WO2019186828A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2019186828A1
WO2019186828A1 PCT/JP2018/012982 JP2018012982W WO2019186828A1 WO 2019186828 A1 WO2019186828 A1 WO 2019186828A1 JP 2018012982 W JP2018012982 W JP 2018012982W WO 2019186828 A1 WO2019186828 A1 WO 2019186828A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
particles
lithium ion
ion secondary
electrode material
Prior art date
Application number
PCT/JP2018/012982
Other languages
English (en)
French (fr)
Inventor
秀介 土屋
直也 小松
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2018/012982 priority Critical patent/WO2019186828A1/ja
Priority to EP18912877.0A priority patent/EP3780184B1/en
Priority to JP2020508661A priority patent/JP7226431B2/ja
Publication of WO2019186828A1 publication Critical patent/WO2019186828A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a negative electrode material for a lithium ion secondary battery, a method for producing a negative electrode material for a lithium ion secondary battery, a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery. .
  • silicon, tin, lead, aluminum and the like are well known.
  • silicon and silicon oxide as specific element bodies have advantages such as higher capacity than other specific element bodies, low cost, and good workability.
  • Research on negative electrode materials is particularly active.
  • the negative electrode expands with charging, and as a result, the battery cell may expand. If the battery cell mounted on the electronic device or the like is excessively expanded, a repulsive force acts on the electronic component around the battery cell, causing the electronic component to break down. For this reason, it is preferable to suppress the expansion of the negative electrode as much as possible.
  • Patent Document 1 discloses a composite particle in which a first particle containing a carbonaceous substance A and a second particle containing a silicon atom are combined with a carbonaceous substance B different from the carbonaceous substance A.
  • the length of the short axis perpendicular to the midpoint of the long axis is centered on the midpoint of the long axis that is the maximum length of the composite particle.
  • the content of silicon atoms contained in the inner region from the outer periphery of the composite particle to the depth of 1/8 the length of the short axis with respect to the content of silicon atoms contained in the inner region of the circle having a radius of A negative electrode material for a lithium ion secondary battery having an amount ratio of 2 or more is disclosed.
  • the second particles containing silicon atoms are present more in the vicinity of the surface than inside the composite particles. For this reason, the expansion
  • the present disclosure provides a negative electrode material for a lithium ion secondary battery that is excellent in the effect of suppressing expansion of the negative electrode accompanying charging and that can form a lithium ion secondary battery that has excellent cycle characteristics, and a method for manufacturing the same Is an issue.
  • Another object of the present disclosure is to provide a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery using such a negative electrode material for a lithium ion secondary battery.
  • Lithium ion two which is a mixture containing first particles in which a plurality of flat graphite particles are aggregated or bonded so that the principal surfaces are non-parallel, and second particles containing silicon atoms Negative electrode material for secondary batteries.
  • ⁇ 2> The negative electrode material for a lithium ion secondary battery according to ⁇ 1>, wherein the first particles and the second particles are not combined.
  • ⁇ 3> The negative electrode material for a lithium ion secondary battery according to ⁇ 1> or ⁇ 2>, wherein the oil absorption amount of the first particles is 50 ml / 100 g or more.
  • ⁇ 4> The lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 3>, wherein the circularity of the first particles measured by a flow particle analyzer is 0.83 to 0.95.
  • ⁇ 5> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 4>, wherein the tap density is 0.70 g / cm 3 to 1.30 g / cm 3 .
  • ⁇ 6> The tap density of the first particles is 0.70g / cm 3 ⁇ 1.10g a / cm 3 ⁇ 1> ⁇ ⁇ 5>
  • ⁇ 7> The negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 6>, wherein the tap density of the second particles is 0.75 g / cm 3 to 1.30 g / cm 3.
  • nitrogen specific surface area by the BET method of gas adsorption is 1.5m 2 /g ⁇ 8.0m 2 / g ⁇ 1 > ⁇ ⁇ 7> the negative electrode for a lithium ion secondary battery according to any one of Wood.
  • nitrogen specific surface area by the BET method of gas adsorption is 2.0m 2 /g ⁇ 7.0m 2 / g ⁇ 1 > ⁇ ⁇ 8> negative electrode for a lithium ion secondary battery according to any one of Wood.
  • ⁇ 10> including a step of mixing first particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surface is non-parallel, and second particles containing silicon atoms ⁇ 1
  • ⁇ 12> A current collector, and a negative electrode material layer containing the negative electrode material for a lithium ion secondary battery according to any one of ⁇ 1> to ⁇ 9> formed on the current collector.
  • Negative electrode for lithium ion secondary battery The lithium ion secondary battery which has a ⁇ 13> positive electrode, electrolyte, and the negative electrode for lithium ion secondary batteries as described in ⁇ 12>.
  • a negative electrode material for a lithium ion secondary battery that is excellent in an effect of suppressing expansion of the negative electrode accompanying charging and that can form a lithium ion secondary battery that has excellent cycle characteristics, and a method for manufacturing the same.
  • a negative electrode material slurry for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery using such a negative electrode material for a lithium ion secondary battery are provided. Can do.
  • the content ratio of each component in the composition means the total content ratio of the plurality of substances unless there is a specific notice when there are a plurality of substances corresponding to each component in the composition. .
  • the particle size of each component in the composition is a mixture of the plurality of types of particles present in the composition unless there is a specific indication when there are a plurality of types of particles corresponding to each component in the composition. Means the value of.
  • the term “layer” refers to the case where the layer is formed only in a part of the region in addition to the case where the layer is formed over the entire region. Is also included.
  • the term “lamination” indicates that layers are stacked, and two or more layers may be combined, or two or more layers may be detachable.
  • the term “process” includes a process that is independent of other processes and includes the process if the purpose of the process is achieved even if it cannot be clearly distinguished from the other processes. It is.
  • the negative electrode material for a lithium ion secondary battery of the present disclosure (hereinafter, also simply referred to as “negative electrode material”) is a first in which a plurality of flat graphite particles are aggregated or bonded so that main surfaces thereof are non-parallel. And a second particle containing silicon atoms.
  • the “mixture including the first particles and the second particles containing silicon atoms” means a state in which the positional relationship between the first particles and the second particles is not fixed. For example, it means a state in which the first particles and the second particles are not compounded via an organic carbide.
  • “composite” means a state in which particles are aggregated or bonded via an organic carbide or the like.
  • the negative electrode material of the present disclosure may contain other components other than the first particles and the second particles as necessary.
  • the negative electrode material of the present disclosure can constitute a lithium ion secondary battery excellent in the effect of suppressing expansion of the negative electrode accompanying charging and excellent in cycle characteristics. The reason is not clear, but can be considered as follows, for example.
  • the particles tend to move in the negative electrode. For this reason, when the second particles expand due to charging, it is considered that the expansion of the negative electrode can be further suppressed by the movement of each particle so as to fill the voids between the particles by the expansion repulsive force.
  • the first particles are a combination of a plurality of flat graphite particles so that the main surfaces thereof are non-parallel, there is a tendency that many voids exist inside. For this reason, even if the 2nd particle expands by charge, it is thought that the increase in volume is relieved by the void in the 1st particle, and expansion of a negative electrode can be controlled more.
  • the first particles are a combination of a plurality of flat graphite particles so that the principal surfaces thereof are non-parallel, and there is a tendency that many irregularities exist on the surface. For this reason, even if the second particles move, many contact points with the first particles are secured by the unevenness of the surface, and conductivity is maintained. In addition, even if the second particles are broken and refined due to expansion due to charging, many contact points with the first particles are ensured by the unevenness of the surface, so that conductivity is maintained. Conceivable. As a result, according to the negative electrode material of the present disclosure, it is considered that a lithium ion secondary battery having excellent cycle characteristics can be configured.
  • the negative electrode material of the present disclosure is superior in productivity to the case where the first particles and the second particles are combined because it is not necessary to combine the first particles and the second particles. There are also advantages.
  • Whether or not the negative electrode material included in the electrode is in the state of a mixture of the first particles and the second particles is determined by, for example, embedding the sample electrode or the electrode to be observed in an epoxy resin, E-3500 (manufactured by Hitachi High-Technology Co., Ltd.) can be used to make a cross-section of the electrode and confirm by confirming with an image and element mapping by SEM-EDX.
  • the sample electrode is, for example, a mixture of 98 parts by mass of a negative electrode material, 1 part by mass of styrene butadiene resin as an organic binder, and 1 part by mass of carboxymethyl cellulose as a thickener, and the mixture at 25 ° C.
  • Water is added so that the viscosity becomes 1500 mPa ⁇ s to 2500 mPa ⁇ s to prepare a dispersion, and the dispersion is formed on a copper foil having a thickness of 10 ⁇ m so as to have a thickness of about 70 ⁇ m (during coating). It can produce by drying at 120 degreeC after coating for 1 hour.
  • the negative electrode material of the present disclosure more preferably tap density is preferably 0.70g / cm 3 ⁇ 1.30g / cm 3, a 0.85g / cm 3 ⁇ 1.20g / cm 3, 0 More preferably, it is 90 g / cm 3 to 1.10 g / cm 3 .
  • the tap density is an index for increasing the density of the negative electrode.
  • the tap density is 0.70 g / cm 3 or more, the compressibility when forming the negative electrode is further improved, a high electrode density is achieved, and a higher-capacity lithium ion secondary battery tends to be obtained.
  • the tap density is 1.30 g / cm 3 or less, the permeability of the electrolytic solution is further improved, and input / output characteristics such as rapid charge / discharge characteristics tend to be further improved.
  • the tap density of the negative electrode was dropped 250 times from a height of 5 cm with 100 cm 3 of sample powder put into a flat bottom test tube with a capacity of 150 cm 3 (KRS-406 manufactured by Kuramochi Scientific Instruments Co., Ltd.) and plugged. It is calculated
  • the negative electrode material of the present disclosure is preferably a BET specific surface area of nitrogen gas adsorption is 1.5m 2 /g ⁇ 8.0m 2 / g, 2.0m 2 /g ⁇ 7.0m 2 / more preferably g, and more preferably 3.0m 2 /g ⁇ 5.0m 2 / g.
  • the specific surface area is an index indicating the area of the surface where the negative electrode material is in contact with the electrolytic solution.
  • the specific surface area is 1.5 m 2 / g or more, the current density per unit area does not increase rapidly, and the load is suppressed, so that the rapid charge / discharge efficiency tends to be further improved.
  • the specific surface area is 8.0 m 2 / g or less, the area of the surface in contact with the negative electrode material and the electrolytic solution is not too large, an increase in the reaction field of the decomposition reaction of the electrolytic solution is suppressed, and gas generation is suppressed. The initial charge / discharge efficiency tends to be further improved.
  • the specific surface area of the negative electrode material is determined by measuring the nitrogen adsorption at a liquid nitrogen temperature (77K) by a five-point method using a specific surface area / pore distribution measuring device (for example, ASAP2020, Micromeritics Japan GK). Calculated by the BET method (relative pressure range: 0.05 to 0.2).
  • the density of the negative electrode material is preferably 1.7g / cm 3 ⁇ 2.05g / cm 3, more preferably from 1.8g / cm 3 ⁇ 2.05g / cm 3, More preferably, it is 1.85 g / cm 3 to 2.0 g / cm 3 .
  • the post-pressing density of the negative electrode material can be measured by the following method.
  • a constant speed of 10 mm using an autograph manufactured by Shimadzu Corporation in which a mold having a diameter of 13 mm (bottom area: 1.327 cm 2 ) is filled with 1.2 g of a sample and a load cell having a configuration as shown in FIG. 1 is attached.
  • After compressing at a rate of / min and holding for 30 minutes at an applied pressure of 1 t (surface pressure: 754 kg / cm 2 ) the pressure is released and the thickness after 5 minutes is measured.
  • the volume is calculated using the measured thickness, and the density after pressurization is calculated.
  • the oil absorption amount of the negative electrode material is an index indicating the ratio of voids in the negative electrode material, and it can be said that the larger the oil absorption amount, the larger the ratio of voids in the negative electrode material.
  • the oil absorption of the negative electrode agent is preferably 50 ml / 100 g or more, more preferably 55 ml / 100 g, and 60 ml / 100 g. More preferably.
  • the oil absorption of the negative electrode material can be measured by the method described later.
  • the negative electrode material of the present disclosure contains first particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces are non-parallel.
  • the negative electrode material of the present disclosure may contain the first particles alone or in combination of two or more.
  • an embodiment containing two or more kinds of first particles in combination for example, an embodiment containing two or more kinds of first particles having the same average particle diameter but different compositions, and the same composition having different average particle diameters.
  • grains from which a composition and an average particle diameter differ are mentioned.
  • the first particles are not particularly limited as long as a plurality of flat graphite particles are aggregated or bonded so that the principal surfaces are non-parallel.
  • the first particles may further include other particles such as spherical graphite particles described later, if necessary.
  • the first particles may have low crystalline carbon disposed on at least a part of the surface.
  • Flat graphite particles are non-spherical particles having anisotropy in shape.
  • Examples of the flat graphite particles include graphite particles having a shape such as a scale shape, a scale shape, or a partial lump shape.
  • the flat graphite particles have an aspect ratio represented by A / B of 1.2 to 20, for example, where A is the length in the major axis direction and B is the length in the minor axis direction. Is preferable, and 1.3 to 10 is more preferable.
  • A is the length in the major axis direction
  • B is the length in the minor axis direction.
  • Is preferable and 1.3 to 10 is more preferable.
  • the aspect ratio is 1.2 or more, the contact area between the particles increases, and the conductivity tends to be further improved.
  • the aspect ratio is 20 or less, input / output characteristics such as rapid charge / discharge characteristics of the lithium ion secondary battery tend to be further improved.
  • the aspect ratio is obtained by observing graphite particles with a microscope, arbitrarily selecting 100 graphite particles, measuring each A / B, and taking the arithmetic average value of the measured values.
  • the length A in the major axis direction and the length B in the minor axis direction are measured as follows. That is, in the projected image of the graphite particles observed with a microscope, two parallel tangents circumscribing the outer periphery of the graphite particles, the tangent line a1 and tangent line a2 having the maximum distance are selected, and this A distance between the tangent line a1 and the tangent line a2 is a length A in the major axis direction.
  • the main surface of the flat graphite particles being non-parallel means that the surface (main surface) having the largest cross-sectional area of the flat graphite particles is not aligned in a certain direction. Whether the main surfaces of the flat graphite particles are non-parallel to each other can be confirmed by microscopic observation.
  • the plurality of flat graphite particles are aggregated or bonded in a state in which the main surfaces are not parallel to each other, so that an increase in the orientation of the main surface in the negative electrode of the first particles is suppressed, and accompanying charging The expansion of the negative electrode is suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be improved.
  • the first particles may partially include a structure in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces of the flat graphite particles are parallel to each other.
  • the state where a plurality of flat graphite particles are aggregated or bonded means a state where two or more flat graphite particles are aggregated or bonded.
  • the bond means a state in which the particles are chemically bonded directly or via a carbon substance.
  • the term “aggregate” refers to a state in which the particles are not chemically bonded but the shape as an aggregate is maintained due to the shape or the like.
  • the flat graphite particles may be aggregated or bonded via a carbon substance. Examples of the carbon substance include graphite obtained by graphitizing an organic binder such as tar and pitch. From the viewpoint of mechanical strength, it is preferable that two or more flat graphite particles are bonded via a carbon substance. Whether or not the flat graphite particles are aggregated or bonded can be confirmed, for example, by observation with a scanning electron microscope.
  • the average particle diameter of the flat graphite particles constituting the first particles is, for example, preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 25 ⁇ m, from the viewpoint of easy aggregation or bonding. More preferably, the thickness is 1 ⁇ m to 15 ⁇ m.
  • the average particle size of the flat graphite particles can be measured by a laser diffraction particle size distribution measuring device, and is the particle size (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • the flat graphite particles and their raw materials are not particularly limited, and include artificial graphite, scaly natural graphite, scaly natural graphite, coke, resin, tar, pitch, and the like.
  • graphite obtained from artificial graphite, natural graphite, or coke has high crystallinity and becomes soft particles, so that the density of the negative electrode tends to be increased.
  • the first particles may further include spherical graphite particles.
  • the spherical graphite particles have a higher density than the flat graphite particles, the density of the negative electrode material can be increased when the first particles include the spherical graphite particles.
  • the pressure applied to can be reduced. As a result, the orientation of the flat graphite particles in the direction along the surface of the current collector is suppressed, and the movement of lithium ions tends to be good.
  • the flat graphite particles and the spherical graphite particles may be aggregated or bonded via a carbon substance.
  • the carbon material include graphite in which a binder such as tar and pitch is graphitized. Whether or not the first particles include spherical graphite particles can be confirmed, for example, by observation with a scanning electron microscope.
  • the total number of flat graphite particles and spherical graphite particles in each of the first particles is preferably 3 or more, for example, 5 to The number is more preferably 20, and further preferably 5 to 15.
  • the spherical graphite particles include spherical artificial graphite and spherical natural graphite.
  • the spherical graphite particles are preferably high-density graphite particles.
  • it is preferably spherical natural graphite that has been subjected to a particle spheroidization treatment so that the tap density can be increased.
  • Spherical natural graphite has a strong peel strength and is difficult to peel off from the current collector even if the electrode is pressed with a strong force. By using this as the first particle, a negative electrode material having a stronger peel strength. Tends to be obtained.
  • the average particle diameter of the spherical graphite particles is, for example, preferably 5 ⁇ m to 40 ⁇ m, more preferably 8 ⁇ m to 35 ⁇ m, from the viewpoint of easy formation of the first particles, and 10 ⁇ m to 30 ⁇ m. More preferably.
  • the average particle size of the spherical graphite particles can be measured by a laser diffraction particle size distribution measuring device, and is the particle size (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • the first particles may have low crystalline carbon disposed on at least a part of the surface thereof.
  • input / output characteristics such as rapid charge / discharge characteristics tend to be improved when a lithium ion secondary battery is configured.
  • Low crystalline carbon means carbon having an R value in a Raman spectrum of 0.5 or more.
  • the R value of the low crystalline carbon is, for example, preferably 0.5 to 1.5, more preferably 0.7 to 1.3, and further preferably 0.8 to 1.2. preferable.
  • the R value is the intensity of the maximum peak appearing in the vicinity of 1360 cm ⁇ 1 in the laser Raman spectroscopic measurement with an excitation wavelength of 532 nm
  • Ig is the intensity of the maximum peak appearing in the vicinity of 1580 cm ⁇ 1 .
  • the peak appearing in the vicinity of 1360 cm ⁇ 1 is usually a peak identified as corresponding to the amorphous structure of carbon, for example, a peak observed at 1300 cm ⁇ 1 to 1400 cm ⁇ 1 .
  • the peak appearing near 1580 cm -1 generally a peak identified as corresponding to the graphite crystal structure, for example, refers to peaks observed at 1530cm -1 ⁇ 1630cm -1.
  • the R value is measured using a Raman spectrum measuring apparatus (for example, NSR-1000, manufactured by JASCO Corporation), and the obtained spectrum is performed under the following conditions with the following range as the baseline.
  • Baseline 1050cm -1 ⁇ 1750cm -1
  • the average particle diameter of the first particles is preferably 5 ⁇ m to 40 ⁇ m, for example, from the viewpoint of further suppressing the influence on the orientation and further improving the permeability of the electrolytic solution, and is 10 ⁇ m to 30 ⁇ m. Is more preferably 10 ⁇ m to 25 ⁇ m.
  • the average particle diameter can be measured by a laser diffraction particle size distribution measuring device, and is a particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • a sample electrode is prepared, the electrode is embedded in an epoxy resin, and then mirror-polished to scan the electrode cross section.
  • a cross-section of the electrode was prepared using a scanning electron microscope (for example, “VE-7800”, manufactured by Keyence Corporation) and an ion milling apparatus (for example, “E-3500” manufactured by Hitachi High-Technology Corporation). Examples thereof include a measurement method using a scanning electron microscope (for example, “VE-7800” manufactured by Keyence Corporation).
  • the average particle size in this case is the median value of 100 particle sizes arbitrarily selected from the first particles.
  • the sample electrode can be prepared by the same method as described above.
  • the oil absorption amount of the first particles is, for example, preferably 50 ml / 100 g or more, more preferably 50 ml / 100 g to 95 ml / 100 g, and further preferably 60 ml / 100 g to 80 ml / 100 g.
  • the oil absorption of the first particles is 50 ml / 100 g or more, the voids in the first particles are increased, the negative electrode expansion due to charging is further suppressed, and the cycle characteristics of the lithium ion secondary battery are improved. It tends to improve.
  • the oil absorption is linseed instead of dibutyl phthalate (DBP) as a reagent liquid described in JIS K6217-4: 2008 “Carbon black for rubber—Basic characteristics—Part 4: Determination of oil absorption”. It can be measured by using oil (manufactured by Kanto Chemical Co., Inc.). Specifically, linseed oil is titrated on the target powder with a constant speed burette, and the change in viscosity characteristics is measured from a torque detector. The amount of linseed oil added per unit mass of the target powder corresponding to 70% of the generated maximum torque is the oil absorption (ml / 100 g). As the measuring device, for example, an absorption amount measuring apparatus of Asahi Research Institute, Ltd. can be used.
  • DBP dibutyl phthalate
  • the first particles preferably have a circularity measured by a flow particle analyzer of 0.83 to 0.95, more preferably 0.85 to 0.93, and 0.87 to 0. More preferably, it is .93.
  • the circularity can be measured by the following method. In a 10 ml test tube, 5 ml of an aqueous solution having a surfactant (trade name: Liponol T / 15, manufactured by Lion Corporation) with a mass ratio of 0.2% is placed, and the particle concentration is 10,000 to 30,000 (unit: pieces / ⁇ l). Insert the sample to be measured.
  • the tester was stirred with a vortex mixer (manufactured by Corning) at a rotational speed of 2000 rpm for 1 minute, and immediately using a wet flow type particle size / shape analyzer (for example, FPIA-3000 manufactured by Malvern), The circularity is measured under the following measurement conditions.
  • ⁇ Measurement environment 25 °C ⁇ 3
  • Measurement mode HPF ⁇
  • Counting method Total count ⁇ Number of effective analysis: 10,000 ⁇ Particle concentration: 10000-30000 -Sheath liquid: Particle sheath-Objective lens: 10x
  • the first particles is preferably tap density of 0.70g / cm 3 ⁇ 1.30g / cm 3, more preferably 0.85g / cm 3 ⁇ 1.20g / cm 3, 0. further preferably 90g / cm 3 ⁇ 1.10g / cm 3.
  • the tap density of the first particles can be measured in the same manner as the tap density of the negative electrode material.
  • the first particles is preferably a specific surface area of 1.5m 2 /g ⁇ 8.0m 2 / g, more preferably 2.0m 2 /g ⁇ 7.0m 2 / g, 3 . further preferably 0m 2 /g ⁇ 5.0m 2 / g.
  • the specific surface area of the first particles can be measured in the same manner as the specific surface area of the negative electrode material.
  • the content rate of the first particles with respect to the total amount of the negative electrode material of the present disclosure is not particularly limited. For example, it is preferably 70% by mass to 99.5% by mass, more preferably 80% by mass to 99.5% by mass, further preferably 85% by mass to 99% by mass, and more preferably 85% by mass. It is particularly preferable that the content be ⁇ 98% by mass.
  • the content rate of the first particles is 70% by mass or more, the expansion of the negative electrode accompanying charging is further suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be further improved.
  • the content ratio of the first particles is 99.5% by mass or less, the charge / discharge capacity of the lithium ion secondary battery tends to be further improved.
  • the method for producing the first particles is not particularly limited.
  • the method for producing the first particles includes, for example, (a) obtaining a mixture containing graphitizable aggregate or graphite, and a graphitizable binder; (b) graphitizing the mixture; including.
  • a graphitizable aggregate or graphite and a graphitizable binder are mixed to obtain a mixture.
  • the graphitizable aggregate is not particularly limited as long as it is in a powder form, and examples thereof include coke such as fluid coke, needle coke, and mosaic coke.
  • coke powder that is easily graphitized such as needle coke may be used.
  • Carbon black can also be used when it is desired to obtain low-crystal graphite having high charging characteristics.
  • the graphite is not particularly limited as long as it is in powder form, and examples thereof include flaky artificial graphite, flaky natural graphite, flaky natural graphite, spherical artificial graphite, and spherical natural graphite.
  • the graphitizable binder include coal-based, petroleum-based and artificial pitches and tars, thermoplastic resins, thermosetting resins, and the like.
  • the graphitization catalyst include substances having a graphitization catalytic action such as silicon, iron, nickel, titanium, boron, vanadium, and aluminum, and carbides, oxides, nitrides, and mica clay minerals of these substances. From the viewpoint of facilitating molding of the mixture, the mixture preferably contains a fluidity-imparting agent.
  • the mixture when molding the mixture by extrusion molding, it is preferable to include a fluidity imparting agent in order to perform molding while flowing the mixture. Furthermore, when the mixture contains a fluidity-imparting agent, the amount of the graphitizable binder is suppressed, and improvement in battery characteristics such as initial charge / discharge efficiency of the negative electrode material can be expected.
  • the amount thereof is preferably 80 parts by mass or less, and more preferably 60 parts by mass or less with respect to 100 parts by mass of the mixture.
  • the amount of spherical graphite particles is in the above range, the effect of containing flat particles and the effect of containing spherical particles (high discharge capacity, low electrode expansion coefficient even when the negative electrode is densified) And excellent cycle characteristics).
  • the content of the graphitizable binder is, for example, preferably 5 to 30 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass of the mixture in the step (a). preferable.
  • the mixing method for obtaining the mixture of a process (a) can mix using a kneader etc.
  • the mixing is preferably performed at a temperature above the softening point of the graphitizable binder.
  • the graphitizable binder is pitch, tar or the like
  • step (b) the mixture obtained in step (a) is graphitized.
  • the graphitizable component in the mixture is graphitized.
  • the graphitization is preferably performed in an atmosphere in which the mixture is not easily oxidized. Examples thereof include a method of heating in a nitrogen atmosphere, argon gas, or vacuum.
  • the temperature at the time of graphitization is not particularly limited as long as the graphitizable component can be graphitized. For example, it may be 1500 ° C. or higher, 2000 ° C. or higher, 2500 ° C. or higher, or 2800 ° C. or higher.
  • the upper limit of the temperature is not particularly limited, but may be 3200 ° C. or less, for example. When the temperature is 1500 ° C. or higher, the crystal changes.
  • the first particles can be obtained by grinding the fired product obtained after graphitization.
  • pulverization method of baking products For example, it can be performed by a known method using a jet mill, a vibration mill, a pin mill, a hammer mill or the like.
  • the pulverized product may be sieved.
  • limiting in particular in the method of sieving For example, it can carry out by a known method using a vibration sieve, a rotary dry sieve, etc.
  • the method for producing a negative electrode material is at least one selected from the group consisting of (c) a step of forming a mixture and (d) a step of heat-treating the mixture between step (a) and step (b). May be included.
  • the molding technique in the step (c) is not particularly limited.
  • the mixture may be pulverized and placed in a container such as a mold. Or you may shape
  • the bulk density is increased, so that the amount of graphitization furnace is increased, the energy efficiency is increased, and graphitization can be performed with energy saving.
  • the molding reduces the distance between the catalyst particles and the aggregate that can be graphitized, and the graphitization reaction proceeds in a short time, leading to further energy savings. The environmental load involved can be reduced.
  • the loss caused by sublimation of the graphitization catalyst without being used in the graphitization reaction can be reduced as a result of the catalyst utilization efficiency being increased by increasing the bulk density by molding and controlling the distance between particles to be short. it can.
  • the presence / absence of molding of the mixture, the bulk density after molding, the type and content of the graphitization catalyst, the temperature and time of the graphitization treatment, etc. the development of graphite crystals can be freely controlled.
  • Heat treatment of the mixture in step (d) is preferable from the viewpoint of removing volatile components contained in the mixture and suppressing gas generation during graphitization in step (b).
  • the heat treatment is more preferably performed after the mixture is formed in the step (c).
  • the heat treatment is preferably performed at a temperature at which volatile components contained in the mixture are removed, and may be performed at 500 ° C. to 1000 ° C., for example.
  • an organic compound can be attached to the surface of the obtained first particles and heat-treated.
  • the organic compound attached to the surface changes to low crystalline carbon.
  • low crystalline carbon is arrange
  • the method for attaching the organic compound to the surface of the first particle is not particularly limited.
  • a wet method in which a first particle is dispersed and mixed in a mixed solution in which an organic compound is dissolved or dispersed in a solvent, and then the solvent is removed and adhered; the first particle and a solid organic compound are mixed And a dry method in which mechanical energy is applied to the mixture thus obtained.
  • the organic compound is not particularly limited as long as it is a substance that changes to low crystalline carbon by a heat treatment (carbon precursor).
  • carbon precursor for example, petroleum pitch, naphthalene, anthracene, phenanthrolen, coal tar, phenol resin, polyvinyl alcohol and the like can be mentioned.
  • An organic compound may be used individually by 1 type, and may use 2 or more types together.
  • the heat treatment temperature at the time of firing the first particles having the organic compound attached to the surface is not particularly limited as long as the organic compound attached to the surface of the pulverized product changes to low crystalline carbon. It is preferable that the temperature is from 1000C to 1000C.
  • the heat treatment is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere.
  • the negative electrode material of the present disclosure contains second particles containing silicon atoms.
  • the negative electrode material of the present disclosure may contain the second particles alone or in combination of two or more.
  • an aspect containing two or more kinds of second particles in combination for example, an aspect containing two or more kinds of second particles having the same average particle diameter but different compositions, the same composition having different average particle diameters.
  • grains from which a composition and an average particle diameter differ are mentioned.
  • the second particles are not particularly limited as long as they contain silicon atoms.
  • Examples of the second particles include particles containing silicon, particles containing a silicon compound such as silicon oxide, particles containing silicon and a silicon compound, and the like.
  • the second particles are preferably particles substantially consisting of silicon or particles substantially consisting of silicon oxide. More preferably, the particles are made of.
  • substantially means that impurities inevitably mixed are allowed, and the content of impurities is, for example, 10% by mass or less in the second particle, and 5% by mass or less. Preferably there is.
  • the second particles are more preferably particles in which silicon crystallites are dispersed in silicon oxide.
  • the size of the silicon crystallite is preferably 2 nm to 8 nm, and more preferably 3 nm to 6 nm.
  • the size of the silicon crystallite is 2 nm or more, the reaction between lithium ions and silicon oxide is controlled, and the charge / discharge efficiency of the lithium ion secondary battery tends to be further improved.
  • the silicon crystallite size is 8 nm or less, the silicon crystallite is less likely to be localized in the silicon oxide, so that lithium ions are likely to diffuse in the silicon oxide and a good charge capacity tends to be obtained. It is in.
  • X-ray diffraction measurement using CuK ⁇ rays can be performed using an X-ray diffractometer (for example, “MultiFlex” manufactured by Rigaku Corporation) under the following measurement conditions.
  • D Size of crystallite (nm)
  • K Scherrer constant (0.94)
  • Source wavelength (0.154056 nm)
  • Peak angle of measurement half width
  • B obs Measurement half width
  • b Measurement half width of standard silicon (Si)
  • the particles in which silicon crystallites are dispersed in silicon oxide can be obtained by, for example, disproportionating the silicon oxide particles by heat treatment at a temperature of 700 ° C. to 1300 ° C. in an inert atmosphere. Note that the higher the heat treatment temperature and the longer the heat treatment time, the larger the crystallite size of silicon.
  • the second particle may have carbon arranged on at least a part of its surface.
  • carbon is disposed on at least a part of the surface of the second particle, the initial capacity and the initial charge / discharge efficiency of the lithium ion secondary battery tend to be further improved.
  • the carbon content is, for example, 0.5% by mass or more and less than 5.0% by mass with respect to the total amount of the second particle. It is preferably 0.5% by mass to 4.5% by mass, and more preferably 0.5% by mass to 4.0% by mass.
  • the carbon content can be measured by high-frequency firing-infrared analysis. In the high-frequency firing-infrared analysis method, a carbon-sulfur simultaneous analyzer (for example, “CSLS600” manufactured by LECO Japan LLC) can be used.
  • the carbon disposed on at least a part of the surface of the second particle is preferably low crystalline carbon.
  • the R value of the second particles in which the low crystalline carbon is disposed on at least a part of the surface is preferably, for example, 0.5 to 1.5, and preferably 0.7 to 1.3. More preferably, it is 0.8 to 1.2.
  • the configuration is not particularly limited. Examples of the configuration of the second particles are shown in the schematic cross-sectional views of FIGS.
  • the second particle 20 ⁇ / b> A shown in FIG. 2 carbon 22 covers the entire surface of the silicon oxide particle 21.
  • the carbon 22 covers the entire surface of the silicon oxide particle 21, but does not cover it uniformly.
  • carbon 22 is partially present on the surface of the silicon oxide particle 21, and the surface of the silicon oxide particle 21 is partially exposed.
  • carbon 22 particles having a particle size smaller than that of the silicon oxide particles 21 are present on the surface of the silicon oxide particles 21.
  • the second particle 20E shown in FIG. 6 is a modification of FIG. 5, and the particle shape of the carbon 22 is scaly. 2 to 6, the shape of the silicon oxide particles 21 is schematically represented by a spherical shape (a circle as a cross-sectional shape), but the shape is not particularly limited, and any shape may be used. Good.
  • the method of disposing carbon on at least a part of the surface of the second particle is not particularly limited.
  • a wet method in which a second particle is dispersed and mixed in a mixed solution in which an organic compound is dissolved or dispersed in a solvent, and then the solvent is removed and adhered; the second particle and a solid organic compound are mixed And a dry method in which mechanical energy is applied to the mixture thus obtained.
  • the organic compound is not particularly limited as long as it is a substance that changes to low crystalline carbon by a heat treatment (carbon precursor).
  • carbon precursor for example, petroleum pitch, naphthalene, anthracene, phenanthrolen, coal tar, phenol resin, polyvinyl alcohol and the like can be mentioned.
  • An organic compound may be used individually by 1 type, and may use 2 or more types together.
  • the heat treatment temperature when the second particles having the organic compound attached to the surface is heat-treated is not particularly limited as long as the organic compound attached to the surface of the second particles is carbonized. It is preferable that it is 1300 degreeC.
  • the heat treatment is preferably performed in an inert gas atmosphere such as a nitrogen atmosphere.
  • the average particle diameter of the second particles is, for example, 0.1 ⁇ m to 20 ⁇ m from the viewpoint of making the distribution in the negative electrode material layer more uniform and further improving the cycle characteristics of the lithium ion secondary battery.
  • the thickness is preferably 0.5 ⁇ m to 15 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m.
  • the average particle diameter can be measured by a laser diffraction particle size distribution measuring device, and is a particle diameter (D50) when the integration from the small diameter side is 50% in the volume-based particle size distribution.
  • the average particle size of the second particles can be measured in the same manner as the average particle size of the first particles.
  • the ratio of the average particle diameter of the first particles to the average particle diameter of the second particles is the second in the voids inside the first particles. From the viewpoint of appropriately arranging the particles, for example, it is preferably 1.0 to 10.0, more preferably 1.5 to 8.0, and more preferably 1.5 to 6.0. Further preferred.
  • the second particles preferably have a tap density of 0.7 g / cm 3 to 1.3 g / cm 3 , more preferably 0.85 g / cm 3 to 1.25 g / cm 3 , and More preferably, it is 9 g / cm 3 to 1.2 g / cm 3 .
  • the tap density of the second particles can be measured in the same manner as the tap density of the negative electrode material.
  • the second particles preferably have a specific surface area of 0.5 m 2 / g or more, and more preferably 1.0 m 2 / g or more.
  • the specific surface area of the second particles can be measured in the same manner as the specific surface area of the negative electrode material.
  • the content of the second particles is preferably, for example, 0.1% by mass to 20% by mass, and preferably 0.5% by mass to 15% by mass with respect to the total amount of the negative electrode material of the present disclosure. More preferably, the content is 1% by mass to 10% by mass.
  • the content ratio of the second particles is 0.1% by mass or more, the charge / discharge capacity of the lithium ion secondary battery tends to be further improved.
  • the content ratio of the second particles is 20% by mass or less, expansion of the negative electrode accompanying charging is further suppressed, and the cycle characteristics of the lithium ion secondary battery tend to be further improved.
  • the negative electrode material of the present disclosure may further contain granular particles that do not constitute the first particles, in addition to the first particles and the second particles.
  • granular graphite include particles such as artificial graphite, natural graphite, and MC (mesophase carbon).
  • the granular graphite may be either flat graphite or spherical graphite, and can be selected according to the required performance. As an example, flat graphite can be selected from the viewpoint of improving cycle characteristics by improving conductive contact.
  • the granular graphite preferably has an average particle size of, for example, 1 ⁇ m to 50 ⁇ m.
  • the average particle size is more preferably smaller than the first particle, and the average particle size is larger than the second particle. More preferably, the particle size is small.
  • the particle diameter of the flat graphite is preferably 0.7 times or less, more preferably 0.4 times or less of the average particle diameter of the first particles or the second particles.
  • the granular graphite preferably has a tap density of, for example, 0.25 g / cm 3 to 1.3 g / cm 3 , and from the viewpoint of improving the conductive contact, since it is required that the number of particles in a flake is large, The lower the value, the better.
  • Granular graphite preferably has a specific surface area of, for example, 0.5 m 2 / g to 25 m 2 / g.
  • the specific surface area is preferably 7 m 2 / g to 25 m 2 / g, and preferably 10 m 2 / g to 17 m 2 / g. Further preferred.
  • the specific surface area is more preferably 2 m 2 / g to 10 m 2 / g, and further preferably 4 m 2 / g to 7 m 2 / g.
  • the negative electrode material of the present disclosure may be mixed with a conductive additive as necessary in addition to the first particles and the second particles.
  • a conductive additive include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.
  • ⁇ Method for producing negative electrode material for lithium ion secondary battery In the method for producing a negative electrode material for a lithium ion secondary battery of the present disclosure (hereinafter, also simply referred to as “negative electrode material production method”), a plurality of flat graphite particles are aggregated so that the main surfaces thereof are non-parallel. A step of mixing the bonded first particles and the second particles containing silicon atoms (hereinafter also referred to as “mixing step”) is included. That is, the method for producing a negative electrode material of the present disclosure includes a step of mixing the first particles and the second particles described above.
  • the method for mixing the first particles and the second particles is not particularly limited, and examples thereof include a wet mixing method and a dry mixing method.
  • conductive particles and the like may be further mixed in addition to the first particles and the second particles.
  • the negative electrode material slurry for a lithium ion secondary battery of the present disclosure contains the negative electrode material of the present disclosure, an organic binder, and a solvent.
  • the negative electrode material slurry may contain a thickener, a conductive aid and the like, if necessary.
  • the organic binder is not particularly limited, and is a styrene-butadiene copolymer (styrene butadiene rubber); methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl ( (Meth) acrylic copolymer obtained by copolymerizing ethylenically unsaturated carboxylic acid ester such as (meth) acrylate and ethylenically unsaturated carboxylic acid such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid Polymers; polymer compounds such as polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile, polyimide, polyamideimide, and the like.
  • styrene-butadiene copolymer styrene buta
  • the solvent is not particularly limited, and examples thereof include organic solvents such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, and ⁇ -butyrolactone, and water.
  • the negative electrode material slurry of the present disclosure may contain a thickener for adjusting the viscosity as necessary.
  • a thickener for adjusting the viscosity as necessary.
  • the thickener include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid and its salt, oxidized starch, phosphorylated starch, and casein.
  • the negative electrode material slurry of the present disclosure may contain a conductive additive as necessary.
  • the conductive aid include carbon black, graphite, acetylene black, conductive oxide, and conductive nitride.
  • a negative electrode for a lithium ion secondary battery of the present disclosure (hereinafter also simply referred to as “negative electrode”) includes a current collector and a negative electrode material layer containing the negative electrode material of the present disclosure formed on the current collector. Have.
  • the material and shape of the current collector are not particularly limited.
  • Examples of the current collector include strip-shaped foils, strip-shaped perforated foils, strip-shaped meshes made of metals or alloys such as aluminum, copper, nickel, titanium, and stainless steel.
  • porous materials such as porous metal (foamed metal) and carbon paper can also be used.
  • the method for forming the negative electrode material layer containing the negative electrode material of the present disclosure on the current collector is not particularly limited.
  • the negative electrode material layer is formed on the current collector by a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method. Can be formed.
  • a metal mask printing method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method.
  • a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method.
  • a known method such as a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, or screen printing method.
  • it can carry out by well-known methods, such as a roll, a press, and
  • the negative electrode obtained by forming the negative electrode material layer on the current collector may be heat-treated according to the type of the organic binder used. By performing the heat treatment, the solvent is removed, the strength is increased by the organic binder, and the adhesion between the particles and between the particles and the current collector tends to be improved.
  • the heat treatment may be performed in an inert atmosphere such as helium, argon, nitrogen, or a vacuum atmosphere in order to prevent oxidation of the current collector during the treatment.
  • the negative electrode Before performing the heat treatment, the negative electrode may be pressed (pressure treatment).
  • the electrode density can be adjusted by the pressure treatment. Electrode density may, for example, and more preferably it is 1.5g / cm 3 ⁇ 1.9g / cm 3 are preferred, 1.6g / cm 3 ⁇ 1.8g / cm 3. As the electrode density is higher, the volume capacity is improved, the adhesion of the negative electrode material layer to the current collector is improved, and the cycle characteristics of the lithium ion secondary battery tend to be improved.
  • the lithium ion secondary battery of the present disclosure includes a positive electrode, an electrolyte, and a negative electrode of the present disclosure.
  • the lithium ion secondary battery can be configured, for example, such that a negative electrode and a positive electrode are arranged to face each other with a separator interposed therebetween, and an electrolytic solution containing an electrolyte is injected.
  • the positive electrode can be obtained by forming a positive electrode material layer on the current collector in the same manner as the negative electrode.
  • a strip-like foil made of a metal or an alloy such as aluminum, titanium, or stainless steel, a strip-like perforated foil, a strip-like mesh, or the like can be used.
  • the positive electrode material used for the positive electrode material layer is not particularly limited.
  • the positive electrode material include metal compounds, metal oxides, metal sulfides, and conductive polymer materials that can be doped or intercalated with lithium ions.
  • lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and their double oxides (LiCo x Ni y Mn z O 2 , x + y + z 1, 0 ⁇ x , 0 ⁇ y; LiNi 2-x Mn x O 4 , 0 ⁇ x ⁇ 2), lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O
  • separator examples include nonwoven fabrics mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, and combinations thereof.
  • nonwoven fabrics mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, and combinations thereof.
  • a lithium ion secondary battery has a structure where a positive electrode and a negative electrode do not contact, it is not necessary to use a separator.
  • lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, fluoroethylene carbonate, cyclopentanone, sulfolane, 3 -Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, ⁇ -butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate Butylethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxy
  • organic electrolytic solution in which solan, methyl a
  • the form of the lithium ion secondary battery of the present disclosure is not particularly limited, and examples include a paper battery, a button battery, a coin battery, a stacked battery, a cylindrical battery, and a square battery.
  • Graphite particles 1 to 7, C1 to C3 and silicon oxide particles 1 to 4 used for the production of the negative electrode material were produced by the following procedure.
  • Graphite particles 1 Coke powder (55 parts by mass) having an average particle size of 12 ⁇ m, tar pitch (25 parts by mass) and silicon carbide (20 parts by mass) as a graphitization catalyst were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. Next, the obtained mixture was extruded to obtain a molded product. The molded product was fired at 1000 ° C. in a nitrogen atmosphere to obtain a sintered product. The sintered product was fired at 2800 ° C. in an Atchison furnace to graphitize components that can be graphitized. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain graphite particles 1 having an average particle size of 20 ⁇ m.
  • the graphite particles 1 When the graphite particles 1 were observed with a scanning electron microscope, it was confirmed that the graphite particles 1 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces are non-parallel. Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 1. Each measurement was performed by the method described above.
  • Graphite particles 2 Coke powder with an average particle size of 12 ⁇ m (40 parts by mass), spherical natural graphite with an average particle size of 20 ⁇ m (circularity 0.91) (20 parts by mass), tar pitch (20 parts by mass), and silicon carbide (graphite catalyst) 20 parts by mass) were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. Next, the obtained mixture was extruded to obtain a molded product. The molded product was fired at 1000 ° C. in a nitrogen atmosphere to obtain a sintered product. The sintered product was fired at 2800 ° C. in an Atchison furnace to graphitize components that can be graphitized. The obtained fired product (graphitized powder) was pulverized with a hammer mill and sieved to obtain graphite particles 2 having an average particle size of 23 ⁇ m.
  • the graphite particles 2 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surface is non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 2.
  • the graphite particles 3 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surface is non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 3.
  • the graphite particles 4 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces are non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 4.
  • Graphite particles 5 Coke powder with an average particle size of 12 ⁇ m (20 parts by mass), flat natural graphite with an average particle size of 3 ⁇ m (circularity 0.8) (20 parts by mass), spherical natural graphite with an average particle size of 20 ⁇ m (circularity 0.91) (20 parts by mass), tar pitch (20 parts by mass) and silicon oxide (20 parts by mass) as a graphitization catalyst were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture. Except for using this, graphite particles 5 having an average particle diameter of 20 ⁇ m were obtained in the same manner as graphite particles 1.
  • the graphite particles 5 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the principal surfaces are not parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 5.
  • Graphite particles 6 Flat natural graphite having an average particle size of 3 ⁇ m (circularity 0.8) (15 parts by mass), spherical natural graphite having an average particle size of 15 ⁇ m (circularity 0.91) (25 parts by mass), tar pitch (25 parts by mass) And silicon oxide (10 mass parts) as a graphitization catalyst was mixed, and it stirred at 100 degreeC for 1 hour, and obtained the mixture. Next, 75 parts by mass of this mixture and 25 parts by mass of spherical natural graphite (circularity 0.91) having an average particle size of 15 ⁇ m were mixed and then fired at 1000 ° C. in a nitrogen atmosphere to obtain a sintered product. Except for using this, graphite particles 6 having an average particle diameter of 15 ⁇ m were obtained in the same manner as the graphite particles 1.
  • the graphite particles 6 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surface is non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 6.
  • Graphite particles 7 Graphite particles 7 Graphite particles 2 (70 parts by mass) and spherical natural graphite having a mean particle size of 22 ⁇ m (circularity 0.94) (25 parts by mass) were mixed to obtain graphite particles 7 having a mean particle size of 22.8 ⁇ m.
  • the graphite particles 7 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces thereof are non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 7.
  • Graphite particles 8 A mixture of graphite particles 3 (96 parts by mass) and tar pitch (4 parts by mass) having a softening point of 100 ° C. was carbonized at 1100 ° C., and the graphite particles 3 were coated with amorphous carbon at 18.5 ⁇ m. Of graphite particles 8 were obtained.
  • the graphite particles 8 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces are non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 8.
  • Graphite particles 9 Flat natural graphite with an average particle diameter of 3 ⁇ m (circularity 0.8) (5 parts by mass), spherical natural graphite with an average particle diameter of 15 ⁇ m (circularity 0.91) (55 parts by mass), tar pitch (20 parts by mass) And silicon oxide (20 parts by mass) as a graphitization catalyst were mixed and stirred at 100 ° C. for 1 hour to obtain a mixture and obtain a pressure-molded block. Subsequently, it was fired at 1000 ° C. in a nitrogen atmosphere to obtain a sintered product. Except for using this, graphite particles 9 having an average particle diameter of 17.8 ⁇ m were obtained in the same manner as graphite particles 1.
  • the graphite particles 9 include particles in which a plurality of flat graphite particles are aggregated or bonded so that the main surfaces are non-parallel.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles 9.
  • Graphite particles C1 Spherical graphite (circularity 0.94) having an average particle diameter of 22.0 ⁇ m was used as the graphite particle C1.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles C1.
  • Graphite particle C2 Spheroidal graphite having an average particle size of 16 ⁇ m and coated with amorphous carbon obtained by mixing spherical graphite (92 parts by mass) and tar pitch (8 parts by mass) and firing at 1000 ° C. or higher is obtained as graphite particles C2. did. Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles C2. When the graphite particles C2 were observed with a scanning electron microscope, no particles in which a plurality of flat graphite particles were aggregated or bonded so that the main surfaces were non-parallel were not confirmed.
  • Graphite particles C3 Spheroidal graphite having an average particle diameter of 10.7 ⁇ m coated with amorphous carbon obtained by mixing spherical graphite (92 parts by mass) and tar pitch (8 parts by mass) and firing at 1000 ° C. or higher is obtained as graphite particles.
  • Table 1 shows the results of measuring the tap density, post-pressing density, oil absorption, circularity, and specific surface area of the graphite particles C3. When the graphite particles C2 were observed with a scanning electron microscope, no particles in which a plurality of flat graphite particles were aggregated or bonded so that the main surfaces were non-parallel were not confirmed.
  • Silicon oxide particles 1 Lumped silicon oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 10 mm to 30 mm square) was coarsely pulverized with a mortar to obtain silicon oxide particles. This was further pulverized by a vibration mill (manufactured by Nippon Ceramic Science Co., Ltd., “NB-0”) and then classified by a 300-mesh test sieve to obtain particles having an average particle diameter of 10 ⁇ m.
  • the obtained silicon oxide particles (96 parts by mass) and tar pitch (fixed carbon 50% by mass) (4 parts by mass) are charged into a mixing device (“Rocking Mixer RM-10G” manufactured by Aichi Electric Co., Ltd.). And after mixing for 5 minutes, it filled with the heat processing container made from an alumina. After filling the heat treatment container, this was heat treated at 1000 ° C. for 5 hours in an atmosphere firing furnace under a nitrogen atmosphere to obtain a heat treated product. The obtained heat-treated product was crushed with a mortar and classified with a 300 mesh test sieve to obtain silicon oxide particles 1 having an average particle size of 10.8 ⁇ m. The results of measuring the tap density and specific surface area of the silicon oxide particles 1 are shown in Table 1.
  • Silicon oxide particles 2 Lumped silicon oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 10 mm to 30 mm square) was coarsely pulverized with a mortar to obtain silicon oxide particles. This was further pulverized by a vibration mill (“NB-0” manufactured by Nissho Science Co., Ltd.) and then classified by a 300 mesh test sieve to obtain particles having an average particle diameter of 5 ⁇ m.
  • NB-0 manufactured by Nissho Science Co., Ltd.
  • the obtained silicon oxide particles (96 parts by mass) and tar pitch (fixed carbon 50% by mass) (4 parts by mass) are charged into a mixing device (“Rocking Mixer RM-10G” manufactured by Aichi Electric Co., Ltd.). And after mixing for 5 minutes, it filled with the heat processing container made from an alumina. After filling the heat treatment container, this was heat treated at 1000 ° C. for 5 hours in an atmosphere firing furnace under a nitrogen atmosphere to obtain a heat treated product. The obtained heat-treated product was crushed with a mortar and classified with a 300 mesh test sieve to obtain silicon oxide particles 2 having an average particle size of 6.2 ⁇ m. The results of measuring the tap density and specific surface area of the silicon oxide particles 2 are shown in Table 1.
  • scaly graphite As conductive particles, scaly graphite (KS-6, Timcal) having an average particle diameter of 3 ⁇ m and acetylene black (HS100, Denki Kagaku Kogyo Co., Ltd.) were prepared. To 800 g of water, add 156 g of flaky graphite (KS-6, Timcal), 40 g of acetylene black (HS-100, Denki Kagaku Kogyo Co., Ltd.), 4 g of carboxymethylcellulose, and disperse and mix in a bead mill. A dispersion of conductive particles (solid content: 25% by mass) was obtained.
  • Silicon oxide particles 4 Lumped silicon oxide (manufactured by Kojundo Chemical Laboratory Co., Ltd., 10 mm to 30 mm square) was coarsely pulverized with a mortar to obtain silicon oxide particles. This was further pulverized by a vibration mill (“NB-0” manufactured by Nissho Science Co., Ltd.) and then classified by a 300-mesh test sieve to obtain particles having an average particle diameter of 0.7 ⁇ m. The obtained silicon oxide particles (96 parts by mass) and tar pitch (fixed carbon 50% by mass) (4 parts by mass) are charged into a mixing device (“Rocking Mixer RM-10G” manufactured by Aichi Electric Co., Ltd.). And after mixing for 5 minutes, it filled with the heat processing container made from an alumina.
  • a vibration mill (“NB-0” manufactured by Nissho Science Co., Ltd.)
  • tar pitch fixed carbon 50% by mass
  • 4 parts by mass are charged into a mixing device (“Rocking Mixer RM-10G” manufactured by Aichi Electric Co., Ltd.
  • Fluorescence graphite particles 1 Flat graphite particles (KS-6, Timcal) with an average particle size of 3.3 ⁇ m were prepared. Table 1 shows the results of measuring the tap density, the post-pressing density, the oil absorption amount and the specific surface area of the flat graphite particles 1. In addition, Table 1 shows the XRD peak intensity ratio, R value, and oxidation weight reduction rate.
  • (Flat graphite particles 2) Flat graphite particles having an average particle size of 8.1 ⁇ m were prepared.
  • Table 1 shows the results of measuring the tap density, the post-pressing density, the oil absorption, and the specific surface area of the flat graphite particles 2.
  • Table 1 shows the XRD peak intensity ratio, R value, and oxidation weight reduction rate.
  • Example 1 (Preparation of negative electrode material) Graphite particles 1 (95 parts by mass) and silicon oxide particles 1 (5 parts by mass) were mixed to obtain a negative electrode material of Example 1. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material. Each measurement was performed by the method described above.
  • the negative electrode material powder (97.6 parts by mass), carboxymethyl cellulose (CMC) (1.2 parts by mass) and styrene butadiene rubber (SBR) (1.2 parts by mass) produced by the above method are kneaded to obtain a uniform slurry.
  • the slurry is applied to the glossy surface of the electrolytic copper foil so that the coating amount becomes 10 g / cm 2, and preliminarily dried at 90 ° C. for 2 hours, and then the density is 1.65 g / cm 3 with a roll press. Adjusted. Thereafter, a curing treatment was performed by drying at 120 ° C. for 4 hours in a vacuum atmosphere to obtain a negative electrode.
  • the electrode obtained above was used as the negative electrode, lithium metal as the counter electrode, and ethylene carbonate / ethyl methyl carbonate (3: 7 volume ratio) and vinylene carbonate (VC) (1.0% by mass) containing 1M LiPF 6 as the electrolyte. ), A polyethylene microporous film with a thickness of 25 ⁇ m as a separator, and a copper plate with a thickness of 250 ⁇ m as a spacer, to produce a 2016 type coin cell.
  • the battery obtained above was placed in a thermostat kept at 25 ° C. and charged at a constant current of 0.45 mA / cm 2 until reaching 0 V, and then at a constant voltage of 0 V, the current was 0.09 mA / cm.
  • the battery was further charged until it decayed to a value corresponding to 2 , and the initial charge capacity (mAh / g) was measured.
  • a 30-minute pause was applied, followed by discharging.
  • Discharge was performed at 0.45 mA / cm 2 until the voltage reached 1.5 V, and the initial discharge capacity (mAh / g) was measured. At this time, the capacity was converted per mass of the negative electrode material used.
  • the evaluation cell After repeating charge / discharge for 5 cycles under the above conditions, the evaluation cell was disassembled in a charged state, and the ratio of the thickness at that time to the thickness at the time of electrode preparation was defined as the expansion rate (%).
  • Capacity retention rate (%) (discharge capacity at the 10th cycle / discharge capacity at the first cycle) ⁇ 100
  • Example 2 (Preparation of negative electrode material) Graphite particles 2 (95 parts by mass) and silicon oxide particles 1 (5 parts by mass) were mixed to obtain a negative electrode material of Example 2. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 3 (Preparation of negative electrode material) Graphite particles 3 (90 parts by mass) and silicon oxide particles 2 (10 parts by mass) were mixed to obtain a negative electrode material of Example 3. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 4 (Preparation of negative electrode material) Graphite particles 4 (85 parts by mass) and silicon oxide particles 3 (15 parts by mass) were mixed to obtain a negative electrode material of Example 4. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 5 (Preparation of negative electrode material) Graphite particles 5 (95 parts by mass) and silicon oxide particles 4 (5 parts by mass) were mixed to obtain a negative electrode material of Example 5. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 6> (Preparation of negative electrode material) Graphite particles 6 (95 parts by mass) and silicon oxide particles 3 (5 parts by mass) were mixed to obtain a negative electrode material of Example 6. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 7 (Preparation of negative electrode material) Graphite particles 7 (95 parts by mass) and silicon oxide particles 1 (5 parts by mass) were mixed to obtain a negative electrode material of Example 7. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 8> (Preparation of negative electrode material) Graphite particles 8 (95 parts by mass) and silicon oxide particles 1 (5 parts by mass) were mixed to obtain a negative electrode material of Example 8. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 9> (Preparation of negative electrode material) Graphite particles 9 (70 parts by mass), silicon oxide particles 3 (5 parts by mass), and flat graphite particles (KS-6, Timing) (25 parts by mass) having an average particle diameter of 3 ⁇ m were mixed, and the negative electrode of Example 9 I got the material. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • Example 10 (Preparation of negative electrode material) Graphite particles 2 (85 parts by mass), silicon oxide particles 1 (5 parts by mass) and flat graphite particles (10 parts by mass) having an average particle size of 8 ⁇ m were mixed to obtain a negative electrode material of Example 10. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • the composite of graphite particles and silicon oxide particles is obtained by using spherical graphite (82.8 parts by mass), tar pitch (7.6 parts by mass), silicon oxide particles 2 (9. 6 parts by mass), and calcining at 1000 ° C. and crushing sieve.
  • Graphite particles were obtained in the same manner as Comparative Example 4 except that graphite particles 3 (86.4 parts by mass), tar pitch (4 parts by mass), and silicon oxide particles 2 (9.6 parts by mass) were used.
  • a negative electrode material of Comparative Example 5 was obtained in a state where silicon oxide particles and silicon oxide particles were combined through an organic carbide. Table 2 shows the results of measuring the specific surface area and tap density of the obtained negative electrode material.
  • 20A ... second particle, 20B ... second particle, 20C ... second particle, 20D ... second particle, 20E ... second particle, 21 ... silicon oxide particle, 22 ... carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を含む混合物であるリチウムイオン二次電池用負極材及びその製造方法、並びにそのリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池。

Description

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
 本開示は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池に関する。
 携帯電話、ノートパソコン、タブレット端末等のモバイル機器の高性能化に伴い、リチウムイオン二次電池の高容量化に対する要求が高まっている。現在、リチウムイオン二次電池の負極材には主に黒鉛が用いられているが、更なる高容量化のため、黒鉛よりも理論容量が高く、リチウムイオンを吸蔵及び放出可能な元素(以下、「特定元素」ともいう。また、特定元素を含有する物質を「特定元素体」ともいう。)を用いた負極材の開発が活発化している。
 特定元素としては、珪素、錫、鉛、アルミニウム等がよく知られている。その中でも、特定元素体としての珪素及び珪素酸化物は、他の特定元素体よりも高容量化が可能であり、安価であり、加工性が良好である等の利点があり、これらを用いた負極材の研究が特に盛んである。
 一方、これら特定元素体は、充電によって合金化した際に、体積が大きく膨張することが知られている。充電に伴って特定元素体が過度に膨張すると、特定元素体自身が破壊されて微細化し、さらに特定元素体を用いた負極材もその構造が破壊されて導電性が切断されることになる。そのため、サイクル経過によって電池容量が著しく低下することが課題となっている。
 また、特定元素体を負極材に用いると、充電に伴って負極が膨張し、その結果、電池セルが膨張することがある。電子機器等に搭載された電池セルが過度に膨張すると、電池セル周囲の電子部品に対して斥力が働き、電子部品が故障する原因となる。このため、負極の膨張はできる限り抑えることが好ましい。
 このような課題に対し、充電に伴う負極の膨張を抑制可能であり、かつ、サイクル特性に優れるリチウムイオン二次電池を構成可能な負極材が提案されている。
 例えば、特許文献1には、炭素性物質Aを含有する第1の粒子と珪素原子を含有する第2の粒子とが、炭素性物質Aとは異なる炭素性物質Bで複合化された複合粒子を含み、複合粒子の断面を観察した場合に、複合粒子の最大長さである長軸の中点を中心とし、長軸の中点で直交する短軸の長さの1/8の長さを半径とする円の内部領域に含まれる珪素原子の含有量に対する、複合粒子の外周から内側に短軸の長さの1/8の長さの深さまでの内側領域に含まれる珪素原子の含有量の比率が2以上であるリチウムイオン二次電池用負極材が開示されている。
 特許文献1のリチウムイオン二次電池用負極材に含まれる複合粒子では、珪素原子を含有する第2の粒子が、複合粒子の内部よりもその表面近傍に多く存在している。このため、充電に伴う第2の粒子の膨張は専ら複合粒子の表面近傍で起こることとなり、複合粒子自体の過度な膨張を抑制することができる。
国際公開第2012/077785号
 近年、特定元素体を負極材に用いたリチウムイオン二次電池の高容量化に対する要求がさらに高まっており、それに伴い、負極の膨張をより抑制し、かつ、サイクル特性をより向上させることが可能な負極材の開発が求められている。
 そこで、本開示は、充電に伴う負極の膨張を抑制する効果に優れ、かつ、サイクル特性に優れるリチウムイオン二次電池を構成可能なリチウムイオン二次電池用負極材及びその製造方法を提供することを課題とする。また、本開示は、そのようなリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することを課題とする。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1>主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を含む混合物であるリチウムイオン二次電池用負極材。
<2>前記第1の粒子と前記第2の粒子とが複合化されていない<1>に記載のリチウムイオン二次電池用負極材。
<3>前記第1の粒子の吸油量が50ml/100g以上である<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4>フロー式粒子解析計で測定される前記第1の粒子の円形度が0.83~0.95である<1>~<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5>タップ密度が0.70g/cm~1.30g/cmである<1>~<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6>前記第1の粒子のタップ密度が0.70g/cm~1.10g/cmである<1>~<5>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<7>前記第2の粒子のタップ密度が0.75g/cm~1.30g/cmである<1>~<6>のいずれか1項に記載のリチウムイオン二次電池用負極材
<8>窒素ガス吸着のBET法による比表面積が1.5m/g~8.0m/gである<1>~<7>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<9>窒素ガス吸着のBET法による比表面積が2.0m/g~7.0m/gである<1>~<8>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<10>主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を混合する工程を含む<1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<11><1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着材と、溶剤と、を含有するリチウムイオン二次電池用負極材スラリー。
<12>集電体と、前記集電体上に形成された<1>~<9>のいずれか1項に記載のリチウムイオン二次電池用負極材を含有する負極材層と、を有するリチウムイオン二次電池用負極。
<13>正極と、電解質と、<12>に記載のリチウムイオン二次電池用負極と、を有するリチウムイオン二次電池。
 本開示によれば、充電に伴う負極の膨張を抑制する効果に優れ、かつ、サイクル特性に優れるリチウムイオン二次電池を構成可能なリチウムイオン二次電池用負極材及びその製造方法を提供することができる。また、本開示によれば、そのようなリチウムイオン二次電池用負極材を用いたリチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池を提供することができる。
負極材の加圧後密度を測定する装置の構成を示す概略断面図である。 第2の粒子の構成の一例を示す概略断面図である。 第2の粒子の構成の他の一例を示す概略断面図である。 第2の粒子の構成の他の一例を示す概略断面図である。 第2の粒子の構成の他の一例を示す概略断面図である。 第2の粒子の構成の他の一例を示す概略断面図である。
 以下、本発明の実施形態について説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において組成物中の各成分の含有率は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、当該複数種の物質の合計の含有率を意味する。
 本明細書において組成物中の各成分の粒径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本明細書において「層」との語には、当該層が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本明細書において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
<リチウムイオン二次電池用負極材>
 本開示のリチウムイオン二次電池用負極材(以下、単に「負極材」ともいう。)は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を含む混合物である。
 本開示において、「第1の粒子と、珪素原子を含む第2の粒子と、を含む混合物」とは、第1の粒子と第2の粒子の位置関係が固定されていない状態を意味する。例えば、第1の粒子と第2の粒子とが有機物の炭化物を介して複合化されていない状態を意味する。
 ここで、「複合化」とは、有機物の炭化物等を介して粒子同士が集合又は結合した状態を意味する。
 本開示の負極材は、必要に応じて、第1の粒子及び第2の粒子以外のその他の成分を含有していてもよい。
 本開示の負極材は、充電に伴う負極の膨張を抑制する効果に優れ、かつ、サイクル特性に優れるリチウムイオン二次電池を構成することができる。その理由は明らかではないが、例えば、以下のように考えることができる。
 本開示の負極材は、第1の粒子と第2の粒子との位置関係が固定されていないため、負極中で粒子が移動し易い傾向にある。このため、充電により第2の粒子が膨張したとき、膨張斥力によって粒子間の空隙を埋めるように各粒子が移動することにより、負極の膨張をより抑制することができると考えられる。また、第1の粒子は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合したものであるため、内部に空隙が多く存在する傾向にある。このため、充電により第2の粒子が膨張しても、体積の増加が第1の粒子内の空隙によって緩和され、負極の膨張をより抑制することができると考えられる。さらに、第1の粒子は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合したものであり、表面に凹凸が多く存在する傾向にある。このため、第2の粒子が移動しても表面の凹凸により第1の粒子との接触点が多く確保され、導電性が維持される。また、仮に充電に伴う膨張により第2の粒子が壊れて微細化した場合であっても、表面の凹凸により第1の粒子との接触点が多く確保されるので、導電性が維持されると考えられる。以上の結果、本開示の負極材によれば、サイクル特性に優れるリチウムイオン二次電池を構成することができると考えられる。
 また、本開示の負極材は、第1の粒子と第2の粒子とを複合化する必要がないため、第1の粒子と第2の粒子とを複合化する場合よりも生産性に優れるという利点もある。
 なお、電極に含まれる負極材が第1の粒子と第2の粒子の混合物の状態であるか否かは、例えば、試料電極又は観察対象の電極をエポキシ樹脂に埋め込んだ後、イオンミリング装置(E-3500、株式会社日立ハイテクノロジー製)を用いて電極断面を作製し、SEM-EDXによる画像と元素マッピングにより確認することによって確認できる。
 上記試料電極は、例えば、負極材98質量部、有機結着剤としてのスチレンブタジエン樹脂1質量部、及び増粘材としてのカルボキシメチルセルロース1質量部の混合物を固形分として、該混合物の25℃における粘度が1500mPa・s~2500mPa・sとなるように水を添加して分散液を作製し、前記分散液を厚さが10μmの銅箔上に70μm程度の厚み(塗工時)になるように塗工後、120℃で1時間乾燥させることによって作製することができる。
 本開示の負極材は、タップ密度が0.70g/cm~1.30g/cmであることが好ましく、0.85g/cm~1.20g/cmであることがより好ましく、0.90g/cm~1.10g/cmであることがさらに好ましい。
 タップ密度は、負極の高密度化の指標である。タップ密度が0.70g/cm以上であると、負極を形成する際の圧縮性がより向上し、高い電極密度が達成され、より高容量のリチウムイオン二次電池が得られる傾向にある。タップ密度が1.30g/cm以下であると、電解液の浸透性がより向上し、急速充放電特性等の入出力特性がより向上する傾向にある。
 負極のタップ密度は、容量150cmの目盛付き平底試験管(株式会社蔵持科学器械製作所製KRS-406)に試料粉末100cmを投入して栓をした状態で5cmの高さから250回落下させた後の試料粉末の質量(g)及び容積(cm)から求められる。
 また、本開示の負極材は、窒素ガス吸着のBET法による比表面積が1.5m/g~8.0m/gであることが好ましく、2.0m/g~7.0m/gであることがより好ましく、3.0m/g~5.0m/gであることがさらに好ましい。
 比表面積は、負極材が電解液と接する面の面積を示す指標である。比表面積が1.5m/g以上であると、単位面積あたりにかかる電流密度が急上昇せず、負荷が抑制されるため、急速充放電効率がより向上する傾向にある。比表面積が8.0m/g以下であると、負極材と電解液と接する面の面積が大きすぎず、電解液の分解反応の反応場の増加が抑制されてガス発生が抑制され、また、初回充放電効率がより向上する傾向にある。
 本開示において負極材の比表面積は、比表面積/細孔分布測定装置(例えば、ASAP2020、マイクロメリティックスジャパン合同会社)を用い、液体窒素温度(77K)での窒素吸着を5点法で測定しBET法(相対圧範囲:0.05~0.2)より算出される。
 負極材の加圧後密度は、例えば、1.7g/cm~2.05g/cmであることが好ましく、1.8g/cm~2.05g/cmであることがより好ましく、1.85g/cm~2.0g/cmであることがさらに好ましい。
 負極材の加圧後密度は、下記の方法により測定することができる。
 直径13mm(底面積:1.327cm)の金型に試料を1.2g充填し、図1に示すような構成のロードセルを取り付けたオートグラフ(株式会社島津製作所製)を用いて定速10mm/minの速度で圧縮し、加圧力1t(面圧:754kg/cm)にて30分保持後、圧力を解放して5分後の厚みを計測する。測定された厚みを用いて体積を算出し、加圧後密度を算出する。
 負極材の吸油量は、負極材中の空隙の割合を示す指標であり、吸油量が大きいほど負極材中の空隙の割合が大きいといえる。第2の粒子の膨張を緩衝するための空隙容量の観点から、例えば、負極剤の吸油量は50ml/100g以上であることが好ましく、55ml/100gであることがより好ましく、60ml/100gであることがさらに好ましい。負極材の吸油量は、後述の方法により測定することができる。
 以下、本開示の負極材に含有される各成分について詳細に説明する。
[第1の粒子]
 本開示の負極材は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子を含有する。本開示の負極材は、第1の粒子を1種単独で含有していてもよく、2種以上を組み合わせて含有していてもよい。2種以上の第1の粒子を組み合わせて含有する態様としては、例えば、組成は異なるものの平均粒径を同じくする第1の粒子を2種以上含有する態様、平均粒径は異なるものの組成を同じくする第1の粒子を2種以上含有する態様、並びに組成及び平均粒径の異なる第1の粒子を2種以上含有する態様が挙げられる。
 第1の粒子は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合していれば特に制限されない。第1の粒子は、必要に応じて、後述する球状の黒鉛粒子等の他の粒子をさらに含んでいてもよい。また、第1の粒子は、表面の少なくとも一部に低結晶性炭素が配置されていてもよい。
(扁平状の黒鉛粒子)
 扁平状の黒鉛粒子は、形状に異方性を有する非球状の粒子である。扁平状の黒鉛粒子としては、鱗状、鱗片状、一部塊状等の形状を有する黒鉛粒子が挙げられる。
 扁平状の黒鉛粒子は、長軸方向の長さをA、短軸方向の長さをBとしたときに、A/Bで表されるアスペクト比が、例えば、1.2~20であることが好ましく、1.3~10であることがより好ましい。アスペクト比が1.2以上であると、粒子間の接触面積が増加して、導電性がより向上する傾向にある。アスペクト比が20以下であると、リチウムイオン二次電池の急速充放電特性等の入出力特性がより向上する傾向にある。
 アスペクト比は、黒鉛粒子を顕微鏡で観察し、任意に100個の黒鉛粒子を選択してそれぞれのA/Bを測定し、それらの測定値の算術平均値をとったものである。アスペクト比の観察において、長軸方向の長さA及び短軸方向の長さBは、以下のようにして測定される。すなわち、顕微鏡を用いて観察される黒鉛粒子の投影像において、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最大となる接線a1及び接線a2を選択して、この接線a1及び接線a2の間の距離を長軸方向の長さAとする。また、黒鉛粒子の外周に外接する平行な2本の接線であって、その距離が最小となる接線b1及び接線b2を選択して、この接線b1及び接線b2の間の距離を短軸方向の長さBとする。
 扁平状の黒鉛粒子の主面が非平行であるとは、扁平状の黒鉛粒子の最も断面積の大きい面(主面)が一定方向に揃っていないことをいう。扁平状の黒鉛粒子の主面が互いに非平行であるか否かは、顕微鏡観察により確認することができる。複数の扁平状の黒鉛粒子が、主面が互いに非平行な状態で集合又は結合していることにより、第1の粒子の負極内での主面の配向性の高まりが抑制され、充電に伴う負極の膨張が抑制され、リチウムイオン二次電池のサイクル特性が向上する傾向にある。
 なお、第1の粒子は、扁平状の黒鉛粒子の主面が平行となるように、複数の扁平状の黒鉛粒子が集合又は結合している構造を部分的に含んでいてもよい。
 複数の扁平状の黒鉛粒子が集合又は結合している状態とは、2個以上の扁平状の黒鉛粒子が集合又は結合している状態をいう。結合とは、互いの粒子が直接又は炭素物質を介して、化学的に結合している状態をいう。また、集合とは、互いの粒子が化学的に結合してはいないが、その形状等に起因して、集合体としての形状を保っている状態をいう。扁平状の黒鉛粒子は、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、タール、ピッチ等の有機結着材が黒鉛化した黒鉛が挙げられる。機械的な強度の観点からは、2個以上の扁平状の黒鉛粒子が炭素物質を介して結合している状態であることが好ましい。扁平状の黒鉛粒子が集合又は結合しているか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。
 第1の粒子を構成する扁平状の黒鉛粒子の平均粒径は、集合又は結合のし易さの観点から、例えば、1μm~50μmであることが好ましく、1μm~25μmであることがより好ましく、1μm~15μmであることがさらに好ましい。扁平状の黒鉛粒子の平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。
 扁平状の黒鉛粒子及びその原料は特に制限されず、人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、コークス、樹脂、タール、ピッチ等が挙げられる。中でも、人造黒鉛、天然黒鉛、又はコークスから得られる黒鉛は結晶度が高く軟質な粒子となるため、負極の高密度化がし易くなる傾向にある。
(球状の黒鉛粒子)
 第1の粒子は、球状の黒鉛粒子をさらに含んでいてもよい。一般に、球状の黒鉛粒子は扁平状の黒鉛粒子よりも高密度であるため、第1の粒子が球状の黒鉛粒子を含むことにより負極材の密度を高くすることができ、高密度化処理の際に加える圧力を低減することができる。その結果、扁平状の黒鉛粒子が集電体の面に沿う方向に配向することが抑制され、リチウムイオンの移動が良好となる傾向にある。
 第1の粒子が球状の黒鉛粒子を含む場合、扁平状の黒鉛粒子と球状の黒鉛粒子とは、炭素物質を介して集合又は結合していてもよい。炭素物質としては、例えば、タール、ピッチ等のバインダーが黒鉛化した黒鉛が挙げられる。第1の粒子が球状の黒鉛粒子を含んでいるか否かは、例えば、走査型電子顕微鏡による観察により確認することができる。
 第1の粒子が球状の黒鉛粒子を含む場合、第1の粒子のそれぞれにおける扁平状の黒鉛粒子と球状の黒鉛粒子との合計数は、例えば、3個以上であることが好ましく、5個~20個であることがより好ましく、5個~15個であることがさらに好ましい。
 球状の黒鉛粒子としては、球状人造黒鉛、球状天然黒鉛等が挙げられる。第1の粒子として十分なタップ密度を得る観点からは、球状の黒鉛粒子は高密度な黒鉛粒子であることが好ましい。具体的には、粒子球形化処理を施して高タップ密度化できるようにされた球状天然黒鉛であることが好ましい。球状天然黒鉛は、剥離強度が強く電極を強い力でプレスしても集電体から剥がれにくいという特長を有するため、これを第1の粒子として用いることで、より強力な剥離強度を有する負極材が得られる傾向にある。
 また、球状の黒鉛粒子は扁平状の黒鉛粒子に比べて密度が大きい傾向にあるため、負極の高密度化処理の際に付与する圧力を低減でき、黒鉛粒子の集電体方向への配向の抑制に有効である。
 球状の黒鉛粒子の平均粒径は、第1の粒子の形成のし易さの観点から、例えば、5μm~40μmであることが好ましく、8μm~35μmであることがより好ましく、10μm~30μmであることがさらに好ましい。球状の黒鉛粒子の平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。
(低結晶性炭素)
 第1の粒子は、表面の少なくとも一部に低結晶性炭素が配置されていてもよい。第1の粒子の表面の少なくとも一部に低結晶性炭素が配置されていると、リチウムイオン二次電池を構成した際に、急速充放電特性等の入出力特性がより向上する傾向にある。
 「低結晶性炭素」とは、ラマンスペクトルにおけるR値が0.5以上である炭素を意味する。低結晶性炭素のR値は、例えば、0.5~1.5であることが好ましく、0.7~1.3であることがより好ましく、0.8~1.2であることがさらに好ましい。
 なお、R値は、励起波長532nmのレーザーラマン分光測定において、1360cm-1付近に現れる最大ピークの強度をId、1580cm-1付近に現れる最大ピークの強度をIgとしたときに、その両ピークの強度比Id/Igとして与えられる値である。
 1360cm-1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば、1300cm-1~1400cm-1に観測されるピークを意味する。また、1580cm-1付近に現れるピークとは、通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば、1530cm-1~1630cm-1に観測されるピークを意味する。
 R値の測定は、ラマンスペクトル測定装置(例えば、日本分光株式会社製、NSR-1000型)を用い、得られたスペクトルは下記範囲をベースラインとして、下記の条件で行われる。
 ・レーザー波長:532nm
 ・照射強度:1.5mW(レーザーパワーモニターでの測定値)
 ・測定範囲:830cm-1~1940cm-1
 ・照射時間:60秒
 ・照射面積:4μm
 ・ベースライン:1050cm-1~1750cm-1
(平均粒径)
 第1の粒子の平均粒径は、配向性への影響をより抑え、また、電解液の浸透性をより向上させる観点から、例えば、5μm~40μmであることが好ましく、10μm~30μmであることがより好ましく、10μm~25μmであることがさらに好ましい。平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。
 本開示の負極材を用いて電極(負極)を製造した場合の平均粒径の測定方法としては、試料電極を作製し、その電極をエポキシ樹脂に埋め込んだ後、鏡面研磨して電極断面を走査型電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で観察する方法、イオンミリング装置(例えば、株式会社日立ハイテクノロジー製、「E-3500」)を用いて電極断面を作製して走査式電子顕微鏡(例えば、株式会社キーエンス製、「VE-7800」)で測定する方法等が挙げられる。この場合の平均粒径は、第1の粒子から任意に選択した100個の粒径の中央値である。
 上記試料電極は、前述の方法と同様の方法で作成することができる。
(吸油量)
 第1の粒子の吸油量は、例えば、50ml/100g以上であることが好ましく、50ml/100g~95ml/100gであることがより好ましく、60ml/100g~80ml/100gであることがさらに好ましい。第1の粒子の吸油量が50ml/100g以上であると、第1の粒子内の空隙がより多くなり、充電に伴う負極の膨張がより抑制され、また、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。
 本開示において、吸油量は、JIS K6217-4:2008「ゴム用カーボンブラック‐基本特性‐第4部:オイル吸収量の求め方」に記載の試薬液体としてフタル酸ジブチル(DBP)ではなく、亜麻仁油(関東化学株式会社製)を使用することにより測定することができる。具体的には、対象粉末に定速度ビュレットで亜麻仁油を滴定し、粘度特性変化をトルク検出器から測定する。発生した最大トルクの70%のトルクに対応する、対象粉末の単位質量当りの亜麻仁油の添加量を、吸油量(ml/100g)とする。測定器としては、例えば、株式会社あさひ総研の吸収量測定装置を用いることができる。
(円形度)
 第1の粒子は、フロー式粒子解析計で測定される円形度が0.83~0.95であることが好ましく、0.85~0.93であることがより好ましく、0.87~0.93であることがさらに好ましい。
 円形度は、以下の方法で測定することができる。10mlの試験管に、界面活性剤(商品名:リポノールT/15、ライオン株式会社製)の濃度が質量比0.2%の水溶液5mlを入れ、粒子濃度が10000~30000(単位:個/μl)になるように測定試料を入れる。次いで、前記試験官をボルテックスミキサー(コーニング社製)にて回転数2000rpmで1分間撹拌した後、すぐに湿式フロー式粒子径・形状分析装置(例えば、マルバーン社製FPIA-3000)を用いて、下記の測定条件で円形度を測定する。
 ・測定環境:25℃±3
 ・測定モード:HPF
 ・カウント方式:トータルカウント
 ・有効解析数:10000
 ・粒子濃度:10000~30000
 ・シース液:パーティクルシース
 ・対物レンズ:10倍
 第1の粒子は、タップ密度が0.70g/cm~1.30g/cmであることが好ましく、0.85g/cm~1.20g/cmであることがより好ましく、0.90g/cm~1.10g/cmであることがさらに好ましい。第1の粒子のタップ密度は、負極材のタップ密度と同様にして測定することができる。
 第1の粒子は、比表面積が1.5m/g~8.0m/gであることが好ましく、2.0m/g~7.0m/gであることがより好ましく、3.0m/g~5.0m/gであることがさらに好ましい。第1の粒子の比表面積は、負極材の比表面積と同様にして測定することができる。
(含有率)
 本開示の負極材の全量に対する第1の粒子の含有率は、特に制限されない。例えば、70質量%~99.5質量%であることが好ましく、80質量%~99.5質量%であることがより好ましく、85質量%~99質量%であることがさらに好ましく、85質量%~98質量%であることが特に好ましい。第1の粒子の含有率が70質量%以上であると、充電に伴う負極の膨張がより抑制され、また、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。第1の粒子の含有率が99.5質量%以下であると、リチウムイオン二次電池の充放電容量がより向上する傾向にある。
(第1の粒子の製造方法)
 第1の粒子の製造方法は特に制限されない。第1の粒子の製造方法は、例えば、(a)黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを含む混合物を得る工程と、(b)前記混合物を黒鉛化する工程と、を含む。
 工程(a)では、黒鉛化可能な骨材又は黒鉛と、黒鉛化可能なバインダーとを混合して混合物を得る。必要に応じ、黒鉛化触媒、流動性付与剤等を添加してもよい。
 黒鉛化可能な骨材としては、粉末状であれば特に制限されず、フルードコークス、ニードルコークス、モザイクコークス等のコークスが挙げられる。例えば、ニードルコークス等の黒鉛化しやすいコークス粉末であってもよい。充電特性が高い、より低結晶な黒鉛を得たい場合は、カーボンブラックを利用することもできる。
 黒鉛としては、粉末状であれば特に制限されず、鱗片状人造黒鉛、鱗状天然黒鉛、鱗片状天然黒鉛、球状人造黒鉛、球状天然黒鉛等が挙げられる。
 黒鉛化可能なバインダーとしては、石炭系、石油系、人造等のピッチ及びタール、熱可塑性樹脂、熱硬化性樹脂などが挙げられる。
 黒鉛化触媒としては、ケイ素、鉄、ニッケル、チタン、ホウ素、バナジウム、アルミニウム等の黒鉛化触媒作用を有する物質、これらの物質の炭化物、酸化物、窒化物、雲母質粘土鉱物などが挙げられる。
 混合物を成形しやすくする観点からは、混合物は流動性付与剤を含むことが好ましい。特に、混合物の成形を押出成形により行う場合は、混合物を流動させながら成形を行うために、流動性付与剤を含むことが好ましい。さらに、混合物が流動性付与剤を含むことは黒鉛化可能なバインダーの量を抑えることにつながり、負極材の初回充放電効率等の電池特性の改善も期待できる。
 工程(a)の混合物が球状の黒鉛粒子を含む場合、その量は、混合物100質量部に対して、例えば、80質量部以下であることが好ましく、60質量部以下であることがより好ましい。
 球状の黒鉛粒子の量が上記範囲であると、扁平粒子を含有することの効果と球状粒子を含有することの効果(負極を高密度化処理した場合においても、高い放電容量、低い電極膨張率、及び優れたサイクル特性を示す)とのバランスに優れる傾向にある。
 黒鉛化可能なバインダーの含有量は、工程(a)の混合物100質量部に対して、例えば、5質量部~30質量部であることが好ましく、10質量部~30質量部であることがより好ましい。黒鉛化可能なバインダーの含有量を適切な範囲とすることで、黒鉛化して得られる扁平状の黒鉛粒子の比表面積が大きくなりすぎることを抑制できる。
 工程(a)の混合物を得るための混合方法に特に制限はなく、例えば、ニーダー等を用いて混合することができる。混合は、黒鉛化可能なバインダーの軟化点以上の温度で行うことが好ましい。具体的には、黒鉛化可能なバインダーがピッチ、タール等である場合には50℃~300℃の温度で混合することが好ましく、熱硬化性樹脂である場合には20℃~100℃の温度で混合することが好ましい。
 工程(b)では、工程(a)で得た混合物を黒鉛化する。これにより、混合物中の黒鉛化可能な成分が黒鉛化される。黒鉛化は、混合物が酸化し難い雰囲気で行うことが好ましく、例えば、窒素雰囲気中、アルゴンガス中、又は真空中で加熱する方法が挙げられる。黒鉛化の際の温度は、黒鉛化可能な成分を黒鉛化できる温度であれば特に制限されない。例えば1500℃以上であってもよく、2000℃以上であってもよく、2500℃以上であってもよく、2800℃以上であってもよい。前記温度の上限は特に制限されないが、例えば3200℃以下であってもよい。前記温度が1500℃以上であると結晶の変化が生じる。前記温度が2000℃以上であると黒鉛の結晶の発達が良好となり、2500℃以上であるとリチウムイオンをより多く吸蔵することができる高容量な黒鉛結晶に発達し、焼成後に残存する黒鉛化触媒の量が少なく灰分量の増加が抑制される傾向にある。いずれの場合も充放電容量及び電池のサイクル特性が良好となる傾向にある。一方、黒鉛化の際の温度が3200℃以下であると、黒鉛の一部が昇華するのを抑制できる。
 黒鉛化後に得られた焼成物を粉砕することで第1の粒子を得ることができる。焼成物の粉砕方法に特に制限はない。例えば、ジェットミル、振動ミル、ピンミル、ハンマーミル等を用いて既知の方法により行うことができる。粉砕後には、粉砕物の篩分けを行ってもよい。篩分けの方法に特に制限はなく、例えば、振動篩、回転乾式篩等を用いて既知の方法により行うことができる。
 負極材の製造方法は、前記工程(a)と前記工程(b)との間に、(c)混合物を成形する工程及び(d)前記混合物を熱処理する工程からなる群より選ばれる少なくとも一つを含んでもよい。
 工程(c)における成形の手法は、特に制限されない。例えば、混合物を粉砕し、これを金型等の容器に入れて行ってもよい。あるいは、混合物が流動性を保っている状態で押出成形を行って成形してもよい。
 混合物を成形することにより、かさ密度が高くなるため、黒鉛化炉の詰め量が上昇し、エネルギー 効率が上昇して省エネルギーで黒鉛化することができる。さらに混合物が黒鉛化触媒を含む場合には、成形することによって触媒粒子と黒鉛化可能な骨材との距離が近くなり、黒鉛化反応が短時間で進行し更なる省エネルギー化に繋がり、生産に関わる環境負荷を低減することができる。また、黒鉛化触媒が黒鉛化反応に使用されないで昇華されることで生じるロスも、成形によりかさ密度を上げて粒子間距離を短く制御することで触媒利用効率が上昇する結果、低減することができる。
 混合物の成形の有無、成型後のかさ密度、黒鉛化触媒の種類とその含有量、黒鉛化処理の温度と時間等を調整することで、自由に黒鉛結晶の発達を制御することができる。
 工程(d)において混合物を熱処理することは、混合物に含まれる揮発性成分を除去し、工程(b)の黒鉛化の際のガス発生を抑制する観点から好ましい。熱処理は、工程(c)において混合物を成形した後に行うことがより好ましい。熱処理は、混合物に含まれる揮発性成分が除去される温度で行うことが好ましく、例えば500℃~1000℃で行ってもよい。
 必要に応じ、得られた第1の粒子の表面に有機化合物を付着させて熱処理することができる。第1の粒子の表面に有機化合物を付着させて熱処理することで、表面に付着した有機化合物が低結晶性炭素へと変化する。これにより、第1の粒子の表面の少なくとも一部に低結晶性炭素が配置される。
 第1の粒子の表面に有機化合物を付着させる方法は特に制限されない。例えば、有機化合物を溶媒に溶解又は分散させた混合溶液に、第1の粒子を分散及び混合した後、溶媒を除去して付着させる湿式方式;第1の粒子と固体状の有機化合物とを混合して得た混合物に力学的エネルギーを加えて付着させる乾式方式;等が挙げられる。
 有機化合物は、熱処理により低結晶性炭素に変化するもの(炭素前駆体)であれば特に制限されない。例えば、石油系ピッチ、ナフタレン、アントラセン、フェナントロレン、コールタール、フェノール樹脂、ポリビニルアルコール等が挙げられる。有機化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
 表面に有機化合物が付着した第1の粒子を焼成する際の熱処理温度は、粉砕物の表面に付着させた有機化合物が低結晶性炭素に変化する温度であれば特に制限されず、例えば、400℃~1000℃であることが好ましい。熱処理は、例えば、窒素雰囲気等の不活性ガス雰囲気中で行うことが好ましい。
[第2の粒子]
 本開示の負極材は、珪素原子を含む第2の粒子を含有する。本開示の負極材は、第2の粒子を1種単独で含有していてもよく、2種以上を組み合わせて含有していてもよい。2種以上の第2の粒子を組み合わせて含有する態様としては、例えば、組成は異なるものの平均粒径を同じくする第2の粒子を2種以上含有する態様、平均粒径は異なるものの組成を同じくする第2の粒子を2種以上含有する態様、並びに組成及び平均粒径の異なる第2の粒子を2種以上含有する態様が挙げられる。
 第2の粒子は、珪素原子を含むものであれば特に制限されない。第2の粒子としては、珪素を含む粒子、珪素酸化物等の珪素化合物を含む粒子、珪素及び珪素化合物を含む粒子などが挙げられる。
 第2の粒子は、リチウムイオン二次電池の電池容量をより向上させる観点から、実質的に珪素からなる粒子又は実質的に珪素酸化物からなる粒子であることが好ましく、実質的に珪素酸化物からなる粒子であることがより好ましい。ここで、「実質的」とは、不可避的に混入する不純物を許容することを意味し、不純物の含有率は、例えば、第2の粒子中に10質量%以下であり、5質量%以下であることが好ましい。
 本開示において「珪素酸化物」とは、一般的にSiOで表される化合物であり、SiO(x=2)、SiO(x=1)及びこれらの混合物(1<x<2)が挙げられる。    
 第2の粒子は、リチウムイオン二次電池の充放電効率をより向上させる観点から、珪素酸化物中に珪素の結晶子が分散した粒子であることがさらに好ましい。珪素の結晶子が分散した珪素酸化物は、波長0.154056nmのCuKα線を用いた粉末X線回折(XRD)測定を行ったとき、2θ=28.4°付近に珪素の(111)面に帰属される回折ピークが観察される。
 珪素の結晶子のサイズは、2nm~8nmであることが好ましく、3nm~6nmであることがより好ましい。珪素の結晶子のサイズが2nm以上であると、リチウムイオンと珪素酸化物との反応が制御され、リチウムイオン二次電池の充放電効率がより向上する傾向にある。珪素の結晶子のサイズが8nm以下であると、珪素酸化物中で珪素の結晶子が局在化し難くなるため、珪素酸化物内でリチウムイオンが拡散しやすく、良好な充電容量が得られる傾向にある。
 なお、CuKα線を用いたX線回折測定は、下記の測定条件で、X線回折装置(例えば、株式会社リガク製の「MultiFlex」を用いて行うことができる。
 ・管電流:40mA
 ・管電圧:40kV
 ・発散スリット:1°
 ・散乱スリット:1°
 ・受光スリット:0.3mm
 ・測定範囲:10°≦2θ≦40°
 ・サンプリングステップ幅:0.02°
 珪素の結晶子のサイズは、珪素の(111)面に帰属される2θ=28.4°付近の回折ピークの半値幅から、下記のScherrerの式を用いて求めることができる。
  D=Kλ/Bcosθ
  B=(Bobs -b1/2
  D:結晶子のサイズ(nm)
  K:Scherrer定数(0.94)
  λ:線源波長(0.154056nm)
  θ:測定半値幅のピーク角度
  Bobs:測定半値幅
  b:標準珪素(Si)の測定半値幅
 珪素酸化物中に珪素の結晶子が分散した粒子は、例えば、珪素酸化物の粒子を不活性雰囲気下で700℃~1300℃の温度で熱処理して不均化することにより得ることができる。なお、熱処理温度が高くなるほど、また、熱処理時間が長くなるほど、珪素の結晶子のサイズが大きくなる傾向にある。
 第2の粒子は、表面の少なくとも一部に炭素が配置されていてもよい。第2の粒子の表面の少なくとも一部に炭素が配置されていると、リチウムイオン二次電池の初期容量及び初期充放電効率がより向上する傾向にある。
 第2の粒子の表面の少なくとも一部に炭素が配置されている場合、炭素の含有率は、第2の粒子の全量に対して、例えば、0.5質量%以上5.0質量%未満であることが好ましく、0.5質量%~4.5質量%であることがより好ましく、0.5質量%~4.0質量%であることがさらに好ましい。
 なお、炭素の含有率は、高周波焼成-赤外分析法によって測定することができる。高周波焼成-赤外分析法においては、炭素硫黄同時分析装置(例えば、LECOジャパン合同会社製、「CSLS600」)を用いることができる。
 第2の粒子の表面の少なくとも一部に配置される炭素は、低結晶性炭素であることが好ましい。第2の粒子の表面の少なくとも一部に低結晶性炭素が配置されていると、リチウムイオン二次電池の充放電容量がより向上する傾向にある。表面の少なくとも一部に低結晶性炭素が配置されている第2の粒子のR値は、例えば、0.5~1.5であることが好ましく、0.7~1.3であることがより好ましく、0.8~1.2であることがさらに好ましい。
 第2の粒子の表面の少なくとも一部に炭素が配置されている場合、その構成は特に制限されない。第2の粒子の構成の例を図2~図6の概略断面図に示す。図2に示す第2の粒子20Aでは、炭素22が珪素酸化物粒子21の表面全体を被覆している。図3に示す第2の粒子20Bでは、炭素22が珪素酸化物粒子21の表面全体を被覆しているが、均一には覆っていない。図4に示す第2の粒子20Cでは、炭素22が珪素酸化物粒子21の表面に部分的に存在し、一部で珪素酸化物粒子21の表面が露出している。図5に示す第2の粒子20Dでは、珪素酸化物粒子21の表面に、珪素酸化物粒子21よりも小さい粒径を有する炭素22の粒子が存在している。図6に示す第2の粒子20Eは、図5の変形例であり、炭素22の粒子形状が鱗片状となっている。
 なお、図2~図6では、珪素酸化物粒子21の形状は、模式的に球状(断面形状としては円)で表されているが、形状は特に制限されず、いずれの形状であってもよい。
 第2の粒子の表面の少なくとも一部に炭素を配置する方法は特に制限されない。例えば、有機化合物を溶媒に溶解又は分散させた混合溶液に、第2の粒子を分散及び混合した後、溶媒を除去して付着させる湿式方式;第2の粒子と固体状の有機化合物とを混合して得た混合物に力学的エネルギーを加えて付着させる乾式方式;等が挙げられる。
 有機化合物は、熱処理により低結晶性炭素に変化するもの(炭素前駆体)であれば特に制限されない。例えば、石油系ピッチ、ナフタレン、アントラセン、フェナントロレン、コールタール、フェノール樹脂、ポリビニルアルコール等が挙げられる。有機化合物は1種を単独で用いてもよく、2種以上を併用してもよい。
 表面に有機化合物が付着した第2の粒子を熱処理する際の熱処理温度は、第2の粒子の表面に付着させた有機化合物が炭素化する温度であれば特に制限されず、例えば、750℃~1300℃であることが好ましい。熱処理は、例えば、窒素雰囲気等の不活性ガス雰囲気中で行うことが好ましい。
 第2の粒子の平均粒径は、負極材層内での分布をより均一化し、また、リチウムイオン二次電池のサイクル特性をより向上させる観点から、例えば、0.1μm~20μmであることが好ましく、0.5μm~15μmであることがより好ましく、1μm~15μmであることがさらに好ましい。平均粒径は、レーザー回折粒度分布測定装置により測定することができ、体積基準の粒度分布において小径側からの積算が50%となるときの粒径(D50)である。第2の粒子の平均粒径は、第1の粒子の平均粒径と同様に測定することができる。
 第2の粒子の平均粒径に対する第1の粒子の平均粒径の比(第1の粒子の平均粒径/第2の粒子の平均粒径)は、第1の粒子内部の空隙に第2の粒子を適切に配置させる観点から、例えば、1.0~10.0であることが好ましく、1.5~8.0であることがより好ましく、1.5~6.0であることがさらに好ましい。
 第2の粒子は、タップ密度が0.7g/cm~1.3g/cmであることが好ましく、0.85g/cm~1.25g/cmであることがより好ましく、0.9g/cm~1.2g/cmであることがさらに好ましい。第2の粒子のタップ密度は、負極材のタップ密度と同様にして測定することができる。
 第2の粒子は、比表面積が0.5m/g以上であることが好ましく、1.0m/g以上であることがより好ましい。第2の粒子の比表面積は、負極材の比表面積と同様にして測定することができる。
 第2の粒子の含有率は、本開示の負極材の全量に対して、例えば、0.1質量%~20質量%であることが好ましく、0.5質量%~15質量%であることがより好ましく、1質量%~10質量%であることがさらに好ましい。第2の粒子の含有率が0.1質量%以上であると、リチウムイオン二次電池の充放電容量がより向上する傾向にある。第2の粒子の含有率が20質量%以下であると、充電に伴う負極の膨張がより抑制され、また、リチウムイオン二次電池のサイクル特性がより向上する傾向にある。
[その他の成分]
 本開示の負極材は、第1の粒子及び第2の粒子以外に、第1の粒子を構成していない粒状粒子をさらに含有していてもよい。
 粒状黒鉛としては、例えば、人造黒鉛、天然黒鉛、MC(メソフェーズカーボン)等の粒子が挙げられる。粒状黒鉛は、扁平状黒鉛、及び球状黒鉛のいずれであってもよく、求める性能により選択することができる。一例として、導電接触を改善することによるサイクル特性を向上する点から、扁平状黒鉛を選択することができる。
 粒状黒鉛は、平均粒径が、例えば、1μm~50μmであることが好ましく、導電接触を改善する観点からは、第1の粒子より平均粒径が小さいことがより好ましく、第2の粒子より平均粒径が小さいことがさらに好ましい。扁平状黒鉛の粒子径は、第1の粒子又は第2の粒子の平均粒径の0.7倍以下が好ましく、0.4倍以下がさらに好ましい。
 粒状黒鉛は、タップ密度が、例えば、0.25g/cm~1.3g/cmであることが好ましく、導電接触を改善する観点からは、薄片で粒子数が多いことが求められるため、低ければ低いほど好ましいが、比表面積の観点から0.25g/cm~0.8g/cmであることがより好ましく、0.3g/cm~0.5g/cmであることがさらに好ましい。
 粒状黒鉛は、比表面積が、例えば、0.5m/g~25m/gであることが好ましい。また、導電接触を改善する観点からは、粒状黒鉛が天然黒鉛の場合、比表面積は7m/g~25m/gであることが好ましく、10m/g~17m/gであることがさらに好ましい。粒状黒鉛が人造黒鉛の場合には、比表面積は2m/g~10m/gであることがより好ましく、4m/g~7m/gであることがさらに好ましい。
 また、本開示の負極材は、第1の粒子及び第2の粒子以外に、必要に応じて、導電助剤を混合してもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
<リチウムイオン二次電池用負極材の製造方法>
 本開示のリチウムイオン二次電池用負極材の製造方法(以下、単に「負極材の製造方法」ともいう。)は、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を混合する工程(以下、「混合工程」ともいう。)を含む。すなわち、本開示の負極材の製造方法は、前述した第1の粒子と第2の粒子とを混合する工程を含む。
 第1の粒子と第2の粒子とを混合する方法は特に制限されず、湿式混合法、乾式混合法等が挙げられる。混合工程では、必要に応じて、第1の粒子及び第2の粒子以外に導電性粒子等をさらに混合してもよい。
<リチウムイオン二次電池用負極材スラリー>
 本開示のリチウムイオン二次電池用負極材スラリー(以下、単に「負極材スラリー」ともいう。)は、本開示の負極材と、有機結着材と、溶剤とを含有する。負極材スラリーは必要に応じ、増粘剤、導電助剤等を含有してもよい。
 有機結着材としては、特に限定されず、スチレン-ブタジエン共重合体(スチレンブタジエンゴム);メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステルと、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸と、を共重合して得られる(メタ)アクリル共重合体;ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロロヒドリン、ポリホスファゼン、ポリアクリロニトリル、ポリイミド、ポリアミドイミド等の高分子化合物;などが挙げられる。
 溶剤としては、特に制限されず、N-メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、γ-ブチロラクトン等の有機溶剤、水などが挙げられる。
 本開示の負極材スラリーは、必要に応じて、粘度を調整するための増粘剤を含有していてもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸及びその塩、酸化スターチ、リン酸化スターチ、カゼイン等が挙げられる。
 また、本開示の負極材スラリーは、必要に応じて、導電助剤を含有していてもよい。導電助剤としては、カーボンブラック、グラファイト、アセチレンブラック、導電性を示す酸化物、導電性を示す窒化物等が挙げられる。
<リチウムイオン二次電池用負極>
 本開示のリチウムイオン二次電池用負極(以下、単に「負極」ともいう。)は、集電体と、集電体上に形成された本開示の負極材を含有する負極材層と、を有する。
 集電体の材質及び形状は特に制限されない。集電体としては、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュなどが挙げられる。また、集電体としては、ポーラスメタル(発泡メタル)、カーボンペーパー等の多孔性材料も使用可能である。
 本開示の負極材を含有する負極材層を集電体上に形成する方法は特に限定されない。例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法等の公知の方法により、負極材層を集電体上に形成することができる。負極材層と集電体とを一体化する場合は、ロール、プレス、これらの組み合わせ等の公知の方法により行うことができる。
 負極材層を集電体上に形成して得られた負極は、用いた有機結着材の種類に応じて熱処理してもよい。熱処理することにより溶剤が除去され、有機結着材による高強度化が進み、粒子間及び粒子と集電体との間の密着性が向上する傾向にある。熱処理は、処理中の集電体の酸化を防ぐため、ヘリウム、アルゴン、窒素等の不活性雰囲気中又は真空雰囲気中で行ってもよい。
 上記熱処理を行う前に、負極をプレス(加圧処理)してもよい。加圧処理することにより電極密度を調整することができる。電極密度は、例えば、1.5g/cm~1.9g/cmであることが好ましく、1.6g/cm~1.8g/cmであることがより好ましい。電極密度が高いほど体積容量が向上し、集電体への負極材層の密着性が向上し、リチウムイオン二次電池のサイクル特性が向上する傾向にある。
<リチウムイオン二次電池>
 本開示のリチウムイオン二次電池は、正極と、電解質と、本開示の負極と、を有する。リチウムイオン二次電池は、例えば、負極と正極とがセパレータを介して対向するように配置され、電解質を含む電解液が注入された構成とすることができる。
 正極は、負極と同様にして、集電体上に正極材層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金からなる帯状箔、帯状穴開け箔、帯状メッシュなどを用いることができる。
 正極材層に用いる正極材は、特に制限されない。正極材としては、例えば、リチウムイオンをドーピング又はインターカレーションすることが可能な金属化合物、金属酸化物、金属硫化物、及び導電性高分子材料が挙げられる。さらには、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、導電性ポリマー(ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等)、多孔質炭素などを、1種単独で又は2種以上を組み合わせて使用することができる。中でも、ニッケル酸リチウム(LiNiO)及びその複酸化物(LiCoNiMn、x+y+z=1、0<x、0<y;LiNi2-xMn、0<x≦2)は、容量が高いために正極材として好適である。
 セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム、及びそれらの組み合わせが挙げられる。なお、リチウムイオン二次電池が正極と負極とが接触しない構造を有する場合は、セパレータを使用する必要はない。
 電解液としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、フルオロエチレンカーボネート、シクロペンタノン、スルホラン、3-メチルスルホラン、2,4-ジメチルスルホラン、3-メチル-1,3-オキサゾリジン-2-オン、γ-ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、酢酸メチル、酢酸エチル等を1種単独で又は2種以上を組み合わせて含む非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。中でも、フルオロエチレンカーボネートを含有する電解液は、負極材の表面に安定なSEI(固体電解質界面)を形成する傾向があり、サイクル特性が著しく向上するために好適である。
 本開示のリチウムイオン二次電池の形態は特に限定されず、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池等が挙げられる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<黒鉛粒子及び珪素酸化物粒子の作製>
 負極材の作製に用いる黒鉛粒子1~7、C1~C3と珪素酸化物粒子1~4を下記の手順で作製した。
(黒鉛粒子1)
 平均粒径12μmのコークス粉末(55質量部)、タールピッチ(25質量部)及び黒鉛化触媒としての炭化ケイ素(20質量部)を混合し、100℃で1時間撹拌し、混合物を得た。次いで、得られた混合物を押出成形して成形物を得た。成形物を窒素雰囲気中1000℃で焼成し焼結物を得た。その焼結物をアチソン炉にて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けを行い、平均粒径20μmの黒鉛粒子1を得た。
 黒鉛粒子1を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子1のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。測定はそれぞれ前述した方法により行った。
(黒鉛粒子2)
 平均粒径12μmのコークス粉末(40質量部)、平均粒径20μmの球状天然黒鉛(円形度0.91)(20質量部)、タールピッチ(20質量部)及び黒鉛化触媒としての炭化ケイ素(20質量部)を混合し、100℃で1時間撹拌し、混合物を得た。次いで、得られた混合物を押出成形して成形物を得た。成形物を窒素雰囲気中1000℃で焼成し焼結物を得た。その焼結物をアチソン炉にて2800℃で焼成し、黒鉛化可能な成分を黒鉛化した。得られた焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けを行い、平均粒径23μmの黒鉛粒子2を得た。
 黒鉛粒子2を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子2のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子3)
 黒鉛粒子2の作製において焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けの条件を変更し、平均粒径18μmの黒鉛粒子3を得た。
 黒鉛粒子3を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子3のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子4)
 黒鉛粒子2の作製において焼成物(黒鉛化粉)をハンマーミルにて粉砕し、篩分けの条件を変更し、平均粒径10μmの(黒鉛粒子4)を得た。
 黒鉛粒子4を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子4のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子5)
 平均粒径12μmのコークス粉末(20質量部)、平均粒径3μmの扁平状天然黒鉛(円形度0.8)(20質量部)、平均粒径20μmの球状天然黒鉛(円形度0.91)(20質量部)、タールピッチ(20質量部)及び黒鉛化触媒としての酸化ケイ素(20質量部)を混合し、100℃で1時間撹拌し、混合物を得た。これを用いたこと以外は黒鉛粒子1と同様にして、平均粒径20μmの黒鉛粒子5を得た。
 黒鉛粒子5を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子5のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子6)
 平均粒径3μmの扁平状天然黒鉛(円形度0.8)(15質量部)、平均粒径15μmの球状天然黒鉛(円形度0.91)(25質量部)、タールピッチ(25質量部)及び黒鉛化触媒としての酸化ケイ素(10質量部)を混合し、100℃で1時間撹拌し、混合物を得た。次いで、この混合物75質量部と平均粒径15μmの球状天然黒鉛(円形度0.91)25質量部とを混合した後に、窒素雰囲気中1000℃で焼成して焼結物を得た。これを用いたこと以外は黒鉛粒子1と同様にして、平均粒径15μmの黒鉛粒子6を得た。
 黒鉛粒子6を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子6のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子7)
 黒鉛粒子2(70質量部)と、平均粒径22μmの球状天然黒鉛(円形度0.94)(25質量部)とを混合して、平均粒径22.8μmの黒鉛粒子7を得た。
 黒鉛粒子7を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子7のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子8)
 黒鉛粒子3(96質量部)と軟化点温度100℃のタールピッチ(4質量部)とを混合した混合物を1100℃にて炭化し、非晶質炭素にて黒鉛粒子3を被覆した18.5μmの黒鉛粒子8を得た。
 黒鉛粒子8を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子8のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子9)
 平均粒径3μmの扁平状天然黒鉛(円形度0.8)(5質量部)、平均粒径15μmの球状天然黒鉛(円形度0.91)(55質量部)、タールピッチ(20質量部)及び黒鉛化触媒としての酸化ケイ素(20質量部)を混合し、100℃で1時間撹拌し、混合物を得て加圧成形したブロックを得た。次いで、窒素雰囲気中1000℃で焼成して焼結物を得た。これを用いたこと以外は黒鉛粒子1と同様にして、平均粒径17.8μmの黒鉛粒子9を得た。
 黒鉛粒子9を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子を含むことが確認された。黒鉛粒子9のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
(黒鉛粒子C1)
 平均粒径22.0μmの球状黒鉛(円形度0.94)を黒鉛粒子C1とした。黒鉛粒子C1のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
 黒鉛粒子C1を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子は確認されなかった。
(黒鉛粒子C2)
 球状黒鉛(92質量部)とタールピッチ(8質量部)とを混合し、1000℃以上にて焼成して得られる非晶性炭素で被覆された平均粒径16μmの球状黒鉛を黒鉛粒子C2とした。黒鉛粒子C2のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
 黒鉛粒子C2を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子は確認されなかった。
(黒鉛粒子C3)
 球状黒鉛(92質量部)とタールピッチ(8質量部)とを混合し、1000℃以上にて焼成して得られる非晶性炭素で被覆された平均粒径10.7μmの球状黒鉛を黒鉛粒子C3とした。黒鉛粒子C3のタップ密度、加圧後密度、吸油量、円形度及び比表面積を測定した結果を表1に示す。
 黒鉛粒子C2を走査型電子顕微鏡で観察したところ、主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している粒子は確認されなかった。
(珪素酸化物粒子1)
 塊状の酸化珪素(株式会社高純度化学研究所製、10mm~30mm角)を乳鉢により粗粉砕し、珪素酸化物の粒子を得た。これを振動ミル(日陶科学株式会社製、「NB-0」)によってさらに粉砕した後、300メッシュの試験篩で分級し、平均粒径10μmの粒子を得た。
 得られた珪素酸化物の粒子(96質量部)と、タールピッチ(固定炭素50質量%)(4質量部)とを混合装置(愛知電機株式会社製、「ロッキングミキサーRM-10G」)に投入し、5分間混合した後、アルミナ製の熱処理容器に充填した。熱処理容器に充填した後、これを雰囲気焼成炉において、窒素雰囲気下で、1000℃で5時間熱処理し、熱処理物を得た。得られた熱処理物を乳鉢により解砕し、300メッシュの試験篩で分級し、平均粒径10.8μmの珪素酸化物粒子1を得た。珪素酸化物粒子1のタップ密度及び比表面積を測定した結果を表1に示す。
(珪素酸化物粒子2)
 塊状の酸化珪素(株式会社高純度化学研究所製、10mm~30mm角)を乳鉢により粗粉砕し、珪素酸化物の粒子を得た。これを振動ミル(日陶科学株式会社製、「NB-0」)によってさらに粉砕した後、300メッシュの試験篩で分級し、平均粒径5μmの粒子を得た。
 得られた珪素酸化物の粒子(96質量部)と、タールピッチ(固定炭素50質量%)(4質量部)とを混合装置(愛知電機株式会社製、「ロッキングミキサーRM-10G」)に投入し、5分間混合した後、アルミナ製の熱処理容器に充填した。熱処理容器に充填した後、これを雰囲気焼成炉において、窒素雰囲気下で、1000℃で5時間熱処理し、熱処理物を得た。得られた熱処理物を乳鉢により解砕し、300メッシュの試験篩で分級し、平均粒径6.2μmの珪素酸化物粒子2を得た。珪素酸化物粒子2のタップ密度及び比表面積を測定した結果を表1に示す。
(珪素酸化物粒子3)
 導電性粒子として、平均粒径が3μmの鱗片状黒鉛(KS-6、Timcal社)及びアセチレンブラック(HS100、電気化学工業株式会社)を準備した。
 水800gに対して、鱗片状黒鉛(KS-6、Timcal社)を156g、アセチレンブラック(HS-100、電気化学工業株式会社)を40g、カルボキシメチルセルロースを4g入れ、ビースミルで分散及び混合し、導電性粒子の分散液(固形分25質量%)を得た。次に、水450gに得られた導電性粒子の分散液100gを入れ撹拌機でよく撹拌した後、珪素酸化物粒子2を500gを添加し、さらに撹拌して珪素酸化物粒子2及び導電性粒子が分散した分散液を得た。
 得られた珪素酸化物粒子2及び導電性粒子が分散した液を乾燥機に入れ、150℃で12時間乾燥処理をし、水を除去した。その後、乳鉢により解砕し、次いで300メッシュの試験篩により篩分けし、平均粒径5.7μmの粒子(中間粒子)を得た。
 純水1リットルに対して有機物としてプルランを0.7g溶解後、100gの上記中間粒子を投入し、ホモナイザーで10分間撹拌し、分散処理を行った。その後、トレハロース0.1gを投入し、150℃の恒温槽中で12時間乾燥させて、有機物が付着した珪素酸化物粒子3を得た。得られた負極材料の平均粒径は、5.8μmであった。
(珪素酸化物粒子4)
 塊状の酸化珪素(株式会社高純度化学研究所製、10mm~30mm角)を乳鉢により粗粉砕し、珪素酸化物の粒子を得た。これを振動ミル(日陶科学株式会社製、「NB-0」)によってさらに粉砕した後、300メッシュの試験篩で分級し、平均粒径0.7μmの粒子を得た。
 得られた珪素酸化物の粒子(96質量部)と、タールピッチ(固定炭素50質量%)(4質量部)とを混合装置(愛知電機株式会社製、「ロッキングミキサーRM-10G」)に投入し、5分間混合した後、アルミナ製の熱処理容器に充填した。熱処理容器に充填した後、これを雰囲気焼成炉において、窒素雰囲気下で、1000℃で5時間熱処理し、熱処理物を得た。得られた熱処理物を乳鉢により解砕し、300メッシュの試験篩で分級し、平均粒径0.8μmの粒子(中間粒子)を得た。
 純水1リットルに対して有機物としてプルランを0.7g溶解後、100gの上記中間粒子を投入し、ホモナイザーで10分間撹拌し、分散処理を行った。その後、トレハロース0.1gを投入し、150℃の恒温槽中で12時間乾燥させて、有機物が付着した珪素酸化物粒子4を得た。得られた負極材料の平均粒径は、0.8μmであった。
(扁平状黒鉛粒子1)
 平均粒径3.3μmの扁平状黒鉛粒子(KS-6、Timcal社)を用意した。扁平状黒鉛粒子1のタップ密度、加圧後密度、吸油量及び比表面積を測定した結果を表1に示す。あわせて、XRDピーク強度比、R値及び酸化重量減少率を表1に示す。
(扁平状黒鉛粒子2)
 平均粒径8.1μmの扁平状黒鉛粒子を用意した。扁平状黒鉛粒子2のタップ密度、加圧後密度、吸油量及び比表面積を測定した結果を表1に示す。あわせて、XRDピーク強度比、R値及び酸化重量減少率を表1に示す。
<実施例1>
(負極材の作製)
 黒鉛粒子1(95質量部)と珪素酸化物粒子1(5質量部)とを混合し、実施例1の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。測定はそれぞれ前述した方法により行った。
(負極の作製)
 上記手法で作製した負極材料の粉末(97.6質量部)、カルボキシメチルセルロース(CMC)(1.2質量部)及びスチレンブタジエンゴム(SBR)(1.2質量部)を混練し、均一なスラリーを調製した。このスラリーを電解銅箔の光沢面に塗布量が10g/cmとなるように塗布し、90℃、2時間で予備乾燥させた後、ロールプレスで密度が1.65g/cmになるように調整した。その後、真空雰囲気下で、120℃で4時間乾燥させることによって硬化処理を行い、負極を得た。
(リチウムイオン二次電池の作製)
 上記で得られた電極を負極とし、対極として金属リチウム、電解液として、1MのLiPFを含むエチレンカーボネート/エチルメチルカーボネート(3:7体積比)とビニレンカーボネート(VC)(1.0質量%)の混合液、セパレータとして厚さ25μmのポリエチレン製微孔膜、及びスペーサーとして、厚み250μmの銅板を用いて2016型コインセルを作製した。
(電池特性の評価)
 上記で得られた電池を、25℃に保持した恒温槽内に入れ、0.45mA/cmで0Vになるまで定電流充電を行った後、0Vの定電圧で電流が0.09mA/cmに相当する値に減衰するまでさらに充電し、初回充電容量(mAh/g)を測定した。充電後、30分間の休止を入れ、その後に放電を行った。放電は0.45mA/cmで1.5Vになるまで行い、初回放電容量(mAh/g)を測定した。このとき、容量は用いた負極材料の質量あたりに換算した。
 上記条件で5サイクル充放電を繰り返した後、充電した状態で評価用セルを解体し、そのときの厚みと電極作製時の厚みの比率を膨張率(%)とした。
 サイクル特性の指標として、上記条件で10サイクル充放電を繰り返した後、下記式により容量維持率(%)を算出した。
 式:容量維持率(%)=(10サイクル目の放電容量/1サイクル目の放電容量)×100
<実施例2>
(負極材の作製)
 黒鉛粒子2(95質量部)と珪素酸化物粒子1(5質量部)とを混合し、実施例2の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例2で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例3>
(負極材の作製)
 黒鉛粒子3(90質量部)と珪素酸化物粒子2(10質量部)とを混合し、実施例3の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例3で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例4>
(負極材の作製)
 黒鉛粒子4(85質量部)と珪素酸化物粒子3(15質量部)とを混合し、実施例4の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例4で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例5>
(負極材の作製)
 黒鉛粒子5(95質量部)と珪素酸化物粒子4(5質量部)とを混合し、実施例5の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例5で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例6>
(負極材の作製)
 黒鉛粒子6(95質量部)と珪素酸化物粒子3(5質量部)とを混合し、実施例6の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例6で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例7>
(負極材の作製)
 黒鉛粒子7(95質量部)と珪素酸化物粒子1(5質量部)とを混合し、実施例7の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例7で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例8>
(負極材の作製)
 黒鉛粒子8(95質量部)と珪素酸化物粒子1(5質量部)とを混合し、実施例8の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例8で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例9>
(負極材の作製)
 黒鉛粒子9(70質量部)と珪素酸化物粒子3(5質量部)と平均粒径3μmの扁平状黒鉛粒子(KS-6,Timical)(25質量部)を混合し、実施例9の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例9で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<実施例10>
(負極材の作製)
 黒鉛粒子2(85質量部)と珪素酸化物粒子1(5質量部)と平均粒径8μmの扁平状黒鉛粒子(10質量部)を混合し、実施例10の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 実施例10で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<比較例1>
(負極材の作製)
 黒鉛粒子C1(95質量部)と珪素酸化物粒子1(5質量部)とを混合し、比較例1の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 比較例1で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<比較例2>
(負極材の作製)
 黒鉛粒子C2(95質量部)と珪素酸化物粒子3(5質量部)とを混合し、比較例2の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 比較例2で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<比較例3>
(負極材の作製)
 黒鉛粒子C3(90質量部)と珪素酸化物粒子3(10質量部)とを混合し、比較例3の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 比較例3で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<比較例4>
(負極材の作製)
 黒鉛粒子C2(90質量部)と珪素酸化物粒子2(10質量部)とを使用し、黒鉛粒子と珪素酸化物粒子とが有機物の炭化物を介して複合化した状態の粒子を以下のようにして作製した。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
 黒鉛粒子と珪素酸化物粒子の複合化は、黒鉛粒子C2の作製に用いた球状黒鉛(82.8質量部)と、タールピッチ(7.6質量部)と、珪素酸化物粒子2(9.6質量部)とを混合し、1000℃で焼成し、解砕篩をすることで行った。
(負極及びリチウムイオン二次電池の作製並びに評価)
 比較例4で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
<比較例5>
(負極材の作製)
 黒鉛粒子3(86.4質量部)と、タールピッチ(4質量部)と、珪素酸化物粒子2(9.6質量部)とを使用したこと以外は比較例4と同様にして、黒鉛粒子と珪素酸化物粒子とが有機物の炭化物を介して複合化した状態の比較例5の負極材を得た。得られた負極材の比表面積及びタップ密度を測定した結果を表2に示す。
(負極及びリチウムイオン二次電池の作製並びに評価)
 比較例5で得られた負極材を用いて、実施例1と同様にして負極及びリチウムイオン二次電池を作製し、同様の評価を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、扁平状の黒鉛粒子と珪素酸化物粒子を含む負極材を用いた実施例では、扁平状の黒鉛粒子を含まない負極材を用いた比較例1~3に比べ、充電に伴う負極の膨張が抑制されていた。また、初回充電容量は同程度である一方、サイクル特性(容量維持率)に優れていた。
 さらに、黒鉛粒子と珪素粒子を混合して得た負極材を用いた実施例では、黒鉛粒子と珪素酸化物粒子を複合化して得た負極材を用いた比較例4、5に比べ、充電に伴う負極の膨張が抑制されていた。また、初回充電容量は同程度である一方、サイクル特性(容量維持率)に優れていた。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 20A…第2の粒子、20B…第2の粒子、20C…第2の粒子、20D…第2の粒子、20E…第2の粒子、21…珪素酸化物粒子、22…炭素

Claims (13)

  1.  主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を含む混合物であるリチウムイオン二次電池用負極材。
  2.  前記第1の粒子と前記第2の粒子とが複合化されていない請求項1に記載のリチウムイオン二次電池用負極材。
  3.  前記第1の粒子の吸油量が50ml/100g以上である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
  4.  フロー式粒子解析計で測定される前記第1の粒子の円形度が0.83~0.95である請求項1~請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5.  タップ密度が0.70g/cm~1.30g/cmである請求項1~請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。
  6.  前記第1の粒子のタップ密度が0.70g/cm~1.10g/cmである請求項1~請求項5のいずれか1項に記載のリチウムイオン二次電池用負極材。
  7.  前記第2の粒子のタップ密度が0.75g/cm~1.30g/cmである請求項1~請求項6のいずれか1項に記載のリチウムイオン二次電池用負極材
  8.  窒素ガス吸着のBET法による比表面積が1.5m/g~8.0m/gである請求項1~請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。
  9.  窒素ガス吸着のBET法による比表面積が2.0m/g~7.0m/gである請求項1~請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材。
  10.  主面が非平行となるように複数の扁平状の黒鉛粒子が集合又は結合している第1の粒子と、珪素原子を含む第2の粒子と、を混合する工程を含む請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  11.  請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材と、有機結着材と、溶剤と、を含有するリチウムイオン二次電池用負極材スラリー。
  12.  集電体と、前記集電体上に形成された請求項1~請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材を含有する負極材層と、を有するリチウムイオン二次電池用負極。
  13.  正極と、電解質と、請求項12に記載のリチウムイオン二次電池用負極と、を有するリチウムイオン二次電池。
PCT/JP2018/012982 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池 WO2019186828A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/012982 WO2019186828A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
EP18912877.0A EP3780184B1 (en) 2018-03-28 2018-03-28 Negative electrode material for lithium ion secondary battery, production method for negative electrode material for lithium ion secondary battery, negative electrode material slurry for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2020508661A JP7226431B2 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/012982 WO2019186828A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2019186828A1 true WO2019186828A1 (ja) 2019-10-03

Family

ID=68058699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/012982 WO2019186828A1 (ja) 2018-03-28 2018-03-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池

Country Status (3)

Country Link
EP (1) EP3780184B1 (ja)
JP (1) JP7226431B2 (ja)
WO (1) WO2019186828A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168170A1 (ja) * 2021-02-02 2022-08-11 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材組成物、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2023139662A1 (ja) * 2022-01-18 2023-07-27 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7576590B2 (ja) 2022-05-27 2024-10-31 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用の負極合剤スラリーの製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083587A (ja) * 1996-12-26 2002-03-22 Hitachi Chem Co Ltd リチウム二次電池用負極
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2009245613A (ja) * 2008-03-28 2009-10-22 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池
WO2012077785A1 (ja) 2010-12-10 2012-06-14 日立化成工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2014067583A (ja) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014093145A (ja) * 2012-11-01 2014-05-19 Toyota Motor Corp 非水電解質二次電池及びその負極
JP2015170542A (ja) * 2014-03-10 2015-09-28 三洋電機株式会社 非水電解質二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6087648B2 (ja) * 2012-05-14 2017-03-01 Jfeケミカル株式会社 複合黒鉛質材料及びその製造方法、リチウムイオン二次電池用負極材料、リチウムイオン二次電池用負極並びにリチウムイオン二次電池
CN106104871B (zh) * 2014-03-25 2018-05-11 日立化成株式会社 锂离子二次电池及其负极、其负极材料及制造方法、以及负极材料浆料
JP2015165510A (ja) * 2015-05-18 2015-09-17 日立化成株式会社 リチウムイオン二次電池用負極、およびリチウムイオン二次電池
KR102132618B1 (ko) * 2015-07-02 2020-07-13 쇼와 덴코 가부시키가이샤 리튬 이온 전지용 부극재 및 그 용도

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002083587A (ja) * 1996-12-26 2002-03-22 Hitachi Chem Co Ltd リチウム二次電池用負極
JP2005019399A (ja) * 2003-06-06 2005-01-20 Jfe Chemical Corp リチウムイオン二次電池用負極材料およびその製造方法、ならびにリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2009245613A (ja) * 2008-03-28 2009-10-22 Hitachi Chem Co Ltd リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池
WO2012077785A1 (ja) 2010-12-10 2012-06-14 日立化成工業株式会社 リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP2014067583A (ja) * 2012-09-26 2014-04-17 Sanyo Electric Co Ltd 非水電解質二次電池
JP2014093145A (ja) * 2012-11-01 2014-05-19 Toyota Motor Corp 非水電解質二次電池及びその負極
JP2015170542A (ja) * 2014-03-10 2015-09-28 三洋電機株式会社 非水電解質二次電池

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Carbon Black for Rubber -basic characteristics- section IV: measurement of oil absorption amount", JIS K, 2008, pages 6217 - 4
See also references of EP3780184A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168170A1 (ja) * 2021-02-02 2022-08-11 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材組成物、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2022168692A1 (ja) * 2021-02-02 2022-08-11 昭和電工マテリアルズ株式会社 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材組成物、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2023139662A1 (ja) * 2022-01-18 2023-07-27 株式会社レゾナック リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7576590B2 (ja) 2022-05-27 2024-10-31 プライムプラネットエナジー&ソリューションズ株式会社 非水電解質二次電池用の負極合剤スラリーの製造方法

Also Published As

Publication number Publication date
EP3780184A4 (en) 2021-10-20
JP7226431B2 (ja) 2023-02-21
JPWO2019186828A1 (ja) 2021-03-18
EP3780184A1 (en) 2021-02-17
EP3780184B1 (en) 2024-06-26

Similar Documents

Publication Publication Date Title
US10601044B2 (en) Negative electrode material for lithium-ion secondary battery, method for manufacturing negative electrode material for lithium-ion secondary battery, negative electrode material slurry for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2012077785A1 (ja) リチウムイオン二次電池用負極材及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
KR20200129176A (ko) 리튬이온 2차 전지용 음극 재료, 리튬이온 2차 전지용 음극 및 리튬이온 2차 전지
JP5563743B2 (ja) リチウムイオン二次電池負極用炭素材料、それを用いたリチウムイオン二次電池用負極合剤及びリチウムイオン二次電池
JP6555051B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2022163867A1 (ja) リチウムイオン二次電池用負極材、その評価方法及びその製造方法、リチウムイオン二次電池用負極、並びにリチウムイオン二次電池
JP6555050B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JPWO2019009422A1 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
JP2007294374A (ja) 非水電解液二次電池用負極材、該負極材を用いた非水電解液二次電池用負極および非水電解液二次電池
JP2012124122A (ja) リチウム二次電池
WO2019186828A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2019026265A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7238884B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP7272350B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材スラリー、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6939880B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6218348B2 (ja) リチウムイオン二次電池、及びその製造方法
JP5885919B2 (ja) リチウムイオン二次電池用負極、およびリチウムイオン二次電池
JP6319260B2 (ja) リチウムイオン二次電池、及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18912877

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020508661

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018912877

Country of ref document: EP

Effective date: 20201028