaO、及び0.6質量%のSiO2)のフェライト焼結磁石に対して、SiO2の添加量が1質量%を超え、CaOの添加量が1質量%以上である試料No.11(1.5質量%のCaO、及び1.2質量%のSiO2)のフェライト焼結磁石は、HcJが特異的に向上(351 kA/mから476 kA/m)していることが分かる。しかしながら、この試料No.11のフェライト焼結磁石は、Brが若干低下し、Hk/HcJは84.3%から81.6%まで低下した。
 上記のHcJが特異的に向上した試料No.11のフェライト焼結磁石は1-x-y=x(Ca=La)であり、第3相が体積比率で0.5%以下であった。このNo.11のフェライト焼結磁石と同じCaO及びSiO2添加量で1-x-y<x(Ca<La)とした試料No.2のフェライト焼結磁石は、第3相が体積比率で0.5%~5%存在しており、HcJは、試料No.11のフェライト焼結磁石よりも若干低下したものの、Br及びHk/HcJは共に向上しており、特にHk/HcJは試料No.11のCaLaCoフェライト焼結磁石に対しても大幅に向上(81.6%から89.3%)した。
 このように、CaO及びSiO2の添加量が少ない従来のCaLaCoフェライト焼結磁石に相当する試料No.17のフェライト焼結磁石に比べ、SiO2の添加量が1質量%を超え、CaOの添加量が1質量%以上でありかつ第3相を含む本発明の試料No.2のフェライト焼結磁石は、高いBrを維持したまま(0.458 Tに対して0.448 T)、HcJ(351 kA/mに対して455 kA/m)とHk/HcJ(84.3%に対して89.3%)が向上した。
 また、表3から、A元素としてそれぞれBa及びSrを含有するNo.8及び9のフェライト焼結磁石も、A元素を含まないNo.7のフェライト焼結磁石と同様に良好な磁石特性が得られることが分かる。
 このように、本発明のフェライト焼結磁石は、第3相に基づくHk/HcJの向上効果と、SiO2及びCaCO3の多量添加に基づくHcJの向上効果との2つの効果により、従来は得ることができなかった高いBrを維持しつつ、高いHcJ及び高いHk/HcJを発揮することが分かる。

Claims (8)

  1.  六方晶のM型マグネトプランバイト構造を有するフェライトからなる主相と、Si及びCaを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有することを特徴とするフェライト焼結磁石。
  2.  請求項1に記載のフェライト焼結磁石において、前記第3相の存在量が体積比率で0.5%~5%であることを特徴とするフェライト焼結磁石。
  3.  請求項2に記載のフェライト焼結磁石において、前記第3相の存在量が体積比率で1%~3%であることを特徴とするフェライト焼結磁石。
  4.  請求項1~3のいずれかに記載のフェライト焼結磁石において、前記第3相が、La、Ca、Si及びFeを含み、前記元素の合計量を100原子%として、8原子%~50原子%のLa、20原子%~45原子%のCa、20原子%~45原子%のSi、及び4原子%~20原子%のFeからなる構成比率を有することを特徴とするフェライト焼結磁石。
  5.  請求項1~4のいずれかに記載のフェライト焼結磁石において、Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含み、前記金属元素の組成比が、原子比率で一般式:Ca1-x-yLaxAyFe2n-zCozにより表され、
    前記1-x-y、x、y及びz、並びにモル比を表わすnが、
    0.3≦1-x-y≦0.75、
    0.2≦x≦0.65、
    0≦y≦0.2、
    0.25≦z≦0.65、及び
    3≦n≦6
    を満足する数値であり、1質量%を超え1.8質量%以下のSiO2を含有することを特徴とするフェライト焼結磁石。
  6.  六方晶のM型マグネトプランバイト構造を有するフェライトからなる主相と、Si及びCaを含み前記主相よりもLaの原子比率が低い粒界相と、Laを含み前記主相よりもLaの原子比率が高い第3相とを有し、
    Caと、Laと、Ba及び/又はSrであるA元素と、Feと、Coとを含むフェライト焼結磁石の製造方法であって、
    前記金属元素の組成比を原子比率で表す一般式:Ca1-x-yLaxAyFe2n-zCozにおいて、
    前記1-x-y、x、y及びz、並びにモル比を表わすnが、
    0.3≦1-x-y<0.65、
    0.3<x≦0.65、
    1-x-y<x、
    0≦y≦0.2、
    0.25≦z≦0.65、及び
    4.5≦n≦7
    を満足するように原料粉末を準備する工程、
    前記原料粉末を仮焼し、仮焼体を得る仮焼工程、
    前記仮焼体を粉砕し、粉末を得る粉砕工程、
    前記粉末を成形し、成形体を得る成形工程、
    前記成形体を焼成し、焼結体を得る焼成工程を含み、
    前記粉砕工程の前に、前記仮焼体に、仮焼体100質量%に対して、1質量%を超え1.8質量%以下のSiO2及びCaO換算で1質量%以上2質量%以下のCaCO3を添加することを特徴とするフェライト焼結磁石の製造方法。
  7.  請求項6に記載のフェライト焼結磁石の製造方法において、前記SiO2の添加量が1.1質量%以上1.6質量%以下であることを特徴とするフェライト焼結磁石の製造方法。
  8.  請求項6又は7に記載のフェライト焼結磁石の製造方法において、前記CaCO3の添加量がCaO換算で1.2質量%以上2質量%以下であることを特徴とするフェライト焼結磁石の製造方法。
PCT/JP2011/080069 2010-12-28 2011-12-26 フェライト焼結磁石及びその製造方法 WO2012090935A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP11852251.5A EP2660830B1 (en) 2010-12-28 2011-12-26 Ferrite sintered magnet and method for producing same
CN201180063132.3A CN103282977B (zh) 2010-12-28 2011-12-26 铁氧体烧结磁体及其制造方法
US13/976,841 US9401235B2 (en) 2010-12-28 2011-12-26 Sintered ferrite magnet and its production method
BR112013016925-7A BR112013016925B1 (pt) 2010-12-28 2011-12-26 Imã sinterizado de ferrita e seu método de produção
KR1020137016953A KR101858484B1 (ko) 2010-12-28 2011-12-26 페라이트 소결 자석 및 그 제조 방법
JP2012550936A JP5929764B2 (ja) 2010-12-28 2011-12-26 フェライト焼結磁石及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010293598 2010-12-28
JP2010-293598 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090935A1 true WO2012090935A1 (ja) 2012-07-05

Family

ID=46383038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080069 WO2012090935A1 (ja) 2010-12-28 2011-12-26 フェライト焼結磁石及びその製造方法

Country Status (7)

Country Link
US (1) US9401235B2 (ja)
EP (1) EP2660830B1 (ja)
JP (1) JP5929764B2 (ja)
KR (1) KR101858484B1 (ja)
CN (1) CN103282977B (ja)
BR (1) BR112013016925B1 (ja)
WO (1) WO2012090935A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014021149A1 (ja) * 2012-07-31 2014-02-06 日立金属株式会社 フェライト焼結磁石の製造方法及びフェライト焼結磁石
US20150294771A1 (en) * 2014-04-15 2015-10-15 Tdk Corporation Permanent magnet and variable magnetic flux motor
CN105635549A (zh) * 2016-04-01 2016-06-01 信利光电股份有限公司 一种摄像模组马达、摄像模组及电子设备
JP2018160672A (ja) * 2017-03-23 2018-10-11 日立金属株式会社 フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP2019149534A (ja) * 2018-02-26 2019-09-05 Tdk株式会社 フェライト焼結磁石、モータ、及び発電機
JP2020161660A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP2020161659A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
US11205533B2 (en) 2018-02-26 2021-12-21 Tdk Corporation Ferrite sintered magnet, motor and generator
US11417447B2 (en) 2016-05-20 2022-08-16 Tdk Corporation Ferrite magnet
US11450458B2 (en) 2018-02-26 2022-09-20 Tdk Corporation Ferrite sintered magnet, motor and generator
US11569013B2 (en) 2016-05-20 2023-01-31 Tdk Corporation Ferrite magnet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE496134T1 (de) 2002-03-29 2011-02-15 Xoma Technology Ltd Multigene vectoren und methoden für eine erhöhte expression von rekombinanten polypeptiden
US9162928B2 (en) * 2009-06-30 2015-10-20 Hitachi Metals, Ltd. Method for producing sintered ferrite magnet, and sintered ferrite magnet
WO2012090935A1 (ja) * 2010-12-28 2012-07-05 日立金属株式会社 フェライト焼結磁石及びその製造方法
KR102277414B1 (ko) * 2015-10-16 2021-07-14 유니온머티리얼 주식회사 페라이트 자성재료 및 페라이트 소결자석
US11289250B2 (en) 2017-05-24 2022-03-29 Hitachi Metals, Ltd. Sintered ferrite magnet
KR102166901B1 (ko) * 2017-05-24 2020-10-16 히타치 긴조쿠 가부시키가이샤 페라이트 소결 자석
JP7047530B2 (ja) * 2018-03-28 2022-04-05 Tdk株式会社 フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP7268440B2 (ja) 2019-03-27 2023-05-08 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP7338395B2 (ja) * 2019-10-18 2023-09-05 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149910A (ja) 1996-11-18 1998-06-02 Hitachi Metals Ltd フェライト磁石およびその製造方法
JPH11154604A (ja) 1997-02-25 1999-06-08 Tdk Corp 焼結磁石およびモータ
JP2001068319A (ja) * 1999-06-21 2001-03-16 Hitachi Metals Ltd フェライト磁石
JP3181559B2 (ja) 1997-09-19 2001-07-03 ティーディーケイ株式会社 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体
JP2003151811A (ja) * 2001-11-08 2003-05-23 Tdk Corp フェライト焼結磁石およびその製造方法
JP2006104050A (ja) 2004-09-10 2006-04-20 Neomax Co Ltd 酸化物磁性材料および焼結磁石
JP2006117515A (ja) * 2004-09-21 2006-05-11 Tdk Corp フェライト磁性材料の製造方法
WO2007060757A1 (ja) 2005-11-25 2007-05-31 Hitachi Metals, Ltd. 酸化物磁性材料及びその製造方法、並びにフェライト焼結磁石及びその製造方法
WO2007077811A1 (ja) 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 酸化物磁性材料
JP2008137879A (ja) * 2005-12-19 2008-06-19 Tdk Corp フェライト磁性材料
WO2011111756A1 (ja) * 2010-03-10 2011-09-15 日立金属株式会社 フェライト焼結磁石及びその製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135203B2 (ja) * 1995-06-26 2001-02-13 ティーディーケイ株式会社 異方性六方晶Baフェライト焼結磁石の製造方法
WO1998038654A1 (fr) * 1997-02-25 1998-09-03 Tdk Corporation Materiau magnetique a base d'oxyde, particule de ferrite, aimant obtenu par frittage, aimant issu d'une liaison, support d'enregistrement magnetique et moteur
DE69839208T2 (de) 1997-09-19 2009-03-12 Tdk Corp. Sintermagnet
CN1265402C (zh) * 1997-12-25 2006-07-19 日立金属株式会社 铁氧体磁体的生产方法
EP1011114A4 (en) * 1998-06-25 2001-09-19 Tdk Corp HEXAGONAL FERRITE MAGNET
MXPA06015044A (es) 2004-09-10 2007-04-25 Neomax Co Ltd Material magnetico de oxido e iman sinterizado.
WO2008105449A1 (ja) * 2007-03-01 2008-09-04 Tdk Corporation フェライト焼結磁石
WO2008146712A1 (ja) * 2007-05-25 2008-12-04 Hitachi Metals, Ltd. フェライト焼結磁石及びその製造方法、並びに仮焼体及びその製造方法
JP5521287B2 (ja) * 2008-06-18 2014-06-11 日立金属株式会社 磁気記録媒体用フェライト粒子
CN101552069A (zh) * 2009-01-08 2009-10-07 横店集团东磁股份有限公司 磁铅石永磁铁氧体及其制造方法
US9162928B2 (en) * 2009-06-30 2015-10-20 Hitachi Metals, Ltd. Method for producing sintered ferrite magnet, and sintered ferrite magnet
WO2012090935A1 (ja) * 2010-12-28 2012-07-05 日立金属株式会社 フェライト焼結磁石及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10149910A (ja) 1996-11-18 1998-06-02 Hitachi Metals Ltd フェライト磁石およびその製造方法
JPH11154604A (ja) 1997-02-25 1999-06-08 Tdk Corp 焼結磁石およびモータ
JP3181559B2 (ja) 1997-09-19 2001-07-03 ティーディーケイ株式会社 酸化物磁性材料、フェライト粒子、ボンディット磁石、焼結磁石、これらの製造方法および磁気記録媒体
JP2001068319A (ja) * 1999-06-21 2001-03-16 Hitachi Metals Ltd フェライト磁石
JP2003151811A (ja) * 2001-11-08 2003-05-23 Tdk Corp フェライト焼結磁石およびその製造方法
JP2006104050A (ja) 2004-09-10 2006-04-20 Neomax Co Ltd 酸化物磁性材料および焼結磁石
JP2006117515A (ja) * 2004-09-21 2006-05-11 Tdk Corp フェライト磁性材料の製造方法
WO2007060757A1 (ja) 2005-11-25 2007-05-31 Hitachi Metals, Ltd. 酸化物磁性材料及びその製造方法、並びにフェライト焼結磁石及びその製造方法
JP2008137879A (ja) * 2005-12-19 2008-06-19 Tdk Corp フェライト磁性材料
WO2007077811A1 (ja) 2005-12-28 2007-07-12 Hitachi Metals, Ltd. 酸化物磁性材料
WO2011111756A1 (ja) * 2010-03-10 2011-09-15 日立金属株式会社 フェライト焼結磁石及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ASTI; S. RINALDI, J. APPL. PHYS., vol. 45, 1974, pages 3600 - 3610
See also references of EP2660830A4

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104508769A (zh) * 2012-07-31 2015-04-08 日立金属株式会社 铁氧体烧结磁体的制造方法及铁氧体烧结磁体
US20150221424A1 (en) * 2012-07-31 2015-08-06 Hitachi Metals, Ltd. Sintered ferrite magnet and its production method
JPWO2014021149A1 (ja) * 2012-07-31 2016-07-21 日立金属株式会社 フェライト焼結磁石の製造方法及びフェライト焼結磁石
US9601247B2 (en) 2012-07-31 2017-03-21 Hitachi Metals, Ltd. Sintered ferrite magnet and its production method
WO2014021149A1 (ja) * 2012-07-31 2014-02-06 日立金属株式会社 フェライト焼結磁石の製造方法及びフェライト焼結磁石
US20150294771A1 (en) * 2014-04-15 2015-10-15 Tdk Corporation Permanent magnet and variable magnetic flux motor
US9850559B2 (en) * 2014-04-15 2017-12-26 Tdk Corporation Permanent magnet and variable magnetic flux motor
CN105635549A (zh) * 2016-04-01 2016-06-01 信利光电股份有限公司 一种摄像模组马达、摄像模组及电子设备
US11417447B2 (en) 2016-05-20 2022-08-16 Tdk Corporation Ferrite magnet
US11569013B2 (en) 2016-05-20 2023-01-31 Tdk Corporation Ferrite magnet
JP2018160672A (ja) * 2017-03-23 2018-10-11 日立金属株式会社 フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP7247467B2 (ja) 2017-03-23 2023-03-29 株式会社プロテリアル フェライト焼結磁石の製造方法及びフェライト焼結磁石
US11450458B2 (en) 2018-02-26 2022-09-20 Tdk Corporation Ferrite sintered magnet, motor and generator
JP7056404B2 (ja) 2018-02-26 2022-04-19 Tdk株式会社 フェライト焼結磁石、モータ、及び発電機
US11205533B2 (en) 2018-02-26 2021-12-21 Tdk Corporation Ferrite sintered magnet, motor and generator
JP2019149534A (ja) * 2018-02-26 2019-09-05 Tdk株式会社 フェライト焼結磁石、モータ、及び発電機
JP2020161659A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP2020161660A (ja) * 2019-03-27 2020-10-01 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP7275739B2 (ja) 2019-03-27 2023-05-18 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械
JP7275740B2 (ja) 2019-03-27 2023-05-18 Tdk株式会社 フェライト焼結磁石及びこれを備える回転電気機械

Also Published As

Publication number Publication date
BR112013016925A2 (pt) 2020-10-27
JP5929764B2 (ja) 2016-06-08
JPWO2012090935A1 (ja) 2014-06-05
KR101858484B1 (ko) 2018-06-27
EP2660830A1 (en) 2013-11-06
CN103282977A (zh) 2013-09-04
US20130285779A1 (en) 2013-10-31
EP2660830A4 (en) 2018-01-31
BR112013016925B1 (pt) 2021-10-26
CN103282977B (zh) 2016-06-08
KR20130130766A (ko) 2013-12-02
EP2660830B1 (en) 2020-12-09
US9401235B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
JP5929764B2 (ja) フェライト焼結磁石及びその製造方法
JP5873333B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP6217640B2 (ja) フェライト焼結磁石の製造方法及びフェライト焼結磁石
JP4919636B2 (ja) 酸化物磁性材料および焼結磁石
EP3364426B1 (en) Ferrite magnetic material and ferrite sintered magnet
KR101836964B1 (ko) 페라이트 하소체, 페라이트 소결 자석의 제조 방법 및 페라이트 소결 자석
JP6152854B2 (ja) フェライト焼結磁石及びその製造方法
JP5408521B2 (ja) 焼結磁石の製造方法
JP2012209295A (ja) フェライト焼結磁石
JP5521622B2 (ja) 酸化物磁性材料、フェライト焼結磁石及びフェライト焼結磁石の製造方法
JP6070454B2 (ja) フェライト化合物
JP5804370B2 (ja) 酸化物磁性材料の製造方法
JP6863374B2 (ja) フェライト磁石
WO2014084059A1 (ja) フェライト化合物
JP2002118012A (ja) フェライト磁石及びそれを用いた回転機並びにマグネットロール
JP2022151652A (ja) フェライト仮焼体およびフェライト焼結磁石の製造方法
CN114249591A (zh) 铁氧体预烧体及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550936

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13976841

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137016953

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011852251

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016925

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016925

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130628