WO2019004249A1 - 回転電機 - Google Patents

回転電機 Download PDF

Info

Publication number
WO2019004249A1
WO2019004249A1 PCT/JP2018/024292 JP2018024292W WO2019004249A1 WO 2019004249 A1 WO2019004249 A1 WO 2019004249A1 JP 2018024292 W JP2018024292 W JP 2018024292W WO 2019004249 A1 WO2019004249 A1 WO 2019004249A1
Authority
WO
WIPO (PCT)
Prior art keywords
insertion hole
permanent magnet
magnet insertion
filler
rotor
Prior art date
Application number
PCT/JP2018/024292
Other languages
English (en)
French (fr)
Inventor
懐之 新田
泰行 齋藤
小林 祐二
学 矢▲崎▼
圭一郎 柏原
西田 篤史
Original Assignee
日立オートモティブシステムズ株式会社
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社, 本田技研工業株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US16/626,693 priority Critical patent/US11437876B2/en
Priority to JP2019526962A priority patent/JP6871378B2/ja
Priority to CN201880042448.6A priority patent/CN110870168B/zh
Publication of WO2019004249A1 publication Critical patent/WO2019004249A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures

Definitions

  • the present invention relates to a rotary electric machine, and more particularly to a rotary electric machine suitable for use in which a permanent magnet is inserted into a magnet insertion hole provided in a rotor core and the permanent magnet is fixed to the magnet insertion hole with a filler. .
  • a rotating electrical machine in general, includes an annular stator and a rotor disposed in the stator with a predetermined gap in the radial direction, and the rotor is formed with a predetermined gap in the circumferential direction. And a rotor core provided with a plurality of axially extending magnet insertion holes, a permanent magnet inserted into each of the plurality of magnet insertion holes, and a permanent magnet for fixing the permanent magnet in the magnet insertion hole And a filler.
  • patent document 1 As a prior art document which fixes the permanent magnet mentioned above to the prescription
  • Patent Document 1 describes the following technology in order to accurately fix a permanent magnet in a magnet insertion hole with the purpose of suppressing variation in magnetic characteristics of each permanent magnet.
  • the permanent magnet includes a first radial end face provided in the radial direction of the rotor core and a first circumferential end face provided in the circumferential direction of the rotor core, and the magnet insertion hole is formed of Opposite the corner of the permanent magnet where the radial end face intersects the first circumferential end face, it is formed by bulging in the extension direction of the first radial end face and the extension direction of the first circumferential end face A bulging portion is provided, and the bulging portion is a filling groove for filling a filler for fixing the permanent magnet, and the filling member is filled from the filling groove to form the permanent magnet A second radial end surface opposite to the first radial end surface and a second circumferential end surface opposite to the first circumferential end surface are pressed against the inner wall surface of the magnet insertion hole, and the permanent magnet Can be accurately positioned and fixed to the magnet insertion hole There.
  • the present invention has been made in view of the above-described point, and the purpose of the present invention is that the performance as a rotating electrical machine is not degraded, of course, without providing a filling groove for filler injection in the rotor core.
  • An object of the present invention is to provide a rotating electrical machine capable of fixing a permanent magnet at a prescribed position of a magnet insertion hole.
  • the rotating electric machine comprises a rotor and a stator, and the rotor is inserted into a rotor core provided with a plurality of magnet insertion holes, and the magnet insertion hole
  • the permanent magnet includes a plurality of radial end faces provided in the radial direction of the rotor, and And a pair of circumferential end faces provided in the circumferential direction of the rotor, and one of the plurality of radial end faces intersects with the pair of circumferential end faces.
  • a region in which the side and the side are combined is provided, and a gap formed between the two side and the region where the side is combined and the inner wall surface of the magnet insertion hole is a filler injection port for the filler. It is characterized by
  • the present invention it is possible to fix the permanent magnet at the specified position of the magnet insertion hole without providing the filling groove for filler injection in the rotor core as well as not to deteriorate the performance as the rotating electric machine.
  • a possible electric rotating machine can be obtained.
  • FIG. 4 is an enlarged view of one magnetic pole of a stator and a rotor in FIG. 3; It is a figure which expands and shows the magnet insertion hole vicinity in FIG.
  • FIG. 1 shows a schematic configuration of a hybrid electric vehicle equipped with a rotating electrical machine according to a first embodiment of the present invention.
  • an engine 2 as a vehicle power source and a rotating electrical machine 3 are mounted on a vehicle 1.
  • two rotary electric machines 3 having different roles may be used in combination.
  • one rotary electric machine 3 performs both power generation and vehicle driving, and the other rotary electric machine 3 is responsible for driving the vehicle.
  • the rotational torque generated by the engine 2 and the rotary electric machine 3 is transmitted to the wheels (drive wheels) 6 via the transmission 4 such as a continuously variable transmission or a stepped automatic transmission and the differential gear 5.
  • the rotary electric machine 3 is mounted between the engine 2 and the transmission 4 or in the transmission 4. Therefore, in order to minimize the influence of space on the vehicle 1, the rotary electric machine 3 is required to be smaller and higher in output.
  • FIG. 2 schematically shows the rotary electric machine 3 shown in FIG. 1, and shows the upper region across the shaft 10 in cross section and the lower region as a side surface.
  • the rotary electric machine 3 is housed and arranged inside a case 7 formed of a front bracket 7a, a rear bracket 7b, and a housing 7c.
  • the case 7 may be an integral case composed of the front bracket 7a and the housing 7c, or an integral case composed of the rear bracket 7b and the housing 7c.
  • the case 7 when the rotating electrical machine 3 is disposed between the engine 2 and the transmission 4, the case 7 is configured using the case of the engine 2 and the case of the transmission 4. Further, when the rotary electric machine 3 is mounted in the transmission 4, the case 7 is configured using the case of the transmission 4.
  • the rotating electrical machine 3 also includes a rotor 8 and a stator 9.
  • the outer circumferential side of the stator 9 is fixed to the inner circumferential side of the housing 7 c, and the rotor 8 is disposed on the inner circumferential side of the stator 9 with a predetermined gap.
  • the rotor 8 is fixed to the shaft 10 and rotates integrally with the shaft 10. Both ends of the shaft 10 are rotatably supported on the front bracket 7a and the rear bracket 7b by bearings 11a and 11b, respectively.
  • FIGS. 3 and 4 is a front view showing the rotor 8 and the stator 9 of the rotary electric machine 3 of the present embodiment
  • FIG. 4 is one pole of the stator 8 and the rotor 9 of the rotary electric machine 3 of the present embodiment. It is a figure which expands and shows.
  • the rotating electrical machine 3 of this embodiment comprises a rotor 8 and a stator 9, and the rotor 8 comprises a rotor core 13 provided with a plurality of magnet insertion holes 14 and a plurality of magnets It is roughly configured to include permanent magnets 12 inserted into each of the insertion holes 14 and a filler 15 for fixing the permanent magnets 12 to the magnet insertion holes 14.
  • the rotor 8 disposed on the inner peripheral side of the stator 9 with a predetermined air gap has eight permanent magnets 12 (two per one pole) arranged in the ⁇ direction,
  • the number of slots 18 in the stator core 17 of the stator 9 is 48 (8 ⁇ 3 ⁇ 2) because the number of slots per pole per phase slot is two.
  • each magnet insertion hole 14 is formed extending in the z direction (axial direction), and a permanent magnet 12 is embedded in the magnet insertion hole 14 and fixed by a filler 15.
  • the width in the ⁇ direction (circumferential direction) of the magnet insertion hole 14 is set larger than the width in the ⁇ direction (circumferential direction) of the permanent magnet 12 (12a, 12b), and the hole spaces 16 on both sides of the permanent magnet 12 , Acting as a magnetic air gap.
  • the hole space 16 may be embedded with a thermosetting resin, or may be solidified integrally with the permanent magnet 12 with a thermoplastic resin.
  • the permanent magnet 12 acts as a field pole of the rotor 8 and has an eight-pole configuration in this embodiment.
  • thermosetting resin and thermoplastic resin can be used.
  • a curing process is required because it is cured by heating, whereas in the case of a thermoplastic resin, it is at the time of filler injection.
  • a curing step is not necessary because the heated thermoplastic resin cures by returning to normal temperature. Therefore, when the productivity of the rotary electric machine 3 is taken into consideration, the filler 15 is more preferably a thermoplastic resin than a thermosetting resin.
  • the magnetization direction of the permanent magnet 12 is perpendicular to the long side of the permanent magnet 12, and the direction of the magnetization direction is reversed for each field pole. That is, in FIG. 3, assuming that the stator side surface of the permanent magnet 12a is N pole and the shaft side surface is S pole, the stator side surface of the adjacent permanent magnet 12b is S pole and the shaft side surface is N pole It has become.
  • the permanent magnets 12a and 12b are alternately arranged in the ⁇ direction (circumferential direction).
  • the permanent magnet 12 may be magnetized and then inserted into the magnet insertion hole 14 or may be magnetized by applying a strong magnetic field after inserting it into the magnet insertion hole 14 of the rotor core 13.
  • the permanent magnet 12 after magnetization is a strong magnet, if the magnet is magnetized before the permanent magnet 12 is fixed to the rotor 8, a strong attractive force between the permanent magnet 12 and the rotor core 13 is fixed. Will interfere with the assembly operation.
  • the strong attraction force of the permanent magnet 12 may cause dust such as iron powder to adhere to the permanent magnet 12. Therefore, in consideration of the productivity of the rotary electric machine 3, it is preferable to magnetize after inserting the permanent magnet 12 into the rotor core 13.
  • the permanent magnet 12 described above is fixed to the magnet insertion hole 14 by the filler 15.
  • the filling groove is a region where magnetic flux passes It was necessary to provide in the vicinity of a certain magnet insertion hole 14.
  • there is a filling groove in the region through which the magnetic flux of the rotor core 13 passes there is a concern that the gap region is expanded (the region through which the magnetic flux passes is reduced) and the torque is decreased .
  • a lamination step is formed due to a displacement of the electromagnetic steel plates, and under the influence of the lamination step, a permanent magnet 12 on which centrifugal force acts during rotational driving.
  • the stress is concentrated at the portion where the contact is made locally and the permanent magnet 12 or the magnetic steel sheet may be broken.
  • the permanent magnet 12 includes one first radial end face 19 a (or 19 b) and the rotor 8. And a pair of circumferential end faces 20 provided in the circumferential direction, and the one first radial end face 19a and the pair of circumferential end faces 20 intersect to join two sides and a side.
  • the region A is provided, and the gap G formed between the region A where the two sides meet and the inner surface of the magnet insertion hole 14 is used as a filler injection port for the filler 15.
  • the permanent magnet 12 can be fixed at a prescribed position with respect to the magnet insertion hole 14 without providing a filling groove in the region through which the magnetic flux of the rotor core 13 passes.
  • the permanent magnet 12 includes a first radial end face 19 a and a pair of circumferential end faces 20 provided in the circumferential direction of the rotor 8, and the pair of circumferential end faces Two corners of the first radial end face 19a intersecting with 20 (two sides and a side of a region where two sides of the first radial end face 19a intersecting with the pair of circumferential end faces 20 and a side) Even if there is no filling groove in the rotor core 13, the gap G formed between the two corner portions 21 and the inner wall surface of the magnet insertion hole 14 is The permanent magnet 12 is defined with respect to the magnet insertion hole 14 without providing a filling groove in the region through which the magnetic flux of the rotor core 13 passes, by using the filler inlet for the filler 15 and filling the filler 15 from here. It can be fixed in position.
  • a gap (a gap formed between an area A where two sides meet) and an inner wall surface of the magnet insertion hole 14 G formed by a chamfered shape of the corner portion 21 of the two permanent magnets 12 Since the filling groove like patent document 1 is not in the area
  • the outer peripheral end surface 14 (inner wall surface facing the first radial direction end surface 19a of the permanent magnet 12) 22 can be formed into a linear shape without a groove.
  • the inflection point is in the area facing the first radial end face 19 a of the permanent magnet 12 on the outer peripheral end face (the inner wall face facing the first radial end face 19 a of the permanent magnet 12) 22 of the magnet insertion hole 14. (Grooves) are not formed.
  • the filler 15 when the filler 15 is injected from two places of the corner 21 of the permanent magnet 12, the filler 15 is between the first radial end face 19a of the permanent magnet 12 and the outer peripheral end face 22 of the magnet insertion hole 14 (FIG. Flow in the direction of arrow C) and the hole space 16 located on both sides in the circumferential direction of the magnet insertion hole 14 (direction of arrow D in FIG. 5).
  • the permanent magnet 12 moves in a direction perpendicular to the outer peripheral end face 22 of the magnet insertion hole 14 and pushes against the inner peripheral end face 23 of the magnet insertion hole 14 facing the outer peripheral end face 22 of the magnet insertion hole 14. It is fixed in the applied position.
  • a gap formed by the chamfered shape of the corner portion 21 of the two permanent magnets 12 (a gap formed between the area A where the two sides meet the side and the inner wall surface of the magnet insertion hole 14 ) G, that is, it is preferable to inject the filler 15 from two filling inlets.
  • the corners 21 of the permanent magnet 12 are chamfered, but for example, the corners of the permanent magnet 12 (two points of the first radial end face 19a intersecting with the pair of circumferential end faces 20)
  • the gap G can be formed with the inner wall surface of the magnet insertion hole 14 such as an angle R shape such as an angle R shape such as an angle R shape such as a corner R shape.
  • the gap G to be formed is used as the filler injection port for the filler 15
  • the gap formed between the two sides A and the area A where the sides meet and the inner wall surface of the magnet insertion hole 14 may be used as a filler injection port for the filler 15.
  • the first radial end face 19 a of the permanent magnet 12 is pressed against the outer peripheral end face 22 of the magnet insertion hole 14.
  • the opposite side to FIG. 3 that is, the opposite side of the two opposing permanent magnets 12 protrudes outward.
  • the longitudinal direction of one permanent magnet 12 is arranged in the radial direction of the rotor 8 or in the direction perpendicular to the radial direction of the rotor 8, the arrangement of such permanent magnets 12 is conceivable.
  • the filler 15 can be filled.
  • FIGS. 6 and 7. 7 is an enlarged view of a portion B in FIG.
  • the rotor 8 comprising the rotor core 13 provided with the magnet insertion hole 14 and the permanent magnet 12 inserted into the magnet insertion hole 14 is formed by the upper mold 24 and the lower mold 25.
  • the pressure is supported from the axial direction (vertical direction in FIG. 6).
  • the filler storage portion 26 of the filler 15 is formed, and in the lower portion of the filler storage portion 26, the injection portion 27 for injecting the filler 15 is formed. Gap formed by the chamfered shape of the corner portion 21 of the two permanent magnets 12 described above from the injection portion 27 (formed between the area A where the two sides and the side meet and the inner wall surface of the magnet insertion hole 14 The filler 15 from the filler storage 26 is injected through the injection part 27 into the gap G). The filler 15 filled from the two gaps G starts from the gap G as shown by arrows C and D in FIG.
  • the present invention is not limited to the embodiments described above, but includes various modifications.
  • the embodiments described above are described in detail in order to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described.
  • part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Abstract

本発明は、回転電機としての性能を落とすことがないことは勿論、回転子鉄心に充填剤注入用の充填溝を設けることなく、永久磁石を磁石挿入孔の規定位置に固定するが可能な回転電機を提供する。 本発明の回転電機は、回転子と固定子から成り、前記回転子は、複数の磁石挿入孔が設けられた回転子鉄心と、前記磁石挿入孔に挿入された永久磁石と、前記永久磁石を前記磁石挿入孔に固定するための充填剤とを備えた回転電機において、前記永久磁石は、前記回転子の径方向に設けられた複数の径方向端面と、前記回転子の周方向に設けられた1対の周方向端面とを備え、前記複数の径方向端面のうち1つの第1径方向端面と前記1対の周方向端面とが交差することで、2箇所の辺と辺の合わさる領域が設けられており、前記2箇所の辺と辺の合わさる領域と前記磁石挿入孔の内壁面との間に形成される隙間を、前記充填剤の充填剤注入口としたことを特徴とする。

Description

回転電機
 本発明は回転電機に係り、特に、回転子鉄心に設けられた磁石挿入孔に永久磁石が挿入され、その永久磁石が充填剤にて磁石挿入孔に固定されているものに好適な回転電機に関する。
 一般に、回転電機は、円環状の固定子と、この固定子に径方向に所定の空隙を介して配置された回転子とを備えており、前記回転子は、周方向に所定の間隙をもって形成され、軸方向に伸延する複数の磁石挿入孔が設けられた回転子鉄心と、前記複数の磁石挿入孔の各々に挿入された永久磁石と、この永久磁石を前記磁石挿入孔に固定するための充填剤とを有している。
 上述した永久磁石を磁石挿入孔の規定位置に充填剤を用いて固定する先行技術文献として、例えば、特許文献1を挙げることができる。
 この特許文献1には、永久磁石毎の磁気特性のばらつきを抑制することを目的とし、永久磁石を磁石挿入孔に精度良く位置決め固定するために、以下の技術が記載されている。
 即ち、永久磁石は、回転子鉄心の径方向に設けられた第1径方向端面と、回転子鉄心の周方向に設けられた第1周方向端面とを備え、磁石挿入孔は、前記第1径方向端面と前記第1周方向端面とが交差する前記永久磁石の角部に対向し、前記第1径方向端面の延長方向及び前記第1周方向端面の延長方向に膨出して形成された膨出部を備え、前記膨出部は、前記永久磁石を固定するための充填剤を充填するための充填溝であり、前記充填溝から前記充填剤を充填することで、前記永久磁石の前記第1径方向端面の反対側に位置する第2径方向端面と前記第1周方向端面の反対側に位置する第2周方向端面が、前記磁石挿入孔の内壁面に押し付けられ、前記永久磁石は、前記磁石挿入孔に対して、精度良く位置決め固定することができるとしている。
特開2015-220780号公報
 しかしながら、上述した特許文献1に記載の技術では、磁石挿入孔に充填溝を設けた結果、回転子鉄心の磁束の通る領域に充填溝により空隙領域が拡大(磁束の通る領域が減少)してトルクが減少してしまい、回転電機としての性能が低下する懸念があり、回転子鉄心に充填剤注入用の充填溝を設けることなく、永久磁石を磁石挿入孔の規定位置に固定する必要がある。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、回転電機としての性能を落とすことがないことは勿論、回転子鉄心に充填剤注入用の充填溝を設けることなく、永久磁石を磁石挿入孔の規定位置に固定するが可能な回転電機を提供することにある。
 本発明の回転電機は、上記目的を達成するために、回転子と固定子から成り、前記回転子は、複数の磁石挿入孔が設けられた回転子鉄心と、前記磁石挿入孔に挿入された永久磁石と、前記永久磁石を前記磁石挿入孔に固定するための充填剤とを備えた回転電機において、前記永久磁石は、前記回転子の径方向に設けられた複数の径方向端面と、前記回転子の周方向に設けられた1対の周方向端面とを備え、前記複数の径方向端面のうち1つの第1径方向端面と前記1対の周方向端面とが交差することで、2箇所の辺と辺の合わさる領域が設けられており、前記2箇所の辺と辺の合わさる領域と前記磁石挿入孔の内壁面との間に形成される隙間を、前記充填剤の充填剤注入口としたことを特徴とする。
 本発明によれば、回転電機としての性能を落とすことがないことは勿論、回転子鉄心に充填剤注入用の充填溝を設けることなく、永久磁石を磁石挿入孔の規定位置に固定することが可能な回転電機を得ることができる。
本発明の実施例1に係る回転電機を搭載したハイブリッド電気自動車の概略構成を示すブロック図である。 本発明の実施例1に係る回転電機の概略構成であり、シャフトを挟んで上側の領域を断面で示し、下側の領域を側面で示す図である。 本発明の回転電機の実施例1における回転子及び固定子を示す正面図である。 図3における固定子及び回転子の1磁極分を拡大して示す図である。 図4における磁石挿入孔近傍を拡大して示す図である。 本発明の回転電機の実施例1における回転子における2箇所の永久磁石の角部の面取り形状によって形成される隙間を充填注入口とした場合の充填剤の注入を説明するための図である。 図6のB部拡大図である。
 以下、図示した実施例に基づいて本発明の回転電機を説明する。なお、各図において、同一構成部品には同符号を使用する。
 図1に、本発明の実施例1に係る回転電機を搭載したハイブリッド電気自動車の概略構成を示す。
 該図において、車両1には、車両動力源としてのエンジン2と回転電機3が搭載されている。なお、役割の異なる2つの回転電機3を併用するようにしても良く、この場合、一方の回転電機3は発電及び車両駆動の双方を行い、他方の回転電機3は車両の駆動を担う。
 エンジン2及び回転電機3による回転トルクは、無段変速機や有段自動変速機等の変速機4及びディファレンシャルギア5を介して車輪(駆動輪)6に伝達される。回転電機3は、エンジン2と変速機4の間、若しくは変速機4の中に搭載される。従って、回転電機3は、車両1に対するスペースの影響を最小限とするため、小型高出力化が要求される。
 図2は、図1に示した回転電機3を簡略的に示すものであり、シャフト10を挟んで上側の領域を断面で示し、下側の領域を側面として示している。
 該図に示すように、回転電機3は、フロントブラケット7a及びリアブラケット7b、ハウジング7cで構成されたケース7の内部に収納配置されている。ここで、ケース7は、フロントブラケット7aとハウジング7cで構成される一体型のケースである場合、或はリアブラケット7bとハウジング7cで構成される一体型のケースである場合もある。
 また、図1に示すように、回転電機3がエンジン2と変速機4の間に配置される場合、ケース7はエンジン2のケースや変速機4のケースを利用して構成されている。また、回転電機3が変速機4の中に搭載される場合には、ケース7が変速機4のケースを利用して構成されている。
 また、回転電機3は、回転子8と固定子9とを備えている。固定子9は、その外周側がハウジング7cの内周側に固定され、回転子8は、固定子9の内周側に所定の空隙を介して配置されている。回転子8はシャフト10に固定されており、シャフト10と一体的に回転する。シャフト10の両端は、軸受11a及び11bによって、フロントブラケット7a、リアブラケット7bにそれぞれ回転可能に支持されている。
 次に、図3及び図4を用いて本実施例の回転子8及び固定子9を説明する。なお、図3は、本実施例の回転電機3の回転子8及び固定子9を示す正面図、図4は、本実施例の回転電機3の固定子8及び回転子9の1磁極分を拡大して示す図である。
 該図に示すように、本実施例の回転電機3は、回転子8と固定子9から成り、回転子8は、複数の磁石挿入孔14が設けられた回転子鉄心13と、複数の磁石挿入孔14のそれぞれに挿入された永久磁石12と、永久磁石12を磁石挿入孔14に固定するための充填剤15とを備えて概略構成されている。
 具体的には、固定子9の内周側に所定の空隙を介して配置された回転子8は、永久磁石12がθ方向に16個(1極あたり2個)並ぶ8極であり、毎極毎相スロット数が2の三相交流であることから、固定子9の固定子鉄心17のスロット18の数は8×3×2の48個となる。
 回転子8の回転子鉄心13の外周近傍には、矩形の永久磁石12を挿入するための複数の上述した磁石挿入孔14がθ方向(周方向)に沿って等間隔に16個配設されている。
各磁石挿入孔14はz方向(軸方向)に伸延して形成されており、その磁石挿入孔14には永久磁石12がそれぞれ埋め込まれ、充填剤15で固定されている。
 磁石挿入孔14のθ方向(周方向)の幅は、永久磁石12(12a、12b)のθ方向(周方向)の幅よりも大きく設定されており、永久磁石12の両側の穴空間16は、磁気的空隙として機能する。この穴空間16は熱硬化性樹脂を埋め込んでも良いし、熱可塑性樹脂で永久磁石12と一体に固めても良い。永久磁石12は回転子8の界磁極として作用し、本実施例では8極構成となっている。
 上述の充填剤15としては、熱硬化性樹脂や熱可塑性樹脂を使用することができる。ただし、充填剤15の注入後の工程において、熱硬化性樹脂の場合は、加熱することで硬化するため、硬化工程が必要になるのに対して、熱可塑性樹脂の場合は、充填剤注入時に加熱された熱可塑性樹脂が常温に戻ることで硬化するため、硬化工程は必要ではない。そのため、充填剤15は、回転電機3の生産性を考慮した場合、熱硬化性樹脂よりも熱可塑性樹脂の方が好ましい。
 また、永久磁石12の磁化方向は、永久磁石12の長辺に対して垂直方向を向いており、界磁極毎に磁化方向の向きが反転している。即ち、図3において、永久磁石12aの固定子側面がN極、軸側の面がS極であったとすれば、隣の永久磁石12bの固定子側面はS極、軸側の面はN極となっている。そして、これらの永久磁石12a、12bがθ方向(周方向)に交互に配置されている。
 更に、永久磁石12は、磁化した後に磁石挿入孔14に挿入しても良いし、回転子鉄心13の磁石挿入孔14に挿入した後に強力な磁界を与えて磁化するようにしても良い。ただし、磁化後の永久磁石12は強力な磁石なので、回転子8に永久磁石12を固定する前に磁石を着磁すると、永久磁石12の固定時に回転子鉄心13との間に強力な吸引力が生じて組み付け作業の妨げとなる。
 また、永久磁石12の強力な吸引力により、永久磁石12に鉄粉などのごみが付着する恐れがある。そのため、回転電機3の生産性を考慮した場合、永久磁石12を回転子鉄心13に挿入した後に磁化するのが好ましい。
 ところで、前述した永久磁石12は、磁石挿入孔14に充填剤15によって固定されるが、この充填剤15を磁石挿入孔14に充填するために、従来は、充填溝を、磁束の通る領域である磁石挿入孔14の近傍に設ける必要があった。その結果、回転子鉄心13の磁束の通る領域に充填溝があるため、空隙領域が拡大(磁束の通る領域が減少)してトルクが減少し、回転電機3としての性能が低下する懸念がある。
 そのため、回転子鉄心13に充填溝の設定が無くても、磁石挿入孔14に充填剤15を充填させ、永久磁石12を磁石挿入孔14に対して規定位置に固定する必要がある。
 一方、複数の電磁鋼板を積層した回転子鉄心13は、電磁鋼板の積ずれによって成形される積層段差が生じ、この積層段差の影響により、回転駆動時には、遠心力が作用している永久磁石12と局所的に接触している部分で応力が集中し、永久磁石12や電磁鋼板が破損に至る懸念がある。
 そのため、前述した永久磁石12の局所的な接触を回避するため、図5に示すように、永久磁石12の外周側に位置する第1径方向端面19aと磁石挿入孔14の内壁面との間に、充填剤15を介在させる必要がある。つまり、磁石挿入孔14に対する永久磁石12は、内側に位置することが好ましい。
 そこで、本実施例では、図5に示すように、永久磁石12は、回転子8の径方向に複数設けられる端面のうち、1つの第1径方向端面19a(又は19b)と、回転子8の周方向に設けられた1対の周方向端面20とを備え、これら1つの第1径方向端面19aと1対の周方向端面20とが交差することで、2箇所の辺と辺の合わさる領域Aが設けられており、この2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間Gを、充填剤15の充填剤注入口とすることで、回転子鉄心13の磁束の通る領域に充填溝を設けることなく、永久磁石12を磁石挿入孔14に対して規定位置に固定することができる。
 具体的には、本実施例では、永久磁石12は、第1径方向端面19aと、回転子8の周方向に設けられた1対の周方向端面20とを備え、1対の周方向端面20と交差する第1径方向端面19aの2箇所の角部(1対の周方向端面20と交差する第1径方向端面19aの2箇所の辺と辺の合わさる領域の2箇所の辺と辺の合わさる部分)21に面取り加工が施されており、回転子鉄心13に充填溝がなくても、2箇所の角部21と磁石挿入孔14の内壁面との間に形成される隙間Gを充填剤15の充填剤注入口とし、ここから充填剤15を充填することで、回転子鉄心13の磁束の通る領域に充填溝を設けることなく、永久磁石12を磁石挿入孔14に対して規定位置に固定することができる。
 また、回転子鉄心13の電磁鋼板の積ずれによって成形される積層段差が生じても、永久磁石12の外周側に位置する第1径方向端面19aと磁石挿入孔14の内壁面との間に、充填剤15が介在されているので、回転駆動時に、遠心力が作用しても永久磁石12が電磁鋼板と局所的に接触することがなくなり、永久磁石12や電磁鋼板が破損に至ることはない。
 また、2箇所の永久磁石12の角部21の面取り形状によって形成される隙間(2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間)Gを利用したことで、特許文献1のような充填溝が回転子鉄心13の磁束が通る領域にないので、図5に示すように、永久磁石12の第1径方向端面19aと対向する磁石挿入孔14の外周側端面(永久磁石12の第1径方向端面19aと対向する内壁面)22を、溝のない直線形状とすることができる。即ち、磁石挿入孔14の外周側端面(永久磁石12の第1径方向端面19aと対向する内壁面)22には、永久磁石12の第1径方向端面19aと対向する領域内に変曲点(溝)が形成されていない。
 その結果、磁石挿入孔14の外周側端面22の永久磁石12の第1径方向端面19aと対向する領域内に変曲点がないことで、回転子鉄心13の磁束が通る領域(図5の1対の周方向端面20と交差する第1径方向端面19aの2箇所の辺と辺の合わさる領域間(角部21間))の空隙領域を狭くする(空隙領域が拡大しない)ことができ、トルク減少による回転電機3の性能低下を抑制できる。
 また、永久磁石12の角部21の2箇所から充填剤15を注入すると、充填剤15は、永久磁石12の第1径方向端面19aと磁石挿入孔14の外周側端面22の間(図5の矢印C方向)、及び磁石挿入孔14の周方向両側に位置する穴空間16に向かって(図5の矢印D方向)流動する。その結果、永久磁石12は、磁石挿入孔14の外周側端面22に対して垂直方向に移動し、磁石挿入孔14の外周側端面22に対向する磁石挿入孔14の内周側端面23に押し当てられた位置に固定される。
 1箇所の充填剤注入口から充填剤15を注入すると、磁石挿入孔14内を均等に充填剤15が流動せずに、永久磁石12が傾いた状態で固定される懸念があるため、本実施例のように、2箇所の永久磁石12の角部21の面取り形状によって形成される隙間(2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間)G、即ち、2箇所の充填注入口から充填剤15を注入することが好ましい。
 なお、本実施例では、永久磁石12の角部21は、面取り形状としているが、例えば、永久磁石12の角部(1対の周方向端面20と交差する第1径方向端面19aの2箇所の辺と辺の合わさる領域の2箇所の辺と辺の合わさる部分)21を角R形状のような、磁石挿入孔14の内壁面と隙間Gを形成できる形状である場合においても、同様の効果を得ることができる。
 また、本実施例では、永久磁石12の1対の周方向端面20と交差する第1径方向端面19aの2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間Gを、充填剤15の充填剤注入口としたが、永久磁石12の1対の周方向端面20と交差する第1径方向端面19aとは反対側の第1径方向端面19bの2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間を、充填剤15の充填剤注入口としてもよい。この場合は、永久磁石12の第1径方向端面19aが、磁石挿入孔14の外周側端面22に押圧されることになる。
 また、永久磁石12の配置としては、図3のような永久磁石12の配置以外に、図3とは反対側、即ち、対向する2個の永久磁石12の対向側が外周側に突出している場合、或は1個の永久磁石12の長手方向が回転子8の径方向、若しくは回転子8の径方向と直角方向に配置される場合が考えられるが、このような永久磁石12の配置であっても、上述した実施例と同様に充填剤15を充填することができる。
 次に、本実施例における2箇所の永久磁石12の角部21の面取り形状によって形成される隙間(2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間)Gを充填注入口とした場合の充填剤15の注入について、図6及び図7を用いて説明する。なお、図7は、図6のB部拡大図である。
 図6に示すように、磁石挿入孔14が設けられた回転子鉄心13と、磁石挿入孔14に挿入された永久磁石12とから成る回転子8は、上金型24と下金型25で軸方向(図6では上下方向)から押圧支持されている。
 上金型24には、図7に示すように、充填剤15の充填剤貯蔵部26が形成され、充填剤貯蔵部26の下部には、充填剤15を注入する注入部27が形成されており、注入部27から上述した2箇所の永久磁石12の角部21の面取り形状によって形成される隙間(2箇所の辺と辺の合わさる領域Aと磁石挿入孔14の内壁面との間に形成される隙間)Gに、充填剤貯蔵部26からの充填剤15が注入部27を介して注入される。2箇所の隙間Gから充填された充填剤15は、図5の矢印C及びDに示すように、隙間Gを起点に、一方(矢印C)は永久磁石12の第1径方向端面19aと磁石挿入孔14の外周側端面22の間に流入し、他方(矢印D)は穴空間16に流入して永久磁石12が固定される。図6では、上金型24側から充填剤15を注入する例を示したが、例えば、下金型25側から2箇所の隙間Gに充填剤15を圧入するようにしてもよい。
 なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 1…車両、2…エンジン、3…回転電機、4…変速機、5…ディファレンシャルギア、6…車輪(駆動輪)、7…ケース、7a…フロントブラケット、7b…リアブラケット、7c…ハウジング、8…回転子、9…固定子、10…シャフト、11a、11b…軸受、12、12a、12b…永久磁石、13…回転子鉄心、14…磁石挿入孔、15…充填剤、16…穴空間、17…固定子鉄心、18…スロット、19a、19b…永久磁石の第1径方向端面、20…永久磁石の1対の周方向端面、21…永久磁石の角部、22…磁石挿入孔の外周側端面、23…磁石挿入孔の内周側端面、24…上金型、25…下金型、26…充填剤貯蔵部、27…充填剤の注入部。

Claims (7)

  1.  回転子と固定子から成り、前記回転子は、複数の磁石挿入孔が設けられた回転子鉄心と、前記磁石挿入孔に挿入された永久磁石と、前記永久磁石を前記磁石挿入孔に固定するための充填剤とを備えた回転電機において、
     前記永久磁石は、前記回転子の径方向に設けられた複数の径方向端面と、前記回転子の周方向に設けられた1対の周方向端面とを備え、前記複数の径方向端面のうち1つの第1径方向端面と前記1対の周方向端面とが交差することで、2箇所の辺と辺の合わさる領域が設けられており、
     前記2箇所の辺と辺の合わさる領域と前記磁石挿入孔の内壁面との間に形成される隙間を、前記充填剤の充填剤注入口としたことを特徴とする回転電機。
  2.  請求項1に記載の回転電機において、
     前記2箇所の辺と辺の合わさる領域は、前記永久磁石の外周側又は内周側に位置していることを特徴とする回転電機。
  3.  請求項1又は2に記載の回転電機において、
     前記2箇所の辺と辺の合わさる領域のうち2箇所の辺と辺の合わさる角部は、面取り又は角R加工が施されていることを特徴とする回転電機。
  4.  請求項1乃至3のいずれか1項に記載の回転電機において、
     前記磁石挿入孔は、前記永久磁石の前記第1径方向端面と対向する内壁面を有し、前記磁石挿入孔の内壁面は、前記第1径方向端面と対向する領域内に変曲点が形成されていないことを特徴とする回転電機。
  5.  請求項1乃至3のいずれか1項に記載の回転電機において、
     前記磁石挿入孔は、前記永久磁石の前記第1径方向端面と対向する内壁面を有し、前記磁石挿入孔の内壁面は直線状に形成されていることを特徴とする回転電機。
  6.  請求項1乃至5のいずれか1項に記載の回転電機おいて、
     前記充填剤は、前記永久磁石の前記第1径方向端面と前記磁石挿入孔の外周側内壁面の間に介在されていることを特徴とする回転電機。
  7.  請求項6に記載の回転電機おいて、
     前記充填剤は、熱硬化性樹脂又は熱可塑性樹脂であることを特徴とする回転電機。
PCT/JP2018/024292 2017-06-29 2018-06-27 回転電機 WO2019004249A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/626,693 US11437876B2 (en) 2017-06-29 2018-06-27 Rotating electrical machine
JP2019526962A JP6871378B2 (ja) 2017-06-29 2018-06-27 回転電機
CN201880042448.6A CN110870168B (zh) 2017-06-29 2018-06-27 旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127299 2017-06-29
JP2017-127299 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019004249A1 true WO2019004249A1 (ja) 2019-01-03

Family

ID=64742270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024292 WO2019004249A1 (ja) 2017-06-29 2018-06-27 回転電機

Country Status (4)

Country Link
US (1) US11437876B2 (ja)
JP (1) JP6871378B2 (ja)
CN (1) CN110870168B (ja)
WO (1) WO2019004249A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124185A1 (de) * 2019-09-10 2021-03-11 Schaeffler Technologies AG & Co. KG Elektromotor, Rotor und Verfahren zur Magnetbefestigung in einem Rotor
JP2022023737A (ja) * 2020-07-27 2022-02-08 トヨタ自動車株式会社 ロータの組立方法及びロータ組立装置の制御装置
DE102021200809A1 (de) 2021-01-29 2022-08-04 Volkswagen Aktiengesellschaft Eine Rotorlamelle, ein Rotorblechpaket, ein Rotor und ein Verfahren zum Fertigen eines Rotors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238584A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp ロータおよびその製造方法
JP2014036486A (ja) * 2012-08-08 2014-02-24 Aisin Aw Co Ltd 回転電機用ロータの樹脂充填装置
JP2014082807A (ja) * 2012-10-12 2014-05-08 Mitsui High Tec Inc 積層鉄心の樹脂封止方法
WO2016147211A1 (ja) * 2015-03-13 2016-09-22 黒田精工株式会社 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012169043A1 (ja) * 2011-06-09 2012-12-13 トヨタ自動車株式会社 回転電機用ロータ、回転電機、および、回転電機用ロータの製造方法
JP6175022B2 (ja) 2014-05-14 2017-08-02 本田技研工業株式会社 回転電機のロータ
JP2016059190A (ja) * 2014-09-11 2016-04-21 トヨタ自動車株式会社 回転電機のロータ
JP6343557B2 (ja) * 2014-12-24 2018-06-13 株式会社三井ハイテック 回転子用積層体及びその製造方法並びに回転子の製造方法
KR102446182B1 (ko) * 2015-05-27 2022-09-22 엘지이노텍 주식회사 로터 및 상기 로터를 포함하는 모터
JP2017093188A (ja) * 2015-11-12 2017-05-25 株式会社ジェイテクト 回転電機用ロータの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238584A (ja) * 2005-02-24 2006-09-07 Toyota Motor Corp ロータおよびその製造方法
JP2014036486A (ja) * 2012-08-08 2014-02-24 Aisin Aw Co Ltd 回転電機用ロータの樹脂充填装置
JP2014082807A (ja) * 2012-10-12 2014-05-08 Mitsui High Tec Inc 積層鉄心の樹脂封止方法
WO2016147211A1 (ja) * 2015-03-13 2016-09-22 黒田精工株式会社 磁石埋め込み型コアの樹脂充填方法および樹脂充填装置

Also Published As

Publication number Publication date
JPWO2019004249A1 (ja) 2020-04-23
CN110870168B (zh) 2021-10-26
JP6871378B2 (ja) 2021-05-12
US11437876B2 (en) 2022-09-06
US20200119602A1 (en) 2020-04-16
CN110870168A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US9484790B2 (en) Rotor for electric rotating machine and method of manufacturing the same
JP4815967B2 (ja) 永久磁石式回転電機
JP6161793B2 (ja) 永久磁石式回転電機及びその製造方法
US9793770B2 (en) Permanent magnets rotor for rotating electric machine
WO2017159858A1 (ja) 電動機用ロータ、およびブラシレスモータ
US10050481B2 (en) Permanent magnet type motor and method for manufacturing permanent magnet type motor
US10666102B2 (en) Rotary electric machine
JP6871378B2 (ja) 回転電機
US9853527B2 (en) Method for producing a rotor
JP6525331B2 (ja) 回転電機、および回転電機のロータの製造方法
JP2013099222A (ja) ロータおよび回転電機
CN102916511A (zh) 旋转电机
JP6744573B2 (ja) ロータユニットおよびロータユニットの製造方法
JP2013099221A (ja) ロータおよび回転電機
US20190273407A1 (en) Rotor Assembly with Wedge-Shaped Magnet Pocket
KR102120312B1 (ko) 스테이터 코어 및 이를 포함하는 모터
JP2018117496A (ja) 回転電機
JP7132857B2 (ja) 永久磁石埋設型ロータ及び永久磁石埋設型ロータの製造方法
KR102618624B1 (ko) 모터 회전자의 제조방법
JP2012130171A (ja) 永久磁石回転電機
JP5471933B2 (ja) 磁石付ロータ
JP6176379B2 (ja) 永久磁石式回転電機
JP2019146463A (ja) 回転電機のロータ、回転電機、及び回転電機のロータ製造方法
KR102220049B1 (ko) 스테이터 코어 및 이를 포함하는 모터
KR102167732B1 (ko) 스테이터 코어 및 이를 포함하는 모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824630

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526962

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824630

Country of ref document: EP

Kind code of ref document: A1