WO2012081316A1 - 積層鉄心の製造方法 - Google Patents

積層鉄心の製造方法 Download PDF

Info

Publication number
WO2012081316A1
WO2012081316A1 PCT/JP2011/074972 JP2011074972W WO2012081316A1 WO 2012081316 A1 WO2012081316 A1 WO 2012081316A1 JP 2011074972 W JP2011074972 W JP 2011074972W WO 2012081316 A1 WO2012081316 A1 WO 2012081316A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated core
mold
resin
manufacturing
magnet insertion
Prior art date
Application number
PCT/JP2011/074972
Other languages
English (en)
French (fr)
Inventor
亮 長井
加藤 剛
吉田 康平
Original Assignee
株式会社三井ハイテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社三井ハイテック filed Critical 株式会社三井ハイテック
Priority to US13/885,050 priority Critical patent/US9947464B2/en
Priority to EP11848352.8A priority patent/EP2654187A4/en
Priority to CN201180039207.4A priority patent/CN103069698B/zh
Publication of WO2012081316A1 publication Critical patent/WO2012081316A1/ja
Priority to US15/912,675 priority patent/US10283264B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a method of manufacturing a laminated core in which a magnet piece is resin-sealed in a plurality of magnet insertion holes formed in an axial direction so as to be used in a motor.
  • a magnet mold construction method A in which a plurality of magnet insertion holes are provided in a laminated core body of a rotor laminated core, and magnet pieces are inserted into each magnet insertion hole and fixed.
  • magnet pieces 72 are placed in a plurality of magnet insertion holes 71 provided in the radially outer region of the rotor laminated core 70, heated to a certain temperature, and then inserted into the magnet insertion holes 71.
  • the magnet piece 72 is fixed to the laminated core body 76 by injecting the mold resin 75 from the upper mold 73 (or the lower mold 74) and curing the mold resin 75.
  • 77 is a conveyance jig
  • 78 is an upper fixing plate
  • 79 is a lower fixing plate
  • 80 is a guide post
  • 81 is a plunger.
  • a metal dummy plate 82 is disposed on the surface side of the laminated core body 76, and a mold resin 75 is formed from a gate 83 that is a resin inlet formed in the dummy plate 82. Injecting. As a result, the injected mold resin 75 remains on the surface of the dummy plate 82, not on the surface side of the laminated core body 76, so that the remaining mold resin is also removed by removing the dummy plate 82 from the laminated core body 76. It has been removed.
  • Reference numeral 84 denotes a resin flow path formed in the upper mold 73.
  • the present invention has been made in view of such circumstances, and it is not necessary to change the mold die even for different rotor laminated cores. Therefore, it is not necessary to prepare other types of mold dies. and to provide a method for manufacturing a laminated core which is capable of shortening the lead time.
  • a method for manufacturing a laminated core that meets the above-described purpose is to insert a laminated core body in which a magnet piece is inserted into a magnet insertion hole between a mold die and a holding die, and from the resin reservoir of the mold die to the magnet.
  • a groove-shaped resin flow path from the resin reservoir to the magnet insertion hole is provided between the mold die and the laminated core body, and communicates with the magnet insertion hole on the downstream side of the resin flow path.
  • a guide member having a gate is disposed.
  • the guide member is composed of a single flat plate (for example, a metal plate such as a stainless steel plate or a steel plate), and the resin flow path is a groove that opens to the mold die side.
  • the gate is preferably a through hole provided at an end of the resin flow path.
  • the said guide member consists of at least 2 flat plates (for example, metal plates, such as a stainless plate and a steel plate), and the said resin flow path contacts the said mold die.
  • the gate is a through-hole formed on a flat plate that penetrates the front and back surfaces, the gate being formed on a flat plate in contact with the laminated core body, and connected to the downstream side of the resin flow path.
  • the gate is smaller than the magnet insertion hole in a plan view and is wrapped in the magnet insertion hole from the inside in the radial direction.
  • the plan view means that the laminated core body is viewed in the axial direction.
  • the mold has a plurality of resin reservoirs, and a plurality of grouped magnet insertion hole groups (one or a plurality of magnets) formed in the laminated core body. It is preferable to supply the mold resin to (having an insertion hole). Moreover, in the manufacturing method of the laminated core which concerns on this invention, it is preferable that the diameter of the said guide member is larger than the diameter of the said laminated core main body. This facilitates removal of the guide member after resin sealing.
  • the following effects can be obtained. (1) Even if the type of product (that is, the laminated core) to be molded is changed in the middle of an operating production line, mold gold Molding is possible only by setting a guide member that matches the product without changing the mold, and therefore production can be performed continuously without stopping the production line. (2) That is, for a specific product type, only the guide member needs to be changed in accordance with the change of the product type, and the lead time can be shortened. (3) Since it is not necessary to manufacture a mold for each product type, the mold cost and the product cost are greatly reduced.
  • (A), (B) is explanatory drawing of the guide member used for the method
  • (C) is a top view of the laminated iron core manufactured by the method.
  • (A), (B) is a top view of the guide member used for the manufacturing method of the laminated iron core which concerns on the 4th Example of this invention
  • (C) is a top view of the laminated iron core manufactured by the same method.
  • the method for manufacturing a laminated core according to the first embodiment of the present invention is performed between an upper mold 10 that is an example of a mold and a lower mold 11 that is an example of a holding mold.
  • the laminated core body 14 having a plurality of pairs of magnet insertion holes 12 and 13 (see FIG. 3B) penetrating vertically is provided in the radially outer region, and a magnet piece (not excited) in each magnet insertion hole 12 and 13.
  • the permanent magnet 15 is inserted, and the mold resin 19 is filled into the magnet insertion holes 12 and 13 through the guide member 18 from the resin reservoir pot 16 which is an example of the resin reservoir provided in the upper mold 10.
  • the magnet piece 15 is fixed to the magnet insertion holes 12 and 13.
  • the height of the magnet piece 15 is the same as the height of the laminated core body 14 or is small within a small range (0.1 to 2 mm).
  • the laminated core body 14 includes a plurality of pairs (8 in this embodiment) of magnet insertion holes 12 and 13 (forming one magnet insertion hole group) as a pair, and has a mountain shape in plan view. radially inwardly of the insertion holes 12 and 13, through holes 21 for weight reduction it is formed.
  • a shaft hole 22 is provided in the center of the laminated core body 14, and projecting portions 23 and 24 (see FIG. 3) having a quadrangular shape as viewed in plan are formed inside the shaft hole 22.
  • the laminated core body 14 is formed by caulking and laminating iron core pieces 25 having the same shape obtained by pressing a magnetic plate material (for example, a silicon steel plate).
  • the upper mold 10 has a resin reservoir pot 16 having a circular cross section at a position corresponding to the radially inner side of the pair of magnet insertion holes 13 and 12 formed in a valley shape in plan view. have.
  • Each resin reservoir pot 16 has a structure in which a liquid mold resin (thermosetting resin) 19 accumulated inside is pushed out toward the laminated core body 14 by a plunger 27 that moves up and down by a cylinder (not shown).
  • the guide member 18 is made of a single flat plate (for example, a stainless steel plate or a steel plate) having a thickness in the range of, for example, 0.2 to 3 mm.
  • the upstream end communicates with the resin reservoir pot 16 and the downstream end is a magnet insertion hole.
  • a resin flow path 31 is formed that includes a groove that opens to the bottomed upper mold 10 side that is connected to a gate 30 that is formed of a through hole formed on the inner side in the radial direction of 12, 13 (dotted line portion).
  • the depth of the resin flow path 31 is in the range of 30 to 70% of the thickness of the guide member 18, and the gate 30 formed at the downstream end of the resin flow path 31 is formed of a rectangular hole so that the magnet is inserted below. It is located in the center in the radial direction of the holes 12 and 13.
  • the gate 30 is not limited to a rectangular hole, and other shapes such as a round hole and a triangular hole can be employed.
  • the long side length of the gate 30 is 0.3 to 0.7 times the long side length of the magnet insertion holes 12 and 13, and the short side width is 0. 0 of the short side width of the magnet insertion holes 12 and 13. 3 to 0.7 times.
  • the guide member 18 has a diameter that is 1 to 10% larger than the diameter of the laminated core body 14, and a shaft hole 32 having the same diameter as the shaft hole 22 of the laminated core body 14 is provided inside. Inside the shaft hole 32, protrusions 33 and 34 that are the same as the protrusions 23 and 24 provided inside the shaft hole 22 are provided.
  • the laminated core body 14 is positioned and sandwiched between the lower mold 11 and the upper mold 10 while being placed on the conveying jig 36.
  • the conveying jig 36 includes a mounting table 37 and a guide shaft 38 disposed at the center thereof.
  • the guide shaft 38 is longer than the height of the laminated core body 14, and the upper end thereof is chamfered 39. Is formed.
  • the upper mold 10 is provided with a hole 40 into which the guide shaft 38 is fitted.
  • key grooves 41, 42 into which the projecting portions 23, 24, 33, 34 are closely fitted are provided. Note that a key groove may be formed on the outer periphery of the shaft hole of the laminated iron core, and a projecting portion into which the key groove is fitted may be provided on the guide shaft.
  • the guide member 18 is placed on the laminated core body 14 that has been preheated and mounted on the conveying jig 36, and is disposed between the upper mold 10 and the lower mold 11.
  • the upper die 10 is lowered, and the laminated core body 14 and the guide member 18 are positioned by fitting the guide shaft 38 of the conveying jig 36 into the hole 40 of the upper die 10.
  • the plunger 27 is pushed down by a cylinder (not shown), the molten mold resin 19 in the resin reservoir pot 16 is pushed downward, and the mold resin is inserted into the magnet insertion holes 12 and 13 from the resin flow path 31 through the gate 30. 19 is filled. Since the gate 30 is provided so as to wrap from the inside in the radial direction of the magnet insertion holes 12 and 13, the magnet piece 15 is pushed outward in the radial direction of the magnet insertion holes 12 and 13.
  • the mold resin 19 is made of a thermosetting resin, it is heated and cured by the preheated laminated core body 14. Thereafter, when the upper mold 10 is raised and the guide member 18 is removed from the laminated core body 14, the hardened mold resin 19 is also broken at or near the gate 30 portion. This operation may be performed on the lower mold 11 or may be performed by moving the conveying jig 36 to another position.
  • the manufacturing method of the laminated core according to the second embodiment of the present invention shown in FIGS. 4A and 4B will be described with respect to differences from the manufacturing method of the laminated core according to the first embodiment.
  • the laminated core body 44 is further provided with a magnet insertion hole 45 to form eight magnet insertion hole groups. Therefore, the guide member 47 mounted on the laminated core body 44 also has a resin flow path 48 and a gate 49 corresponding to the magnet insertion hole 45.
  • the operation procedure of the method for manufacturing a laminated core according to the second embodiment is the same as the method for manufacturing the laminated core according to the first embodiment, detailed description thereof is omitted.
  • two or three magnet insertion holes are filled with resin from one resin reservoir pot, but one magnet insertion hole, or four or more magnet insertion holes from one resin reservoir pot.
  • the present invention is also applied to the case where the resin is filled in.
  • the manufacturing method of the laminated core which concerns on the 3rd Example of this invention is demonstrated, referring FIG. 5, FIG. Since the upper mold and the lower mold are the same as the method for manufacturing the laminated core according to the first embodiment, detailed description thereof is omitted. Moreover, although the conveyance jig of the laminated core body is omitted in the following embodiments, it is preferably used as in the first embodiment. In addition, the same constituent elements as those in the above embodiment are denoted by the same reference numerals, and redundant description is omitted (the same applies to the fourth embodiment).
  • the laminated core body 14 on which the guide member 51 is placed is disposed between the upper mold 10 and the lower mold 11.
  • the magnet insertion holes 12 and 13 are provided.
  • the guide member 51 is composed of, for example, two stainless steel circular flat plates 52 and 53 each having a thickness of 0.2 to 2 mm, and the flat plate 52 in contact with the resin reservoir pot 16 extends from the resin reservoir pot 16.
  • a resin flow path 55 to the gate 54 on the downstream side is formed, and the above-described gate 54 is formed on the flat plate 53 in contact with the laminated core body 14 to flow resin into the magnet insertion holes 12 and 13 formed in the laminated core body 14. ing.
  • the resin flow path 55 is formed through the flat plate 52 in the vertical direction, and the gate 54 is formed through the flat plate 53 in the vertical direction (as a through hole).
  • the gate 54 is located at the radially inner center of the magnet insertion holes 12 and 13 in plan view.
  • the upstream side of the resin flow path 55 communicates with the resin reservoir pot 16, and the downstream side communicates with the gate 54.
  • the two flat plates 52 and 53 are integrated to perform the same function as the guide member 18 provided with the resin flow path 31 and the gate 30 in the first embodiment.
  • the diameter of the flat plates 52 and 53 is larger than the diameter of the laminated core main body 14, and removal is easy.
  • the guide member 51 is used in the same manner as in the first embodiment. In removing the guide member 51, the two flat plates 52 and 53 are removed at the same time, and the mold resin accumulated in the resin flow path 55 is easily removed by separating the flat plates 52 and 53. it can.
  • the conveyance jig 36 which is not described in FIG. 5, when providing positioning means (for example, a concave portion and a convex portion) capable of positioning the guide member 51 and the laminated core body 14, A conveyance jig can be omitted.
  • 6 (A) and 6 (B) indicate protrusions
  • 59 and 60 indicate shaft holes.
  • the laminated core body 44 used in the method for manufacturing a laminated core according to the second embodiment is used.
  • two flat plates 63 and 64 constituting the guide member 62 are used, and the gate 54 on the downstream side from the resin reservoir pot formed in the upper die on the flat plate 63 is used.
  • 65 are connected to resin flow paths 55, 66.
  • the flat plate 64 includes the gates 54 and 65 described above, and the gates 54 and 65 are aligned with the radially inner centers of the magnet insertion holes 12, 13, and 45 of the laminated core body 44.
  • the guide member 62 is placed on the laminated core body 44 in which the predetermined magnet piece 15 is placed in the magnet insertion holes 12, 13, 45, and is sandwiched between the upper mold and the lower mold, and is removed from the resin reservoir pot.
  • the mold resin is filled into the magnet insertion holes 12, 13, 45 through the resin flow paths 55, 66 and the gates 54, 65.
  • the magnet piece 15 is fixed to the magnet insertion holes 12, 13, 45.
  • the molding resin is removed without remaining on the laminated core body 44.
  • the guide members 18, 47, 51, 62 As described above, by manufacturing the guide members 18, 47, 51, 62 according to the shape of the laminated core body, it is not necessary to change the shape of the mold, so that the manufacturing cost of the mold can be reduced. Further, since the guide members 18, 47, 51, 62 may be exchanged according to the shape of the laminated core body, the apparatus can be easily changed even when the laminated core body is changed. Furthermore, when the guide member is composed of two or more flat plates, there are cases where only one of them can be changed in accordance with the shape of the laminated core body.
  • the resin reservoir pot is provided in the upper mold.
  • the specific dimension was shown and demonstrated, you may change a numerical value in the range which does not change the summary of this invention.
  • the method for manufacturing a laminated core according to the present invention has been described using the first to fourth embodiments, the present invention can also be configured by combining the first to fourth embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

モールド金型10と保持金型11の間に、磁石挿入孔12、13に磁石片15が挿入された積層鉄心本体14を入れて、樹脂溜め部16からモールド樹脂19を充填して、磁石片15を磁石挿入孔12、13に固定する積層鉄心の製造方法において、モールド金型10と積層鉄心本体14との間に、樹脂溜め部16から磁石挿入孔12、13に向かう樹脂流路31を有し、樹脂流路31の下流側には磁石挿入孔12、13に通ずるゲート30を備えたガイド部材18を配置した。これにより、異なる回転子積層鉄心に対してもモールド金型の変更を行うことなく、従って、他種類のモールド金型を用意する必要がなく、生産ラインのリードタイムを短くすることができる。

Description

積層鉄心の製造方法
本発明は、モータに使用され、軸方向に貫通して形成された複数の磁石挿入孔にそれぞれ磁石片を樹脂封止した積層鉄心の製造方法に関する。
従来、特許文献1に記載のように、回転子積層鉄心の積層鉄心本体に複数の磁石挿入孔を設け、各磁石挿入孔に磁石片を入れて固定するマグネットモールド工法Aが知られている。この工法は、図8に示すように、回転子積層鉄心70の半径方向外側領域に設けられた複数の磁石挿入孔71に磁石片72を入れて、一定温度に加熱し、磁石挿入孔71に上型73(又は下型74)からモールド樹脂75を注入し、このモールド樹脂75を硬化させることで、磁石片72を積層鉄心本体76に固定させている。なお、77は搬送治具、78は上固定プレート、79は下固定プレート、80はガイドポスト、81はプランジャである。
ところが、特許文献1に記載の方法では、回転子積層鉄心の表面の樹脂流路部分と磁石挿入孔71に通ずるゲート部分にモールド樹脂75が残留する。このため、モールド樹脂の充填の後に、表面に残留した樹脂を除去する工程が必要となる。そこで、特許文献2に記載のようなダミー板を用いたマグネットモールド工法Bが提案されている。
このマグネットモールド工法Bは、図9に示すように、積層鉄心本体76の表面側に金属製のダミー板82を配置し、このダミー板82に形成した樹脂注入口であるゲート83からモールド樹脂75を注入している。これによって、注入したモールド樹脂75は積層鉄心本体76の表面側ではなく、ダミー板82の表面に固着して残るため、積層鉄心本体76からダミー板82を取り外すことで、残留したモールド樹脂も同時に除去している。なお、84は上型73に形成された樹脂流路である。
特許第3786946号公報 特許第4414417号公報
しかしながら、特許文献1、2に記載するマグネットモールド工法においては、積層鉄心本体の磁石挿入孔の位置や数が変わる毎に、樹脂溜め部のあるモールド金型(上型又は下型)の形状、及びダミー板を、対象となる積層鉄心本体に合わせて変更する必要がある。従って、回転子積層鉄心の種類に合わせて、モールド金型を用意すると、製造コストの増大を招くばかりでなく、生産ラインにおいて、回転子積層鉄心の種類を変える毎に、モールド金型の交換も行わなければならず、モールド金型交換後の調整まで含めると、生産再開まで数十分から数時間を要するため、生産時間の短縮を妨げる要因となっていた。
本発明はかかる事情に鑑みてなされたもので、異なる回転子積層鉄心に対してもモールド金型の変更を行うことなく、従って、他種類のモールド金型を用意する必要がなく、生産ラインのリードタイムを短くすることが可能な積層鉄心の製造方法を提供することを目的とする。
前記目的に沿う積層鉄心の製造方法は、モールド金型と保持金型の間に、磁石挿入孔に磁石片が挿入された積層鉄心本体を入れて、前記モールド金型の樹脂溜め部から前記磁石挿入孔にモールド樹脂を充填して、前記磁石片を前記磁石挿入孔に固定する積層鉄心の製造方法において、
前記モールド金型と前記積層鉄心本体との間に、前記樹脂溜め部から前記磁石挿入孔に向かう溝形の樹脂流路を有し、該樹脂流路の下流側には前記磁石挿入孔に通ずるゲートを備えたガイド部材を配置している。
ここで、積層鉄心本体が垂直方向に立設されている場合、モールド金型は積層鉄心本体の上又は下に配置し、これに対応してガイド部材を積層鉄心本体の上又は下に配置することになる。
本発明に係る積層鉄心の製造方法において、前記ガイド部材は1枚の平板(例えば、ステンレス板、鋼板等の金属板)からなって、前記樹脂流路は前記モールド金型側に開く溝からなって、前記ゲートは前記樹脂流路の端部に設けられた貫通孔であるのが好ましい。
また、本発明に係る積層鉄心の製造方法において、前記ガイド部材は少なくとも2枚の平板(例えば、ステンレス板、鋼板等の金属板)からなって、前記樹脂流路は、前記モールド金型に接する平板に表裏貫通して形成され、前記ゲートは前記積層鉄心本体に接する平板に形成され、前記樹脂流路の下流側に接続される貫通孔であるのが好ましい。
本発明の積層鉄心の製造方法において、前記ゲートは、平面視して前記磁石挿入孔より小さくなって、しかも前記磁石挿入孔に半径方向内側からラップしているのが好ましい。ここで、平面視するとは積層鉄心本体を軸方向に見ることをいう。これによって、磁石挿入孔とゲートの境界部分に位置する樹脂が折れ易くなり、不要の樹脂の除去が容易となる。
本発明の積層鉄心の製造方法において、前記モールド金型には複数の前記樹脂溜め部があって、前記積層鉄心本体に形成されたグループ分けされた複数の磁石挿入孔群(1又は複数の磁石挿入孔を有する)に前記モールド樹脂を供給しているのが好ましい。
また、本発明に係る積層鉄心の製造方法において、前記ガイド部材の直径は前記積層鉄心本体の直径より大きいのが好ましい。これによって、樹脂封止後のガイド部材の取外しが容易となる。
本発明に係る積層鉄心の製造方法においては、以下のような効果を有する
(1)稼働中の製造ラインにおいて、途中からモールドする製品(即ち、積層鉄心)種が変更になっても、モールド金型を交換せず、製品に合わせたガイド部材をセットするだけでモールドが可能となるので、製造ラインを停止することなく、連続して生産を行うことができる。
(2)即ち、特定の製品種においては、製品種の変更に伴いガイド部材の交換のみで済む場合があり、リードタイムの短縮が可能となる。
(3)製品種毎にモールド金型を製作する必要がないので、金型コスト及び製品コストの大幅減となる。
特に、ガイド部材に少なくとも2枚の平板を使用することによって、製品表面への樹脂残り付着を防止できると共に、少なくとも2枚の平板を分離させることで、樹脂残りを極めて容易に除去できる。
本発明の第1の実施例に係る積層鉄心の製造方法の説明図である。 同方法に使用する搬送治具の平面図である。 (A)は同方法に使用するガイド部材の平面図、(B)は同方法によって製造された積層鉄心の平面図である。 (A)は本発明の第2の実施例に係る積層鉄心の製造方法に用いるガイド部材の平面図、(B)は同方法によって製造された積層鉄心の平面図である。 本発明の第3の実施例に係る積層鉄心の製造方法の説明図である。 (A)、(B)は同方法に使用するガイド部材の説明図あり、(C)は同方法によって製造された積層鉄心の平面図である。 (A)、(B)は本発明の第4の実施例に係る積層鉄心の製造方法に使用するガイド部材の平面図で、(C)は同方法によって製造された積層鉄心の平面図てある。 従来例に係る積層鉄心の製造方法を示す説明図である。 従来例に係る積層鉄心の製造方法を示す説明図である。
図1に示すように、本発明の第1の実施例に係る積層鉄心の製造方法は、モールド金型の一例である上型10と、保持金型の一例である下型11との間に、上下に貫通する対となる磁石挿入孔12、13(図3(B)参照)を半径方向外側領域に複数組有する積層鉄心本体14を、各磁石挿入孔12、13に磁石片(未励磁の永久磁石)15を入れた状態で配置し、上型10に設けられた樹脂溜め部の一例である樹脂溜めポット16からガイド部材18を介してモールド樹脂19を磁石挿入孔12、13に充填し、磁石片15を磁石挿入孔12、13に固定するものである。なお、磁石片15の高さは積層鉄心本体14の高さと同一であるか僅少の範囲(0.1~2mm)で小さい。
積層鉄心本体14は、複数の対となる磁石挿入孔12、13(1つの磁石挿入孔群を形成する)を複数対(この実施例では8)備え、平面視して山形状になった磁石挿入孔12、13の半径方向内側には、重量軽減用の貫通孔21がそれぞれ形成されている。積層鉄心本体14の中央には軸孔22が設けられ、軸孔22の内側には対向する平面視して四角形状の突出部23、24(図3参照)が形成されている。この積層鉄心本体14は磁性板材(例えば、硅素鋼板)をプレス加工した同一形状の鉄心片25をかしめ積層して形成されている。
上型10は図3(A)に示すように、平面視して谷状に形成される対となる磁石挿入孔13、12の半径方向内側に対応する位置に、断面円形の樹脂溜めポット16を有している。各樹脂溜めポット16は図示しないシリンダーによって上下動するプランジャ27によって内部に溜まった液状のモールド樹脂(熱硬化性樹脂)19を積層鉄心本体14側に向けて押し出す構造となっている。
ガイド部材18は、厚みが例えば0.2~3mmの範囲にある1枚の平板(例えば、ステンレス板、鋼板)からなって、樹脂溜めポット16に上流端が連通し、下流端が磁石挿入孔12、13(点線部分)の半径方向内側に形成された貫通孔からなるゲート30に繋がる有底の上型10側に開く溝からなる樹脂流路31が形成されている。この樹脂流路31の深さはガイド部材18の厚みの30~70%の範囲となって、樹脂流路31の下流端に形成されているゲート30は矩形孔からなって、下方の磁石挿入孔12、13の半径方向内側中央に位置している。なお、ゲート30は矩形孔に限らず、丸孔、三角孔等他の形状を採用することができる。
ゲート30の長辺長さは、磁石挿入孔12、13の長辺長さの0.3~0.7倍となって、短辺幅も磁石挿入孔12、13の短辺幅の0.3~0.7倍となっている。
ガイド部材18はその直径が積層鉄心本体14の直径より1~10%の範囲で大きくなって、内部に積層鉄心本体14の軸孔22と同一直径の軸孔32が設けられている。この軸孔32の内側には、軸孔22の内側に設けられている突出部23、24と同一の突出部33、34が設けられている。
この実施例においては、積層鉄心本体14は搬送治具36に載置された状態で、下型11及び上型10の間に位置決めして挟持されている。
搬送治具36は、図2に示すように、載置台37とその中央に配置されたガイド軸38とを有し、ガイド軸38は積層鉄心本体14の高さより長くなって、上端は面取り39が形成されている。なお、上型10にはこのガイド軸38が嵌入する穴40が設けられている。ガイド軸38の径方向両側には、突出部23、24、33、34が密着嵌入するキー溝41、42が設けられている。なお、積層鉄心の軸孔外周にキー溝を形成し、ガイド軸にキー溝が嵌入する突出部を設けてもよい。
以上の構成となった樹脂封止装置を用いた積層鉄心の製造方法について説明する。
予熱されて搬送治具36に搭載された積層鉄心本体14の上にガイド部材18を重ねて、上型10及び下型11の間に配置する。上型10を降ろして、積層鉄心本体14及びガイド部材18は搬送治具36のガイド軸38が上型10の穴40に嵌入することによって位置決めされる。
この状態で、プランジャ27を図示しないシリンダで押し下げて、樹脂溜めポット16内の溶融したモールド樹脂19を下方に押し出し、樹脂流路31からゲート30を介して各磁石挿入孔12、13にモールド樹脂19を充填する。ゲート30は磁石挿入孔12、13の半径方向内側からラップして設けられているので、磁石片15は磁石挿入孔12、13の半径方向外側に押される。
モールド樹脂19は熱硬化性樹脂からなっているので、予熱された積層鉄心本体14によって加温して硬化する。
この後、上型10を上昇させて、ガイド部材18を積層鉄心本体14の上から外すと、固まったモールド樹脂19もゲート30部分又はその近傍で破断する。この作業は下型11の上で行ってもよいし、搬送治具36を別位置に移動させて行ってもよい。
次に、図4(A)、(B)に示す本発明の第2の実施例に係る積層鉄心の製造方法について、第1の実施例に係る積層鉄心の製造方法と異なる点について説明する。上型10、下型11、搬送治具36については第1の実施例に係る積層鉄心の製造方法と同じものを使用する。積層鉄心本体44には、磁石挿入孔12、13の他に更に磁石挿入孔45が設けられて、磁石挿入孔群を8個形成している。従って、この積層鉄心本体44の上に載るガイド部材47にも、磁石挿入孔45に対応する樹脂流路48及びゲート49を有する。
第2の実施例に係る積層鉄心の製造方法の操作手順は、第1の実施例に係る積層鉄心の製造方法と同一であるので、詳しい説明を省略する。
これらの実施例においては、2又は3の磁石挿入孔に対して一つの樹脂溜めポットから樹脂を充填しているが、一つの樹脂溜めポットから一つの磁石挿入孔、又は4以上の磁石挿入孔に樹脂を充填する場合も本発明は適用される。
続いて、図5、図6を参照しながら、本発明の第3の実施例に係る積層鉄心の製造方法について説明する。なお、上型及び下型については第1の実施例に係る積層鉄心の製造方法と同一であるので、詳しい説明を省略する。また、積層鉄心本体の搬送治具は、以下の実施例では省略しているが、第1の実施例のように用いるのが好ましい。また、以上の実施例と同一の構成要素については同一の番号を付して重複した説明を省略する(第4の実施例においても同じ)。
図5、図6(A)~(C)に示すように、上型10、下型11の間に、ガイド部材51を載せた積層鉄心本体14を配置する。積層鉄心本体14には前述のように、磁石挿入孔12、13が設けられている。この実施例においては、ガイド部材51が、それぞれ例えば厚み0.2~2mmの2枚のステンレス製の円形平板52、53からなって、樹脂溜めポット16に接する平板52に、樹脂溜めポット16から下流側のゲート54への樹脂流路55が形成され、積層鉄心本体14に接する平板53には積層鉄心本体14に形成された磁石挿入孔12、13に樹脂を流し込む前記したゲート54が形成されている。
樹脂流路55は平板52を上下貫通して形成され、ゲート54は平板53に上下貫通して(貫通孔として)形成されている。ゲート54は、平面視して磁石挿入孔12、13の半径方向内側中央に位置している。樹脂流路55の上流側は、樹脂溜めポット16に連通され、下流側はゲート54に連通している。
これによって、2枚の平板52、53は一体となって、第1の実施例における樹脂流路31及びゲート30が設けられたガイド部材18と同一の働きをする。なお、平板52、53の直径は積層鉄心本体14の直径より大きく、除去が容易となっている。
このガイド部材51の使用方法は第1の実施例と同様である。また、ガイド部材51の除去にあっては、2枚の平板52、53を同時に外すことになり、更に平板52、53を分離することによって、樹脂流路55に溜まったモールド樹脂を容易に除去できる。
なお、図5には記載していない搬送治具36を使用するのが好ましいが、ガイド部材51と積層鉄心本体14の位置決めができる位置決め手段(例えば、凹部と凸部)を設ける場合には、搬送治具を省略できる。また、図6(A)、(B)において、57、58は突出部を、59、60は軸孔を示す。
次に、図7(A)~(C)を参照して本発明の第4の実施例に係る積層鉄心の製造方法について説明する。この実施例は、第2の実施例に係る積層鉄心の製造方法に用いた積層鉄心本体44を使用している。この第4の実施例に係る積層鉄心の製造方法においては、ガイド部材62を構成する2枚の平板63、64を用い、平板63に上型に形成された樹脂溜めポットから下流側のゲート54、65に繋がる樹脂流路55、66を形成している。そして、平板64には前記したゲート54、65を備え、このゲート54、65は積層鉄心本体44の磁石挿入孔12、13、45の半径方向内側中央に符合している。
従って、磁石挿入孔12、13、45内に所定の磁石片15を入れた積層鉄心本体44の上に位置決めしてガイド部材62を載せて、上型と下型で挟持し、樹脂溜めポットからモールド樹脂を、樹脂流路55、66、ゲート54、65を介して磁石挿入孔12、13、45に充填する。これによって、磁石片15が磁石挿入孔12、13、45に固定される。ガイド部材62を除去することによって、積層鉄心本体44の上にモールド樹脂が残ることなく除去される。
以上のように、ガイド部材18、47、51、62を積層鉄心本体の形状に応じて製作することによって、モールド金型の形状は変更しないで済むので金型の製造コストを下げることができる。
また、積層鉄心本体の形状に応じてガイド部材18、47、51、62を交換すればよいので、積層鉄心本体が変わった場合も簡単に装置替えができる。
更に、ガイド部材が2枚以上の平板からなる場合は、積層鉄心本体の形状に合わせて、これらの一つのみを変更して対応できる場合もある。
前記実施例においては、上型に樹脂溜めポットを設けたが、下型に樹脂溜めポットを設け、各磁石挿入孔に下からモールド樹脂を充填することもできる。
更に、前記実施例においては、具体的寸法を示して説明したが、本発明の要旨を変更しない範囲で数値変更をしてもよい。
また、第1~第4の実施例を用いて本発明に係る積層鉄心の製造方法を説明したが、第1~第4の実施例を組み合わせて本発明を構成することもできる。
10:上型、11:下型、12、13:磁石挿入孔、14:積層鉄心本体、15:磁石片、16:樹脂溜めポット、18:ガイド部材、19:モールド樹脂、21:貫通孔、22:軸孔、23、24:突出部、25:鉄心片、27:プランジャ、30:ゲート、31:樹脂流路、32:軸孔、33、34:突出部、36:搬送治具、37:載置台、38:ガイド軸、39:面取り、40:穴、41、42:キー溝、44:積層鉄心本体、45:磁石挿入孔、47:ガイド部材、48:樹脂流路、49:ゲート、51:ガイド部材、52、53:平板、54:ゲート、55:樹脂流路、57:突出部、58:突出部、59:軸孔、60:軸孔、62:ガイド部材、63、64:平板、65:ゲート、66:樹脂流路

Claims (6)

  1. モールド金型と保持金型の間に、磁石挿入孔に磁石片が挿入された積層鉄心本体を入れて、前記モールド金型の樹脂溜め部から前記磁石挿入孔にモールド樹脂を充填して、前記磁石片を前記磁石挿入孔に固定する積層鉄心の製造方法において、
    前記モールド金型と前記積層鉄心本体との間に、前記樹脂溜め部から前記磁石挿入孔に向かう溝形の樹脂流路を有し、該樹脂流路の下流側には前記磁石挿入孔に通ずるゲートを備えたガイド部材を配置したことを特徴とする積層鉄心の製造方法。
  2. 請求項1記載の積層鉄心の製造方法において、前記ガイド部材は1枚の平板からなって、前記樹脂流路は前記モールド金型側に開く溝からなって、前記ゲートは前記樹脂流路の端部に設けられた貫通孔であることを特徴とする積層鉄心の製造方法。
  3. 請求項1記載の積層鉄心の製造方法において、前記ガイド部材は少なくとも2枚の平板からなって、前記樹脂流路は、前記モールド金型に接する平板に表裏貫通して形成され、前記ゲートは前記積層鉄心本体に接する平板に形成され、前記樹脂流路の下流側に接続される貫通孔であることを特徴とする積層鉄心の製造方法。
  4. 請求項1~3のいずれか1記載の積層鉄心の製造方法において、前記ゲートは、平面視して前記磁石挿入孔より小さくなって、しかも前記磁石挿入孔に半径方向内側からラップすることを特徴とする積層鉄心の製造方法。
  5. 請求項1~4のいずれか1記載の積層鉄心の製造方法において、前記モールド金型には複数の前記樹脂溜め部があって、前記積層鉄心本体に形成されたグループ分けされた複数の磁石挿入孔群に前記モールド樹脂を供給していることを特徴とする積層鉄心の製造方法。
  6. 請求項1~5のいずれか1記載の積層鉄心の製造方法において、前記ガイド部材の直径は前記積層鉄心本体の直径より大きいことを特徴とする積層鉄心の製造方法。
PCT/JP2011/074972 2010-12-14 2011-10-28 積層鉄心の製造方法 WO2012081316A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/885,050 US9947464B2 (en) 2010-12-14 2011-10-28 Method of manufacturing laminated core
EP11848352.8A EP2654187A4 (en) 2010-12-14 2011-10-28 PROCESS FOR PRODUCING LAMINATED IRON CORE
CN201180039207.4A CN103069698B (zh) 2010-12-14 2011-10-28 叠积式铁心的制造方法
US15/912,675 US10283264B2 (en) 2010-12-14 2018-03-06 Method of manufacturing laminated core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010278335A JP5805385B2 (ja) 2010-12-14 2010-12-14 積層鉄心の製造方法
JP2010-278335 2010-12-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/885,050 A-371-Of-International US9947464B2 (en) 2010-12-14 2011-10-28 Method of manufacturing laminated core
US15/912,675 Division US10283264B2 (en) 2010-12-14 2018-03-06 Method of manufacturing laminated core

Publications (1)

Publication Number Publication Date
WO2012081316A1 true WO2012081316A1 (ja) 2012-06-21

Family

ID=46244431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074972 WO2012081316A1 (ja) 2010-12-14 2011-10-28 積層鉄心の製造方法

Country Status (5)

Country Link
US (2) US9947464B2 (ja)
EP (1) EP2654187A4 (ja)
JP (1) JP5805385B2 (ja)
CN (1) CN103069698B (ja)
WO (1) WO2012081316A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399629A4 (en) * 2016-03-14 2018-11-07 Aisin Aw Co., Ltd. Rotor manufacturing method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5805385B2 (ja) * 2010-12-14 2015-11-04 株式会社三井ハイテック 積層鉄心の製造方法
JP5984092B2 (ja) * 2012-10-25 2016-09-06 アピックヤマダ株式会社 モールド金型及びモータコアの樹脂モールド方法
JP6040508B2 (ja) * 2012-10-31 2016-12-07 アピックヤマダ株式会社 樹脂モールド装置及びモータコアの樹脂モールド方法
JP6193639B2 (ja) * 2013-06-24 2017-09-06 株式会社三井ハイテック 積層鉄心の製造方法
JP6342758B2 (ja) * 2013-10-09 2018-06-13 株式会社三井ハイテック 積層鉄心及びその製造方法
JP6235968B2 (ja) * 2014-06-18 2017-11-22 オークマ株式会社 電動機の回転子の組立方法
JP6398703B2 (ja) * 2014-12-25 2018-10-03 アイシン・エィ・ダブリュ株式会社 樹脂充填方法及び樹脂充填装置
US10873249B2 (en) * 2015-03-13 2020-12-22 Kuroda Precision Industries Ltd. Resin filling method and resin filling device for magnet embedded core
JP6206438B2 (ja) * 2015-04-01 2017-10-04 トヨタ自動車株式会社 積層型ロータ及びその製造方法
CN107249844B (zh) * 2015-05-08 2019-11-15 黑田精工株式会社 磁铁埋入型铁芯的树脂填充装置和树脂填充方法
JP6335944B2 (ja) * 2015-08-11 2018-05-30 株式会社三井ハイテック 積層鉄心の樹脂封止方法
JP6668014B2 (ja) * 2015-08-17 2020-03-18 株式会社三井ハイテック 積層鉄心の製造装置
JP6279685B2 (ja) 2015-10-26 2018-02-14 株式会社三井ハイテック 積層鉄心の製造方法
CN107294267B (zh) * 2016-04-05 2020-08-18 德昌电机(深圳)有限公司 电机
JP6130028B2 (ja) * 2016-07-05 2017-05-17 株式会社三井ハイテック 積層鉄心の樹脂封止方法
JP6341236B2 (ja) * 2016-07-25 2018-06-13 ダイキン工業株式会社 ロータおよび回転電気機械
JP6410776B2 (ja) * 2016-10-06 2018-10-24 本田技研工業株式会社 ロータ製造方法
JP6180607B2 (ja) * 2016-10-20 2017-08-16 アピックヤマダ株式会社 樹脂モールド装置及びモータコアの樹脂モールド方法
JP6827799B2 (ja) 2016-12-22 2021-02-10 株式会社三井ハイテック 電機子の製造方法
JP7043902B2 (ja) * 2018-03-13 2022-03-30 トヨタ紡織株式会社 ロータコアの製造装置、ロータコアの製造方法、及びカルプレート
JP7163610B2 (ja) * 2018-04-16 2022-11-01 トヨタ紡織株式会社 ロータコアの製造装置及び製造方法
WO2020075275A1 (ja) * 2018-10-11 2020-04-16 黒田精工株式会社 ロータコア保持治具、磁石埋込み型コアの製造装置及び製造方法
CN110011497B (zh) * 2019-04-08 2024-08-13 苏州均华精密机械有限公司 一种电机转子铁芯磁钢槽灌胶装置
DE102021206832A1 (de) 2021-06-30 2023-01-05 Valeo Eautomotive Germany Gmbh Rotor mit einer Endplatte mit einer Einfüllöffnung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786946B1 (ja) 2005-01-24 2006-06-21 株式会社三井ハイテック 永久磁石の樹脂封止方法
JP2007318942A (ja) * 2006-05-26 2007-12-06 Mitsubishi Electric Corp 磁石埋込型回転子の射出成形用金型装置および製造方法
JP2009303485A (ja) * 2009-10-01 2009-12-24 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法
JP4414417B2 (ja) 2006-08-22 2010-02-10 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法
JP2010246266A (ja) * 2009-04-06 2010-10-28 Toyota Boshoku Corp 樹脂圧入方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH621916B (fr) 1979-02-27 Ebauchesfabrik Eta Ag Procede de fabrication de stators pour moteurs pas a pas de montres electroniques, et moteur realise selon le procede.
US4315173A (en) 1980-03-30 1982-02-09 Westinghouse Electric Corp. Dynamoelectric machines segmental air gap baffle assembly
US4614022A (en) 1985-05-30 1986-09-30 Applied Plastics Co., Inc. Method for forming multi-laminate core assembly
JP2888142B2 (ja) 1993-11-08 1999-05-10 三菱電機株式会社 回転電動機並びにその製造方法
GB2310544B (en) 1996-02-21 2000-03-29 Switched Reluctance Drives Ltd Method of forming a rotor for a reluctance machine
US5989473A (en) * 1996-07-29 1999-11-23 David G. Haverty Manufacturing composite parts with integral porous components
JPH11262205A (ja) * 1998-03-12 1999-09-24 Fujitsu General Ltd 永久磁石電動機
JP3585814B2 (ja) 2000-07-13 2004-11-04 三菱電機株式会社 磁石埋込型回転子
JP3887541B2 (ja) 2001-02-16 2007-02-28 三菱電機株式会社 磁石埋込型回転子
JP2005287134A (ja) 2004-03-29 2005-10-13 Ishikawajima Harima Heavy Ind Co Ltd モータコアの製造方法及びモータコア及び高周波モータ
JP4688505B2 (ja) * 2005-01-12 2011-05-25 株式会社三井ハイテック 回転子積層鉄心の製造装置及び製造方法
JP2006211748A (ja) * 2005-01-25 2006-08-10 Mitsui High Tec Inc 回転子積層鉄心の製造装置及び製造方法
JP4734957B2 (ja) 2005-02-24 2011-07-27 トヨタ自動車株式会社 ロータ
JP2006345600A (ja) 2005-06-07 2006-12-21 Toyota Motor Corp 磁石固定方法およびロータならびに回転電機
JP4143631B2 (ja) 2005-09-01 2008-09-03 トヨタ自動車株式会社 ロータの製造方法
KR100977238B1 (ko) * 2006-01-11 2010-08-23 가부시키가이샤 미츠이하이테크 회전자 적층 코어에 영구 자석을 수지 밀봉하는 방법
JP4137962B2 (ja) 2006-01-11 2008-08-20 株式会社三井ハイテック 回転子積層鉄心への永久磁石の樹脂封止方法
JP4850528B2 (ja) * 2006-02-08 2012-01-11 トヨタ自動車株式会社 ロータの製造方法
JP4842670B2 (ja) 2006-02-27 2011-12-21 トヨタ自動車株式会社 ロータおよび電動車両
JP4725442B2 (ja) 2006-07-10 2011-07-13 トヨタ自動車株式会社 Ipmロータおよびipmロータの製造方法
JP5309431B2 (ja) 2006-08-04 2013-10-09 新日鐵住金株式会社 鋼板剪断面の鋼板間抵抗が高い電磁鋼の積層鋼板およびそのカシメ方法
JP2008154436A (ja) 2006-12-20 2008-07-03 Toyota Motor Corp ロータおよび回転電機
JP4893435B2 (ja) 2007-04-12 2012-03-07 トヨタ自動車株式会社 ロータおよびその製造方法ならびに電動車両
JP2009077547A (ja) 2007-09-20 2009-04-09 Honda Motor Co Ltd ロータ
JP2009100634A (ja) 2007-10-19 2009-05-07 Toyota Motor Corp 埋込磁石型モータのロータ
JP2009195011A (ja) 2008-02-14 2009-08-27 Hitachi Ltd 車両用発電機
JP5056920B2 (ja) 2009-08-12 2012-10-24 セイコーエプソン株式会社 コアレス電気機械装置
JP5554527B2 (ja) 2009-09-04 2014-07-23 株式会社三井ハイテック 回転子積層鉄心の製造方法
JP4991900B2 (ja) 2010-04-09 2012-08-01 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法
JP5202566B2 (ja) 2010-04-12 2013-06-05 株式会社三井ハイテック 回転子積層鉄心の製造装置及び製造方法
CN102598490B (zh) * 2010-05-18 2014-06-18 株式会社三井高科技 转子层叠铁心的制造方法
EP2613426B1 (en) 2010-09-02 2021-10-20 Sumitomo Bakelite Co., Ltd. Fixing resin composition for use in rotor
JP5748465B2 (ja) * 2010-12-07 2015-07-15 株式会社三井ハイテック 積層鉄心の製造方法
JP5805385B2 (ja) * 2010-12-14 2015-11-04 株式会社三井ハイテック 積層鉄心の製造方法
JP5951194B2 (ja) 2011-06-23 2016-07-13 株式会社三井ハイテック 積層鉄心の製造方法
JP5981295B2 (ja) * 2012-10-12 2016-08-31 株式会社三井ハイテック 積層鉄心の樹脂封止方法
JP5451934B1 (ja) * 2012-11-06 2014-03-26 株式会社三井ハイテック 積層鉄心の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3786946B1 (ja) 2005-01-24 2006-06-21 株式会社三井ハイテック 永久磁石の樹脂封止方法
JP2007318942A (ja) * 2006-05-26 2007-12-06 Mitsubishi Electric Corp 磁石埋込型回転子の射出成形用金型装置および製造方法
JP4414417B2 (ja) 2006-08-22 2010-02-10 株式会社三井ハイテック 回転子積層鉄心の樹脂封止方法
JP2010246266A (ja) * 2009-04-06 2010-10-28 Toyota Boshoku Corp 樹脂圧入方法
JP2009303485A (ja) * 2009-10-01 2009-12-24 Mitsui High Tec Inc 回転子積層鉄心の樹脂封止方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2654187A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399629A4 (en) * 2016-03-14 2018-11-07 Aisin Aw Co., Ltd. Rotor manufacturing method
US11050328B2 (en) 2016-03-14 2021-06-29 Aisin Aw Co., Ltd. Rotor manufacturing method

Also Published As

Publication number Publication date
US20180204676A1 (en) 2018-07-19
US10283264B2 (en) 2019-05-07
EP2654187A4 (en) 2016-03-23
EP2654187A1 (en) 2013-10-23
JP2012130130A (ja) 2012-07-05
CN103069698B (zh) 2015-11-25
US9947464B2 (en) 2018-04-17
US20130234363A1 (en) 2013-09-12
CN103069698A (zh) 2013-04-24
JP5805385B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2012081316A1 (ja) 積層鉄心の製造方法
JP6088801B2 (ja) 積層鉄心の製造方法
KR100956477B1 (ko) 로터의 제조 방법
JP5681027B2 (ja) 積層鉄心の製造方法
JP6153826B2 (ja) 永久磁石付き回転子及びその製造方法
US9705369B2 (en) Method of resin-sealing laminated core
CN101300728B (zh) 转子的制造方法
JP5748465B2 (ja) 積層鉄心の製造方法
JP5998733B2 (ja) 回転電機用ロータの樹脂充填装置
WO2016147211A1 (ja) 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置
CN105365153A (zh) 电机磁芯的树脂密封方法和用于电机磁芯的树脂密封方法的设备
JP2010246266A (ja) 樹脂圧入方法
JP6018795B2 (ja) 積層鉄心の製造方法
WO2016181421A1 (ja) 磁石埋め込み型コアの樹脂充填装置および樹脂充填方法
CN107919770B (zh) 转子制造方法
JP5985707B2 (ja) 積層鉄心の製造方法
JP5996960B2 (ja) 積層鉄心の製造装置
JP2012210148A5 (ja)
JP6458506B2 (ja) 樹脂充填方法及び樹脂充填装置
JP5931467B2 (ja) 積層鉄心の製造方法
JP6275794B2 (ja) 積層鉄心の製造方法
JP2018107841A (ja) ダミー板、及び電機子の製造方法
JP2015023597A (ja) 回転電機用ロータの樹脂充填装置及び樹脂充填方法
KR20220160885A (ko) 모터코어의 제조장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180039207.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13885050

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011848352

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011848352

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE