WO2016147211A1 - 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置 - Google Patents

磁石埋め込み型コアの樹脂充填方法および樹脂充填装置 Download PDF

Info

Publication number
WO2016147211A1
WO2016147211A1 PCT/JP2015/001418 JP2015001418W WO2016147211A1 WO 2016147211 A1 WO2016147211 A1 WO 2016147211A1 JP 2015001418 W JP2015001418 W JP 2015001418W WO 2016147211 A1 WO2016147211 A1 WO 2016147211A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
magnet
insertion hole
core
mold
Prior art date
Application number
PCT/JP2015/001418
Other languages
English (en)
French (fr)
Inventor
奥平 博信
友章 村山
修 福山
Original Assignee
黒田精工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黒田精工株式会社 filed Critical 黒田精工株式会社
Priority to JP2017505741A priority Critical patent/JP6417470B2/ja
Priority to CN201580077497.XA priority patent/CN107408873B/zh
Priority to US15/555,291 priority patent/US10873249B2/en
Priority to PCT/JP2015/001418 priority patent/WO2016147211A1/ja
Publication of WO2016147211A1 publication Critical patent/WO2016147211A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14065Positioning or centering articles in the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14639Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles for obtaining an insulating effect, e.g. for electrical components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0027Gate or gate mark locations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0025Preventing defects on the moulded article, e.g. weld lines, shrinkage marks
    • B29C2045/0036Submerged or recessed burrs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/749Motors

Definitions

  • the present invention relates to a resin filling method and a resin filling apparatus for a magnet-embedded core in which a permanent magnet inserted into a magnet insertion hole of a motor core is embedded with resin.
  • burrs resin residue on the gate
  • peripheral members of the motor may interfere with the burrs, or the burrs may fall off the motor core when the motor is assembled. Removal work may be necessary.
  • the present invention has been devised in view of such problems of the prior art.
  • the permanent magnet is accurately fixed in the magnet insertion hole by filling the resin, and from the axial end surface of the laminated core after filling the resin.
  • Another object of the present invention is to provide a resin-filling method and resin-filling device for a magnet-embedded core that suppresses the occurrence of burrs protruding outward.
  • a resin-filling method for a magnet-embedded core (1) in which a permanent magnet (4) inserted in a magnet insertion hole (3) provided in a laminated core for a motor core is embedded with resin.
  • a fixing step of sandwiching the axial end of the laminated core by the first mold (21) and the second mold (22) provided to face each other, and the first mold or the second mold A resin injection step of injecting the resin into the magnet insertion hole from a resin injection portion (47) provided in the mold, and in the resin injection step, the tip portion (47a) of the resin injection portion is The permanent magnet is inserted into the magnet insertion hole beyond the axial end face (4a) of the permanent magnet inserted into the magnet insertion hole.
  • the tip of the resin injection portion is inserted into the magnet insertion hole beyond the axial end surface of the permanent magnet inserted into the magnet insertion hole.
  • the flow of the resin directly from the tip of the resin injection part to the axial end face of the permanent magnet is suppressed, and the permanent magnet can be accurately fixed in the magnet insertion hole, and the axial end face of the laminated iron core after filling with the resin It is possible to suppress the generation of burrs protruding outward.
  • a tip end portion of the resin injection portion protrudes from the first mold or the second mold, and the permanent magnet of the permanent magnet is formed in the resin injection step. It contacts the side surface (4d).
  • the permanent magnet is placed in the magnet insertion hole. Can be fixed with higher accuracy.
  • the magnet insertion hole includes a magnet housing portion (11) formed so as to follow the outer shape of the permanent magnet in plan view, and An expansion portion (12) communicating with the magnet housing portion, and at least a part of a tip portion of the resin injection portion is inserted into the expansion portion in the resin injection step.
  • the tip portion of the resin injection portion is inserted into the magnet insertion hole beyond the axial end surface of the permanent magnet inserted into the magnet insertion hole.
  • the permanent magnet can be accurately fixed in the magnet insertion hole.
  • the axial end surface (4a) of the permanent magnet on the resin injecting portion side is formed of the magnet insertion hole. It is located in the same plane as the axial end surface (2b) of the laminated iron core in the periphery.
  • the flow of the resin directly from the tip portion of the resin injection portion toward the axial end surface of the permanent magnet is more reliably suppressed, and the permanent magnet is placed in the magnet insertion hole. It can be fixed with higher accuracy.
  • a resin filling device for a magnet embedded core (1) in which a permanent magnet (4) inserted into a magnet insertion hole (3) provided in a laminated core for a motor core is embedded with resin.
  • a first mold (21) and a second mold (22) provided facing each other to fix the laminated iron core in a state where the axial end portion is sandwiched, and the first mold or the A resin injection part (47) provided in the second mold and for injecting the resin into the magnet insertion hole, wherein the resin injection part is an axial end surface of the permanent magnet inserted into the magnet insertion hole ( 4a), and has a tip portion (47a) to be inserted into the magnet insertion hole.
  • the permanent magnet can be accurately fixed in the magnet insertion hole by filling the resin, and the occurrence of burrs protruding outward from the axial end surface of the rotor after filling the resin can be suppressed. It becomes.
  • FIG. 1 is a plan view of a magnet-embedded rotor 1 according to an embodiment of the present invention
  • FIGS. 2 and 3 are sectional views taken along lines II-II and III-III in FIG. 1, respectively.
  • a magnet-embedded rotor (magnet-embedded core) 1 is a component such as a motor, and a rotor core (motor core) 2 made of a laminated iron core and a plurality of magnets provided in the rotor core 2 are inserted. Permanent magnets 4 accommodated in the holes 3 are provided.
  • the laminated iron core constituting the rotor core 2 is formed by laminating a plurality of electromagnetic steel sheets in a state of being coupled to each other by a known coupling method (caulking coupling, adhesion, laser welding, etc.).
  • the rotor core 2 has a substantially annular shape in a plan view, and a shaft (not shown) is attached to the shaft hole 5 opened at the center thereof.
  • the magnet insertion holes 3 have the same shape and are provided so as to penetrate the rotor core 2 in the axial direction.
  • the magnet insertion hole 3 includes a magnet housing part 11 having a substantially rectangular shape in a plan view, and a gate insertion part (expansion part) 12 having a substantially semicircular shape connected to a central part on one side of the outer periphery of the magnet housing part 11.
  • a gate insertion part (expansion part) 12 having a substantially semicircular shape connected to a central part on one side of the outer periphery of the magnet housing part 11.
  • the pair of magnet insertion holes 3 are arranged at equal intervals in the circumferential direction of the rotor core 2 is shown, but not limited to this, the shape, number, arrangement, and the like of the magnet insertion holes 3 Various changes can be made.
  • the permanent magnet 4 has a substantially rectangular parallelepiped shape, and as shown in FIGS. 2 and 3, the resin 6 filled in the magnet insertion hole 3 in a state of being inserted into the magnet accommodating portion 11 of the magnet insertion hole 3 with a predetermined gap. It is fixed by (here, a thermoplastic resin).
  • the permanent magnet 4 is formed by a plurality of (here, two) magnets 13 (for example, ferrite-based sintered magnets, neodymium magnets, etc.) inserted in series in the axial direction with respect to one magnet insertion hole 3. Although comprised, it is not restricted to this, You may use a single magnet.
  • the axial length of the permanent magnet 4 is shown to be the same as the axial length of the magnet insertion hole 3, but in practice, the axial length of the permanent magnet 4 is the magnet insertion length. It is set slightly smaller than the hole 3. Moreover, in FIG.2 and FIG.3, the clearance gap between the inner surface of the magnet accommodating part 11 and the side surface of the permanent magnet 4 is shown larger than actual.
  • FIG. 4 and 5 are cross-sectional views showing the first and second states of the resin filling device 20 of the magnet-embedded rotor 1, respectively, and FIG. 6 is a plan view showing the arrangement of the gate portion during resin filling.
  • FIG. 7 is a cross-sectional view showing the periphery of the gate portion at the time of resin filling, and
  • FIG. 8 is a cross-sectional view showing the periphery of the gate position after resin filling.
  • the resin filling device 20 is an injection molding device for embedding the permanent magnet 4 accommodated in the magnet insertion hole 3 provided in the rotor core 2 with resin, and is opposed to each other vertically.
  • An upper mold (first mold) 21 and a lower mold (second mold) 22 are provided.
  • the upper mold 21 located above is the fixed side
  • the lower mold 22 located below is the movable side.
  • the present invention is not limited to this, and the arrangement (direction) of the resin filling device 20, the fixed side, and the movable side The relationship can be changed.
  • the upper die 21 has a fixed upper portion 31 that has an abutment surface 31a that abuts against the upper surface 2a of the rotor core 2 and a lower portion that protrudes downward from the lower portion of the upper die body 31 that has the abutment surface 31a.
  • the fixing block 32 has a shape (here, substantially columnar shape) and a size (outer diameter) that can be inserted into the shaft hole 5 of the rotor core 2.
  • the lower die 22 is attached to a lower die main body portion 42 formed with a sprue portion 41 that is a passage for guiding resin from a nozzle of an injection molding machine (not shown), and an upper surface 42a of the lower die main body portion 42. It has the runner plate 44 which makes the runner part 43 which forms the runner part 43 connected with the downstream end of the sprue part 41 with the main-body part 42. As shown in FIG. The sprue portion 41 extends so as to penetrate the lower mold main body portion 42 in the vertical direction, and guides the resin from below the lower die 22 upward.
  • the runner portion 43 is connected to the downstream end (here, the upper end) of the sprue portion 41 and has a plurality (here, 8) extending radially from the center side of the rotor core 2 toward the respective magnet insertion holes 3.
  • Main) branch passage 46 are defined by a groove provided on the lower surface 44 a of the runner plate 44 and an upper surface 42 a of the lower mold main body 42 covering the groove.
  • a gate portion (resin injection portion) 47 is provided at the downstream end (here, the outer end) of each branch passage 46.
  • the gate portion 47 is formed so as to form a tapered path upward from the downstream end of the runner portion 43, and a distal end portion 47 a that forms the downstream end of the runner plate 44 is located at a position facing the magnet insertion hole 3. Open to the upper surface 44b.
  • the tip portion 47a of the gate portion 47 is provided so as to protrude from the upper surface 44b of the runner plate 44 (at least the peripheral portion of the gate opening position in the tip portion 47a).
  • the resin filling device 20 fills the magnet insertion holes 3 of the rotor core 2 with resin
  • the rotor core 2 containing the permanent magnets 4 in the respective magnet insertion holes 3 is placed on the upper surface 44b of the runner plate 44 as shown in FIG. Placed.
  • the tip portion 47a of the gate portion 47 is inserted upward into the gate insertion portion 12 of the magnet insertion hole 3 beyond the end surface 4a (here, the lower surface) of the permanent magnet 4 as shown in FIGS. It will be in the state. Therefore, at least the front end portion 47a of the gate portion 47 does not overlap the end surface 4a of the permanent magnet 4 in plan view (for example, see FIG. 6) (that is, a position where the gate portion 47 can be inserted into the magnet insertion hole 3 beyond the end surface 4a). ).
  • the insertion depth of the tip 47a into the magnet insertion hole 3 can be variously changed, but it is preferable to secure at least about 0.1 mm as the lower limit.
  • the end surface 4a of the permanent magnet 4 substantially coincides with the lower surface 2b of the rotor core 2 (the upper surface 44b of the runner plate 44), so that the tip portion 47a of the gate portion 47 is at least 0 from the upper surface 44b of the runner plate 44. It will protrude upward by about 1 mm.
  • the distal end portion 47 a is the end surface 4 a of the permanent magnet 4.
  • the insertion depth of the tip portion 47a (upper end) with respect to the end face 4a of the permanent magnet 4 as a reference (zero) is at least 0. 0. It is preferable to secure about 1 mm.
  • the rotor core 2 is fixed between the upper die 21 and the lower die 22 while being vertically sandwiched (fixing step). ).
  • the fixing block 32 is fitted into the shaft hole 5 of the rotor core 2, and the abutment surface 31 a of the upper die main body 31 abuts on the upper surface 2 a of the rotor core 2.
  • the rotor core 2 is clamped up and down between the abutment surface 31 a of the upper mold main body 31 and the upper surface 44 b of the runner plate 44.
  • the inner side surface 4c of the permanent magnet 4 positioned on the opposite side of the gate portion 47 is positioned on the opposite side of the gate portion 47 by the pressure of the resin injected from the distal end portion 47a of the gate portion 47 into the magnet insertion hole 3.
  • the position of the permanent magnet 4 fixed inside each magnet insertion hole 3 can be determined with high accuracy.
  • 2 and 7 show a state in which the resin 6 layer is interposed between the inner side surface 4c of the permanent magnet 4 and the inner surface 3a of the magnet insertion hole 3.
  • the side surface 4 c of the permanent magnet 4 and the inner surface 3 a of the magnet insertion hole 3 are in close contact with each other.
  • the resin 6 in the magnet insertion hole 3 is cooled and hardened. Thereafter, the lower die 22 is lowered again to the position shown in FIG. 4, and the resin-filled rotor core 2 (magnet embedded rotor 1) is taken out from the resin filling device 20.
  • the runner plate 44 is fixed to the lower mold main body 42, and the rotor core 2 filled with resin is taken out from the resin filling device 20 as a single unit.
  • the present invention is not limited thereto, and a configuration in which the runner plate 44 is detachably attached to the lower mold main body portion 42 and the resin-filled rotor core 2 is taken out from the resin filling device 20 together with the runner plate 44 is also possible.
  • the resin residue 51 of the gate portion 47 can be formed inside the lower surface 2b of the rotor core 2 as shown in FIG. Generation of burrs protruding outward from the axial end face 2b is suppressed.
  • the permanent magnet 4 can be accurately fixed in the magnet insertion hole 3, and the rotor core is filled after the resin filling. It is possible to suppress the generation of burrs protruding outward from the axial end face of 2.
  • the entire areas of the end faces 4a and 4b (lower surface and upper surface) of the permanent magnet 4 after resin filling are exposed from the upper and lower openings of the magnet insertion hole 3, respectively.
  • a configuration in which at least one whole region or a part of the region is covered with the resin 6 that is, a configuration in which the axial length of the permanent magnet 4 is smaller than the axial length of the magnet insertion hole 3) is also possible.
  • FIG. 9 and 10 are views showing first and second modified examples of the arrangement of the gate portion at the time of resin filling shown in FIG. 6, respectively.
  • the distal end portion 47a of the gate portion 47 is inserted into the gate insertion portion 12 of the magnet insertion hole 3.
  • the structure inserted in the magnet accommodating part 11 is also possible.
  • the tip portion 47a of the gate portion 47 by disposing the tip portion 47a of the gate portion 47 so as to contact the outer side surface 4d of the permanent magnet 4, the tip portion 47a moves the permanent magnet 4 in the magnet insertion hole 3 during resin filling. Therefore, there is an advantage that the permanent magnet 4 can be fixed in the magnet insertion hole 3 with higher accuracy.
  • the gate insertion portion 12 is omitted in FIG. 9 (that is, the magnet insertion hole 3 is rectangular), and the tip of the gate portion 47 is interposed between the inner surface of the magnet insertion hole 3 and the side surface of the permanent magnet 4. A configuration in which the portion 47a is inserted is also possible.
  • the configuration using the single gate portion 47 is shown.
  • a configuration in which a plurality of (two or more) gate portions 47 are provided is also possible.
  • the tip part 47a of the paired (at least one pair) gate part 47 passes through the permanent magnet 4 (for example, an imaginary line passing through its center position) on one side (here, radially outside) of the permanent magnet 4.
  • the present invention is not limited to this, and other molding methods (for example, transfer molding or the like) can be used in the present invention.
  • the filling of the resin into the magnet insertion hole of the rotor core is not limited to the structure in which the resin is injected from the lower mold, but may be a structure in which the resin is injected from the upper mold.
  • the gate portion is not limited to the case where the gate portion is disposed on the radially outer side of the permanent magnet, but may be disposed on the radially inner side, or in some cases, on one side in the circumferential direction or a corner portion of the rectangular magnet insertion hole.
  • the resin for fixing the permanent magnet is not limited to a thermoplastic resin, and other known resins such as a thermosetting resin, a two-part curable resin (for example, a two-part epoxy resin), and a moisture curable resin may be used. You can also. Further, the present invention can be applied not only to the rotor core but also to the stator core.
  • each component of the resin-filling method and resin-filling device for the magnet-embedded core according to the present invention shown in the above embodiment is not necessarily essential, and is appropriately selected as long as it does not depart from the scope of the present invention. Is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

【課題】磁石埋め込み型コアにおいて、樹脂の充填により磁石挿入孔内に永久磁石を精度良く固定すると共に、樹脂充填後に積層鉄心の軸方向端面よりも外側に突出するバリの発生を抑制する。 【解決手段】磁石埋め込み型コア1の樹脂充填方法において、互いに対向して設けられた第1金型21および第2金型22により、積層鉄心の軸方向端部を挟み込む固定工程と、第1金型21または第2金型22に設けられた樹脂注入部47から磁石挿入孔3に樹脂を注入する樹脂注入工程とを有し、樹脂注入工程では、樹脂注入部47の先端部47aが、磁石挿入孔3に挿入された永久磁石4の軸方向端面4aを越えて磁石挿入孔3内に挿入される構成とする。

Description

磁石埋め込み型コアの樹脂充填方法および樹脂充填装置
 本発明は、モータコアの磁石挿入孔に挿入された永久磁石を樹脂により埋設する磁石埋め込み型コアの樹脂充填方法および樹脂充填装置に関する。
 従来、自動車や電化製品等で用いられるモータ用のコアとして、積層鉄心に形成された磁石挿入孔に収容した永久磁石を樹脂により埋設した磁石埋め込み型コアが普及している。
 この種の磁石埋め込み型コアでは、永久磁石の特性を落とさずに永久磁石を確実に固定することが望ましい。そこで、磁石埋め込み型コアの製造方法として、例えば、磁石挿入孔に永久磁石を挿入後、磁石挿入孔に軟質磁性粉末と樹脂との混練材料を射出充填して、永久磁石の位置を固定する方法が知られている(例えば、特許文献1参照)。
特開2008-182824号公報
 ところで、上記特許文献1に記載された従来技術では、永久磁石を樹脂により埋設する工程において、軟質磁性粉末と樹脂との混練材料を射出充填するためのゲートが磁石挿入孔の軸方向端部に配置される。
 しかしながら、上記従来技術の構成では、注入後のゲート位置には、積層鉄心(モータコア)の軸方向端面よりも外側に突出するバリ(ゲートにおける樹脂残り)が発生するという問題がある。そのようなバリを放置すると、モータにおける周辺の部材とバリが干渉したり、モータ組立時にモータコアからバリが脱落したりしてモータの動作に悪影響を及ぼす可能性があるため、樹脂充填後にバリを除去する作業が必要となる場合がある。
 本発明は、このような従来技術の課題を鑑みて案出されたものであり、樹脂の充填により磁石挿入孔内に永久磁石を精度良く固定すると共に、樹脂充填後に積層鉄心の軸方向端面よりも外側に突出するバリの発生を抑制する磁石埋め込み型コアの樹脂充填方法および樹脂充填装置を提供することを主目的とする。
 本発明の第1の側面では、モータコア用の積層鉄心に設けられた磁石挿入孔(3)に挿入された永久磁石(4)を樹脂により埋設する磁石埋め込み型コア(1)の樹脂充填方法であって、互いに対向して設けられた第1金型(21)および第2金型(22)により、前記積層鉄心の軸方向端部を挟み込む固定工程と、前記第1金型または前記第2金型に設けられた樹脂注入部(47)から前記磁石挿入孔に前記樹脂を注入する樹脂注入工程とを有し、前記樹脂注入工程では、前記樹脂注入部の先端部(47a)が、前記磁石挿入孔に挿入された前記永久磁石の軸方向端面(4a)を越えて前記磁石挿入孔内に挿入されることを特徴とする。
 この第1の側面による磁石埋め込み型コアの樹脂充填方法では、樹脂注入部の先端部が、磁石挿入孔に挿入された永久磁石の軸方向端面を越えて磁石挿入孔内に挿入されるため、樹脂注入部の先端部から永久磁石の軸方向端面に直接向かう樹脂の流れが抑制されて、磁石挿入孔内に永久磁石を精度良く固定することができると共に、樹脂充填後に積層鉄心の軸方向端面よりも外側に突出するバリの発生を抑制することが可能となる。
 本発明の第2の側面では、上記第1の側面に関し、前記樹脂注入部の先端部は、前記第1金型または前記第2金型から突設され、前記樹脂注入工程において前記永久磁石の側面(4d)に当接することを特徴とする。
 この第2の側面による磁石埋め込み型コアの樹脂充填方法では、樹脂注入部の先端部により、樹脂充填時の磁石挿入孔内における永久磁石の移動が規制されるため、磁石挿入孔内に永久磁石をより精度良く固定することができる。
 本発明の第3の側面では、上記第1または第2の側面に関し、前記磁石挿入孔は、平面視において、前記永久磁石の外形に沿うように形成された磁石収容部(11)と、当該磁石収容部に連通する拡張部(12)とを有し、前記樹脂注入工程において、前記樹脂注入部の先端部の少なくとも一部が前記拡張部に挿入されることを特徴とする。
 この第3の側面による磁石埋め込み型コアの樹脂充填方法では、樹脂注入部の先端部が、磁石挿入孔に挿入された永久磁石の軸方向端面を越えて磁石挿入孔内に挿入される構成でありながら、永久磁石の側面(内周面)と磁石挿入孔の内面(拡張部を除く内周面)との間隙を小さくすることが可能となり、永久磁石の磁気特性の低下を抑制しつつ、永久磁石を磁石挿入孔内に精度良く固定することができる。
 本発明の第4の側面では、上記第1から第3の側面いずれかに関し、前記樹脂注入工程では、前記永久磁石の前記樹脂注入部側の軸方向端面(4a)が、前記磁石挿入孔の周辺における積層鉄心の軸方向端面(2b)と同一平面上に位置することを特徴とする。
 この第4の側面による磁石埋め込み型コアの樹脂充填方法では、樹脂注入部の先端部から永久磁石の軸方向端面に直接向かう樹脂の流れがより確実に抑制され、磁石挿入孔内に永久磁石をより精度良く固定することができる。
 本発明の第5の側面では、モータコア用の積層鉄心に設けられた磁石挿入孔(3)に挿入された永久磁石(4)を樹脂により埋設する磁石埋め込み型コア(1)の樹脂充填装置であって、前記積層鉄心の軸方向端部を挟み込んだ状態で固定するべく互いに対向して設けられた第1金型(21)および第2金型(22)と、前記第1金型または前記第2金型に設けられ、前記磁石挿入孔に前記樹脂を注入する樹脂注入部(47)とを備え、前記樹脂注入部は、前記磁石挿入孔に挿入された前記永久磁石の軸方向端面(4a)を越えて前記磁石挿入孔内に挿入される先端部(47a)を有することを特徴とする。
 このように本発明によれば、樹脂の充填により磁石挿入孔内に永久磁石を精度良く固定すると共に、樹脂充填後にロータの軸方向端面よりも外側に突出するバリの発生を抑制することが可能となる。
実施形態に係る磁石埋め込み型ロータの平面図 図1中のII-II断面図 図1中のIII-III断面図 実施形態に係る磁石埋め込み型ロータの樹脂充填装置の第1の状態を示す断面図 実施形態に係る磁石埋め込み型ロータの樹脂充填装置の第2の状態を示す断面図 実施形態に係る樹脂充填時におけるゲート部の配置を示す平面図 実施形態に係る樹脂充填時におけるゲート部周辺を示す断面図 実施形態に係る樹脂充填後におけるゲート位置周辺を示す断面図 図6に示した樹脂充填時におけるゲート部の配置の第1変形例を示す図 図6に示した樹脂充填時におけるゲート部の配置の第2変形例を示す図
 以下、本発明の実施の形態について図面を参照しながら説明する。
 図1は本発明の実施形態に係る磁石埋め込み型ロータ1の平面図であり、図2及び図3はそれぞれ図1中のII-II断面図およびIII-III断面図である。
 図1に示すように、磁石埋め込み型ロータ(磁石埋め込み型コア)1は、モータ等の構成部品であり、積層鉄心からなるロータコア(モータコア)2と、このロータコア2に設けられた複数の磁石挿入孔3にそれぞれ収容された永久磁石4とを有している。ロータコア2を構成する積層鉄心は、複数枚の電磁鋼板が公知の結合方法(かしめ結合、接着、レーザ溶接等)により互いに結合された状態で積層されたものである。ロータコア2は、平面視において略円環状をなし、その中央に開口する軸孔5には、図示しないシャフトが取り付けられる。
 各磁石挿入孔3は、互いに同一の形状を有し、ロータコア2を軸方向に貫通するようにそれぞれ設けられている。磁石挿入孔3は、平面視において略矩形をなす磁石収容部11と、磁石収容部11の外周側の一辺の中央部に接続された略半円形をなすゲート挿入部(拡張部)12とを有している。本実施形態では、対をなす磁石挿入孔3がロータコア2の周方向に等間隔に配置された例を示しているが、これに限らず、磁石挿入孔3の形状、数、及び配置等については、種々の変更が可能である。
 永久磁石4は、略直方体状をなし、図2及び図3に示すように、磁石挿入孔3の磁石収容部11に所定の間隙をもって挿入された状態で磁石挿入孔3に充填された樹脂6(ここでは、熱可塑性樹脂)によって固定されている。永久磁石4は、1つの磁石挿入孔3に対して軸方向に直列の状態で挿入された複数(ここでは、2つ)の磁石13(例えば、フェライト系の焼結マグネット、ネオジムマグネット等)によって構成されるが、これに限らず、単一の磁石を用いてもよい。図2及び図3では、永久磁石4の軸方向長さは、磁石挿入孔3の軸方向長さと同一に示されているが、実用上は、永久磁石4の軸方向長さは、磁石挿入孔3よりも僅かに小さく設定される。また、図2及び図3では、磁石収容部11の内面と永久磁石4の側面との隙間は、実際よりも大きく示されている。
 図4及び図5は、それぞれ磁石埋め込み型ロータ1の樹脂充填装置20の第1及び第2の状態を示す断面図であり、図6は樹脂充填時におけるゲート部の配置を示す平面図であり、図7は樹脂充填時におけるゲート部周辺を示す断面図であり、図8は樹脂充填後におけるゲート位置周辺を示す断面図である。
 図4及び図5に示すように、樹脂充填装置20は、ロータコア2に設けられた磁石挿入孔3に収容された永久磁石4を樹脂により埋設するための射出成形装置であり、互いに上下に対向して設けられた上型(第1金型)21および下型(第2金型)22を備える。ここでは、上方に位置する上型21を固定側とし、下方に位置する下型22を可動側とするが、これに限らず、樹脂充填装置20の配置(方向)や、固定側および可動側の関係は変更可能である。
 上型21は、ロータコア2の上面2aに当接する当接面31aが形成された上型本体部31と、その当接面31aが形成された上型本体部31の下部から下方に突出する固定用ブロック32とを有している。固定用ブロック32は、ロータコア2の軸孔5に挿入可能な形状(ここでは、略円柱状)およびサイズ(外径)を有している。
 下型22は、図示しない射出成形機のノズルからの樹脂を導くための通路であるスプルー部41が形成された下型本体部42と、下型本体部42の上面42aに取り付けられ、下型本体部42と共にスプルー部41の下流端に接続されるランナー部43を形成する略平板状をなすランナープレート44とを有している。スプルー部41は、下型本体部42を上下方向に貫通するように延在し、下型22の下方から上方に向けて樹脂を導く。
 ランナー部43は、スプルー部41の下流端(ここでは、上端)に接続され、ロータコア2の中央側から各磁石挿入孔3側に向かって水平方向に放射状に延在する複数(ここでは、8本)の分岐通路46を有する。これら分岐通路46は、ランナープレート44の下面44aに設けられた溝と、その溝を覆う下型本体部42の上面42aとによって画定される。各分岐通路46の下流端(ここでは、外方端)には、ゲート部(樹脂注入部)47が設けられている。
 ゲート部47は、ランナー部43の下流端から上方に向けて先細り状の通路をなすように形成され、その下流端をなす先端部47aは、磁石挿入孔3に対向する位置においてランナープレート44の上面44bに開口する。ゲート部47の先端部47aは、ランナープレート44の上面44b(少なくとも、先端部47aにおけるゲート開口位置の周辺部)から突出するように設けられている。
 樹脂充填装置20によってロータコア2の磁石挿入孔3に樹脂を充填する際には、図4に示すように、各磁石挿入孔3に永久磁石4を収容したロータコア2がランナープレート44の上面44bに載置される。このとき、ゲート部47の先端部47aは、図5及び図7に示すように、永久磁石4の端面4a(ここでは、下面)を越えて磁石挿入孔3のゲート挿入部12に上方に挿入された状態となる。したがって、ゲート部47の少なくとも先端部47aは、平面視(例えば、図6参照)において、永久磁石4の端面4aと重ならない位置(すなわち、端面4aを越えて磁石挿入孔3に挿入可能な位置)に配置される。
 ここで、先端部47aの磁石挿入孔3への挿入深さは、種々の変更が可能であるが、少なくともその下限として0.1mm程度を確保することが好ましい。本実施形態では、永久磁石4の端面4aは、ロータコア2の下面2b(ランナープレート44の上面44b)に略一致するため、ゲート部47の先端部47aは、ランナープレート44の上面44bから少なくとも0.1mm程度上方に突出することになる。また、永久磁石4の端面4aが、磁石挿入孔3の端面(ここでは、ロータコア2の下面2b)よりも内側に位置する構成では、先端部47a(上端)は、その永久磁石4の端面4aを越えて磁石挿入孔3のさらに内側に挿入される必要があり、この場合には、永久磁石4の端面4aを基準(ゼロ)とした先端部47a(上端)の挿入深さとして少なくとも0.1mm程度を確保することが好ましい。
 続いて、図4に示す状態から下型22を上昇させることにより、図5に示すように、上型21と下型22との間でロータコア2を上下に挟み込んだ状態で固定する(固定工程)。このとき、上型21では、固定用ブロック32がロータコア2の軸孔5に嵌め込まれ、また、上型本体部31の当接面31aがロータコア2の上面2aに当接する。これにより、ロータコア2は、上型本体部31の当接面31aと、ランナープレート44の上面44bとの間で上下にクランプされた状態となる。
 その後、図示しない射出成形機を作動させて加熱によって溶融した樹脂をスプルー部41に所定の圧力で流入させると、図5中の矢印Aに示すようにスプルー部41に流入した樹脂は、図5中の矢印Bに示すようにランナー部43(分岐通路46)を流れ、さらに、ゲート部47を経て磁石挿入孔3に注入される(樹脂注入工程)。このとき、ゲート部47の先端部47aは、磁石挿入孔3に挿入された永久磁石4の端面4aを越えて磁石挿入孔3に挿入されているため、ゲート部47の先端部47aから永久磁石4の端面4aに直接向かう樹脂の流れ(すなわち、磁石挿入孔3における永久磁石4の傾きの発生に大きな影響を及ぼす樹脂の流れ)が抑制され、永久磁石4の端面4a側からの樹脂の流れ(圧力)による永久磁石4の傾きの発生を抑制することができる。
 そして、ゲート部47の先端部47aから磁石挿入孔3に注入された樹脂の圧力により、ゲート部47の反対側に位置する永久磁石4の内側の側面4cが、ゲート部47の反対側に位置する磁石挿入孔3の内側の内面3a側に押圧され、これにより、各磁石挿入孔3内で固定される永久磁石4の位置をそれぞれ精度良く定めることができる。なお、図2、図7等では、永久磁石4の内側の側面4cと磁石挿入孔3の内側の内面3aとの間に樹脂6の層が介在する状態を示しているが、好ましくは、図8に示すように、永久磁石4の側面4cと磁石挿入孔3の内面3aとが密着した状態となる。
 磁石挿入孔3内への樹脂の充填が完了すると、磁石挿入孔3内の樹脂6が冷却され硬化する。その後、下型22が再び図4に示す位置まで下降し、樹脂充填済みのロータコア2(磁石埋め込み型ロータ1)が樹脂充填装置20から取り出される。なお、本実施形態では、ランナープレート44は、下型本体部42に固定されており、樹脂充填済みのロータコア2は単体で樹脂充填装置20から取り出される。ただし、これに限らず、ランナープレート44を下型本体部42に対して着脱可能に設け、樹脂充填済みのロータコア2をランナープレート44と共に樹脂充填装置20から取り出す構成も可能である。
 樹脂充填装置20では、樹脂充填時のゲート部47の先端部47aが、磁石挿入孔3に挿入された永久磁石4の端面4aを越えて磁石挿入孔3に挿入される構成であるため、樹脂充填後の磁石埋め込み型ロータ1では、図8に示すように、ゲート部47の樹脂残り51を、ロータコア2の下面2bよりも内側に形成することが可能となり、これにより、ロータコア2の下面(軸方向端面)2bよりも外側に突出するバリの発生が抑制される。
 このように、上記樹脂充填装置20およびそれを用いた磁石埋め込み型ロータ1の樹脂充填方法によれば、磁石挿入孔3内に永久磁石4を精度良く固定することができると共に、樹脂充填後にロータコア2の軸方向端面よりも外側に突出するバリの発生を抑制することが可能となる。
 なお、本実施形態では、樹脂充填後の永久磁石4の端面4a、4b(下面、上面)の全域は、磁石挿入孔3の上下の開口からそれぞれ露出するが、永久磁石4の端面4a、4bの少なくとも一方の全域または一部の領域が、樹脂6によって覆われた構成(すなわち、永久磁石4の軸方向長さが、磁石挿入孔3の軸方向長さよりも小さい構成)も可能である。
 図9及び図10は、それぞれ図6に示した樹脂充填時におけるゲート部の配置の第1及び第2変形例を示す図である。
 上述の例では、ゲート部47の先端部47aを磁石挿入孔3のゲート挿入部12に挿入する構成としたが、例えば、図9に示すように、ゲート部47の先端部47aの少なくとも一部が、磁石収容部11に挿入される構成も可能である。この場合、ゲート部47の先端部47aを永久磁石4の外側の側面4dに当接させるように配置することで、先端部47aにより、樹脂充填時の磁石挿入孔3内における永久磁石4の移動が規制されるため、磁石挿入孔3内に永久磁石4をより精度良く固定することができるという利点がある。また場合によっては、図9において、ゲート挿入部12を省略し(すなわち、磁石挿入孔3を矩形状とし)、磁石挿入孔3の内面と永久磁石4の側面との間にゲート部47の先端部47aを挿入する構成も可能である。
 また、上述の例では、単一のゲート部47を用いた構成を示したが、例えば、図10に示すように、ゲート部47を複数(2以上)設けた構成も可能である。その場合、対をなす(少なくとも一対の)ゲート部47の先端部47aは、永久磁石4の一方側(ここでは、径方向外側)において永久磁石4(例えば、その中心位置を通る仮想線)を基準として対称位置(ここでは、周方向の対称位置)に配置されることが好ましい。これにより、複数のゲート部47から磁石挿入孔3に注入される樹脂の圧力による永久磁石4の傾きの発生などを抑制して、永久磁石4をより精度良く固定することが可能となる。
 以上、本発明を特定の実施形態に基づいて説明したが、これらの実施形態はあくまでも例示であって、本発明はこれらの実施形態によって限定されるものではない。例えば、上記実施形態では、射出成形を用いた例を示したが、これに限らず、本発明では他の成形手法(例えば、トランスファ成形等)を用いることも可能である。また、ロータコアの磁石挿入孔への樹脂の充填は、下型から注入する構成に限らず、上型から注入する構成としてもよい。また、ゲート部は、永久磁石の径方向外側に配置される場合に限らず、径方向内側や、場合によっては周方向の一方側或いは矩形をなす磁石挿入孔の角部に配置されてもよい。また、永久磁石を固定する樹脂は、熱可塑性樹脂に限らず、熱硬化性樹脂、二液硬化性樹脂(例えば、二液エポキシ樹脂)、湿気硬化性樹脂などの他の公知の樹脂を用いることもできる。また、本発明は、ロータコアに限らず、ステータコアに適用することも可能である。なお、上記実施形態に示した本発明に係る磁石埋め込み型コアの樹脂充填方法および樹脂充填装置の各構成要素は、必ずしも全てが必須ではなく、少なくとも本発明の範囲を逸脱しない限りにおいて適宜取捨選択することが可能である。
1 磁石埋め込み型ロータ(磁石埋め込み型コア)
2 ロータコア(積層鉄心)
2b 下面
3 磁石挿入孔
4 永久磁石
4a 端面
4d 側面
5 軸孔
6 樹脂
11 磁石収容部
12 ゲート挿入部(拡張部)
13 磁石
20 樹脂充填装置
21 上型(第1金型)
22 下型(第2金型)
31 上型本体部
32 固定用ブロック
41 スプルー部
42 下型本体部
43 ランナー部
44 ランナープレート
46 分岐通路
47 ゲート部(樹脂注入部)
47a 先端部

Claims (5)

  1.  モータコア用の積層鉄心に設けられた磁石挿入孔に挿入された永久磁石を樹脂により埋設する磁石埋め込み型コアの樹脂充填方法であって、
     互いに対向して設けられた第1金型および第2金型により、前記積層鉄心の軸方向端部を挟み込む固定工程と、
     前記第1金型または前記第2金型に設けられた樹脂注入部から前記磁石挿入孔に前記樹脂を注入する樹脂注入工程と
    を有し、
     前記樹脂注入工程では、前記樹脂注入部の先端部が、前記磁石挿入孔に挿入された前記永久磁石の軸方向端面を越えて前記磁石挿入孔内に挿入されることを特徴とする磁石埋め込み型コアの樹脂充填方法。
  2.  前記樹脂注入部の先端部は、前記第1金型または前記第2金型から突設され、前記樹脂注入工程において前記永久磁石の側面に当接することを特徴とする請求項1に記載の磁石埋め込み型コアの樹脂充填方法。
  3.  前記磁石挿入孔は、平面視において、前記永久磁石の外形に沿うように形成された磁石収容部と、当該磁石収容部に連通する拡張部とを有し、
     前記樹脂注入工程において、前記樹脂注入部の先端部の少なくとも一部が前記拡張部に挿入されることを特徴とする請求項1または請求項2に記載の磁石埋め込み型コアの樹脂充填方法。
  4.  前記樹脂注入工程では、前記永久磁石の前記樹脂注入部側の軸方向端面が、前記磁石挿入孔の周辺における積層鉄心の軸方向端面と同一平面上に位置することを特徴とする請求項1から請求項3のいずれかに記載の磁石埋め込み型コアの樹脂充填方法。
  5.  モータコア用の積層鉄心に設けられた磁石挿入孔に挿入された永久磁石を樹脂により埋設する磁石埋め込み型コアの樹脂充填装置であって、
     前記積層鉄心の軸方向端部を挟み込んだ状態で固定するべく互いに対向して設けられた第1金型および第2金型と、
     前記第1金型または前記第2金型に設けられ、前記磁石挿入孔に前記樹脂を注入する樹脂注入部と
    を備え、
     前記樹脂注入部は、前記磁石挿入孔に挿入された前記永久磁石の軸方向端面を越えて前記磁石挿入孔内に挿入される先端部を有することを特徴とする磁石埋め込み型コアの樹脂充填装置。
PCT/JP2015/001418 2015-03-13 2015-03-13 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置 WO2016147211A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017505741A JP6417470B2 (ja) 2015-03-13 2015-03-13 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置
CN201580077497.XA CN107408873B (zh) 2015-03-13 2015-03-13 磁铁埋入型铁芯的树脂填充方法和树脂填充装置
US15/555,291 US10873249B2 (en) 2015-03-13 2015-03-13 Resin filling method and resin filling device for magnet embedded core
PCT/JP2015/001418 WO2016147211A1 (ja) 2015-03-13 2015-03-13 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/001418 WO2016147211A1 (ja) 2015-03-13 2015-03-13 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置

Publications (1)

Publication Number Publication Date
WO2016147211A1 true WO2016147211A1 (ja) 2016-09-22

Family

ID=56919524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001418 WO2016147211A1 (ja) 2015-03-13 2015-03-13 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置

Country Status (4)

Country Link
US (1) US10873249B2 (ja)
JP (1) JP6417470B2 (ja)
CN (1) CN107408873B (ja)
WO (1) WO2016147211A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214282A1 (en) * 2016-01-21 2017-07-27 Fanuc Corporation Rotor of electric motor and its manufacturing method
EP3395534A1 (en) * 2017-04-24 2018-10-31 Mitsui High-Tec, Inc. Manufacturing method of laminated core and cull plate
WO2019004249A1 (ja) * 2017-06-29 2019-01-03 日立オートモティブシステムズ株式会社 回転電機
WO2019072472A1 (de) * 2017-10-09 2019-04-18 Zf Friedrichshafen Ag Sekundärelement für eine elektrische maschine
DE102020000697A1 (de) 2019-02-05 2020-08-06 Fanuc Corporation Vorrichtung zur herstellung eines rotorkerns, verfahren zur herstellung eines rotorkerns und rotorkonstruktion
DE102020000667A1 (de) 2019-02-05 2020-08-06 Fanuc Corporation Vorrichtung zur herstellung eines rotorkerns und verfahren zur herstellung eines rotorkerns
JP7444021B2 (ja) 2019-10-31 2024-03-06 株式会社アイシン ロータの製造装置、及びロータの製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6533635B1 (ja) * 2018-10-11 2019-06-19 黒田精工株式会社 ロータコア保持治具、磁石埋込み型コアの製造装置及び製造方法
JP7132857B2 (ja) * 2019-01-09 2022-09-07 本田技研工業株式会社 永久磁石埋設型ロータ及び永久磁石埋設型ロータの製造方法
JP6898370B2 (ja) 2019-02-12 2021-07-07 ファナック株式会社 ロータコアの製造装置及びロータコアの製造方法
DE102021212507A1 (de) 2021-11-08 2023-05-11 Zf Friedrichshafen Ag Komponente für einen Rotor einer Antriebseinrichtung eines Fahrzeugs

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149570A (ja) * 1995-11-22 1997-06-06 Fanuc Ltd 同期電動機のロータ
JP2002247784A (ja) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp 磁石埋込型回転子
JP2008042967A (ja) * 2006-01-11 2008-02-21 Mitsui High Tec Inc 回転子積層鉄心への永久磁石の樹脂封止方法
JP2011172347A (ja) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp ロータまたは回転電機の製造方法
JP2014036486A (ja) * 2012-08-08 2014-02-24 Aisin Aw Co Ltd 回転電機用ロータの樹脂充填装置
JP2014096932A (ja) * 2012-11-09 2014-05-22 Mitsui High Tec Inc 積層鉄心の樹脂封止方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008182824A (ja) 2007-01-25 2008-08-07 Mitsubishi Electric Corp 内部磁石埋め込み型ロータの製造方法
JP5805385B2 (ja) * 2010-12-14 2015-11-04 株式会社三井ハイテック 積層鉄心の製造方法
EP2722968B1 (en) * 2011-06-09 2019-04-10 Toyota Jidosha Kabushiki Kaisha Rotor for rotating electrical machine, rotating electric machine, and method for producing rotor for rotating electrical machine
JP5981295B2 (ja) * 2012-10-12 2016-08-31 株式会社三井ハイテック 積層鉄心の樹脂封止方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09149570A (ja) * 1995-11-22 1997-06-06 Fanuc Ltd 同期電動機のロータ
JP2002247784A (ja) * 2001-02-16 2002-08-30 Mitsubishi Electric Corp 磁石埋込型回転子
JP2008042967A (ja) * 2006-01-11 2008-02-21 Mitsui High Tec Inc 回転子積層鉄心への永久磁石の樹脂封止方法
JP2011172347A (ja) * 2010-02-17 2011-09-01 Mitsubishi Electric Corp ロータまたは回転電機の製造方法
JP2014036486A (ja) * 2012-08-08 2014-02-24 Aisin Aw Co Ltd 回転電機用ロータの樹脂充填装置
JP2014096932A (ja) * 2012-11-09 2014-05-22 Mitsui High Tec Inc 積層鉄心の樹脂封止方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170214282A1 (en) * 2016-01-21 2017-07-27 Fanuc Corporation Rotor of electric motor and its manufacturing method
EP3395534A1 (en) * 2017-04-24 2018-10-31 Mitsui High-Tec, Inc. Manufacturing method of laminated core and cull plate
CN110870168B (zh) * 2017-06-29 2021-10-26 日立安斯泰莫株式会社 旋转电机
WO2019004249A1 (ja) * 2017-06-29 2019-01-03 日立オートモティブシステムズ株式会社 回転電機
CN110870168A (zh) * 2017-06-29 2020-03-06 日立汽车系统株式会社 旋转电机
JPWO2019004249A1 (ja) * 2017-06-29 2020-04-23 日立オートモティブシステムズ株式会社 回転電機
US11437876B2 (en) 2017-06-29 2022-09-06 Honda Motor Co., Ltd. Rotating electrical machine
WO2019072472A1 (de) * 2017-10-09 2019-04-18 Zf Friedrichshafen Ag Sekundärelement für eine elektrische maschine
JP2020127294A (ja) * 2019-02-05 2020-08-20 ファナック株式会社 ロータコアの製造装置及びロータコアの製造方法
DE102020000667A1 (de) 2019-02-05 2020-08-06 Fanuc Corporation Vorrichtung zur herstellung eines rotorkerns und verfahren zur herstellung eines rotorkerns
JP7132143B2 (ja) 2019-02-05 2022-09-06 ファナック株式会社 ロータコアの製造装置及びロータコアの製造方法
DE102020000697A1 (de) 2019-02-05 2020-08-06 Fanuc Corporation Vorrichtung zur herstellung eines rotorkerns, verfahren zur herstellung eines rotorkerns und rotorkonstruktion
US11532960B2 (en) 2019-02-05 2022-12-20 Fanuc Corporation Device for manufacturing rotor core, method for manufacturing rotor core, and rotor structure
JP7444021B2 (ja) 2019-10-31 2024-03-06 株式会社アイシン ロータの製造装置、及びロータの製造方法

Also Published As

Publication number Publication date
CN107408873A (zh) 2017-11-28
JPWO2016147211A1 (ja) 2017-12-28
JP6417470B2 (ja) 2018-11-07
CN107408873B (zh) 2019-11-26
US10873249B2 (en) 2020-12-22
US20180062488A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
JP6417470B2 (ja) 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置
JP5998733B2 (ja) 回転電機用ロータの樹脂充填装置
JP6206438B2 (ja) 積層型ロータ及びその製造方法
JP6153826B2 (ja) 永久磁石付き回転子及びその製造方法
JP2008245405A (ja) ロータおよびその製造方法
WO2017179086A1 (ja) 磁石埋め込み型コアの製造方法
JP6069250B2 (ja) ロータ製造装置およびロータ製造方法
JP6531168B2 (ja) 磁石埋め込み型コアの樹脂充填装置および樹脂充填方法
CN108736605B (zh) 粘结磁铁的注射成型装置以及粘结磁铁的注射成型方法
JP2014082807A (ja) 積層鉄心の樹脂封止方法
KR20170007166A (ko) 회전 전기기기 로터의 제조 방법
JP2015100157A (ja) ロータの製造方法
JP4968928B2 (ja) 永久磁石モータ及びその製造方法
JP6076288B2 (ja) ロータ製造方法、ロータおよびモータ
JP2008125353A (ja) 電動機のロータ及びその製造方法
JP6011131B2 (ja) 界磁子製造方法及び射出成形装置
JP2010214590A (ja) 複合成形体の製造方法
JP6398703B2 (ja) 樹脂充填方法及び樹脂充填装置
JP2015097458A (ja) 永久磁石埋め込み型ロータ、その製造方法、及び樹脂封止装置
JP6392626B2 (ja) 回転子の製造方法及び回転子
JP2017022886A (ja) 永久磁石固定方法、金型、及び電機子
KR101439004B1 (ko) 회전자의 영구자석 고정형 금형장치 및 고정방법
JP6898370B2 (ja) ロータコアの製造装置及びロータコアの製造方法
JP2013115140A (ja) リアクトルおよびその製造方法
JP2017093188A (ja) 回転電機用ロータの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15885311

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017505741

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15555291

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15885311

Country of ref document: EP

Kind code of ref document: A1