WO2012049746A1 - 電極板、二次電池、及び、電極板の製造方法 - Google Patents

電極板、二次電池、及び、電極板の製造方法 Download PDF

Info

Publication number
WO2012049746A1
WO2012049746A1 PCT/JP2010/067971 JP2010067971W WO2012049746A1 WO 2012049746 A1 WO2012049746 A1 WO 2012049746A1 JP 2010067971 W JP2010067971 W JP 2010067971W WO 2012049746 A1 WO2012049746 A1 WO 2012049746A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
active material
current collector
negative electrode
coating
Prior art date
Application number
PCT/JP2010/067971
Other languages
English (en)
French (fr)
Inventor
三橋 利彦
浩二 高畑
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/067971 priority Critical patent/WO2012049746A1/ja
Priority to JP2011510764A priority patent/JP4761010B1/ja
Priority to US13/266,827 priority patent/US8574763B2/en
Priority to CN2010800376202A priority patent/CN102576875B/zh
Priority to KR1020127004835A priority patent/KR101329934B1/ko
Publication of WO2012049746A1 publication Critical patent/WO2012049746A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to an electrode plate in which an active material layer containing at least an active material and a binder is formed on a current collector plate. Moreover, it is related with a secondary battery provided with this electrode plate. Moreover, it is related with the manufacturing method of this electrode plate.
  • an electrode plate for a secondary battery that includes a current collector plate and an active material layer formed thereon and containing at least an active material and a binder.
  • a positive electrode plate a positive electrode containing a positive electrode active material such as lithium metal oxide and a binder such as polyvinylidene fluoride (PVDF) or styrene-butadiene rubber (SBR) on a current collector plate made of aluminum foil.
  • PVDF polyvinylidene fluoride
  • SBR styrene-butadiene rubber
  • Some have an active material layer formed thereon.
  • a negative electrode plate there is one in which a negative electrode active material layer including a negative electrode active material made of a carbon material and a binder such as PVDF or SBR is formed on a current collector plate made of copper foil.
  • an active material layer is obtained by applying an active material paste prepared by dispersing an active material, a binder, or the like in a solvent on a current collector, and then drying a coating film made of the active material paste. Form.
  • the binder moves to the coating film surface side together with the solvent as the solvent volatilizes from the coating film surface. For this reason, when the active material layer after the drying step is viewed in the thickness direction, the surface side of the active material layer has more binder, and the current collector plate side has less binder and tends to be unevenly distributed.
  • the adhesion strength between the active material layer and the current collector plate is lowered.
  • Patent Document 1 an electrode coating liquid (active material paste) kneaded with an active material and a binder is applied on a conductive current collector, and the conductive current collector is coated on the conductive current collector. It is proposed that an active material layer be formed by alternately performing a drying step of drying the electrode coating solution coated on the substrate a plurality of times (see claims of Patent Document 1, etc.). reference). By doing so, it is described that the binder can be prevented from being unevenly distributed in the active material layer.
  • the electrode plate of Patent Document 1 described above can still cause a problem that the adhesion strength between the active material layer and the current collector plate is lowered. Moreover, in the manufacturing method of the electrode plate of patent document 1, since a coating process and a drying process are each performed in multiple times, a man-hour increases correspondingly. For this reason, the cost increase of an electrode plate and a secondary battery using the same is caused.
  • the present invention has been made in view of such a situation, and an object thereof is to provide an electrode plate capable of increasing the adhesion strength between an active material layer and a current collector plate. Moreover, it aims at providing a secondary battery provided with this electrode plate. Moreover, it aims at providing the manufacturing method of this electrode plate.
  • an electrode plate comprising a current collector plate and an active material layer formed on the current collector plate and containing at least an active material and a binder,
  • the active material layer includes a plurality of binders having different glass transition points Tg as the binder, and divides the active material layer in half at the center in the thickness direction to form the surface of the active material layer.
  • the amount (A2) of the binder contained in the front side and the binder contained in the current collector side is 1.0 to 1.2, and the average glass transition point Tgu of the binder contained in the surface side portion is It is an electrode plate formed lower than the average glass transition point Tgd of the binder contained in the side portion of the electric plate.
  • This electrode plate has a ratio (A2 / A1) between the amount (A2) of the binder contained in the surface side portion of the active material layer and the amount (A1) of the binder contained in the side portion of the current collector plate. ) Is 1.0 to 1.2.
  • the active material layer includes a plurality of binders having different glass transition points Tg, but the average glass transition point Tgu of the binder included in the surface side portion is included in the side of the current collector plate. It is lower than the average glass transition point Tgd of the adhesive (Tgu ⁇ Tgd).
  • the “electrode plate” a positive electrode plate including a current collector plate made of aluminum foil or the like, and a positive electrode active material layer containing a positive electrode active material and a binder, a current collector plate made of copper foil or the like, And a negative electrode plate including a negative electrode active material layer including a negative electrode active material and a binder.
  • the “active material layer” contains at least the active material and the binder, but may contain, for example, a conductive auxiliary agent, a thickener, and the like in addition to these.
  • lithium metal oxide positive electrode active material
  • lithium cobaltate lithium cobaltate
  • lithium manganate lithium nickelate
  • graphite graphite
  • hard carbon-based carbon material negative electrode active material
  • binder examples include polyvinylidene fluoride (PVDF) and styrene-butadiene rubber (SBR).
  • conducting aid examples include activated carbon, graphite fine powder, and carbon fiber.
  • thickening agent examples include carboxymethyl cellulose (CMC).
  • the active material layer has a first binder as the binder and a glass transition point Tg2 lower than the glass transition point Tg1 of the first binder.
  • the surface side part contains more of the second binder than the first binder, and the current collector side part is more than the second binder.
  • An electrode plate containing a large amount of the first binder is preferable.
  • the active material layer of the electrode plate includes, as a binder, a first binder and a second binder having a glass transition point Tg2 lower than the glass transition point Tg1 of the first binder,
  • the surface side part contains more second binder than the first binder, and the current collector side part contains more first binder than the second binder.
  • the plurality of binders may be electrode plates made of styrene-butadiene rubber (SBR) having different glass transition points Tg.
  • SBR styrene-butadiene rubber
  • the plurality of binders described above are all styrene-butadiene rubber (SBR). Since SBR has a strong binding force, the amount of the binder contained in the active material layer is reduced so that the resistance generated in the active material layer itself is reduced, while the adhesion strength between the active material layer and the current collector plate is sufficiently high. it can.
  • SBR styrene-butadiene rubber
  • another aspect is a secondary battery provided with any one of the electrode plates described above.
  • Another embodiment includes a current collector plate and an active material layer formed on the current collector plate and including at least an active material and a binder, and the active material layer is used as the binder, A plurality of binders having different glass transition points Tg are included, the active material layer is divided in half at the center in the thickness direction, the side forming the surface of the active material layer is the surface side, and the current collector plate side is When the current collecting plate side part is used, the ratio (A2) between the amount (A2) of the binder contained in the surface side part and the amount (A1) of the binder contained in the current collector side part.
  • the average glass transition point Tgu of the binder contained in the surface side portion of the binder contained in the current collector plate side portion is A method for producing an electrode plate that is lower than an average glass transition point Tgd, comprising at least one of the plurality of binders, A first coating binder having a glass transition point Tga and a first active material paste containing the active material are applied onto the current collector plate, and the first active material paste is applied onto the current collector plate.
  • a first coating step for forming a first coating film comprising: an average glass transition of the first coating binder comprising at least one of the plurality of binders after the first coating step;
  • a second coating binder having an average glass transition point Tgb lower than the point Tga and a second active material paste containing the active material are applied onto the first coating film, and the first coating film
  • the electrode plate manufactured by this electrode plate manufacturing method includes the above-described active material layer, that is, the amount of the binder on the surface side (A2) and the amount of the binder on the current collector side (A1) Ratio (A2 / A1) is 1.0 to 1.2, and the average glass transition point Tgu of the binder on the surface side is equal to the average glass transition point Tgd of the binder on the current collector side.
  • the active material layer is lowered. Therefore, the adhesion strength between the active material and the current collector plate can be increased.
  • the active material layer is formed by performing the first coating step, the second coating step, and the drying step in this order, an active material layer having the above-described characteristics can be easily formed. Can be formed. That is, in this manufacturing method, the coating film in which the first coating film and the second coating film formed by the first coating process and the second coating process are overlapped is dried. Then, as the solvent volatilizes from the coating surface, the binder tends to move to the coating surface side together with the solvent. However, the binder having a higher glass transition point Tg is more viscous when compared under the same temperature condition.
  • the first coating binder having a relatively high glass transition point Tg contained in the first coating film has a relatively low glass transition point Tg contained in the second coating film. It is harder to move than the second coating binder. For this reason, it is possible to suppress the uneven distribution of the binder in the active material layer after the drying step (the uneven distribution in which the binder is more on the surface side and the binder is less on the current collector side). Thus, the above-described active material layer is formed. Further, in this electrode plate manufacturing method, it is not necessary to perform the drying process a plurality of times for each of the first and second coating processes, and it is sufficient to perform the process after the second coating process.
  • the “first active material paste” and the “second active material paste” may be formed, for example, by kneading a solvent such as water or N-methylpyrrolidone (NMP) with an active material or a binder.
  • a solvent such as water or N-methylpyrrolidone (NMP)
  • NMP N-methylpyrrolidone
  • a conductive additive or a thickener can be added to the “first active material paste” and the “second active material paste”.
  • first coating film on the current collector plate As a technique for applying the first coating film on the current collector plate and a technique for applying the second coating film on the first coating film, known printing techniques can be appropriately selected. For example, a gravure method, a gravure reverse method, a die coating method, a slide coating method and the like can be mentioned. Further, the thicknesses of the “first coating film” and the “second coating film” are not necessarily equal, and can be appropriately changed. That is, it is not necessary to correspond the “first coating film” and the “current collector plate side portion” of the active material layer, and the “second coating film” and the “surface side portion” of the active material layer without any excess or deficiency. .
  • the “first coating film” is formed thin and the “second coating film” is formed thick, and the “current collector side” of the active material layer is formed of “first coating film” and “second coating film”. While forming from a part, a "surface side part” can be formed from the remainder of a "2nd coating film”. Or, conversely, the “first coating film” is thick and the “second coating film” is formed thin, and the “current collector plate side portion” of the active material layer is formed from a part of the “first coating film”. At the same time, the “surface side portion” can be formed from the remaining portion of the “first coating film” and the “second coating film”.
  • the weight concentration of the second coating binder in the solid content contained in the second active material paste is determined as the solid content contained in the first active material paste.
  • the electrode plate manufacturing method uses the first active material paste and the second active material paste, which is lower than the weight concentration of the first coating binder.
  • the first and second active material pastes are used to form the first and second coating films, and the active material layer is formed from these coating films.
  • the value of the ratio (A2 / A1) between the amount of the binder on the surface side (A2) and the amount of the binder (A1) on the current collector side can be more effectively suppressed. Can be made smaller (a value closer to 1.0). That is, in this manufacturing method, the coating film in which the first coating film and the second coating film formed using the first and second active material pastes described above are dried. Then, with the volatilization of the solvent from the coating film surface, the binder is moved to the coating film surface side together with the solvent, but the binder contained in the first coating film (first coating binder).
  • the binder contained in the second coating film (second coating binder), so that the binder is unevenly distributed in the active material layer after the drying step (the binding agent is closer to the surface side).
  • the uneven distribution in which the binder is reduced as the current collecting plate side is more effectively suppressed.
  • the adhesion strength between the active material layer and the current collector plate can be further increased.
  • the active material layer includes, as the binder, a first binder and a glass transition point Tg1 of the first binder.
  • a second binder having a low glass transition point Tg2 the surface side portion contains more of the second binder than the first binder
  • the current collector side portion includes: More of the first binder than the second binder, and in the first coating step, as the first coating binder, the first binder and the second binder Among them, the first active material paste comprising at least the first binder is used, and in the second coating step, the first binder and the second binder are used as the second coating binder.
  • the electrode plate manufacturing method uses the second active material paste made of at least the second binder among the agents.
  • the above-described method can be achieved by using only two types of binders (first binder and second binder) without using a large number of binders. Therefore, the active material layer can be easily formed.
  • the manufacturing method of the electrode plate uses styrene-butadiene rubber (SBR) having different glass transition points Tg as the plurality of binders. good.
  • SBR styrene-butadiene rubber
  • SBR styrene-butadiene rubber
  • FIG. 1 is a longitudinal sectional view of a lithium ion secondary battery according to Embodiment 1.
  • FIG. 3 is a perspective view showing a wound electrode body according to the first embodiment.
  • FIG. 3 is a plan view illustrating a positive electrode plate according to the first embodiment.
  • FIG. 3 is a plan view illustrating the negative electrode plate according to the first embodiment.
  • 3 is a partial enlarged cross-sectional view illustrating a negative electrode plate according to Embodiment 1.
  • FIG. It is a top view which concerns on Embodiment 1 and shows a separator.
  • FIG. 3 is a partial plan view illustrating a state in which the positive electrode plate and the negative electrode plate are overlapped with each other via a separator according to the first embodiment.
  • FIG. 3 is an exploded perspective view illustrating a case lid member, a positive electrode terminal member, a negative electrode terminal member, and the like according to the first embodiment. It is explanatory drawing which shows a mode that the 1st coating film and the 2nd coating film were formed on the electrically conductive collector plate regarding the manufacturing method of the negative electrode plate which concerns on Embodiment 1.
  • FIG. FIG. 6 is a partial enlarged cross-sectional view showing a negative electrode plate according to the second embodiment. It is explanatory drawing which shows a mode that the 1st coating film and the 2nd coating film were formed on the electrically conductive collector plate regarding the manufacturing method of the negative electrode plate which concerns on Embodiment 2.
  • FIG. 6 is a graph showing adhesion strength Ka of negative electrode plates according to Examples 1 and 2 and Comparative Examples 1 to 5. It is explanatory drawing which shows the vehicle which concerns on Embodiment 3. FIG. It is explanatory drawing which shows the battery using apparatus which concerns on Embodiment 4.
  • FIG. 1 shows a lithium ion secondary battery (secondary battery) 100 according to the first embodiment.
  • FIG. 2 shows a wound electrode body 120 constituting the lithium ion secondary battery 100. Further, a positive electrode plate (electrode plate) 121 constituting the wound electrode body 120 is shown in FIG. 3, a negative electrode plate (electrode plate) 131 is shown in FIGS. 4 and 5, and a separator 141 is shown in FIG.
  • FIG. 7 shows a state in which the positive electrode plate 121 and the negative electrode plate 131 are overlapped with each other with the separator 141 interposed therebetween.
  • FIG. 8 shows details of the case lid member 113, the positive electrode terminal member 150, the negative electrode terminal member 160, and the like.
  • the lithium ion secondary battery 100 is a prismatic battery that is mounted on a vehicle such as a hybrid vehicle or an electric vehicle, or a battery using device such as a hammer drill.
  • the lithium ion secondary battery 100 includes a rectangular battery case 110, a wound electrode body 120 accommodated in the battery case 110, a positive electrode terminal member 150 and a negative electrode terminal member 160 supported by the battery case 110. Etc. (see FIG. 1).
  • an electrolyte solution (not shown) is injected into the battery case 110.
  • the battery case 110 is composed of a box-shaped case main body member 111 opened only on the upper side, and a rectangular plate-shaped case cover member 113 welded in a form to close the opening 111 h of the case main body member 111.
  • the case lid member 113 is provided with a safety valve portion 113j and an electrolyte solution inlet 113d (see FIGS. 1 and 8).
  • a positive electrode terminal member 150 and a negative electrode terminal member 160 each constituted by three terminal fittings 151, 152, and 153 are provided via three insulating members 155, 156, and 157, respectively. It is fixed (see FIG. 8).
  • the positive electrode terminal member 150 is connected to a positive electrode current collector 121m described later in the wound electrode body 120
  • the negative electrode terminal member 160 is connected to a negative electrode current collector 131m described later in the wound electrode body 120. (See FIG. 1).
  • the wound electrode body 120 is housed in an insulating film enclosure 115 formed in a bag shape with only the upper opening of the insulating film, and is housed in the battery case 110 in a laid state (FIG. 1). reference).
  • the wound electrode body 120 includes a long positive electrode plate 121 (see FIG. 3) and a long negative electrode plate 131 (see FIGS. 4 and 5), and a long separator 141 having air permeability. (See FIG. 6), and wound around the axis AX and compressed into a flat shape (see FIGS. 7 and 2).
  • the positive electrode plate 121 has a current collector plate 122 made of an aluminum foil having a long shape and a thickness of 15 ⁇ m as a core material, as shown in FIG. 3.
  • positive electrode active material layers (active material layers) 123, 123 each having a thickness of 20 ⁇ m on one side are formed on a part of the width direction and extending in the longitudinal direction. It is provided in a strip shape in the longitudinal direction (left and right direction in FIG. 3).
  • the positive electrode active material layer 123 is composed of a positive electrode active material (active material), a conductive additive, and a binder.
  • LiNiCoMnO 2 is used as the positive electrode active material
  • acetylene black is used as the conductive auxiliary agent
  • PVDF is used as the binder.
  • a strip-shaped portion where the current collector plate 122 and the positive electrode active material layers 123 and 123 exist in the thickness direction of the positive electrode plate 121 is the positive electrode portion 121 w.
  • the positive electrode portion 121w faces a negative electrode portion 131w (described later) of the negative electrode plate 131 through the separator 141 in a state where the wound electrode body 120 is configured (see FIG. 7).
  • one end portion (upward in FIG. 3) in the width direction of the current collector plate 122 extends in a strip shape in the longitudinal direction, and its thickness direction
  • the positive electrode active material layer 123 does not exist in the positive electrode current collector 121m.
  • the separator 141 is made of a resin such as polypropylene (PP) or polyethylene (PE), is porous, and has a long shape as shown in FIG.
  • PP polypropylene
  • PE polyethylene
  • the negative electrode plate 131 has a current collector plate 132 made of a copper foil having a long shape and a thickness of 10 ⁇ m as a core material. On both main surfaces of the current collector plate 132, on the part extending in the longitudinal direction and extending in the longitudinal direction, negative electrode active material layers (active material layers) 133 and 133 each having a thickness of 20 ⁇ m on one side are respectively provided. It is provided in a strip shape in the longitudinal direction (left and right direction in FIG. 4).
  • a strip-shaped portion where the current collector plate 132 and the negative electrode active material layers 133 and 133 are present in the thickness direction of the negative electrode plate 131 is the negative electrode portion 131w.
  • the entire area of the negative electrode portion 131w faces the separator 141 in a state where the wound electrode body 120 is configured.
  • one end portion (downward in FIG. 4) in the width direction of the current collector plate 132 extends in a strip shape in the longitudinal direction, and its thickness direction
  • the negative electrode current collector part 131m in which the negative electrode active material layer 133 does not exist is formed.
  • a part of the negative electrode current collector 131m in the width direction protrudes from the separator 141 to the other axial side SB in a spiral shape (see FIGS. 2 and 7).
  • the negative electrode active material layer 133 is composed of a negative electrode active material (active material), a binder 135 and a thickener.
  • active material negative electrode active material
  • binder 135 for convenience of explanation, only the binder 135 is shown in the form of particles.
  • natural graphite is used as the negative electrode active material
  • carboxymethyl cellulose (CMC) is used as the thickener.
  • the binder 135 includes a first binder 135e having a glass transition point Tg1 of 30 ° C., a glass transition point Tg2 lower than the glass transition point Tg1 of the first binder 135e, and a glass transition point Tg2 of ⁇ 40 ° C.
  • a second binder 135f for convenience of explanation, only the binder 135 is shown in the form of particles.
  • natural graphite is used as the negative electrode active material
  • CMC carboxymethyl cellulose
  • the binder 135 includes a first binder 135e having a glass transition point Tg1 of 30
  • the first binder 135e and the second binder 135f are both styrene-butadiene rubber (SBR).
  • SBR styrene-butadiene rubber
  • the negative electrode active material layer 133 is divided in half at the center in the thickness direction, and the side forming the surface 133a of the negative electrode active material layer 133 is the surface side portion 133f and the current collector plate 132 side. Is the current collector plate side portion 133e. Then, the ratio (A2 / A1) of the amount (A2) of the binder 135 contained in the surface side portion 133f and the amount (A1) of the binder 135 contained in the current collector side portion 133e is 1. 0 to 1.2 (1.1 in the first embodiment).
  • the surface side portion 133f contains more second binder 135f than the first binder 135e, and conversely, the current collector plate side portion 133e has the first binding than the second binder 135f. It contains a large amount of the adhesive 135e. For this reason, the average glass transition point Tgu of the binder 135 contained in the surface side portion 133f is lower than the average glass transition point Tgd of the binder 135 contained in the current collector plate side portion 133e ( Tgu ⁇ Tgd).
  • the amount (A1) of the binder 135 contained in the current collector side part 133e and the amount (A2) of the binder 135 contained in the surface side part 133f were determined as follows. That is, the negative electrode plate 131 is dyed with bromine (Br), and bromine adheres to the binder 135 present in the negative electrode active material layer 133. Thereafter, the distribution of bromine in the thickness direction of the negative electrode active material 131 is mapped by an electron beam microanalyzer (abbreviation: EPMA).
  • EPMA electron beam microanalyzer
  • the amount of bromine appearing in this map is image-processed, and the amount (A1) of the binder 135 on the current collector side portion 133e and the amount (A2) of the binder 135 on the surface side portion 133f are respectively numerical values. And the ratio (A2 / A1) was calculated. In addition, by counting the number of binder 135 particles by SEM observation, the amount (A1) of the binder 135 on the current collector side portion 133e and the amount (A2) of the binder 135 on the surface side portion 133f are respectively determined. The ratio (A2 / A1) may be calculated.
  • the surface side portion 133f contains more second binder 135f than the first binder 135e
  • the current collector plate side portion 133e contains more than the second binder 135f. It was confirmed as follows that a large amount of the first binder 135e was contained. That is, the negative electrode active material layer 133 is scraped off from the current collector plate 132 into the current collector side portion 133e and the surface side portion 133f, and these are used as samples to perform DSC (differential scanning calorimetry). Judged from.
  • DSC differential scanning calorimetry
  • the negative electrode plate 131 includes the amount (A2) of the binder 135 included in the surface side portion 133f of the negative electrode active material layer 133 and the current collector plate side portion 133e.
  • the ratio (A2 / A1) to the amount (A1) of the binder 135 contained in the binder is 1.0 to 1.2 (specifically 1.1).
  • the negative electrode active material layer 133 includes a plurality of binders (specifically, the first binder 135e and the second binder 135f) having different glass transition points Tg, but the surface side portion 133f.
  • the average glass transition point Tgu of the binder 135 contained in the binder 135 is set lower than the average glass transition point Tgd of the binder 135 contained in the current collector side portion 131e (Tgu ⁇ Tgd).
  • the negative electrode active material layer 133 of the negative electrode plate 131 of Embodiment 1 includes a first binder 135e as a binder 135 and a glass transition point lower than the glass transition point Tg1 of the first binder 135e. And a second binder 135f having Tg2. Moreover, the surface side portion 133f contains more second binder 135f than the first binder 135e, and the current collector plate side portion 133e has the first binder 135e rather than the second binder 135f. Contains a lot.
  • the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 can be increased by using only two types of binders 135e and 135f without using a large number of binders.
  • the resistance of the lithium ion secondary battery 100 can be lowered.
  • the first binder 135e and the second binder 135f are both styrene-butadiene rubber (SBR). Since SBR has a strong binding force, the amount of the binder 135 contained in the negative electrode active material layer 133 is reduced, and the resistance generated in the negative electrode active material layer 133 itself is kept low, while the negative electrode active material layer 133 and the current collector plate 132 are reduced. Adhesion strength with can be sufficiently increased. In addition, since the lithium ion secondary battery 100 according to the first embodiment includes such a negative electrode plate 131, the performance and durability of the lithium ion secondary battery 100 can be increased.
  • SBR styrene-butadiene rubber
  • the positive electrode plate 121 is manufactured. That is, a current collector plate 122 made of a long aluminum foil is prepared. A positive electrode active material paste (active material paste) containing a positive electrode active material, a conductive additive, and a binder, while leaving a strip-shaped positive electrode current collector 121m extending in the longitudinal direction on one main surface of the current collector plate 122. ) And dried with hot air to form a strip-like positive electrode active material layer 123.
  • active material paste active material paste
  • the positive electrode active material paste is applied to the main surface on the opposite side of the current collector plate 122 while leaving the strip-shaped positive electrode current collector portion 121m, and dried with hot air, so that the strip-shaped positive electrode active material layer 123 is applied. Form. Then, in order to improve an electrode density, the positive electrode active material layers 123 and 123 are compressed with a pressure roll. Thus, the positive electrode plate 121 is formed (see FIG. 3).
  • the negative electrode plate 131 is manufactured. That is, a current collector plate 132 made of a long copper foil is prepared. A negative electrode active material paste (active material paste) containing a negative electrode active material, a binder and a thickener while leaving a strip-shaped negative electrode current collector portion 131m extending in the longitudinal direction on one main surface of the current collector plate 132. ) KP1 and KP2 are applied and dried with hot air to form a strip-like negative electrode active material layer 133.
  • active material paste active material paste
  • KP1 and KP2 are applied and dried with hot air to form a strip-like negative electrode active material layer 133.
  • a first negative electrode active material paste (first active material paste) KP1 containing a negative electrode active material, a first coating binder, and a thickener is collected by a die coating method. Coating is performed on the electric plate 132, and a first coating film 133x having a thickness of 15 ⁇ m made of the first negative electrode active material paste KP1 is formed on the current collecting plate 132 (see FIG. 9).
  • the negative electrode active material naturally graphite
  • the negative electrode active material: first coating binder: thickener A first negative electrode active material paste KP1 was prepared by dispersing in a solvent (specifically water) at a ratio (weight ratio) of 98: 1.2: 1.
  • the first coating binder is composed of only the first binder 135e (SBR having a glass transition point Tg1 of 30 ° C.). Therefore, the average glass transition point Tga of this first coating binder is 30 ° C.
  • the second coating step is performed without performing the step of drying the first coating film 133x. That is, a second negative electrode active material paste (second active material paste) KP2 containing a negative electrode active material, a second coating binder, and a thickener is applied on the first coating film 133x by a die coating method. A second coating film 133y having a thickness of 15 ⁇ m made of the second negative electrode active material paste KP2 is formed on one coating film 133x (see FIG. 9). Thereby, the coating film 133z in which the first coating film 133x and the second coating film 133y overlap is formed.
  • second negative electrode active material paste second active material paste
  • the negative electrode active material naturally graphite
  • the second coating binder and the thickener CMC
  • the negative electrode active material: the second coating binder: the thickener A second negative electrode active material paste KP2 was prepared by dispersing in a solvent (specifically, water) at a ratio (weight ratio) of 98: 0.8: 1.
  • the weight concentration N2 of the second coating binder (second binder 135f) in the solid content excluding the solvent contained in the second negative electrode active material paste KP2 is contained in the first negative electrode active material paste KP1.
  • X100 1.20 wt%.
  • the coating film 133z is dried (the first coating film 133x and the second coating film 133y are dried simultaneously), and the coating film 133z (the first coating film 133x and the second coating film 133y) is used.
  • a negative electrode active material layer 133 is formed.
  • drying was performed with hot air at 120 ° C. for 4 minutes.
  • the current collector plate side portion 133e extends from the first coating film 133x to the second coating film 133x.
  • a surface side portion 133f is formed from the film 133y.
  • the negative electrode active material pastes KP1 and KP2 are applied to the main surface on the opposite side of the current collector plate 132 while leaving the band-shaped negative electrode current collector portion 131m, and dried with hot air to form a band-shaped negative electrode active material layer.
  • 133 is formed. That is, the first coating process, the second coating process, and the drying process described above are performed again to form the negative electrode active material layer 133 on the main surface on the opposite side of the current collector plate 132. Then, in order to improve an electrode density, the negative electrode active material layers 133 and 133 are compressed with a pressure roll. Thus, the negative electrode plate 131 is formed (see FIGS. 4 and 5).
  • the negative electrode plate 131 manufactured by the manufacturing method of Embodiment 1 is the above-described negative electrode active material layer 133, that is, the amount (A2) of the binder 135 in the surface side portion 133f and the binding plate side portion 133e.
  • the ratio (A2 / A1) to the amount (A1) of the agent 135 is 1.0 to 1.2 (specifically 1.1), and the average glass transition point Tgu of the binder 135 of the surface side portion 133f.
  • Tga average glass transition point
  • a coating film 133z composed of the first coating film 133x and the second coating film 133y is formed using the first and second negative electrode active material pastes KP1 and KP2 that have been subjected to Tga.
  • the binder 135 tends to move to the surface 133za side together with the solvent.
  • the first binder 135e having a high glass transition point Tg1 has a higher viscosity and is less likely to move than the second binder 135f having a low glass transition point Tg2. Therefore, the first coating binder (first binder 135e) having a relatively high glass transition point Tg contained in the first coating film 133x is relatively contained in the second coating film 133y. In particular, it is harder to move than the second coating binder (second binder 135f) having a low glass transition point Tg.
  • the uneven distribution of the binder 135 in the negative electrode active material layer 133 after the drying step (the uneven distribution in which the binder 135 is more on the surface 133a side and the binder 135 is less on the current collector 132 side) can be suppressed.
  • the weight concentration N2 (specifically 0.80 wt%) of the second coating binder (second binder 135f) in the solid content contained in the second negative electrode active material paste KP2.
  • the weight concentration N1 (specifically 1.20 wt%) of the first coating binder (first binder 135e) in the solid content contained in the first negative electrode active material paste KP1.
  • a coating film 133z composed of the first and second coating films 133x and 133y is formed.
  • the binder 135 tends to move to the surface 133za side together with the solvent, but is included in the first coating film 133x.
  • the amount of the first coating binder (first binder 135e) is higher than the second coating binder (second binder 135f) contained in the second coating film 133y.
  • the uneven distribution of the binder 135 in the negative electrode active material layer 133 after the process can be more effectively suppressed.
  • the value of the ratio (A2 / A1) between the amount (A2) of the binder 135 on the surface side portion 133f and the amount (A1) of the binder 135 on the current collector side portion 133e will be described later. It can be suppressed (1.1) smaller than (1.2) in the case of the second embodiment. Thus, the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 can be further increased, and the resistance of the lithium ion secondary battery 100 using the negative electrode plate 131 can be further decreased.
  • first binder 135e and second binder 135f two types of binders (first binder 135e and second binder 135f) are used without using many binders. Since the negative electrode active material layer 133 is formed, the negative electrode active material layer 133 can be easily formed.
  • styrene-butadiene rubber is used as the first binder 135e and the second binder 135f. Since SBR has a strong binding force, the amount of the first binder 135e added to the first negative electrode active material paste KP1 and the amount of the second binder 135f added to the second negative electrode active material paste KP2 are reduced. Thus, the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 can be sufficiently increased while reducing the resistance generated in the negative electrode active material layer 133 itself.
  • SBR styrene-butadiene rubber
  • a long separator 141 is prepared, the positive electrode plate 121 and the negative electrode plate 131 are overlapped with each other via the separator 141 (see FIG. 7), and wound around the axis AX using a winding core. Thereafter, it is compressed into a flat shape (see FIG. 2).
  • a case lid member 113, three types of insulating members 155, 156, and 157 and three types of terminal fittings 151, 152, and 153 are prepared (see FIG. 8).
  • 150 and the negative electrode terminal member 160 are fixed, the positive electrode terminal member 150 is connected to the positive current collector 121m of the wound electrode body 120, and the negative electrode terminal member 160 is connected to the negative current collector 131m.
  • the case body member 111 is prepared, and the wound electrode body 120 is inserted into the case body member 111.
  • the battery case 110 is formed by welding the case lid member 113 and the case main body member 111 by laser welding.
  • an electrolytic solution is injected into the battery case 110 from the electrolytic solution injection port 113d, and the electrolytic solution injection port 113d is sealed.
  • high temperature aging and various inspections are performed.
  • the lithium ion secondary battery 100 is completed. Since the lithium ion secondary battery 100 includes the negative electrode plate 131 described above, the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 is high, and the durability is good.
  • the distribution pattern of the binder 135 in the negative electrode active material layer 233 is the same as that of the negative electrode plate 131 and the lithium ion secondary battery 100 according to the first embodiment. Different from the negative electrode active material layer 133. Further, the manufacturing method of the negative electrode plate 231 is also different from the manufacturing method of the negative electrode plate 131 of the first embodiment. Other than that, the second embodiment is the same as the first embodiment, and the description of the same parts as the first embodiment is omitted or simplified.
  • the negative electrode plate 231 according to the second embodiment has a current collector plate 132 similar to that of the first embodiment, and negative electrode active material layers 233 and 233 are formed on both main surfaces thereof. ing.
  • the negative electrode active material layer 233 of the second embodiment is similar to the negative electrode active material layer 133 of the first embodiment in that the negative electrode active material layer 233 is also composed of a negative electrode active material, a binder 135 and a thickener.
  • the distribution pattern 135 is different from that of the first embodiment. That is, the negative electrode active material layer 233 is divided into halves at the center in the thickness direction as shown by a broken line in FIG.
  • the side forming the surface 233a of the negative electrode active material layer 233 is the surface side portion 233f, and the current collector plate
  • the 132 side is referred to as a current collector side portion 233e.
  • A1) is 1.2 (1.1 in the first embodiment).
  • the surface side portion 233f has more second binder 135f than the first binder 135e.
  • the current collector plate side portion 233e contains the first binder 135e more than the second binder 135f.
  • the average glass transition point Tgu of the binder 135 contained in the surface side part 233f is lower than the average glass transition point Tgd of the binder 135 contained in the current collector side part 233e ( Tgu ⁇ Tgd).
  • the ratio (A2 / A1) is 1.0 to 1.2, and the relationship between the average glass transition points Tgu and Tgd is Tgu ⁇ Tgd.
  • the adhesion strength between the layer 233 and the current collector plate 132 can be increased, and the resistance of the lithium ion secondary battery 200 using the negative electrode plate 231 can be decreased.
  • the performance and durability of the lithium ion secondary battery 200 can be increased.
  • the same parts as those of the first embodiment have the same effects as those of the first embodiment.
  • First negative electrode active material paste (first active material paste) KP3 dispersed in a solvent (water) at a ratio (weight ratio) of first coating binder: thickening agent 98: 1: 1 is prepared.
  • the first coating binder is composed only of the first binder 135e (SBR having a glass transition point Tg1 of 30 ° C.).
  • the average glass transition point Tga of the first coating binder is 30 ° C.
  • a current collector plate 132 made of a long copper foil is separately prepared, and as the first coating process, the first negative electrode active material paste KP3 is applied on the current collector plate 132, and the first negative electrode active material paste KP3 is applied.
  • the 1st coating film 233x which consists of was formed (refer FIG. 11).
  • the weight concentration N2 of the second coating binder (second binder 135f) in the solid content contained in the second negative electrode active material paste KP2 is set in the first negative electrode active material paste KP1.
  • the weight concentration N1 of the first coating binder (first binder 135e) in the solid content was lower (N2 ⁇ N1).
  • this 2nd negative electrode active material paste KP4 was apply
  • the coating film 233z in which the first coating film 233x and the second coating film 233y overlap is formed.
  • the drying process was performed similarly to the said Embodiment 1, the coating film 233z was dried, and the negative electrode active material layer 233 was formed.
  • the first coating step, the second coating step, and the drying step are similarly performed on the main surface on the opposite side of the current collector plate 132, and the main surface on the opposite side of the current collector plate 132 is also A negative electrode active material layer 233 was formed. Thereafter, the negative electrode active material layers 233 and 233 were compressed by a pressure roll to complete the negative electrode plate 231 (see FIG. 10).
  • the binder 135 tends to move to the surface 233za side together with the solvent.
  • the first binder 135e having a high glass transition point Tg1 has a higher viscosity and is less likely to move than the second binder 135f having a low glass transition point Tg2. Therefore, the first coating binder (first binder 135e) having a relatively high glass transition point Tg contained in the first coating film 233x is relatively contained in the second coating film 233y. In particular, it is harder to move than the second coating binder (second binder 135f) having a low glass transition point Tg.
  • the amount (A2) of the binder 135 on the surface side portion 233f and the binder 135 on the current collector side portion 233e can be suppressed to 1.2. Also in the manufacturing method of the second embodiment, it is not necessary to perform the drying step a plurality of times for each of the first and second coating steps, and it is sufficient to perform the drying step after the second coating step. In addition, the same parts as those of the first embodiment have the same effects as those of the first embodiment.
  • the negative electrode plate 131 of the first embodiment was prepared as Example 1 of the present invention
  • the negative electrode plate 231 of the second embodiment was prepared as Example 2.
  • the ratio (A2 / A1) to the amount (A1) of the agent 135 was 1.1.
  • the average glass transition point Tgu of the binder 135 contained in the surface side portion 133f was lower than the average glass transition point Tgd of the binder 135 contained in the current collector side portion 133e (Tgu ⁇ Tgd ).
  • the overall evaluation of the uneven distribution of the binder 135 in the negative electrode active material 133 was “ ⁇ (uneven distribution is very small) ”. This comprehensive evaluation is a visual evaluation of an image obtained by attaching bromine to the above-described binder 135 and mapping the distribution by EPMA.
  • the ratio (A2 / A1) was 1.2, and the relationship between the average glass transition points Tgu and Tgd was Tgu ⁇ Tgd. Further, the overall evaluation of the uneven distribution of the binder 135 in the negative electrode active material 233 was “ ⁇ (small uneven distribution)”.
  • the overall evaluation of the uneven distribution of the binder 135 in this negative electrode active material was “ ⁇ (large uneven distribution)”.
  • the negative electrode active material layer is a negative electrode active material paste in which the first binder 135e and the second binder 135f are kneaded at the same ratio as the binder 135 (negative electrode active material: first binder: second binder).
  • Agent: thickener 98: 0.5: 0.5: 1), and only one coating and drying were performed.
  • the overall evaluation of the uneven distribution of the binder 135 in this negative electrode active material was “x”.
  • a negative electrode plate having a negative electrode active material layer in which the ratio (A2 / A1) was 1.6 and the relationship between the average glass transition points Tgu and Tgd was Tgu> Tgd was prepared.
  • a negative electrode plate having a negative electrode active material layer in which the ratio (A2 / A1) was 1.8 and the relationship between the average glass transition points Tgu and Tgd was Tgu> Tgd was prepared.
  • the adhesion strength test between the negative electrode active material layers 133 and 233 and the current collector plate 132 was performed on each of the negative electrode plates 131 and 231 of Examples 1 and 2 and Comparative Examples 1 to 5. That is, a test electrode plate piece SD having a size of 120 mm ⁇ 15 mm is cut out from the negative electrode portion 131w of the negative electrode plate 131 and the like according to each example (see FIG. 12). Also, a test stand DA on which the double-sided adhesive tape NT is affixed is prepared and fixed horizontally so as not to move.
  • the one end side portion SD1 of 40 mm ⁇ 15 mm is left from one end of the cut strip-shaped electrode plate for testing SD, and the other end side portion SD2 of 80 mm ⁇ 15 mm is adhered to the double-sided adhesive tape NT.
  • the force Fa () applied to grasp the one end side portion SD1 and lift it vertically and peel the test electrode plate piece SD (the other end side portion SD2) from the double-sided adhesive tape NT. N) is measured.
  • the adhesion strength Ka between the negative electrode active material layer and the current collector plate can be increased as compared with Comparative Examples 1 to 5.
  • the adhesion strength Ka can be higher in the first embodiment than in the second embodiment.
  • the ratio (A2 / A1) of the amount (A2) of the binder on the surface side and the amount (A1) of the binder on the current collector side is 1.0 to 1.2,
  • Tgu ⁇ Tgd average glass transition point
  • the vehicle 700 according to the third embodiment is equipped with the lithium ion secondary battery 100 of the first embodiment, and the electric energy stored in the lithium ion secondary battery 100 is used as all or part of the drive energy of the drive source. It is what you use.
  • the vehicle 700 is a hybrid vehicle that is mounted with a plurality of lithium ion secondary batteries 100 and is driven by using an engine 740, a front motor 720, and a rear motor 730 in combination as shown in FIG.
  • the hybrid vehicle 700 includes a vehicle body 790, an engine 740, a front motor 720, a rear motor 730, a cable 750, and an inverter 760 attached thereto.
  • the hybrid vehicle 700 includes an assembled battery 710 having a plurality of lithium ion secondary batteries 100, 100,... Inside thereof, and electric energy stored in the assembled battery 710 is used as a front motor 720 and a rear motor 730. It is used for driving.
  • the negative electrode plate 131 can increase the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 and can reduce the resistance of the lithium ion secondary battery 100 using the negative electrode active material layer 133. 100 performance and durability can be increased. Therefore, the performance and durability of the hybrid vehicle 700 equipped with this can be improved.
  • the lithium ion secondary battery 200 of the second embodiment may be mounted.
  • a battery using device 800 according to the fourth embodiment includes the lithium ion secondary battery 100 of the first embodiment and uses the lithium ion secondary battery 100 as at least one energy source.
  • the battery using device 800 is a hammer drill equipped with a battery pack 810 including the lithium ion secondary battery 100 of the first embodiment.
  • a battery pack 810 is accommodated in a bottom portion 821 of a main body 820, and the battery pack 810 is used as an energy source for driving the drill.
  • the negative electrode plate 131 can increase the adhesion strength between the negative electrode active material layer 133 and the current collector plate 132 and can reduce the resistance of the lithium ion secondary battery 100 using the negative electrode active material layer 133. 100 performance and durability can be increased. Therefore, the performance and durability of the battery-using device 800 equipped with this can be increased.
  • the lithium ion secondary battery 200 of the second embodiment may be mounted.
  • the present invention has been described with reference to the embodiments.
  • the present invention is not limited to the above-described first to fourth embodiments, and it goes without saying that the present invention can be appropriately modified and applied without departing from the gist thereof. Yes.
  • the present invention is applied to the negative electrode plates 131 and 231 and the manufacturing method thereof, but the present invention can also be applied to the positive electrode plate 121 and the manufacturing method thereof.
  • the first coating binder is the first negative electrode active material paste KP1 including only the first binder 135e
  • the second coating binder is the second binder 135f.
  • the negative electrode active material layers 133 and 233 are formed using the second negative electrode active material paste KP2 made of only, but the present invention is not limited to this.
  • the second coating binder is the first binder 135e and the second binder.
  • a second negative electrode active material paste made of the binder 135f can also be used.
  • the average glass transition point Tgb of the second coating binder is set lower than the average glass transition point Tga of the first coating binder (Tgb ⁇ Tga).
  • the 1st negative electrode active material paste which a 1st coating binder consists of 3 or more types of binders and the 2nd negative electrode active material paste which a 2nd coating binder consists of 3 types or more of binders.
  • the average glass transition point Tgb of the second coating binder is set lower than the average glass transition point Tga of the first coating binder (Tgb ⁇ Tga).
  • the hybrid vehicle 700 is exemplified as a vehicle on which the lithium ion secondary batteries 100 and 200 of the present invention are mounted.
  • the present invention is not limited to this.
  • Examples of other vehicles include electric vehicles, plug-in hybrid vehicles, hybrid railway vehicles, forklifts, electric wheelchairs, electric assist bicycles, electric scooters, and the like.
  • the hammer drill 800 is exemplified as the battery-using device on which the lithium ion secondary batteries 100 and 200 of the present invention are mounted.
  • the present invention is not limited to this. Examples of other battery-powered devices include personal computers, mobile phones, battery-powered electric tools, uninterruptible power supply devices, and other home appliances driven by batteries, office equipment, and industrial equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 電極板(131)は、集電板(132)とこの上に形成された活物質層(133)とを備える。このうち活物質層(133)は、結着剤(135)として、ガラス転移点(Tg)が互いに異なる複数の結着剤(135e,135f)を含み、表面側部(133f)に含まれる結着剤(135)の量(A2)と、集電板側部(133e)に含まれる結着剤(135)の量(A1)との比(A2/A1)が、1.0~1.2とされている。更に、表面側部(133f)の結着剤(135)の平均ガラス転移点(Tgu)が、集電板側部(133e)の結着剤(135)の平均ガラス転移点(Tgd)よりも低くされている(Tgu<Tgd)。

Description

電極板、二次電池、及び、電極板の製造方法
 本発明は、集電板上に、少なくとも活物質及び結着剤を含む活物質層が形成された電極板に関する。また、この電極板を備える二次電池に関する。また、この電極板の製造方法に関する。
 従来より、集電板と、この上に形成され、少なくとも活物質及び結着剤(バインダ)を含む活物質層とを備える、二次電池用の電極板が知られている。例えば正極板としては、アルミニウム箔からなる集電板上に、リチウム金属酸化物等の正極活物質と、ポリフッ化ビニリデン(PVDF)、スチレン・ブタジエンゴム(SBR)等の結着剤とを含む正極活物質層が形成されたものがある。また、例えば負極板としては、銅箔からなる集電板上に、炭素材料からなる負極活物質と、PVDF、SBR等の結着剤とを含む負極活物質層が形成されたものがある。
 一般に、活物質層は、活物質や結着剤等を溶媒に分散させて調製した活物質ペーストを、集電板上に塗布し、その後、この活物質ペーストからなる塗膜を乾燥させることにより形成する。しかしながら、塗膜を乾燥させる際に、塗膜表面からの溶媒の揮発に伴って、溶媒と共に結着剤が塗膜表面側に移動する。このため、乾燥工程後の活物質層を厚み方向に見ると、活物質層の表面側ほど結着剤が多く、集電板側ほど結着剤が少なく偏在しがちである。このように結着剤が偏在した電極板では、活物質層と集電板との密着強度が低下する問題が生じ得る。
 これに対し、特許文献1では、活物質や結着剤を混練した電極用塗工液(活物質ペースト)を、導電性集電体上に塗布する塗工工程と、導電性集電体上に塗工された電極用塗工液を乾燥する乾燥工程とを、交互にそれぞれ複数回行うことにより、活物質層を形成することを提案している(特許文献1の特許請求の範囲等を参照)。このようにすることで、活物質層中で結着剤が偏在することを抑制できる旨が記載されている。
特開平9-134718号公報
 しかしながら、上述の特許文献1の電極板でもなお、活物質層と集電板との密着強度が低下する問題が生じ得る。また、特許文献1の電極板の製造方法では、塗工工程及び乾燥工程をそれぞれ複数回行うので、その分、工数が増える。このため、電極板及びこれを用いた二次電池のコストアップを招く。
 本発明は、かかる現状に鑑みてなされたものであって、活物質層と集電板との密着強度を高くできる電極板を提供することを目的とする。また、この電極板を備える二次電池を提供することを目的とする。また、この電極板の製造方法を提供することを目的とする。
 上記課題を解決するための本発明の一態様は、集電板と、この集電板上に形成され、少なくとも活物質及び結着剤を含む活物質層と、を備える電極板であって、前記活物質層は、前記結着剤として、ガラス転移点Tgが互いに異なる複数の結着剤を含み、前記活物質層を厚み方向の中央で半分に分けて、前記活物質層の表面をなす側を表面側部、前記集電板側を集電板側部としたとき、前記表面側部に含まれる前記結着剤の量(A2)と、前記集電板側部に含まれる前記結着剤の量(A1)との比(A2/A1)が、1.0~1.2とされてなり、前記表面側部に含まれる前記結着剤の平均ガラス転移点Tguが、前記集電板側部に含まれる前記結着剤の平均ガラス転移点Tgdよりも低くされてなる電極板である。
 この電極板は、活物質層のうち、表面側部に含まれる結着剤の量(A2)と、集電板側部に含まれる結着剤の量(A1)との比(A2/A1)が、1.0~1.2とされている。また、この活物質層は、ガラス転移点Tgが互いに異なる複数の結着剤を含むが、表面側部に含まれる結着剤の平均ガラス転移点Tguが、集電板側部に含まれる結着剤の平均ガラス転移点Tgdよりも低くされている(Tgu<Tgd)。活物質層における結着剤の分布をこのようにすることにより、活物質層と集電板との密着強度を高くできる。
 なお、「電極板」としては、アルミニウム箔等からなる集電板と、正極活物質及び結着剤等を含む正極活物質層とを備える正極板や、銅箔等からなる集電板と、負極活物質及び結着剤等を含む負極活物質層とを備える負極板が挙げられる。
 また、「活物質層」は、前述のように、少なくとも活物質及び結着剤を含むものであるが、これら以外に例えば導電助剤や増粘剤等を含んでいてもよい。
 「活物質」としては、例えば、電極板がリチウムイオン二次電池用の場合、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等のリチウム金属酸化物(正極活物質)や、黒鉛(グラファイト)系、ハードカーボン系の炭素材料(負極活物質)などが挙げられる。
 「結着剤(バインダ)」としては、例えば、ポリフッ化ビニリデン(PVDF)やスチレン・ブタジエンゴム(SBR)などが挙げられる。
 「導電助剤」としては、例えば、活性炭や黒鉛微粉、炭素繊維などが挙げられる。
 「増粘剤」としては、例えば、カルボキシメチルセルロース(CMC)などが挙げられる。
 更に、上記の電極板であって、前記活物質層は、前記結着剤として、第1結着剤と、この第1結着剤のガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤とを含み、前記表面側部は、前記第1結着剤よりも前記第2結着剤を多く含み、かつ、前記集電板側部は、前記第2結着剤よりも前記第1結着剤を多く含む電極板とすると良い。
 この電極板の活物質層は、結着剤として、第1結着剤と、この第1結着剤のガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤とを含み、表面側部は、第1結着剤よりも第2結着剤を多く含み、かつ、集電板側部は、第2結着剤よりも第1結着剤を多く含んでいる。活物質層における結着剤の分布をこのようにすることにより、多数の結着剤を用いなくても、2種類の結着剤のみにより、活物質層と集電板との密着強度を高くできる。
 更に、上記の電極板であって、複数の前記結着剤は、前記ガラス転移点Tgが互いに異なるスチレン・ブタジエンゴム(SBR)である電極板とすると良い。
 この電極板では、前述した複数の結着剤が、いずれもスチレン・ブタジエンゴム(SBR)である。SBRは結着力が強いので、活物質層に含まれる結着剤の量を少量として活物質層自身に生じる抵抗を低くしつつも、活物質層と集電板との密着強度を十分に高くできる。
 また、他の態様は、上記のいずれかに記載の電極板を備える二次電池である。
 この二次電池では、前述の電極板を用いているので、活物質層と集電板との密着強度が高く、耐久性が良好な二次電池とすることができる。
 また、他の態様は、集電板と、この集電板上に形成され、少なくとも活物質及び結着剤を含む活物質層と、を備え、前記活物質層は、前記結着剤として、ガラス転移点Tgが互いに異なる複数の結着剤を含み、前記活物質層を厚み方向の中央で半分に分けて、前記活物質層の表面をなす側を表面側部、前記集電板側を集電板側部としたとき、前記表面側部に含まれる前記結着剤の量(A2)と、前記集電板側部に含まれる前記結着剤の量(A1)との比(A2/A1)が、1.0~1.2とされてなり、前記表面側部に含まれる前記結着剤の平均ガラス転移点Tguが、前記集電板側部に含まれる前記結着剤の平均ガラス転移点Tgdよりも低くされてなる電極板の製造方法であって、複数の前記結着剤の少なくともいずれかからなり、平均ガラス転移点Tgaを有する第1塗工結着剤、及び、前記活物質を含む第1活物質ペーストを、前記集電板上に塗工し、前記集電板上に前記第1活物質ペーストからなる第1塗膜を形成する第1塗工工程と、前記第1塗工工程の後に、複数の前記結着剤の少なくともいずれかからなり、前記第1塗工結着剤の平均ガラス転移点Tgaよりも低い平均ガラス転移点Tgbを有する第2塗工結着剤、及び、前記活物質を含む第2活物質ペーストを、前記第1塗膜上に塗工し、前記第1塗膜上に前記第2活物質ペーストからなる第2塗膜を形成する第2塗工工程と、前記第2塗工工程の後に、前記第1塗膜及び前記第2塗膜を同時に乾燥させて、前記第1塗膜及び前記第2塗膜から前記活物質層を形成する乾燥工程と、を備える電極板の製造方法である。
 この電極板の製造方法により製造される電極板は、前述の活物質層、即ち、表面側部の結着剤の量(A2)と集電板側部の結着剤の量(A1)との比(A2/A1)が1.0~1.2とされ、かつ、表面側部の結着剤の平均ガラス転移点Tguが、集電板側部の結着剤の平均ガラス転移点Tgdよりも低くされた活物質層を有する。従って、活物質と集電板との密着強度を高くできる。
 加えて、この電極板の製造方法では、前述の第1塗工工程、第2塗工工程及び乾燥工程をこの順に行って活物質層を形成するので、前述の特性を有する活物質層を容易に形成できる。即ち、本製造方法では、第1塗工工程と第2塗工工程により形成した第1塗膜と第2塗膜が重なった塗膜を乾燥させる。すると、塗膜表面からの溶媒の揮発に伴って、溶媒と共に結着剤が塗膜表面側に移動しようとするものの、同じ温度条件下で比べると、ガラス転移点Tgの高い結着剤ほど粘性が高く移動し難いため、第1塗膜中に含まれる相対的にガラス転移点Tgが高い第1塗工結着剤は、第2塗膜中に含まれる相対的にガラス転移点Tgが低い第2塗工結着剤よりも移動し難い。このため、乾燥工程後の活物質層における結着剤の偏在(表面側ほど結着剤が多く、集電板側ほど結着剤が少なくなる偏在)を抑制できる。かくして、前述の活物質層が形成される。
 また、この電極板の製造方法では、乾燥工程を第1,第2塗工工程毎に複数回行う必要がなく、第2塗工工程後に行うだけで足りるので、工数を少なくできる。
 なお、「第1活物質ペースト」及び「第2活物質ペースト」は、例えば、水やN-メチルピロリドン(NMP)等の溶媒と活物質や結着剤等を混練することにより形成すればよい。また、「第1活物質ペースト」及び「第2活物質ペースト」には、活物質及び結着剤以外に例えば導電助剤や増粘剤等を添加することができる。
 集電板上に第1塗膜を塗工する手法、及び、第1塗膜上に第2塗膜を塗工する手法としては、公知の印刷手法を適宜選択できる。例えば、グラビア法、グラビアリバース法、ダイコート法、スライドコート法などが挙げられる。
 また、「第1塗膜」及び「第2塗膜」の厚みは、必ずしも等しくする必要はなく、それぞれ適宜変更できる。即ち、「第1塗膜」と活物質層の「集電板側部」、及び、「第2塗膜」と活物質層の「表面側部」を、それぞれ過不足なく対応させる必要はない。例えば、「第1塗膜」を薄く「第2塗膜」を厚く形成して、活物質層のうちの「集電板側部」を「第1塗膜」と「第2塗膜」の一部から形成すると共に、「表面側部」を「第2塗膜」の残部から形成することができる。或いは逆に、「第1塗膜」を厚く「第2塗膜」を薄く形成して、活物質層のうちの「集電板側部」を「第1塗膜」の一部から形成すると共に、「表面側部」を「第1塗膜」の残部と「第2塗膜」から形成することもできる。
 更に、上記の電極板の製造方法であって、前記第2活物質ペーストに含まれる固形分中の前記第2塗工結着剤の重量濃度を、前記第1活物質ペーストに含まれる固形分中の前記第1塗工結着剤の重量濃度よりも低くした、前記第1活物質ペースト及び前記第2活物質ペーストを用いる電極板の製造方法とすると良い。
 この電極板の製造方法では、前述の第1,第2活物質ペーストを用いて、第1,第2塗膜を形成し、これらの塗膜から活物質層を形成するので、活物質層における結着剤の偏在をより効果的に抑制でき、表面側部の結着剤の量(A2)と集電板側部の結着剤の量(A1)との比(A2/A1)の値を、より小さく(1.0により近い値)にすることができる。即ち、本製造方法では、前述の第1,第2活物質ペーストを用いて形成した第1塗膜と第2塗膜が重なった塗膜を乾燥させる。すると塗膜表面からの溶媒の揮発に伴って、溶媒と共に結着剤が塗膜表面側に移動しようとするものの、第1塗膜中に含まれる結着剤(第1塗工結着剤)の方が、第2塗膜中に含まれる結着剤(第2塗工結着剤)よりも多いので、乾燥工程後の活物質層における結着剤の偏在(表面側ほど結着剤が多く、集電板側ほど結着剤が少なくなる偏在)をより効果的に抑制できる。かくして、活物質層と集電板との密着強度をより高くできる。
 更に、上記のいずれかに記載の電極板の製造方法であって、前記活物質層は、前記結着剤として、第1結着剤と、この第1結着剤のガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤とを含み、前記表面側部は、前記第1結着剤よりも前記第2結着剤を多く含み、かつ、前記集電板側部は、前記第2結着剤よりも前記第1結着剤を多く含み、前記第1塗工工程において、前記第1塗工結着剤として、前記第1結着剤及び前記第2結着剤のうち少なくとも前記第1結着剤からなる前記第1活物質ペーストを用いると共に、前記第2塗工工程において、前記第2塗工結着剤として、前記第1結着剤及び前記第2結着剤のうち少なくとも前記第2結着剤からなる前記第2活物質ペーストを用いる電極板の製造方法とすると良い。
 この電極板の製造方法では、結着剤として、多数の結着剤を用いなくても、2種類の結着剤(第1結着剤及び第2結着剤)のみを用いることにより、前述の活物質層を形成できるので、活物質層の形成が容易である。
 更に、上記のいずれかに記載の電極板の製造方法であって、複数の前記結着剤として、前記ガラス転移点Tgが互いに異なるスチレン・ブタジエンゴム(SBR)を用いる電極板の製造方法とすると良い。
 この電極板の製造方法では、前述の複数の結着剤として、スチレン・ブタジエンゴム(SBR)を用いる。SBRは結着力が強いので、第1活物質ペーストに添加する第1塗工結着剤の量、及び、第2活物質ペーストに添加する第2塗工結着剤の量をそれぞれ少なくすることで活物質層自身に生じる抵抗を低くできると共に、活物質層と集電板との密着強度を十分に高くできる。
実施形態1に係るリチウムイオン二次電池の縦断面図である。 実施形態1に係り、捲回型電極体を示す斜視図である。 実施形態1に係り、正極板を示す平面図である。 実施形態1に係り、負極板を示す平面図である。 実施形態1に係り、負極板を示す部分拡大断面図である。 実施形態1に係り、セパレータを示す平面図である。 実施形態1に係り、正極板及び負極板をセパレータを介して互いに重ねた状態を示す部分平面図である。 実施形態1に係り、ケース蓋部材、正極電極端子部材及び負極電極端子部材等を示す分解斜視図である。 実施形態1に係る負極板の製造方法に関し、導電集電板上に第1塗膜及び第2塗膜を形成した様子を示す説明図である。 実施形態2に係り、負極板を示す部分拡大断面図である。 実施形態2に係る負極板の製造方法に関し、導電集電板上に第1塗膜及び第2塗膜を形成した様子を示す説明図である。 密着強度試験の概要を示す説明図である。 実施例1,2及び比較例1~5に係る負極板の密着強度Kaを示すグラフである。 実施形態3に係る車両を示す説明図である。 実施形態4に係る電池使用機器を示す説明図である。
100,200 リチウムイオン二次電池(二次電池)
120 捲回型電極体
121 正極板(電極板)
122 集電板
123 正極活物質層
131,231 負極板(電極板)
132 集電板
133,233 負極活物質層
133a,233a (負極活物質層の)表面
133e,233e 集電板側部
133f,233f 表面側部
133x,233x 第1塗膜
133y,233y 第2塗膜
133z,233z 塗膜
135 結着剤
135e 第1結着剤
135f 第2結着剤
700 車両(ハイブリッド自動車)
800 電池使用機器(ハンマードリル)
Tgd (集電板側部の結着剤の)平均ガラス転移点
Tgu (表面側部の結着剤の)平均ガラス転移点
Tg1 (第1結着剤の)ガラス転移点
Tg2 (第2結着剤の)ガラス転移点
Tga (第1塗工結着剤の)平均ガラス転移点
Tgb (第2塗工結着剤の)平均ガラス転移点
KP1 第1負極活物質ペースト(第1活物質ペースト)
KP2 第2負極活物質ペースト(第2活物質ペースト)
N1,N3 (第1活物質ペーストに含まれる固形分中の第1塗工結着剤の)重量濃度
N2,N4 (第2活物質ペーストに含まれる固形分中の第2塗工結着剤の)重量濃度
(実施形態1)
 以下、本発明の実施の形態を、図面を参照しつつ説明する。図1に、本実施形態1に係るリチウムイオン二次電池(二次電池)100を示す。また、図2に、このリチウムイオン二次電池100を構成する捲回型電極体120を示す。更に、この捲回型電極体120を構成する正極板(電極板)121を図3に示し、負極板(電極板)131を図4及び図5に示し、セパレータ141を図6に示す。また、図7に、正極板121と負極板131とをセパレータ141を介して互いに重ねた状態を示す。また、図8に、ケース蓋部材113、正極電極端子部材150及び負極電極端子部材160等の詳細を示す。
 このリチウムイオン二次電池100は、ハイブリッド自動車や電気自動車等の車両や、ハンマードリル等の電池使用機器に搭載される角型電池である。このリチウムイオン二次電池100は、角型の電池ケース110、この電池ケース110内に収容された捲回型電極体120、電池ケース110に支持された正極電極端子部材150及び負極電極端子部材160等から構成されている(図1参照)。また、電池ケース110内には、図示しない電解液が注入されている。
 このうち、電池ケース110は、上側のみが開口した箱状のケース本体部材111と、このケース本体部材111の開口111hを閉塞する形態で溶接された矩形板状のケース蓋部材113とから構成されている。このうち、ケース蓋部材113には、安全弁部113j及び電解液注入口113dが設けられている(図1及び図8参照)。また、このケース蓋部材113には、各々3つの端子金具151,152,153により構成される正極電極端子部材150及び負極電極端子部材160が、それぞれ3つの絶縁部材155,156,157を介して固設されている(図8参照)。正極電極端子部材150は、捲回型電極体120のうちの後述する正極集電部121mに接続され、負極電極端子部材160は、捲回型電極体120のうちの後述する負極集電部131mに接続されている(図1参照)。
 次に、捲回型電極体120について説明する。この捲回型電極体120は、絶縁フィルムを上側のみが開口した袋状に形成した絶縁フィルム包囲体115内に収容され、横倒しにした状態で、電池ケース110内に収容されている(図1参照)。この捲回型電極体120は、長尺状の正極板121(図3参照)と長尺状の負極板131(図4及び図5参照)とを、通気性を有する長尺状のセパレータ141(図6参照)を介して互いに重ねて軸線AX周りに捲回し、扁平状に圧縮したものである(図7及び図2参照)。
 このうち、正極板121は、図3に示すように、芯材として、長尺状で厚み15μmのアルミニウム箔からなる集電板122を有する。この集電板122の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ、厚みが片面で20μmの正極活物質層(活物質層)123,123が、長手方向(図3中、左右方向)に帯状に設けられている。この正極活物質層123は、正極活物質(活物質)、導電助剤及び結着剤から構成されている。本実施形態1では、正極活物質としてLiNiCoMnO2 を、導電助剤としてアセチレンブラックを、結着剤としてPVDFを用いている。
 正極板121のうち、自身の厚み方向に集電板122及び正極活物質層123,123が存在する帯状の部位が、正極部121wである。この正極部121wは、捲回型電極体120を構成した状態において、セパレータ141を介して負極板131の後述する負極部131wと対向している(図7参照)。また、正極板121に正極部121wを設けたことに伴い、集電板122のうち、幅方向の片方の端部(図3中、上方)は、長手方向に帯状に延び、自身の厚み方向に正極活物質層123が存在しない正極集電部121mとなっている。この正極集電部121mの幅方向の一部は、セパレータ141から軸線方向一方側SAに渦巻き状をなして突出している(図2及び図7参照)。
 セパレータ141は、ポリプロピレン(PP)やポリエチレン(PE)などの樹脂からなり、多孔質で、図6に示すように、長尺状をなす。
 次に、負極板131について説明する。この負極板131は、図4及び図5に示すように、芯材として、長尺状で厚み10μmの銅箔からなる集電板132を有する。この集電板132の両主面のうち、幅方向の一部でかつ長手方向に延びる領域上には、それぞれ、厚みが片面で20μmの負極活物質層(活物質層)133,133が、長手方向(図4中、左右方向)に帯状に設けられている。
 負極板131のうち、自身の厚み方向に集電板132及び負極活物質層133,133が存在する帯状の部位が、負極部131wである。この負極部131wは、捲回型電極体120を構成した状態において、その全域がセパレータ141と対向している。また、負極板131に負極部131wを設けたことに伴い、集電板132のうち、幅方向の片方の端部(図4中、下方)は、長手方向に帯状に延び、自身の厚み方向に負極活物質層133が存在しない負極集電部131mとなっている。この負極集電部131mの幅方向の一部は、セパレータ141から軸線方向他方側SBに渦巻き状をなして突出している(図2及び図7参照)。
 負極活物質層133は、負極活物質(活物質)、結着剤135及び増粘剤から構成されている。なお、図5においては、説明の便宜上、結着剤135のみを粒子状に記載してある。本実施形態1では、負極活物質として天然黒鉛を、増粘剤としてカルボキシメチルセルロース(CMC)を用いている。
 また、結着剤135としては、ガラス転移点Tg1が30℃の第1結着剤135eと、この第1結着剤135eのガラス転移点Tg1よりも低く、ガラス転移点Tg2が-40℃の第2結着剤135fとを含んでいる。第1結着剤135e及び第2結着剤135fは、いずれもスチレン・ブタジエンゴム(SBR)である。
 また、負極活物質、結着剤135及び増粘剤の含有割合(重量比)は、負極活物質層133全体では、負極活物質:結着剤:増粘剤=98:1:1となっている。
 この負極活物質層133を、図5中に破線で示すように、厚み方向の中央で半分に分けて、負極活物質層133の表面133aをなす側を表面側部133f、集電板132側を集電板側部133eとする。すると、表面側部133fに含まれる結着剤135の量(A2)と、集電板側部133eに含まれる結着剤135の量(A1)との比(A2/A1)が、1.0~1.2となっている(本実施形態1では1.1)。
 また、表面側部133fは、第1結着剤135eよりも第2結着剤135fを多く含んでおり、逆に、集電板側部133eは、第2結着剤135fよりも第1結着剤135eを多く含んでいる。このため、表面側部133fに含まれる結着剤135の平均ガラス転移点Tguは、集電板側部133eに含まれる結着剤135の平均ガラス転移点Tgdに比して低くなっている(Tgu<Tgd)。
 なお、集電板側部133eに含まれる結着剤135の量(A1)、及び、表面側部133fに含まれる結着剤135の量(A2)は、次のようにして求めた。即ち、負極板131を臭素(Br)で染色して、負極活物質層133中に存在する結着剤135に臭素を付着させる。その後、負極活物質131の厚み方向における臭素の分布を電子線マイクロアナライザ(Electron Probe MicroAnalyser,略称:EPMA)によりマッピングする。そして、このマップに表れた臭素の量を画像処理して、集電板側部133eの結着剤135の量(A1)と表面側部133fの結着剤135の量(A2)をそれぞれ数値化し、更に比(A2/A1)を算出した。
 なお、SEM観察で結着剤135粒子の個数を数えることにより、集電板側部133eの結着剤135の量(A1)と表面側部133fの結着剤135の量(A2)をそれぞれ求めて、比(A2/A1)を算出してもよい。
 また、表面側部133fには、第1結着剤135eよりも第2結着剤135fが多く含まれていること、及び、集電板側部133eには、第2結着剤135fよりも第1結着剤135eを多く含まれていることは、次のようにして確認した。即ち、集電板132から負極活物質層133を集電板側部133eと表面側部133fとに分けて掻き落とし、これらをサンプルとして、DSC(示差走査熱量測定)を行って、その測定結果から判断した。
 以上で説明したように、本実施形態1に係る負極板131は、負極活物質層133のうち、表面側部133fに含まれる結着剤135の量(A2)と、集電板側部133eに含まれる結着剤135の量(A1)との比(A2/A1)が、1.0~1.2(具体的には1.1)とされている。また、この負極活物質層133は、ガラス転移点Tgが互いに異なる複数の結着剤(具体的には、第1結着剤135e及び第2結着剤135f)を含むが、表面側部133fに含まれる結着剤135の平均ガラス転移点Tguが、集電板側部131eに含まれる結着剤135の平均ガラス転移点Tgdよりも低くされている(Tgu<Tgd)。負極活物質層133における結着剤135の分布をこのようにすることにより、負極板131における負極活物質層133と集電板132との密着強度を高くできる。また、この負極板131を用いたリチウムイオン二次電池100の抵抗を低くできる。
 更に、本実施形態1の負極板131の負極活物質層133は、結着剤135として、第1結着剤135eと、この第1結着剤135eのガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤135fとを含んでいる。しかも、表面側部133fは、第1結着剤135eよりも第2結着剤135fを多く含み、かつ、集電板側部133eは、第2結着剤135fよりも第1結着剤135eを多く含んでいる。このような構成とすることにより、多数の結着剤を用いなくても、2種類の結着剤135e、135fのみにより、負極活物質層133と集電板132との密着強度を高くできると共に、リチウムイオン二次電池100の抵抗を低くできる。
 また、本実施形態1では、第1結着剤135e及び第2結着剤135fが、共にスチレン・ブタジエンゴム(SBR)である。SBRは結着力が強いので、負極活物質層133に含まれる結着剤135の量を少量として負極活物質層133自身に生じる抵抗を低く抑えつつも、負極活物質層133と集電板132との密着強度を十分に高くできる。
 また、本実施形態1に係るリチウムイオン二次電池100は、このような負極板131を有するので、リチウムイオン二次電池100の性能及び耐久性を高くできる。
 次いで、上記リチウムイオン二次電池100の製造方法について説明する。
 まず、正極板121を製造する。即ち、長尺状のアルミニウム箔からなる集電板122を用意する。そして、この集電板122の一方の主面に、長手方向に延びる帯状の正極集電部121mを残しつつ、正極活物質、導電助剤及び結着剤を含む正極活物質ペースト(活物質ペースト)を塗布し、熱風により乾燥させて、帯状の正極活物質層123を形成する。同様に、集電板122の反対側の主面にも、帯状の正極集電部121mを残しつつ、上記の正極活物質ペーストを塗布し、熱風により乾燥させて、帯状の正極活物質層123を形成する。その後、電極密度を向上させるために、加圧ロールにより正極活物質層123,123を圧縮する。かくして、正極板121が形成される(図3参照)。
 また別途、負極板131を製造する。即ち、長尺状の銅箔からなる集電板132を用意する。そして、この集電板132の一方の主面に、長手方向に延びる帯状の負極集電部131mを残しつつ、負極活物質、結着剤及び増粘剤を含む負極活物質ペースト(活物質ペースト)KP1,KP2を塗布し、熱風により乾燥させて、帯状の負極活物質層133を形成する。
 具体的には、まず第1塗工工程において、負極活物質、第1塗工結着剤及び増粘剤を含む第1負極活物質ペースト(第1活物質ペースト)KP1を、ダイコート法により集電板132上に塗工し、集電板132上に第1負極活物質ペーストKP1からなる厚み15μmの第1塗膜133xを形成する(図9参照)。
 本実施形態1では、負極活物質(天然黒鉛)と次述する第1塗工結着剤と増粘剤(CMC)とを、負極活物質:第1塗工結着剤:増粘剤=98:1.2:1の割合(重量比)で、溶媒(具体的には水)中に分散させて、第1負極活物質ペーストKP1を調製した。第1塗工結着剤は、第1結着剤135e(ガラス転移点Tg1=30℃のSBR)のみからなる。従って、この第1塗工結着剤の平均ガラス転移点Tgaは30℃である。
 次に、第1塗膜133xを乾燥させる工程を行うことなく、第2塗工工程を行う。即ち、負極活物質、第2塗工結着剤及び増粘剤を含む第2負極活物質ペースト(第2活物質ペースト)KP2を、ダイコート法により第1塗膜133x上に塗工し、第1塗膜133x上に第2負極活物質ペーストKP2からなる厚み15μmの第2塗膜133yを形成する(図9参照)。これにより、第1塗膜133xと第2塗膜133yとが重なる塗膜133zができる。
 本実施形態1では、負極活物質(天然黒鉛)と次述する第2塗工結着剤と増粘剤(CMC)とを、負極活物質:第2塗工結着剤:増粘剤=98:0.8:1の割合(重量比)で、溶媒(具体的には水)中に分散させて、第2負極活物質ペーストKP2を調製した。第2塗工結着剤は、第2結着剤135f(ガラス転移点Tg2=-40℃のSBR)のみからなる。従って、この第2塗工結着剤の平均ガラス転移点Tgbは-40℃であり、前述の第1塗工結着剤の平均ガラス転移点Tga(=30℃)よりも低くなっている。
 また、第2負極活物質ペーストKP2に含まれる、溶媒を除く固形分中の第2塗工結着剤(第2結着剤135f)の重量濃度N2は、第1負極活物質ペーストKP1に含まれる、溶媒を除く固形分中の第1塗工結着剤(第1結着剤135e)の重量濃度N1よりも低くなっている(N2<N1)。即ち、第1負極活物質ペーストKP1に含まれる固形分中の第1塗工結着剤(第1結着剤135e)の重量濃度N1は、N1={1.2/(98+1.2+1)}×100=1.20wt%である。これに対し、第2負極活物質ペーストKP2に含まれる固形分中の第2塗工結着剤(第2結着剤135f)の重量濃度N2は、N2={0.8/(98+0.8+1)}×100=0.80wt%である。従って、第1負極活物質ペーストKP1は、第2負極活物質ペーストKP2に比して、結着剤135の量が1.5倍となっている。
 次に、乾燥工程において、塗膜133zを乾燥させて(第1塗膜133x及び第2塗膜133yを同時に乾燥させて)、塗膜133z(第1塗膜133x及び第2塗膜133y)から負極活物質層133を形成する。本実施形態1では、120℃の熱風により4分間の乾燥を行った。なお、本実施形態1では、前述のように、第1塗膜133xと第2塗膜133yの厚みを等しくしているので、第1塗膜133xから集電板側部133eが、第2塗膜133yから表面側部133fが形成される。
 次に、集電板132の反対側の主面にも、帯状の負極集電部131mを残しつつ、負極活物質ペーストKP1,KP2を塗布し、熱風により乾燥させて、帯状の負極活物質層133を形成する。即ち、前述の第1塗工工程、第2塗工工程及び乾燥工程を再度行って、集電板132の反対側の主面にも、負極活物質層133を形成する。
 その後、電極密度を向上させるために、加圧ロールにより負極活物質層133,133を圧縮する。かくして、負極板131が形成される(図4及び図5参照)。
 本実施形態1の製造方法により製造される負極板131は、前述の負極活物質層133、即ち、表面側部133fの結着剤135の量(A2)と集電板側部133eの結着剤135の量(A1)との比(A2/A1)が1.0~1.2(具体的には1.1)とされ、表面側部133fの結着剤135の平均ガラス転移点Tguが、集電板側部133eの結着剤135の平均ガラス転移点Tgdよりも低く(Tgu<Tgd)された負極活物質層133を有する。従って、負極板131における負極活物質層133と集電板132との密着強度を高くできる。また、この負極板131を用いたリチウムイオン二次電池100の抵抗を低くできる。
 加えて、この電極板131の製造方法では、前述の第1塗工工程、第2塗工工程及び乾燥工程を行って負極活物質層131を形成するので、負極活物質層131を容易に形成できる。即ち、第1,第2塗工工程では、第2負極活物質ペーストKP2に含まれる第2塗工結着剤(具体的には、第2結着剤135f)の平均ガラス転移点Tgb(=Tg2)が、第1負極活物質ペーストKP1に含まれる第1塗工結着剤(具体的には、第1結着剤135e)の平均ガラス転移点Tga(=Tg1)よりも低く(Tgb<Tga)された第1,第2負極活物質ペーストKP1,KP2を用いて、第1塗膜133xと第2塗膜133yとからなる塗膜133zを形成している。
 このため、乾燥工程では、塗膜133zの表面133zaからの溶媒(水)の揮発に伴って、溶媒と共に結着剤135が表面133za側に移動しようとするものの、同じ温度条件下で比べると、ガラス転移点Tg1が高い第1結着剤135eは、ガラス転移点Tg2が低い第2結着剤135fよりも、粘性が高く移動し難い。このため、第1塗膜133xに含まれていた相対的にガラス転移点Tgが高い第1塗工結着剤(第1結着剤135e)は、第2塗膜133yに含まれていた相対的にガラス転移点Tgが低い第2塗工結着剤(第2結着剤135f)よりも移動し難い。従って、乾燥工程後の負極活物質層133における結着剤135の偏在(表面133a側ほど結着剤135が多く、集電板132側ほど結着剤135が少なくなる偏在)を抑制できる。
 更に、本実施形態1では、第2負極活物質ペーストKP2に含まれる固形分中の第2塗工結着剤(第2結着剤135f)の重量濃度N2(具体的には0.80wt%)を、第1負極活物質ペーストKP1に含まれる固形分中の第1塗工結着剤(第1結着剤135e)の重量濃度N1(具体的には1.20wt%)よりも低くした第1,第2負極活物質ペーストKP1,KP2を用いて、第1,第2塗膜133x,133yからなる塗膜133zを形成している。
 このため、乾燥工程では、塗膜133zの表面133zaからの溶媒(水)の揮発に伴って、溶媒と共に結着剤135が表面133za側に移動しようとするものの、第1塗膜133x中に含まれる第1塗工結着剤(第1結着剤135e)の方が、第2塗膜133y中に含まれる第2塗工結着剤(第2結着剤135f)よりも多いので、乾燥工程後の負極活物質層133における結着剤135の偏在をより効果的に抑制できる。具体的には、表面側部133fの結着剤135の量(A2)と集電板側部133eの結着剤135の量(A1)との比(A2/A1)の値を、後述する実施形態2の場合(1.2)よりも小さく(1.1)抑えることができる。かくして、負極活物質層133と集電板132との密着強度をより高くできると共に、この負極板131を用いたリチウムイオン二次電池100の抵抗をより低くできる。
 また、本実施形態1の製造方法では、乾燥工程を第1,第2塗工工程毎に複数回行う必要がなく、第2塗工工程後に行うだけで足りるので、工数を少なくできる。
 また、本実施形態1では、結着剤135として、多数の結着剤を用いることなく、2種類の結着剤(第1結着剤135e及び第2結着剤135f)のみを用いて、負極活物質層133を形成しているので、負極活物質層133の形成が容易である。
 また、本実施形態1では、第1結着剤135e及び第2結着剤135fとして、共にスチレン・ブタジエンゴム(SBR)を用いている。SBRは結着力が強いので、第1負極活物質ペーストKP1に添加する第1結着剤135eの量、及び、第2負極活物質ペーストKP2に添加する第2結着剤135fの量をそれぞれ少なくすることで、負極活物質層133自身に生じる抵抗を低くしつつも、負極活物質層133と集電板132との密着強度を十分に高くできる。
 次に、長尺状のセパレータ141を用意し、正極板121と負極板131とをセパレータ141を介して互いに重ね(図7参照)、巻き芯を用いて軸線AX周りに捲回する。その後、これを扁平状に圧縮する(図2参照)。
 次に、ケース蓋部材113と、3種類の絶縁部材155,156,157と、3種類の端子金具151,152,153とを用意し(図8参照)、ケース蓋部材113に正極電極端子部材150及び負極電極端子部材160を固設すると共に、正極電極端子部材150を捲回型電極体120の正極集電部121mに接続し、負極電極端子部材160を負極集電部131mに接続する。
 次に、ケース本体部材111を用意し、捲回型電極体120をケース本体部材111内に挿入する。その後、レーザ溶接により、ケース蓋部材113とケース本体部材111とを溶接して、電池ケース110を形成する。その後、電解液注入口113dから電池ケース110内に電解液を注液し、電解液注液口113dを封止する。その後は、高温エージングや各種検査を行う。かくして、リチウムイオン二次電池100が完成する。このリチウムイオン二次電池100は、前述の負極板131を備えるので、負極活物質層133と集電板132との密着強度が高く、耐久性が良好である。
(実施形態2)
 次いで、第2の実施の形態について、図10を参照しつつ説明する。本実施形態2に係る負極板231及びリチウムイオン二次電池200では、負極活物質層233における結着剤135の分布パターンが、上記実施形態1に係る負極板131及びリチウムイオン二次電池100の負極活物質層133と異なる。また、負極板231の製造方法も、上記実施形態1の負極板131の製造方法とは異なる。それ以外は、上記実施形態1と同様であるので、上記実施形態1と同様な部分の説明は、省略または簡略化する。
 本実施形態2に係る負極板231は、図10に示すように、上記実施形態1と同様な集電板132を有し、その両主面には、負極活物質層233,233が形成されている。本実施形態2の負極活物質層233も、負極活物質、結着剤135及び増粘剤から構成されている点は上記実施形態1の負極活物質層133と同様であるが、結着剤135の分布パターンが上記実施形態1とは異なる。即ち、この負極活物質層233を、図10中に破線で示すように、厚み方向の中央で半分に分けて、負極活物質層233の表面233aをなす側を表面側部233f、集電板132側を集電板側部233eとする。すると、本実施形態2では、表面側部233fに含まれる結着剤135の量(A2)と、集電板側部233eに含まれる結着剤135の量(A1)との比(A2/A1)が、1.2となっている(上記実施形態1では1.1)。
 なお、本実施形態2の負極活物質層233でも、上記実施形態1の負極活物質層133と同様に、表面側部233fは、第1結着剤135eよりも第2結着剤135fを多く含んでおり、逆に、集電板側部233eは、第2結着剤135fよりも第1結着剤135eを多く含んでいる。このため、表面側部233fに含まれる結着剤135の平均ガラス転移点Tguが、集電板側部233eに含まれる結着剤135の平均ガラス転移点Tgdに比して低くなっている(Tgu<Tgd)。また、負極活物質、結着剤135及び増粘剤の含有割合(重量比)は、負極活物質層233全体では、上記実施形態1と同様に、負極活物質:結着剤:増粘剤=98:1:1となっている。
 このように本実施形態2でも、比(A2/A1)が1.0~1.2とされ、かつ、平均ガラス転移点Tgu,Tgdの関係がTgu<Tgdとされているので、負極活物質層233と集電板132との密着強度を高くできると共に、この負極板231を用いたリチウムイオン二次電池200の抵抗を低くできる。また、リチウムイオン二次電池200の性能及び耐久性を高くすることができる。その他、上記実施形態1と同様な部分は、上記実施形態1と同様な作用効果を奏する。
 次いで、上記負極板231の製造方法について説明する。
 予め、負極活物質(天然黒鉛)と次述する第1塗工結着剤と増粘剤(CMC)とを、上記実施形態1の第1負極活物質ペーストKP1とは異なる、負極活物質:第1塗工結着剤:増粘剤=98:1:1の割合(重量比)で、溶媒(水)中に分散させた第1負極活物質ペースト(第1活物質ペースト)KP3を調製しておく。なお、本実施形態2でも、第1塗工結着剤は、第1結着剤135e(ガラス転移点Tg1=30℃のSBR)のみからなる。従って、第1塗工結着剤の平均ガラス転移点Tgaは30℃である。
 そして、長尺状の銅箔からなる集電板132を別途用意し、第1塗工工程として、第1負極活物質ペーストKP3を集電板132上に塗布し、第1負極活物質ペーストKP3からなる第1塗膜233xを形成した(図11参照)。
 また、予め、負極活物質(天然黒鉛)と次述する第2塗工結着剤と増粘剤(CMC)とを、上記実施形態1の第2負極活物質ペーストKP2とは異なる、負極活物質:第2塗工結着剤:増粘剤=98:1:1の割合(重量比)で、溶媒(水)中に分散させた第2負極活物質ペースト(第2活物質ペースト)KP4を調製しておく。なお、本実施形態2でも、第2塗工結着剤は、第2結着剤135f(ガラス転移点Tg2=-40℃のSBR)のみからなる。従って、第2塗工結着剤の平均ガラス転移点Tgbは-40℃であり、第1塗工結着剤の平均ガラス転移点Tga(=30℃)よりも低くなっている。
 前述の実施形態1では、第2負極活物質ペーストKP2に含まれる固形分中の第2塗工結着剤(第2結着剤135f)の重量濃度N2を、第1負極活物質ペーストKP1に含まれる固形分中の第1塗工結着剤(第1結着剤135e)の重量濃度N1よりも低くした(N2<N1)。しかし、本実施形態2では、第2負極活物質ペーストKP4に含まれる固形分中の第2塗工結着剤(第2結着剤135f)の重量濃度N4と、第1負極活物質ペーストKP3に含まれる固形分中の第1塗工結着剤(第1結着剤135e)の重量濃度N3を等しくしている(N3=N4)。具体的には、これらの重量濃度N3,N4は、N3=N4={1/(98+1+1)}×100=1.00wt%である。
 そして、第2塗工工程として、この第2負極活物質ペーストKP4を第1塗膜233x上に塗布し、第2負極活物質ペーストKP4からなる第2塗膜233yを形成した(図11参照)。これにより、第1塗膜233xと第2塗膜233yとが重なる塗膜233zができる。
 その後、上記実施形態1と同様に乾燥工程を行って、塗膜233zを乾燥させ、負極活物質層233を形成した。
 次に、集電板132の反対側の主面にも、同様に、第1塗工工程、第2塗工工程及び乾燥工程を行って、集電板132の反対側の主面にも、負極活物質層233を形成した。その後、加圧ロールにより、負極活物質層233,233を圧縮して、負極板231を完成させた(図10参照)。
 このように本実施形態2でも、前述の第1塗工工程、第2塗工工程及び乾燥工程を行っているので、前述の負極活物質層231を容易に形成できる。即ち、第1,第2塗工工程では、第2負極活物質ペーストKP4に含まれる第2塗工結着剤(第2結着剤135f)の平均ガラス転移点Tgb(=Tg2)が、第1負極活物質ペーストKP3に含まれる第1塗工結着剤(第1結着剤135e)の平均ガラス転移点Tga(=Tg1)よりも低くされた第1,第2負極活物質ペーストKP3,KP4を用いて、第1,第2塗膜233x,233yからなる塗膜233zを形成している。
 このため、乾燥工程では、塗膜233zの表面233zaからの溶媒(水)の揮発に伴って、溶媒と共に結着剤135が表面233za側に移動しようとするものの、同じ温度条件下で比べると、ガラス転移点Tg1が高い第1結着剤135eは、ガラス転移点Tg2が低い第2結着剤135fよりも、粘性が高く移動し難い。このため、第1塗膜233xに含まれていた相対的にガラス転移点Tgが高い第1塗工結着剤(第1結着剤135e)は、第2塗膜233yに含まれていた相対的にガラス転移点Tgが低い第2塗工結着剤(第2結着剤135f)よりも移動し難い。従って、乾燥工程後の負極活物質層233における結着剤135の偏在を抑制できるので、表面側部233fの結着剤135の量(A2)と、集電板側部233eの結着剤135の量(A1)との比(A2/A1)を1.2に抑えることができる。
 また、本実施形態2の製造方法でも、乾燥工程を第1,第2塗工工程毎に複数回行う必要がなく、第2塗工工程後に行うだけで足りるので、工数を少なくできる。その他、上記実施形態1と同様な部分は、上記実施形態1と同様な作用効果を奏する。
(実施例)
 次いで、本発明の効果を検証するために行った試験の結果について説明する。
 本発明の実施例1として上記実施形態1の負極板131を、実施例2として上記実施形態2の負極板231を用意した。
 前述したように、実施例1に係る負極板131の負極活物質層133では、表面側部133fに含まれる結着剤135の量(A2)と、集電板側部133eに含まれる結着剤135の量(A1)との比(A2/A1)は1.1であった。また、表面側部133fに含まれる結着剤135の平均ガラス転移点Tguが、集電板側部133eに含まれる結着剤135の平均ガラス転移点Tgdよりも低くなっていた(Tgu<Tgd)。また、この負極活物質133における結着剤135の偏在具合の総合評価は、「◎(偏在が非常に小さい)」であった。なお、この総合評価は、前述した結着剤135に臭素を付着させて、その分布をEPMAによりマッピングした画像を、目視にて評価したものである。
 また、実施例2に係る負極板231の負極活物質層233では、比(A2/A1)が1.2であり、平均ガラス転移点Tgu,Tgdの関係がTgu<Tgdであった。また、この負極活物質233における結着剤135の偏在具合の総合評価は、「○(偏在が小さい)」であった。
 また、比較例1として、比(A2/A1)が2.2であり、平均ガラス転移点Tgu,Tgdの関係がTgu=Tgdとされた負極活物質層を有する負極板を用意した。負極活物質層は、結着剤135としてガラス転移点Tg1の高い第1結着剤135eのみを混練した負極活物質ペースト(負極活物質:第1結着剤:増粘剤=98:1:1)を用い、1回の塗工と乾燥のみを行って形成した。また、この負極活物質における結着剤135の偏在具合の総合評価は、「×(偏在が非常に大きい)」であった。
 また、比較例2として、比(A2/A1)が1.3であり、平均ガラス転移点Tgu,Tgdの関係がTgu=Tgdとされた負極活物質層を有する負極板を用意した。負極活物質層は、結着剤135としてガラス転移点Tg2の低い第2結着剤135fのみを混練した負極活物質ペースト(負極活物質:第2結着剤:増粘剤=98:1:1)を用い、1回の塗工と乾燥のみを行って形成した。この負極活物質における結着剤135の偏在具合の総合評価は、「△(偏在が大きい)」であった。
 また、比較例3として、比(A2/A1)が2.0であり、平均ガラス転移点Tgu,Tgdの関係がTgu=Tgdとされた負極活物質層を有する負極板を用意した。負極活物質層は、結着剤135として第1結着剤135eと第2結着剤135fとを同じ割合で混練した負極活物質ペースト(負極活物質:第1結着剤:第2結着剤:増粘剤=98:0.5:0.5:1)を用い、1回の塗工と乾燥のみを行って形成した。この負極活物質における結着剤135の偏在具合の総合評価は、「×」であった。
 また、比較例4として、比(A2/A1)が1.6であり、平均ガラス転移点Tgu,Tgdの関係がTgu>Tgdとされた負極活物質層を有する負極板を用意した。負極活物質層は、塗工を2回行って形成した。即ち、結着剤135として第2結着剤135fのみを混練した第1負極活物質ペースト(負極活物質:第2結着剤:増粘剤=98:1:1)を用いて1回目の塗工を行う。その後、結着剤135として第1結着剤135eのみを混練した第2負極活物質ペースト(負極活物質:第1結着剤:増粘剤=98:1:1)を用いて2回目の塗工を行った。つまり、実施例1,2(実施形態1,2)では、ガラス転移点Tgの高い第1結着剤135eを第1負極活物質ペーストに、ガラス転移点Tgの低い第2結着剤135fを第2負極活物質ペーストに用いた。これに対し、この比較例4では、逆にガラス転移点Tgの低い第2結着剤135fを第1負極活物質ペーストに、ガラス転移点Tgの高い第1結着剤135eを第2負極活物質ペーストに用いた。その後、上記実施形態1,2と同様に乾燥工程を行って、負極活物質層を形成した。この負極活物質における結着剤135の偏在具合の総合評価は、「×」であった。
 また、比較例5として、比(A2/A1)が1.8であり、平均ガラス転移点Tgu,Tgdの関係がTgu>Tgdとされた負極活物質層を有する負極板を用意した。負極活物質層は、比較例4に比して第2結着剤135fの重量濃度が高い第1負極活物質ペーストと、第1結着剤135eの重量濃度が低い第2負極活物質ペーストを用いて形成した。具体的には、比較例4よりも多い量の第2結着剤135fのみを混練した第1負極活物質ペースト(負極活物質:第2結着剤:増粘剤=98:1.2:1)を用いて1回目の塗工を行った。その後、比較例4よりも少ない量の第1結着剤135eのみを混練した第2負極活物質ペースト(負極活物質:第1結着剤:増粘剤=98:0.8:1)を用いて、2回目の塗工を行った。この負極活物質における結着剤135の偏在具合の総合評価は、「×」であった。
 そして、これら実施例1,2及び比較例1~5の各負極板131,231等について、負極活物質層133,233等と集電板132の密着強度試験を行った。即ち、各例に係る負極板131等の負極部131w等から、120mm×15mmの大きさの試験用電極板片SDを切り出す(図12参照)。また、両面粘着テープNTを貼り付けた試験用の台DAを用意し、動かないように水平に固定しておく。そして、切り出した帯状の試験用電極板片SDの一方の端から40mm×15mmの一端側部SD1を残して、残りの80mm×15mmの他端側部SD2を両面粘着テープNTに粘着させる。その後、図12中に矢印で示すように、一端側部SD1を掴んで垂直に持ち上げ、試験用電極板片SD(他端側部SD2)を両面粘着テープNTから剥がすのに掛かった力Fa(N)を測定する。そして、力Faの平均値を求め(具体的には、他端側部SD2を20mm剥離した時点から40mm剥離する時点までの力Faの平均値を求め)、この平均値と試験用電極板片SDの幅(15mm)とから、単位長さ当たりの密着強度Ka(N/m)を求めた。その結果を表1及び図13に示す。
Figure JPOXMLDOC01-appb-T000001
 図13のグラフより、比較例1~5に比して実施例1,2では、負極活物質層と集電板との密着強度Kaを高くできることが判る。特に実施例1は、実施例2よりも密着強度Kaを高くできる。
 これらの結果から、表面側部の結着剤の量(A2)と集電板側部の結着剤の量(A1)との比(A2/A1)を1.0~1.2とし、表面側部の結着剤の平均ガラス転移点Tguを集電板側部の結着剤の平均ガラス転移点Tgdよりも低くする(Tgu<Tgd)ことにより、結着剤の偏在が小さくなり、密着強度Kaを高くできることが判った。特に比(A2/A1)の値を1.0に近づけるほど、結着剤の偏在が小さくなり、密着強度Kaを高くできることが判った。
(実施形態3)
 次いで、第3の実施の形態について説明する。本実施形態3に係る車両700は、上記実施形態1のリチウムイオン二次電池100を搭載し、このリチウムイオン二次電池100に蓄えた電気エネルギを、駆動源の駆動エネルギの全部または一部として使用するものである。
 この車両700は、複数のリチウムイオン二次電池100を搭載しており、図14に示すように、エンジン740、フロントモータ720及びリアモータ730を併用して駆動するハイブリッド自動車である。具体的には、このハイブリッド自動車700は、車体790、エンジン740、これに取り付けられたフロントモータ720、リアモータ730、ケーブル750、インバータ760を備える。更に、このハイブリッド自動車700は、複数のリチウムイオン二次電池100,100,…を自身の内部に有する組電池710を備え、この組電池710に蓄えられた電気エネルギを、フロントモータ720及びリアモータ730の駆動に利用している。
 前述したように、負極板131は、負極活物質層133と集電板132との密着強度を高くできると共に、これを用いたリチウムイオン二次電池100の抵抗を低くでき、リチウムイオン二次電池100の性能及び耐久性を高くできる。従って、これを搭載したハイブリッド自動車700の性能及び耐久性を高くできる。なお、上記実施形態1のリチウムイオン二次電池100に代えて、上記実施形態2のリチウムイオン二次電池200を搭載してもよい。
(実施形態4)
 次いで、第4の実施の形態について説明する。本実施形態4に係る電池使用機器800は、上記実施形態1のリチウムイオン二次電池100を搭載し、このリチウムイオン二次電池100をエネルギ源の少なくとも1つとして使用するものである。
 この電池使用機器800は、図15に示すように、上記実施形態1のリチウムイオン二次電池100を含むバッテリパック810を搭載したハンマードリルである。このハンマードリル800は、本体820の底部821に、バッテリパック810が収容されており、このバッテリパック810を、ドリルを駆動するためのエネルギ源として利用している。
 前述したように、負極板131は、負極活物質層133と集電板132との密着強度を高くできると共に、これを用いたリチウムイオン二次電池100の抵抗を低くでき、リチウムイオン二次電池100の性能及び耐久性を高くできる。従って、これを搭載した電池使用機器800の性能及び耐久性を高くできる。なお、上記実施形態1のリチウムイオン二次電池100に代えて、上記実施形態2のリチウムイオン二次電池200を搭載してもよい。
 以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態1~4に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
 例えば、上記実施形態1,2では、負極板131,231及びその製造方法に本発明を適用したが、正極板121及びその製造方法に本発明を適用することもできる。
 また、上記実施形態1,2では、第1塗工結着剤が第1結着剤135eのみからなる第1負極活物質ペーストKP1と、第2塗工結着剤が第2結着剤135fのみからなる第2負極活物質ペーストKP2を用いて、負極活物質層133,233を形成したが、これに限られない。例えば、第1塗工結着剤が第1結着剤135eと第2結着剤135fからなる第1負極活物質ペーストや、第2塗工結着剤が第1結着剤135eと第2結着剤135fからなる第2負極活物質ペーストを用いることもできる。但し、この場合も、第2塗工結着剤の平均ガラス転移点Tgbを第1塗工結着剤の平均ガラス転移点Tgaよりも低くする(Tgb<Tga)。
 更に、第1塗工結着剤が3種類以上の結着剤からなる第1負極活物質ペーストや、第2塗工結着剤が3種類以上の結着剤からなる第2負極活物質ペーストを用いることもできる。この場合も、第2塗工結着剤の平均ガラス転移点Tgbを第1塗工結着剤の平均ガラス転移点Tgaよりも低くする(Tgb<Tga)。
 また、上記実施形態3では、本発明のリチウムイオン二次電池100,200を搭載する車両として、ハイブリッド自動車700を例示したが、これに限られない。他の車両としては、例えば、電気自動車、プラグインハイブリッド自動車、ハイブリッド鉄道車両、フォークリフト、電気車いす、電動アシスト自転車、電動スクータなどが挙げられる。
 また、上記実施形態4では、本発明のリチウムイオン二次電池100,200を搭載する電池使用機器して、ハンマードリル800を例示したが、これに限られない。他の電池使用機器としては、例えば、パーソナルコンピュータ、携帯電話、電池駆動の電動工具、無停電電源装置など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。

Claims (8)

  1.  集電板と、
     この集電板上に形成され、少なくとも活物質及び結着剤を含む活物質層と、を備える
    電極板であって、
     前記活物質層は、
      前記結着剤として、ガラス転移点Tgが互いに異なる複数の結着剤を含み、
      前記活物質層を厚み方向の中央で半分に分けて、前記活物質層の表面をなす側を表面側部、前記集電板側を集電板側部としたとき、
      前記表面側部に含まれる前記結着剤の量(A2)と、前記集電板側部に含まれる前記結着剤の量(A1)との比(A2/A1)が、1.0~1.2とされてなり、
      前記表面側部に含まれる前記結着剤の平均ガラス転移点Tguが、前記集電板側部に含まれる前記結着剤の平均ガラス転移点Tgdよりも低くされてなる
    電極板。
  2. 請求項1に記載の電極板であって、
     前記活物質層は、
      前記結着剤として、第1結着剤と、この第1結着剤のガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤とを含み、
      前記表面側部は、前記第1結着剤よりも前記第2結着剤を多く含み、かつ、
      前記集電板側部は、前記第2結着剤よりも前記第1結着剤を多く含む
    電極板。
  3. 請求項1または請求項2に記載の電極板であって、
     複数の前記結着剤は、
      前記ガラス転移点Tgが互いに異なるスチレン・ブタジエンゴム(SBR)である
    電極板。
  4. 請求項1~請求項3のいずれか一項に記載の電極板を備える二次電池。
  5.  集電板と、
     この集電板上に形成され、少なくとも活物質及び結着剤を含む活物質層と、を備え、
     前記活物質層は、
      前記結着剤として、ガラス転移点Tgが互いに異なる複数の結着剤を含み、
      前記活物質層を厚み方向の中央で半分に分けて、前記活物質層の表面をなす側を表面側部、前記集電板側を集電板側部としたとき、
      前記表面側部に含まれる前記結着剤の量(A2)と、前記集電板側部に含まれる前記結着剤の量(A1)との比(A2/A1)が、1.0~1.2とされてなり、
      前記表面側部に含まれる前記結着剤の平均ガラス転移点Tguが、前記集電板側部に含まれる前記結着剤の平均ガラス転移点Tgdよりも低くされてなる
    電極板の製造方法であって、
     複数の前記結着剤の少なくともいずれかからなり、平均ガラス転移点Tgaを有する第1塗工結着剤、及び、前記活物質を含む第1活物質ペーストを、前記集電板上に塗工し、前記集電板上に前記第1活物質ペーストからなる第1塗膜を形成する第1塗工工程と、
     前記第1塗工工程の後に、複数の前記結着剤の少なくともいずれかからなり、前記第1塗工結着剤の平均ガラス転移点Tgaよりも低い平均ガラス転移点Tgbを有する第2塗工結着剤、及び、前記活物質を含む第2活物質ペーストを、前記第1塗膜上に塗工し、前記第1塗膜上に前記第2活物質ペーストからなる第2塗膜を形成する第2塗工工程と、
     前記第2塗工工程の後に、前記第1塗膜及び前記第2塗膜を同時に乾燥させて、前記第1塗膜及び前記第2塗膜から前記活物質層を形成する乾燥工程と、を備える
    電極板の製造方法。
  6. 請求項5に記載の電極板の製造方法であって、
     前記第2活物質ペーストに含まれる固形分中の前記第2塗工結着剤の重量濃度を、前記第1活物質ペーストに含まれる固形分中の前記第1塗工結着剤の重量濃度よりも低くした、前記第1活物質ペースト及び前記第2活物質ペーストを用いる
    電極板の製造方法。
  7. 請求項5または請求項6に記載の電極板の製造方法であって、
     前記活物質層は、
      前記結着剤として、第1結着剤と、この第1結着剤のガラス転移点Tg1よりも低いガラス転移点Tg2を有する第2結着剤とを含み、
      前記表面側部は、前記第1結着剤よりも前記第2結着剤を多く含み、かつ、
      前記集電板側部は、前記第2結着剤よりも前記第1結着剤を多く含み、
     前記第1塗工工程において、前記第1塗工結着剤として、前記第1結着剤及び前記第2結着剤のうち少なくとも前記第1結着剤からなる前記第1活物質ペーストを用いると共に、
     前記第2塗工工程において、前記第2塗工結着剤として、前記第1結着剤及び前記第2結着剤のうち少なくとも前記第2結着剤からなる前記第2活物質ペーストを用いる
    電極板の製造方法。
  8. 請求項5~請求項7のいずれか一項に記載の電極板の製造方法であって、
     複数の前記結着剤として、前記ガラス転移点Tgが互いに異なるスチレン・ブタジエンゴム(SBR)を用いる
    電極板の製造方法。
PCT/JP2010/067971 2010-10-13 2010-10-13 電極板、二次電池、及び、電極板の製造方法 WO2012049746A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/067971 WO2012049746A1 (ja) 2010-10-13 2010-10-13 電極板、二次電池、及び、電極板の製造方法
JP2011510764A JP4761010B1 (ja) 2010-10-13 2010-10-13 電極板、二次電池、及び、電極板の製造方法
US13/266,827 US8574763B2 (en) 2010-10-13 2010-10-13 Electrode plate with a binder in a surface section with a lower glass transition point than a binder in a current collector plate section, secondary battery, and method for producing the electrode plate
CN2010800376202A CN102576875B (zh) 2010-10-13 2010-10-13 电极板、二次电池和电极板的制造方法
KR1020127004835A KR101329934B1 (ko) 2010-10-13 2010-10-13 전극판, 2차 전지 및 전극판의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/067971 WO2012049746A1 (ja) 2010-10-13 2010-10-13 電極板、二次電池、及び、電極板の製造方法

Publications (1)

Publication Number Publication Date
WO2012049746A1 true WO2012049746A1 (ja) 2012-04-19

Family

ID=44597197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067971 WO2012049746A1 (ja) 2010-10-13 2010-10-13 電極板、二次電池、及び、電極板の製造方法

Country Status (5)

Country Link
US (1) US8574763B2 (ja)
JP (1) JP4761010B1 (ja)
KR (1) KR101329934B1 (ja)
CN (1) CN102576875B (ja)
WO (1) WO2012049746A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180166A1 (ja) * 2012-05-29 2013-12-05 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、及び電気化学素子
JP2014075261A (ja) * 2012-10-04 2014-04-24 Toyota Motor Corp 電極板の製造方法及び電池の製造方法
JP2016027549A (ja) * 2014-06-30 2016-02-18 パナソニック株式会社 非水電解質二次電池用負極板及びその製造方法
JPWO2016024383A1 (ja) * 2014-08-11 2017-05-25 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
WO2020110589A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103875096B (zh) * 2011-10-11 2017-02-22 丰田自动车株式会社 非水系二次电池
JP2013137955A (ja) * 2011-12-28 2013-07-11 Toyota Motor Corp 非水系二次電池
JP5838994B2 (ja) * 2013-04-30 2016-01-06 住友大阪セメント株式会社 電極材料と電極形成用ペースト、電極板及びリチウムイオン電池並びに電極材料の製造方法
JP6251042B2 (ja) * 2014-01-06 2017-12-20 株式会社東芝 電極及び非水電解質電池
KR101822695B1 (ko) * 2014-10-02 2018-01-26 주식회사 엘지화학 이중층 구조의 전극, 이의 제조방법 및 이를 포함하는 리튬 이차전지
KR101788232B1 (ko) * 2014-10-06 2017-10-19 주식회사 엘지화학 접착력이 개선된 리튬 이차전지용 전극
US20180287133A1 (en) * 2015-09-14 2018-10-04 Maxell Holdings, Ltd. Non-aqueous secondary battery electrode, method for manufacturing same, and non-aqueous secondary battery
KR102003704B1 (ko) * 2015-10-08 2019-07-25 주식회사 엘지화학 특정 방향에서 진공을 인가하여 전극 슬러리를 건조하는 과정을 포함하는 이차전지용 전극을 제조하는 방법
WO2017214247A1 (en) 2016-06-07 2017-12-14 Navitas Systems, Llc High loading electrodes
US9972863B2 (en) 2016-07-29 2018-05-15 Blue Current, Inc. Compliant solid-state ionically conductive composite electrolytes and materials
DE102018203937A1 (de) * 2018-03-15 2019-09-19 Robert Bosch Gmbh Verfahren zum Herstellen einer Elektrodenfolie für eine Batterie
US11581570B2 (en) 2019-01-07 2023-02-14 Blue Current, Inc. Polyurethane hybrid solid ion-conductive compositions
DE102019122226A1 (de) * 2019-08-19 2021-02-25 Bayerische Motoren Werke Aktiengesellschaft Kompositelektrode für eine Lithium- oder Lithium-Ionen-Batterie und Herstellungsverfahren dafür
US11394054B2 (en) * 2019-12-20 2022-07-19 Blue Current, Inc. Polymer microspheres as binders for composite electrolytes
EP4078698A1 (en) 2019-12-20 2022-10-26 Blue Current, Inc. Composite electrolytes with binders
CN111883851B (zh) * 2020-08-02 2022-04-12 江西安驰新能源科技有限公司 一种锂离子电池从化成到配组的方法
CN112103468B (zh) * 2020-09-21 2022-03-18 珠海冠宇电池股份有限公司 一种负极片及包括该负极片的锂离子电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2003151556A (ja) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd 負極用塗工組成物、負極板、その製造方法、及び、非水電解液二次電池
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
JP2009206079A (ja) * 2008-01-30 2009-09-10 Panasonic Corp 非水系二次電池およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553244B2 (ja) 1995-11-11 2004-08-11 大日本印刷株式会社 非水電解液2次電池用電極板の製造方法
JP3848519B2 (ja) 2000-05-31 2006-11-22 松下電器産業株式会社 電池電極の製造装置、および電池電極の製造方法
JP2009238720A (ja) 2008-01-10 2009-10-15 Sanyo Electric Co Ltd 非水電解質二次電池及びその製造方法
JP5470817B2 (ja) * 2008-03-10 2014-04-16 日産自動車株式会社 電池用電極およびこれを用いた電池、並びにその製造方法
JP2010182626A (ja) * 2009-02-09 2010-08-19 Sanyo Electric Co Ltd 非水系二次電池用負極電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998039808A1 (en) * 1997-03-04 1998-09-11 Nippon Zeon Co., Ltd. Binder for cell, slurry for cell electrode, electrode for lithium secondary cell, and lithium secondary cell
JP2003151556A (ja) * 2001-11-08 2003-05-23 Dainippon Printing Co Ltd 負極用塗工組成物、負極板、その製造方法、及び、非水電解液二次電池
JP2005166756A (ja) * 2003-11-28 2005-06-23 Nippon Zeon Co Ltd 電気化学素子用バインダー
JP2009206079A (ja) * 2008-01-30 2009-09-10 Panasonic Corp 非水系二次電池およびその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013180166A1 (ja) * 2012-05-29 2013-12-05 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、及び電気化学素子
JPWO2013180166A1 (ja) * 2012-05-29 2016-01-21 日本ゼオン株式会社 電気化学素子電極用複合粒子、電気化学素子電極、及び電気化学素子
JP2014075261A (ja) * 2012-10-04 2014-04-24 Toyota Motor Corp 電極板の製造方法及び電池の製造方法
JP2016027549A (ja) * 2014-06-30 2016-02-18 パナソニック株式会社 非水電解質二次電池用負極板及びその製造方法
JPWO2016024383A1 (ja) * 2014-08-11 2017-05-25 日本ゼオン株式会社 二次電池電極用バインダー組成物、二次電池電極用スラリー組成物、二次電池用電極および二次電池
US10529989B2 (en) 2014-08-11 2020-01-07 Zeon Corporation Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
WO2020110589A1 (ja) * 2018-11-30 2020-06-04 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池
JPWO2020110589A1 (ja) * 2018-11-30 2021-10-14 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極及び非水電解質二次電池

Also Published As

Publication number Publication date
KR20120067997A (ko) 2012-06-26
JPWO2012049746A1 (ja) 2014-02-24
KR101329934B1 (ko) 2013-11-14
CN102576875A (zh) 2012-07-11
US20120177990A1 (en) 2012-07-12
US8574763B2 (en) 2013-11-05
CN102576875B (zh) 2013-12-18
JP4761010B1 (ja) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4761010B1 (ja) 電極板、二次電池、及び、電極板の製造方法
JP5316905B2 (ja) リチウム二次電池
JP4766348B2 (ja) リチウム二次電池およびその製造方法
JP4403524B2 (ja) 電極およびその製造方法
WO2010073924A1 (ja) 非水二次電池用電極の製造方法
JP5673690B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池の製造方法
JP5806335B2 (ja) 電極体及びその製造方法
RU2725177C1 (ru) Полностью твердотельная аккумуляторная батарея и способ ее изготовления
JP2015005421A (ja) 電極体及び全固体電池
JP5843092B2 (ja) リチウムイオン二次電池
JP2013062089A (ja) リチウムイオン二次電池
JP2012156061A (ja) 二次電池とその製造方法
US20140080005A1 (en) Secondary battery and method for producing secondary battery
JP2012256544A (ja) 二次電池用電極の製造方法
JP2018120815A (ja) リチウムイオン二次電池の製造方法
JP6958342B2 (ja) 積層型電極体の製造方法
JP2013062139A (ja) 電極の評価方法
JP5725356B2 (ja) 二次電池用電極の製造方法
JP7193239B2 (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池
JP2011003511A (ja) 正電極板の製造方法、電池、車両及び電池搭載機器
JP5704401B2 (ja) 二次電池用電極とその製造方法
JP5821913B2 (ja) 負極電極、リチウムイオン二次電池、及び車両
JP7237055B2 (ja) 非水電解質二次電池
JP2022100813A (ja) 二次電池
JP2012134023A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037620.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011510764

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13266827

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127004835

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858399

Country of ref document: EP

Kind code of ref document: A1