WO2010073924A1 - 非水二次電池用電極の製造方法 - Google Patents

非水二次電池用電極の製造方法 Download PDF

Info

Publication number
WO2010073924A1
WO2010073924A1 PCT/JP2009/070778 JP2009070778W WO2010073924A1 WO 2010073924 A1 WO2010073924 A1 WO 2010073924A1 JP 2009070778 W JP2009070778 W JP 2009070778W WO 2010073924 A1 WO2010073924 A1 WO 2010073924A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
particles
negative electrode
layer
Prior art date
Application number
PCT/JP2009/070778
Other languages
English (en)
French (fr)
Inventor
龍太 森島
仁 酒井
博昭 池田
宏之 秋田
秀仁 松尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/139,319 priority Critical patent/US9083056B2/en
Priority to CN2009801523136A priority patent/CN102265431B/zh
Priority to KR1020117014620A priority patent/KR101270314B1/ko
Publication of WO2010073924A1 publication Critical patent/WO2010073924A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/75Wires, rods or strips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to an electrode suitable as a component of a non-aqueous secondary battery (such as a lithium ion battery) and a battery using the electrode.
  • a non-aqueous secondary battery such as a lithium ion battery
  • This application claims priority based on Japanese Patent Application No. 2008-333156 filed on Dec. 26, 2008, the entire contents of which are incorporated herein by reference.
  • Lithium secondary batteries and other non-aqueous secondary batteries are becoming increasingly important as power sources mounted on vehicles that use electricity as a drive source, or power sources mounted on personal computers, portable terminals, and other electrical products.
  • a lithium ion battery that is lightweight and obtains a high energy density is expected to be preferably used as a high-output power source mounted on a vehicle.
  • Patent Documents 1 to 6 are cited as technical documents related to non-aqueous secondary batteries.
  • a typical electrode (a positive electrode and a negative electrode) provided in a lithium ion battery has a current collector layer (active material layer) mainly composed of a material (active material) capable of reversibly occluding and releasing lithium ions. It has a retained configuration.
  • a composition prepared by dispersing or dissolving a powdered active material (active material particles) in an appropriate solvent to prepare a paste or slurry (active material layer forming composition) Is applied to the current collector, dried, and pressed as necessary.
  • Providing a porous layer mainly composed of inorganic particles on the surface of the active material layer can be an effective means for improving the reliability (prevention of internal short circuit, etc.) of lithium ion batteries and other batteries.
  • a method for forming such a porous inorganic layer from the viewpoint of productivity, etc., inorganic particles are dispersed in a liquid medium in which a binder (binder) is dissolved in an appropriate solvent, and a paste or slurry composition (coating).
  • a paste or slurry composition coating
  • the method of preparing the agent and applying the composition to the surface of the active material layer can be preferably employed.
  • Patent Document 1 describes a non-aqueous electrolyte secondary battery in which a porous protective film made of a resin binder and solid particles is formed on the surface of an active material layer.
  • a method for forming a porous protective film there is a method of applying a fine particle slurry in which fine particles are dispersed in a solvent together with a binder.
  • the coating agent as described above when the coating agent as described above is applied to the surface of the active material layer, at least a part of the liquid medium soaks into the active material layer. Then, the binder contained in the liquid medium coats the surface of the active material particles, and this can be a factor that reduces the input / output performance of the battery. In a vehicle power supply battery that requires high input / output performance, it is particularly meaningful to form the inorganic layer while suppressing a decrease in the input / output performance.
  • a non-aqueous secondary battery for example, a lithium ion battery
  • a method for producing an electrode for a non-aqueous secondary battery having a porous inorganic layer on an active material layer includes providing an electrode raw material in which an active material layer mainly composed of active material particles is held by a current collector. Further, the method includes adjusting the water concentration of the active material layer so that the water concentration of at least the surface of the active material layer is 100 ppm to 500 ppm. Further, the method includes applying a slurry containing inorganic particles, a binder, and an organic solvent to the surface of the active material layer adjusted to the moisture concentration to form a porous inorganic layer.
  • the moisture contained in the slurry and the binder dissolved in the solvent into the active material layer are utilized.
  • the degree of penetration can be adjusted.
  • the phenomenon that the binder excessively penetrates into the active material layer can be suppressed, and the influence of the formation of the porous inorganic layer on the input / output performance can be reduced.
  • an inorganic layer having good adhesion to the active material layer for example, it can be evaluated by 90 ° peel strength described later
  • an electrode manufactured by applying the above method is used as a constituent element of a non-aqueous secondary battery, and gives a battery with higher reliability and higher performance (for example, excellent input / output performance). Can be.
  • the “secondary battery” means a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium secondary battery and a power storage element such as an electric double layer capacitor.
  • the “non-aqueous secondary battery” refers to a battery provided with a non-aqueous electrolyte (typically, an electrolyte containing a supporting salt (supporting electrolyte) in a non-aqueous solvent).
  • the “lithium secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between the positive and negative electrodes.
  • a secondary battery generally referred to as a lithium ion battery is a typical example included in the lithium secondary battery in this specification.
  • an organic solvent constituting the slurry that is, an inorganic particle dispersion for forming a porous inorganic layer; hereinafter also referred to as a coating agent
  • an amide solvent for example, N-methyl-2-pyrrolidone
  • a preferable example of the binder is an acrylic binder.
  • a coating agent having such a composition is preferable because it can easily adjust the penetration of the binder into the active material layer using moisture on the surface of the active material layer.
  • the inorganic particles alumina particles and other various ceramic particles can be preferably used. The use of alumina particles (typically ⁇ -alumina particles) is particularly preferred.
  • an electrode provided with an active material layer in which the active material particles are carbon particles that is, an active material layer containing carbon particles as a main component.
  • An electrode provided with such an active material layer can be preferably used, for example, as a negative electrode of a lithium ion battery. Therefore, this invention provides the manufacturing method of the negative electrode for lithium ion batteries as another side surface.
  • the method disclosed herein can be preferably carried out in such a manner that a hydrophilic functional group is introduced into the surface of the active material particles located on the surface layer portion of the active material layer prior to the adjustment of the moisture concentration.
  • This aspect is suitable for making the water concentration on the surface of the active material layer higher than the inside when adjusting the water concentration.
  • the coating agent in a state where moisture is unevenly distributed on the surface of the active material layer, it is possible to prevent excessive penetration of the binder while reducing the amount of water retained as the entire active material layer.
  • a treatment for introducing the hydrophilic functional group for example, a treatment including an operation of bringing a lower alcohol into contact with the surface layer portion of the active material layer can be preferably employed.
  • the water concentration of the active material layer can be suitably adjusted by an operation including, for example, maintaining the active material layer in an environment having a dew point of ⁇ 10 ° C. or higher (typically ⁇ 10 ° C. to + 10 ° C.). .
  • a dew point of ⁇ 10 ° C. or higher typically ⁇ 10 ° C. to + 10 ° C.
  • the low moisture content is obtained. It is preferable to include moisture so that at least the surface of the active material layer having a concentration has a target moisture concentration.
  • Performing the hydrophilic functional group introduction treatment is also advantageous in that the time required for including a desired amount of moisture in the active material layer having a low moisture concentration can be shortened to increase the productivity of the electrode.
  • a method for producing a lithium ion battery characterized in that a lithium ion battery is constructed using an electrode produced by any of the methods disclosed herein. According to such a method, a battery having higher reliability and higher performance (for example, excellent input / output performance) can be manufactured.
  • a lithium ion battery is suitable as a power source for a motor (electric motor) mounted on a vehicle such as an automobile.
  • FIG. 1 is a schematic cross-sectional view showing a structure of a lithium ion battery according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a positive and negative electrode sheet and a separator constituting a lithium ion battery according to an embodiment.
  • FIG. 3 is a schematic plan view showing the structure of the electrode according to one embodiment.
  • FIG. 4 is an explanatory view schematically showing a method for measuring peel strength.
  • FIG. 5 is a graph showing the relationship between moisture concentration, IV resistance, and peel strength.
  • FIG. 6 is a schematic explanatory view illustrating a situation where the moisture concentration on the surface of the active material layer is appropriate.
  • FIG. 7 is a schematic explanatory view illustrating a situation where the water concentration on the surface of the active material layer is too low.
  • FIG. 8 is a schematic explanatory view illustrating a situation where the water concentration on the surface of the active material layer is too high.
  • FIG. 9 is a schematic side view showing a vehicle (
  • the technology disclosed herein is an electrode for a non-aqueous secondary battery (for example, a negative electrode for a lithium secondary battery) having a configuration in which an active material layer and a porous inorganic layer covering the active material layer are held by a current collector,
  • the present invention can be widely applied to its manufacture, a battery including the electrode, its manufacture, and a vehicle equipped with the battery.
  • the present invention will be described in more detail mainly using an electrode for a lithium ion battery (typically, a negative electrode) and a lithium ion battery including the electrode as an example.
  • the present invention is not intended to be limited to such an electrode or battery. Absent.
  • the current collector for holding the active material layer a member mainly composed of a metal having good conductivity such as copper, nickel, aluminum, titanium, stainless steel or the like can be used.
  • a current collector made of copper or a copper-based alloy (copper alloy) is used.
  • a component of a positive electrode for a lithium ion battery aluminum or an alloy containing aluminum as a main component ( An aluminum alloy) current collector can be preferably employed.
  • the shape of the current collector can be different depending on the shape of the battery constructed using the obtained electrode, so there is no particular limitation, and various forms such as a rod, plate, sheet, foil, mesh, etc. It can be.
  • the technique disclosed here can be preferably applied to manufacture of an electrode using, for example, a sheet-like current collector.
  • a battery constructed using such an electrode electrode sheet
  • a battery comprising an electrode body (rolled electrode body) formed by winding a sheet-like positive electrode and a negative electrode together with a sheet-like separator typically.
  • the outer shape of the battery is not particularly limited, and may be, for example, a rectangular parallelepiped shape, a flat shape, a cylindrical shape, or the like.
  • the thickness and size of the sheet current collector are not particularly limited, and can be appropriately selected according to the shape of the target lithium ion battery.
  • a sheet-like current collector having a thickness of about 5 ⁇ m to 30 ⁇ m can be preferably used.
  • the current collector can have a width of, for example, about 2 cm to 15 cm, and a length of, for example, about 5 cm to 1000 cm.
  • the negative electrode for a lithium ion battery disclosed herein includes an active material layer (negative electrode active material layer) mainly composed of active material particles made of a material capable of inserting and extracting lithium ions.
  • active material particles appropriate ones from various particulate materials that are generally known to be capable of functioning as a negative electrode active material of a lithium ion battery can be adopted.
  • suitable active material particles include carbon particles. It is preferable to use a particulate carbon material (carbon particles) containing a graphite structure (layered structure) at least partially.
  • Any carbon material of a so-called graphitic material (graphite), a non-graphitizable carbon material (hard carbon), a graphitizable carbon material (soft carbon), or a combination of these materials is preferably used.
  • graphite graphitic material
  • hard carbon non-graphitizable carbon material
  • soft carbon graphitizable carbon material
  • a combination of these materials is preferably used.
  • natural graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), etc. can be used.
  • the negative electrode active material particles for example, particles having an average particle diameter of about 5 ⁇ m to 50 ⁇ m can be preferably used.
  • carbon particles having an average particle diameter of about 5 ⁇ m to 15 ⁇ m for example, about 8 ⁇ m to 12 ⁇ m
  • carbon particles having a relatively small particle size have a large surface area per unit volume, and thus can be an active material suitable for more rapid charge / discharge (for example, high power discharge). Therefore, a lithium ion battery having such an active material can be suitably used as, for example, a lithium ion battery mounted on a vehicle.
  • the carbon particles having a relatively small particle size have a smaller volume variation of the individual carbon particles accompanying charging / discharging than when larger particles are used. Can buffer (absorb) better. This is advantageous from the viewpoint of the durability (prevention of peeling and the like) of the porous inorganic layer formed on the active material layer.
  • the negative electrode active material layer can contain one or two or more materials that can be blended in the negative electrode active material layer of a general lithium ion battery, if necessary, in addition to the negative electrode active material particles.
  • materials include various polymer materials that can function as a binder.
  • the binder is added to water as the binder.
  • Polymer materials that dissolve or disperse can be preferably employed.
  • water-soluble (water-soluble) polymer material examples include cellulose such as carboxymethylcellulose (CMC), methylcellulose (MC), cellulose acetate phthalate (CAP), hydroxypropylmethylcellulose (HPMC), and hydroxypropylmethylcellulose phthalate (HPMCP).
  • CMC carboxymethylcellulose
  • MC methylcellulose
  • CAP cellulose acetate phthalate
  • HPMC hydroxypropylmethylcellulose
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxypropylmethylcellulose phthalate
  • HPMC hydroxyprop
  • Fluorine resins such as coalescence (FEP) and ethylene-tetrafluoroethylene copolymer (ETFE); vinyl acetate copolymer; styrene butadiene rubber (SBR), acrylic acid-modified SBR resin (SBR latex), gum arabic, etc. Rubbers; are exemplified.
  • an active material layer is formed using a solvent-based liquid composition (a composition in which the dispersion medium of active material particles is mainly an organic solvent), polyvinylidene fluoride (PVDF), polyvinylidene chloride (PVDC)
  • PVDF polyvinylidene fluoride
  • PVDC polyvinylidene chloride
  • Polymer materials such as polyethylene oxide (PEO), polypropylene oxide (PPO), and polyethylene oxide-propylene oxide copolymer (PEO-PPO) can be used.
  • the polymer material illustrated above may be used as a thickener and other additives in the composition for forming a negative electrode active material layer, in addition to being used as a binder.
  • the negative electrode active material layer for example, applies a liquid composition (typically a paste or slurry-like composition for forming a negative electrode active material layer) in which active material particles are dispersed in an appropriate solvent to a current collector, It can preferably be made by drying the composition.
  • a liquid composition typically a paste or slurry-like composition for forming a negative electrode active material layer
  • the solvent any of water, an organic solvent and a mixed solvent thereof can be used.
  • an aqueous solvent water or a mixed solvent containing water as a main component
  • the composition is one or more materials that can be blended in a liquid composition used for forming a negative electrode active material layer in the production of a general negative electrode for a lithium ion battery. Can be contained as required.
  • a negative electrode active material layer forming composition containing the polymer material (binder) as described above can be preferably used.
  • the solid content concentration (non-volatile content, that is, the mass ratio of the negative electrode active material layer forming component in the entire composition) of the composition is, for example, about 40% to 60%. it can.
  • the mass ratio of the negative electrode active material particles to the solid content (negative electrode active material layer forming component) can be, for example, about 85% or more (typically about 85% to 99.9%), and about 90% to It is preferably 99%, more preferably about 95% to 99%.
  • a technique similar to a conventionally known method can be appropriately employed.
  • a predetermined amount of the composition may be applied to the surface of the current collector using an appropriate application device (such as a gravure coater, a slit coater, a die coater, or a comma coater).
  • the coating amount of the composition for forming a negative electrode active material layer is not particularly limited, and may be appropriately changed according to the shape and target performance of the negative electrode sheet and the battery.
  • the above composition may be applied to both surfaces of a sheet-like current collector so that the coating amount in terms of solid content (that is, the mass after drying) is about 5 to 20 mg / cm 2 in total.
  • the coated material is dried by an appropriate drying means, and pressed as necessary, whereby a negative electrode active material layer can be formed on the surface of the negative electrode current collector.
  • the density of the negative electrode active material layer may be about 1.1 to 1.5 g / cm 3, for example.
  • the density of the negative electrode active material layer may be about 1.1 to 1.3 g / cm 3 .
  • the press conditions may be set so that a negative electrode active material layer having such a density is formed.
  • the electrode provided by the technique disclosed herein has a configuration in which a porous inorganic layer is provided on the active material layer.
  • the inorganic layer typically contains non-conductive (insulating) inorganic particles as a main component (a component occupying 50% by mass or more of the inorganic layer).
  • the inorganic material constituting the inorganic particles can be an oxide, carbide, silicide, nitride, or the like of a metal element or a nonmetal element. From the viewpoint of chemical stability, raw material cost, etc., oxide particles such as alumina (Al 2 O 3 ), silica (SiO 2 ), zirconia (ZrO 2 ), magnesia (MgO) can be preferably used.
  • silicide particles such as silicon carbide (SiC) and nitride particles such as aluminum nitride (AlN) can also be used.
  • Preferable inorganic particles include alumina particles. Of these, the use of ⁇ -alumina particles is preferred. Such ⁇ -alumina particles may be particles having a property in which a plurality of primary particles are connected. Such connected particles can be produced based on common general technical knowledge in the field, or corresponding commercial products can be obtained.
  • the average particle diameter of the inorganic particles can be, for example, about 0.1 ⁇ m to 15 ⁇ m.
  • a volume-based average particle diameter (D 50 ) measured using a general commercially available particle size meter (laser diffraction type particle size distribution measuring device or the like) can be employed.
  • inorganic particles having an average particle size of about 0.2 ⁇ m to 1.5 ⁇ m for example, 0.5 ⁇ m to 1 ⁇ m.
  • the application effect of the present invention can be exhibited better.
  • an electrode for example, a negative electrode having a structure in which such an inorganic layer is provided on an active material is a non-aqueous secondary battery (for example, a lithium secondary battery, typically a lithium ion) that exhibits better battery performance. Battery).
  • a non-aqueous secondary battery for example, a lithium secondary battery, typically a lithium ion
  • the porous inorganic layer in the technology disclosed herein contains, in addition to the inorganic particles, a binder that binds the inorganic particles.
  • a binder a polymer that can be dispersed or dissolved in an organic solvent (a dispersion medium of inorganic particles) contained in a slurry used for forming the inorganic layer can be preferably used.
  • rubber containing acrylonitrile as a copolymer component such as acrylonitrile-butadiene copolymer rubber (NBR), acrylonitrile-isoprene copolymer rubber (NIR), acrylonitrile-butadiene-isoprene copolymer rubber (NBIR); acrylic acid Acrylic polymers having acrylic monomers as the main copolymerization component, such as methacrylic acid, acrylic acid esters, and methacrylic acid esters (eg alkyl esters); polyvinyl acetate, ethylene-vinyl acetate copolymer (EVA), etc. And vinyl acetate resin; and the like.
  • NBR acrylonitrile-butadiene copolymer rubber
  • NIR acrylonitrile-isoprene copolymer rubber
  • NBIR acrylonitrile-butadiene-isoprene copolymer rubber
  • acrylic acid Acrylic polymers having acrylic monomers as the main copolymerization component
  • the inorganic layer contains an acrylic binder.
  • An inorganic layer having a composition containing substantially only an acrylic binder as the binder of the inorganic particles may be used.
  • the mass ratio of inorganic particles to binder (inorganic particles: binder) contained in the porous inorganic layer can be, for example, about 80:20 to 99: 1.
  • the mass ratio may be about 85:15 to 95: 5.
  • the total amount of inorganic particles and binder in the total mass of the porous inorganic layer is about 90% by mass or more (for example, 95% or more). It may be a porous inorganic layer substantially composed of only inorganic particles and a binder.
  • a porous inorganic layer is formed using a slurry containing inorganic particles, a binder, and an organic solvent.
  • the porous inorganic layer can be formed by applying the slurry to the surface of the active material layer and drying it under appropriate conditions. In order to accelerate the drying, heating may be performed at an appropriate temperature as necessary.
  • the slurry is preferably a polar organic solvent in which about 50% by mass or more (more preferably 75% or more, or substantially all) of the constituent solvent is a polar organic solvent.
  • a polar organic solvent is preferred.
  • the penetration of the binder into the active material layer can be more appropriately adjusted using the moisture on the surface of the active material layer.
  • aprotic polar organic solvent cyclic or chain amides such as N-methyl-2-pyrrolidone (NMP), N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) are preferably used. can do. Of these, NMP is preferable.
  • aprotic polar organic solvents examples include tetrahydrofuran (THF), cyclohexanone, 1,4-dioxane, and the like.
  • THF tetrahydrofuran
  • cyclohexanone 1,4-dioxane
  • Such an aprotic polar organic solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • about 75% by mass or more (more preferably about 90% by mass or more) of the solvent contained in the slurry is an aprotic polar organic solvent.
  • Substantially all of the solvent may be an aprotic polar organic solvent (for example, one or more selected from amide solvents).
  • the slurry may contain, in addition to a polar organic solvent (preferably an aprotic solvent), a nonpolar organic solvent (toluene, xylene, etc.) having compatibility with the solvent.
  • a polar organic solvent preferably an aprotic solvent
  • a nonpolar organic solvent toluene, xylene, etc.
  • the mass ratio of the nonpolar organic solvent in the entire constituent solvent of the slurry is about 25% or less (for example, about 10% or less).
  • the solid content concentration of the slurry (ratio of the porous inorganic layer forming component in the slurry; hereinafter sometimes referred to as “NV”) is, for example, about 30 to 80% by mass. It can be.
  • the viscosity of the slurry at 25 ° C. can be, for example, about 500 to 4000 mPa ⁇ s, and a viscosity of about 1000 to 2000 mPa ⁇ s is usually preferable. It is preferable to select the composition of the slurry so that the viscosity in use (that is, when applied to the surface of the active material layer) is in the above range.
  • a slurry having such a viscosity has good coating properties on the surface of the active material layer, and is suitable for adjusting the penetration of the binder into the active material layer by utilizing the moisture on the surface of the active material layer.
  • the viscosity of the slurry can be adjusted by, for example, the type of organic solvent, the type and amount of binder used, NV, pH, and the like. Moreover, you may adjust the viscosity of a slurry by adding a well-known thickener. Or you may use it, adjusting the temperature of this slurry so that the viscosity at the time of use may become the said range.
  • the moisture concentration Cc of the slurry at the time of use is preferably lower than at least the moisture concentration Cs of the active material layer surface to which the slurry is applied (that is, Cc ⁇ Cs).
  • a slurry having a Cc of about 80 ppm or less (more preferably 60 ppm or less) can be preferably used.
  • the water concentration can be measured by a general Karl Fischer method.
  • the slurry when forming the porous inorganic layer, is applied to at least the surface of the active material layer having a surface moisture concentration of about 100 ppm to 500 ppm.
  • the penetration of the binder into the active material layer can be adjusted.
  • the input / output performance of a battery constructed using an electrode having a porous inorganic layer (for example, a low IV resistance value described later) and the adhesion of the inorganic layer to the active material layer Can be achieved at a high level. If the moisture concentration is too lower than the above range, the IV resistance of the battery may increase. On the other hand, if the water concentration is too higher than the above range, the adhesion of the porous inorganic layer to the active material layer may be easily lowered.
  • the slurry has a form in which inorganic particles are dispersed in a liquid medium containing an organic solvent (typically a polar organic solvent) and a binder. Therefore, for example, as schematically shown in FIG. 6, when the porous inorganic layer forming slurry S is applied to the active material layer surface 344 a containing appropriate moisture W, the slurry S is formed at the interface with the active material layer 344. Moisture W is mixed in and the fluidity is lowered. Such a decrease in fluidity can be grasped as an increase in viscosity or gelation of the slurry S. This makes it difficult for the slurry S outside the interface (upward in FIG. 6) to penetrate into the active material 344.
  • an organic solvent typically a polar organic solvent
  • symbol 42 in FIG. 6 represents the active material particle (for example, graphite particle), and the code
  • the shaded area represents the water W, and the oblique dotted line group represents the liquid medium M.
  • the non-aqueous secondary battery dislikes the moisture in the battery container, it is desirable to construct the battery by reducing the amount of moisture adsorbed by the components accommodated in the container.
  • an electrode having a porous structure for example, an active material layer
  • each process for producing an electrode is generally performed under highly dry conditions (for example, in an environment having a dew point of ⁇ 30 ° C. to ⁇ 50 ° C.).
  • the slurry S is applied to the surface of the active material layer 344 in a highly dry state (typically, the water concentration is about 50 ppm or less) as schematically shown in FIG. Unlike the situation shown in FIG.
  • the binder coating is applied to the surface of the active material particles 42 at the back of the active material layer 344. Will be formed. This is considered to have contributed to the decrease in input / output performance.
  • the moisture concentration on the surface of the active material layer is too higher than the above range, for example, as schematically shown in FIG. 8, the fluidity is excessively lowered before the slurry S conforms to the surface 344a of the active material layer. For this reason, it may be difficult to apply the slurry S thinly and uniformly, or the liquid medium M (particularly the binder) may be unevenly distributed in the coating film. When the binder is unevenly distributed, a portion having a small amount of binder (low binding performance) is partially generated, so that the porous inorganic layer is easily peeled off from the active material layer surface 344a. The occurrence of such peeling is not preferable because it can impair the purpose of forming the inorganic layer. According to the technology disclosed herein, by setting the moisture concentration on the surface of the active material layer within the above preferable range, an electrode capable of constructing a battery having high reliability and high performance (for example, low IV resistance) is manufactured. be able to.
  • the above phenomenon that the fluidity of the slurry is lowered by the moisture on the surface of the active material layer is also useful for preventing the inorganic particles from dropping too much into the voids (gap between the active material particles) of the active material layer.
  • an active material layer having a relatively high porosity for example, a porosity of about 30 to 50% by volume
  • the function of the porous inorganic layer prevents internal short circuit) Function
  • the amount of slurry applied (in NV) is increased in order to compensate for the drop in inorganic particles, the input / output performance tends to decrease. According to the technology disclosed herein, the occurrence of the above problem can be avoided by moderately suppressing the drop of the inorganic particles.
  • an electrode material having an active material layer having a moisture concentration at least on the surface (typically the surface and inside) lower than the target value is prepared.
  • a method of holding the material in an environment with moisture for example, an environment having a dew point of ⁇ 10 ° C. or higher, typically an environment having a dew point of ⁇ 10 ° C. to + 10 ° C.
  • moisture can be contained (humidified) so that at least the surface of the low moisture concentration active material layer has a target moisture concentration.
  • the holding time can be determined by actually collecting a sample from the active material layer and measuring the moisture concentration, or can predict an appropriate holding time by performing a simple preliminary experiment or the like.
  • a treatment for increasing the hydrophilicity of the surface layer portion of the active material layer may be performed prior to the adjustment of the moisture concentration.
  • a treatment for introducing a hydrophilic functional group into the surface of the active material particles located in the surface layer portion can be preferably employed.
  • hydrophilic functional groups include polar functional groups containing oxygen (O), such as hydroxyl groups, carboxyl groups, and aldehyde groups, and preferred examples include hydroxyl groups and carboxyl groups.
  • O oxygen
  • a hydroxyl group is particularly preferable.
  • hydrophilic functional groups typically mainly hydroxyl groups
  • the lower alcohol an alkyl alcohol having 1 to 3 carbon atoms can be preferably used.
  • the use of methanol and / or ethanol is preferred.
  • the moisture concentration on the surface of the active material layer can be locally increased by adjusting the moisture after performing the hydrophilicity-improving treatment (for example, keeping the environment in the above dew point).
  • the coating agent in a state where moisture is unevenly distributed on the surface of the active material layer, the water retention amount of the active material layer as a whole is reduced (for example, 1/10 to 1 / It is possible to effectively prevent excessive penetration of the binder while reducing it by 100 times.
  • the surface of the carbon particles is hydrophobic, it is particularly effective to perform the hydrophilicity improving treatment in an embodiment using carbon particles (for example, graphite particles) as the active material particles.
  • the average pore diameter of pores (voids) contained in the porous inorganic layer the ratio of the total volume of the pores to the volume of the entire inorganic layer (porosity), etc.
  • the preferable range of the average pore diameter is about 0.01 ⁇ m to 10 ⁇ m (preferably about 0.1 ⁇ m to 4 ⁇ m)
  • the preferable range of the porosity is about 20 to 75% by volume (preferably about 35 to 70% by volume).
  • the average pore diameter and porosity can be measured using a commercially available mercury porosimeter or the like.
  • a lithium ion battery 10 includes a container 11 made of metal (a resin or a laminate film is also suitable).
  • a wound electrode body 30 configured by laminating a positive electrode sheet 32, a negative electrode sheet 34, and two separators 35 in this container 11 and then winding (in this embodiment, winding in a flat shape) Contained.
  • the positive electrode sheet 32 includes a long sheet positive electrode current collector 322 and a positive electrode active material layer 324 formed on the surfaces of both sides thereof.
  • a sheet material typically, a metal foil having a thickness of about 5 to 30 ⁇ m, such as an aluminum foil
  • the positive electrode active material layer 324 is mainly composed of a positive electrode active material capable of inserting and extracting lithium ions.
  • an oxide-based positive electrode active material having a layered structure used for a general lithium ion battery, an oxide-based positive electrode active material having a spinel structure, or the like can be preferably used.
  • the main component is lithium cobalt complex oxide (typically LiCoO 2 ), lithium nickel complex oxide (typically LiNiO 2 ), lithium manganese complex oxide (LiMn 2 O 4 ), or the like.
  • a positive electrode active material can be used.
  • the positive electrode active material layer 324 can contain a binder and a conductive material in addition to the positive electrode active material.
  • a binder the thing similar to the binder for negative electrode active material compositions mentioned above etc. can be used.
  • the conductive material various carbon blacks (acetylene black, furnace black, ketjen black, etc.), carbon powder such as graphite powder, metal powder such as nickel powder, and the like can be used.
  • the amount of the conductive material used with respect to 100 parts by mass of the positive electrode active material can be, for example, in the range of 1 to 20 parts by mass (preferably 5 to 15 parts by mass).
  • the amount of the binder used with respect to 100 parts by mass of the positive electrode active material can be, for example, in the range of 0.5 to 10 parts by mass.
  • the positive electrode active material layer 324 typically, a positive electrode active material layer formed by mixing a suitable positive electrode active material as described above with a suitable conductive material and binder and water (for example, ion exchange water) is formed. A material (here, a water-kneaded paste-type positive electrode mixture) is applied to the surfaces of both sides of the positive electrode current collector 322 so that the active material is not denatured (typically 70 to 150 ° C.). ) To dry the coated material. Thereby, the positive electrode active material layer 324 can be formed in a desired part (part corresponding to the application range of the positive electrode active material composition) on the surfaces of both sides of the positive electrode current collector 322. The thickness and density of the positive electrode active material layer 324 can be appropriately adjusted by performing an appropriate press process (for example, a roll press process) as necessary.
  • an appropriate press process for example, a roll press process
  • the negative electrode sheet 34 is manufactured by applying the method disclosed herein, and is a long sheet-like negative electrode current collector 342, a negative electrode active material layer 344 formed on the surface thereof, and the negative electrode And a porous inorganic layer 346 formed on the active material layer (FIGS. 2 and 3).
  • the negative electrode active material layer 344 is coated with a suitable negative electrode active material composition as described above on the surfaces of both sides of the negative electrode current collector 342 and dried at an appropriate temperature. It is obtained by performing a density adjustment process (for example, a roll press process).
  • the porous inorganic layer 346 is formed by applying a suitable slurry as described above to the negative electrode active material layer 344 whose surface is adjusted to have a water concentration of 100 ppm to 500 ppm and drying at a suitable temperature. .
  • the porous inorganic layer 346 is formed in a range covering the entire negative electrode active material layer 344.
  • FIG. 3 in order to facilitate understanding of the present invention, a part of the porous inorganic layer 346 is removed at one end in the longitudinal direction of the negative electrode sheet 34 (lower left portion in the figure), and the negative electrode active material layer below the porous inorganic layer 346 is removed. 344 is visible.
  • the negative electrode sheet 34 it is preferable to use a sheet in which the amount of water contained in the sheet 34 is sufficiently reduced after the formation of the porous inorganic layer 346. As a result, the amount of moisture brought into the battery container due to the sheet 34 can be reduced.
  • the negative electrode sheet 34 that is adjusted so that the water concentration obtained by averaging the active material layer 344 and the inorganic layer 346 as a whole is 200 ppm or less (more preferably 100 ppm or less, for example, 80 ppm or less) can be preferably used.
  • porous sheets that are known to be usable as a separator for a lithium ion battery including a nonaqueous electrolytic solution are used.
  • a porous resin sheet (film) made of a polyolefin resin such as polyethylene or polypropylene can be preferably used.
  • the preferable porous sheet (typically a porous resin sheet) has an average pore diameter of about 0.0005 ⁇ m to 30 ⁇ m (more preferably 0.001 ⁇ m to 15 ⁇ m) and a thickness of Examples thereof include a porous resin sheet having a size of about 5 ⁇ m to 100 ⁇ m (more preferably 10 ⁇ m to 30 ⁇ m).
  • the porosity of the porous sheet can be, for example, about 20 to 90% by volume (preferably 30 to 80% by volume).
  • a portion where the positive electrode active material layer 324 is not formed is provided at one end portion along the longitudinal direction of the positive electrode sheet 32.
  • a portion where the negative electrode active material layer 344 and the porous inorganic layer 346 are not formed is provided at one end portion along the longitudinal direction of the negative electrode sheet 34.
  • the electrode sheets 32 and 34 are slightly shifted and overlapped so that the portion 342a is separately disposed at one end and the other end along the longitudinal direction. In this state, a total of four sheets 32, 35, 34, 35 are wound, and then the obtained wound body is crushed from the side surface direction and crushed to obtain a flat wound electrode body 30.
  • the obtained wound electrode body 30 is electrically connected to each of the positive terminal 14 and the negative terminal 16 for external connection. Then, the electrode body 30 to which the terminals 14 and 16 are connected is accommodated in the container 11, and an appropriate nonaqueous electrolytic solution is disposed (injected) therein to seal the container 11. In this way, the construction (assembly) of the lithium ion battery 10 according to the present embodiment is completed.
  • an appropriate conditioning process for example, a constant current charging for 3 hours at a charging rate of 1/10 C, and then charging at a constant current constant voltage up to 4.1 V at a charging rate of 1/3 C;
  • the lithium ion battery 10 can be obtained by performing an initial charging / discharging process of repeating a constant current discharge operation up to 3.0 V at a discharge rate of 2 to 3 times.
  • a non-aqueous electrolyte the same thing as a general lithium ion battery can be used.
  • a nonaqueous electrolytic solution containing (supporting salt) at a concentration of about 0.1 mol / L to 5 mol / L (for example, about 0.8 mol / L to 1.5 mol / L) can be preferably used.
  • the lithium-ion battery provided by the technology disclosed herein is highly reliable and excellent in input / output performance since it can highly prevent micro short-circuits as described above, and therefore, particularly a vehicle such as an automobile. It can be suitably used as a power source for a motor (electric motor) mounted on the motor. Therefore, as schematically shown in FIG. 9, the present invention can be in the form of any of the lithium ion batteries 10 disclosed herein (an assembled battery formed by connecting a plurality of such batteries 10 in series. ) As a power source (typically, an automobile, in particular, an automobile including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle) 1 is provided.
  • a power source typically, an automobile, in particular, an automobile including an electric motor such as a hybrid vehicle, an electric vehicle, and a fuel cell vehicle
  • a slurry-like negative electrode active material composition is prepared by mixing natural graphite (negative electrode active material) having an average particle size of 10 ⁇ m, SBR, and CMC with ion-exchanged water so that the mass ratio of these materials is 98: 1: 1.
  • the composition was applied to the surfaces of both sides of a long copper foil having a thickness of 10 ⁇ m, a width of 80 mm, and a length of 5000 mm so that the total coating amount (in terms of NV) on both sides was 8.6 mg / cm 2 .
  • the application range of the negative electrode active material composition was a range in which one edge along the longitudinal direction of the copper foil was left in a strip shape having a width of 15 mm on both sides.
  • the coated material was dried, and then pressed so that the density of the negative electrode active material layer was 1.4 g / cm 3 .
  • a negative electrode raw material having a negative electrode active material layer on the surface of the negative electrode current collector was obtained.
  • the press treatment was performed in an environment with a dew point of ⁇ 30 ° C. or lower. Under the same environment, the surface portion of the active material layer was scraped from a negative electrode raw material immediately after pressing in a partial range of the negative electrode active material layer, and the amount of water contained in the sample was measured by the Karl Fischer method. As a result, the water concentration of the surface portion of the negative electrode active material layer (that is, the negative electrode active material layer before the water concentration adjustment treatment) was about 175 ppm.
  • the following moisture concentration adjustment treatment was performed on the negative electrode raw material produced above. That is, the negative electrode raw material was carried into an environment having a dew point of ⁇ 5 ° C. and kept in the environment to adsorb moisture to the negative electrode active material layer. By adjusting the length of the holding time, a total of eight types of negative electrode raw material samples having different moisture concentrations were produced. In the same manner as described above, the moisture concentration on the surface of the negative electrode active material layer of each sample was determined using the Karl Fischer method. The results are shown in Table 1.
  • An ⁇ -alumina particle having an average particle size of 0.8 ⁇ m and an acrylic binder are mixed with NMP so that the mass ratio of these materials is 90:10 and NV is 50% by mass, to thereby form a slurry-like coating agent Was prepared.
  • This coating agent is applied to the surface of the negative electrode active material layer formed on both sides of the negative electrode raw material sample so that the total coating amount (in terms of NV) on both sides is 6.5 mg / cm 2 and dried. Thus, a porous inorganic layer was formed.
  • eight types of negative electrode sheet samples (sample Nos. 1 to 8) corresponding to the respective negative electrode raw material samples were obtained.
  • a lithium ion battery 10 having the schematic configuration shown in FIGS. 1 to 4 was produced by the following procedure.
  • the following was used as the positive electrode sheet. That is, lithium nickelate (LiNiO 2 ) powder, acetylene black, PTFE, and CMC are mixed with ion-exchanged water so that the mass ratio of these materials becomes 89: 5: 5: 1, and the slurry-like positive electrode active material is mixed.
  • a substance composition was prepared. This composition was applied to the surface of both sides of a long aluminum foil having a thickness of 10 ⁇ m, a width of 80 mm, and a length of 5000 mm so that the total coating amount (in terms of NV) of both surfaces was 10 mg / cm 2.
  • the application range of the active material composition was set to a range in which one edge along the longitudinal direction of the aluminum foil was left in a strip shape having a width of 17 mm on both sides. The coated material was dried and then pressed to obtain a positive electrode sheet.
  • the negative electrode sheet sample and the positive electrode sheet prepared above were superposed via two separators (here, a porous polypropylene sheet having a thickness of 30 ⁇ m, a width of 80 mm, and a length of 5000 mm was used). At this time, both electrodes are arranged such that the positive electrode active material layer non-formed part (the band-shaped part of the positive electrode sheet) and the negative electrode active material layer non-formed part (the band-shaped part of the negative electrode sheet) are arranged on the opposite sides in the width direction. The sheets were slightly shifted and overlapped. The laminated sheet was wound about 30 times in the longitudinal direction, and the wound body was crushed from the side to form a flat electrode body.
  • separators here, a porous polypropylene sheet having a thickness of 30 ⁇ m, a width of 80 mm, and a length of 5000 mm was used.
  • the positive electrode terminal made of aluminum and the negative electrode terminal made of copper were welded to the positive electrode active material layer non-formed part and the negative electrode active material layer non-formed part protruding from the separator at both ends in the axial direction of the electrode body.
  • This was housed in a flat rectangular container together with a non-aqueous electrolyte, and the opening of the container was sealed to construct a lithium ion battery.
  • a non-aqueous electrolyte a non-aqueous electrolyte having a composition in which a supporting salt (here, LiPF 6 ) is dissolved in a mixed solvent of EC, DMC, and EMC at a volume ratio of 1: 1: 1 at a concentration of 1 mol / L. , 50 mL was used for each battery. In this way, a total of eight types of lithium ion batteries corresponding to each negative electrode sheet sample were obtained.
  • a supporting salt here, LiPF 6
  • a weight 88 (a weight having a mass of 400 g is used here) is suspended from the other end of the wire 86.
  • the test piece 92 is configured to be peeled at a peeling angle of 90 ° by grasping one end of the test piece 92 with the chuck 83 and pulling it up.
  • a test piece 92 was prepared by cutting a negative electrode sheet sample (a portion not including an active material layer non-forming portion) into a strip shape having a width of 15 mm.
  • the test piece 92 was attached to the base 81 using a double-sided tape 94 having a width of 15 mm and a length of 100 mm. At this time, one end of the test piece 92 was left without being attached, and the surplus portion was set on the chuck 83. Then, when the arm 84 was pulled up under the condition of a tensile speed of 10 mm / min, the negative electrode active material layer was peeled from the inorganic layer leaving a porous inorganic layer on the double-sided tape. The load value at the moment of peeling was defined as 90 ° peel strength of the porous inorganic layer.
  • each lithium ion battery produced above was precharged at a constant current and a constant voltage (CCCV) up to 3.5 V at 5A.
  • the total charging time was 1 hour.
  • the SOC (State of Charge) of each battery was adjusted to 60%.
  • a constant current (CC) discharge was performed at 60 A for 10 seconds, and the internal resistance (IV resistance) was determined from the slope of the linear approximation line of the current (I) -voltage (V) plot value at this time.
  • Sample Nos. 3 to 6 in which the coating agent is applied to the surface of the active material layer having a moisture concentration in the range of 100 ppm to 500 ppm have a high peel strength of the porous inorganic layer, and the battery The internal resistance was low.
  • the batteries of sample Nos. 3 to 6 showed good input / output performance, and the durability of the porous inorganic layer (for example, from the surface of the active material even when the volume of the active material layer fluctuated due to charge / discharge) It supports that it can be excellent in that it is difficult to peel off.
  • Example 2 Ethanol (total amount used: 5 mL) was sprayed on the entire surface of the negative electrode raw material produced in the same manner as in Example 1. Thereafter, the negative electrode raw material was carried into an environment having a dew point of ⁇ 5 ° C., and kept in the same environment until the water concentration on the surface of the active material layer (according to the Karl Fischer method) reached 155 ppm. At this time, the water concentration inside the active material layer was about 50 ppm. A slurry-like coating agent was applied to the negative electrode raw material sample having a surface moisture concentration of 155 ppm in the same manner as in Example 1 and dried to form a porous inorganic layer. Using this negative electrode sheet sample for the negative electrode, a lithium ion battery (sample No. 9) was produced in the same manner as in Example 1.
  • sample No. manufactured by performing alcohol treatment hydrophilic functional group introduction treatment
  • the battery of No. 9 has the same surface moisture concentration, but sample No. 9 produced without the above treatment.
  • the increase in internal pressure was smaller than that of the battery of 3. That is, no. In No. 9, the amount of gas generated by precharging was smaller. This result suggests that the amount of moisture brought into the container accompanying the negative electrode sheet was reduced by the alcohol treatment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 活物質層の表面に多孔質無機層を有する電極であって、入出力性能に優れた非水二次電池の構築に適した電極を製造する方法が提供される。その製造方法では、活物質粒子(42)を主成分とする活物質層(344)が集電体(342)に保持された電極原材を用意する。その活物質層(344)の少なくとも表面(344a)の水分濃度を100ppm~500ppmに調整する。上記水分濃度に調整された活物質層表面(344a)に、無機粒子(44)とバインダと有機溶媒とを含むスラリー(S)を塗布して多孔質無機層を形成する。

Description

非水二次電池用電極の製造方法
 本発明は、非水二次電池(リチウムイオン電池等)の構成要素として適した電極および該電極を用いた電池に関する。
 本出願は2008年12月26日に出願された日本国特許出願2008-333156号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
 リチウム二次電池その他の非水二次電池は、電気を駆動源として利用する車両に搭載される電源、あるいはパソコンや携帯端末その他の電気製品等に搭載される電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン電池は、車両搭載用高出力電源として好ましく用いられるものと期待されている。非水二次電池に関する技術文献として特許文献1~6が挙げられる。
日本国特許出願公開平7-220759号公報 日本国特許出願公開2004-134244号公報 日本国特許出願公開2003-132889号公報 日本国特許出願公開平9-320590号公報 日本国特許出願公開2005-310764号公報 日本国特許出願公開2007-103066号公報
 リチウムイオン電池に具備される典型的な電極(正極および負極)は、リチウムイオンを可逆的に吸蔵および放出し得る材料(活物質)を主成分とする層(活物質層)が集電体に保持された構成を有する。かかる活物質層を形成する好適な方法として、粉末状の活物質(活物質粒子)を適当な溶媒に分散または溶解させてペーストまたはスラリー状に調製した組成物(活物質層形成用組成物)を集電体に付与して乾燥させ、必要に応じてプレスする方法が挙げられる。
 活物質層の表面に無機粒子主体の多孔質層を設けることは、リチウムイオン電池その他の電池の信頼性(内部短絡の防止等)を向上させるために有効な手段となり得る。かかる多孔質無機層を形成する方法としては、生産性等の観点から、適当な溶媒にバインダ(結着剤)が溶解した液状媒体に無機粒子を分散させてペーストまたはスラリー状の組成物(コート剤)を調製し、該組成物を活物質層の表面に塗布する方法を好ましく採用し得る。特許文献1には、活物質層の表面に樹脂結着剤と固体粒子とからなる多孔性保護膜が形成された非水電解液二次電池が記載されている。多孔性保護膜の形成方法としては、微粒子が結着剤とともに溶剤に分散されてなる微粒子スラリーを塗布する方法が挙げられている。
 ここで、上述のようなコート剤を活物質層の表面に塗布すると、上記液状媒体の少なくとも一部は活物質層内に浸み込む。すると、その液状媒体に含まれるバインダが活物質粒子の表面を被覆し、このことが電池の入出力性能を低下させる要因となり得る。高い入出力性能が求められる車両電源用電池では、上記入出力性能の低下を抑制しつつ上記無機層を形成することが特に有意義である。
 本発明の目的は、活物質層の表面に多孔質無機層を有する電極であって、入出力抵抗の低い(換言すれば、入出力性能に優れた)非水二次電池を構築するのに適した電極を効率よく製造し得る方法を提供することである。本発明の他の目的は、かかる電極を用いてなる非水二次電池(例えばリチウムイオン電池)を提供することである。
 本発明によると、活物質層上に多孔質無機層を有する非水二次電池用電極を製造する方法が提供される。その方法は、活物質粒子を主成分とする活物質層が集電体に保持された電極原材を用意することを含む。また、前記活物質層の水分濃度を、該活物質層の少なくとも表面の水分濃度が100ppm~500ppmとなるように調整することを含む。また、前記水分濃度に調整された活物質層の表面に、無機粒子とバインダと有機溶媒とを含むスラリーを塗布して多孔質無機層を形成することを含む。
 かかる方法によると、活物質層の少なくとも表面に水分を意図的に存在させることで、この水分を利用して、上記スラリーに含まれる溶媒および該溶媒に溶解したバインダの上記活物質層内への浸み込み具合を調節することができる。このことによって、上記バインダが活物質層内に過度に浸み込む事象を抑制し、多孔質無機層の形成が入出力性能に及ぼす影響を軽減することができる。また、活物質層表面の水分濃度を上記範囲とすることにより、活物質層に対する密着性(例えば、後述する90°剥離強度により評価され得る。)の良い無機層を形成することができる。したがって、上記方法を適用して製造された電極は、非水二次電池の構成要素として用いられて、より信頼性が高く且つ高性能な(例えば、入出力性能に優れた)電池を与えるものとなり得る。
 なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウム二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「非水二次電池」とは、非水電解質(典型的には、非水溶媒中に支持塩(支持電解質)を含む電解質)を備えた電池をいう。また、「リチウム二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。一般にリチウムイオン電池と称される二次電池は、本明細書におけるリチウム二次電池に包含される典型例である。
 上記スラリー(すなわち、多孔質無機層形成用の無機粒子分散液。以下、コート剤ということもある。)を構成する有機溶媒の好適例として、アミド系溶媒(例えば、N-メチル-2-ピロリドン)が挙げられる。また、前記バインダの好適例としてはアクリル系バインダが挙げられる。かかる組成のコート剤は、活物質層表面の水分を利用して該活物質層へのバインダの浸み込み加減を調節しやすいので好ましい。前記無機粒子としては、アルミナ粒子その他の各種セラミック粒子を好ましく使用し得る。アルミナ粒子(典型的にはα-アルミナ粒子)の使用が特に好ましい。
 ここに開示される方法の好ましい適用対象として、前記活物質粒子がカーボン粒子である活物質層(すなわち、カーボン粒子を主成分とする活物質層)を備えた電極の製造が例示される。かかる活物質層を備えた電極は、例えば、リチウムイオン電池の負極として好ましく利用され得る。したがって本発明は、他の側面として、リチウムイオン電池用負極の製造方法を提供する。
 ここに開示される方法は、前記水分濃度の調整に先立って、活物質層の表層部に位置する活物質粒子の表面に親水性官能基を導入する処理を行う態様で好ましく実施され得る。かかる態様は、上記水分濃度調整の際に、活物質層の表面の水分濃度を内部よりも高くするのに適している。このように活物質層の表面に水分が偏在する状態でコート剤を塗布することにより、活物質層全体としての水分保持量を低減しつつ、バインダの過度な浸み込みを防止することができる。前記親水性官能基を導入する処理としては、例えば、活物質層の表層部に低級アルコールを接触させる操作を含む処理を好ましく採用し得る。
 前記活物質層の水分濃度は、例えば、該活物質層を露点-10℃以上(典型的には-10℃~+10℃)の環境に保持することを含む操作により好適に調整することができる。少なくとも表面(典型的には表面および内部)の水分濃度が目標値よりも低い活物質層を備えた電極原材を用意し、この電極原材を上記環境下に保持することにより、上記低水分濃度の活物質層の少なくとも表面が目標の水分濃度となるように水分を含ませるとよい。上記親水性官能基導入処理を行うことは、上記低水分濃度の活物質層に所望量の水分を含ませるのに要する時間を短縮して電極の生産性を高め得るという点でも有利である。
 本発明によると、また、ここに開示されるいずれかの方法で製造された電極を用いてリチウムイオン電池を構築することを特徴とする、リチウムイオン電池製造方法が提供される。かかる方法によると、より信頼性が高く且つ高性能な(例えば、入出力性能に優れた)電池が製造され得る。このようなリチウムイオン電池は、例えば、自動車等の車両に搭載されるモーター(電動機)用の電源として好適である。
図1は、一実施形態に係るリチウムイオン電池の構造を示す模式的断面図である。 図2は、一実施形態に係るリチウムイオン電池を構成する正負極シートおよびセパレータを示す模式的断面図である。 図3は、一実施形態に係る電極の構造を示す模式的平面図である。 図4は、剥離強度の測定方法を模式的に示す説明図である。 図5は、水分濃度とIV抵抗および剥離強度との関係を示すグラフである。 図6は、活物質層表面の水分濃度が適切な状況を例示する模式的説明図である。 図7は、活物質層表面の水分濃度が低すぎる状況を例示する模式的説明図である。 図8は、活物質層表面の水分濃度が高すぎる状況を例示する模式的説明図である。 図9は、一実施形態に係るリチウムイオン電池を備えた車両(自動車)を示す模式的側面図である。
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
 ここに開示される技術は、活物質層および該活物質層を覆う多孔質無機層が集電体に保持された構成の非水二次電池用電極(例えば、リチウム二次電池用負極)およびその製造、該電極を備えた電池およびその製造、ならびに該電池を搭載した車両に広く適用され得る。以下、主としてリチウムイオン電池用電極(典型的には負極)および該電極を備えるリチウムイオン電池を例として本発明をより詳しく説明するが、本発明の適用対象をかかる電極または電池に限定する意図ではない。
 活物質層を保持する集電体としては、銅、ニッケル、アルミニウム、チタン、ステンレス鋼等のように導電性の良い金属を主体に構成された部材を使用することができる。リチウムイオン電池用負極の構成要素としては銅または銅を主成分とする合金(銅合金)製の集電体を、リチウムイオン電池用正極の構成要素としてはアルミニウムまたはアルミニウムを主成分とする合金(アルミニウム合金)製の集電体を、好ましく採用し得る。集電体の形状は、得られた電極を用いて構築される電池の形状等に応じて異なり得るため特に制限はなく、棒状、板状、シート状、箔状、メッシュ状等の種々の形態であり得る。ここに開示される技術は、例えばシート状の集電体を用いた電極の製造に好ましく適用することができる。かかる電極(電極シート)を用いて構築される電池の好ましい一態様として、シート状の正極および負極を典型的にはシート状のセパレータとともに捲回してなる電極体(捲回電極体)を備える電池が挙げられる。該電池の外形は特に限定されず、例えば直方体状、扁平形状、円筒状等の外形であり得る。シート状集電体の厚みやサイズは特に限定されず、目的とするリチウムイオン電池の形状等に応じて適宜選択し得る。例えば、厚さみが凡そ5μm~30μm程度のシート状集電体を好ましく使用することができる。該集電体の幅は例えば2cm~15cm程度とすることができ、長さは例えば5cm~1000cm程度とすることができる。
 ここに開示されるリチウムイオン電池用負極は、リチウムイオンを吸蔵および放出可能な材料からなる活物質粒子を主成分とする活物質層(負極活物質層)を備える。負極活物質粒子としては、一般にリチウムイオン電池の負極活物質として機能し得ることが知られている種々の粒子状材料から適当なものを採用することができる。好適な活物質粒子としてカーボン粒子が例示される。少なくとも一部にグラファイト構造(層状構造)を含む粒子状の炭素材料(カーボン粒子)の使用が好ましい。いわゆる黒鉛質のもの(グラファイト)、難黒鉛化炭素質のもの(ハードカーボン)、易黒鉛化炭素質のもの(ソフトカーボン)、これらを組み合わせた構造を有するもののいずれの炭素材料も好適に使用し得る。例えば、天然黒鉛、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)等を用いることができる。
 上記負極活物質粒子としては、例えば、平均粒径が凡そ5μm~50μmのものを好ましく使用することができる。なかでも、平均粒径が凡そ5μm~15μm(例えば凡そ8μm~12μm)のカーボン粒子が好ましい。このように比較的小粒径のカーボン粒子は、単位体積当たりの表面積が大きいことから、より急速充放電(例えば高出力放電)に適した活物質となり得る。したがって、かかる活物質を有するリチウムイオン電池は、例えば車両搭載用のリチウムイオン電池として好適に利用され得る。また、上記のように比較的小粒径のカーボン粒子は、より大きな粒子を用いる場合に比べて充放電に伴う個々のカーボン粒子の体積変動が小さいことから、活物質層全体として該体積変動をよりよく緩衝(吸収)し得る。このことは、活物質層上に形成された多孔質無機層の耐久性(剥離等の防止)の観点から有利である。
 負極活物質層は、上記負極活物質粒子の他に、一般的なリチウムイオン電池の負極活物質層に配合され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、バインダとして機能し得る各種のポリマー材料が挙げられる。例えば、水系の液状組成物(活物質粒子の分散媒として水または水を主成分とする混合溶媒を用いた組成物)を用いて上記活物質層を形成する場合には、上記バインダとして水に溶解または分散するポリマー材料を好ましく採用し得る。水に溶解する(水溶性の)ポリマー材料としては、カルボキシメチルセルロース(CMC)、メチルセルロース(MC)、酢酸フタル酸セルロース(CAP)、ヒドロキシプロピルメチルセルロース(HPMC)、ヒドロキシプロピルメチルセルロースフタレート(HPMCP)等のセルロース系ポリマー;ポリビニルアルコール(PVA);等が例示される。また、水に分散する(水分散性の)ポリマー材料としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重含体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、エチレン-テトラフルオロエチレン共重合体(ETFE)等のフッ素系樹脂;酢酸ビニル共重合体;スチレンブタジエンゴム(SBR)、アクリル酸変性SBR樹脂(SBR系ラテックス)、アラビアゴム等のゴム類;が例示される。あるいは、溶剤系の液状組成物(活物質粒子の分散媒が主として有機溶媒である組成物)を用いて活物質層を形成する場合には、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニリデン(PVDC)、ポリエチレンオキサイド(PEO)、ポリプロピレンオキサイド(PPO)、ポリエチレンオキサイド-プロピレンオキサイド共重合体(PEO-PPO)等のポリマー材料を用いることができる。なお、上記で例示したポリマー材料は、バインダとして用いられる他に、負極活物質層形成用組成物の増粘剤その他の添加剤として使用されることもあり得る。
 負極活物質層は、例えば、活物質粒子を適当な溶媒に分散させた液状組成物(典型的にはペーストまたはスラリー状の負極活物質層形成用組成物)を集電体に付与し、該組成物を乾燥させることにより好ましく作製され得る。上記溶媒としては、水、有機溶媒およびこれらの混合溶媒のいずれも使用可能である。例えば、水系溶媒(水、または水を主成分とする混合溶媒)を好ましく採用することができる。上記組成物は、負極活物質粒子および上記溶媒のほかに、一般的なリチウムイオン電池用負極の製造において負極活物質層の形成に用いられる液状組成物に配合され得る一種または二種以上の材料を必要に応じて含有することができる。例えば、上述のようなポリマー材料(バインダ)を含む負極活物質層形成用組成物を好ましく使用し得る。
 特に限定するものではないが、上記組成物の固形分濃度(不揮発分、すなわち該組成物全体に占める負極活物質層形成成分の質量割合)は、例えば凡そ40%~60%程度とすることができる。固形分(負極活物質層形成成分)に占める負極活物質粒子の質量割合は、例えば凡そ85%以上(典型的には凡そ85%~99.9%)とすることができ、凡そ90%~99%とすることが好ましく、凡そ95%~99%とすることがより好ましい。
 かかる組成物を負極集電体に付与するにあたっては、従来公知の方法と同様の技法を適宜採用することができる。例えば、適当な塗布装置(グラビアコーター、スリットコーター、ダイコーター、コンマコーター等)を使用して所定量の組成物を集電体表面に塗布するとよい。負極活物質層形成用組成物の塗布量は特に限定されず、負極シートおよび電池の形状や目標性能等に応じて適宜異なり得る。例えば、シート状集電体の両面に上記組成物を、固形分換算の塗布量(すなわち、乾燥後の質量)が両面合わせて凡そ5~20mg/cm程度となるように塗布するとよい。
 塗布後、適当な乾燥手段で塗布物を乾燥し、必要に応じてプレスすることにより、負極集電体の表面に負極活物質層を形成することができる。特に限定するものではないが、上記負極活物質層の密度は例えば凡そ1.1~1.5g/cm程度であり得る。該負極活物質層の密度が凡そ1.1~1.3g/cm程度であってもよい。かかる密度を有する負極活物質層が形成されるように上記プレスの条件を設定するとよい。なお、プレス方法としては、ロールプレス法、平板プレス法等の従来公知の各種プレス方法を適宜採用することができる。
 ここに開示される技術により提供される電極では、その活物質層上に多孔質無機層が設けられた構成を有する。上記無機層は、典型的には、非導電性(絶縁性)の無機粒子を主成分(該無機層の50質量%以上を占める成分)として含有する。かかる無機粒子を構成する無機材料は、金属元素または非金属元素の酸化物、炭化物、珪化物、窒化物等であり得る。化学的安定性や原料コスト等の観点から、アルミナ(Al)、シリカ(SiO)、ジルコニア(ZrO)、マグネシア(MgO)等の酸化物粒子を好ましく使用することができる。また、炭化珪素(SiC)等の珪化物粒子、窒化アルミニウム(AlN)等の窒化物粒子も使用可能である。好ましい無機粒子としてアルミナ粒子が挙げられる。なかでもα-アルミナ粒子の使用が好ましい。かかるα-アルミナ粒子は、複数の一次粒子が連結した性状の粒子であり得る。このような連結粒子は、当該分野における技術常識に基づいて製造することができ、あるいは該当する市販品を入手することができる。
 無機粒子の平均粒径は、例えば凡そ0.1μm~15μm程度であり得る。この平均粒径としては、一般的な市販の粒度計(レーザ回折式粒度分布測定装置等)を用いて測定された体積基準の平均粒径(D50)を採用することができる。通常は、該平均粒径が凡そ0.2μm~1.5μm(例えば0.5μm~1μm)程度の無機粒子を使用することが好ましい。かかる平均粒径の無機粒子を用いる態様では、本発明の適用効果がよりよく発揮され得る。また、このような無機層が活物質上に設けられた構成の電極(例えば負極)は、より良好な電池性能を発揮する非水二次電池(例えばリチウム二次電池、典型的にはリチウムイオン電池)の構築に適したものであり得る。
 ここに開示される技術における多孔質無機層は、無機粒子の他に、該無機粒子を結着させるバインダを含有する。かかるバインダとしては、当該無機層の形成に使用するスラリーに含まれる有機溶媒(無機粒子の分散媒)に分散または溶解可能なポリマーを好ましく採用することができる。例えば、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、アクリロニトリル-イソプレン共重合体ゴム(NIR)、アクリロニトリル-ブタジエン-イソプレン共重合体ゴム(NBIR)等の、アクリロニトリルを共重合成分として含むゴム;アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル(例えばアルキルエステル)等の、アクリル系モノマーを主な共重合成分とするアクリル系ポリマー;ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体(EVA)等の、酢酸ビニル系樹脂;等を例示することができる。また、負極活物質層に使用し得るバインダとして例示したポリマーから適宜選択される一種または二種以上の材料を、上記無機粒子のバインダとして利用してもよい。ここに開示される多孔質無機層の好ましい一態様では、該無機層がアクリル系バインダを含む。上記無機粒子のバインダとして実質的にアクリル系バインダのみを含む組成の無機層であってもよい。
 多孔質無機層に含まれる無機粒子とバインダとの質量比(無機粒子:バインダ)は、例えば凡そ80:20~99:1とすることができる。上記質量比が凡そ85:15~95:5であってもよい。好ましい一態様では、多孔質無機層全体の質量に占める無機粒子およびバインダの合計量が凡そ90質量%以上(例えば95%以上)である。実質的に無機粒子およびバインダのみから構成される多孔質無機層であってもよい。
 ここに開示される技術では、無機粒子とバインダと有機溶媒とを含むスラリーを用いて多孔質無機層を形成する。典型的には、活物質層の表面に上記スラリーを塗布し、適当な条件で乾燥させることにより多孔質無機層を形成することができる。上記乾燥を促進するために、必要に応じて適当な温度で加熱してもよい。
 上記スラリーは、その構成溶媒の凡そ50質量%以上(より好ましくは75%以上であり、実質的に全部であってもよい。)が極性有機溶媒であることが好ましく、なかでも非プロトン性の極性有機溶媒であることが好ましい。かかる溶媒組成のスラリーによると、活物質層表面の水分を利用して、該活物質層へのバインダの浸み込み具合をより適切に調節し得る。非プロトン性極性有機溶媒としては、N-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)等の環状または鎖状のアミドを好ましく使用することができる。なかでもNMPが好ましい。上記スラリーに使用し得る非プロトン性極性有機溶媒の他の例としては、テトラヒドロフラン(THF)、シクロヘキサノン、1,4-ジオキサン等が挙げられる。このような非プロトン性極性有機溶媒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。好ましい一態様では、上記スラリーに含まれる溶媒の凡そ75質量%以上(より好ましくは凡そ90質量%以上)が非プロトン性の極性有機溶媒である。該溶媒の実質的に全部が非プロトン性極性有機溶媒(例えば、アミド系溶媒から選択される一種または二種以上)であってもよい。
 上記スラリーは、極性有機溶媒(好ましくは非プロトン性溶媒)に加えて、該溶媒と相溶性を有する非極性有機溶媒(トルエン、キシレン等)を含有し得る。通常は、スラリーの構成溶媒全体に占める非極性有機溶媒の質量割合を凡そ25%以下(例えば凡そ10%以下)とすることが好ましい。
 特に限定するものではないが、上記スラリーの固形分濃度(該スラリーに占める多孔質無機層形成成分の割合。以下「NV」と表記することもある。)は、例えば凡そ30~80質量%程度とすることができる。上記スラリーの25℃における粘度は、例えば凡そ500~4000mPa・s程度とすることができ、通常は凡そ1000~2000mPa・s程度の粘度が好ましい。使用時(すなわち、活物質層表面に塗布される際)における粘度が上記範囲となるように、スラリーの組成を選択することが好ましい。かかる粘度のスラリーは、活物質層表面への塗工性がよく、また活物質層表面の水分を利用して該活物質層へのバインダの浸み込み具合を調節するのに適している。スラリーの粘度は、例えば、有機溶媒の種類、バインダの種類および使用量、NV、pH等によって調節することができる。また、公知の増粘剤を添加することによりスラリーの粘度を調節してもよい。あるいは、使用時における粘度が上記範囲となるように、該スラリーの温度を調節して使用してもよい。
 使用時におけるスラリーの水分濃度Ccは、少なくとも該スラリーが塗布される活物質層表面の水分濃度Csよりも低いことが好ましい(すなわち、Cc<Cs)。例えば、Ccが凡そ80ppm以下(より好ましくは60ppm以下)のスラリーを好ましく使用し得る。かかる水分濃度のスラリーによると、活物質層表面の水分を利用して、該活物質層へのバインダの浸み込み具合をより適切に調節し得る。なお、上記水分濃度は、一般的なカールフィッシャー法により測定することができる。
 ここに開示される技術では、多孔質無機層を形成する際、少なくとも表面の水分濃度が凡そ100ppm~500ppmの状態にある活物質層の表面に、上記スラリーを塗布する。このことによって、活物質層内へのバインダの浸み込み具合を調整することができる。例えば、多孔質無機層を備えた電極を用いて構築された電池の入出力性能(例えば、後述するIV抵抗の値が低いこと)と、該無機層の活物質層への密着性とを、高レベルで両立させることができる。上記範囲よりも水分濃度が低すぎると、電池のIV抵抗が上昇する場合がある。一方、上記範囲よりも水分濃度が高すぎると、活物質層に対する多孔質無機層の密着性が低下しやすくなる場合がある。
 ここに開示される技術を実施するにあたり、活物質層表面の水分濃度を上記範囲として多孔質無機層形成用のスラリーを塗布することで好適な結果が得られる理由を明らかにする必要はないが、例えば以下のように考えられる。
 すなわち、上記スラリーは、有機溶媒(典型的には極性有機溶媒)とバインダとを含む液状媒体に無機粒子が分散した形態を有する。このため、例えば図6に模式的に示すように、適度な水分Wを含む活物質層表面344aに多孔質無機層形成用スラリーSが塗布されると、活物質層344との界面においてスラリーSに水分Wが混入してその流動性が低下する。かかる流動性の低下は、スラリーSの粘度上昇またはゲル化として把握され得る。これにより、上記界面よりも外側(図6では上方)にあるスラリーSが活物質344内に浸透し難くなる。その結果、スラリーS(特に液状媒体M)が活物質344の奥部まで過剰に浸み込む事象が防止されるものと考えられる。なお、図6中の符号42は活物質粒子(例えば黒鉛粒子)を、符号44は無機粒子(例えばアルミナ粒子)を表している。また、網掛けは水分Wを、斜めの点線群は液状媒体Mを表している。
 一方、非水二次電池は電池容器内の水分を嫌うので、容器内に収容される部品の水分吸着量を少なくして電池を構築することが望ましい。特に、多孔質の構造部分(例えば活物質層)を有する電極は、容器内に水分を持ち込む大きな原因となりがちである。このため従来は、電極を製造する各工程を高度な乾燥条件下(例えば、露点-30℃~-50℃程度の環境下)で行うのが一般的であった。しかし、例えば図7に模式的に示すように、高度に乾燥した(典型的には、水分濃度が50ppm程度またはそれ以下の)状態にある活物質層344の表面にスラリーSを塗布すると、図6に示す状況とは異なり、バインダを含む液状媒体Mが活物質層344の内部にまで容易に浸み込み得るため、活物質層344の奥部にある活物質粒子42の表面にまでバインダ被膜が形成されてしまう。このことが入出力性能を低下させる一因になっていたものと考えられる。
 また、活物質層表面の水分濃度が上記範囲よりも高すぎると、例えば図8に模式的に示すように、スラリーSが活物質層の表面344aに馴染む前に流動性が低下しすぎてしまい、このためスラリーSを薄く均一に塗布することが困難となったり、塗膜中で液状媒体M(特にバインダ)が偏在したりことがあり得る。バインダが偏在すると、部分的にバインダ量の少ない(結着性能の低い)箇所が生じることにより、多孔質無機層が活物質層表面344aから剥落しやすくなる。かかる剥離の発生は、無機層の形成目的を損なうこととなり得るので好ましくない。ここに開示される技術によると、活物質層表面の水分濃度を上記好ましい範囲とすることにより、信頼性が高く且つ高性能な(例えば、IV抵抗の低い)電池を構築可能な電極を製造することができる。
 なお、活物質層表面の水分によってスラリーの流動性が低下するという上記事象は、該活物質層の空隙(活物質粒子の隙間)に無機粒子が落ち込み過ぎることを防止する上でも有益なものとなり得る。特に比較的空隙率の高い(例えば、空隙率が凡そ30~50体積%程度の)活物質層では、該空隙への無機粒子の落ち込みが甚だしい場合、多孔質無機層の機能(内部短絡を防止する機能)が十分に果たせなくなることがあり得る。また、無機粒子の落ち込みを補うためにスラリーの塗布量(NV換算)を多めにすると入出力性能が低下しがちとなる。ここに開示される技術によると、上記無機粒子の落ち込みを適度に抑制することにより、上記問題の発生を回避し得る。
 活物質層表面の水分濃度を調節する方法としては、少なくとも表面(典型的には表面および内部)の水分濃度が目標値よりも低い活物質層を備えた電極原材を用意し、この電極原材を水分のある環境下(例えば露点-10℃以上、典型的には露点-10℃~+10℃の環境下)に保持する方法を好ましく採用することができる。かかる環境下に保持する時間を調節することにより、上記低水分濃度の活物質層の少なくとも表面が目標の水分濃度となるように水分を含ませる(加湿する)ことができる。上記保持時間は、実際に活物質層からサンプルを採取して水分濃度を測定することにより決定することができ、あるいは簡単な予備実験等を行うことによって適切な保持時間を予測することができる。
 上記水分濃度の調整に先立って、活物質層の表層部の親水性を高める処理を行ってもよい。例えば、表層部に位置する活物質粒子の表面に親水性官能基を導入する処理を好ましく採用し得る。かかる親水性官能基としては、水酸基、カルボキシル基、アルデヒド基等の、酸素(O)を含む極性官能基が例示され、好適例として水酸基およびカルボキシル基が挙げられる。特に水酸基が好ましい。例えば、活物質層の表面に低級アルコールを供給(スプレー、浸漬等)することにより、該活物質層の表層部に位置する活物質粒子の表面に親水性官能基(典型的には、主として水酸基)を導入することができる。上記低級アルコールとしては、炭素原子数1~3のアルキルアルコールを好ましく使用することができる。通常は、メタノールおよび/またはエタノールの使用が好ましい。かかる親水性向上処理を行った上で水分調節を行う(例えば、上記露点の環境下に保持する)ことにより、活物質層の表面の水分濃度を局所的に高めることができる。このように活物質層の表面に水分が偏在する状態でコート剤を塗布することにより、活物質層全体としての水分保持量を低減(例えば、かかる処理を行わない場合の1/10~1/100倍に低減)しつつ、バインダの過度な浸み込みを効果的に防止することができる。一般にカーボン粒子の表面は疎水性であるため、活物質粒子としてカーボン粒子(例えば黒鉛粒子)を用いる態様では、上記親水性向上処理を行うことが特に効果的である。
 ここに開示される技術において、多孔質無機層に含まれる細孔(空隙)の平均孔径や、該細孔の合計体積が無機層全体の体積に占める割合(気孔率)等は、該無機層の形成目的(電池の信頼性向上、より具体的には内部短絡の防止等)が適切に達成され、かつ所望の電池特性が確保されるように設定すればよく、特に限定されない。例えば、平均孔径の好適範囲として凡そ0.01μm~10μm(好ましくは凡そ0.1μm~4μm)、気孔率の好適範囲として凡そ20~75体積%(好ましくは凡そ35~70体積%)が例示される。なお、上記平均孔径および気孔率は、市販の水銀ポロシメータ等を用いて測定することができる。
 以下、図面を参照しつつ、ここに開示される技術により提供される非水二次電池用電極を負極に用いたリチウムイオン電池の一実施形態を説明する。図1に示されるように、本実施形態に係るリチウムイオン電池10は、金属製(樹脂製またはラミネートフィルム製も好適である。)の容器11を備える。この容器11の中に、正極シート32、負極シート34および二枚のセパレータ35を積層し次いで捲回する(本実施形態では扁平形状に捲回する)ことにより構成された捲回電極体30が収容されている。
 図2に示すように、正極シート32は、長尺シート状の正極集電体322と、その両サイドの表面に形成された正極活物質層324とを備える。正極集電体322としては、アルミニウム、ニッケル、チタン等の金属からなるシート材(典型的には、厚さ5μm~30μm程度の金属箔、例えばアルミニウム箔)を使用し得る。正極活物質層324は、リチウムイオンを吸蔵および放出可能な正極活物質を主成分とする。その正極活物質としては、一般的なリチウムイオン電池に用いられる層状構造の酸化物系正極活物質、スピネル構造の酸化物系正極活物質等を好ましく用いることができる。例えば、リチウムコバルト系複合酸化物(典型的にはLiCoO)、リチウムニッケル系複合酸化物(典型的にはLiNiO)、リチウムマンガン系複合酸化物(LiMn)等を主成分とする正極活物質を用いることができる。
 正極活物質層324は、正極活物質の他に、バインダおよび導電材を含むことができる。バインダとしては、上述した負極活物質組成物用のバインダと同様のもの等を用いることができる。導電材としては、種々のカーボンブラック(アセチレンブラック、ファーネスブラック、ケッチェンブラック、等)、グラファイト粉末のような炭素粉末、あるいはニッケル粉末等の金属粉末等を用いることができる。特に限定するものではないが、正極活物質100質量部に対する導電材の使用量は、例えば1~20質量部(好ましくは5~15質量部)の範囲とすることができる。また、正極活物質100質量部に対するバインダの使用量は、例えば0.5~10質量部の範囲とすることができる。
 正極活物質層324を形成するにあたり、典型的には、上述したような好適な正極活物質を適当な導電材およびバインダならびに水(例えばイオン交換水)と混合して調製した正極活物質層形成材料(ここでは水混練タイプのペースト状正極用合材)を正極集電体322の両サイドの表面に塗布し、活物質が変性しない程度の適当な温度域(典型的には70~150℃)で塗布物を乾燥させる。これにより、正極集電体322の両サイドの表面の所望する部位(正極活物質組成物の塗布範囲に対応する部位)に正極活物質層324を形成することができる。必要に応じて適当なプレス処理(例えばロールプレス処理)を施すことにより、正極活物質層324の厚みや密度を適宜調整することができる。
 負極シート34は、ここに開示される方法を適用して製造されたものであって、長尺シート状の負極集電体342と、その表面に形成された負極活物質層344と、該負極活物質層上に形成された多孔質無機層346とを備える(図2,3)。負極活物質層344は、正極側と同様、上述したような好適な負極活物質組成物を負極集電体342の両サイドの表面に塗布して適当な温度で乾燥させ、必要に応じて適当な密度調整処理(例えばロールプレス処理)を施すことにより得られる。
 多孔質無機層346は、上述したような好適なスラリーを、少なくとも表面が水分濃度100ppm~500ppmに調整された負極活物質層344に塗布し、適当な温度で乾燥させて形成されたものである。本実施形態では、負極活物質層344の全体を覆う範囲に多孔質無機層346が形成されている。なお、図3では、本発明の理解を容易にするため、負極シート34の長手方向の一端(図中の左下部分)で多孔質無機層346の一部を取り除いてその下の負極活物質層344が見えるようにしている。
 負極シート34としては、多孔質無機層346の形成後、該シート34に含まれる水分量を十分に減少させたものを用いることが好ましい。このことによって、該シート34に起因して電池容器内に持ち込まれる水分の量を低減することができる。例えば、活物質層344および無機層346の全体を平均した水分濃度が200ppm以下(より好ましくは100ppm以下、例えば80ppm以下)となるように調整された負極シート34を好ましく用いることができる。
 これら正極シート32および負極シート34と重ね合わせて使用されるセパレータ35としては、非水電解液を備えるリチウムイオン電池用のセパレータに利用し得ることが知られている各種の多孔質シートを用いることができる。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質樹脂シート(フィルム)を好適に使用し得る。特に限定するものではないが、好ましい多孔質シート(典型的には多孔質樹脂シート)の性状として、平均孔径が0.0005μm~30μm(より好ましくは0.001μm~15μm)程度であり、厚みが5μm~100μm(より好ましくは10μm~30μm)程度である多孔質樹脂シートが例示される。該多孔質シートの気孔率は、例えば凡そ20~90体積%(好ましくは30~80体積%)程度であり得る。
 図1に示すように、正極シート32の長手方向に沿う一方の端部には、正極活物質層324が形成されない部分(活物質層非形成部分322a)が設けられている。また、負極シート34の長手方向に沿う一方の端部には、負極活物質層344および多孔質無機層346が形成されない部分(活物質層非形成部分342a)が設けられている。正負の電極シート32,34を二枚のセパレータ35とともに重ね合わせる際には、両活物質層324,344を重ね合わせるとともに正極シートの活物質層非形成部分322aと負極シートの活物質層非形成部分342aとが長手方向に沿う一方の端部と他方の端部に別々に配置されるように、電極シート32,34をややずらして重ね合わせる。この状態で計四枚のシート32,35,34,35を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体30が得られる。
 次いで、得られた捲回電極体30を外部接続用の正極端子14および負極端子16の各々と電気的に接続する。そして、端子14,16が接続された電極体30を容器11に収容し、その内部に適当な非水電解液を配置(注液)して容器11を封止する。このようにして、本実施形態に係るリチウムイオン電池10の構築(組み立て)が完成する。その後、適当なコンディショニング処理(例えば、1/10Cの充電レートで3時間の定電流充電を行い、次いで1/3Cの充電レートで4.1Vまで定電流定電圧で充電する操作と、1/3Cの放電レートで3.0Vまで定電流放電させる操作とを2~3回繰り返す初期充放電処理)を行ってリチウムイオン電池10を得ることができる。なお、非水電解液としては一般的なリチウムイオン電池と同様のものを使用することができる。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等のカーボネート類を適宜組み合わせた混合溶媒に、LiPF等のリチウム塩(支持塩)を凡そ0.1mol/L~5mol/L(例えば凡そ0.8mol/L~1.5mol/L)程度の濃度で含有させた非水電解液を好ましく採用することができる。
 ここに開示される技術により提供されるリチウムイオン電池は、上記のとおり微小短絡を高度に防止し得ることから信頼性が高く且つ入出力性能に優れたものとなり得ることから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図9に模式的に示すように、ここに開示されるいずれかのリチウムイオン電池10(当該電池10を複数個直列に接続して形成される組電池の形態であり得る。)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。
 <例1>
  [負極シートの作製]
 平均粒径10μmの天然黒鉛(負極活物質)とSBRとCMCとを、これら材料の質量比が98:1:1となるようにイオン交換水と混合して、スラリー状の負極活物質組成物を調製した。厚み10μm、幅80mm、長さ5000mmの長尺状銅箔の両サイドの表面に上記組成物を、それら両面の合計塗布量(NV換算)が8.6mg/cmとなるように塗布した。負極活物質組成物の塗布範囲は、両面ともに、銅箔の長手方向に沿う一方の縁を15mm幅の帯状に残す範囲とした。その塗布物を乾燥させ、次いで負極活物質層の密度が1.4g/cmとなるようにプレスした。このようにして、負極集電体の表面に負極活物質層を有する負極原材を得た。
 なお、上記プレス処理は露点-30℃以下の環境で行った。同環境下において、プレス直後の負極原材から負極活物質層の一部範囲で該活物質層の表面部を削り取り、そのサンプルに含まれる水分量をカールフィッシャー法により測定した。その結果、上記負極活物質層(すなわち、水分濃度調整処理を行う前の負極活物質層)の表面部の水分濃度は約175ppmであった。
 上記で作製した負極原材に対し、次の水分濃度調整処理を行った。すなわち、該負極原材を露点-5℃の環境に搬入し、該環境下に保持して負極活物質層に水分を吸着させた。上記保持時間の長さを調節することにより、水分濃度の異なる計8種の負極原材サンプルを作製した。上記と同様にカールフィッシャー法を利用して、各サンプルの負極活物質層表面の水分濃度を求めた。それらの結果を表1に示す。
 平均粒径0.8μmのα-アルミナ粒子とアクリル系バインダとを、これら材料の質量比が90:10であり且つNVが50質量%となるようにNMPと混合して、スラリー状のコート剤を調製した。このコート剤を、上記負極原材サンプルの両サイドに形成された負極活物質層の表面に、両面の合計塗布量(NV換算)が6.5mg/cmとなるように塗布し、乾燥させて多孔質無機層を形成した。このようにして、各負極原材サンプルに対応する8種類の負極シートサンプル(サンプルNo.1~8)を得た。
  [リチウムイオン電池の作製]
 上記で得られた負極シートサンプルを用いて、以下に示す手順で、図1~4に示す概略構成を有するリチウムイオン電池10を作製した。
 正極シートとしては以下のものを使用した。すなわち、ニッケル酸リチウム(LiNiO)粉末とアセチレンブラックとPTFEとCMCとを、これら材料の質量比が89:5:5:1となるようにイオン交換水と混合して、スラリー状の正極活物質組成物を調製した。この組成物を、厚み10μm、幅80mm、長さ5000mmの長尺状アルミニウム箔の両サイドの表面に、それら両面の合計塗布量(NV換算)が10mg/cmとなるように塗布した、正極活物質組成物の塗布範囲は、両面ともに、アルミニウム箔の長手方向に沿う一方の縁を17mm幅の帯状に残す範囲とした。塗布物を乾燥させ、次いでプレスして正極シートを得た。
 上記で作製した負極シートサンプルと正極シートとを、2枚のセパレータ(ここでは、厚さ30μm、幅80mm、長さ5000mmの多孔質ポリプロピレンシートを用いた。)を介して重ね合わせた。このとき、正極活物質層非形成部(正極シートの上記帯状部分)と負極活物質層非形成部(負極シートの上記帯状部分)とが幅方向の反対側に配置されるように、両電極シートをややずらして重ね合わせた。この積層シートを長尺方向に約30周捲回し、その捲回体を側方から押しつぶして扁平形状の電極体を形成した。
 この電極体の軸方向の両端においてセパレータからはみ出した正極活物質層非形成部および負極活物質層非形成部に、アルミニウム製の正極端子および銅製の負極端子をそれぞれ溶接した。これを非水電解液とともに扁平な角型容器に収容し、該容器の開口部を封止してリチウムイオン電池を構築した。非水電解液としては、ECとDMCとEMCとの体積比1:1:1の混合溶媒に1mol/Lの濃度で支持塩(ここではLiPF)を溶解させた組成の非水電解液を、各電池につき50mL使用した。このようにして、各負極シートサンプルに対応した計8種のリチウムイオン電池を得た。
  [90°剥離強度測定]
 上記で作製した各負極シートサンプルにつき、多孔質無機層の90°剥離強度を測定した。測定には、図4に示す概略構成の引張試験機を使用した。この引張試験機80は、試験片92を貼り付け固定するための基盤81と、試験片92の長手方向の一端を掴むチャック83と、チャック83を支持するアーム84と、このアーム84に接続された荷重測定器85とを備える。また、アーム84には、滑車872,874に架け渡されたワイヤ86の一端が固定されている。ワイヤ86の他端には錘88(ここでは質量400gの錘を使用した。)が吊り下げられている。試験片92の一端をチャック83で掴んで引っ張り上げることにより、試験片92を剥離角度90°で剥離するように構成されている。
 負極シートサンプル(活物質層非形成部を含まない部分)を幅15mmの帯状にカットして試験片92を作製した。この試験片92を、幅15mm、長さ100mmの両面テープ94を用いて基盤81に貼り付けた。このとき、試験片92の一端は貼り付けずに余らせておき、その余剰部分をチャック83にセットした。そして、引張速度10mm/分の条件でアーム84を引き上げると、両面テープ上に多孔質無機層を残して、該無機層から負極活物質層が剥離した。この剥離する瞬間の荷重値を多孔質無機層の90°剥離強度とした。
  [IV抵抗測定]
 上記で作製した各リチウムイオン電池のIV抵抗を測定した。すなわち、上記で作製した各リチウムイオン電池を5Aで3.5Vまで定電流定電圧(CCCV)で予備充電した。合計充電時間は1時間とした。これにより、各電池のSOC(State of Charge)60%に調整した。その後、60Aで10秒間の定電流(CC)放電を行い、このときの電流(I)-電圧(V)プロット値の一次近似直線の傾きから内部抵抗(IV抵抗)を求めた。
 上記剥離強度およびIV抵抗の測定結果を、スラリー塗布時における活物質層表面の水分濃度との関係として表1および図5に示す。
Figure JPOXMLDOC01-appb-T000001
 これらの図表から明らかなように、水分濃度が100ppm~500ppmの範囲にある活物質層表面にコート剤を塗布したサンプルNo.3~6は、多孔質無機層の剥離強度が高く、且つ電池の内部抵抗が低いものであった。この結果は、サンプルNo.3~6の電池が良好な入出力性能を示し、且つ多孔質無機層の耐久性(例えば、充放電により活物質層の体積が変動しても該活物質表面から剥離し難いこと)に優れたものであり得ることを支持している。
 <例2>
 例1と同様に作製した負極原材の表面全体にエタノール(合計使用量5mL)を噴霧した。その後、該負極原材を露点-5℃の環境に搬入し、活物質層表面の水分濃度(カールフィッシャー法による。)が155ppmになるまで同環境下に保持した。このとき、活物質層の内部の水分濃度は凡そ50ppmであった。上記表面水分濃度155ppmの負極原材サンプルに、例1と同様にスラリー状のコート剤を塗布し、乾燥させて多孔質無機層を形成した。この負極シートサンプルを負極に用いて、例1と同様にしてリチウムイオン電池(サンプルNo.9)を作製した。
 上記サンプルNo.9のリチウムイオン電池と、例1で作製したサンプルNo.3のリチウム電池とを、5Aで3.5Vまで定電流定電圧(CCCV)で予備充電した。合計充電時間は1時間とした。そして、先端が針状になっているブルトン缶圧力計を電池容器に突き刺して、該電池の内圧を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 この表から明らかなように、他の製造条件が同じ場合、アルコール処理(親水性官能基導入処理)を行って製造したサンプルNo.9の電池は、表面水分濃度は同程度であるが上記処理を行わずに製造したサンプルNo.3の電池に比べて、より内圧上昇が少なかった。すなわち、No.9では予備充電による発生ガス量がより少なかった。この結果は、上記アルコール処理により、負極シートに付随して容器内に持ち込まれた水分量が低減されたことを示唆している。
 以上、本発明を詳細に説明したが、上記実施形態は例示にすぎず、ここで開示される発明には上述の具体例を様々に変形、変更したものが含まれる。

Claims (11)

  1.  活物質層上に多孔質無機層を有する非水二次電池用電極を製造する方法であって:
     活物質粒子を主成分とする活物質層が集電体に保持された電極原材を用意すること;
     前記活物質層の水分濃度を、該活物質層の少なくとも表面の水分濃度が100ppm~500ppmとなるように調整すること;および、
     前記水分濃度に調整された活物質層の表面に、無機粒子とバインダと有機溶媒とを含むスラリーを塗布して多孔質無機層を形成すること;
     を包含する、非水二次電池用電極製造方法。
  2.  前記有機溶媒がアミド系溶媒である、請求項1記載の方法。
  3.  前記有機溶媒がN-メチル-2-ピロリドンである、請求項1記載の方法。
  4.  前記バインダがアクリル系バインダである、請求項1記載の方法。
  5.  前記無機粒子がアルミナ粒子である、請求項1記載の方法。
  6.  前記活物質粒子がカーボン粒子である、請求項1記載の方法。
  7.  前記水分濃度の調整に先立って、前記活物質層の表層部に位置する前記活物質粒子の表面に親水性官能基を導入する処理を行う、請求項1記載の方法。
  8.  前記親水性官能基を導入する処理は、前記活物質層の表層部に低級アルコールを接触させることを含む、請求項7記載の方法。
  9.  前記活物質層の水分濃度を調整することは、該活物質層を露点-10℃以上の環境に保持することを含む、請求項1記載の方法。
  10.  請求項1記載の方法で製造された電極を用いてリチウムイオン電池を構築することを特徴とする、リチウムイオン電池製造方法。
  11.  請求項10記載の方法で製造されたリチウムイオン電池を備える、車両。
PCT/JP2009/070778 2008-12-26 2009-12-11 非水二次電池用電極の製造方法 WO2010073924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/139,319 US9083056B2 (en) 2008-12-26 2009-12-11 Method for manufacturing nonaqueous secondary battery electrode
CN2009801523136A CN102265431B (zh) 2008-12-26 2009-12-11 非水二次电池用电极的制造方法
KR1020117014620A KR101270314B1 (ko) 2008-12-26 2009-12-11 비수 2차 전지용 전극의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008333156A JP4487219B1 (ja) 2008-12-26 2008-12-26 非水二次電池用電極の製造方法
JP2008-333156 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073924A1 true WO2010073924A1 (ja) 2010-07-01

Family

ID=42287540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070778 WO2010073924A1 (ja) 2008-12-26 2009-12-11 非水二次電池用電極の製造方法

Country Status (5)

Country Link
US (1) US9083056B2 (ja)
JP (1) JP4487219B1 (ja)
KR (1) KR101270314B1 (ja)
CN (1) CN102265431B (ja)
WO (1) WO2010073924A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110196A3 (de) * 2011-02-14 2012-10-11 Li-Tec Battery Gmbh Verfahren zur herstellung von elektroden

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332556B (zh) * 2010-09-15 2014-12-10 东莞新能源科技有限公司 一种锂离子二次电池及其负极
WO2012128071A1 (ja) * 2011-03-23 2012-09-27 三洋電機株式会社 非水電解質二次電池
DE102012000910A1 (de) * 2012-01-19 2013-07-25 Sihl Gmbh Separator umfassend eine poröse Schicht und Verfahren zu seiner Herstellung
WO2013111363A1 (ja) * 2012-01-26 2013-08-01 京セラ株式会社 静電チャック
KR101527730B1 (ko) * 2012-08-30 2015-06-12 에너테크인터내셔널 주식회사 리튬 이차전지용 전극의 세라믹 코팅방법
JP5920138B2 (ja) * 2012-09-21 2016-05-18 トヨタ自動車株式会社 非水電解質二次電池の製造方法,および,その方法により製造された非水電解質二次電池
JP5656093B2 (ja) * 2013-05-30 2015-01-21 株式会社豊田自動織機 電解液保液層を具備する電池
CN104241679A (zh) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 二次电池
CN104241690A (zh) * 2013-06-14 2014-12-24 上海绿孚新能源科技有限公司 二次电池
CN105308780B (zh) * 2013-06-18 2018-09-11 株式会社Lg化学 一种负极以及含有该负极的电化学器件
JP6067545B2 (ja) * 2013-11-20 2017-01-25 トヨタ自動車株式会社 リチウムイオン二次電池およびその製造方法
JP6070537B2 (ja) * 2013-12-27 2017-02-01 トヨタ自動車株式会社 リチウムイオン電池用負極の製造方法
EP3118915B1 (en) * 2014-03-12 2019-04-10 Sanyo Chemical Industries, Ltd. Coated negative-electrode active material for use in lithium-ion battery, slurry for use in lithium-ion battery, negative electrode for use in lithium-ion battery, lithium-ion battery, and method for manufacturing coated negative-electrode active material for use in lithium-ion battery
JP6057137B2 (ja) * 2014-04-18 2017-01-11 トヨタ自動車株式会社 非水電解質二次電池用の正極とその製造方法
JP2015225776A (ja) * 2014-05-28 2015-12-14 トヨタ自動車株式会社 全固体電池の製造方法
TWI669843B (zh) * 2014-07-25 2019-08-21 日商積水化學工業股份有限公司 具備二次電池之發電裝置
CN107078277B (zh) * 2014-09-09 2022-07-22 赛昂能源有限公司 锂离子电化学电池中的保护层及相关电极和方法
CN104362289B (zh) * 2014-09-26 2017-01-25 珠海市讯达科技有限公司 具有无机隔离层的锂离子电池极片、包括该极片的电池及制备该极片的方法
JP2016103439A (ja) * 2014-11-28 2016-06-02 協立化学産業株式会社 スラリー組成物、その製造方法及びこれを用いて形成される被覆体
JP6739524B2 (ja) * 2016-04-27 2020-08-12 株式会社カネカ リチウムイオン二次電池用電極の製造方法
US10263257B2 (en) * 2016-09-22 2019-04-16 Grst International Limited Electrode assemblies
JP6809108B2 (ja) * 2016-10-07 2021-01-06 トヨタ自動車株式会社 リチウムイオン二次電池
DE112016002010B4 (de) * 2016-12-28 2021-12-23 Mitsubishi Electric Corporation Verfahren zum Herstellen einer Elektrode zur Oberflächenbehandlung mittels Entladung und Verfahren zum Herstellen eines Filmkörpers
CN110546806B (zh) * 2017-04-25 2022-11-25 日本电气株式会社 锂离子二次电池
JP7230810B2 (ja) * 2017-08-31 2023-03-01 日本ゼオン株式会社 電気化学素子機能層用組成物、電気化学素子用機能層、及び電気化学素子
KR20190044450A (ko) 2017-10-20 2019-04-30 주식회사 엘지화학 고수명 및 초고에너지 밀도의 리튬 이차전지
CN116154093A (zh) 2017-12-20 2023-05-23 宁德时代新能源科技股份有限公司 一种负极极片,其制备方法及电化学装置
JP7481795B2 (ja) * 2018-04-09 2024-05-13 日産自動車株式会社 非水電解質二次電池の製造方法
DE102018209964A1 (de) 2018-06-20 2019-12-24 Robert Bosch Gmbh Herstellung von Elektroden mit Elektrolytlösungsmittel und/oder ionischen Flüssigkeiten gefüllten Elektrodenmaterialien
KR102445275B1 (ko) * 2019-02-21 2022-09-19 주식회사 엘지에너지솔루션 이차 전지용 전극의 제조방법
CN112234165A (zh) * 2020-11-23 2021-01-15 珠海冠宇电池股份有限公司 负极片和锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2006228439A (ja) * 2005-02-15 2006-08-31 Hitachi Maxell Ltd 非水電解液電池および非水電解液電池の製造方法
JP2009043718A (ja) * 2007-07-17 2009-02-26 Panasonic Corp 二次電池および二次電池の製造方法
JP2009049006A (ja) * 2007-07-20 2009-03-05 Panasonic Corp 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
JP2009164014A (ja) * 2008-01-08 2009-07-23 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE310321T1 (de) * 1995-06-28 2005-12-15 Ube Industries Nichtwässrige sekundärbatterie
JPH09320590A (ja) 1996-05-30 1997-12-12 Petoca:Kk リチウムイオン二次電池用負極材及びその製造方法
JP4672955B2 (ja) 2001-08-10 2011-04-20 Jfeケミカル株式会社 リチウムイオン二次電池用負極材料およびその製造方法
JP4672958B2 (ja) 2002-10-10 2011-04-20 Jfeケミカル株式会社 黒鉛質粒子、リチウムイオン二次電池、そのための負極材料および負極
EP2133895A1 (en) * 2004-01-15 2009-12-16 Panasonic Corporation Nonaqueous electrolyte for electrochemical devices
JP2005310764A (ja) 2004-03-23 2005-11-04 Sanyo Electric Co Ltd 非水電解質電池
JP4848725B2 (ja) 2005-09-30 2011-12-28 大日本印刷株式会社 非水電解液二次電池用電極板、及び非水電解液二次電池
JP4724223B2 (ja) * 2006-09-07 2011-07-13 日立マクセル株式会社 電池用セパレータの製造方法
US8163409B2 (en) * 2006-12-15 2012-04-24 Panasonic Corporation Evaluation method for safety upon battery internal short circuit, evaluation device for safety upon battery internal short circuit, battery, battery pack, and manufacturing method for battery and battery pack

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07220759A (ja) * 1994-01-31 1995-08-18 Sony Corp 非水電解液二次電池
JP2006228439A (ja) * 2005-02-15 2006-08-31 Hitachi Maxell Ltd 非水電解液電池および非水電解液電池の製造方法
JP2009043718A (ja) * 2007-07-17 2009-02-26 Panasonic Corp 二次電池および二次電池の製造方法
JP2009049006A (ja) * 2007-07-20 2009-03-05 Panasonic Corp 電池用電極板、電池用極板群、リチウム二次電池、及び電池用電極板の製造方法
JP2009164014A (ja) * 2008-01-08 2009-07-23 Mitsui Mining & Smelting Co Ltd 非水電解液二次電池用負極

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012110196A3 (de) * 2011-02-14 2012-10-11 Li-Tec Battery Gmbh Verfahren zur herstellung von elektroden

Also Published As

Publication number Publication date
CN102265431A (zh) 2011-11-30
KR20110083755A (ko) 2011-07-20
US9083056B2 (en) 2015-07-14
US20110239446A1 (en) 2011-10-06
CN102265431B (zh) 2013-11-20
JP2010153331A (ja) 2010-07-08
KR101270314B1 (ko) 2013-05-31
JP4487219B1 (ja) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4487219B1 (ja) 非水二次電池用電極の製造方法
JP5316905B2 (ja) リチウム二次電池
JP4766348B2 (ja) リチウム二次電池およびその製造方法
JP5652683B2 (ja) 非水電解質二次電池および車両
KR101179378B1 (ko) 이차전지용 집전기, 이차전지 양극, 이차전지 음극, 이차전지 및 그들의 제조 방법
JP3960193B2 (ja) リチウム二次電池用電極及びリチウム二次電池並びにその製造方法
JP5201426B2 (ja) リチウムイオン電池およびその利用
JP4900695B2 (ja) リチウム二次電池用負極およびリチウム二次電池
JP4433329B2 (ja) リチウム二次電池の正極およびその製造方法
JP5365842B2 (ja) リチウムイオン電池
JP2011192539A (ja) 非水電解質二次電池用電極およびその製造方法、ならびに非水電解質二次電池
JP6836728B2 (ja) リチウムイオン二次電池用の負極
EP3312908A1 (en) Method for producing negative electrode
KR102123513B1 (ko) 비수전해액 이차 전지
JP2010102868A (ja) リチウム二次電池
JP5621867B2 (ja) リチウムイオン二次電池
JP5720952B2 (ja) リチウムイオン二次電池
JP2006004739A (ja) リチウム二次電池と該電池に備えられる正極及びその製造方法
JP5168535B2 (ja) リチウム二次電池およびその製造方法
JP5800196B2 (ja) 非水電解質二次電池およびその製造方法
JP5553169B2 (ja) リチウムイオン二次電池
JP7226314B2 (ja) 電極、蓄電素子、及び電極の製造方法
JP6233653B2 (ja) 非水電解質二次電池の製造方法
JP5880942B2 (ja) 非水電解液二次電池
JP2022100812A (ja) 非水電解質二次電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152313.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13139319

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117014620

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834727

Country of ref document: EP

Kind code of ref document: A1