WO2012077785A1 - リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 Download PDF

Info

Publication number
WO2012077785A1
WO2012077785A1 PCT/JP2011/078558 JP2011078558W WO2012077785A1 WO 2012077785 A1 WO2012077785 A1 WO 2012077785A1 JP 2011078558 W JP2011078558 W JP 2011078558W WO 2012077785 A1 WO2012077785 A1 WO 2012077785A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
negative electrode
lithium ion
ion secondary
composite
Prior art date
Application number
PCT/JP2011/078558
Other languages
English (en)
French (fr)
Inventor
将之 神頭
賢匠 星
俊勝 嶋崎
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010275951A external-priority patent/JP5682276B2/ja
Priority claimed from JP2010275950A external-priority patent/JP5691469B2/ja
Priority claimed from JP2010275977A external-priority patent/JP5903761B2/ja
Priority claimed from JP2010275949A external-priority patent/JP5691468B2/ja
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to EP11846576.4A priority Critical patent/EP2650954B1/en
Priority to KR1020147022549A priority patent/KR102032104B1/ko
Priority to KR1020137017457A priority patent/KR101451538B1/ko
Priority to CN201180059560.9A priority patent/CN103262314B/zh
Priority to US13/992,388 priority patent/US9614216B2/en
Publication of WO2012077785A1 publication Critical patent/WO2012077785A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode material for a lithium ion secondary battery and a manufacturing method thereof, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • lithium ion secondary batteries As mobile devices such as mobile phones and notebook computers become more sophisticated, there is a strong demand for higher capacity lithium ion secondary batteries.
  • graphite is mainly used as the negative electrode material for lithium ion secondary batteries.
  • elements with high theoretical capacity and capable of occluding and releasing lithium ions hereinafter referred to as ⁇ specific elements '').
  • ⁇ specific elements '' elements with high theoretical capacity and capable of occluding and releasing lithium ions
  • specific element bodies As the specific element, silicon, tin, lead, aluminum and the like are well known. Among them, silicon and silicon oxide have advantages such as higher capacity, lower cost, and better workability than those made of other specific elements, and research on negative electrode materials using them is particularly active.
  • the powdered negative electrode material containing the composite particles as described above is generally used after being applied to a current collector and adjusting the electrode density by a roll press or the like.
  • the composite particles containing many voids as described above have poor compressibility at the time of roll pressing and the electrode density is low, so that a sufficient capacity increasing effect cannot be obtained when a lithium ion secondary battery is configured. There is a case.
  • the density is increased by roll pressing at high pressure, the voids in the composite particles are almost crushed, so that the absorption and relaxation action of expansion due to the voids may be reduced, and the improvement effect of cycle characteristics may be reduced.
  • a specific element fine particle is used with a large amount of carbonaceous material such as fine graphite, and a void forming material is added as necessary to form composite particles. It is common to do. However, such particles generally have a high specific surface area, and since they contain a large amount of low crystalline carbon, the charge / discharge efficiency is lowered, and the increase in capacity as a battery may be insufficient. Furthermore, in the composite particles as described above, the specific element fine particles are also distributed inside the composite particles. In such a case, the composite particles may expand excessively due to a synergistic action because the composite particles expand while forming a space in the interior as the specific element fine particles present inside the composite particles expand. For this reason, the composite particles and further the negative electrode and the expansion amount thereof are larger than the expansion amount of the specific element fine particles themselves. As a result, the battery cell may swell, which may cause a problem in safety.
  • an object of the present invention is to provide a lithium ion secondary battery excellent in cycle characteristics and safety.
  • Another object of the present invention is to provide a negative electrode material for a lithium ion secondary battery capable of constituting a lithium ion secondary battery having excellent cycle characteristics and safety and suppressing expansion due to charging, and a negative electrode for a lithium ion secondary battery.
  • the length is 1/8 of the length of the short axis perpendicular to the midpoint of the long axis centered on the midpoint of the long axis that is the maximum length of the composite particle
  • the silicon atoms contained in the inner region from the outer periphery of the composite particle to the inner side to the depth of 1/8 the length of the short axis with respect to the content of silicon atoms contained in the inner region of the circle having a radius of Is a negative electrode material for a lithium ion secondary battery having a content ratio of 2 or more.
  • ⁇ 2> The lithium ion according to ⁇ 1>, wherein the ratio of the content of silicon atoms contained in the inner region of the circle to the total content of silicon atoms contained in the cross section of the composite particle is 0.2 or less. It is a negative electrode material for secondary batteries.
  • ⁇ 3> The negative electrode material for a lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein the first particles are graphite particles having a circularity of 0.60 to 1.00.
  • ⁇ 4> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the volume average particle diameter of the first particles is 5 ⁇ m or more and 40 ⁇ m or less.
  • ⁇ 5> Said ⁇ 1> or ⁇ 2>, wherein the first particle is a graphite particle having pores formed by aggregating or bonding a plurality of flat particles so that the orientation planes are non-parallel. It is a negative electrode material for lithium ion secondary batteries as described.
  • ⁇ 7> The negative electrode for a lithium ion secondary battery according to ⁇ 5> or ⁇ 6>, wherein a volume average particle diameter of the flat particles is 2/3 or less of a volume average particle diameter of the first particles. It is a material.
  • the content of the carbonaceous substance B is 1% by mass or more and 10% by mass or less in the entire composite particle, and the carbonaceous substance B is an organic carbonized product, any one of the items ⁇ 1> to ⁇ 7> 2.
  • First particles containing carbonaceous material A and second particles containing silicon atoms are combined using carbonaceous material B different from carbonaceous material A, and the volume average particle size is The lithium according to any one of ⁇ 1> to ⁇ 9>, including a step of obtaining composite particles having a volume average particle diameter of 1.0 to 1.3 times the volume average particle diameter of the first particles. It is a manufacturing method of the negative electrode material for ion secondary batteries.
  • a lithium ion secondary battery comprising the lithium ion secondary battery negative electrode according to ⁇ 11>, a positive electrode, and an electrolyte.
  • the present invention it is possible to provide a lithium ion secondary battery having excellent cycle characteristics and safety.
  • a lithium ion secondary battery negative electrode material capable of constituting a lithium ion secondary battery having excellent cycle characteristics and suppressing expansion due to charging, and a lithium ion secondary battery negative electrode.
  • the negative electrode material for a lithium ion secondary battery of the present invention includes the first particles containing the carbonaceous material A and the second particles containing silicon atoms. It contains at least one kind of composite particles composited with a carbonaceous material B different from the carbonaceous material A. Furthermore, other components may be included as necessary. Further, when the cross section of the composite particle is observed, the center of the long axis that is the maximum length of the composite particle is the center, and the length of the short axis that is orthogonal to the midpoint of the long axis is 1/8.
  • the composite particles are characterized in that the second particles containing silicon atoms are present more in the vicinity of the surface than inside the composite particles.
  • the ratio of the content of silicon atoms contained in the inner region of the circle to the total content of silicon atoms contained in the cross section of the composite particle is preferably 0.2 or less.
  • a lithium ion secondary battery comprising a negative electrode for a lithium ion secondary battery formed using a negative electrode material for a lithium ion secondary battery containing such composite particles is excellent in cycle characteristics and safety, and further has a battery. Excellent capacity and charge / discharge efficiency.
  • the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. It is.
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the content of each component in the composition means the total amount of the plurality of substances present in the composition unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. The present invention will be described below.
  • composite particles In the composite particles, the first particles and the second particles are combined with the carbonaceous material B.
  • composite means that a plurality of different elements are integrated.
  • the composite particles in the present invention are those in which at least the first particles and the second particles are integrated, and a plurality of second particles are integrated with the first particles to constitute independent particles. It is preferable.
  • the carbonaceous substance B exists between the first particle and the second particle, and the second particle adheres to the surface of the first particle and is integrated.
  • the first particle and the second particle are in direct contact with each other, and the carbonaceous material B is in contact with both the first particle and the second particle, so that the surface of the first particle is
  • An embodiment in which the second particles are attached and integrated is exemplified. That is, the carbonaceous substance B has a function of connecting and integrating the first particles and the second particles.
  • the composite state of the first particles and the second particles in the composite particles is determined as follows. Furthermore, a negative electrode material for a lithium ion secondary battery including composite particles that satisfies the following requirements is included in the scope of the present invention.
  • the composite state of the composite particles is judged from the distribution state of the second particles by observing the cross section of the composite particles.
  • the method for observing the cross section of the composite particle is not particularly limited. For example, a slurry containing composite particles and an organic binder as described below is prepared, and this is applied and dried to produce a coated electrode.
  • the cross section of the obtained coated electrode is processed by a focused ion beam (FIB), ion milling, or the like to prepare a sample from which the composite particles have been cut. Examples thereof include a method of observing the cross section of the composite particle thus obtained with a scanning electron microscope (SEM), a scanning ion microscope (SIM), or the like.
  • SEM scanning electron microscope
  • SIM scanning ion microscope
  • a composite particle satisfying the following conditions (a) and (b) is set as a target particle for the composite state determination.
  • the definition of the major axis and the minor axis in the cross-sectional observation of (a) and (b) will be described later.
  • (A) Particle size The particle size of the composite particles is approximately the same as the volume average particle size (50% D) measured by a laser diffraction particle size distribution analyzer.
  • a target particle is a composite particle having a ratio of a major axis length in cross-sectional observation of the composite particle to the volume average particle diameter of 1.0 to 1.2.
  • (B) Particle state The broken composite particles and the broken composite particles are excluded because they are not suitable for the judgment of the composite state. That is, a composite particle in which the number of intersections between the major axis and the minor axis in the cross-sectional observation of the composite particle and the outer periphery of the composite particle are both 2 is a target particle.
  • the cross section of the composite particle corresponding to the condition of the target particle of the composite state determination is observed, and the long axis center and the short axis length in the cross section of the composite particle are selected as follows. Two parallel tangents circumscribing the outer periphery of the composite particle, the tangent m 1 and the tangent m 2 having the maximum distance are selected. The distance between the tangent line m 1 and the tangent line m 2 is the maximum length of the composite particle, that is, the length of the long axis.
  • the length of the long axis in the cross section of the composite particle is 70% or more with respect to the maximum length of the composite particle obtained by observing the entire image of the composite particle with a scanning electron microscope (SEM) or the like. Is preferably selected.
  • the cross section of the composite particle is preferably selected so as to include the length of the long axis of the composite particle itself or the length close to that of the composite particle as a whole in three dimensions. Note that the length of the long axis of the composite particle itself is given as a distance between two parallel planes circumscribing the composite particle and having the maximum distance.
  • two parallel tangent lines n 1 and tangent line n 2 that are orthogonal to the tangent line m 1 and the tangent line m 2 and circumscribe the outer periphery of the composite particle are selected.
  • a straight line parallel to the tangent n 1, a distance equal to the straight line of the distance to the tangent n 2 to the tangent n 1 is the major axis of the composite particles.
  • Intersections between the major axis and the tangent line m 1 and tangent line m 2 are defined as intersection point P 1 and intersection point P 2 , respectively, and the midpoint of the line segment connecting intersection point P 1 and intersection point P 2 is defined as the midpoint of the major axis.
  • a straight line passing through the midpoint of this long axis and orthogonal to the long axis is taken as the short axis.
  • the inner region of the circle is defined as the center of the composite particle.
  • the inner region from the outer periphery to the depth of the length R is defined as the surface portion of the composite particle.
  • the central portion and the surface portion of the composite particle determined as described above are observed using an SEM, and an element contained in the observed region is applied by applying an X-ray spectrometer to the observed region. Quantitative analysis. Using the element mass concentration thus obtained, the conditions of the following composite state are evaluated, and composite particles satisfying the conditions are identified as constituting the negative electrode material for a lithium ion secondary battery of the present invention.
  • the X-ray spectrometer is not particularly limited as long as the elements contained in the observation region can be quantified. For example, an energy dispersion type (EDX) and a wavelength dispersion type (WDX) can be used.
  • the ratio of the content of silicon atoms contained in the surface portion of the composite particle to the content of silicon atoms contained in the central portion is 2 or more. This means that the second particles containing silicon atoms are unevenly distributed on the surface of the composite particles.
  • the ratio is the ratio of the content of silicon atoms to the total content of carbon atoms, oxygen atoms and silicon atoms in the central portion (Si / (C + O + Si)), and the total content of carbon atoms, oxygen atoms and silicon atoms in the surface portion.
  • the ratio of the content of silicon atoms with respect to the amount is obtained and calculated as these ratios.
  • the ratio is preferably 3 or more, and more preferably 5 or more.
  • the ratio is less than 2
  • the expansion of the composite particles may not be sufficiently suppressed, and the cycle characteristics may be deteriorated.
  • the ratio of the content of silicon atoms to the total content of carbon atoms, oxygen atoms and silicon atoms in the central portion and the surface portion is specifically the length of one side in each of the central portion and the surface portion.
  • the content ratio of the silicon atom with respect to a carbon atom, an oxygen atom, and a silicon atom is measured, respectively, and it calculates as an arithmetic average value of those measured values.
  • the ratio of the content of silicon atoms contained in the central portion to the total content of silicon atoms contained in the cross section of the composite particles is preferably 0.2 or less, preferably 0.15 or less. It is more preferable that This means that silicon atoms are not substantially present in the central portion of the composite particle.
  • the total content of silicon atoms contained in the cross section of the composite particle and the content of silicon atoms contained in the central portion can be obtained in the same manner as described above.
  • the condition of the composite state is evaluated for 10 composite particles satisfying the above conditions (a) and (b), and the present invention is used when 3 or more, preferably 5 or more composite particles satisfy the conditions. It is judged that it is a negative electrode material for lithium ion secondary batteries.
  • Examples of the method for configuring the composite state of the composite particles in the present invention as described above include a method of manufacturing composite particles by a method of manufacturing composite particles as described below.
  • the composite particles contained in the negative electrode material for a lithium ion secondary battery of the present invention contain at least one kind of first particles containing the carbonaceous material A.
  • the first particles are configured to include a carbonaceous material A.
  • the carbonaceous material A preferably has higher crystallinity than the carbonaceous material B described later.
  • the carbonaceous substance A preferably has an average interplanar spacing (d 002 ) of 0.335 nm to 0.347 nm obtained by measurement based on the Gakushin method.
  • Examples of the carbonaceous material satisfying this include artificial graphite, natural graphite, low crystalline carbon, mesophase carbon, and the like.
  • the average spacing (d 002 ) is preferably 0.335 nm to 0.345 nm, more preferably 0.335 nm to 0.340 nm, and still more preferably 0.335 nm to 0.337 nm from the viewpoint of battery capacity.
  • the average interval is 0.347 nm or less, the crystallinity is high, and both battery capacity and charge / discharge efficiency tend to be improved.
  • the theoretical value of the graphite crystal is 0.335 nm, the battery capacity and the charge / discharge efficiency tend to be improved closer to this value.
  • the content of the carbonaceous material A contained in the first particles is not particularly limited, but is preferably 70% by mass or more, and more preferably 90% by mass or more.
  • the volume average particle diameter (50% D) of the first particles is not particularly limited, but is preferably larger than the second particles described below, preferably 5 ⁇ m to 40 ⁇ m, and preferably 5 ⁇ m to 35 ⁇ m. More preferably, it is 7 ⁇ m to 30 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the volume average particle diameter is 5 ⁇ m or more, the specific surface area is prevented from becoming too large, and the initial charge / discharge efficiency is improved. Further, the electrode density is further improved, and a high capacity lithium ion secondary battery can be obtained. On the other hand, when the volume average particle diameter is 40 ⁇ m or less, electrode characteristics such as rate characteristics tend to be improved.
  • the volume average particle diameter of the first particles is measured under normal conditions using a laser diffraction particle size distribution measuring device.
  • the form and shape of the first particles containing the carbonaceous substance A are not particularly limited.
  • Examples of the form include single particles composed of one particle, and granulated particles formed by granulating a plurality of primary particles.
  • the shape if it is a single particle, a scaly shape, a spherical particle and the like can be mentioned.
  • Examples of the granulated particles include various shapes such as a spherical shape or a porous shape.
  • the form of the first particles containing the carbonaceous substance A granulated particles are preferable to single particles from the viewpoint of rate characteristics when a battery is constructed. This is because, for example, when the first particles are made of highly crystalline graphite particles, when the plurality of granulated particles are pressed and densified when forming the electrode, Since the orientation in the plane direction can be more easily suppressed, the exchange of Li ions in the first particles is performed more efficiently, and it can be considered that the rate characteristics are improved.
  • the shape of the granulated particles is preferably porous rather than spherical from the viewpoint of rate characteristics when a battery is constructed.
  • porous granulated particles the presence of the internal space makes it easier for Li ions to diffuse, so it can be considered that the rate characteristics are improved.
  • porous particles having a small porosity so that the second particles do not enter the center of the granulated particles are preferable.
  • the first particles can be obtained, for example, as powdered carbon products commercially available from various companies.
  • artificial graphite, natural graphite, low crystalline carbon, mesophase carbon and the like having an average interplanar spacing of 0.335 nm to 0.347 nm may have a desired volume average particle size (preferably 4 ⁇ m to 40 ⁇ m) by a commonly used method. It can be produced by pulverizing or granulating so as to have.
  • first particles from the viewpoint of electrical characteristics, a plurality of graphite particles having a circularity of 0.60 to 1.00 and a plurality of flat particles are assembled or bonded so that their orientation planes are non-parallel. It is preferable to use at least one selected from the group consisting of graphite particles having pores.
  • the first particles are preferably graphite particles having a circularity of 0.60 to 1.00 (hereinafter also referred to as “spherical graphite particles”).
  • spherical graphite particles By setting it as the 1st particle
  • the circularity is preferably 0.60 to 0.95, more preferably 0.65 to 0.90, and still more preferably 0.70 to 0.90 from the viewpoint of particle orientation control. When the circularity is 0.60 or more, the orientation of the composite particles in the plane direction is suppressed in the press at the time of electrode formation, and the rate characteristics tend to be improved.
  • 1.00 is a perfect circle and is the upper limit.
  • the degree of circularity means the circumference as a circle calculated from the equivalent circle diameter, which is the diameter of a circle having the same area as the projected area of the graphite particles, and the circumferential length (contour line) measured from the projected image of the graphite particles. It is a numerical value obtained by dividing by (the length of The circularity is 1.00 for a perfect circle.
  • Circularity (perimeter of equivalent circle) / (perimeter of particle cross-sectional image) Specifically, the circularity is measured by observing an image magnified 1000 times with a scanning electron microscope, arbitrarily selecting 10 graphite particles, and measuring the circularity of each first particle by the above method. The average circularity calculated as the arithmetic average value.
  • the circularity, the circumference of the equivalent circle, and the circumference of the projected image of the graphite particles can be obtained by commercially available image analysis software.
  • the shape and shape of the spherical graphite particles are not particularly limited as long as the circularity is 0.60 to 1.00.
  • Examples of the form include single particles composed of one particle, and granulated particles formed by granulating a plurality of primary particles.
  • the shape may be a spherical particle if it is a single particle.
  • Examples of the granulated particles include various shapes such as a spherical shape or a porous shape.
  • the spherical graphite particles preferably have an average interplanar spacing (d 002 ) of 0.335 nm to 0.338 nm obtained by measurement based on the Gakushin method.
  • Examples of the graphite that satisfies this include artificial graphite, natural graphite, graphitized MCMB (mesophase carbon microbeads), and the like.
  • the average spacing (d 002 ) is more preferably 0.335 nm to 0.337 nm, and further preferably 0.335 nm to 0.336 nm, from the viewpoint of battery capacity.
  • the average spacing is 0.338 nm or less, the crystallinity as graphite is high, and both the battery capacity and the charge / discharge efficiency tend to be improved.
  • the theoretical value of the graphite crystal is 0.335 nm, the battery capacity and the charge / discharge efficiency tend to be improved closer to this value.
  • the volume average particle diameter (50% D) of the spherical graphite particles is not particularly limited, but is preferably larger than the second particles described later, preferably 5 ⁇ m to 40 ⁇ m, and more preferably 5 ⁇ m to 35 ⁇ m.
  • the thickness is preferably 7 ⁇ m to 30 ⁇ m, more preferably 10 ⁇ m to 30 ⁇ m.
  • the volume average particle diameter is 5 ⁇ m or more, the specific surface area is prevented from becoming too large, and the initial charge / discharge efficiency is improved. Further, the electrode density is further improved, and a high capacity lithium ion secondary battery can be obtained. On the other hand, when the volume average particle diameter is 40 ⁇ m or less, electrode characteristics such as rate characteristics tend to be improved.
  • the spherical graphite particles can be obtained, for example, as powdered carbon products commercially available from various companies. Further, flaky graphite having a circularity of less than 0.6 can be spheroidized by using a commonly used graphite spheroidizing method to obtain a circularity of 0.60 to 1.00. . Further, a spherical graphite particle composed of a plurality of particles may be prepared by granulating the graphite particles so as to have a circularity of 0.60 to 1.00 using a granulation method usually used. Examples of the spheronization treatment include a treatment method such as a mechanochemical method. Examples of the granulation method include treatment methods such as a fluidized bed granulation method, a spray drying granulation method, and a stirring granulation method.
  • the first particle is a graphite particle having pores (hereinafter also referred to as “bulk graphite particle”) formed by aggregating or bonding a plurality of flat particles so that their orientation planes are not parallel to each other. Preferably there is.
  • the crystal plane of the graphite particles in the negative electrode material layer formed on the current collector is oriented in the plane direction. It becomes difficult to occlude and release lithium on the negative electrode.
  • the composite particles in which the second particles containing silicon atoms are combined on the surface have conductivity between the massive graphite particles even after the expansion and contraction of the second particles. It becomes easy to maintain, and more excellent cycle characteristics can be obtained.
  • the flat particles are particles having a major axis and a minor axis, and are not completely spherical. For example, those having a shape such as a scale shape, a scale shape, or a part of a lump shape are included.
  • the orientation planes of the plurality of flat particles are not parallel to each other.
  • the flat surfaces of the respective particles in other words, the planes closest to the flat are used as the orientation planes, the plurality of flat surfaces are arranged. A state in which the shaped particles are aggregated without aligning their orientation planes in a certain direction.
  • the flat particles are aggregated or bonded.
  • bond refers to a state in which individual particles are chemically bonded via a carbonaceous material formed by carbonizing an organic binder such as tar or pitch.
  • aggregate refers to a state in which individual particles are not chemically bonded but are kept in the shape of the aggregate due to their shape and the like.
  • the massive graphite particles are preferably bonded with flat particles from the viewpoint of mechanical strength.
  • the number of flat particles aggregated or bonded is not particularly limited, but is preferably 3 or more, more preferably 5 to 20, and more preferably 5 to 15 It is more preferable that
  • the size of the individual flat particles constituting the massive graphite particles is not particularly limited, but the volume average particle diameter is preferably 1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and more preferably 1 ⁇ m to 20 ⁇ m. More preferably. Further, the volume average particle diameter of the individual flat particles is preferably 2/3 or less of the volume average particle diameter of the massive graphite particles from the viewpoint of battery capacity and cycle characteristics, and is 1/20 to 2/3. More preferably.
  • the aspect ratio of the massive graphite particles is not particularly limited.
  • the aspect ratio is preferably 1.2 to 5.0, more preferably 1.3 to 4.0, and still more preferably 1.3 to 3.0, from the viewpoint of cycle characteristics and battery capacity.
  • the aspect ratio is 1.2 or more, the contact area between the particles increases, and the conductivity tends to be further improved.
  • the aspect ratio is 5.0 or less, the rapid charge / discharge characteristics tend to be improved.
  • the aspect ratio is represented by A / B when the length (major axis) in the major axis direction of the massive graphite particles is A and the length (minor axis) in the minor axis direction is B.
  • the aspect ratio is obtained by enlarging the first particles with a microscope, arbitrarily selecting 100 first particles, measuring each A / B, and taking the arithmetic average value of the measured values. It is.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the first particle observed using a microscope, two parallel tangents circumscribing the outer periphery of the first particle and the tangent line a1 and tangent line a2 having the maximum distance are selected. The distance between the tangent line a1 and the tangent line a2 is defined as a length A in the major axis direction.
  • the structure of the massive graphite particles is a porous shape having pores. Thereby, the rate characteristic at the time of comprising a battery improves. This is because, for example, lithium ions can be easily diffused by the presence of an internal space in the particles, so that the rate characteristics can be improved.
  • the structure of the massive graphite particles is preferably a porous particle having a small porosity so that the second particles do not enter the central portion. By being such particles, a high tap density can be achieved when the composite particles are formed, and a high volume capacity can be achieved because the electrode density of the formed electrodes is improved.
  • the massive graphite particles preferably have an average interplanar spacing (d 002 ) value of 0.335 nm to 0.338 nm obtained by measurement based on the Gakushin method, and 0.335 nm to 0. .337 nm is more preferable, and 0.335 nm to 0.336 nm is more preferable.
  • the average interval is 0.338 nm or less, the crystallinity as graphite is high, and both battery capacity and charge / discharge efficiency tend to be improved.
  • the theoretical value of the graphite crystal is 0.335 nm, the battery capacity and the charge / discharge efficiency tend to be improved closer to this value.
  • the volume average particle diameter (50% D) of the massive graphite particles is not particularly limited, but is preferably larger than the second particles described later, preferably 5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 35 ⁇ m. 7 ⁇ m to 30 ⁇ m is more preferable, and 10 ⁇ m to 30 ⁇ m is even more preferable.
  • the volume average particle diameter is 5 ⁇ m or more, the specific surface area is prevented from becoming too large, and the initial charge / discharge efficiency is improved. Further, the electrode density is further improved, and a high capacity lithium ion secondary battery can be obtained. On the other hand, when the volume average particle diameter is 40 ⁇ m or less, electrode characteristics such as rate characteristics tend to be improved.
  • the method for producing the massive graphite particles is not particularly limited as long as a predetermined structure is formed.
  • at least one selected from the group consisting of graphitizable aggregates and graphite and a graphitizable binder (organic binder) are added in an amount of 1% by mass to 50% by mass with respect to the total amount. It can be obtained by mixing, firing, and then pulverizing. Thereby, pores are generated after the graphitization catalyst is removed, and good characteristics are imparted as massive graphite particles.
  • the massive graphite particles can also be adjusted to a desired configuration by appropriately selecting the method of mixing graphite or aggregate and binder, adjusting the mixing ratio such as the amount of binder, and pulverizing conditions after firing.
  • the graphitizable aggregate is not particularly limited as long as it is a powder material that can be graphitized.
  • coke powder, resin carbide, etc. can be used. Among these, coke powder that is easily graphitized such as needle coke is preferable.
  • the graphite is not particularly limited as long as it is in powder form.
  • natural graphite powder and artificial graphite powder can be used.
  • the volume average particle diameter of the graphitizable aggregate or graphite is preferably smaller than the volume average particle diameter of the massive graphite particles, and more preferably 2/3 or less of the volume average particle diameter of the massive graphite particles.
  • the graphitizable aggregate or graphite is preferably flat particles.
  • graphitization catalysts such as metals such as iron, nickel, titanium, silicon and boron, carbides thereof, oxides thereof and the like can be used. Of these, silicon or boron carbides or oxides are preferred.
  • the addition amount of these graphitization catalysts is preferably 1 to 50% by mass, more preferably 5 to 40% by mass, and further preferably 5 to 30% by mass with respect to the obtained massive graphite particles. . If the addition amount of the graphitization catalyst is 1% by mass or more, the increase in the aspect ratio and specific surface area of the massive graphite particles tends to be suppressed, and the graphite crystal growth tends to be improved. Are easy to mix evenly and workability is not impaired.
  • the binder is not particularly limited as long as it can be graphitized by firing.
  • examples of the binder include organic materials such as tar, pitch, thermosetting resin, and thermoplastic resin.
  • the amount of the binder is preferably 5% by mass to 80% by mass, more preferably 10% by mass to 80% by mass, and more preferably 15% by mass with respect to the flat graphitizable aggregate or graphite. More preferably, it is added in an amount of 80% to 80% by weight. By making the addition amount of a binder into an appropriate quantity, it can suppress that the aspect-ratio and specific surface area of the massive graphite particle manufactured become large too much.
  • the method of mixing the aggregate or graphite that can be graphitized and the binder and a kneader or the like is used, but it is preferable to mix at a temperature equal to or higher than the softening point of the binder.
  • the binder is pitch, tar or the like, it is preferably 50 ° C. to 300 ° C., and when it is a thermosetting resin, it is preferably 20 ° C. to 100 ° C.
  • the above-mentioned graphitizable aggregate or a mixture of graphite and binder is fired to perform graphitization.
  • the mixture may be formed into a predetermined shape before the graphitization treatment.
  • it may be pulverized to adjust the particle diameter and the like, and then the graphitization treatment may be performed. Firing is preferably performed under conditions where the mixture is not easily oxidized.
  • the method of baking in conditions, such as nitrogen atmosphere, argon gas atmosphere, and a vacuum, is mentioned.
  • the temperature of the graphitization treatment is preferably 2000 ° C. or higher, more preferably 2500 ° C. or higher, and further preferably 2800 ° C. to 3200 ° C.
  • the graphitization temperature is 2000 ° C. or higher, the development of graphite crystals tends to be good, and the discharge capacity tends to be improved. Moreover, it can suppress that the added graphitization catalyst remains in the manufactured lump graphite particle. If the graphitization catalyst remains in the massive graphite particles, the discharge capacity may be reduced, so it is preferable that the remaining is suppressed. On the other hand, when the graphitization temperature is 3200 ° C. or lower, it is possible to suppress the sublimation of graphite.
  • the obtained graphitized product is preferably pulverized so as to have a desired volume average particle diameter in order to adjust the particle diameter of the massive graphite particles.
  • the method for pulverizing the graphitized material is not particularly limited, and examples thereof include known methods such as a jet mill, a vibration mill, a pin mill, and a hammer mill.
  • graphite particles having pores that is, massive graphite particles, obtained by collecting or combining a plurality of flat particles so that their orientation planes are non-parallel can be obtained.
  • Japanese Patent No. 3285520, Japanese Patent No. 3325021 and the like can be referred to.
  • the negative electrode material for a lithium ion secondary battery of the present invention contains at least one kind of second particles containing silicon atoms.
  • the second particles are not particularly limited as long as they contain silicon atoms. Examples thereof include particles containing silicon and particles containing a silicon compound such as silicon oxide. From the viewpoint of battery capacity, particles containing silicon or silicon oxide are preferable, and particles substantially consisting of silicon or particles consisting essentially of silicon oxide are more preferable.
  • substantially means that impurities inevitably mixed are allowed, and the content of impurities is preferably 10% by mass or less in the second particles.
  • the volume average particle diameter of the second particles is not particularly limited, but preferably has a volume average particle diameter smaller than the volume average particle diameter of the first particles, and the volume average particle diameter is 0.01 ⁇ m to 5 ⁇ m. More preferably, 0.03 ⁇ m to 3 ⁇ m is more preferable, 0.05 ⁇ m to 2 ⁇ m is further preferable, and 0.1 ⁇ m to 1 ⁇ m is particularly preferable.
  • the volume average particle diameter of the second particles is 0.01 ⁇ m or more, the second particles can be obtained with good productivity, excellent handleability, and efficient on the surface of the first particles. Can be done automatically.
  • the volume average particle diameter is 5 ⁇ m or less, it is possible to efficiently combine on the surface of the first particle, and to suppress the expansion of the second particle during charging. , Cycle characteristics tend to be improved.
  • the silicon oxide is generally represented by SiO x .
  • the range of x is preferably 0.8 ⁇ x ⁇ 1.6, more preferably 0.9 ⁇ x ⁇ 1.5, and still more preferably 1.0 ⁇ x ⁇ 1.4.
  • x is 0.8 or more, production and acquisition are easy.
  • x is 1.6 or less, it is possible to suppress an excessive increase in the silicon dioxide portion in the silicon oxide, the diffusion of lithium ions in the silicon oxide is promoted, and the rate characteristics tend to be improved. .
  • the ratio of the volume average particle size of the second particles to the volume average particle size of the first particles is not particularly limited. From the viewpoint of cycle characteristics and battery capacity, it is preferably 0.0003 to 0.2, and more preferably 0.001 to 0.1.
  • the ratio of the long axis length of the second particle to the long axis length of the composite particle is preferably 0.0003 to 0.2 and more preferably 0.001 to 0.1 from the viewpoint of cycle characteristics and battery capacity. preferable.
  • the major axis length of the second particle is determined in the same manner as the major axis length of the composite particle.
  • the length of the major axis of the second particle is an arithmetic average value of the lengths of the major axes of the three second particles that are arbitrarily selected.
  • the content of the second particles contained in the composite particles is not particularly limited, and can be appropriately selected according to the purpose.
  • the total amount of the composite particles is preferably 0.5% by mass to 20% by mass, more preferably 1% by mass to 15% by mass, and further preferably 2% by mass to 10% by mass.
  • the content of the second particles is 0.5% by mass or more, the battery capacity is further improved.
  • cycling characteristics will improve more that it is 20 mass% or less.
  • the ratio of the content of the second particles to the content of the first particles in the composite particles can be appropriately selected according to the purpose, but the cycle From the viewpoint of characteristics and battery capacity, it is preferably 0.005 to 0.3, more preferably 0.01 to 0.25 on a mass basis.
  • the composite particle in the present invention is formed by combining the first particle and the second particle with at least one carbonaceous material B different from the carbonaceous material A.
  • the carbonaceous substance B is not particularly limited as long as it is an organic substance as a precursor and is carbonized by heat treatment or the like, the kind of the organic substance serving as the precursor, the history of the heat treatment, the structure of the carbonaceous substance B, and the like.
  • the organic substance include a polymer compound such as a phenol resin and a styrene resin, and a carbonizable solid substance such as pitch. These can be used as a binder at the time of compounding in a dissolved or solid state.
  • the composite particles according to the present invention can be obtained by compositing the first particles and the second particles with the precursor of the carbonaceous material B and then carbonizing the precursor.
  • the content of the carbonaceous substance B in the composite particles is preferably 1% by mass to 10% by mass in the total composite particles, more preferably 1% by mass to 8% by mass, and more preferably 2% by mass to 8% by mass. More preferably, 2% by mass to 6% by mass is particularly preferable.
  • the content of the carbonaceous material B is 10% by mass or less, the content of amorphous carbon can be suppressed, and the first-time charge / discharge efficiency can be suppressed from decreasing.
  • binding between the composite particles can be suppressed, and an excessive increase in particle diameter can be suppressed.
  • the cycle characteristics tend to be improved. This can be considered, for example, because the second particles are likely to be efficiently combined with the surface of the first particles.
  • the content ratio of the carbonaceous material B to the second particles is not particularly limited as long as the first particles and the second particles can be combined.
  • it is preferably 0.1 to 10 and more preferably 0.3 to 5 on a mass basis.
  • the volume average particle diameter (50% D) of the composite particles in the present invention is not particularly limited. For example, it is preferably 5 ⁇ m to 40 ⁇ m, more preferably 5 ⁇ m to 35 ⁇ m, still more preferably 7 ⁇ m to 30 ⁇ m, and particularly preferably 10 ⁇ m to 30 ⁇ m.
  • the volume average particle diameter of the composite particles is 5 ⁇ m or more, an increase in the specific surface area can be suppressed, and the initial charge / discharge efficiency is further improved.
  • the electrode density can be easily increased, and the capacity of the lithium ion secondary battery can be increased.
  • the volume average particle diameter is 40 ⁇ m or less, electrode characteristics such as rate characteristics tend to be further improved.
  • the ratio of the volume average particle diameter of the composite particles to the volume average particle diameter of the first particles is not particularly limited. From the viewpoint of cycle characteristics and battery capacity, it is preferably 1.0 to 1.3, more preferably 1.01 to 1.25, still more preferably 1.03 to 1.20, and 1.05 to 1.15. Is particularly preferred. If the volume average particle diameter of the composite particles is 1.0 times or more, the composite particles tend to be maintained without being destroyed, while if the composite particles are 1.3 times or less, the composite particles are bound to each other. And there is a high tendency for individual composite particles to exist independently, which is preferable.
  • the volume average particle diameter of the composite particles is measured under normal conditions using a laser diffraction particle size distribution measuring apparatus.
  • the volume average particle diameter of the composite particles can be controlled by appropriately selecting the crushing conditions in the composite particle manufacturing method described later.
  • the tap density of the composite particles is not particularly limited. For example, it is preferably 0.6 g / cm 3 to 1.2 g / cm 3 , more preferably 0.7 g / cm 3 to 1.2 g / cm 3 , and 0.8 g / cm 3 to 1.15 g / cm 3. Is more preferably 0.9 g / cm 3 to 1.1 g / cm 3 .
  • the tap density is 0.6 g / cm 3 or more, cycle characteristics are improved.
  • the compressibility at the time of pressing at the time of forming a negative electrode is improved, a high electrode density is achieved, and a battery with a higher capacity can be obtained.
  • the negative electrode material for a lithium ion secondary battery further contains at least one material having conductivity in addition to the composite particles.
  • the conductive material include carbon black, graphite, coke, carbon fiber, and carbon nanotube.
  • the type, shape, and the like of the conductive substance can be selected as appropriate according to the purpose. For example, graphite and the like are preferable from the viewpoint of battery capacity and charge / discharge efficiency, and carbon fibers and carbon nanotubes are preferable because the conductivity between the composite particles can be secured with a small amount.
  • the content of the conductive substance in the negative electrode material for a lithium ion secondary battery can be appropriately selected according to the purpose.
  • the content in the negative electrode material for a lithium ion secondary battery is preferably 0.1% by mass to 20% by mass, and more preferably 0.5% by mass to 10% by mass.
  • 20% by mass to 95% by mass is preferable, and 50% by mass to 90% by mass is more preferable.
  • the method for producing the negative electrode material for lithium ion secondary batteries is not particularly limited as long as the negative electrode material for lithium ion secondary batteries containing the composite particles can be produced.
  • it can have the process of obtaining the said composite particle, and another process as needed.
  • the step of obtaining the composite particles includes the first particles containing the carbonaceous substance A and the second particles containing silicon atoms from the viewpoint of the cycle characteristics of the battery and the expansion coefficient of the negative electrode material.
  • the content of silicon atoms in the surface portion of the composite particles can be made twice or more that of the central portion. Furthermore, it can be set as the state which a silicon atom does not exist substantially in the center part of a composite particle.
  • the first particles containing the carbonaceous material A and the second particles containing silicon are made of the carbonaceous material B different from the carbonaceous material A.
  • the volume average particle diameter is 1.0 to 1.3 times the volume average particle diameter of the particles, and the first particles and the second particles are combined with the carbonaceous material B. And obtaining a composite particle.
  • the composite of the first particle, the second particle, and the carbonaceous material precursor can realize the composition ratio of the first particle, the second particle, and the carbonaceous material B in the composite particle obtained by this manufacturing method. There is no particular limitation as long as these components can be combined at a proper quantitative ratio.
  • a composite including the first particles, the second particles, and the carbonaceous material precursor is obtained. Note that the composite obtained in the composite process is obtained by integrating the second particle and the carbonaceous material precursor on the surface of the first particle, and the carbonaceous material precursor is not carbonized. Carbonized composite.
  • the second particles and the carbonaceous material precursor are dissolved in the dispersion medium in order to suppress the complexation only by the second particles and the carbonaceous material precursor and more reliably form the uncarbonized composite.
  • an organic solvent is preferably used as a dispersion medium used in the case of a dispersion.
  • the carbonaceous material precursor is a solid, it is preferably dissolved in the organic solvent.
  • the organic solvent to be used is not particularly limited.
  • an aromatic hydrocarbon solvent such as toluene or methylnaphthalene that is soluble thereto is preferable.
  • the second particles and the carbonaceous material precursor are highly concentrated in the dispersion medium. It is preferably dispersed.
  • the dispersion method is not particularly limited, but it is preferable to ultrasonically disperse the second particles, the carbonaceous material precursor, and the dispersion medium because a more uniform dispersion can be obtained.
  • the dispersion method in that case is not particularly limited as long as the first particles are not pulverized during dispersion.
  • the dispersion can be performed using a stirring type homogenizer, a bead mill, a ball mill, or the like.
  • the amount of the carbonaceous material precursor and the second particle in the dispersion and the first particle are included.
  • the structure of the obtained negative electrode material is determined by the structure of the carbonaceous material A.
  • the mass of the carbonaceous material precursor is reduced when it is converted into a carbonized product by the firing treatment. Therefore, it is preferable to measure the carbonization rate in advance for the amount of the carbonaceous material precursor at the time of compounding, and use an amount corresponding to the amount of remaining carbon in the composite particles for the compounding treatment. That is, the amount of the carbonaceous material B corresponding to the amount of the carbonaceous material B in the composite particles is set, and the amount of the carbonaceous material precursor obtained in consideration of the carbonization rate as described above is combined. Apply to the above. The amount of the carbonaceous substance B in the composite particles is as described above.
  • the amount of the second particles is one of the factors that determine the capacity of the lithium ion secondary battery configured using the negative electrode material according to the present invention. Therefore, it is preferable to appropriately determine the amount of the second particles used for compositing according to the target volume. Specifically, it is preferable to select appropriately such that the content of the second particles in the composite particles is in the range described above.
  • the amount of the first particles used for the composite may be set to the amount of the first particles corresponding to the amount of the first particles in the composite particles. For example, it is preferable to select appropriately within the range of 60% by mass to 99% by mass of the total mass of the composite particles.
  • the firing step the composite obtained in the composite step is fired.
  • the carbonaceous material precursor becomes a carbonized product, and the first particles and the second particles are integrated.
  • silicon oxide is contained in the second particles, for example, the silicon oxide is disproportionated to form a structure in which silicon microcrystals are dispersed in the silicon oxide.
  • the composite product is fired to obtain a lump.
  • the lump is a composite particle having the first particles, the second particles, and the carbonaceous material B gathered and integrated.
  • the firing treatment is preferably performed in an inert atmosphere from the viewpoint of suppressing oxidation.
  • the inert atmosphere nitrogen, argon or the like is suitable.
  • the firing treatment conditions are not particularly limited, but it is preferable to keep the temperature at about 200 ° C. for a certain time, volatilize the residual solvent, and then raise the temperature to the target temperature.
  • the firing temperature is preferably 800 ° C to 1200 ° C, more preferably 850 ° C to 1200 ° C, and further preferably 900 ° C to 1200 ° C.
  • silicon carbide can be suppressed, and a decrease in battery capacity tends to be suppressed. Further, the growth of the silicon dioxide portion in the silicon oxide can be suppressed, and the inhibition of diffusion of lithium ions and the deterioration of rate characteristics in the silicon oxide can be suppressed.
  • shearing force application process In the shearing force application step, a shearing force is applied to the mass obtained in the firing step, and the volume average particle size is 1.0 to 1.3 times the volume average particle size of the first particles.
  • the lump obtained by the firing step is formed by composite particles bound together by carbonization of the carbonaceous material precursor.
  • an appropriate shearing force is applied to the composite particles bound to each other, and the composite particles are separated into individual composite particles having a predetermined particle diameter.
  • the composite particles thus obtained have a form in which many second particles are present on the surface.
  • the application of the shearing force is not particularly limited as long as it is an apparatus capable of applying a shearing force in which the volume average particle diameter of the composite particles is in a desired range.
  • a general apparatus such as a mixer, a cutter mill, a hammer mill, or a jet mill can be used.
  • the condition for applying the shearing force so that the volume average particle diameter of the composite particles is within a desired range varies depending on the apparatus used. For example, when a Waring mixer (7012S) manufactured by WARING is used. Conditions for shearing at a rotational speed of 3000 rpm to 13000 rpm over a period of 30 seconds to 3 minutes may be employed.
  • shearing force is common in the industry such as pulverization treatment or pulverization treatment as long as it is a process in which a lump is made into a state of individual composite particles forming a lump and the composite particles are not destroyed. Any of the processes used in the above may be used.
  • the composite particles obtained by the shearing force application step are composite particles in which the first particles and the second particles are combined with the carbonaceous material B, and the composite particles have a volume average particle diameter of 1 for the first particles. It has a volume average particle size of not less than 0.0 times and not more than 1.3 times.
  • the volume average particle diameter of the composite particles is 1.0 times or more with respect to the volume average particle diameter of the first particles, the destruction of the target composite particles is suppressed, and the second particles are It becomes a state integrated with the particles. As a result, the conductivity can be sufficiently maintained over the course of the cycle, and the cycle performance is further improved.
  • the volume average particle diameter of the composite particles is 1.3 times or less than the volume average particle diameter of the first particles, excessive generation of a mass in which the composite particles are bound to each other is suppressed. The presence of the second particles inside the mass is suppressed. As a result, when the volume expansion of the second particles occurs during charging, excessive expansion in the lump can be suppressed.
  • the manufacturing method of the negative electrode material for a lithium ion secondary battery may include other steps as necessary in addition to the above-described compounding step, firing step, and shearing force application step.
  • a classification step for the purpose of sizing after the shearing force application step.
  • the composite particle which has a uniform particle diameter can be obtained.
  • the classification treatment for example, it is preferable to use a sieve having an opening of 40 ⁇ m.
  • the classification method is not particularly limited. For example, it can be removed by an airflow classifier.
  • a heat treatment step may be included in which the composite particles obtained by the classification treatment are further heat-treated in an inert atmosphere.
  • heat processing conditions it is the same as that of said baking conditions.
  • the method for producing a negative electrode material for a lithium ion secondary battery may include a carbon coating step after the heat treatment step.
  • the composite particles are coated with carbon to further form a low crystalline carbon layer.
  • the carbon coating amount is preferably determined as appropriate so that the initial charge / discharge efficiency is not lowered by the increase of amorphous carbon and the characteristics of the negative electrode material are not lowered.
  • the carbon coating method include a wet mixing method, a chemical vapor deposition method, and a mechanochemical method.
  • the chemical vapor deposition method and the wet mixing method are preferable from the viewpoint that the reaction system can be uniformly controlled and the shape of the composite particles can be maintained.
  • the carbon source for forming the low crystalline carbon layer there is no particular limitation on the carbon source for forming the low crystalline carbon layer.
  • an aliphatic hydrocarbon, an aromatic hydrocarbon, an alicyclic hydrocarbon, or the like can be used. Specific examples include methane, ethane, propane, toluene, benzene, xylene, styrene, naphthalene, cresol, anthracene, and derivatives thereof.
  • a polymer compound such as a phenol resin or a styrene resin, a carbonizable solid material such as pitch, or the like can be processed as a solid or a dissolved material.
  • the treatment temperature is preferably performed under the same conditions as the firing treatment conditions described above.
  • the production method may further include a step of mixing other components as necessary.
  • other components include the above-described conductive substances (conductive auxiliary materials), binders, and the like.
  • the negative electrode for a lithium ion secondary battery of the present invention has a current collector and a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery of the present invention provided on the current collector, and is necessary. Depending on, it may further have other components. Thereby, it becomes possible to constitute a lithium ion secondary battery having a high capacity and excellent cycle characteristics and safety.
  • the negative electrode for a lithium ion secondary battery is prepared by, for example, dispersing the negative electrode material for a lithium ion secondary battery of the present invention and the organic binder together with a solvent, such as a stirrer, a ball mill, a super sand mill, and a pressure kneader. Kneading to prepare a negative electrode material slurry and applying this to a current collector to form a negative electrode material layer, or forming a paste-like negative electrode material slurry into a sheet shape, a pellet shape, etc. It can be obtained by integrating with the current collector.
  • a solvent such as a stirrer, a ball mill, a super sand mill, and a pressure kneader. Kneading to prepare a negative electrode material slurry and applying this to a current collector to form a negative electrode material layer, or forming a paste-like negative electrode material slurry into a sheet shape, a pellet shape, etc. It can be obtained by integrating
  • the organic binder (hereinafter also referred to as “binder”) is not particularly limited.
  • styrene-butadiene copolymer ethylenically unsaturated carboxylic acid ester (for example, methyl (meth) acrylate, ethyl (meta)) ) Acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, etc.), ethylenically unsaturated carboxylic acid (eg, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid, etc.) (Meth) acrylic copolymer to be formed; polymer compounds such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide, polyamideimide and the like.
  • carboxylic acid ester for example, methyl (meth) acrylate
  • organic binders may be dispersed or dissolved in water or dissolved in an organic solvent such as N-methyl-2-pyrrolidone (NMP) depending on the respective physical properties.
  • NMP N-methyl-2-pyrrolidone
  • an organic binder whose main skeleton is at least one selected from the group consisting of polyacrylonitrile, polyimide, and polyamideimide is preferable because of excellent adhesion, and the heat treatment temperature is low, and the flexibility of the electrode is high.
  • An organic binder having a main skeleton of polyacrylonitrile is more preferable because of its superiority.
  • organic binder having polyacrylonitrile as a main skeleton examples include, for example, a product obtained by adding acrylic acid for imparting adhesiveness and a linear ether group for imparting flexibility to a polyacrylonitrile skeleton (manufactured by Hitachi Chemical Co., Ltd., LSR7) can be used.
  • the content ratio of the organic binder in the negative electrode layer of the lithium ion secondary battery negative electrode is preferably 1% by mass to 30% by mass, more preferably 2% by mass to 20% by mass, and more preferably 3% by mass. More preferably, it is ⁇ 15% by mass.
  • the content ratio of the organic binder is 1% by mass or more, the adhesion is good, and the negative electrode is prevented from being destroyed by expansion / contraction during charge / discharge. On the other hand, it can suppress that electrode resistance becomes it it it is 30 mass% or less.
  • a conductive auxiliary material may be mixed into the negative electrode material slurry as necessary.
  • the conductive auxiliary material include carbon black, graphite, acetylene black, or an oxide or nitride that exhibits conductivity.
  • the content of the conductive auxiliary material may be about 0.1% by mass to 20% by mass with respect to the negative electrode material for the lithium ion secondary battery of the present invention.
  • the material and shape of the current collector are not particularly limited. For example, if a belt-like material made of aluminum, copper, nickel, titanium, stainless steel or the like in a foil shape, a punched foil shape, a mesh shape, or the like is used. Good. A porous material such as porous metal (foamed metal) or carbon paper can also be used.
  • the method of applying the negative electrode material slurry to the current collector is not particularly limited.
  • integration of the negative electrode material slurry formed into a sheet shape, pellet shape, or the like and the current collector can be performed by a known method such as a roll, a press, or a combination thereof.
  • the negative electrode material layer formed on the current collector and the negative electrode layer integrated with the current collector are preferably heat-treated according to the organic binder used.
  • the temperature is 100 ° C. to 180 ° C.
  • an organic binder having a main skeleton as polyimide or polyamideimide is used, 150 ° C. to 450 ° C. It is preferable to heat-treat with. This heat treatment increases the strength by removing the solvent and curing the binder, thereby improving the adhesion between the particles and between the particles and the current collector.
  • These heat treatments are preferably performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode Before the heat treatment, the negative electrode is preferably pressed (pressurized).
  • the electrode density can be adjusted by applying pressure treatment.
  • the negative electrode material for the lithium ion secondary battery it is preferable that the electrode density of 1.4g / cm 3 ⁇ 1.9g / cm 3, to be 1.5g / cm 3 ⁇ 1.85g / cm 3 More preferably, it is more preferably 1.6 g / cm 3 to 1.8 g / cm 3 .
  • the lithium ion secondary battery of the present invention includes the above-described negative electrode for a lithium ion secondary battery of the present invention, a positive electrode, and an electrolyte.
  • a lithium ion secondary battery can be configured by placing the negative electrode for a lithium ion secondary battery and a positive electrode facing each other through a separator as necessary, and injecting an electrolytic solution containing an electrolyte. .
  • the positive electrode can be obtained by forming a positive electrode material layer on the current collector surface in the same manner as the negative electrode.
  • the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.
  • the positive electrode material used for the positive electrode material layer is not particularly limited.
  • a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used.
  • lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and double oxides thereof (LiCo x Ni y Mn z O 2 , x + y + z 1, 0 ⁇ x, 0 ⁇ y; LiNi 2-x Mn x O 4 , 0 ⁇ x ⁇ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2, MoV 2 O 8, TiS 2, V 2 S 5, VS 2, MoS 2, MoS 3, Cr 3 O 8, Cr 2 O 5, olivine-type LiMPO 4
  • the separator for example, a nonwoven fabric, a cloth, a microporous film, or a combination thereof having a polyolefin as a main component such as polyethylene or polypropylene can be used.
  • a separator when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.
  • electrolyte examples include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 that are electrolytes, such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclohexane, and the like.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , and LiSO 3 CF 3 that are electrolytes, such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclohexane, and the like.
  • a so-called organic electrolyte solution dissolved in a non-aqueous solvent of a simple substance or a mixture of two or more components such as lofuran, 1,3-dioxolane, methyl acetate, and ethyl acetate can be used.
  • an electrolytic solution containing fluoroethylene carbonate is preferable because stable SEI (solid electrolyte interface) tends to
  • the structure of the lithium ion secondary battery of the present invention is not particularly limited, usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group, In general, these are laminated as a flat plate to form a laminated electrode plate group, or the electrode plate group is enclosed in an exterior body.
  • the lithium ion secondary battery of the present invention is not particularly limited, but is used as a paper-type battery, a button-type battery, a coin-type battery, a laminated battery, a cylindrical battery, a rectangular battery, or the like.
  • the above-described negative electrode material for a lithium ion secondary battery according to the present invention has been described as being used for a lithium ion secondary battery.
  • electrochemical devices having a charge / discharge mechanism that inserts and desorbs lithium ions such as hybrid capacitors It is also possible to apply to.
  • Example 1 (Production of composite particles) First, silicon powder having a volume average particle diameter of 25 ⁇ m (purity: 99.9%, manufactured by Toyo Metal Powder Co., Ltd .: HiSi-300, second particles), methylnaphthalene, dispersant (manufactured by Kao Corporation: L-1820) ) And a silicon slurry by pulverizing to a volume average particle size of 0.2 ⁇ m with a bead mill (manufactured by Ashizawa Finetech: LMZ).
  • the negative electrode material for lithium ion secondary batteries containing the composite particle obtained by the said manufacturing method the content rate of a silicon atom, an average surface space
  • the evaluation results are shown in Table 1.
  • “-” indicates that it has not been evaluated.
  • FIG. 1 shows an SEM image showing the entire cross section of the obtained composite particle
  • FIG. 2 shows an SEM image showing a surface portion of the cross section of the composite particle.
  • the arrow in FIG. 2 shows a silicon particle.
  • the electrode cross-section was processed using an ion milling device (E-3500) manufactured by Hitachi High-Tech.
  • the cross section of the processed electrode was observed with an SEM (Hitachi High-Tech S-3400N), and quantitative analysis of carbon atoms, oxygen atoms and silicon atoms was performed using EDX (INCA Energy 350, Oxford Instruments).
  • SEM Hitachi High-Tech S-3400N
  • EDX EDX
  • the content ratio of silicon atoms in the entire composite particles was expanded until the length of the long axis of the composite particles to be observed and the width of the observation region were substantially equal, and the content ratio of silicon atoms in the entire observation region was obtained. Further, the content ratio of silicon atoms in the surface portion and the central portion is selected so that three square regions each having a side length of 1 ⁇ m are not overlapped as much as possible in each of the surface portion and the central portion. It was calculated as an arithmetic average value of the measured values. Further, the ratio of the silicon atoms in the surface portion to the central portion (surface / center) and the ratio of the silicon atoms in the surface portion to the entire composite particle (center / total) were also calculated.
  • the major axis length ratio was calculated as the ratio of the major axis length of the second particle to the major axis length of the composite particle.
  • Table 1 shows values rounded to the second decimal place.
  • the length of the major axis of the second particle was an arithmetic average value of the length of the major axis of three arbitrarily selected second particles.
  • each value in Table 1 is an average value of 10 pieces. In each composite particle, there were three observation regions. In each comparative example, all 10 composite particles did not satisfy the provisions of the present invention. Each value in Table 1 is also an average value of 10 pieces.
  • the tap density was measured by a method based on JIS standard R1628.
  • Average particle diameter (50% D) measurement Using a laser diffraction particle size distribution analyzer SALD-3000J (manufactured by Shimadzu Corporation), a dispersion liquid in which the obtained composite particles are dispersed in purified water together with a surfactant is placed in a sample water tank and pumped while ultrasonically treating. Measured by circulating. The particle diameter (50% D) at which the volume accumulation from the small diameter side of the obtained particle size distribution was 50% was defined as the volume average particle diameter.
  • the evaluation cell was produced by injecting an electrolyte solution with a CR2016 type coin cell facing the negative electrode and metallic lithium as a counter electrode through a 20 ⁇ m polypropylene separator.
  • the electrolytic solution was obtained by dissolving ethyl carbonate and methyl ethyl carbonate in a mixed solvent having a volume ratio of 3 to 7 to a concentration of 1 mol / L of LiPF 6 and adding 1.5% by mass of vinyl carbonate thereto. Furthermore, what added 20 volume% of fluoroethylene carbonate was used.
  • the evaluation cell was placed in a constant temperature bath at 25 ° C. and subjected to a cycle test. Charging was performed until the current value reached 0.2 mA at a constant voltage of 0 V after charging to 0 V with a constant current of 2 mA. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The discharge capacity and charge / discharge efficiency were the results of the initial charge / discharge test. Moreover, after repeating charge / discharge for 5 cycles on the said conditions, the cell for evaluation was disassembled in the charged state, and the ratio of the thickness of the obtained negative electrode to the thickness at the time of producing the negative electrode was defined as the expansion rate. In addition, the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 50 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity. The evaluation results are shown in Table 1.
  • Example 2 In Example 1, silicon oxide powder (SiO, manufactured by Kojundo Chemical Laboratory Co., Ltd .: SiO02PB, second particle) is used instead of silicon powder, and the volume average particle diameter is pulverized to 0.5 ⁇ m. Thus, a silicon oxide slurry was produced. Except that 800 g of this silicon oxide slurry was ultrasonically dispersed with 300 g of coal tar pitch and combined with 2.61 kg of needle coke, composite particles were produced in the same manner as in Example 1, and the same evaluation was performed. It was.
  • Example 3 In Example 1, using a jet mill (NJ Pneumatic LJ-3), the lump obtained by firing was crushed at a pressure of 0.1 MPa, the classification zone was 12 mm, and a large louver was used. Except for crushing, composite particles were produced in the same manner as in Example 1, and the same evaluation was performed.
  • Example 4 In Example 1, the obtained composite particles were mixed with flaky graphite particles having an average particle diameter of 4 ⁇ m and a specific surface area of 14 m 2 / g so that the total amount would be 10%, and this was mixed with the negative electrode material for a lithium ion secondary battery. Except for the above, composite particles were produced in the same manner as in Example 1, and the same evaluation was performed.
  • Example 5 (Production of composite particles) First, silicon oxide powder having a volume average particle diameter of 30 ⁇ m (SiO, manufactured by Kojundo Chemical Laboratory Co., Ltd .: SiO02PB, second particles), methylnaphthalene, and a dispersant (manufactured by Kao Corporation: L-1820). Then, a silicon oxide slurry was prepared by pulverizing with a bead mill (manufactured by Ashizawa Finetech: LMZ) to a volume average particle size of 0.5 ⁇ m.
  • spherical natural graphite spherical graphite particles, first particles having a volume average particle diameter of 20 ⁇ m and a circularity of 0.95 are charged into a pressure kneader, and the dispersion is charged therein.
  • Naphthalene was evaporated to obtain a composite composed of spherical natural graphite in which silicon oxide particles were composited with a carbonaceous material.
  • the obtained composite was fired in a firing furnace in a nitrogen atmosphere at 900 ° C. for 2 hours.
  • the lump obtained by firing is pulverized for 1 minute with a Waring mixer (manufactured by WARING: 7012S) at a rotational speed of 3100 rpm, and then classified with a vibrating screen having an opening of 40 ⁇ m, and composite particles having a volume average particle diameter of 22 ⁇ m. This was made into the negative electrode material for lithium ion secondary batteries.
  • a Waring mixer manufactured by WARING: 7012S
  • the evaluation cell was produced by injecting an electrolyte solution with a CR2016 type coin cell facing the negative electrode and metallic lithium as a counter electrode through a 20 ⁇ m polypropylene separator.
  • the electrolytic solution was obtained by dissolving ethyl carbonate and methyl ethyl carbonate in a mixed solvent having a volume ratio of 3 to 7 to a concentration of 1 mol / L of LiPF 6 and adding 1.5% by mass of vinyl carbonate thereto. Furthermore, what added 20 volume% of fluoroethylene carbonate was used.
  • the evaluation cell was placed in a constant temperature bath at 25 ° C. and subjected to a cycle test. Charging was performed until the current value reached 0.2 mA at a constant voltage of 0 V after charging to 0 V with a constant current of 2 mA. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The discharge capacity and charge / discharge efficiency were the results of the initial charge / discharge test. Moreover, after repeating charge / discharge for 5 cycles on the said conditions, the cell for evaluation was disassembled in the charged state, and the ratio of the thickness of the obtained negative electrode to the thickness at the time of producing the negative electrode was defined as the expansion rate. In addition, the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 50 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity. The evaluation results are shown in Table 1.
  • Example 6 a silicon powder having a volume average particle diameter of 25 ⁇ m (purity 99.9%, manufactured by Toyo Metal Powder Co., Ltd .: HiSi-300, second particles) was used instead of the silicon oxide powder, and the volume average thereof was used.
  • a composite particle was prepared in the same manner as in Example 5 except that a silicon slurry was prepared by pulverizing to a particle size of 0.2 ⁇ m, and 200 g of this slurry was subjected to ultrasonic dispersion treatment together with 180 g of coal tar pitch. The same evaluation was performed. The evaluation results are shown in Table 1. 3 shows an SEM image showing the entire cross section of the obtained composite particle, FIG.
  • FIG. 4 shows an SEM image showing the central part of the cross section of the composite particle
  • FIG. 5 shows a surface part of the cross section of the composite particle.
  • the SEM images shown are shown respectively.
  • the arrow in FIG. 5 shows a silicon particle. 3 to 5, it can be seen that in the composite particles according to Example 6, silicon particles are present in the surface portion and no silicon particles are present in the central portion.
  • Example 7 Composite particles were produced in the same manner as in Example 5 except that granulated particles prepared as follows were used instead of spheroidized natural graphite, and the same evaluation was performed.
  • the evaluation results are shown in Table 1.
  • -Preparation of granulated particles 980 g of scaly graphite having a volume average particle diameter of 8 ⁇ m and 20 g of carboxymethyl cellulose (Daiichi Kogyo Seiyaku: WS-C) were mixed with 3000 g of purified water with stirring. This slurry was granulated with a fluidized bed granulator (Powrec: GPCG). The granulated particles were calcined at 900 ° C. for 2 hours in a nitrogen atmosphere to obtain granulated particles having a volume average particle diameter of 24 ⁇ m and a circularity of 0.93.
  • GPCG fluidized bed granulator
  • Example 8 In Example 5, the mass obtained by firing was subjected to a condition using a jet mill (Nihon Pneumatic LJ-3) at a pulverization pressure of 0.1 MPa, a classification zone of 12 mm clearance, and a large louver. Except for crushing, composite particles were produced in the same manner as in Example 5, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 9 ⁇ Example 9>
  • the obtained composite particles were mixed with flaky graphite particles having a volume average particle diameter of 4 ⁇ m and a specific surface area of 14 m 2 / g so as to be 10% in the total amount, and this was mixed with the negative electrode for a lithium ion secondary battery. Except having used it as a material, the composite particle was produced like Example 5 and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 10 spheroidized natural graphite having a volume average particle diameter of 20 ⁇ m and a circularity of 0.95 was subjected to a 100 MPa cold isostatic pressing process to obtain a spherical natural product having a volume average particle diameter of 20 ⁇ m and a circularity of 0.86. Graphite was obtained. Except for using this spheroidized natural graphite, composite particles were produced in the same manner as in Example 5, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • First particles (hereinafter also referred to as “bulk graphite particles”) were produced as follows. 2000 g of coke powder having a volume average particle size of 10 ⁇ m, 800 g of coal tar pitch, 400 g of silicon carbide, and 800 g of coal tar were kneaded at 100 ° C. for 1 hour using a pressure kneader. The obtained lump was calcined at 900 ° C. for 2 hours in a nitrogen atmosphere and then graphitized at 2800 ° C. for 2 hours in the same atmosphere. The graphitized lump was pulverized by a jet mill to produce first particles having a volume average particle diameter of 23 ⁇ m and an aspect ratio of 1.5.
  • a silicon oxide powder having a volume average particle size of 30 ⁇ m (SiO, manufactured by Kojundo Chemical Laboratory Co., Ltd .: SiO02PB, second particles) is added together with methylnaphthalene and a dispersant (Kao Co., Ltd .: L-1820). Then, a silicon oxide slurry was prepared by pulverizing with a bead mill (manufactured by Ashizawa Finetech: LMZ) to a volume average particle size of 0.5 ⁇ m.
  • the lump obtained by firing is pulverized for 1 minute with a Waring mixer (manufactured by WARING: 7012S) at a rotation speed of 3100 rpm, and then classified with a vibrating screen having an opening of 40 ⁇ m, and composite particles having a volume average particle diameter of 25 ⁇ m This was made into the negative electrode material for lithium ion secondary batteries.
  • a Waring mixer manufactured by WARING: 7012S
  • the evaluation cell was prepared by injecting an electrolytic solution with a CR2016 type coin cell facing the negative electrode and metallic lithium through a 20 ⁇ m polypropylene separator.
  • the electrolytic solution was obtained by dissolving ethyl carbonate and methyl ethyl carbonate in a mixed solvent having a volume ratio of 3 to 7 to a concentration of 1 mol / L of LiPF 6 and adding 1.5% by mass of vinyl carbonate thereto. Furthermore, what added 20 volume% of fluoroethylene carbonate was used.
  • the evaluation cell was placed in a constant temperature bath at 25 ° C. and subjected to a cycle test. Charging was performed until the current value reached 0.2 mA at a constant voltage of 0 V after charging to 0 V with a constant current of 2 mA. The discharge was performed at a constant current of 2 mA up to a voltage value of 1.5 V. The discharge capacity and charge / discharge efficiency were the results of the initial charge / discharge test. Moreover, after repeating charge / discharge for 5 cycles on the said conditions, the cell for evaluation was disassembled in the charged state, and the ratio of the thickness of the obtained negative electrode to the thickness at the time of producing the negative electrode was defined as the expansion rate. In addition, the cycle characteristics were evaluated as the capacity retention rate by comparing the discharge capacity after 50 charge / discharge tests under the charge / discharge conditions with the initial discharge capacity. The evaluation results are shown in Table 1.
  • FIG. 6 shows an SEM image showing the entire cross section of the obtained composite particle
  • FIG. 7 shows an SEM image showing the central portion of the cross section of the composite particle
  • FIG. 8 shows a surface portion of the cross section of the composite particle.
  • the SEM images shown are shown respectively.
  • the arrow in FIG. 8 shows a silicon particle. 6 to 8, it can be seen that in the composite particles according to Example 11, silicon particles are present in the surface portion and no silicon particles are present in the central portion.
  • Example 12 In Example 11, instead of silicon oxide powder, silicon powder having a volume average particle diameter of 25 ⁇ m (purity 99.9%, manufactured by Toyo Metal Powder Co., Ltd .: HiSi-300, second particles) was used, and the volume average thereof was used.
  • a composite particle was prepared in the same manner as in Example 11 except that a silicon slurry was prepared by pulverizing to a particle size of 0.2 ⁇ m, and 200 g of this slurry was subjected to ultrasonic dispersion treatment together with 180 g of coal tar pitch. The same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 13 the mass obtained by firing was analyzed using a jet mill (Nihon Pneumatic LJ-3) under the conditions of a pulverization pressure of 0.1 MPa, a classification zone of 12 mm clearance, and a large louver. Except for crushing, composite particles were produced in the same manner as in Example 11, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 14 In Example 11, the obtained composite particles were mixed with flaky graphite particles having a volume average particle diameter of 4 ⁇ m and a specific surface area of 14 m 2 / g so that the total amount would be 10%, and this was mixed with the negative electrode for a lithium ion secondary battery. Except having used it as a material, the composite particle was produced like Example 11 and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 15 Example 1 except that massive graphite particles having a volume average particle diameter of 20 ⁇ m and an aspect ratio of 3.1 were used instead of the first particles having a volume average particle diameter of 23 ⁇ m and an aspect ratio of 1.5.
  • Composite particles were prepared in the same manner as in No. 11, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 1 a needle coke having a volume average particle diameter of 10 ⁇ m was used, and ultrasonic dispersion treatment was carried out in methyl naphthalene together with silicon slurry and coal tar pitch, and this dispersion was combined with a pressure kneader to evaporate methyl naphthalene. The compound was obtained. The obtained composite was fired in the same manner as described above to obtain a lump. The obtained lump was pulverized to a volume average particle size of 23 ⁇ m by a jet mill (AFG manufactured by Hosokawa Micron Corporation) under the conditions of a pulverization pressure of 0.4 MPa and a classification rotor rotation speed of 1500 rpm to obtain composite particles. A negative electrode material was produced in the same manner as in Example 1 except that the composite particles thus obtained were used, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • Example 2 needle coke having a volume average particle diameter of 10 ⁇ m was used, and ultrasonic dispersion treatment was performed in methyl naphthalene together with silicon slurry and coal tar pitch. Using this dispersion, a composite was obtained using a spray dryer (manufactured by Okawara Chemical Industries Co., Ltd .: CL-8i). A twin jet nozzle was used for spraying, and the spraying conditions were a spray pressure of 0.1 MPa and a spray inlet temperature of 110 ° C. The obtained composite product was fired and ground in the same manner as in Comparative Example 1 to obtain composite particles having a volume average particle diameter of 16 ⁇ m. A negative electrode material was produced in the same manner as in Example 1 except that the composite particles thus obtained were used, and the same evaluation was performed. The evaluation results are shown in Table 1.
  • FIG. 9 shows an SEM image showing the entire cross section of the obtained composite particle
  • FIG. 10 shows an SEM image showing the central portion of the cross section of the composite particle
  • FIG. 11 shows a surface portion of the cross section of the composite particle.
  • the SEM images shown are shown respectively.
  • the arrow in FIG.10 and FIG.11 shows a silicon particle. 9 to 11, it can be seen that in the composite particles according to Comparative Example 2, silicon particles exist in the central portion in addition to the surface portion.
  • the negative electrode for a lithium ion secondary battery constructed using the negative electrode material for a lithium ion secondary battery of the present invention suppresses the expansion of the negative electrode accompanying charging. Moreover, it turns out that the lithium ion secondary battery of this invention comprised using the negative electrode material for lithium ion secondary batteries of this invention is excellent in cycling characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、サイクル特性と安全性に優れるリチウムイオン二次電池を提供することを目的とする。 本発明は、炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とが、前記炭素性物質Aとは異なる炭素性物質Bで複合化された複合粒子を含み、前記複合粒子の断面を観察した場合に、前記複合粒子の最大長さである長軸の中点を中心とし、前記長軸の中点で直交する短軸の長さの1/8の長さを半径とする円の内部領域に含まれる珪素原子の含有量に対する、前記複合粒子の外周から内側に前記短軸の長さの1/8の長さの深さまでの内側領域に含まれる珪素原子の含有量の比率が2以上であるリチウムイオン二次電池用負極材である。

Description

リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池に関する。
 携帯電話、ノートパソコンなどモバイル機器の高性能化に伴い、リチウムイオン二次電池の高容量化要求が強くなっている。現在、リチウムイオン二次電池の負極材には主に黒鉛が用いられているが、更なる高容量化のため、理論容量が高く、リチウムイオンを吸蔵・放出可能な元素(以下、「特定元素」ともいう、また該特定元素を含んでなるものを、「特定元素体」ともいう)を用いた負極材の開発が活発化している。
 上記特定元素としては、珪素、錫、鉛、アルミニウムなどがよく知られている。その中でも珪素及び珪素酸化物は、他の特定元素からなるものよりも容量が高く、安価、加工性が良いなどといった利点があり、これを用いた負極材の研究が特に盛んである。
 一方、これら特定元素体は、充電によって合金化した際に、大きく体積膨張することが知られている。このような体積膨張は、特定元素体自身を微細化し、更にこれらを用いた負極材もその構造が破壊されて導電性が切断される。そのため、サイクル経過によって容量が著しく低下することが課題となっている。
 この課題に対し、特定元素体を微粒子化し、炭素性物質あるいは樹脂などで、黒鉛と複合化する手法が提案されている。このような複合粒子においては特定元素がLiと合金化し、微細化しても黒鉛あるいは炭素性物質によって導電性が確保できるため、特定元素体単独で負極材として用いるよりもサイクル特性を著しく向上できることが知られている。
 しかし、依然としてLi合金化時の膨張が複合粒子構造を破壊することによって複合粒子内の導電性が切断されて十分なサイクル特性が得られない場合があり、主にこの膨張の吸収と緩和を目的に、複合粒子内への空隙の導入に着目した検討が盛んに行われている(例えば、特許第3466576号公報、特開2006-228640号公報、特許第3995050号公報、特許第3987853号公報参照)。
 上記のような複合粒子を含む粉末状の負極材は、一般的に集電体に塗布後、ロールプレス等によって電極密度を調整して使用される。しかしながら、上記のような空隙を多く含む複合粒子は、ロールプレス時の圧縮性が悪く、電極密度が低くなるためにリチウムイオン二次電池を構成した場合に十分な高容量化効果が得られない場合がある。一方、高圧でロールプレスして高密度化した場合、複合粒子内の空隙がほとんど潰れるため、空隙による膨張の吸収、緩和作用が低下し、サイクル特性の改善効果が低下する場合がある。
 また、上記のような空隙を有する複合粒子を作製する場合、特定元素体微粒子を微粒黒鉛などの多量の炭素性物質を用い、さらに必要に応じて空隙形成材などを添加して、複合粒子化するのが一般的である。しかし、このような粒子は一般的に比表面積が高く、また、低結晶性炭素を多量に含むために充放電効率が低くなり、電池としての高容量化が不十分になる場合がある。
 更に上記のような複合粒子においては、特定元素体微粒子が複合粒子内部にも分布している。このような場合、複合粒子内部に存在する特定元素体微粒子の膨張に伴って複合粒子が内部に空間形成しながら膨張するため、相乗作用によって複合粒子が過度に膨張する場合がある。そのため、特定元素体微粒子自体の膨張量よりも、複合粒子さらには負極とその膨張量が大きくなり、その結果、電池セルが膨らみ、安全性に問題が生じる場合がある。
 本発明は、以上の従来の問題点に鑑みなされたものであり、以下の目的を達成することを課題とする。すなわち本発明は、サイクル特性と安全性に優れるリチウムイオン二次電池を提供することを目的とする。またサイクル特性と安全性に優れたリチウムイオン二次電池を構成可能で、充電に伴う膨張が抑制されるリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極を提供することを目的とする。
 前記課題を解決するための具体的手段は以下の通りであり、本発明は以下の態様を包含する。
<1> 炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とが、前記炭素性物質Aとは異なる炭素性物質Bで複合化された複合粒子を含み、前記複合粒子の断面を観察したときに、前記複合粒子の最大長さである長軸の中点を中心とし、前記長軸の中点で直交する短軸の長さの1/8の長さを半径とする円の内部領域に含まれる珪素原子の含有量に対する、前記複合粒子の外周から内側に前記短軸の長さの1/8の長さの深さまでの内側領域に含まれる珪素原子の含有量の比率が2以上であるリチウムイオン二次電池用負極材である。
<2> 前記複合粒子の断面に含まれる珪素原子の総含有量に対する前記円の内部領域に含まれる珪素原子の含有量の比率が0.2以下である、前記<1>に記載のリチウムイオン二次電池用負極材である。
<3> 前記第一の粒子は、円形度が0.60~1.00の黒鉛粒子である前記<1>又は<2>に記載のリチウムイオン二次電池用負極材である。
<4> 前記第一の粒子の体積平均粒子径が5μm以上40μm以下である前記<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5> 前記第一の粒子は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなる、細孔を有する黒鉛粒子である前記<1>又は<2>に記載のリチウムイオン二次電池用負極材である。
<6> 前記第一の粒子のアスペクト比が1.2~5.0である前記<5>に記載のリチウムイオン二次電池用負極材である。
<7> 前記扁平状の粒子の体積平均粒子径が、前記第一の粒子の体積平均粒子径の2/3以下である前記<5>又は<6>に記載のリチウムイオン二次電池用負極材である。
<8> 前記炭素性物質Bの含有量が複合粒子全体において1質量%以上10質量%以下であり、前記炭素性物質Bは有機物の炭素化物である、前記<1>~<7>のいずれか1項に記載のリチウムイオン二次電池用負極材である。
<9> 導電性を有する物質をさらに含有する、前記<1>~<8>のいずれか1項に記載のリチウムイオン二次電池用負極材である。
<10> 炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とを、炭素性物質Aとは異なる炭素性物質Bを用いて複合化し、体積平均粒子径が前記第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下である複合粒子を得る工程を含む、前記<1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法である。
<11> 集電体と、前記集電体上に設けられた前記<1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極材を含有する負極剤層と、を有するリチウムイオン二次電池用負極である。
<12> 前記<11>に記載のリチウムイオン二次電池用負極と、正極と、電解質と、を含むリチウムイオン二次電池である。
 本発明によれば、サイクル特性と安全性に優れるリチウムイオン二次電池を提供することができる。またサイクル特性に優れたリチウムイオン二次電池を構成可能で、充電に伴う膨張が抑制されるリチウムイオン二次電池用負極材、並びにリチウムイオン二次電池用負極を提供することができる。
本発明の実施例1にかかる複合粒子の断面画像の一例を示す図である。 本発明の実施例1にかかる複合粒子の断面画像における表面部分の一例を示す図である。 本発明の実施例6にかかる複合粒子の断面の一例を示す図である。 本発明の実施例6にかかる複合粒子の断面の中心部分の一例を示す図である。 本発明の実施例6にかかる複合粒子の断面の表面部分の一例を示す図である。 本発明の実施例11にかかる複合粒子の断面の一例を示す図である。 本発明の実施例11にかかる複合粒子の断面の中心部分の一例を示す図である。 本発明の実施例11にかかる複合粒子の断面の表面部分の一例を示す図である。 本発明の比較例2にかかる複合粒子の断面の一例を示す図である。 本発明の比較例2にかかる複合粒子の断面の中心部分の一例を示す図である。 本発明の比較例2にかかる複合粒子の断面の表面部分の一例を示す図である。
<リチウムイオン二次電池用負極材>
 本発明のリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう)は、炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とが、前記炭素性物質Aとは異なる炭素性物質Bで複合化された複合粒子の少なくとも1種を含む。さらに必要に応じてその他の成分を含んでいてもよい。
 また前記複合粒子は、その断面を観察したときに、前記複合粒子の最大長さである長軸の中点を中心とし、前記長軸の中点で直交する短軸の長さの1/8の長さを半径とする円の内部領域に含まれる珪素原子の含有量に対する、前記複合粒子の外周から内側に前記短軸の長さの1/8の長さの深さまでの内側領域に含まれる珪素原子の含有量の比率が2以上である。
 すなわち、前記複合粒子においては、珪素原子を含有する第二の粒子が、複合粒子の内部よりもその表面付近に多く存在していることが特徴である。本発明においては、さらに前記複合粒子の断面に含まれる珪素原子の総含有量に対する前記円の内部領域に含まれる珪素原子の含有量の比率が0.2以下であることが好ましい。
 このような複合状態であることによって、充電時における第二の粒子の体積膨張が、もっぱら複合粒子表面近傍で起こり、複合粒子内部ではほとんど起こらないため、複合粒子自体の過度な膨張を抑制することができる。
 かかる複合粒子を含むリチウムイオン二次電池用負極材を用いて形成されるリチウムイオン二次電池用負極を有して構成されるリチウムイオン二次電池は、サイクル特性及び安全性に優れ、さらに電池容量及び充放電効率に優れる。
 本明細書において、「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。さらに組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 以下、本発明について説明する。
[複合粒子]
 前記複合粒子においては、第一の粒子と第二の粒子とが炭素性物質Bで複合化されている。ここで複合化とは、互いに異なる複数の要素が一体化していることを意味する。
 本発明における複合粒子は、少なくとも第一の粒子と第二の粒子とが一体化しているものであり、第一の粒子に複数の第二の粒子が一体化して独立した粒子を構成していることが好ましい。
 前記複合粒子における複合化の具体的態様としては、第一の粒子と第二の粒子との間に炭素性物質Bが存在して第一の粒子の表面に第二の粒子が付着して一体化している態様、及び、第一の粒子と第二の粒子とが直接接触し、炭素性物質Bが第一の粒子及び第二の粒子の両方に接触することで第一の粒子の表面に第二の粒子が付着して一体化している態様が挙げられる。すなわち前記炭素性物質Bは、第一の粒子と第二の粒子とを互いに連結して一体化する機能を有している。
 また前記複合粒子における第一の粒子と第二の粒子の複合状態は、以下のようにして判断される。さらに以下の要件を満たす複合粒子を含むリチウムイオン二次電池用負極材は、本発明の範囲に含まれる。
 複合粒子の複合状態については、複合粒子の断面を観察して、第二の粒子の分布状態から判断される。複合粒子の断面の観察については、特に手法などに限定はされない。例えば、後述するような複合粒子と有機結着剤とを含むスラリーを調製し、これを塗布乾燥して塗布電極を作製する。得られた塗布電極の断面を集束イオンビーム(FIB)やイオンミリングなどで加工して複合粒子が切断された試料を作製する。これによって得られた複合粒子断面を走査型電子顕微鏡(SEM)や走査イオン顕微鏡(SIM)などで観察する方法を挙げることができる。
 上記のような方法で観察される複合粒子断面において、以下の(a)及び(b)の条件を満たす複合粒子を複合状態判断の対象粒子とする。なお(a)及び(b)の断面観察における長軸及び短軸の定義については後述する。
(a)粒子径
 複合粒子の粒子径が概ねレーザー回折式粒度分布測定装置で測定される体積平均粒子径(50%D)と同等のものとする。具体的には、前記体積平均粒子径に対する複合粒子の断面観察における長軸の長さの比が1.0~1.2である複合粒子を対象粒子とする。
(b)粒子状態
 割れている複合粒子、裂けている複合粒子は、複合状態の判断対象に適さないため除外する。すなわち、複合粒子の断面観察における長軸及び短軸と、複合粒子の外周との交点の数が共に2である複合粒子を対象粒子とする。
 前記複合状態判断の対象粒子の条件に該当した複合粒子の断面を観察し、以下のようにして複合粒子の断面における長軸の中心及び短軸の長さを選択する。
 複合粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線m及び接線mを選択する。この接線m及び接線mの間の距離を複合粒子の最大長さ、すなわち長軸の長さとする。
 ただし、複合粒子の断面における長軸の長さは、複合粒子の全体像を走査型電子顕微鏡(SEM)等で観察して求められる複合粒子の最大長さに対して、70%以上となるように選択されることが好ましい。すなわち、複合粒子の断面は、3次元的に全体をとらえた複合粒子自体の長軸の長さ又はそれに近い長さの軸を含むように選択されることが好ましい。尚、複合粒子自体の長軸の長さは、複合粒子に外接する平行な2つの平面であって、その距離が最大となる2つの平面の間の距離として与えられる。
 次いで前記複合粒子の断面上で、前記接線m及び接線mに直交し、複合粒子の外周に外接する2本の平行な接線n及び接線nを選択する。
 接線nに平行な直線であって、接線nまでの距離と接線nまでの距離が等しい直線を複合粒子の長軸とする。長軸と接線m及び接線mとの交点をそれぞれ交点P及び交点Pとし、交点Pと交点Pとを結ぶ線分の中点を長軸の中点とする。この長軸の中点を通り、長軸と直交する直線を短軸とする。短軸と複合粒子の外周との2つの交点Q及び交点Qの間の距離を短軸の長さとする。
 次いで前記複合粒子の断面上で、長軸の中点を中心とし、短軸の長さの1/8の長さRを半径とする円を描き、その円の内部領域を、複合粒子における中心部分とする。
 一方、複合粒子の断面上で、その外周から内側に長さRの深さまでの内側領域を、複合粒子における表面部分とする。
 ここで中心部分と表面部分とに重複部分が発生する場合には、複合状態判断の対象粒子から除外する。
 上記のようにして決定した複合粒子の中心部分及び表面部分について、それぞれSEMを用いて観察し、観察している領域にX線分光装置を適用して、被観察領域に含有される元素をそれぞれ定量分析する。これによって得られる元素質量濃度を用いて、下記複合状態の条件について評価し、これを満たす複合粒子を本発明のリチウムイオン二次電池用負極材を構成するものと同定する。
 尚、前記X線分光装置としては、被観察領域に含有される元素を定量可能であれば特に制限されず、例えば、エネルギー分散型(EDX)及び波長分散型(WDX)を用いることができる。
(複合状態の条件)
 前記複合粒子の表面部分に含まれる珪素原子の含有量の、中心部分に含まれる珪素原子の含有量に対する比率(表面部分/中心部分)が2以上である。これは複合粒子の表面に珪素原子を含有する第二の粒子が偏在していることを意味する。
 前記比率は、中心部分における炭素原子、酸素原子及び珪素原子の総含有量に対する珪素原子の含有量の比率(Si/(C+O+Si))と、表面部分における炭素原子、酸素原子及び珪素原子の総含有量に対する珪素原子の含有量の比率とをそれぞれ求め、これらの比として算出される。
 具体的には例えば、EDXで定量分析を行った際、炭素原子、酸素原子及び珪素原子のみについて定量分析を行えば、中心部分と表面部分の珪素原子の質量濃度を単に比較することで、前記比率を得ることができる。
 本発明において前記比率は3以上であることが好ましく、5以上であることがより好ましい。前記比率が2未満では、複合粒子の膨張を十分に抑制できない場合があり、またサイクル特性低下する場合がある。
 中心部分及び表面部分における炭素原子、酸素原子及び珪素原子の総含有量に対する珪素原子の含有量の比率は、具体的には、中心部分及び表面部分のそれぞれにおいて、一辺の長さが前記長さRの1/5~1/2である正方形領域を3箇所、できるだけ重複しないように選択する。選択した正方形領域について、それぞれ炭素原子、酸素原子及び珪素原子に対する珪素原子の含有比を測定し、それらの測定値の算術平均値として算出される。
 前記複合粒子においては、さらに前記複合粒子の断面に含まれる珪素原子の総含有量に対する前記中心部分に含まれる珪素原子の含有量の比率が0.2以下であることが好ましく、0.15以下であることがより好ましい。これは複合粒子の中心部分に珪素原子が実質的に存在しないことを意味する。
 複合粒子の断面に含まれる珪素原子の総含有量、及び、中心部分に含まれる珪素原子の含有量は上記と同様にして得ることができる。
 本発明においては上記条件(a)及び(b)を満たす複合粒子10個について、上記複合状態の条件を評価し、3個以上、好ましくは5個以上の複合粒子が条件を満たす場合に本発明のリチウムイオン二次電池用負極材であると判断する。
 本発明における複合粒子の複合状態を、上記のように構成する方法としては、例えば、後述するような複合粒子の製造方法で複合粒子を製造する方法を挙げることができる。
(第一の粒子)
 本発明のリチウムイオン二次電池用負極材に含まれる複合粒子は、炭素性物質Aを含む第一の粒子の少なくとも1種を含む。
 前記第一の粒子は炭素性物質Aを含んで構成される。前記炭素性物質Aは後述する炭素性物質Bよりも結晶性が高いことが好ましい。また前記炭素性物質Aは、学振法に基づいて測定して得られる平均面間隔(d002)の値が0.335nm~0.347nmであることが好ましい。これを満たす炭素性物質としては例えば、人造黒鉛、天然黒鉛、低結晶性炭素、メソフェーズカーボン等が挙げられる。
 前記平均面間隔(d002)は、電池容量の観点から、0.335nm~0.345nmが好ましく、0.335nm~0.340nmがより好ましく、0.335nm~0.337nmが更に好ましい。前記平均間隔が0.347nm以下であることで結晶性が高く、電池容量及び充放電効率がともに向上する傾向がある。一方、黒鉛結晶の理論値は0.335nmであることから、この値に近い方が電池容量及び充放電効率がともに向上する傾向がある。
 また第一の粒子に含まれる炭素性物質Aの含有率は特に制限されないが70質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記第一の粒子の体積平均粒子径(50%D)は特に制限されないが、後述する第二の粒子よりも大きいことが好ましく、5μm~40μmであることが好ましく、5μm~35μmであることがより好ましく、7μm~30μmであることがより好ましく、10μm~30μmが更に好ましい。
 体積平均粒子径が5μm以上であることで、比表面積が大きくなりすぎることが抑制され、初回の充放電効率が向上する。また電極密度がより向上し、高容量のリチウムイオン二次電池が得られる。一方、体積平均粒子径が40μm以下であることで、レート特性などの電極特性が向上する傾向がある。
 尚、第一の粒子の体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて、通常の条件で測定される。
 炭素性物質Aを含有する第一の粒子の形態、形状などは特に限定されるものではない。形態としては1個の粒子からなる単数粒子、及び複数個の一次粒子が造粒してなる造粒粒子などが挙げられ、いずれであってもよい。また形状としては単数粒子であれば鱗片状、球状粒子などが挙げられる。また造粒粒子としては、球状あるいは多孔質状など様々な形状ものが挙げられる。
 上記の炭素性物質Aを含有する第一の粒子の形態については、電池を構成した場合のレート特性の観点から、単数粒子よりも造粒粒子の方が好ましい。これは例えば、第一の粒子が結晶性の高い黒鉛粒子からなる場合、複数個が造粒してなる粒子の方が、電極を形成する際にプレスして高密度化した場合に、粒子の面方向配向をより容易に抑制できるため、第一の粒子におけるLiイオンの授受がより効率的に行なわれるため、レート特性が向上すると考えることができる。
 また造粒粒子の形状については、電池を構成した場合のレート特性の観点から、球状よりも多孔質状の方が好ましい。これは例えば、多孔質状の造粒粒子においては内部空間が存在することによってLiイオンが拡散し易くなるため、レート特性が向上すると考えることができる。
 なかでも造粒粒子の中心部分にまで、第二の粒子が入り込まないような空隙率が小さい多孔質粒子であることが好ましい。このような造粒粒子であることで、複合粒子を形成した際に高いタップ密度を達成でき、また形成される電極の電極密度が向上するために高い体積容量を達成することができる。
 前記第一の粒子は、例えば、各社から市販されている粉末状の炭素製品として入手することができる。また前記平均面間隔が0.335nm~0.347nmである人造黒鉛、天然黒鉛、低結晶性炭素、メソフェーズカーボン等を、通常用いられる方法によって所望の体積平均粒子径(好ましくは、4μm~40μm)を有するように、粉砕又は造粒処理することで製造することができる。
 前記第一の粒子としては、電気的特性の観点から、円形度が0.60~1.00の黒鉛の粒子、及び扁平状の粒子を複数、配向面が非平行となるように集合または結合させてなる、細孔を有する黒鉛粒子からなる群より選ばれる少なくとも一種を用いることが好ましい。
-球状黒鉛粒子-
 前記第一の粒子としては、円形度が0.60~1.00の黒鉛粒子(以下、「球状黒鉛粒子」ともいう)であることが好ましい。
 このような形態の第一の粒子とすることによって、電極形成時における加圧の際に、負極材を構成するそれぞれの複合粒子が面方向に配向してしまうことを抑制できる。これにより、複合粒子におけるLiイオンの授受がし易くなりレート特性に優れた電池を構成することができる。
 前記円形度としては、粒子配向制御の観点から、0.60~0.95が好ましく、0.65~0.90がより好ましく、0.70~0.90が更に好ましい。円形度が0.60以上の場合には電極形成時のプレスにおいて複合粒子が面方向に配向することが抑制され、レート特性が向上する傾向がある。一方、1.00は真円で上限にあたる。
 ここで円形度とは、黒鉛粒子の投影面積と同じ面積を持つ円の直径である円相当径から算出される円としての周囲長を、黒鉛粒子の投影像から測定される周囲長(輪郭線の長さ)で除して得られる数値であり、下記式で求められる。尚、円形度は真円では1.00となる。
  円形度=(相当円の周囲長)/(粒子断面像の周囲長)
 具体的に円形度は、走査式電子顕微鏡で倍率1000倍に拡大した画像を観察し、任意に10個の黒鉛粒子を選択し、上記方法にて個々の第一の粒子の円形度を測定し、その算術平均値として算出される平均円形度である。なお、円形度及び相当円の周囲長及び黒鉛粒子の投影像の周囲長は、市販されている画像解析ソフトによって求めることが可能である。
 球状黒鉛粒子の形態、形状などは円形度が0.60~1.00である限り特に限定されるものではない。形態としては1個の粒子からなる単数粒子、及び複数個の一次粒子が造粒してなる造粒粒子などが挙げられ、いずれであってもよい。また形状としては単数粒子であれば球状粒子などが挙げられる。また造粒粒子としては、球状あるいは多孔質状など様々な形状ものが挙げられる。
 前記球状黒鉛粒子は、学振法に基づいて測定して得られる平均面間隔(d002)の値が0.335nm~0.338nmであることが好ましい。これを満たす黒鉛としては例えば、人造黒鉛、天然黒鉛、黒鉛化されたMCMB(メソフェーズカーボンマイクロビーズ)等が挙げられる。
 前記平均面間隔(d002)は、電池容量の観点から、0.335nm~0.337nmがより好ましく、0.335nm~0.336nmがさらに好ましい。前記平均面間隔が0.338nm以下であることで黒鉛としての結晶性が高く、電池容量及び充放電効率がともに向上する傾向がある。一方、黒鉛結晶の理論値は0.335nmであることから、この値に近い方が電池容量及び充放電効率がともに向上する傾向がある。
 前記球状黒鉛粒子の体積平均粒子径(50%D)は特に制限されないが、後述する第二の粒子よりも大きいことが好ましく、5μm~40μmであることが好ましく、5μm~35μmであることがより好ましく、7μm~30μmであることがより好ましく、10μm~30μmが更に好ましい。
 体積平均粒子径が5μm以上であることで、比表面積が大きくなりすぎることが抑制され、初回の充放電効率が向上する。また電極密度がより向上し、高容量のリチウムイオン二次電池が得られる。一方、体積平均粒子径が40μm以下であることで、レート特性などの電極特性が向上する傾向がある。
 前記球状黒鉛粒子は、例えば、各社から市販されている粉末の炭素製品として入手することができる。
 また円形度が0.6未満である鱗片状等の黒鉛を、通常用いられる黒鉛の球状化処理方法を用いて球状化処理して、円形度を0.60~1.00とすることができる。さらに黒鉛粒子を通常用いられる造粒方法を用いて、円形度が0.60~1.00となるように造粒処理して複数粒子からなる球状黒鉛粒子を調製してもよい。
 前記球状化処理としては、例えば、メカノケミカル法等の処理方法を挙げることができる。また前記造粒方法としては、流動層造粒法、噴霧乾燥造粒法、攪拌造粒法等の処理方法を挙げることができる。
-塊状黒鉛粒子-
 前記第一の粒子としては、扁平状の粒子を複数、配向面が互いに非平行となるように集合または結合させてなる、細孔を有する黒鉛粒子(以下、「塊状黒鉛粒子」ともいう)であることが好ましい。
 第一の粒子としての塊状黒鉛粒子が、かかる特定の構造を有することで、負極を構成した場合に、集電体上に形成された負極材層中の黒鉛粒子の結晶面が面方向に配向し難くなり、負極上でリチウムを吸蔵・放出し易くなる。また、粒子表面に凹凸を多数有するため、珪素原子を含む第二の粒子が表面に複合化された複合粒子においては、該第二の粒子の膨張収縮後も塊状黒鉛粒子間での導電性を維持し易くなり、より優れたサイクル特性を得ることが可能となる。
 前記扁平状の粒子とは、長軸と短軸を有する形状の粒子のことであり、完全な球状でないものをいう。例えば鱗状、鱗片状、一部の塊状等の形状のものがこれに含まれる。前記塊状黒鉛粒子において、複数の扁平状の粒子の配向面が互いに非平行とは、それぞれの粒子が有する扁平した面、換言すれば最も平らに近い面を配向面とした場合に、複数の扁平状の粒子が、それぞれの配向面が一定の方向に揃うことなく、集合している状態をいう。
 また塊状黒鉛粒子においては、扁平状の粒子は集合又は結合している。ここで結合とは、個々の粒子が、タールやピッチ等の有機結着剤が炭素化されて形成された炭素質を介して、化学的に結合している状態をいう。また、集合とは、個々の粒子が、化学的に結合してはないが、その形状等に起因して、その集合体としての形状を保っている状態をいう。前記塊状黒鉛粒子は、機械的な強度の面から、扁平状の粒子が結合していることが好ましい。
 1つの塊状黒鉛粒子において、扁平状の粒子が集合又は結合する数としては特に制限されないが、3個以上であることが好ましく、5個~20個であることがより好ましく、5個~15個であることがより好ましい。
 また塊状黒鉛粒子を構成する個々の扁平状の粒子の大きさとしては特に制限されないが、体積平均粒子径で1μm~100μmであることが好ましく、1μm~30μmであることがより好ましく、1μm~20μmであることが更に好ましい。
 さらに個々の扁平状の粒子の体積平均粒子径は、電池容量とサイクル特性の観点から、塊状黒鉛粒子の体積平均粒子径の2/3以下であることが好ましく、1/20~2/3であることがより好ましい。
 前記塊状黒鉛粒子のアスペクト比は特に制限されない。前記アスペクト比は、サイクル特性と電池容量の観点から、1.2~5.0であることが好ましく、1.3~4.0がより好ましく、1.3~3.0がさらに好ましい。
 アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。一方、アスペクト比が5.0以下であると、急速充放電特性が向上する傾向がある。
 なおアスペクト比は、塊状黒鉛粒子の長軸方向の長さ(長径)をA、短軸方向の長さ(短径)をBとしたときにA/Bで表される。前記アスペクト比は、顕微鏡で第一の粒子を拡大し、任意に100個の第一の粒子を選択して、それぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。
 具体的には長軸方向の長さA及び短軸方向の長さBは以下のようにして測定される。すなわち、顕微鏡を用いて観察される第一の粒子の投影像において、第一の粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。また第一の粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。
 また前記塊状黒鉛粒子の構造は、細孔を有する多孔質状である。これにより、電池を構成した場合のレート特性が向上する。これは例えば、粒子内に内部空間が存在することによってリチウムイオンが拡散し易くなるため、レート特性が向上すると考えることができる、
 塊状黒鉛粒子の構造は、その中心部分にまで、第二の粒子が入り込まないような空隙率が小さい多孔質粒子であることが好ましい。このような粒子であることで、複合粒子を形成した際に高いタップ密度を達成でき、また形成される電極の電極密度が向上するために高い体積容量を達成することができる。
 塊状黒鉛粒子は、電池容量の観点から、学振法に基づいて測定して得られる平均面間隔(d002)の値が0.335nm~0.338nmであることが好ましく、0.335nm~0.337nmがより好ましく、0.335nm~0.336nmがさらに好ましい。前記平均間隔が0.338nm以下であることで黒鉛としての結晶性が高く、電池容量及び充放電効率がともに向上する傾向がある。一方、黒鉛結晶の理論値は0.335nmであることから、この値に近い方が電池容量及び充放電効率がともに向上する傾向がある。
 塊状黒鉛粒子の体積平均粒子径(50%D)は特に制限されないが、後述する第二の粒子よりも大きいことが好ましく、5μm~40μmであることが好ましく、5μm~35μmであることがより好ましく、7μm~30μmであることがより好ましく、10μm~30μmが更に好ましい。
 体積平均粒子径が5μm以上であることで、比表面積が大きくなりすぎることが抑制され、初回の充放電効率が向上する。また電極密度がより向上し、高容量のリチウムイオン二次電池が得られる。一方、体積平均粒子径が40μm以下であることで、レート特性などの電極特性が向上する傾向がある。
(塊状黒鉛粒子の製造方法)
 前記塊状黒鉛粒子の製造方法としては、所定の構造が形成される限り特に制限はない。例えば、黒鉛化可能な骨材及び黒鉛からなる群より選ばれる少なくとも1種と、黒鉛化可能なバインダ(有機結着剤)とに黒鉛化触媒を全量に対して1質量%~50質量%添加して混合し、焼成した後、粉砕することにより得ることができる。これにより、黒鉛化触媒の抜けた後に細孔が生成され、塊状黒鉛粒子として良好な特性が付与される。また、塊状黒鉛粒子は、黒鉛又は骨材とバインダとの混合方法、バインダ量等の混合割合の調整、焼成後の粉砕条件等を適宜選択することにより、所望の構成に調整することもできる。
 前記黒鉛化可能な骨材としては黒鉛化できる粉末材料であれば特に制限はない。例えば、コークス粉末、樹脂の炭化物等が使用できる。中でも、ニードルコークス等の黒鉛化しやすいコークス粉末が好ましい。また黒鉛としては粉末状であれば特に制限はない。例えば天然黒鉛粉末、人造黒鉛粉末等が使用できる。黒鉛化可能な骨材又は黒鉛の体積平均粒子径は、塊状黒鉛粒子の体積平均粒子径より小さいことが好ましく、塊状黒鉛粒子の体積平均粒子径の2/3以下であることがより好ましい。また黒鉛化可能な骨材又は黒鉛は扁平状の粒子であることが好ましい。
 前記黒鉛化触媒としては、例えば鉄、ニッケル、チタン、珪素、硼素等の金属、これらの炭化物、これらの酸化物などの黒鉛化触媒が使用できる。これらの中で、珪素または硼素の炭化物若しくは酸化物が好ましい。これらの黒鉛化触媒の添加量は、得られる塊状黒鉛粒子に対して好ましくは1~50質量%、より好ましくは5~40質量%の範囲、さらに好ましくは5~30質量%の範囲とされる。黒鉛化触媒の添加量が1質量%以上であれば塊状黒鉛粒子のアスペクト比及び比表面積の増大を抑制して、黒鉛の結晶の発達を良好にする傾向にあり、一方50質量%以下であれば均一に混合しやすく作業性が損なわれないため、それぞれ好ましい
 前記バインダ(有機結着剤)は焼成により黒鉛化可能であれば特に制限されない、例えば前記バインダとして、タール、ピッチの他、熱硬化性樹脂、熱可塑性樹脂等の有機系材料を挙げることができる。またバインダの配合量は、扁平状の黒鉛化可能な骨材又は黒鉛に対し、5質量%~80質量%添加することが好ましく、10質量%~80質量%添加することがより好ましく、15質量%~80質量%添加することがさらに好ましい。バインダの添加量を適切な量とすることで、製造される塊状黒鉛粒子のアスペクト比や比表面積が大きくなりすぎることを抑制できる。
 黒鉛化可能な骨材又は黒鉛と、バインダとの混合方法は特に制限はなく、ニーダー等を用いて行われるが、バインダの軟化点以上の温度で混合することが好ましい。具体的にはバインダがピッチ、タール等の際には、50℃~300℃が好ましく、熱硬化性樹脂の場合には、20℃~100℃が好ましい。
 次に上記の黒鉛化可能な骨材又は黒鉛とバインダとの混合物を焼成し、黒鉛化処理を行う。なお、この黒鉛化処理の前に上記混合物を所定形状に成形してもよい。さらに、成形後、黒鉛化処理の前に粉砕し、粒子径等を調整した後、黒鉛化処理を行ってもよい。焼成は前記混合物が酸化し難い条件で焼成することが好ましい。例えば窒素雰囲気中、アルゴンガス雰囲気中、真空中等の条件下で焼成する方法が挙げられる。黒鉛化処理の温度は、2000℃以上が好ましく、2500℃以上であることがより好ましく、2800℃~3200℃であることがさらに好ましい。
 黒鉛化処理の温度が2000℃以上であると、黒鉛結晶の発達が良好になり、放電容量が向上する傾向がある。また添加した黒鉛化触媒が、製造された塊状黒鉛粒子に残存することを抑制できる。黒鉛化触媒が塊状黒鉛粒子中に残存すると、放電容量が低下する場合があるため、残存が抑制されることが好ましい。一方、黒鉛化処理の温度が3200℃以下であると、黒鉛が昇華することを抑制できる。
 黒鉛化処理の前に粒子径を調整しない場合、塊状黒鉛粒子の粒子径を調整するために、得られた黒鉛化物を所望の体積平均粒子径となるように粉砕することが好ましい。黒鉛化物の粉砕方法は、特に制限はないが、例えばジェットミル、振動ミル、ピンミル、ハンマーミル等の既知の方法を挙げることができる。
 上記に示す製造方法により、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなる、細孔を有する黒鉛粒子、即ち、塊状黒鉛粒子を得ることができる。
 さらに上記製造方法の詳細は、例えば、特許第3285520号公報、特許第3325021号公報等を参照することもできる。
(第二の粒子)
 本発明のリチウムイオン二次電池用負極材は、珪素原子を含有する第二の粒子の少なくとも1種を含む。前記第二の粒子は珪素原子を含有するものであれば特に制限されない。例えば、珪素を含む粒子、珪素酸化物等の珪素化合物を含む粒子などを挙げることができる。電池容量の観点から、珪素又は珪素酸化物を含む粒子であることが好ましく、実質的に珪素からなる粒子又は実質的に珪素酸化物からなる粒子であることがより好ましい。
 ここで実質的とは不可避的に混入する不純物を許容することを意味し、不純物の含有率は第二の粒子中に10質量%以下であることが好ましい。
 前記第二の粒子の体積平均粒子径は特に制限されないが、前記第一の粒子の体積平均粒子径よりも小さい体積平均粒子径を有することが好ましく、体積平均粒子径が0.01μm~5μmであることがより好ましく、0.03μm~3μmがさらに好ましく、0.05μm~2μmがさらに好ましく、0.1μm~1μmが特に好ましい。
 第二の粒子の体積平均粒子径が0.01μm以上であると、良好な生産性で第二の粒子を得ることができ、取り扱い性に優れ、前記第一の粒子表面への複合化を効率的に行うことができる。一方、体積平均粒子径が5μm以下であると、第一の粒子表面上への複合化を効率的に行うことができ、充電時における第二の粒子の膨張が局在化することを抑制でき、サイクル特性がより向上する傾向がある。
 なお、前記珪素酸化物とは、一般的にSiOで表されるものである。xの範囲は0.8≦x≦1.6が好ましく、0.9≦x≦1.5がより好ましく、1.0≦x≦1.4が更に好ましい。xが0.8以上であると、製造及び入手が容易である。一方、xが1.6以下であると、珪素酸化物中の二酸化珪素部分が多くなりすぎることを抑制でき、珪素酸化物中におけるリチウムイオンの拡散が促進され、レート特性が向上する傾向がある。
 前記第一の粒子の体積平均粒子径に対する第二の粒子の体積平均粒子径の比(第二の粒子の体積平均粒子径/第一の粒子の体積平均粒子径)は特に制限されない。サイクル特性と電池容量の観点から、0.0003~0.2であることが好ましく、0.001~0.1であることがより好ましい。
 また前記複合粒子の断面の観察において、複合粒子の長軸の長さに対する第二の粒子の長軸の長さの比(第二の粒子の長軸の長さ/複合粒子の長軸の長さ、以下、「長軸長さ比」ともいう)は、サイクル特性と電池容量の観点から、0.0003~0.2であることが好ましく、0.001~0.1であることがより好ましい。さらに任意に選択される複合粒子10個について断面の観察をした場合に、5個以上の複合粒子がこの条件を満たすことが好ましく、全部の粒子がこの条件を満たすことが特に好ましい。
 尚、第二の粒子の長軸の長さは、複合粒子の長軸の長さと同様にして求められる。また複合粒子中に複数の第二の粒子が存在する場合、第二の粒子の長軸の長さは、任意に選択される3個の第二の粒子の長軸の長さの算術平均値とする。
 また複合粒子に含まれる第二の粒子の含有率は特に制限されず、目的に応じて適宜選択できる。サイクル特性と電池容量の観点から、複合粒子全体において0.5質量%~20質量%であることが好ましく、1質量%~15質量%がより好ましく、2質量%~10質量%がさらに好ましい。第二の粒子の含有量が0.5質量%以上であると、電池容量がより向上する。また20質量%以下であると、サイクル特性がより向上する。
 さらに複合粒子における第一の粒子の含有量に対する第二の粒子の含有量の比(第二の粒子の含有量/第一の粒子の含有量)は、目的に応じて適宜選択できるが、サイクル特性と電池容量の観点から、質量基準で0.005~0.3であることが好ましく、0.01~0.25であることがより好ましい。
(炭素性物質B)
 本発明における複合粒子は、前記第一の粒子と第二の粒子とが、前記炭素性物質Aとは異なる炭素性物質Bの少なくとも1種で複合化されてなる。前記炭素性物質Bは有機物を前駆体とし、熱処理等によって炭素化されてなるものであれば、前駆体となる有機物の種類、熱処理の履歴、炭素性物質Bの構造などに特に制限はない。
 前記有機物としてはフェノール樹脂、スチレン樹脂等の高分子化合物、ピッチ等の炭素化可能な固体物などが挙げられる。これらは、溶解物もしくは固形の状態で複合化時のバインダとして用いることができる。
 第一の粒子と第二の粒子とを炭素性物質Bの前駆体で複合化した後、前記前駆体を炭素化することで本発明にかかる複合粒子を得ることができる。
 前記複合粒子における炭素性物質Bの含有率は、複合粒子全体中に1質量%~10質量%であることが好ましく、1質量%~8質量%がより好ましく、2質量%~8質量%が更に好ましく、2質量%~6質量%が特に好ましい。
 炭素性物質Bの含有率が10質量%以下であると、非晶質炭素の含有率を抑制でき、初回充放電効率が低下することを抑制できる。また複合粒子を製造する工程において、複合粒子同士の結着を抑制し、粒子径が増加しすぎることを抑制できる。一方、1質量%以上であると、サイクル特性が向上する傾向がある。これは例えば第二の粒子が第一の粒子表面に効率的に複合化されやすくなるためと考えることができる。
 また前記第二の粒子に対する炭素性物質Bの含有比率(炭素性物質B/第二の粒子)は、第一の粒子と第二の粒子とを複合化可能である限り特に制限されない。例えば、サイクル特性と電池容量の観点から、質量基準で0.1~10であることが好ましく、0.3~5であることがより好ましい。
 本発明における複合粒子の体積平均粒子径(50%D)は特に制限されない。例えば5μm~40μmであることが好ましく、5μm~35μmであることがより好ましく、7μm~30μmであることが更に好ましく、10μm~30μmが特に好ましい。
 複合粒子の体積平均粒子径が5μm以上であることで、比表面積の増大しすぎることを抑制でき、初回の充放電効率がより向上する。また電極密度を上昇させやすく、リチウムイオン二次電池の高容量化が可能になる。一方、体積平均粒子径が40μm以下であることで、レート特性などの電極特性がより向上する傾向がある。
 また前記第一の粒子の体積平均粒子径に対する複合粒子の体積平均粒子径の比(複合粒子の粒子径/第一の粒子の粒子径)は特に制限されない。サイクル特性と電池容量の観点から、1.0~1.3であることが好ましく、1.01~1.25より好ましく、1.03~1.20が更に好ましく、1.05~1.15が特に好ましい。複合粒子の体積平均粒子径が、1.0倍以上であれば、複合粒子が破壊されずに維持されている傾向が高く、一方、1.3倍以下であれば、複合粒子同士の結着が少なく、個々の複合粒子が独立して存在している傾向が高く、それぞれ好ましい。
 複合粒子の体積平均粒子径は、レーザー回折式粒度分布測定装置を用いて、通常の条件で測定される。複合粒子の体積平均粒子径は、後述する複合粒子の製造方法において、解砕条件を適宜選択することで制御することができる。
 前記複合粒子のタップ密度は特に制限されない。例えば0.6g/cm~1.2g/cmであることが好ましく、0.7g/cm~1.2g/cmがより好ましく、0.8g/cm~1.15g/cmが更に好ましく、0.9g/cm~1.1g/cmであることが特に好ましい。
 タップ密度が0.6g/cm以上であると、サイクル特性が向上する。また負極を形成する際のプレス時における圧縮性が向上し、高い電極密度が達成され、より高容量の電池を得ることができる。一方、1.2g/cm以下であると、電池特性の低下を抑制できる。これは例えば、複合粒子の粒子径や複合粒子自体の密度が、Liイオンの授受、拡散に影響を及ぼすためと考えることができる。
 尚、複合粒子のタップ密度は、JIS規格R1628に準じて測定される。
[導電性を有する物質]
 前記リチウムイオン二次電池用負極材は、前記複合粒子に加えて、導電性を有する物質の少なくとも1種をさらに含有することが好ましい。
 導電性を有する物質としては、カーボンブラック、黒鉛、コークス、カーボンファイバー、カーボンナノチューブ等を挙げることができる。
 また導電性を有する物質の種類、形状等は、目的に応じて適宜選択することができる。例えば、黒鉛等は電池容量、充放電効率の面から好ましく、また、カーボンファイバー、カーボンナノチューブ等は少量で複合粒子間の導電性を確保できるため好ましい。
 リチウムイオン二次電池用負極材における導電性を有する物質の含有率は、目的に応じて適宜選択できる。例えば、容量の観点からは、リチウムイオン二次電池用負極材中に0.1質量%~20質量%であることが好ましく、0.5質量%~10質量%であることがより好ましい。一方、サイクルの観点からは、20質量%~95質量%が好ましく、50質量%~90質量%がより好ましい。
[リチウムイオン二次電池用負極材の製造方法]
 前記リチウムイオン二次電池用負極材の製造方法は、前記複合粒子を含むリチウムイオン二次電池用負極材を製造可能であれば特に制限されない。例えば、前記複合粒子を得る工程と、必要に応じてその他の工程とを有することができる。
 本発明において前記複合粒子を得る工程は、電池のサイクル特性と負極材の膨張率の観点から、炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とを、前記炭素性物質Aとは異なる炭素性物質Bを用いて複合化し、体積平均粒子径が前記第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下である複合粒子を得る工程を含むことが好ましい。
 かかる工程で複合粒子を製造することにより、複合粒子の表面部分における珪素原子の含有量を中心部分の2倍以上とすることができる。さらに複合粒子の中心部分に実質的に珪素原子が存在しない状態とすることができる。
 前記複合粒子を得る工程は、具体的には、炭素性物質Aを含有する第一の粒子と、珪素を含有する第二の粒子とを、前記炭素性物質Aとは異なる炭素性物質Bの炭素性物質前駆体とを複合化する工程と、前記複合化することにより得られた複合化物を焼成して塊状物を得る工程と、前記塊状物に剪断力を付与して、前記第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下となる体積平均粒子径を有し、前記第一の粒子及び前記第二の粒子が前記炭素性物質Bで複合化された複合粒子を得る工程とを含むことが好ましい。
(複合化)
 第一の粒子と第二の粒子と炭素性物質前駆体との複合化は、本製造方法により得られる複合粒子における第一の粒子、第二の粒子及び炭素性物質Bの構成比率を実現可能な量比で、これらの構成要素を複合化することが可能であれば特に制限はない。複合化によって、第一の粒子と、第二の粒子と、炭素性物質前駆体とを含む複合化物が得られる。なお、複合化工程で得られる複合化物は、第一の粒子表面に第二の粒子と炭素性物質前駆体とが一体化したものであって、炭素性物質前駆体が炭素化されていない未炭素化複合体である。
 第二の粒子及び炭素性物質前駆体のみによる複合化を抑制して上記未炭素化複合化物をより確実に形成させるため、第二の粒子と炭素性物質前駆体とが、分散媒体中に溶解あるいは分散した状態で、第一の粒子と混合することが好ましい。
 分散物とする場合に用いられる分散媒体としては、有機溶剤を用いることが好ましい。これにより例えば、第二の粒子の酸化を抑制できる。また炭素性物質前駆体が固形物の場合、前記有機溶剤に溶解した状態が好ましい。用いられる有機溶剤としては特に制限はないが、例えば、炭素性物質前駆体としてピッチ等を用いる場合、これに対して可溶性を有するトルエンやメチルナフタリンなどの芳香族炭化水素系溶剤が好適である。
 凝集性がある第二の粒子と炭素性物質前駆体とを第一の粒子の表面上に均一に複合化するために、第二の粒子と炭素性物質前駆体は、分散媒中で高度に分散されていることが好ましい。分散方法については特に制限はないが、第二の粒子と炭素性物質前駆体及び分散媒体を超音波分散処理することが、より均一な分散物を得ることができるために、好ましい。
 なお、分散物を得る際に、第一の粒子を同時に混合してもよい。その場合の分散方法は、第一の粒子が分散の際に粉砕されない限り特に制限されない。例えば、攪拌式のホモジナイザーやビーズミル、ボールミルなどを用いて分散を実施するこができる。
 第一の粒子と、第二の粒子及び炭素性物質前駆体を含む分散物とを混合する場合、分散物における炭素性物質前駆体及び第二の粒子の量と、第一の粒子に含まれる炭素性物質Aの構成によって、得られる負極材の構成が決定される。
 前記炭素性物質前駆体は焼成処理で炭素化物になる際、質量が減少する。よって、複合化の際の炭素性物質前駆体の量は、予め炭素化率を測定しておき、複合粒子中に残炭する量分に相当する量を複合化処理に用いることが好ましい。即ち、複合粒子中における炭素性物質Bの量に相当する炭素性物質Bの量を設定し、上述したように炭素化率を勘案して得られた炭素性物質前駆体の量を、複合化に適用すればよい。複合粒子中の炭素性物質Bの量については、既述の通りである。
 第二の粒子の量は、本発明にかかる負極材を用いて構成されるリチウムイオン二次電池の容量を決定する要因の1つとなる。よって、目的とする容量に応じ、複合化に用いられる第二の粒子の量を、適宜、決定することが好ましい。
 具体的には、複合粒子中の第二の粒子の含有量が既述の範囲となるように適宜選択することが好ましい。
 複合化の際に用いられる第一の粒子の量は、複合粒子中における第一の粒子の量に相当する第一の粒子の量を設定すればよい。例えば、複合粒子の全質量の60質量%~99質量%の範囲で適宜選択することが好ましい。
 第一の粒子、第二の粒子及び炭素性物質前駆体を複合化する具体的な方法としては、特に制限はない。例えば、第二の粒子、炭素性物質前駆体及び有機溶剤を含む分散物と第一の粒子とを複合化する場合、加熱可能な混練機で前記分散物と第一の粒子とを混合しながら有機溶剤を揮発させ複合化する方法、あるいは、第一の粒子を前記分散物中に予め混合し、これを噴霧乾燥して複合化する方法などが挙げられる。
 これらの複合化方法では、第一の粒子と前記分散物とが均一に混合されるよう、ペースト状、あるいはスラリー状などの状態で混合することが好ましい。
(焼成工程)
 焼成工程では、複合化工程によって得られた複合化物を焼成処理する。この焼成処理により、炭素性物質前駆体は炭素化物になって、第一の粒子と第二の粒子とが一体化する。また第二の粒子に珪素酸化物が含まれる場合、例えば、珪素酸化物は不均化され、珪素酸化物内に珪素の微結晶が分散した構造体になる。
 焼成処理により、複合化物が焼成されて塊状物が得られる。ここで、塊状物は、第一の粒子と、第二の粒子と、炭素性物質Bとを有する複合粒子が集合して一体化したものである。
 焼成処理は不活性雰囲気下で行うことが酸化抑制の点で好ましい。不活性雰囲気としては、窒素、アルゴン等が好適である。
 焼成処理条件は、特に限定されないが、200℃程度で一定時間保持し、残留溶剤を揮発させ、その後、目的温度まで昇温することが好ましい。
 焼成温度については800℃~1200℃が好ましく、850℃~1200℃がより好ましく、900℃~1200℃がさらに好ましい。焼成温度を800℃以上とすることで、炭素性物質前駆体の炭素化が十分に進行し、初回充放電効率が向上する傾向がある。一方、焼成温度を1200℃以下とすることで、珪素においては炭化珪素化を抑制でき、電池容量の低下を抑制できる傾向がある。また、珪素酸化物中の二酸化珪素部分の成長を抑制でき、珪素酸化物内におけるリチウムイオンの拡散阻害とレート特性の低下とを抑制できる。
(剪断力付与工程)
 剪断力付与工程では、焼成工程で得られた塊状物に剪断力を付与して、前記第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下の体積平均粒子径を有し、前記第一の粒子及び前記第二の粒子が前記炭素性物質Bで複合化された複合粒子を得る。
 焼成工程によって得られた塊状物は、炭素性物質前駆体の炭素化によって互いに結着した複合粒子により形成されている。この塊状物に対して剪断力が付与されると、互いに結着した複合粒子に対して適度な剪断力が付与され、所定の粒子径を有する個々の複合粒子に分離する。このようにして得られた複合粒子は、その表面に第二の粒子が多く存在する形態を有するものである。
 剪断力の付与は、複合粒子の体積平均粒子径が所望の範囲となる剪断力が付与可能な装置であれば特に制限はされない。例えば、一般的な装置であるミキサー、カッターミル、ハンマーミル、ジェットミルなどを用いて行うことができる。
 また、複合粒子の体積平均粒子径が所望の範囲内となる剪断力の付与の条件としては、用いられる装置等によって異なるが、例えば、WARING社製のワーリングミキサー(7012S)を用いた場合には、3000rpm~13000rpmの回転数で、30秒~3分の時間にわたり剪断する条件を採用すればよい。
 また剪断力の付与は、塊状物を、塊状物を形成している個々の複合粒子の状態にすると共に複合粒子を破壊しない処理であれば、粉砕処理又は解砕処理等の当業界で一般的に用いられる処理のいずれであってもよい。
 剪断力付与工程により得られた複合粒子は、第一の粒子及び前記第二の粒子が炭素性物質Bで複合化された複合粒子であり、第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下の体積平均粒子径を有する。
 複合粒子の体積平均粒子径が、第一の粒子の体積平均粒子径に対して1.0倍以上であると、目的とする複合粒子の破壊が抑制されて、第二の粒子が第一の粒子と一体化した状態となる。この結果、サイクル経過によって導電性が十分に維持でき、サイクル性がより向上する。一方、複合粒子の体積平均粒子径が、第一の粒子の体積平均粒子径に対して1.3倍以下であると、複合粒子同士が結着した塊状物の過度の生成が抑制され、第二の粒子が塊状物の内部に存在することが抑制される。この結果、充電時において第二の粒子の体積膨張が生じた際に、塊状物における過度な膨張を抑制することができる。
(その他の工程)
 リチウムイオン二次電池用負極材の製造方法は、上述した複合化工程、焼成工程及び剪断力付与工程の他に、必要に応じて他の工程を有するものであってもよい。
 例えば、剪断力付与工程の後に、整粒を目的として分級工程を含むことが好ましい。これにより、均一な粒子径を有する複合粒子を得ることができる。分級処理には、例えば、目開き40μmの篩を用いることが好ましい。また、分級処理において、1μm以下の微粉をできるだけ除去することが好ましい。
 分級処理の方法については特に限定されない。例えば、気流式分級機によって除去することが可能である。
 分級工程の後に、分級処理して得られた複合粒子を、不活性雰囲気下でさらに熱処理を行う熱処理工程を含んでもよい。熱処理条件については、上記の焼成条件と同様である。この処理を施すことにより、粉砕で乱れた粒子表面の構造を平滑化でき、初回の充放電効率をより向上することができる。
 更に、リチウムイオン二次電池用負極材の製造方法は、熱処理工程の後に、炭素被覆工程を含んでもよい。この炭素被覆工程によって、複合粒子には炭素被覆が施されて低結晶性炭素層がさらに形成される。炭素被覆量は、非晶質炭素の増加によって初回充放電効率が低下して、負極材の特性が低下しないように、適宜決定することが好ましい。
 炭素被覆の方法として、湿式混合法、化学蒸着法、メカノケミカル法などが挙げられる。均一かつ反応系の制御が容易で、複合粒子の形状が維持できるといった点から、化学蒸着法及び湿式混合法が好ましい。
 低結晶性炭素層を形成するための炭素源については特に限定はない。例えば、化学蒸着法では脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素など用いることができる。具体的にはメタン、エタン、プロパン、トルエン、ベンゼン、キシレン、スチレン、ナフタレン、クレゾール、アントラセン、これらの誘導体等が挙げられる。
 また、湿式混合法及びメカノケミカル法では、フェノール樹脂、スチレン樹脂等の高分子化合物、ピッチ等の炭化可能な固体物などを、固形のまま、または溶解物などにして処理を行うことができる。
 処理温度は、前記記載の焼成処理条件と同様の条件で行うことが好ましい。
 さらに本製造方法は、必要に応じてその他の成分を混合する工程をさらに含むものであってもよい。その他の成分としては、例えば、既述の導電性を有する物質(導電補助材)、バインダ等を挙げることができる。
<リチウムイオン二次電池用負極>
 本発明のリチウムイオン二次電池用負極は、集電体と、集電体上に設けられた既述の本発明のリチウムイオン二次電池用負極材を含有する負極材層と有し、必要に応じてその他の構成要素をさらに有していてもよい。これにより、高容量でサイクル特性と安全性に優れるリチウムイオン二次電池を構成することが可能になる。
 前記リチウムイオン二次電池用負極は、例えば、既述の本発明のリチウムイオン二次電池用負極材及び有機結着剤を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダ等の分散装置により混練して、負極材スラリーを調製し、これを集電体に塗布して負極材層を形成する、又は、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
 上記有機結着剤(以下、「バインダ」ともいう)としては、特に限定されないが、例えば、スチレン-ブタジエン共重合体;エチレン性不飽和カルボン酸エステル(例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等)、エチレン性不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等)等から形成される(メタ)アクリル共重合体;ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミドなどの高分子化合物が挙げられる。
 これらの有機結着剤は、それぞれの物性によって、水に分散、あるいは溶解したもの、また、N‐メチル‐2‐ピロリドン(NMP)などの有機溶剤に溶解したものであってもよい。これらの中でも、密着性に優れることから、主骨格がポリアクリロニトリル、ポリイミド、及びポリアミドイミドからなる群より選ばれる少なくとも1種である有機結着剤が好ましく、熱処理温度が低く、電極の柔軟性が優れることから、主骨格がポリアクリロニトリルである有機結着剤がより好ましい。ポリアクリロニトリルを主骨格とする有機結着剤としては、例えば、ポリアクリロニトリル骨格に、接着性を付与するアクリル酸、柔軟性を付与する直鎖エーテル基を付加した製品(日立化成工業株式会社製、LSR7)が使用できる。
 リチウムイオン二次電池負極の負極層中の有機結着剤の含有比率は、1質量%~30質量%であることが好ましく、2質量%~20質量%であることがより好ましく、3質量%~15質量%であることがさらに好ましい。
 有機結着剤の含有比率が1質量%以上であると、密着性が良好で、充放電時の膨張・収縮によって負極が破壊されることが抑制される。一方、30質量%以下であると、電極抵抗が大きくなることを抑制できる。
 また、上記負極材スラリーには、必要に応じて、導電補助材を混合してもよい。導電補助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電補助材の含有率は、本発明のリチウムイオン二次電池負極材に対して0.1質量%~20質量%程度とすればよい。
 また前記集電体の材質及び形状については特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。
 上記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行うことが好ましい。
 また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、これらの組み合わせ等、公知の方法により行うことができる。
 前記集電体上に形成された負極材層及び集電体と一体化した負極層は、用いた有機結着剤に応じて熱処理することが好ましい。例えば、ポリアクリロニトリルを主骨格とした有機結着剤を用いた場合は、100℃~180℃で、ポリイミド、ポリアミドイミドを主骨格とした有機結着剤を用いた場合には150℃~450℃で熱処理することが好ましい。
 この熱処理により溶剤の除去、バインダの硬化による高強度化が進み、粒子間及び粒子と集電体間の密着性が向上できる。尚、これらの熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気、又は真空雰囲気で行うことが好ましい。
 熱処理する前に、負極はプレス(加圧処理)しておくことが好ましい。加圧処理することで電極密度を調整することができる。前記リチウムイオン二次電池用負極材では、電極密度が1.4g/cm~1.9g/cmであることが好ましく、1.5g/cm~1.85g/cmであることがより好ましく、1.6g/cm~1.8g/cmであることがさらに好ましい。電極密度については、高いほど体積容量が向上するほか、密着性が向上し、サイクル特性も向上する傾向がある。
<リチウムイオン二次電池>
 本発明のリチウムイオン二次電池は、既述の本発明のリチウムイオン二次電池用負極と、正極と、電解質とを含むことを特徴とする。例えばリチウムイオン二次電池は、上記リチウムイオン二次電池用負極と正極とを、必要に応じてセパレータを介して対向して配置し、電解質を含む電解液を注入することにより構成することができる。
 前記正極は、前記負極と同様にして、集電体表面上に正極材層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。
 前記正極材層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物、金属酸化物、金属硫化物、又は導電性高分子材料を用いればよく、特に限定されない。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、電池容量が高いため本発明に用いる正極材として好適である。
 前記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。
 前記電解液としては、例えば、電解質であるLiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。なかでも、フルオロエチレンカーボネートを含有する電解液は、本発明の負極材の表面に安定なSEI(固体電解質界面)が形成される傾向があり、サイクル特性が著しく向上するため好適である。
 本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。
 本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。
 上述した本発明のリチウムイオン二次電池用負極材は、リチウムイオン二次電池用と記載したが、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタなどにも適用することが可能である。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。尚、特に断りのない限り、「部」及び「%」は質量基準である。
<実施例1>
(複合粒子の作製)
 まず、体積平均粒子径25μmの珪素粉末(純度99.9%、東洋金属粉株式会社製:HiSi-300、第二の粒子)を、メチルナフタレン、分散剤(花王(株)製:L-1820)とともに、ビーズミル(アシザワファインテック製:LMZ)で体積平均粒子径0.2μmまで粉砕して珪素スラリーを作製した。
 この珪素スラリー500g(固形分30%)と、コールタールピッチ(炭素化率50%、炭素性物質Bの前駆体)300gと、メチルナフタレン2000gをSUS製容器に入れて攪拌し、さらに通液型の超音波ホモジナイザー(ギンセン社製:GSD600HAT)で循環しながら30分間、超音波分散処理して分散物を得た。
 次いで、体積平均粒子径18μmのニードルコークス(炭素性物質A)を加圧式ニーダに2700g投入し、ここに前記分散物を投入し、200℃でメチルナフタレンを蒸発させて、炭素性物質Aと珪素粒子とが炭素性物質Bで複合化された複合化物を得た。
 得られた複合化物を、窒素雰囲気の焼成炉で900℃、2時間焼成して塊状物を得た。得られた塊状物をワーリングミキサー(WARING製:7012S)を用いて回転数3100rpm、1分間の条件で解砕し、次いで目開き40μmの振動ふるいで分級し、体積平均粒子径20μmの複合粒子を得て、これをリチウムイオン二次電池用負極材とした。
 上記製造方法によって得られた複合粒子を含むリチウムイオン二次電池用負極材について、下記方法により、珪素原子の含有比率、平均面間隔、タップ密度、BET比表面積、体積平均粒子径(50%D)、第二の粒子の含有率、長軸長さ比を評価した。評価結果を表1に示す。なお、表1中、「-」は未評価であることを示す。
 また、図1には得られた複合粒子の断面の全体を示すSEM画像を、図2には複合粒子の断面の表面部分を示すSEM画像を示す。なお、図2における矢印は珪素粒子を示す。
[断面観察及び定量分析]
 電極断面の加工は、日立ハイテク社製イオンミリング装置(E-3500)を用いた。これで加工した電極断面について、SEM(日立ハイテク製S-3400N)で観察しながらEDX(オックスフォードインスツルメンツ製INCA Energy350)を用いて炭素原子、酸素原子及び珪素原子の定量分析を行い、炭素原子、酸素原子及び珪素原子の総含有量に対する珪素原子の含有量の比率として、複合粒子全体及び、表面部分、中心部分における珪素原子の含有比率をそれぞれ求めた。
 複合粒子全体における珪素原子の含有比率は、観察対象の複合粒子の長軸の長さと観察領域の幅がほぼ等しくなるまで拡大し、被観察領域全体における珪素原子の含有比率として求めた。また表面部分及び中心部分における珪素原子の含有比率は、表面部分及び中心部分のそれぞれにおいて、一辺の長さが1μmの正方形領域を3箇所、できるだけ重複しないように選択して、それぞれの正方形領域における測定値の算術平均値として算出した。
 更に、中心部分に対する表面部分の珪素原子の比率(表面/中心)、及び複合粒子全体に対する表面部分の珪素原子の比率(中心/全体)を併せて算出した。
 また断面観察において、長軸長さ比を、複合粒子の長軸の長さに対する第二の粒子の長軸の長さの比として算出した。表1には、小数点以下第3位を四捨五入した値を示す。
 尚、第二の粒子の長軸の長さは、任意に選択した3個の第二の粒子の長軸の長さの算術平均値とした。
 測定した複合粒子は10個であり、実施例のものは10個全ての複合粒子が本願発明の規定を満たしていた。従って表1の各値は10個の平均値である。各複合粒子において、各被観察領域はそれぞれ3カ所とした。また、各比較例は10個全ての複合粒子が本願発明の規定を満たしていなかった。表1の各値は同じく10個の平均値である。
[平均面間隔(d002)(XRD)測定]
 リガク社製広角X線回折測定装置で行い、学振法に基づき、平均面間隔(d002)を算出した。
[タップ密度測定]
 JIS規格R1628に準拠した方法により、タップ密度を測定した。
[BET比表面積測定]
 窒素吸着測定装置ASAP-2010(島津製作所製)を使用し、相対圧0.04~0.20の範囲において5点、窒素吸着を測定し、BET法を適用してBET比表面積を算出した。
[平均粒子径(50%D)測定]
 レーザー回折式粒度分布測定装置SALD-3000J(島津製作所製)を使用し、得られた複合粒子を界面活性剤と共に精製水中に分散させた分散液を試料水槽に入れ、超音波処理しながらポンプで循環させて測定した。得られた粒度分布の小径側からの体積累積が50%となる粒径(50%D)を体積平均粒子径とした。
[第二の粒子の含有率]
 複合粒子中に含まれる第二の粒子の含有率は、以下のようにして測定した。得られた複合粒子3gをアルミナ坩堝に入れ、大気下で900℃、60時間熱処理した。得られた灰分は全て酸化されていると見なし、以下の式より、第二の粒子を構成する珪素、又は珪素酸化物の含有率を測定した。
 珪素含有率(%)=(灰分量×28.09/60.09)/複合粒子質量×100
 珪素酸化物含有率(%)=(灰分量×44.09/60.09)/複合粒子質量×100
(リチウムイオン二次電池用負極の作製)
 得られた複合粒子の95部に対して、バインダとして、ポリアクリロニトリルを主骨格とする樹脂(日立化成工業製、LSR7)を5部添加し、NMP(N-メチル-2-ピロリドン)を適量入れて固練した後、さらにNMPを添加して固形分40%のスラリーを作製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が7mg/cmになるように銅箔に塗布し、90℃定置運転乾燥機にて2時間、乾燥した。乾燥後、線圧1t/cmの条件でロールプレスし、さらに真空下、160℃で2時間、熱処理して、リチウムイオン二次電池用負極を得た。得られたリチウムイオン二次電池用負極を、14mmφの円形に打ち抜き、これを評価用試料として使用した。
(評価用セルの作製)
 評価用セルは、CR2016型コインセルに上記負極と、対極である金属リチウムとを20μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液はエチルカーボネートとメチルエチルカーボネートを体積比3対7の混合溶媒に、LiPFを1mol/Lの濃度になるように溶解させ、これに1.5質量%のビニルカーボネートを添加した後、さらにフルオロエチレンカーボネートを20体積%添加したものを使用した。
(評価条件)
 評価用セルは25℃の恒温槽内に入れ、サイクル試験した。充電は、2mAの定電流で0Vまで充電後、0Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。放電容量と充放電効率は、初回充放電試験の結果とした。
 また、膨張率は上記条件で5サイクル充放電を繰り返した後、充電した状態で評価用セルを解体し、得られた負電極の厚みの負電極作製時の厚みに対する比率を膨張率とした。
 また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量を初回の放電容量を比較し、その容量維持率として評価した。
 評価結果を表1に示す。
<実施例2>
 実施例1において、珪素粉末の代わりに珪素酸化物粉末(SiO、株式会社高純度化学研究所製:SiO02PB、第二の粒子)を用い、その体積平均粒子径が0.5μmになるように粉砕して珪素酸化物スラリーを作製した。この珪素酸化物スラリー800gを300gのコールタールピッチと超音波分散処理し、ニードルコークス2.61kgと複合化したこと以外は、実施例1と同様にして複合粒子を作製し、同様の評価を行った。
<実施例3>
 実施例1において、焼成して得られた塊状物を、ジェットミル(日本ニューマティック製LJ-3)を用いて、粉砕圧0.1MPaで、分級ゾーンをクリアランス12mm、大型ルーバーを使用する条件で解砕したこと以外は、実施例1と同様にして複合粒子を作製し、同様の評価を行った。
<実施例4>
 実施例1において、得られた複合粒子に平均粒径4μm、比表面積14m/gの鱗片状黒鉛粒子を全量中に10%となるよう混合して、これをリチウムイオン二次電池用負極材としたこと以外は、実施例1と同様にして複合粒子を作製し、同様の評価を行った。
<実施例5>
(複合粒子の作製)
 まず、体積平均粒子径30μmの珪素酸化物粉末(SiO、株式会社高純度化学研究所製:SiO02PB、第二の粒子)を、メチルナフタレン、分散剤(花王(株)製:L-1820)とともに、ビーズミル(アシザワファインテック製:LMZ)で体積平均粒子径0.5μmまで粉砕して珪素酸化物スラリーを調製した。
 この珪素スラリー500g(固形分30%)と、コールタールピッチ(炭素化率50%、炭素性物質Bの前駆体)300gと、メチルナフタレン2000gをSUS製容器に入れて攪拌し、さらに通液型の超音波ホモジナイザー(ギンセン製:GSD600HAT)で循環しながら30分間、超音波分散処理して分散物を得た。
 次いで、体積平均粒子径20μm及び円形度0.95の球形化天然黒鉛(球形黒鉛粒子、第一の粒子)を加圧式ニーダに2700g投入し、ここに前記分散物を投入し、200℃でメチルナフタレンを蒸発させて、珪素酸化物粒子が炭素性物質で複合化された球形化天然黒鉛からなる複合化物を得た。
 得られた複合化物を、窒素雰囲気の焼成炉で900℃、2時間焼成した。焼成して得られた塊状物は、ワーリングミキサー(WARING製:7012S)で回転数3100rpmの条件で1分間解砕し、次いで目開き40μmの振動ふるいで分級し、体積平均粒子径22μmの複合粒子を得て、これをリチウムイオン二次電池用負極材とした。
 上記製造方法によって得られた複合粒子を含むリチウムイオン二次電池用負極材について、下記方法により、珪素原子の含有比率、平均面間隔、タップ密度、BET比表面積、体積平均粒子径(50%D)及び第二の粒子の含有率を実施例1と同様に評価し、第一の粒子の円形度は以下のようにして評価した。評価結果を表1に示す。
[円形度]
 第一の粒子について、走査式電子顕微鏡で倍率1000倍に拡大した画像を観察し、任意に10個の球状黒鉛粒子を選択し、住友金属テクノロジー社の粒子解析の画像解析ソフトを用いて、個々の炭素粒子の円形度を測定し、算術平均値として求めた。なお、円形度とは、球状黒鉛粒子の投影面積と同じ面積を持つ円の直径である円相当径から算出される円としての周囲長を、球状黒鉛粒子の投影像から測定される周囲長(輪郭線の長さ)で除して得られる数値であり、下記式で求められる。尚、円形度は真円では1.00となる。
  円形度=(相当円の周囲長)/(粒子断面像の周囲長)
(リチウムイオン二次電池用負極の作製)
 得られた複合粒子の95部に対して、バインダとして、ポリアクリロニトリルを主骨格とする樹脂(日立化成工業製、LSR7)を5部添加し、NMP(N-メチル-2-ピロリドン)を適量入れて固練した後、さらにNMPを添加し固形分40%のスラリーを作製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が7mg/cmになるように銅箔に塗布し、90℃定置運転乾燥機にて2時間、乾燥した。乾燥後、線圧1t/cmの条件でロールプレスし、さらに真空下、160℃で2時間、熱処理して、リチウムイオン二次電池用負極を得た。得られたリチウムイオン二次電池用負極を、14mmφの円形に打ち抜き、これを評価用試料として使用した。
(評価用セルの作製)
 評価用セルは、CR2016型コインセルに上記負極と、対極である金属リチウムとを20μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液はエチルカーボネートとメチルエチルカーボネートを体積比3対7の混合溶媒に、LiPFを1mol/Lの濃度になるように溶解させ、これに1.5質量%のビニルカーボネートを添加した後、さらにフルオロエチレンカーボネートを20体積%添加したものを使用した。
(評価条件)
 評価用セルは25℃の恒温槽内に入れ、サイクル試験した。充電は、2mAの定電流で0Vまで充電後、0Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。放電容量と充放電効率は、初回充放電試験の結果とした。
 また、膨張率は上記条件で5サイクル充放電を繰り返した後、充電した状態で評価用セルを解体し、得られた負電極の厚みの負電極作製時の厚みに対する比率を膨張率とした。
 また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量を初回の放電容量を比較し、その容量維持率として評価した。評価結果を表1に示す。
<実施例6>
 実施例5において、珪素酸化物粉末の代わりに体積平均粒子径が25μmの珪素粉末(純度99.9%、東洋金属粉株式会社製:HiSi-300、第二の粒子)を用い、その体積平均粒子径が0.2μmになるように粉砕して珪素スラリーを作製し、このスラリー200gを180gのコールタールピッチと共に超音波分散処理したこと以外は、実施例5と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
 また、図3には得られた複合粒子の断面の全体を示すSEM画像を、図4には複合粒子の断面の中心部分を示すSEM画像を、図5には複合粒子の断面の表面部分を示すSEM画像を、それぞれ示す。尚、図5における矢印は珪素粒子を示す。
 図3~図5より、実施例6にかかる複合粒子においては、表面部分に珪素粒子が存在し、中心部分には珪素粒子が存在しないことが分かる。
<実施例7>
 実施例5において、球状化天然黒鉛の代わりに、以下のようにして調製した造粒粒子を用いたこと以外は、実施例5と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
-造粒粒子の調製-
 体積平均粒子径が8μmの鱗片状黒鉛980gとカルボキシメチルセルロース20g(第一工業製薬:WS-C)を精製水3000gとともに攪拌混合した。このスラリーを、流動層造粒装置(パウレック製:GPCG)で造粒した。この造粒粒子を窒素雰囲気下、900℃で2時間焼成することによって、体積平均粒子径24μm及び円形度0.93の造粒粒子を得た。
<実施例8>
 実施例5において、焼成して得られた塊状物を、ジェットミル(日本ニューマティック製LJ-3)を用いて、粉砕圧0.1MPaで、分級ゾーンをクリアランス12mm、大型ルーバーを使用する条件で解砕した以外は、実施例5と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例9>
 実施例5において、得られた複合粒子に体積平均粒径4μm、比表面積14m/gの鱗片状黒鉛粒子を全量中に10%となるよう混合して、これをリチウムイオン二次電池用負極材としたこと以外は、実施例5と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例10>
 実施例5において、体積平均粒子径20μm及び円形度0.95の球形化天然黒鉛を、100MPaの冷間静水等方圧プレス処理し、体積平均粒径20μm及び円形度0.86の球形化天然黒鉛を得た。この球形化天然黒鉛を用いた以外は、実施例5と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例11>
(複合粒子の作製)
 第一の粒子(以下、「塊状黒鉛粒子」ともいう)を以下のようにして作製した。
 体積平均粒子径が10μmのコークス粉末2000g、コールタールピッチ800g、炭化珪素400g、及びコールタール800gを、加圧ニーダを用いて、100℃、1時間混練した。得られた塊状物を、窒素雰囲気中900℃で2時間焼成後、同雰囲気下で2800℃、2時間で黒鉛化した。黒鉛化した塊状物はジェットミルで粉砕し、体積平均粒子径が23μm及びアスペクト比が1.5の第一の粒子を作製した。
 次に体積平均粒子径30μmの珪素酸化物粉末(SiO、株式会社高純度化学研究所製:SiO02PB、第二の粒子)を、メチルナフタレン、分散剤(花王(株)製:L-1820)とともに、ビーズミル(アシザワファインテック製:LMZ)で体積平均粒子径0.5μmまで粉砕して珪素酸化物スラリーを調製した。
 この珪素酸化物スラリー500g(固形分30%)と、コールタールピッチ(炭素化率50%、炭素性物質Bの前駆体)300gと、メチルナフタレン2000gをSUS製容器に入れて攪拌し、さらに通液型の超音波ホモジナイザー(ギンセン製:GSD600HAT)で循環しながら30分間、超音波分散処理して分散物を得た。
 次いで、上記で得られた体積平均粒子径23μmの塊状黒鉛粒子(第一の粒子)を加圧式ニーダに2700g投入し、ここに前記分散物を投入し、200℃でメチルナフタレンを蒸発させて、珪素酸化物粒子が炭素性物質前駆体で複合化された塊状黒鉛粒子からなる複合化物を得た。
 得られた複合化物を、窒素雰囲気の焼成炉で900℃、2時間焼成した。焼成して得られた塊状物を、ワーリングミキサー(WARING製:7012S)で回転数3100rpmの条件で1分間解砕し、次いで目開き40μmの振動ふるいで分級し、体積平均粒子径25μmの複合粒子を得て、これをリチウムイオン二次電池用負極材とした。
 上記製造方法によって得られた複合粒子を含むリチウムイオン二次電池用負極材について、下記方法により、断面観察、珪素原子の含有比率、平均面間隔、タップ密度、BET比表面積、体積平均粒子径(50%D)及び第二の粒子の含有率を実施例1と同様に評価し、第一の粒子のアスペクト比は、以下のようにして評価した。評価結果を表1に示す。
[アスペクト比]
 得られた複合粒子を電子顕微鏡で1000倍に拡大して観察し、任意に100個の複合粒子を選択して、複合粒子の短軸方向の長さBに対する長軸方向の長さAの比をそれぞれ算出し、それらの算術平均値として、アスペクト比を求めた。
(リチウムイオン二次電池用負極の作製)
 得られた複合粒子の95部に対して、バインダとして、ポリアクリロニトリルを主骨格とする樹脂(日立化成工業製、LSR7)を5部添加し、NMP(N-メチル-2-ピロリドン)を適量入れて固練した後、さらにNMPを添加し固形分40%のスラリーを作製した。
 得られたスラリーを、アプリケータを用いて固形分塗布量が7mg/cmになるように銅箔に塗布し、90℃定置運転乾燥機にて2時間、乾燥した。乾燥後、線圧1t/cmの条件でロールプレスし、さらに真空下、160℃で2時間、熱処理して、リチウムイオン二次電池用負極を得た。得られたリチウムイオン二次電池用負極を、14mmφの円形に打ち抜き、これを評価用試料として使用した。
(評価用セルの作製)
 評価用セルは、CR2016型コインセルに上記負極と金属リチウムを20μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液はエチルカーボネートとメチルエチルカーボネートを体積比3対7の混合溶媒に、LiPFを1mol/Lの濃度になるように溶解させ、これに1.5質量%のビニルカーボネートを添加した後、さらにフルオロエチレンカーボネートを20体積%添加したものを使用した。
(評価条件)
 評価用セルは25℃の恒温槽内に入れ、サイクル試験した。充電は、2mAの定電流で0Vまで充電後、0Vの定電圧で電流値が0.2mAになるまで行った。また放電は、2mAの定電流で1.5Vの電圧値まで行った。放電容量と充放電効率は、初回充放電試験の結果とした。
 また、膨張率は上記条件で5サイクル充放電を繰り返した後、充電した状態で評価用セルを解体し、得られた負電極の厚みの負電極作製時の厚みに対する比率を膨張率とした。
 また、サイクル特性は、前記充放電条件にて50回充放電試験した後の放電容量を初回の放電容量を比較し、その容量維持率として評価した。
 評価結果を表1に示す。
 また、図6には得られた複合粒子の断面の全体を示すSEM画像を、図7には複合粒子の断面の中心部分を示すSEM画像を、図8には複合粒子の断面の表面部分を示すSEM画像を、それぞれ示す。尚、図8における矢印は珪素粒子を示す。
 図6~図8より、実施例11にかかる複合粒子においては、表面部分に珪素粒子が存在し、中心部分には珪素粒子が存在しないことが分かる。
<実施例12>
 実施例11において、珪素酸化物粉末の代わりに体積平均粒子径が25μmの珪素粉末(純度99.9%、東洋金属粉株式会社製:HiSi-300、第二の粒子)を用い、その体積平均粒子径が0.2μmになるように粉砕して珪素スラリーを作製し、このスラリー200gを180gのコールタールピッチと共に超音波分散処理したこと以外は、実施例11と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例13>
 実施例11において、焼成して得られた塊状物をジェットミル(日本ニューマティック製LJ-3)を用いて、粉砕圧0.1MPaで、分級ゾーンをクリアランス12mm、大型ルーバーを使用する条件で解砕した以外は、実施例11と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例14>
 実施例11において、得られた複合粒子に体積平均粒径4μm、比表面積14m/gの鱗片状黒鉛粒子を全量中に10%となるよう混合して、これをリチウムイオン二次電池用負極材としたこと以外は、実施例11と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<実施例15>
 実施例11において、体積平均粒子径が23μm及びアスペクト比が1.5の第一の粒子の代わりに、体積平均粒径20μm及びアスペクト比3.1の塊状黒鉛粒子を用いた以外は、実施例11と同様にして複合粒子を作製し、同様の評価を行った。評価結果を表1に示す。
<比較例1>
 実施例1において、体積平均粒子径が10μmのニードルコークスを用い、珪素スラリー及びコールタールピッチと共にメチルナフタリン中で超音波分散処理をし、この分散物を加圧式ニーダでメチルナフタレンを蒸発させて複合化物を得た。得られた複合化物を上記と同様に焼成して塊状物を得た。
 得られた塊状物を、ジェットミル(ホソカワミクロン製AFG)により、粉砕圧0.4MPa、分級ローター回転数1500rpmの条件で体積平均粒子径23μmまで粉砕して、複合粒子を得た。
 こうして得られた複合粒子を用いたこと以外は実施例1と同様にして負極材を作製し、同様の評価を行った。評価結果を表1に示す。
<比較例2>
 実施例1において、体積平均粒子径が10μmのニードルコークスを用い、珪素スラリー、コールタールピッチと共にメチルナフタリン中で超音波分散処理をした。この分散物をスプレードライヤー(大川原化工機製:CL-8i)を使用して複合化物を得た。スプレーにはツインジェットノズルを使用し、噴霧条件としては、噴霧圧0.1MPa、噴霧入口温度110℃で実施した。
 得られた複合化物を比較例1と同様に焼成・粉砕して、体積平均粒子径16μmの複合粒子を得た。
 こうして得られた複合粒子を用いたこと以外は実施例1と同様にして負極材を作製し、同様の評価を行った。評価結果を表1に示す。
 また、図9には得られた複合粒子の断面の全体を示すSEM画像を、図10には複合粒子の断面の中心部分を示すSEM画像を、図11には複合粒子の断面の表面部分を示すSEM画像を、それぞれ示す。尚、図10及び図11における矢印は珪素粒子を示す。
 図9~図11より、比較例2にかかる複合粒子においては、表面部分に加えて中心部分にも珪素粒子が存在していることが分かる。
Figure JPOXMLDOC01-appb-T000001
 
 表1から、本発明のリチウムイオン二次電池用負極材を用いて構成したリチウムイオン二次電池用負極は、充電に伴う負極の膨張が抑制されることが分かる。また本発明のリチウムイオン二次電池用負極材を用いて構成した本発明のリチウムイオン二次電池は、サイクル特性に優れることが分かる。
 日本国特許出願2010-275949号、日本国特許出願2010-275950号、日本国特許出願2010-275951号、及び日本国特許出願2010-275977号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (12)

  1.  炭素性物質Aを含有する第一の粒子と、
     珪素原子を含有する第二の粒子とが、
     前記炭素性物質Aとは異なる炭素性物質Bで複合化された複合粒子を含み、
     前記複合粒子の断面を観察した場合に、
     前記複合粒子の最大長さである長軸の中点を中心とし、前記長軸の中点で直交する短軸の長さの1/8の長さを半径とする円の内部領域に含まれる珪素原子の含有量に対する、
     前記複合粒子の外周から内側に前記短軸の長さの1/8の長さの深さまでの内側領域に含まれる珪素原子の含有量の比率が2以上であるリチウムイオン二次電池用負極材。
  2.  前記複合粒子の断面に含まれる珪素原子の総含有量に対する前記円の内部領域に含まれる珪素原子の含有量の比率が0.2以下である請求項1に記載のリチウムイオン二次電池用負極材。
  3.  前記第一の粒子は、円形度が0.60~1.00の黒鉛粒子である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
  4.  前記第一の粒子の体積平均粒子径が5μm以上40μm以下である請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5.  前記第一の粒子は、扁平状の粒子を複数、配向面が非平行となるように集合又は結合させてなる、細孔を有する黒鉛粒子である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
  6.  前記第一の粒子のアスペクト比が1.2~5.0である請求項5に記載のリチウムイオン二次電池用負極材。
  7.  前記扁平状の粒子の体積平均粒子径が、前記第一の粒子の体積平均粒子径の2/3以下である請求項5又は請求項6に記載のリチウムイオン二次電池用負極材。
  8.  前記炭素性物質Bの含有量が前記複合粒子全体において1質量%以上10質量%以下であり、前記炭素性物質Bは有機物の炭素化物である請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。
  9.  導電性を有する物質をさらに含有する請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材。
  10.  炭素性物質Aを含有する第一の粒子と、珪素原子を含有する第二の粒子とを、前記炭素性物質Aとは異なる炭素性物質Bを用いて複合化し、体積平均粒子径が前記第一の粒子の体積平均粒子径に対して1.0倍以上1.3倍以下である複合粒子を得る工程を含む、請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  11.  集電体と、前記集電体上に設けられた請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材を含有する負極材層と、を有するリチウムイオン二次電池用負極。
  12.  請求項11に記載のリチウムイオン二次電池用負極と、正極と、電解質と、を含むリチウムイオン二次電池。
PCT/JP2011/078558 2010-12-10 2011-12-09 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池 WO2012077785A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11846576.4A EP2650954B1 (en) 2010-12-10 2011-12-09 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR1020147022549A KR102032104B1 (ko) 2010-12-10 2011-12-09 리튬 이온 이차 전지용 부극재 및 그 제조 방법, 리튬 이온 이차 전지용 부극, 그리고 리튬 이온 이차 전지
KR1020137017457A KR101451538B1 (ko) 2010-12-10 2011-12-09 리튬 이온 이차 전지용 부극재 및 그 제조 방법, 리튬 이온 이차 전지용 부극, 그리고 리튬 이온 이차 전지
CN201180059560.9A CN103262314B (zh) 2010-12-10 2011-12-09 锂离子二次电池用负极材料及其制造方法、锂离子二次电池用负极和锂离子二次电池
US13/992,388 US9614216B2 (en) 2010-12-10 2011-12-09 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010-275950 2010-12-10
JP2010-275951 2010-12-10
JP2010275951A JP5682276B2 (ja) 2010-12-10 2010-12-10 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2010275950A JP5691469B2 (ja) 2010-12-10 2010-12-10 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2010275977A JP5903761B2 (ja) 2010-12-10 2010-12-10 リチウム二次電池用負極材の製造方法
JP2010275949A JP5691468B2 (ja) 2010-12-10 2010-12-10 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2010-275977 2010-12-10
JP2010-275949 2010-12-10

Publications (1)

Publication Number Publication Date
WO2012077785A1 true WO2012077785A1 (ja) 2012-06-14

Family

ID=46207267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078558 WO2012077785A1 (ja) 2010-12-10 2011-12-09 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池

Country Status (6)

Country Link
US (1) US9614216B2 (ja)
EP (1) EP2650954B1 (ja)
KR (2) KR101451538B1 (ja)
CN (1) CN103262314B (ja)
TW (1) TWI536646B (ja)
WO (1) WO2012077785A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453310A (zh) * 2013-08-14 2016-03-30 东曹株式会社 锂二次电池用复合活性物质及其制造方法
CN110010880A (zh) * 2012-10-26 2019-07-12 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
WO2019186828A1 (ja) 2018-03-28 2019-10-03 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2019220576A1 (ja) * 2018-05-16 2019-11-21 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
CN110635123A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9461309B2 (en) 2012-08-21 2016-10-04 Kratos LLC Group IVA functionalized particles and methods of use thereof
CN104781956B (zh) 2012-08-21 2018-01-30 克雷多斯公司 Iva族官能化粒子及其使用方法
CN108461705A (zh) * 2013-02-21 2018-08-28 柯耐克斯系统株式会社 锂二次电池用复合活性物质及其制造方法
JP6030995B2 (ja) 2013-05-15 2016-11-24 信越化学工業株式会社 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池
KR101687055B1 (ko) 2013-05-16 2016-12-15 주식회사 엘지화학 중공형 실리콘계 입자, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지용 음극 활물질
CN104518207B (zh) * 2013-09-27 2018-04-20 比亚迪股份有限公司 一种锂离子电池负极活性材料及制备方法、负极和锂离子电池
KR101790400B1 (ko) 2013-12-20 2017-10-25 주식회사 엘지화학 음극 활물질 및 이를 포함하는 리튬 이차전지
DE102014202156A1 (de) 2014-02-06 2015-08-06 Wacker Chemie Ag Si/G/C-Komposite für Lithium-Ionen-Batterien
KR20230119033A (ko) * 2014-03-26 2023-08-14 미쯔비시 케미컬 주식회사 비수계 이차 전지 부극용 복합 흑연 입자, 비수계 이차전지 부극용 활물질 및 비수계 이차 전지
US10576541B2 (en) * 2016-06-22 2020-03-03 United Technologies Corporation Structured powder particles for feedstock improvement for laser based additive manufacturing
JP2019520682A (ja) 2016-07-05 2019-07-18 クラトス・エル・エル・シー 不動態化されたプレリチウム化ミクロン及びサブミクロンiva族元素粒子及びこの調製方法
JP6874860B2 (ja) * 2017-01-27 2021-05-19 日本電気株式会社 シリコーンボールを含む電極及びそれを含むリチウムイオン電池
US11637280B2 (en) 2017-03-31 2023-04-25 Kratos LLC Precharged negative electrode material for secondary battery
JP7201616B2 (ja) 2017-12-22 2023-01-10 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法
KR102377948B1 (ko) * 2018-05-18 2022-03-22 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
US12057588B2 (en) * 2019-05-08 2024-08-06 Eocell Limited Silicon carbon nanocomposite (SCN) material, fabrication process therefor, and use thereof in an anode electrode of a lithium ion battery
CN110600696A (zh) * 2019-09-10 2019-12-20 深圳市比克动力电池有限公司 一种快充式长循环、低温放电容量高的圆柱型锂离子电池
CN114586197A (zh) * 2019-12-17 2022-06-03 株式会社Lg新能源 负极和包含其的二次电池
CN114695846B (zh) * 2020-12-30 2023-11-17 宝武碳业科技股份有限公司 一种针状焦的制备方法及其含硅负极材料
EP4318657A1 (en) * 2022-05-25 2024-02-07 Contemporary Amperex Technology Co., Limited Negative electrode active material, preparation method therefor, and device comprising negative electrode active material
CN118062838B (zh) * 2024-02-22 2024-09-10 深圳市贝特瑞新能源技术研究院有限公司 石墨负极材料及其制备方法、锂离子电池和涉电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149946A (ja) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2008235258A (ja) * 2007-02-20 2008-10-02 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
JP2008277232A (ja) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1076711C (zh) * 1996-08-08 2001-12-26 日立化成工业株式会社 石墨颗粒、其生产方法、含该颗粒的负极和锂二次电池
JP3305995B2 (ja) 1996-12-26 2002-07-24 日立化成工業株式会社 リチウム二次電池負極用黒鉛粒子
JP3466576B2 (ja) 2000-11-14 2003-11-10 三井鉱山株式会社 リチウム二次電池負極用複合材料及びリチウム二次電池
US7135251B2 (en) * 2001-06-14 2006-11-14 Samsung Sdi Co., Ltd. Active material for battery and method of preparing the same
JP3987853B2 (ja) 2002-02-07 2007-10-10 日立マクセル株式会社 電極材料およびその製造方法、並びに非水二次電池およびその製造方法
KR101181623B1 (ko) * 2003-09-05 2012-09-10 산요덴키가부시키가이샤 비수전해액 이차전지용 음극재, 그 제조방법, 상기음극재를 이용한 비수전해액 이차전지용 음극 및비수전해액 이차전지
JP3995050B2 (ja) 2003-09-26 2007-10-24 Jfeケミカル株式会社 リチウムイオン二次電池負極材料用複合粒子およびその製造方法、リチウムイオン二次電池用負極材料および負極、ならびにリチウムイオン二次電池
JP2005228640A (ja) * 2004-02-13 2005-08-25 Nec Corp 二次電池
US20060008706A1 (en) * 2004-07-09 2006-01-12 Takitaro Yamaguchi Rechargeable lithium battery
JP5158460B2 (ja) 2005-02-21 2013-03-06 日本カーボン株式会社 リチウムイオン二次電池用シリコン添加黒鉛負極材および製造法
KR100745733B1 (ko) * 2005-09-23 2007-08-02 삼성에스디아이 주식회사 음극 활물질, 그의 제조방법 및 이를 채용한 리튬 전지
KR101057162B1 (ko) * 2008-12-01 2011-08-16 삼성에스디아이 주식회사 음극활물질, 이를 구비하는 음극 및 리튬이차전지

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005149946A (ja) * 2003-11-17 2005-06-09 Mitsui Mining Co Ltd リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2008235258A (ja) * 2007-02-20 2008-10-02 Hitachi Chem Co Ltd リチウムイオン二次電池用負極材、負極及びリチウムイオン二次電池
JP2008277232A (ja) * 2007-04-05 2008-11-13 Hitachi Chem Co Ltd リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650954A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010880A (zh) * 2012-10-26 2019-07-12 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN110021735A (zh) * 2012-10-26 2019-07-16 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN110635123A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
CN110635124A (zh) * 2012-10-26 2019-12-31 日立化成株式会社 锂离子二次电池用负极材料、锂离子二次电池用负极和锂离子二次电池
US11251421B2 (en) 2012-10-26 2022-02-15 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN105453310A (zh) * 2013-08-14 2016-03-30 东曹株式会社 锂二次电池用复合活性物质及其制造方法
US20160197345A1 (en) * 2013-08-14 2016-07-07 Tosoh Corporation Composite active material for lithium secondary batteries and method for producing same
US10749178B2 (en) 2013-08-14 2020-08-18 Tosoh Corporation Composite active material for lithium secondary batteries and method for producing same
WO2019186828A1 (ja) 2018-03-28 2019-10-03 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2019220576A1 (ja) * 2018-05-16 2019-11-21 日立化成株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Also Published As

Publication number Publication date
TW201230475A (en) 2012-07-16
US20130302675A1 (en) 2013-11-14
EP2650954A1 (en) 2013-10-16
KR102032104B1 (ko) 2019-10-15
US9614216B2 (en) 2017-04-04
KR20130087609A (ko) 2013-08-06
EP2650954A4 (en) 2014-06-18
TWI536646B (zh) 2016-06-01
CN103262314A (zh) 2013-08-21
KR20140114874A (ko) 2014-09-29
KR101451538B1 (ko) 2014-10-15
CN103262314B (zh) 2015-07-01
EP2650954B1 (en) 2016-09-28

Similar Documents

Publication Publication Date Title
WO2012077785A1 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP5903761B2 (ja) リチウム二次電池用負極材の製造方法
JP5799500B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP5831579B2 (ja) リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5494344B2 (ja) リチウム二次電池用負極材、リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP5691469B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2008112710A (ja) リチウム二次電池用負極材料、これを用いたリチウム二次電池用負極及びリチウム二次電池
JP2008277231A (ja) リチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池負極、リチウム二次電池
JP7371735B2 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
JP6555051B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6020533B2 (ja) リチウムイオン二次電池
JP5881943B2 (ja) リチウム二次電池
WO2017191820A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5691468B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP5682276B2 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2015165510A (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
WO2019026265A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6218348B2 (ja) リチウムイオン二次電池、及びその製造方法
JP2009187924A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池
JP7226431B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP5990872B2 (ja) リチウム二次電池負極材、リチウム二次電池用負極及びリチウム二次電池
JP5885919B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP6319260B2 (ja) リチウムイオン二次電池、及びその製造方法
TW201937785A (zh) 碳質粒子、鋰離子二次電池用負極材料、鋰離子二次電池用負極及鋰離子二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11846576

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137017457

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011846576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011846576

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13992388

Country of ref document: US