WO2012043280A1 - 変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物 - Google Patents

変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物 Download PDF

Info

Publication number
WO2012043280A1
WO2012043280A1 PCT/JP2011/071236 JP2011071236W WO2012043280A1 WO 2012043280 A1 WO2012043280 A1 WO 2012043280A1 JP 2011071236 W JP2011071236 W JP 2011071236W WO 2012043280 A1 WO2012043280 A1 WO 2012043280A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl alcohol
modified polyvinyl
polyvinyl acetal
producing
degree
Prior art date
Application number
PCT/JP2011/071236
Other languages
English (en)
French (fr)
Inventor
英裕 山口
由貴 石川
康晴 永井
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to US13/824,498 priority Critical patent/US20130197154A1/en
Priority to CN201180046243.3A priority patent/CN103124748B/zh
Priority to KR1020137010388A priority patent/KR101902025B1/ko
Priority to JP2011544310A priority patent/JP5555718B2/ja
Priority to EP11828840.6A priority patent/EP2623524B1/en
Publication of WO2012043280A1 publication Critical patent/WO2012043280A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F116/04Acyclic compounds
    • C08F116/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/50Partial depolymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade

Definitions

  • the present invention relates to a modified polyvinyl alcohol capable of producing a polyvinyl acetal having a low degree of polymerization and excellent solubility in a solvent without causing any reaction inhibition, coloring or particle coarsening.
  • the present invention also relates to a method for producing the modified polyvinyl alcohol.
  • the present invention also relates to a modified polyvinyl acetal having a low degree of polymerization, excellent solubility in a solvent, and high elasticity, mechanical strength, and film forming property.
  • the present invention relates to a method for producing the modified polyvinyl acetal, a polyvinyl acetal film using the modified polyvinyl acetal, a method for producing the polyvinyl acetal film, a ceramic slurry composition, a method for producing the ceramic slurry composition, and a ceramic green sheet.
  • Polyvinyl acetal typified by polyvinyl butyral is used for various purposes in interlayer films for laminated glass, wash primer for metal treatment, various paints, adhesives, resin processing agents, ceramic binders, etc. Is expanding.
  • the reason why polyvinyl acetal is used in various ways is that the characteristics of the resin can be adjusted by controlling the degree of polymerization and the degree of acetalization.
  • polyvinyl acetal is produced by dehydrating condensation of polyvinyl alcohol and an aldehyde compound in the presence of an acid catalyst such as hydrochloric acid.
  • the degree of polymerization of the polyvinyl acetal thus produced is substantially determined by the degree of polymerization of the starting polyvinyl alcohol. Therefore, in order to control the properties of the polyvinyl acetal, it is necessary to prepare a raw material polyvinyl alcohol that has been accurately adjusted so as to have the same degree of polymerization with respect to the target polyvinyl acetal.
  • Polyvinyl alcohol is produced by saponifying polyvinyl acetate solution polymerized in methanol.
  • polyvinyl alcohol produced by a known method is industrially manufacturable because of problems with productivity and quality, and is limited to those having a degree of polymerization of about 300 or more. It is difficult to obtain a polyvinyl acetal having a degree of polymerization.
  • Patent Document 2 discloses a method of using a solvent having a high chain transfer constant for the polymerization of vinyl acetate
  • Patent Document 3 discloses a chain transfer agent before polymerization and polymerization. A method of polymerizing vinyl acetate while being fed into is disclosed.
  • Patent Document 4 discloses a method in which polyvinyl alcohol is subjected to main chain cleavage using an oxidizing agent such as hydrogen peroxide and reduced to reduce the degree of polymerization.
  • an oxidizing agent such as hydrogen peroxide
  • the polyvinyl acetal obtained after acetalization has a low degree of acetalization due to reaction inhibition, or the polyvinyl acetal particles are coarsened. There was a problem to do.
  • the multilayer ceramic capacitor is also required to have a small size and large capacity, and attempts have been made to stack thin ceramic green sheets containing finer ceramic powder.
  • thin ceramic green sheets it is very important to improve the performance such as mechanical strength and elasticity.
  • the film forming property of the ceramic paste at the time of producing a ceramic green sheet is also required.
  • the peelability from the support of the ceramic green sheet is low. The mechanical strength and elasticity sufficient to withstand peeling may not be obtained, and as a result, the ceramic green sheet may be torn or abnormally stretched.
  • the present invention provides a modified polyvinyl alcohol capable of producing a polyvinyl acetal having a low degree of polymerization and excellent solubility in a solvent with almost no reaction inhibition, coloring, or particle coarsening, and a method for producing the modified polyvinyl alcohol The purpose is to do.
  • Another object of the present invention is to provide a modified polyvinyl acetal having a low degree of polymerization, excellent solubility in a solvent, and high elasticity, mechanical strength, and film forming property.
  • the present invention provides a method for producing the modified polyvinyl acetal, a polyvinyl acetal film using the modified polyvinyl acetal, a method for producing the polyvinyl acetal film, a ceramic slurry composition, a method for producing the ceramic slurry composition, and a ceramic green sheet.
  • the purpose is to do.
  • the present invention has at least one functional group selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group and a lactone ring group at the molecular end, and has a saponification degree of 99.95 mol% or more, This is a modified polyvinyl alcohol in which the amount of 2-glycol bond is 1.4 mol% or less.
  • the present invention is described in detail below.
  • the present inventors used a modified polyvinyl alcohol having a specific structure at the molecular end and having a saponification degree and a 1,2-glycol bond content within a predetermined range as a raw material for polyvinyl acetal.
  • the present inventors have found that a polyvinyl acetal having a low polymerization degree and excellent solubility in a solvent can be produced with little reaction inhibition, coloring, and particle coarsening, and the present invention has been completed.
  • the modified polyvinyl alcohol of the present invention has at least one functional group selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group and a lactone ring group at the molecular end.
  • a functional group selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group and a lactone ring group at the molecular end.
  • the lower limit of the degree of saponification of the modified polyvinyl alcohol of the present invention is 99.95 mol%.
  • the saponification degree is less than 99.95 mol%, the remaining acetyl group inhibits intermolecular interaction due to the hydroxyl group of polyvinyl alcohol, and thus the polyvinyl acetal cannot be adjusted to a desired viscosity when acetalized.
  • the preferable lower limit of the degree of polymerization of the modified polyvinyl alcohol of the present invention is 80, and the preferable upper limit is 4000.
  • the degree of polymerization of the modified polyvinyl alcohol is less than 80, the amount of 1,2-glycol bonds present in the raw material polyvinyl alcohol does not decrease any more, the adjustment of the degree of polymerization becomes difficult, and the coloring is remarkable. May be.
  • the average degree of polymerization of the polyvinyl alcohol exceeds 4000, it may be difficult to industrially obtain the raw material polyvinyl alcohol due to the chain polymerization rate constant of vinyl acetate.
  • a more preferred lower limit is 100, and a more preferred upper limit is 3000.
  • the upper limit of the content of 1,2-glycol bonds is 1.4 mol%.
  • the content of the 1,2-glycol bond exceeds 1.4 mol%, the remaining 1,2-glycol bond inhibits intermolecular interaction due to the hydroxyl group of polyvinyl alcohol.
  • the acetal cannot be adjusted to the desired viscosity.
  • the preferable lower limit of the content of 1,2-glycol bonds in the modified polyvinyl alcohol is 0.55 mol%, and the preferable upper limit is 1.2 mol%.
  • the content of the 1,2-glycol bond can be confirmed by using, for example, 1 H- and 13 C-NMR.
  • the modified polyvinyl alcohol of the present invention can be produced, for example, by a method having a step of reducing the degree of polymerization by bringing polyvinyl alcohol into contact with hydrogen peroxide in a basic solution.
  • a method for producing such modified polyvinyl alcohol is also one aspect of the present invention.
  • modified polyvinyl alcohol In the method for producing modified polyvinyl alcohol, the present inventors have reduced the degree of polymerization by bringing it into contact with hydrogen peroxide in a basic solution, thereby causing little reaction inhibition, coloring, and particle coarsening. The inventors have found that a modified polyvinyl alcohol capable of producing a polyvinyl acetal having a low degree of polymerization and excellent solubility in a solvent can be obtained, and the present invention has been completed.
  • the method for producing a modified polyvinyl alcohol of the present invention includes a step of reducing the degree of polymerization by bringing polyvinyl alcohol into contact with hydrogen peroxide in a basic solution (hereinafter also referred to as a step of reducing the degree of polymerization).
  • Polyvinyl alcohol used as a raw material is not particularly limited, but for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl laurate, vinyl stearate, vinyl benzoate, etc.
  • Conventionally known polyvinyl alcohols such as resins produced by alkali or acid saponification of polyvinyl esters obtained by polymerization by solution polymerization, bulk polymerization, suspension polymerization, emulsion polymerization, or the like can be used. .
  • the polyvinyl alcohol may be completely saponified, but it need not be completely saponified if at least one unit having a double hydroxyl group with respect to the meso and racemic positions in at least one position of the main chain, Partially saponified polyvinyl alcohol may be used.
  • a saponified product of a copolymer of a vinyl ester and a monomer that can be copolymerized with a vinyl ester such as an ethylene-vinyl alcohol copolymer or a partially saponified ethylene-vinyl alcohol copolymer may be used. it can.
  • the preferable lower limit of the concentration of polyvinyl alcohol in the basic solution when the polyvinyl alcohol is brought into contact with hydrogen peroxide is 1% by weight, and the preferable upper limit is 25% by weight.
  • the concentration of the polyvinyl alcohol in the basic solution in the low polymerization degree step is less than 1% by weight, the reaction efficiency at the time of acetalization in the subsequent step may be deteriorated. If the concentration of polyvinyl alcohol in the basic solution in the step of reducing the degree of polymerization exceeds 25% by weight, the viscosity of the solution becomes too high to be stirred, and the degree of polymerization cannot be reduced uniformly. There is.
  • the more preferred lower limit of the concentration of polyvinyl alcohol in the basic solution in the low polymerization degree step is 3% by weight, the more preferred upper limit is 20% by weight, the still more preferred lower limit is 5% by weight, and the still more preferred upper limit is 17% by weight. .
  • the preferable lower limit of the OH ⁇ ion concentration of the basic solution when the polyvinyl alcohol is brought into contact with hydrogen peroxide is 0.01 mol / L, and the preferable upper limit is 1 mol / L. If the OH ⁇ ion concentration of the basic solution is less than 0.01 mol / L, the degree of polymerization of polyvinyl alcohol does not progress, and the desired degree of polymerization of polyvinyl acetal may not be obtained. If the OH ⁇ ion concentration of the basic solution exceeds 1 mol / L, the polyvinyl acetal obtained in the subsequent step contains a large amount of ionic components, which adversely affects the solubility in the solvent and makes the system acidic in step 2.
  • a more preferable lower limit of the OH ⁇ ion concentration of the basic solution is 0.1 mol / L, and a more preferable upper limit is 0.5 mol / L.
  • the basic substance used in the basic solution is not particularly limited, and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, and alkaline earth metal waters such as calcium hydroxide.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal waters such as calcium hydroxide.
  • Oxides, silicates such as sodium orthosilicate, sodium metasilicate, sodium sesquisilicate, No. 1 sodium silicate, No. 2 sodium silicate, No.
  • sodium silicate sodium dihydrogen phosphate, disodium hydrogen phosphate, phosphoric acid Phosphate salts such as trisodium, carbonates such as sodium carbonate, sodium bicarbonate, potassium carbonate and potassium bicarbonate, borate salts such as sodium borate, inorganic nitrogen compounds such as ammonia and hydroxyamine, and water Primary amines, secondary amines, tertiary amines and quaternary amines having an alkyl group bonded to the tertiary amine, etc. Amine, and the like. Of these, alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and sodium hydroxide and potassium hydroxide are more preferred.
  • the said basic substance may be used independently and may combine 2 or more types.
  • the solvent contained in the basic solution is not limited as long as it dissolves polyvinyl alcohol, but is acetalized in order to eliminate the need for solvent substitution when acetating the modified polyvinyl alcohol having a reduced degree of polymerization. It is preferable to use the same solvent as this solvent. Specifically, an aqueous solvent is preferably used.
  • the addition amount of the hydrogen peroxide can be changed according to the degree of polymerization of the target polyvinyl acetal, but the preferable upper limit of the hydrogen peroxide concentration (maximum concentration of hydrogen peroxide) in the basic solution is 0.1 mol / L.
  • the hydrogen peroxide concentration in the basic solution exceeds 0.1 mol / L, hydrogen peroxide generates oxygen, and bubbles formed by the surface active function of polyvinyl alcohol may remain for a long time. May result in undissolved polyvinyl alcohol, and the resulting polyvinyl acetal may have poor solubility in a solvent.
  • the hydrogen peroxide concentration in the basic solution exceeds 0.1 mol / L, the acetalization does not progress uniformly in the subsequent step, and the degree of acetalization and the size of the precipitated particles are varied, resulting in the obtained polyvinyl Acetal may be poor in solubility in a solvent.
  • a more preferable upper limit of the hydrogen peroxide concentration in the basic solution is 0.05 mol / L.
  • the hydrogen peroxide may be added all at once in the initial stage of the reaction, may be added in portions as the reaction proceeds, or may be added while dropping continuously.
  • the concentration of the hydrogen peroxide concentration in the basic solution exceeds 0.1 mol / L when batch addition is performed, the concentration of the hydrogen peroxide concentration is reduced to 0.1 mol / L or less by divided addition or continuous dropwise addition. can do.
  • the preferable lower limit of the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide is 30 ° C., and the preferable upper limit is 100 ° C. If the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide is less than 30 ° C., it may take a long time to reduce the degree of polymerization of the polyvinyl alcohol. When the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide exceeds 100 ° C., the solvent is volatilized and undissolved polyvinyl acetal is generated in the subsequent acetalization step, and the resulting polyvinyl acetal is dissolved in the solvent. May have adverse effects on sex. A more preferable lower limit of the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide is 40 ° C., and a more preferable upper limit is 95 ° C.
  • the time for contacting the polyvinyl alcohol with hydrogen peroxide can be changed depending on the degree of polymerization of the target polyvinyl acetal.
  • a modified polyvinyl alcohol having a reduced degree of polymerization can be obtained in the process.
  • the modified polyvinyl acetal of the present invention has at least one functional group selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group and a lactone ring group at the molecular end, and has a saponification degree of 99.95 mol%.
  • the modified polyvinyl alcohol having a 1,2-glycol bond content of 1.4 mol% or less is acetalized.
  • the modified polyvinyl acetal of the present invention is described in detail below.
  • the present inventors have provided a modified polyvinyl acetal obtained by acetalizing a modified polyvinyl alcohol having a specific structure at the molecular terminal and having a saponification degree and a 1,2-glycol bond content within a predetermined range. Since no reaction inhibition occurs, it has been found that it has a low degree of polymerization and excellent solubility in a solvent with little coloration or coarsening of particles. Moreover, it has been found that such a modified polyvinyl acetal can provide a green sheet having high elasticity and mechanical strength while having excellent film forming properties, and has completed the present invention.
  • the modified polyvinyl alcohol has at least one functional group selected from the group consisting of a hydroxyl group, an aldehyde group, a carboxyl group, and a lactone ring group at the molecular end.
  • the lower limit of the saponification degree of the modified polyvinyl alcohol is 99.95 mol%. If the degree of saponification is less than 99.95 mol%, the remaining acetyl group inhibits intermolecular interaction due to the hydroxyl group of polyvinyl alcohol, and thus a polyvinyl acetal having a desired viscosity may not be obtained in acetalization. is there.
  • the preferable lower limit of the polymerization degree of the modified polyvinyl alcohol is 80, and the preferable upper limit is 4000. If the degree of polymerization of the modified polyvinyl alcohol is less than 80, acetalization may be difficult. If the degree of polymerization of the polyvinyl alcohol exceeds 4000, it may not be synthesized industrially due to a chain transfer reaction depending on the existing polymerization method. A more preferred lower limit is 100, and a more preferred upper limit is 3000.
  • the upper limit of the content of 1,2-glycol bonds is 1.4 mol%.
  • the content of the 1,2-glycol bond exceeds 1.4 mol%, the remaining 1,2-glycol bond inhibits intermolecular interaction due to the hydroxyl group of polyvinyl alcohol. May not be obtained.
  • the preferable lower limit of the content of 1,2-glycol bonds in the modified polyvinyl alcohol is 0.55 mol%, and the preferable upper limit is 1.3 mol%. A more preferred upper limit is 1.2 mol%.
  • the content of the 1,2-glycol bond can be confirmed by using, for example, 1 H- and 13 C-NMR.
  • the modified polyvinyl acetal of the present invention is obtained by acetalizing the modified polyvinyl alcohol.
  • this acetalization is also referred to as an acetalization step.
  • the acetalization step include a method in which the modified polyvinyl alcohol is reacted with an aldehyde to acetal in a system that is in an acidic condition using an acid catalyst.
  • a conventionally known method can be used as a method for obtaining a modified polyvinyl acetal by reacting the modified polyvinyl alcohol with an aldehyde to obtain an acetal.
  • modified polyvinyl butyral an aqueous solution containing 1 to 25% by weight of polyvinyl alcohol having a degree of polymerization reduced by hydrogen peroxide is prepared, and an acid catalyst and butyraldehyde are added in a temperature range of ⁇ 5 to 60 ° C. The reaction is allowed to proceed for 20 minutes to 6 hours, and then the temperature is raised by 10 to 50 ° C. and further aged for 30 minutes to 5 hours to complete the reaction.
  • the modified A method for washing polyvinyl butyral is mentioned.
  • the acid catalyst is not particularly limited, hydrogen halide such as hydrochloric acid, mineral acid such as nitric acid and sulfuric acid, carboxylic acid such as formic acid, acetic acid and propionic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, Examples thereof include sulfonic acids such as paratoluenesulfonic acid, phosphoric acid and the like. These acid catalysts may be used alone or in combination of two or more compounds. Of these, hydrochloric acid, nitric acid, and sulfuric acid are preferable, and hydrochloric acid is more preferable.
  • aldehyde examples include linear, branched, cyclic saturated, cyclic unsaturated, or aromatic aldehydes having 1 to 19 carbon atoms. Specific examples include formaldehyde, acetaldehyde, propionyl aldehyde, n-butyraldehyde, isobutyraldehyde, tert-butyraldehyde, benzaldehyde, cyclohexyl aldehyde and the like.
  • the aldehyde may be used alone or in combination of two or more.
  • the aldehyde may be one obtained by substituting one or more hydrogen atoms with halogen or the like except formaldehyde.
  • the degree of acetalization of the modified polyvinyl acetal of the present invention can be adjusted by appropriately changing the blending amount of the aldehyde with respect to the modified polyvinyl alcohol, but the preferable lower limit is 60 mol% and the preferable upper limit is 75 mol%. .
  • the degree of acetalization is less than 60 mol%, due to the effect of the remaining hydroxyl group, it may take time to dissolve at the time of dissolving the solvent, or many insoluble resins may be formed.
  • the remaining aldehyde forms an intermolecular acetal, and the viscosity of each lot may not be stably produced.
  • the preferable lower limit of the hydroxyl group content of the modified polyvinyl acetal of the present invention is 25 mol%, and the preferable upper limit is 40 mol%.
  • the amount of the hydroxyl group is less than 25 mol%, the remaining aldehyde may form an intermolecular acetal and the viscosity of each lot may not be stably produced.
  • the amount exceeds 40 mol% it takes time to dissolve when dissolving the solvent. Or a large number of insoluble resins may be formed.
  • the modified polyvinyl acetal of the present invention uses, for example, Step 1 for producing modified polyvinyl alcohol by bringing polyvinyl alcohol into contact with hydrogen peroxide in a basic solution to reduce the degree of polymerization, and using an acid catalyst.
  • Step 1 for producing modified polyvinyl alcohol by bringing polyvinyl alcohol into contact with hydrogen peroxide in a basic solution to reduce the degree of polymerization, and using an acid catalyst.
  • it can be produced by a method having a step 2 in which the modified polyvinyl alcohol having a reduced degree of polymerization in the step 1 is reacted with an aldehyde to acetalize.
  • a method for producing such a modified polyvinyl acetal is also one aspect of the present invention.
  • the present inventors contact hydrogen peroxide in a basic solution as polyvinyl alcohol to be reacted with aldehyde. It has been found that by using a modified polyvinyl alcohol having a low degree of polymerization by the above, it is possible to produce a modified polyvinyl acetal having a low degree of polymerization and excellent solubility in a solvent with almost no reaction inhibition, coloring or coarsening of particles.
  • the present invention has been completed.
  • the manufacturing method of the modified polyvinyl acetal of this invention has the process 1 which produces modified polyvinyl alcohol by making polyvinyl alcohol contact with hydrogen peroxide in a basic solution, and making it low-polymerization degree.
  • the polyvinyl alcohol is not particularly limited, for example, vinyl formate, vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, vinyl pivalate, vinyl laurate, vinyl stearate, vinyl benzoate, etc.
  • Conventionally known polyvinyl alcohol such as a resin produced by alkali or acid saponification of a polyvinyl ester obtained by polymerization by a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method or the like can be used.
  • the polyvinyl alcohol may be completely saponified, but it need not be completely saponified if at least one unit having a double hydroxyl group with respect to the meso and racemic positions in at least one position of the main chain, Partially saponified polyvinyl alcohol may be used.
  • a saponified product of a copolymer of a vinyl ester and a monomer that can be copolymerized with a vinyl ester such as an ethylene-vinyl alcohol copolymer or a partially saponified ethylene-vinyl alcohol copolymer may be used. it can.
  • the minimum with a preferable polymerization degree of the said polyvinyl alcohol is 200, a preferable upper limit is 4000, a more preferable minimum is 300, and a more preferable upper limit is 3000.
  • the preferable lower limit of the concentration of polyvinyl alcohol in the basic solution when the polyvinyl alcohol is brought into contact with hydrogen peroxide is 1% by weight, and the preferable upper limit is 25% by weight.
  • the concentration of the polyvinyl alcohol in the basic solution in Step 1 is less than 1% by weight, the reaction efficiency when acetalizing the obtained polyvinyl alcohol in Step 2 may be deteriorated. If the concentration of the polyvinyl alcohol in the basic solution in Step 1 exceeds 25% by weight, the viscosity of the solution becomes so high that it is difficult to stir and the degree of polymerization cannot be uniformly reduced.
  • a more preferred lower limit of the concentration of polyvinyl alcohol in the basic solution in Step 1 is 3% by weight, a more preferred upper limit is 20% by weight, a still more preferred lower limit is 5% by weight, and a still more preferred upper limit is 17% by weight.
  • OH basic solution upon contacting the polyvinyl alcohol with hydrogen peroxide - lower limit of the ion concentration is 0.01 mol / L
  • the upper limit is preferably 1 mol / L. If the OH ⁇ ion concentration of the basic solution is less than 0.01 mol / L, the degree of polymerization of polyvinyl alcohol does not progress, and the desired degree of polymerization of polyvinyl acetal may not be obtained.
  • the polyvinyl acetal obtained in Step 2 contains a large amount of ionic components, which adversely affects the solubility in the solvent.
  • a more preferable lower limit of the OH ⁇ ion concentration of the basic solution is 0.1 mol / L, and a more preferable upper limit is 0.5 mol / L.
  • the basic substance used in the basic solution is not particularly limited, and alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide, Sodium silicates such as sodium orthosilicate, sodium metasilicate, sodium sesquisilicate, No. 1 sodium silicate, No. 2 sodium silicate, No. 3 sodium silicate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, etc.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkaline earth metal hydroxides such as calcium hydroxide
  • Sodium silicates such as sodium orthosilicate, sodium metasilicate, sodium sesquisilicate, No. 1 sodium silicate, No. 2 sodium silicate, No. 3 sodium silicate, sodium dihydrogen phosphate, disodium hydrogen phosphate, trisodium phosphate, etc.
  • Phosphates carbonates such as sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, borate salts such as sodium borate, inorganic nitrogen compounds such as ammonia and hydroxyamine, A primary amine, a secondary amine, a tertiary amine, and a quaternary amine in which an alkyl group is bonded to the tertiary amine or the like. And the like.
  • alkali metal hydroxides and alkaline earth metal hydroxides are preferred, and sodium hydroxide and potassium hydroxide are more preferred.
  • the said basic substance may be used independently and may combine 2 or more types.
  • the solvent contained in the basic solution is not particularly limited as long as it dissolves polyvinyl alcohol. However, in order to eliminate the need for solvent substitution when the obtained modified polyvinyl alcohol having a reduced polymerization degree is acetalized in Step 2. It is preferable to use the same solvent as the acetalization solvent. Specifically, an aqueous solvent is preferably used.
  • the amount of hydrogen peroxide added can be changed according to the degree of polymerization of the target modified polyvinyl acetal, but the preferable upper limit of the hydrogen peroxide concentration (the maximum concentration of hydrogen peroxide) in the basic solution is 0.5 mol. / L.
  • the hydrogen peroxide concentration in the basic solution exceeds 0.5 mol / L, hydrogen peroxide generates oxygen, and bubbles formed by the surface active function of polyvinyl alcohol may remain for a long time. May result in undissolved polyvinyl alcohol, and the modified polyvinyl acetal obtained in step 2 may have poor solubility in a solvent.
  • the hydrogen peroxide concentration in the basic solution exceeds 0.5 mol / L, the acetalization in Step 2 does not proceed uniformly, and the degree of acetalization and the size of the precipitated particles vary, resulting in the modified polyvinyl alcohol obtained.
  • Acetal may be poor in solubility in a solvent.
  • a more preferable upper limit of the hydrogen peroxide concentration in the basic solution is 0.3 mol / L.
  • the hydrogen peroxide may be added all at once in the initial stage of the reaction, may be added in portions as the reaction proceeds, or may be added while dropping continuously.
  • the concentration of the hydrogen peroxide concentration in the basic solution exceeds 0.5 mol / L when batch addition is performed, the concentration of the hydrogen peroxide concentration is reduced to 0.5 mol / L or less by divided addition or continuous dropwise addition. can do.
  • a preferable lower limit of the temperature when the polyvinyl alcohol is brought into contact with the hydrogen peroxide is 30 ° C., and a preferable upper limit is 100 ° C. If the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide is less than 30 ° C., it may take a long time to reduce the degree of polymerization of the polyvinyl alcohol. When the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide exceeds 100 ° C., the solvent volatilizes and undissolved polyvinyl acetal is generated in Step 2, and the solubility of the resulting polyvinyl acetal in the solvent is adversely affected. May appear.
  • a more preferable lower limit of the temperature at which the polyvinyl alcohol is brought into contact with the hydrogen peroxide is 40 ° C., and a more preferable upper limit is 95 ° C.
  • Step 1 the time for which the polyvinyl alcohol is brought into contact with hydrogen peroxide can be changed depending on the polymerization degree of the target modified polyvinyl acetal. A modified polyvinyl alcohol having a reduced degree of polymerization can be obtained.
  • the method for producing a modified polyvinyl acetal according to the present invention includes a step 2 in which a modified polyvinyl alcohol having a reduced degree of polymerization in the step 1 is reacted with an aldehyde to acetalize in a system that is in an acidic condition using an acid catalyst.
  • a conventionally known method can be used as the method for obtaining a modified polyvinyl acetal by reacting the modified polyvinyl alcohol having a reduced degree of polymerization with an aldehyde in the step 2 to obtain an acetal.
  • a conventionally known method can be used.
  • modified polyvinyl butyral an aqueous solution containing 1 to 25% by weight of modified polyvinyl alcohol whose degree of polymerization has been lowered by hydrogen peroxide is prepared, and an acid catalyst and butyraldehyde are prepared at a temperature range of ⁇ 5 to 30 ° C.
  • reaction is allowed to proceed for 20 minutes to 6 hours, and then the temperature is increased by 10 to 50 ° C., and the reaction is further aged for 30 minutes to 5 hours to complete the reaction, preferably after passing through a cooling step.
  • a method for washing the modified polyvinyl butyral is exemplified.
  • the hydrogen peroxide concentration in the system when the acid catalyst is used for the acidic condition is preferably 0.1 mol / L or less.
  • the hydrogen peroxide concentration of the system in the acidic condition using an acid catalyst exceeds 0.1 mol / L, the hydrogen peroxide concentration does not decrease, acetalization is inhibited, and the resulting modified polyvinyl acetal
  • the degree of acetalization may be low, or the shape of the generated polyvinyl acetal may not be obtained with powder and become coarse particles, which may not be sufficiently washed and dried, which may adversely affect quality.
  • the hydrogen peroxide concentration of the system when the modified polyvinyl alcohol having a reduced polymerization degree is reacted with an aldehyde is preferably 0.1 mol / L or less.
  • the acetalization is inhibited by forming an adduct with hydrogen peroxide before the modified polyvinyl alcohol and aldehyde react with each other.
  • the degree of acetalization of the modified polyvinyl acetal may be low, or the shape of the generated polyvinyl acetal may not be obtained in a powder form and become coarse particles, which may not be sufficiently washed and dried, which may adversely affect quality.
  • the hydrogen peroxide concentration of the system when the acid catalyst is used for acidic conditions, and the hydrogen peroxide concentration of the system when the modified polyvinyl alcohol having a reduced degree of polymerization is reacted with an aldehyde is 0.1 mol / L or less.
  • hydrogen peroxide is consumed by lowering the degree of polymerization of polyvinyl alcohol by appropriately adjusting the amount of hydrogen peroxide added in step 1 above, the time of step 1 and the temperature of step 1 as appropriate. Accordingly, the conditions of step 1 may be set so that the concentration range is within the above range.
  • a compound that promotes the decomposition of hydrogen peroxide is added to adjust the hydrogen peroxide concentration.
  • the hydrogen peroxide concentration can be adjusted within the above range also by the method of adjusting the hydrogen peroxide concentration by adding a compound that causes a redox reaction with hydrogen peroxide.
  • the compound that promotes the decomposition of hydrogen peroxide include manganese dioxide and catalase.
  • the compound that causes an oxidation-reduction reaction with hydrogen peroxide include potassium permanganate and potassium dichromate.
  • the temperature at the time of making a modified polyvinyl alcohol and an aldehyde contact is below the boiling point of the aldehyde to be used.
  • the temperature at which the aldehyde is added exceeds the boiling point of the aldehyde, the aldehyde volatilizes during the addition, and the acetalization reaction may not proceed sufficiently.
  • the temperature at which the modified polyvinyl alcohol and aldehyde are brought into contact with each other is preferably 5 to 70 ° C.
  • the modified polyvinyl alcohol forms a gel and leads to the formation of an undissolved material.
  • the typical aldehyde used in the process may volatilize, and the acetalization reaction may not proceed sufficiently. More preferably, it is 10 to 65 ° C.
  • a polyvinyl acetal film is obtained by forming the modified polyvinyl acetal of the present invention into a film. Such a polyvinyl acetal film is also one aspect of the present invention.
  • the polyvinyl acetal film of this invention can be used as a highly elastic polyvinyl acetal film because the minimum of the saponification degree of modified polyvinyl acetal is 99.95 mol%.
  • the lower limit of the saponification degree of the modified polyvinyl acetal is less than 99.95 mol%, the effect of hydrogen bonding derived from the hydroxyl group between the modified polyvinyl acetals is lowered, and the bonding force between the molecular chains is reduced. , The elastic modulus decreases.
  • the polyvinyl acetal film of the present invention can be made into a polyvinyl acetal film having excellent flexibility when the upper limit of the 1,2-glycol bond content of the modified polyvinyl acetal is 1.4 mol%. If the content of 1,2-glycol bond exceeds 1.4 mol%, the remaining 1,2-glycol bond reduces the effect of hydrogen bonds derived from hydroxyl groups between polyvinyl acetals, and bonds between molecular chains. The power is reduced. As a result, the elastic modulus when formed into a film is lowered. In the modified polyvinyl acetal, the preferable lower limit of the content of 1,2-glycol bonds is 0.55 mol%.
  • the polyvinyl acetal film of this invention is manufactured by the method which has the process of heat-dissolving the modified polyvinyl acetal of this invention above 40 degreeC, for example.
  • the temperature of the heating and melting is less than 40 ° C.
  • the hydrogen bonds between the molecular chains are not sufficiently loosened, and an undissolved product is generated, resulting in a decrease in the maximum point stress of the sheet strength. is there.
  • the temperature at the time of melting by heating to 40 ° C. or higher, a polyvinyl acetal film having excellent flexibility can be obtained.
  • a ceramic slurry composition is obtained by adding a ceramic powder and an organic solvent to the modified polyvinyl acetal of the present invention.
  • Such a ceramic slurry composition is also one aspect of the present invention.
  • the ceramic slurry composition of the present invention contains a ceramic powder.
  • the ceramic powder is not particularly limited, and examples thereof include barium titanate, alumina, zirconia, and glass powder.
  • a preferable minimum is 50 weight% with respect to the sum total of the said resin component and the said ceramic powder, and a preferable upper limit is 99 weight%. . If it is less than 50% by weight, a ceramic green sheet having sufficient sheet strength can be obtained, but the volume shrinkage of the sheet after degreasing firing may increase. Moreover, since it becomes easy to generate
  • a more preferred lower limit is 80% by weight, a more preferred upper limit is 97% by weight, a still more preferred lower limit is 90% by weight, and a still more preferred upper limit is 95% by weight.
  • the ceramic slurry composition of the present invention contains an organic solvent.
  • the organic solvent is not particularly limited, and is not particularly limited as long as it can dissolve the polyvinyl acetal resin.
  • ketones such as acetone, methyl ethyl ketone, dipropyl ketone, diisobutyl ketone, methanol, ethanol, isopropanol , Alcohols such as butanol, aromatic hydrocarbons such as toluene and xylene, methyl propionate, ethyl propionate, butyl propionate, methyl butanoate, ethyl butanoate, butyl butanoate, methyl pentanoate, ethyl pentanoate, Esters such as butyl pentanoate, methyl hexanoate, ethyl hexanoate, butyl hexanoate, 2-ethylhexyl acetate, 2-ethyl
  • a dispersant an antioxidant, an ultraviolet absorber, a surfactant, a filler, etc. may be appropriately added to the ceramic slurry composition of the present invention.
  • a small amount of resin may be added.
  • the method for producing the ceramic slurry composition of the present invention is not particularly limited.
  • the modified polyvinyl acetal resin, the ceramic powder, the organic solvent, and various additives to be added as necessary are ball mill, blender mill, 3
  • the method of mixing using various mixers, such as a roll, is mentioned.
  • the ceramic slurry composition of this invention it is preferable to perform the process which heat-dissolves modified polyvinyl acetal at 40 degreeC or more in the process of adding and mixing modified polyvinyl acetal resin.
  • a ceramic slurry composition having excellent film forming properties can be obtained.
  • a ceramic green sheet using the ceramic slurry composition of the present invention is also one aspect of the present invention.
  • a ceramic slurry composition is coated on a release-treated polyester film so that the thickness after drying is appropriate and air-dried at room temperature for 1 hour. Subsequently, it is made to dry at 80 degreeC for 3 hours using a hot air dryer. Subsequently, it is dried at 120 ° C. for 2 hours. Then, in order to harden the said curable resin, the method of heating ultraviolet irradiation and / or the ceramic green sheet itself etc. are mentioned.
  • the modified polyvinyl alcohol which can manufacture the polyvinyl acetal which is excellent in the solubility to a solvent with a low degree of polymerization hardly causing reaction inhibition, coloring, and particle coarsening can be provided. Moreover, according to this invention, the manufacturing method of this modified polyvinyl alcohol can be provided. Further, according to the present invention, it is possible to provide a modified polyvinyl acetal having a low degree of polymerization, excellent solubility in a solvent, and high elasticity, mechanical strength, and film forming property.
  • the present invention also provides a method for producing the modified polyvinyl acetal, a polyvinyl acetal film using the modified polyvinyl acetal, a method for producing the polyvinyl acetal film, a ceramic slurry composition, a method for producing the ceramic slurry composition, and a ceramic green sheet. can do.
  • Example 1 (Preparation of aqueous polyvinyl alcohol solution) A polyvinyl alcohol aqueous solution was obtained by heating and stirring 100 g of polyvinyl alcohol (saponification degree 99%, polymerization degree 1700) and ion-exchanged water 865 g in a 2 L separable flask at 95 ° C. for 1 hour at 150 rpm.
  • Example 2 A modified polyvinyl alcohol was obtained in the same manner as in Example 1 except that the addition amount of the aqueous sodium hydroxide solution and the hydrogen peroxide solution was changed as shown in Table 1 in (Modification step) of Example 1.
  • Example 1 A modified polyvinyl alcohol was obtained in the same manner as in Example 1 except that the aqueous sodium hydroxide solution was not added, only the hydrogen peroxide solution was added, and the mixture was heated at 60 ° C. for 2 hours. It was.
  • Example 2 A modified polyvinyl alcohol was obtained in the same manner as in Example 1 except that in Example 1 (modification step), no hydrogen peroxide solution was added, only an aqueous sodium hydroxide solution was added, and the mixture was heated at 60 ° C. for 2 hours. It was.
  • polyvinyl acetal (polyvinyl butyral) To a solution of polyvinyl alcohol obtained in Examples and Comparative Examples, 130 g of 25 wt% hydrochloric acid and 58 g of butyraldehyde were added and acetalized for 180 minutes. Thereafter, the temperature was raised to 40 ° C. over 60 minutes, and the reaction was further continued at that temperature for 120 minutes. After cooling to room temperature, the precipitated resin was collected by filtration, and the resin content was washed with ion-exchanged water. Next, the obtained resin was washed with an aqueous sodium carbonate solution, then washed again with water and dried to obtain polyvinyl butyral. The obtained polyvinyl butyral was subjected to the following evaluations (3-1) to (3-4).
  • Resin particle diameter 0.1% by weight of a surfactant (manufactured by Kao Corporation: Emar) was added to a 4% by weight resin suspension of the obtained polyvinyl butyral, and the mixture was ultrasonically cleaned for 10 minutes.
  • the average particle size was measured using a particle size distribution system (LA950V2 manufactured by Horiba, Ltd.) to obtain a resin particle size.
  • Example 4 Preparation of aqueous polyvinyl alcohol solution
  • a polyvinyl alcohol aqueous solution was obtained by heating and stirring 100 g of polyvinyl alcohol (saponification degree 99%, polymerization degree 1700) and ion-exchanged water 865 g in a 2 L separable flask at 95 ° C. for 1 hour at 150 rpm.
  • Example 5 In Example 4 (acetalization step), a modified polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 60 ° C.
  • Example 6 In Example 4 (acetalization step), a modified polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 15 ° C.
  • Example 7 modified polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 5 ° C.
  • Comparative Example 3 A polyvinyl alcohol aqueous solution was obtained in the same manner as in Comparative Example 1. About the obtained polyvinyl alcohol aqueous solution, polyvinyl butyral was obtained by performing by the method similar to Example 4 (acetalization process).
  • Comparative Example 4 In the (acetalization step) of Comparative Example 3, polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 15 ° C.
  • Comparative Example 6 In the (acetalization step) of Comparative Example 5, polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 15 ° C.
  • Example 8 Polyvinyl butyral was obtained in the same manner as in Example 4 except that hydrogen peroxide and sodium hydroxide were added so as to achieve the concentrations shown in Table 2.
  • Example 9 In Example 8 (acetalization step), polyvinyl butyral was obtained in the same manner as in Example 4 except that the temperature when adding butyraldehyde was changed to 15 ° C.
  • Solvent solubility 15 g of the obtained polyvinyl butyral was added to 135 g of a mixed solvent of ethanol and toluene (weight mixing ratio: 1: 1), shaken at room temperature for 2 hours, and then statically observed. “ ⁇ ” when there is no resin not dissolved in the solvent, “ ⁇ ” when there is a slight amount of resin not dissolved in the solvent, and “X” when there are many resins not dissolved in the solvent. As evaluated.
  • Example 10 (Preparation of polyvinyl acetal film) 8 parts by weight of the modified polyvinyl acetal resin obtained in Example 4 was added to a mixed solvent of 50 parts by weight of toluene and 50 parts by weight of ethanol, and stirred and dissolved while heating at 50 ° C. The obtained resin solution was coated on a PET film subjected to a release treatment so that the thickness after drying was 20 ⁇ m using a coater. After air drying at room temperature for 10 minutes, the film was peeled from the PET film to obtain a polyvinyl acetal film.
  • the obtained ceramic slurry composition was coated on a PET film that had been subjected to a release treatment so that the thickness after drying was 2 ⁇ m using a coater, air-dried at room temperature for 10 minutes, and then heated at 80 ° C. for 30 minutes. Thus, a ceramic green sheet was obtained.
  • Example 11 A polyvinyl acetal film, a ceramic slurry composition and a ceramic green sheet were produced in the same manner as in Example 10 except that the modified polyvinyl acetal obtained in Examples 5 to 7 was used.
  • Comparative Example 7 (Preparation of polyvinyl acetal film, ceramic slurry composition and ceramic green sheet) A polyvinyl acetal film, a ceramic slurry composition, and a ceramic green sheet were produced in the same manner as in Example 10 except that the polyvinyl butyral obtained in Comparative Example 3 was used.
  • Comparative Example 9 (Preparation of polyvinyl acetal film, ceramic slurry composition and ceramic green sheet) A polyvinyl acetal film, a ceramic slurry composition, and a ceramic green sheet were produced in the same manner as in Example 10 except that the polyvinyl butyral obtained in Comparative Example 5 was used.
  • Example 10 A polyvinyl acetal was obtained in the same manner as in Example 10 except that the modified polyvinyl acetal resin obtained in Comparative Example 5 was used and the temperature at which it was dissolved in (Preparation of a polyvinyl acetal film) and (Preparation of a ceramic slurry composition) was 15 ° C. A film, a ceramic slurry composition, and a ceramic green sheet were prepared.
  • Comparative Example 11 (Preparation of polyvinyl acetal film, ceramic slurry composition and ceramic green sheet) A polyvinyl acetal film, a ceramic slurry composition, and a ceramic green sheet were produced in the same manner as in Example 10 except that the polyvinyl butyral obtained in Comparative Example 6 was used.
  • Comparative Example 12 Using the modified polyvinyl acetal resin obtained in Comparative Example 6, and using the modified polyvinyl acetal resin in the same manner as in Example 10 except that the temperature for dissolution in (Preparation of polyvinyl acetal film) and (Preparation of ceramic slurry composition) was 15 ° C. A film, a ceramic slurry composition, and a ceramic green sheet were prepared.
  • a modified polyvinyl alcohol capable of producing a polyvinyl acetal having a low degree of polymerization and excellent solubility in a solvent with almost no reaction inhibition, coloring or particle coarsening, and a method for producing the modified polyvinyl alcohol.
  • a modified polyvinyl acetal having a low degree of polymerization, excellent solubility in a solvent, and high elasticity, mechanical strength, and film forming property.
  • the present invention also provides a method for producing the modified polyvinyl acetal, a polyvinyl acetal film using the modified polyvinyl acetal, a method for producing the polyvinyl acetal film, a ceramic slurry composition, a method for producing the ceramic slurry composition, and a ceramic green sheet. can do.
  • the modified polyvinyl acetal of the present invention can be used in various fields such as ceramic binders, ink paints and silver salt films.

Abstract

反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコール、及び、該変性ポリビニルアルコールの製造方法を提供する。 また、低重合度で溶剤への溶解性に優れ、高い弾性、機械的強度及び製膜性を有する変性ポリビニルアセタールを提供する。また、該変性ポリビニルアセタールの製造方法及び該変性ポリビニルアセタールを用いたポリビニルアセタールフィルム、ポリビニルアセタールフィルムの製造方法、セラミックスラリー組成物、セラミックスラリー組成物の製造方法及びセラミックグリーンシートを提供する。 分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有し、かつ、ケン化度が99.95モル%以上、1,2-グリコール結合の含有量が1.4モル%以下である ことを特徴とする変性ポリビニルアルコール。

Description

変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物
本発明は、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコールに関する。また、本発明は、該変性ポリビニルアルコールの製造方法に関する。
また、本発明は、低重合度で溶剤への溶解性に優れ、高い弾性、機械的強度及び製膜性を有する変性ポリビニルアセタールに関する。
更に、本発明は、該変性ポリビニルアセタールの製造方法及び該変性ポリビニルアセタールを用いたポリビニルアセタールフィルム、ポリビニルアセタールフィルムの製造方法、セラミックスラリー組成物、セラミックスラリー組成物の製造方法及びセラミックグリーンシートに関する。
ポリビニルブチラールに代表されるポリビニルアセタールは、合わせガラス用中間膜、金属処理のウォッシュプライマー、各種塗料、接着剤、樹脂加工剤及びセラミックスバインダー等に多目的に用いられており、近年では電子材料へと用途が拡大している。このようにポリビニルアセタールの用途が多岐にわたるのは、その重合度やアセタール化度を制御することによって、樹脂の特性を調整することができるためである。
一般に、ポリビニルアセタールは、特許文献1に開示されているように、ポリビニルアルコールとアルデヒド化合物とを塩酸等の酸触媒の存在下で脱水縮合させて製造される。このようにして製造されるポリビニルアセタールの重合度は、実質的に原料のポリビニルアルコールの重合度によって決定される。従って、ポリビニルアセタールの特性を制御するためには、目的のポリビニルアセタールに対して適宜、同一の重合度となるように正確に調整した原料ポリビニルアルコールを準備する必要があった。
ポリビニルアルコールは、メタノール中で溶液重合されたポリ酢酸ビニルをけん化することによって製造される。しかしながら、公知の手法で製造されるポリビニルアルコールは、生産性や品質面の問題から、工業的に製造可能なものは重合度が300程度以上のものに限られ、300未満の重合度を有する低重合度のポリビニルアセタールを得ることは困難である。
低重合度のポリビニルアルコールを得る方法として、特許文献2には酢酸ビニルの重合に鎖移動定数の高い溶剤を用いる方法が開示されており、特許文献3には連鎖移動剤を重合開始前及び重合中に供給しながら酢酸ビニルの重合を行う方法が開示されている。しかしながら、これらの方法では、けん化する際に溶剤を置換する必要があったり、残留した連鎖移動剤を回収する必要があったりするといった製造上の問題や、精製したポリビニルアルコールが着色したり、溶剤への溶解性に劣るものとなったりするという品質上の問題があった。また、特許文献4には、ポリビニルアルコールを過酸化水素等の酸化剤を用いて主鎖開裂し、還元処理して低重合度化する方法が開示されている。しかしながら、特許文献4に開示されている方法で低重合度化したポリビニルアルコールは、アセタール化後に得られるポリビニルアセタールが、反応阻害によりアセタール化度の低いものとなったり、ポリビニルアセタール粒子が粗大化したりするという問題があった。
更に、近年、電子機器の小型化に伴い、積層セラミックコンデンサにも小型大容量化が求められており、より微細なセラミックス粉末を含む薄層のセラミックグリーンシートを積み重ねることが試みられている。
薄層のセラミックグリーンシートにおいては、機械的強度、弾性等の性能を向上させることが非常に重要となる。また、セラミックグリーンシートを作製する際のセラミックペーストの製膜性も必要となる。
しかしながら、例えば、製膜性を向上させるために、アセタール化度が高いポリビニルアセタール樹脂、又は、平均重合度の低いポリビニルアセタール樹脂を用いた場合には、セラミックグリーンシートの支持体からの剥離性が低下したり、剥離に耐えうるだけの機械的強度や弾性が得られなかったりすることがあり、結果として、セラミックグリーンシートが破れてしまったり、異常に伸びてしまったりすることがあった。
特開平6-1853号公報 特開昭63-278911号公報 特開昭57-28121号公報 特開2007-269881号公報
本発明は、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコール、及び、該変性ポリビニルアルコールの製造方法を提供することを目的とする。
また、本発明は、低重合度で溶剤への溶解性に優れ、高い弾性、機械的強度及び製膜性を有する変性ポリビニルアセタールを提供することを目的とする。更に、本発明は、該変性ポリビニルアセタールの製造方法及び該変性ポリビニルアセタールを用いたポリビニルアセタールフィルム、ポリビニルアセタールフィルムの製造方法、セラミックスラリー組成物、セラミックスラリー組成物の製造方法及びセラミックグリーンシートを提供することを目的とする。
本発明は、分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有し、かつ、ケン化度が99.95モル%以上、1,2-グリコール結合の量が1.4モル%以下である変性ポリビニルアルコールである。
以下に本発明を詳述する。
本発明者らは、分子末端に特定の構造を有し、かつ、ケン化度及び1,2-グリコール結合の含有量が所定の範囲内である変性ポリビニルアルコールを、ポリビニルアセタールの原料として用いた場合、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造することができることを見出し、本発明を完成させるに至った。
本発明の変性ポリビニルアルコールは、分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有する。
分子末端にこのような官能基を有することにより、末端の極性が変化し、従来のポリビニルアルコールと比較して、水への溶解性の向上、界面活性効果の向上が期待される。なお、分子末端に上述の官能基を有することは、例えば、H-及び13C-NMR等を用いることで確認することができる。
本発明の変性ポリビニルアルコールのケン化度の下限は99.95モル%である。
上記ケン化度が99.95モル%未満であると、残存するアセチル基がポリビニルアルコールの水酸基による分子間相互作用を阻害するため、アセタール化する際に、ポリビニルアセタールを所望の粘度に調整できない。
本発明の変性ポリビニルアルコールの重合度の好ましい下限は80、好ましい上限は4000である。上記変性ポリビニルアルコールの重合度が80未満であると、原料ポリビニルアルコール中に存在する1,2-グリコール結合の量がこれ以上減少せず、重合度の調整が困難となり、かつ、着色が顕著になることがある。上記ポリビニルアルコールの平均重合度が4000を超えると、酢酸ビニルの連鎖重合速度定数のため、原料のポリビニルアルコールを工業的に得ることが難しくなることがある。
より好ましい下限は100、より好ましい上限は3000である。
本発明の変性ポリビニルアルコールは、1,2-グリコール結合の含有量の上限が1.4モル%である。上記1,2-グリコール結合の含有量が1.4モル%を超えると、残存する1,2-グリコール結合がポリビニルアルコールの水酸基による分子間相互作用を阻害するため、アセタール化する際に、ポリビニルアセタールを所望の粘度に調整できない。上記変性ポリビニルアルコールの1,2-グリコール結合の含有量は、好ましい下限が0.55モル%、好ましい上限が1.2モル%である。なお、上記1,2-グリコール結合の含有量は、例えば、H-及び13C-NMR等を用いることで確認することができる。
本発明の変性ポリビニルアルコールは、例えば、塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化する工程を有する方法によって製造することができる。このような変性ポリビニルアルコールの製造方法もまた本発明の1つである。
本発明者らは、変性ポリビニルアルコールの製造方法において、塩基性溶液中にて過酸化水素と接触させることによって低重合度化することにより、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造することが可能な変性ポリビニルアルコールが得られることを見出し、本発明を完成させるに至った。
本発明の変性ポリビニルアルコールの製造方法は、塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化する工程(以下、低重合度化工程ともいう)を有する。
原料として用いるポリビニルアルコールとしては、特に限定されないが、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、安息香酸ビニル等を、溶液重合法、塊状重合法、懸濁重合法、乳化重合法等により重合して得られたポリビニルエステルをアルカリ又は酸けん化することにより製造された樹脂等の従来公知のポリビニルアルコールを用いることができる。
上記ポリビニルアルコールは、完全けん化されていてもよいが、少なくとも主鎖の1カ所にメソ、ラセミ位に対して2連の水酸基を有するユニットが最低1ユニットあれば完全けん化されている必要はなく、部分けん化ポリビニルアルコールであってもよい。また、上記ポリビニルアルコールとしては、エチレン-ビニルアルコール共重合体、部分けん化エチレン-ビニルアルコール共重合体等のビニルエステルと共重合可能なモノマーとビニルエステルとの共重合体のけん化物も用いることができる。
上記低重合度化工程において、ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液中のポリビニルアルコールの濃度の好ましい下限は1重量%、好ましい上限は25重量%である。上記低重合度化工程における塩基性溶液中のポリビニルアルコールの濃度が1重量%未満であると、後の工程でアセタール化する際の反応効率が悪くなることがある。上記低重合度化工程における塩基性溶液中のポリビニルアルコールの濃度が25重量%を超えると、溶液の粘度が高くなりすぎて攪拌することが困難となり均一に低重合度化することができなくなることがある。上記低重合度化工程における塩基性溶液中のポリビニルアルコールの濃度のより好ましい下限は3重量%、より好ましい上限は20重量%、更に好ましい下限は5重量%、更に好ましい上限は17重量%である。
上記ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液のOHイオン濃度の好ましい下限は0.01mol/L、好ましい上限は1mol/Lである。上記塩基性溶液のOHイオン濃度が0.01mol/L未満であるとポリビニルアルコールの低重合度化が進まず、目的のポリビニルアセタールの重合度が得られないことがある。上記塩基性溶液のOHイオン濃度が1mol/Lを超えると、後の工程で得られるポリビニルアセタールがイオン成分を多く含むものとなり、溶剤に対する溶解性に悪影響が出たり、工程2において系を酸性条件にするために必要となる酸触媒の量が多くなり、コストアップにつながったりする。上記塩基性溶液のOHイオン濃度のより好ましい下限は0.1mol/L、より好ましい上限は0.5mol/Lである。
上記低重合度化工程において、塩基性溶液に用いる塩基性物質は特に限定されず、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化カルシウム等のアルカリ土類金属の水酸化物や、オルソ珪酸ナトリウム、メタ珪酸ナトリウム、セスキ珪酸ナトリウム、一号珪酸ナトリウム、二号珪酸ナトリウム、三号珪酸ナトリウム等の珪酸塩や、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム等のリン酸塩や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の炭酸塩や、ホウ酸ナトリウム等のホウ酸塩や、アンモニア、ヒドロキシアミン等の無機窒素化合物や、水溶性の第一級アミン、第二級アミン、第三級アミン、及び、上記第三級アミン等にアルキル基が結合した第四級アミン等が挙げられる。なかでも、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物であることが好適であり、水酸化ナトリウム、水酸化カリウムがより好適である。上記塩基性物質は単独で用いてもよいし、二種以上を組み合わせてもよい。
上記塩基性溶液に含有される溶剤は、ポリビニルアルコールを溶解するものであればよいが、得られる低重合度化した変性ポリビニルアルコールをアセタール化する際に溶剤置換をする必要を無くすためにアセタール化の溶剤と同一の溶剤を用いることが好ましい。具体的には、水系溶剤が好適に用いられる。
上記過酸化水素の添加量は目的のポリビニルアセタールの重合度に応じて変えることができるが、上記塩基性溶液中の過酸化水素濃度(過酸化水素の最大濃度)の好ましい上限は0.1mol/Lである。上記塩基性溶液中の過酸化水素濃度が0.1mol/Lを超えると、過酸化水素が酸素を発生し、ポリビニルアルコールの界面活性機能により形成された気泡が長時間残る場合があり、該気泡によって、未溶解のポリビニルアルコールが生じ、得られるポリビニルアセタールが溶剤に対する溶解性に劣るものとなることがある。また、上記塩基性溶液中の過酸化水素濃度が0.1mol/Lを超えると、後の工程でアセタール化が均一に進まず、アセタール化度や析出粒子サイズにばらつきが発生し、得られるポリビニルアセタールが溶剤に対する溶解性に劣るものとなることがある。上記塩基性溶液中の過酸化水素濃度のより好ましい上限は0.05mol/Lである。
上記過酸化水素は、例えば、反応初期に一括で添加してもよいし、反応が進むにつれて分割して添加してもよいし、連続的に滴下しながら添加してもよい。一括添加する場合に上記塩基性溶液中の過酸化水素濃度が0.1mol/Lを超える場合には、分割添加又は連続滴下することによって上記過酸化水素濃度の濃度を0.1mol/L以下とすることができる。
上記低重合度化工程において、上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度の好ましい下限は30℃、好ましい上限は100℃である。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度が30℃未満であると、ポリビニルアルコールを低重合度化するために必要な時間が長時間となることがある。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度が100℃を超えると、溶剤が揮発して後のアセタール化工程においてポリビニルアセタールの未溶解物が発生し、得られるポリビニルアセタールの溶剤に対する溶解性に悪影響が出ることがある。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度のより好ましい下限は40℃、より好ましい上限は95℃である。
上記低重合度化工程において、上記ポリビニルアルコールを過酸化水素と接触させる時間は、目的のポリビニルアセタールの重合度に応じて変更することができるが、10分~4時間行えば上記低重合度化工程で目的とする低重合度化した変性ポリビニルアルコールを得ることができる。
本発明の変性ポリビニルアルコールの製造方法を用いることにより、粒子を粗大化させたり着色したりすることなく低重合度かつ高いアセタール化度を有し、溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコールが得られる。
本発明の変性ポリビニルアセタールは、分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有し、かつ、ケン化度が99.95モル%以上、1,2-グリコール結合の含有量が1.4モル%以下である変性ポリビニルアルコールをアセタール化してなるものである。
以下に本発明の変性ポリビニルアセタールを詳述する。
本発明者らは、分子末端に特定の構造を有し、かつ、ケン化度及び1,2-グリコール結合の含有量が所定の範囲内である変性ポリビニルアルコールをアセタール化して得られる変性ポリビニルアセタールは、反応阻害が起こらないことから、着色や粒子の粗大化をほとんど起こすことなく、低重合度で溶剤への溶解性に優れることを見出した。
また、このような変性ポリビニルアセタールは、優れた製膜性を有しつつ、高い弾性、機械的強度を有するグリーンシートが得られることを見出し、本発明を完成させるに至った。
上記変性ポリビニルアルコールは、分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有する。
分子末端にこのような官能基を有することにより、極性の変化により、アセタール化における溶液の溶解性や、溶液の糸切れ性が向上する等の効果がある。なお、分子末端に上述の官能基を有することは、例えば、H-及び13C-NMR等を用いることで確認することができる。
上記変性ポリビニルアルコールのケン化度の下限は99.95モル%である。
上記ケン化度が99.95モル%未満であると、残存するアセチル基がポリビニルアルコールの水酸基による分子間相互作用を阻害するため、アセタール化において、所望の粘度のポリビニルアセタールが得られないことがある。
上記変性ポリビニルアルコールの重合度の好ましい下限は80、好ましい上限は4000である。上記変性ポリビニルアルコールの重合度が80未満であると、アセタール化が困難となることがある。上記ポリビニルアルコールの重合度が4000を超えると、既存の重合法によっては連鎖移動反応のため合成できず工業的に入手できないことがある。より好ましい下限は100、より好ましい上限は3000である。
上記変性ポリビニルアルコールは、1,2-グリコール結合の含有量の上限が1.4モル%である。上記1,2-グリコール結合の含有量が1.4モル%を超えると、残存する1,2-グリコール結合がポリビニルアルコールの水酸基による分子間相互作用を阻害するため、アセタール化の際に、所望の粘度のポリビニルアセタールが得られないことがある。上記変性ポリビニルアルコールの1,2-グリコール結合の含有量は、好ましい下限が0.55モル%、好ましい上限が1.3モル%である。より好ましい上限が1.2モル%である。
なお、上記1,2-グリコール結合の含有量は、例えば、H-及び13C-NMR等を用いることで確認することができる。
本発明の変性ポリビニルアセタールは、上記変性ポリビニルアルコールをアセタール化することで得られるものである。以下、このアセタール化のことをアセタール化工程ともいう。
上記アセタール化工程としては、例えば、酸触媒を用いて酸性条件にした系において、上記変性ポリビニルアルコールをアルデヒドと反応させてアセタールする方法等が挙げられる。
上記アセタール化工程において、上記変性ポリビニルアルコールをアルデヒドと反応させてアセタール化し、変性ポリビニルアセタールを得る方法としては、従来公知の方法を使用することができる。例えば、変性ポリビニルブチラールを得る場合は、過酸化水素により低重合度化したポリビニルアルコールを1~25重量%含む水溶液を調製し、-5~60℃の温度範囲で酸触媒、及び、ブチルアルデヒドを接触させて20分~6時間反応を進行させ、その後に温度を10~50℃上昇させて更に30分~5時間熟成反応させて反応を完了し、好ましくは冷却工程を経た後、析出した変性ポリビニルブチラールを洗浄する方法が挙げられる。
上記酸触媒は特に限定されず、塩酸等のハロゲン化水素や、硝酸、硫酸等の鉱酸や、ギ酸、酢酸、プロピオン酸等のカルボン酸や、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、パラトルエンスルホン酸等のスルホン酸や、リン酸等が挙げられる。これらの酸触媒は、単独で用いられてもよく、2種以上の化合物を併用してもよい。なかでも、塩酸、硝酸、硫酸が好適であり、塩酸がより好適である。
上記アルデヒドは、例えば、炭素数1~19の直鎖状、分枝状、環状飽和、環状不飽和、又は、芳香族のアルデヒドが挙げられる。具体的には例えば、ホルムアルデヒド、アセトアルデヒド、プロピオニルアルデヒド、n-ブチルアルデヒド、イソブチルアルデヒド、tert-ブチルアルデヒド、ベンズアルデヒド、シクロヘキシルアルデヒド等が挙げられる。上記アルデヒドは単独で用いてもよいし、2種以上を併用してもよい。また、上記アルデヒドはホルムアルデヒドを除き、1以上の水素原子がハロゲン等により置換されたものであってもよい。
本発明の変性ポリビニルアセタールのアセタール化度は、上記変性ポリビニルアルコールに対する上記アルデヒドの配合量を適宜変更することにより調整することができるが、好ましい下限は60モル%、好ましい上限は75モル%である。上記アセタール化度が60モル%未満であると、残存する水酸基の効果により、溶剤溶解時に溶解に時間が掛かったり、不溶解性樹脂を多数形成したりすることがあり、75モル%を超えると、残存するアルデヒドが分子間アセタールを形成し、ロットごとの粘度が安定して生産できないことがある。
本発明の変性ポリビニルアセタールの水酸基量の好ましい下限は25モル%、好ましい上限は40モル%である。上記水酸基量が25モル%未満であると、残存するアルデヒドが分子間アセタールを形成し、ロットごとの粘度が安定して生産できないことがあり、40モル%を超えると、溶剤溶解時に溶解に時間が掛かったり、不溶解性樹脂を多数形成したりすることがある。
本発明の変性ポリビニルアセタールは、例えば、塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化することで、変性ポリビニルアルコールを作製する工程1、及び、酸触媒を用いて酸性条件にした系において、前記工程1で低重合度化した変性ポリビニルアルコールをアルデヒドと反応させてアセタール化する工程2を有する方法によって製造することができる。このような変性ポリビニルアセタールの製造方法もまた本発明の1つである。
本発明者らは、ポリビニルアルコールを酸触媒の存在下においてアルデヒドと接触させて反応させるポリビニルアセタールの製造方法において、アルデヒドと反応させるポリビニルアルコールとして、塩基性溶液中にて過酸化水素と接触させることによって低重合度化した変性ポリビニルアルコールを用いることにより、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れる変性ポリビニルアセタールを製造することができることを見出し、本発明を完成させるに至った。
本発明の変性ポリビニルアセタールの製造方法は、塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化することで、変性ポリビニルアルコールを作製する工程1を有する。
上記ポリビニルアルコールは特に限定されないが、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、イソ酪酸ビニル、ピバリン酸ビニル、ラウリル酸ビニル、ステアリン酸ビニル、安息香酸ビニル等を、溶液重合法、塊状重合法、懸濁重合法、乳化重合法等により重合して得られたポリビニルエステルをアルカリ又は酸けん化することにより製造された樹脂等の従来公知のポリビニルアルコールを用いることができる。
上記ポリビニルアルコールは、完全けん化されていてもよいが、少なくとも主鎖の1カ所にメソ、ラセミ位に対して2連の水酸基を有するユニットが最低1ユニットあれば完全けん化されている必要はなく、部分けん化ポリビニルアルコールであってもよい。また、上記ポリビニルアルコールとしては、エチレン-ビニルアルコール共重合体、部分けん化エチレン-ビニルアルコール共重合体等のビニルエステルと共重合可能なモノマーとビニルエステルとの共重合体のけん化物も用いることができる。
なお、上記ポリビニルアルコールの重合度の好ましい下限は200、好ましい上限は4000であり、より好ましい下限は300、より好ましい上限は3000である。
上記工程1において、ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液中のポリビニルアルコールの濃度の好ましい下限は1重量%、好ましい上限は25重量%である。上記工程1における塩基性溶液中のポリビニルアルコールの濃度が1重量%未満であると、得られるポリビニルアルコールを工程2でアセタール化する際の反応効率が悪くなることがある。上記工程1における塩基性溶液中のポリビニルアルコールの濃度が25重量%を超えると、溶液の粘度が高くなりすぎて攪拌することが困難となり均一に低重合度化することができなくなることがある。上記工程1における塩基性溶液中のポリビニルアルコールの濃度のより好ましい下限は3重量%、より好ましい上限は20重量%、更に好ましい下限は5重量%、更に好ましい上限は17重量%である。
上記ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液のOHイオン濃度の好ましい下限は0.01mol/L、好ましい上限は1mol/Lである。上記塩基性溶液のOHイオン濃度が0.01mol/L未満であるとポリビニルアルコールの低重合度化が進まず、目的のポリビニルアセタールの重合度が得られないことがある。上記塩基性溶液のOHイオン濃度が1mol/Lを超えると、工程2において得られるポリビニルアセタールがイオン成分を多く含むものとなり、溶剤に対する溶解性に悪影響が出たり、工程2において系を酸性条件にするために必要となる酸触媒の量が多くなり、コストアップにつながったりする。上記塩基性溶液のOHイオン濃度のより好ましい下限は0.1mol/L、より好ましい上限は0.5mol/Lである。
上記工程1において、塩基性溶液に用いる塩基性物質は特に限定されず、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物や、水酸化カルシウム等のアルカリ土類金属の水酸化物や、オルソ珪酸ナトリウム、メタ珪酸ナトリウム、セスキ珪酸ナトリウム、一号珪酸ナトリウム、二号珪酸ナトリウム、三号珪酸ナトリウム等の珪酸塩や、リン酸二水素ナトリウム、リン酸水素二ナトリウム、リン酸三ナトリウム等のリン酸塩や、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム等の炭酸塩や、ホウ酸ナトリウム等のホウ酸塩や、アンモニア、ヒドロキシアミン等の無機窒素化合物や、水溶性の第一級アミン、第二級アミン、第三級アミン、及び、上記第三級アミン等にアルキル基が結合した第四級アミン等が挙げられる。なかでも、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物であることが好適であり、水酸化ナトリウム、水酸化カリウムがより好適である。上記塩基性物質は単独で用いてもよいし、二種以上を組み合わせてもよい。
上記塩基性溶液に含有される溶剤は、ポリビニルアルコールを溶解するものであればよいが、得られる低重合度化した変性ポリビニルアルコールを工程2においてアセタール化する際に溶剤置換をする必要を無くすためにアセタール化の溶剤と同一の溶剤を用いることが好ましい。具体的には、水系溶剤が好適に用いられる。
上記過酸化水素の添加量は目的の変性ポリビニルアセタールの重合度に応じて変えることができるが、上記塩基性溶液中の過酸化水素濃度(過酸化水素の最大濃度)の好ましい上限は0.5mol/Lである。上記塩基性溶液中の過酸化水素濃度が0.5mol/Lを超えると、過酸化水素が酸素を発生し、ポリビニルアルコールの界面活性機能により形成された気泡が長時間残る場合があり、該気泡によって、未溶解のポリビニルアルコールが生じ、工程2で得られる変性ポリビニルアセタールが溶剤に対する溶解性に劣るものとなることがある。また、上記塩基性溶液中の過酸化水素濃度が0.5mol/Lを超えると、工程2におけるアセタール化が均一に進まず、アセタール化度や析出粒子サイズにばらつきが発生し、得られる変性ポリビニルアセタールが溶剤に対する溶解性に劣るものとなることがある。上記塩基性溶液中の過酸化水素濃度のより好ましい上限は0.3mol/Lである。
上記過酸化水素は、例えば、反応初期に一括で添加してもよいし、反応が進むにつれて分割して添加してもよいし、連続的に滴下しながら添加してもよい。一括添加する場合に上記塩基性溶液中の過酸化水素濃度が0.5mol/Lを超える場合には、分割添加又は連続滴下することによって上記過酸化水素濃度の濃度を0.5mol/L以下とすることができる。
上記工程1において、上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度の好ましい下限は30℃、好ましい上限は100℃である。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度が30℃未満であると、ポリビニルアルコールを低重合度化するために必要な時間が長時間となることがある。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度が100℃を超えると、溶剤が揮発して工程2においてポリビニルアセタールの未溶解物が発生し、得られるポリビニルアセタールの溶剤に対する溶解性に悪影響が出ることがある。上記ポリビニルアルコールを上記過酸化水素と接触させる際の温度のより好ましい下限は40℃、より好ましい上限は95℃である。
上記工程1において、上記ポリビニルアルコールを過酸化水素と接触させる時間は、目的の変性ポリビニルアセタールの重合度に応じて変更することができるが、10分~4時間行えば上記工程1で目的とする低重合度化した変性ポリビニルアルコールを得ることができる。
本発明の変性ポリビニルアセタールの製造方法は、酸触媒を用いて酸性条件にした系において、前記工程1で低重合度化した変性ポリビニルアルコールをアルデヒドと反応させてアセタール化する工程2を有する。
上記工程2において、上記低重合度化した変性ポリビニルアルコールをアルデヒドと反応させてアセタール化し、変性ポリビニルアセタールを得る方法としては、従来公知の方法を使用することができる。例えば、変性ポリビニルブチラールを得る場合は、過酸化水素により低重合度化した変性ポリビニルアルコールを1~25重量%含む水溶液を調製し、-5~30℃の温度範囲で酸触媒、及び、ブチルアルデヒドを接触させて20分~6時間反応を進行させ、その後に温度を10~50℃上昇させて更に30分~5時間熟成反応させて反応を完了し、好ましくは冷却工程を経た後、析出した変性ポリビニルブチラールを洗浄する方法が挙げられる。
上記工程2において、酸触媒を用いて酸性条件にする際の系の過酸化水素濃度は0.1mol/L以下であることが好ましい。酸触媒を用いて酸性条件にする際の系の過酸化水素濃度が0.1mol/Lを超えている場合、過酸化水素濃度が低下せず、アセタール化が阻害され、得られる変性ポリビニルアセタールのアセタール化度が低くなったり、生成したポリビニルアセタールの形状が粉体では得られずに粗大粒子となり、洗浄や乾燥が充分にできず、品質に悪影響を及ぼしたりすることがある。
上記工程2において、上記低重合度化した変性ポリビニルアルコールをアルデヒドと反応させる際の系の過酸化水素濃度は0.1mol/L以下であることが好ましい。上記過酸化水素濃度が0.1mol/Lを超えている場合、変性ポリビニルアルコールとアルデヒドとが反応する前に、アルデヒドが過酸化水素と付加体を形成することによってアセタール化が阻害され、得られる変性ポリビニルアセタールのアセタール化度が低くなったり、生成したポリビニルアセタールの形状が粉体では得られずに粗大粒子となり、洗浄や乾燥が充分にできず、品質に悪影響を及ぼしたりすることがある。
上記酸触媒を用いて酸性条件にする際の系の過酸化水素濃度、及び、低重合度化した変性ポリビニルアルコールをアルデヒドと反応させる際の系の過酸化水素濃度を0.1mol/L以下とする方法としては、上記工程1において添加する過酸化水素の量や、工程1の時間や、工程1の温度を適宜調整することによって、過酸化水素がポリビニルアルコールの低重合度化によって消費されることにより上記濃度範囲となるよう工程1の条件を設定すればよい。また、工程1から工程2へと移行する段階において過酸化水素濃度が0.1mol/Lを超えている場合には、過酸化水素の分解を促進する化合物を添加して過酸化水素濃度を調整する方法や、過酸化水素と酸化還元反応を起こす化合物を添加して過酸化水素濃度を調整する方法によっても、過酸化水素濃度を上記範囲以内に調整することができる。
上記過酸化水素の分解を促進する化合物としては、二酸化マンガンやカタラーゼ等が挙げられ、上記過酸化水素と酸化還元反応を起こす化合物としては、過マンガン酸カリウムや重クロム酸カリウム等が挙げられる。
上記工程2において、アセタール化を行う場合、変性ポリビニルアルコールとアルデヒドとを接触させる際の温度は、用いるアルデヒドの沸点以下であることが好ましい。
上記温度範囲とすることで、原料であるポリビニルアルコールの重合度に依存せず、溶液の粘度を制御することが可能となる。
上記アルデヒドを添加する際の温度がアルデヒドの沸点を超えると、アルデヒドが添加時に揮発し、アセタール化反応が充分に進行しないことがある。
具体的には、上記変性ポリビニルアルコールとアルデヒドとを接触させる際の温度を5~70℃とすることが好ましい。5℃未満であると、変性ポリビニルアルコールがゲルを形成し、未溶解物の形成につながった結果、バインダーとしたときの製膜性を悪化させることがあり、70℃を超えると、ポリビニルアセタール合成に使用される代表的なアルデヒドが揮発してしまい、充分にアセタール化反応が進行しないことがある。より好ましくは10~65℃である。
なお、上記工程2に使用される酸触媒、アルデヒドとしては、上述したアセタール化工程で使用のものと同様のものを使用することができる。
本発明の変性ポリビニルアセタールをフィルム状に成形することで、ポリビニルアセタールフィルムが得られる。このようなポリビニルアセタールフィルムもまた本発明の1つである。
なお、本発明のポリビニルアセタールフィルムは、変性ポリビニルアセタールのケン化度の下限が99.95モル%であることにより、高弾性のポリビニルアセタールフィルムとすることができる。
上記変性ポリビニルアセタールのケン化度の下限が99.95モル%未満であると、変性ポリビニルアセタール間の水酸基に由来する水素結合の効果が低下し、分子鎖間の結合力が小さくなり、その結果、弾性率が低下する。
また、本発明のポリビニルアセタールフィルムは、変性ポリビニルアセタールの1,2-グリコール結合の含有量の上限が1.4モル%であることにより、柔軟性に優れるポリビニルアセタールフィルムとすることができる。上記1,2-グリコール結合の含有量が1.4モル%を超えると、残存する1,2-グリコール結合がポリビニルアセタール間の水酸基に由来する水素結合の効果を低下させ、分子鎖間の結合力が小さくなる。その結果、フィルムにしたときの弾性率が低下する。
また、上記変性ポリビニルアセタールは、1,2-グリコール結合の含有量の好ましい下限が0.55モル%である。上記1,2-グリコール結合の含有量が0.55モル%未満であると、分子鎖同士が充分にほぐれず、溶解性が低下する。その結果、未溶解物が生成し、シート強度の最大点応力の低下につながることがある。
また、本発明のポリビニルアセタールフィルムは、例えば、本発明の変性ポリビニルアセタールを40℃以上で加熱溶解する工程を有する方法によって製造される。ここで、上記加熱溶解の温度が40℃未満であると、分子鎖同士の水素結合が充分にほぐれず、未溶解物が生成し、その結果、シート強度の最大点応力の低下につながることがある。
上記加熱溶解する際の温度を40℃以上とすることで、柔軟性に優れるポリビニルアセタールフィルムとすることができる。
本発明の変性ポリビニルアセタールに、セラミック粉末及び有機溶剤を添加することで、セラミックスラリー組成物が得られる。このようなセラミックスラリー組成物もまた本発明の1つである。
本発明のセラミックスラリー組成物は、セラミック粉末を含有する。
上記セラミック粉末としては特に限定されず、例えば、チタン酸バリウム、アルミナ、ジルコニア、ガラス粉末等が挙げられる。
本発明のセラミックスラリー組成物における上記セラミック粉末の含有量としては特に限定されないが、上記樹脂成分、及び、上記セラミック粉末の合計に対して好ましい下限は50重量%、好ましい上限は99重量%である。50重量%未満であると、充分なシート強度を持つセラミックグリーンシートを得ることができるが、脱脂焼成後のシートの体積収縮が大きくなることがある。また、グリーンシートにクラックが入り易くなるため、セラミックス層を形成することが難しくなることがある。99重量%を超えるとセラミック粉末を結着することが難しくなることがある。
より好ましい下限は80重量%、より好ましい上限は97重量%であり、更に好ましい下限は90重量%、更に好ましい上限は95重量%である。
本発明のセラミックスラリー組成物は、有機溶剤を含有する。
上記有機溶剤としては特に限定されず、例えば、上記ポリビニルアセタール樹脂を溶解できるものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、ジプロピルケトン、ジイソブチルケトン等のケトン類、メタノール、エタノール、イソプロパノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸ブチル、ブタン酸メチル、ブタン酸エチル、ブタン酸ブチル、ペンタン酸メチル、ペンタン酸エチル、ペンタン酸ブチル、ヘキサン酸メチル、ヘキサン酸エチル、ヘキサン酸ブチル、酢酸2-エチルヘキシル、酪酸2-エチルヘキシル等のエステル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ、テルピネオール、ジヒドロテルピネオール、ブチルセルソルブアセテート、ブチルカルビトールアセテート、テルピネオールアセテート、ジヒドロテルピネオールアセテート等が挙げられる。特に、アルコール類、ケトン類、芳香族炭化水素類及びこれらの混合溶剤が塗工性、乾燥性の面から見て好ましい。
本発明のセラミックスラリー組成物には、必要に応じて、分散剤、酸化防止剤、紫外線吸収剤、界面活性剤、充填剤等を適宜添加してもよく、場合によってはエポキシやアクリルなどの他樹脂を少量添加しても構わない。
本発明のセラミックスラリー組成物を製造する方法としては、特に限定されず、例えば、上記変性ポリビニルアセタール樹脂、セラミック粉末、有機溶剤及び必要に応じて添加する各種添加剤をボールミル、ブレンダーミル、3本ロール等の各種混合機を用いて混合する方法が挙げられる。
本発明のセラミックスラリー組成物を製造する場合、変性ポリビニルアセタール樹脂を添加して混合する工程において、変性ポリビニルアセタールを40℃以上で加熱溶解する工程を行うことが好ましい。
上記加熱溶解する際の温度を40℃以上とすることで、製膜性に優れるセラミックスラリー組成物とすることができる。
また、本発明のセラミックスラリー組成物を用いてなるセラミックグリーンシートもまた、本発明の1つである。
本発明のセラミックグリーンシートの製造方法としては、例えば、セラミックスラリー組成物を、離型処理したポリエステルフィルム上に、乾燥後の厚みが適当になるように塗工し常温で1時間風乾する。次いで熱風乾燥機を用いて80℃で3時間乾燥させる。続いて120℃で2時間乾燥させる。次いで上記硬化性樹脂を硬化させるために紫外線照射及び/又はセラミックグリーンシート自体を加熱する方法等が挙げられる。
本発明によれば、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコールを提供することができる。また、本発明によれば、該変性ポリビニルアルコールの製造方法を提供することができる。
また、本発明によれば、低重合度で溶剤への溶解性に優れ、高い弾性、機械的強度及び製膜性を有する変性ポリビニルアセタールを提供することができる。また、本発明は、該変性ポリビニルアセタールの製造方法及び該変性ポリビニルアセタールを用いたポリビニルアセタールフィルム、ポリビニルアセタールフィルムの製造方法、セラミックスラリー組成物、セラミックスラリー組成物の製造方法及びセラミックグリーンシートを提供することができる。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(実施例1)
(ポリビニルアルコール水溶液の調製)
ポリビニルアルコール(ケン化度99%、重合度1700)100g、イオン交換水865gを2Lのセパラブルフラスコにて95℃で1時間、150rpmで加熱攪拌することで、ポリビニルアルコール水溶液を得た。
(変性工程)
次いで、攪拌したまま温度を60℃とした後、20重量%の水酸化ナトリウム水溶液を投入して液中のOHイオン濃度を0.1mol/Lとした。次いで、30重量%濃度の過酸化水素水5.6gを添加し、溶液中の過酸化水素濃度を0.025mol/Lとした。過酸化水素の添加終了後、さらに2時間反応させ、変性ポリビニルアルコールを得た。
(実施例2及び3)
実施例1の(変性工程)において、水酸化ナトリウム水溶液、過酸化水素水の添加量を表1に示すように変更した以外は、実施例1と同様にして、変性ポリビニルアルコールを得た。
(比較例1)
実施例1の(変性工程)において、水酸化ナトリウム水溶液を添加せず、過酸化水素水のみを添加し、60℃で2時間加熱した以外は実施例1と同様にして、変性ポリビニルアルコールを得た。
(比較例2)
実施例1の(変性工程)において、過酸化水素水を添加せず、水酸化ナトリウム水溶液のみを添加し、60℃で2時間加熱した以外は実施例1と同様にして、変性ポリビニルアルコールを得た。
<評価>
実施例及び比較例で製造した変性ポリビニルアルコールについて、以下の評価を行った。結果を表1に示した。
(1)重合度
エタノール25gに得られたポリビニルアルコール2gを加え、次いで、塩酸ヒドロキシルアミン15gをイオン交換水100gに溶解した溶液10mlと塩酸5mlとを加え、沸騰水浴中で3時間加熱した。冷却後、アンモニア水で中和してからメタノールを加えて樹脂を析出させ、更にメタノールで洗浄してから乾燥させた樹脂を水100gに加熱溶解させた。得られた溶液に対してJIS K6726に準拠して重合度を測定した。
(2)NMR測定
得られたポリビニルアルコールの溶液を5重量%に希釈した後、5倍量の体積のアセトン中に再沈殿し、析出させた。析出させたポリビニルアルコールを回収した後、80℃、4時間で乾燥し、DMSO-dに溶解させた。得られたポリビニルアルコール溶液について、H-及び13C-NMR(日本電子社製、JNM-AL)を用いて、ケン化度及び1,2-グリコール結合の含有量を測定した。また、ポリビニルアルコールの分子末端の構造について解析した。
(3)ポリビニルアセタール(ポリビニルブチラール)の製造
実施例及び比較例で得られたポリビニルアルコールの溶液に、25重量%の塩酸130gとブチルアルデヒド58gとを添加し180分間アセタール化反応させた。その後、60分かけて40℃にまで昇温し、その温度で更に120分反応させ、室温にまで冷却した後に析出した樹脂を濾過により回収し、樹脂分をイオン交換水で洗浄した。次いで、得られた樹脂を炭酸ナトリウム水溶液で洗浄した後、再度水洗し、乾燥させてポリビニルブチラールを得た。得られたポリビニルブチラールについて、以下の(3-1)~(3-4)の評価を行った。
(3-1)ブチラール化度
得られたポリビニルブチラール10mgを重水素化ジメチルスルホキシド1.0gに溶解し、H-NMR測定によりブチラール化度を測定した。
(3-2)樹脂粒子径
得られたポリビニルブチラールの4重量%の樹脂懸濁液に、0.1重量%の界面活性剤(花王社製:エマール)を加え、10分間超音波洗浄機により分散させ、粒度分布系(堀場製作所社製 LA950V2)を用いて平均粒子径を測定し樹脂粒子径とした。
(3-3)着色性
得られたポリビニルブチラールの着色を目視にて評価した。白色である場合を「○」、わずかに黄変が見られる場合を「△」、黄又は茶色に着色している場合を「×」として評価した。
(3-4)溶剤溶解性
得られたポリビニルブチラール15gをエタノールとトルエンの混合溶剤(重量混合比1:1)135gに加え、室温にて2時間振とうした後に静止し、目視により観察した。溶剤に溶解していない樹脂が全く無い場合を「○」、溶剤に溶解していない樹脂がわずかに見られる場合を「△」、溶剤に溶解していない樹脂が多数存在する場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000001
(実施例4)
(ポリビニルアルコール水溶液の調製)
ポリビニルアルコール(ケン化度99%、重合度1700)100g、イオン交換水865gを2Lのセパラブルフラスコにて95℃で1時間、150rpmで加熱攪拌することで、ポリビニルアルコール水溶液を得た。
(変性工程)
次いで、攪拌したまま温度を60℃とした後、20重量%の水酸化ナトリウム水溶液を投入して液中のOHイオン濃度を0.1mol/Lとした。次いで、30重量%濃度の過酸化水素水5.6gを添加し、溶液中の過酸化水素濃度を0.05mol/Lとした。過酸化水素の添加終了後、さらに2時間反応させ、変性ポリビニルアルコールを含有する溶液を得た。
(アセタール化工程)
変性ポリビニルアルコールを含有する溶液を70℃に加熱した後、25重量%の塩酸130gとブチルアルデヒド58gとを添加し、徐々に3℃まで冷却しながら180分間アセタール化反応させた。その後、60分かけて40℃にまで昇温し、その温度で更に120分反応させ、室温にまで冷却した後に析出した樹脂を濾過により回収し、樹脂分をイオン交換水で洗浄した。次いで、得られた樹脂を炭酸ナトリウム水溶液で洗浄した後、再度水洗し、乾燥させて変性ポリビニルブチラールを得た。
(実施例5)
実施例4の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を60℃に変更した以外は、実施例4と同様にして変性ポリビニルブチラールを得た。
(実施例6)
実施例4の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を15℃に変更した以外は実施例4と同様にして変性ポリビニルブチラールを得た。
(実施例7)
実施例4の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を5℃に変更した以外は実施例4と同様にして変性ポリビニルブチラールを得た。
(比較例3)
比較例1と同様の方法でポリビニルアルコール水溶液を得た。
得られたポリビニルアルコール水溶液について、実施例4と同様の方法で(アセタール化工程)を行うことでポリビニルブチラールを得た。
(比較例4)
比較例3の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を15℃に変更した以外は、実施例4と同様にしてポリビニルブチラールを得た。
(比較例5)
(ポリビニルアルコール水溶液の調製)
ポリビニルアルコール(ケン化度98.2%、重合度500)100g、イオン交換水865gを2Lのセパラブルフラスコにて95℃で1時間、150rpmで加熱攪拌することで、ポリビニルアルコール水溶液を得た。
(アセタール化工程)
ポリビニルアルコールを含有する溶液を70℃に加熱した後、25重量%の塩酸130gとブチルアルデヒド55gとを60度の温度において添加し、冷却しながら180分間アセタール化反応させた。その後、60分かけて40℃にまで昇温し、その温度で更に120分反応させ、室温にまで冷却した後に析出した樹脂を濾過により回収し、樹脂分をイオン交換水で洗浄した。次いで、得られた樹脂を炭酸ナトリウム水溶液で洗浄した後、再度水洗し、乾燥させてポリビニルブチラールを得た。
(比較例6)
比較例5の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を15℃に変更した以外は、実施例4と同様にしてポリビニルブチラールを得た。
(実施例8)
表2に記載の濃度となるように、過酸化水素及び水酸化ナトリウムを添加した以外は、実施例4と同様にしてポリビニルブチラールを得た。
(実施例9)
実施例8の(アセタール化工程)において、ブチルアルデヒドを添加する際の温度を15℃に変更した以外は、実施例4と同様にしてポリビニルブチラールを得た。
<評価>
実施例4~9及び比較例3~6で使用したポリビニルアルコール、並びに、実施例4~9及び比較例3~6で製造したポリビニルブチラールについて、以下の評価を行った。結果を表2に示した。
(1)NMR測定
実施例及び比較例で使用したポリビニルアルコールの溶液を5重量%に希釈した後、5倍量の体積のアセトン中に再沈殿し、析出させた。析出させたポリビニルアルコールを回収した後、80℃、4時間で乾燥し、DMSO-dに溶解させた。得られたポリビニルアルコール溶液について、H-及び13C-NMR(日本電子社製、JNM-AL)を用いて、ケン化度及び1,2-グリコール結合の含有量を測定した。また、ポリビニルアルコールの分子末端の構造について解析した。
(2)重合度
エタノール25gに得られたポリビニルブチラール2gを加え、次いで、塩酸ヒドロキシルアミン15gをイオン交換水100gに溶解した溶液10mlと塩酸5mlとを加え、沸騰水浴中で3時間加熱した。冷却後、アンモニア水で中和してからメタノールを加えて樹脂を析出させ、更にメタノールで洗浄してから乾燥させた樹脂を水100gに加熱溶解させた。得られた溶液に対してJIS K 6726に準拠して重合度を測定した。
(3)ブチラール化度
得られたポリビニルブチラール10mgを重水素化ジメチルスルホキシド1.0gに溶解し、H-NMR測定によりブチラール化度を測定した。
(4)溶液粘度
得られたポリビニルブチラールをエタノールとトルエンとの1:1混合溶剤に溶解した10重量%溶液について、B型粘度計(Brookfield社製 DV-II+Pro)を用いて溶液温度20℃、10~120rpmの条件で溶液粘度を測定した。
(5)樹脂粒子形状
得られたポリビニルブチラールの粒子形状を目開き1mmのふるいにかけて評価した。ほぼ全ての樹脂がふるいから落下した場合を「○」、半分程度落下した場合を「△」、ほとんど落下しなかった場合を「×」として評価した。
(6)着色性
得られたポリビニルブチラールの着色を目視にて評価した。白色である場合を「○」、わずかに黄変が見られる場合を「△」、黄又は茶色に着色している場合を「×」として評価した。
(7)溶剤溶解性
得られたポリビニルブチラール15gをエタノールとトルエンの混合溶剤(重量混合比1:1)135gに加え、室温にて2時間振とうした後に静止し、目視により観察した。溶剤に溶解していない樹脂が全く無い場合を「○」、溶剤に溶解していない樹脂がわずかに見られる場合を「△」、溶剤に溶解していない樹脂が多数存在する場合を「×」として評価した。
Figure JPOXMLDOC01-appb-T000002
(実施例10)
(ポリビニルアセタールフィルムの作製)
実施例4で得られた変性ポリビニルアセタール樹脂8重量部を、トルエン50重量部とエタノール50重量部との混合溶剤に加え、50℃で加熱しながら攪拌溶解した。得られた樹脂溶液をコーターを用いて乾燥後の厚みが20μmとなるように、離形処理したPETフィルム上に塗工した。常温で10分間風乾した後、PETフィルムから剥離し、ポリビニルアセタールフィルムを得た。
(セラミックスラリー組成物の作製)
得られた変性ポリビニルアセタール樹脂8重量部を、トルエン50重量部とエタノール50重量部との混合溶剤に加え、50℃で加熱しながら攪拌溶解し、可塑剤としてジブチルフタレート4重量部を加え、攪拌溶解した。得られた樹脂溶液に、セラミック粉末としてチタン酸バリウム(BT-03、平均粒径0.3μm、堺化学工業社製)100重量部を加え、ボールミルで48時間混合してセラミックスラリー組成物を得た。
(セラミックグリーンシートの作製)
得られたセラミックスラリー組成物を、コーターを用いて乾燥後の厚みが2μmとなるように離形処理したPETフィルム上に塗工し、常温で10分間風乾した後、80℃で30分間加熱することで、セラミックグリーンシートを得た。
(実施例11~13)
実施例5~7で得られた変性ポリビニルアセタールを用いた以外は実施例10と同様にしてポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(参考例1~4)
実施例4~7で得られた変性ポリビニルアセタール樹脂を用い、(ポリビニルアセタールフィルムの作製)及び(セラミックスラリー組成物の作製)において溶解する温度を15℃とした以外は実施例10と同様にしてポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例7)
(ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートの作製)
比較例3で得られたポリビニルブチラールを用いた以外は、実施例10と同様にして、ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例8)
比較例3で得られた変性ポリビニルアセタール樹脂を用い、(ポリビニルアセタールフィルムの作製)及び(セラミックスラリー組成物の作製)において溶解する温度を15℃とした以外は実施例10と同様にしてポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例9)
(ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートの作製)
比較例5で得られたポリビニルブチラールを用いた以外は、実施例10と同様にして、ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例10)
比較例5で得られた変性ポリビニルアセタール樹脂を用い、(ポリビニルアセタールフィルムの作製)及び(セラミックスラリー組成物の作製)において溶解する温度を15℃とした以外は実施例10と同様にしてポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例11)
(ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートの作製)
比較例6で得られたポリビニルブチラールを用いた以外は、実施例10と同様にして、ポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
(比較例12)
比較例6で得られた変性ポリビニルアセタール樹脂を用い、(ポリビニルアセタールフィルムの作製)及び(セラミックスラリー組成物の作製)において溶解する温度を15℃とした以外は実施例10と同様にしてポリビニルアセタールフィルム、セラミックスラリー組成物及びセラミックグリーンシートを作製した。
実施例、参考例及び比較例で製造したポリビニルアセタールフィルム、セラミックグリーンシートについて、以下の評価を行った。結果を表3に示した。
(8)ポリビニルアセタールフィルムの引張弾性率、最大点応力、破断点伸度
JIS K 7113に準拠した方法により、TENSILON(ORIENTEC社製)を用いて、ポリビニルアセタールフィルムの引張弾性率、最大点応力、破断点伸度を測定した。
なお、試験片としては、長さ50mm×幅20mmのものを使用し、試験速度は50mm/分で行った。
(9)製膜性
得られたセラミックグリーンシートの表面を、顕微鏡を用いて観測することで、セラミックスラリー組成物の製膜性を評価した。
平滑なセラミックグリーンシートを形成されており、未溶解物等は観測されなかった場合を「○」、セラミックグリーンシートの表面に多数の未溶解物が観測された場合を「×」とした。
(10)セラミックグリーンシートの引張弾性率、最大点応力
JIS K 7113に準拠した方法により、TENSILON(ORIENTEC社製)を用いて、セラミックグリーンシート引張弾性率、最大点応力を測定した。
なお、試験片としては、長さ20mm×幅10mmのものを使用し、試験速度は50mm/分で行った。
Figure JPOXMLDOC01-appb-T000003
本発明によれば、反応阻害や着色や粒子の粗大化をほとんど引き起こすことなく低重合度で溶剤への溶解性に優れるポリビニルアセタールを製造可能な変性ポリビニルアルコール及び、該変性ポリビニルアルコールの製造方法を提供することができる。
また、本発明によれば、低重合度で溶剤への溶解性に優れ、高い弾性、機械的強度及び製膜性を有する変性ポリビニルアセタールを提供することができる。また、本発明は、該変性ポリビニルアセタールの製造方法及び該変性ポリビニルアセタールを用いたポリビニルアセタールフィルム、ポリビニルアセタールフィルムの製造方法、セラミックスラリー組成物、セラミックスラリー組成物の製造方法及びセラミックグリーンシートを提供することができる。
なお、本発明の変性ポリビニルアセタールは、セラミック用バインダー、インク塗料、銀塩フィルム等の種々の分野で使用することができる。

Claims (18)

  1. 分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有し、かつ、ケン化度が99.95モル%以上、1,2-グリコール結合の含有量が1.4モル%以下である
    ことを特徴とする変性ポリビニルアルコール。
  2. 請求項1記載の変性ポリビニルアルコールの製造方法であって、
    塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化する工程を有することを特徴とする変性ポリビニルアルコールの製造方法。
  3. 塩基性溶液のOHイオン濃度が0.01~1mol/Lであることを特徴とする請求項2記載の変性ポリビニルアルコールの製造方法。
  4. ポリビニルアルコールの低重合度化は、ポリビニルアルコールの溶解とともに行うことを特徴とする請求項2又は3記載の変性ポリビニルアルコールの製造方法。
  5. ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液中の過酸化水素濃度が0.1mol/Lを超えないことを特徴とする請求項2、3又は4記載の変性ポリビニルアルコールの製造方法。
  6. 分子末端に水酸基、アルデヒド基、カルボキシル基及びラクトン環基からなる群から選択される少なくとも1種の官能基を有し、かつ、ケン化度が99.95モル%以上、1,2-グリコール結合の含有量が1.4モル%以下である変性ポリビニルアルコールをアセタール化してなることを特徴とする変性ポリビニルアセタール。
  7. 請求項6記載の変性ポリビニルアセタールの製造方法であって、
    塩基性溶液中にてポリビニルアルコールを過酸化水素と接触させて低重合度化することで、変性ポリビニルアルコールを作製する工程1、及び、
    酸触媒を用いて酸性条件にした系において、前記工程1で低重合度化した変性ポリビニルアルコールをアルデヒドと反応させてアセタール化する工程2を有する
    ことを特徴とする変性ポリビニルアセタールの製造方法。
  8. 塩基性溶液のOHイオン濃度が0.01~1mol/Lであることを特徴とする請求項7記載の変性ポリビニルアセタールの製造方法。
  9. 工程1において、ポリビニルアルコールの低重合度化は、ポリビニルアルコールの溶解とともに行うことを特徴とする請求項7又は8記載の変性ポリビニルアセタールの製造方法。
  10. 工程1において、ポリビニルアルコールを過酸化水素と接触させる際の塩基性溶液中の過酸化水素濃度が0.5mol/Lを超えないことを特徴とする請求項7、8又は9記載の変性ポリビニルアセタールの製造方法。
  11. 工程2において、酸触媒を用いて系を酸性条件にする際の系の過酸化水素濃度が0.1mol/L以下であることを特徴とする請求項7、8、9又は10記載の変性ポリビニルアセタールの製造方法。
  12. 工程2において、変性ポリビニルアルコールとアルデヒドとを接触させる際の系の過酸化水素濃度が0.1mol/L以下であることを特徴とする請求項7、8、9、10又は11記載の変性ポリビニルアセタールの製造方法。
  13. 工程2において、変性ポリビニルアルコールとアルデヒドとを接触させる際の温度を5~70℃とすることを特徴とする請求項7、8、9、10、11又は12記載の変性ポリビニルアセタールの製造方法。
  14. 請求項6記載の変性ポリビニルアセタールを用いてなることを特徴とするポリビニルアセタールフィルム。
  15. 請求項14記載のポリビニルアセタールフィルムの製造方法であって、請求項6記載の変性ポリビニルアセタールを40℃以上で加熱溶解する工程を有することを特徴とするポリビニルアセタールフィルムの製造方法。
  16. 請求項6記載の変性ポリビニルアセタール、セラミック粉末及び有機溶剤を含有することを特徴とするセラミックスラリー組成物。
  17. 請求項16記載のセラミックスラリー組成物の製造方法であって、請求項6記載の変性ポリビニルアセタールを40℃以上で加熱溶解する工程を有することを特徴とするセラミックスラリー組成物の製造方法。
  18. 請求項16記載のセラミックスラリー組成物を用いてなることを特徴とするセラミックグリーンシート。
     
     
     
PCT/JP2011/071236 2010-09-27 2011-09-16 変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物 WO2012043280A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/824,498 US20130197154A1 (en) 2010-09-27 2011-09-16 Modified polyvinyl alcohol, modified polyvinyl acetal and ceramic slurry composition
CN201180046243.3A CN103124748B (zh) 2010-09-27 2011-09-16 改性聚乙烯醇、改性聚乙烯醇缩醛以及陶瓷浆料组合物
KR1020137010388A KR101902025B1 (ko) 2010-09-27 2011-09-16 변성 폴리비닐알코올, 변성 폴리비닐아세탈 및 세라믹 슬러리 조성물
JP2011544310A JP5555718B2 (ja) 2010-09-27 2011-09-16 変性ポリビニルアセタールの製造方法
EP11828840.6A EP2623524B1 (en) 2010-09-27 2011-09-16 Method for producing modified polyvinyl acetal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-215773 2010-09-27
JP2010215773 2010-09-27
JP2011080413 2011-03-31
JP2011-080413 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012043280A1 true WO2012043280A1 (ja) 2012-04-05

Family

ID=45892747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071236 WO2012043280A1 (ja) 2010-09-27 2011-09-16 変性ポリビニルアルコール、変性ポリビニルアセタール及びセラミックスラリー組成物

Country Status (7)

Country Link
US (1) US20130197154A1 (ja)
EP (1) EP2623524B1 (ja)
JP (1) JP5555718B2 (ja)
KR (1) KR101902025B1 (ja)
CN (1) CN103124748B (ja)
TW (1) TWI522371B (ja)
WO (1) WO2012043280A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067270A (ja) * 2010-09-27 2012-04-05 Sekisui Chem Co Ltd ポリビニルアセタールの製造方法及びポリビニルアセタール
CN103122171A (zh) * 2013-02-05 2013-05-29 保定宝轶塑料有限公司 溶胶-凝胶法制备纳米聚乙烯醇涂布液的方法及其涂层
CN103193905A (zh) * 2013-04-03 2013-07-10 东莞市龙怡阻燃材料有限公司 一种低粘度聚乙烯醇缩丁醛树脂、制备方法及其用途
WO2014158786A1 (en) * 2013-03-14 2014-10-02 Solutia Inc. Hydrogen peroxide as a reactive extrusion additive for poly(vinyl butyral)
WO2015151910A1 (ja) * 2014-03-31 2015-10-08 株式会社クラレ スラリー用添加剤、掘削泥水及びセメントスラリー
JPWO2016152783A1 (ja) * 2015-03-20 2018-01-11 積水化学工業株式会社 リチウム二次電池電極用組成物
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2019189625A1 (ja) * 2018-03-30 2019-10-03 積水化学工業株式会社 ポリ塩化ビニル懸濁重合用分散剤として用いるポリビニルアルコール、該ポリビニルアルコールを含む分散剤、及び該ポリビニルアルコールを用いたポリ塩化ビニルの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105900196B (zh) * 2014-03-20 2017-09-05 积水化学工业株式会社 导电糊剂
EP3352268A4 (en) * 2015-09-17 2019-02-20 Sekisui Chemical Co., Ltd. BINDER FOR ELECTRODE OF ELECTRICITY STORAGE DEVICE
KR20180129780A (ko) * 2016-03-31 2018-12-05 세키스이가가쿠 고교가부시키가이샤 폴리비닐아세탈 아이오노머 수지재, 폴리비닐아세탈 아이오노머 수지 필름 및 접합 유리
KR102279837B1 (ko) 2016-04-01 2021-07-20 세키스이가가쿠 고교가부시키가이샤 리튬 이차 전지 전극용 조성물
KR20200027947A (ko) * 2017-07-07 2020-03-13 주식회사 쿠라레 기재 필름 부착 도전 구조체 함유 필름의 제조방법
CN110310759A (zh) * 2018-08-22 2019-10-08 苏州怡拓生物传感技术有限公司 电容器用导电银浆及其制备工艺
WO2020067082A1 (ja) * 2018-09-26 2020-04-02 株式会社クラレ 可塑剤が吸収されてなるポリビニルアセタール樹脂フィルムの製造方法
CN111499780B (zh) * 2020-05-26 2023-01-24 河南省科学院化学研究所有限公司 一种聚乙烯醇缩丁醛树脂的合成方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4743638B1 (ja) * 1970-12-22 1972-11-04
JPS5728121A (en) 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol
JPS63278911A (ja) 1987-05-09 1988-11-16 Nippon Synthetic Chem Ind Co Ltd:The 超低分子量ポリビニルアルコ−ルの製造法
JPH03175404A (ja) * 1989-12-05 1991-07-30 Kuraray Co Ltd 偏光フイルムおよびその製造法
JPH061853A (ja) 1992-06-18 1994-01-11 Sekisui Chem Co Ltd ポリビニルアルコール水溶液を得る方法及びポリビニルアセタール樹脂の製造方法
JPH09110930A (ja) * 1995-10-17 1997-04-28 Unitika Chem Kk ポリビニルアセタール樹脂の製造方法
JP2007269881A (ja) 2006-03-30 2007-10-18 Kuraray Co Ltd ポリビニルアセタールの製法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983759A (en) * 1958-01-18 1961-05-09 Kurashiki Rayon Co Polyvinyl alcohol product and process
JPH0233314A (ja) * 1988-07-22 1990-02-02 Kuraray Co Ltd 高強力ポリビニルアルコール系繊維およびその製造法
JPH04114005A (ja) * 1990-09-05 1992-04-15 Kuraray Co Ltd ポリビニルアセタールおよびフイルム
JPH09249711A (ja) * 1996-03-19 1997-09-22 Mitsubishi Gas Chem Co Inc 吸水性ポリマーの分解方法
JP5079184B2 (ja) * 2000-12-06 2012-11-21 株式会社クラレ 偏光フィルム
KR100508822B1 (ko) * 2002-03-20 2005-08-17 가부시키가이샤 구라레 폴리비닐 알콜계 필름
EP1384731B1 (en) * 2002-07-23 2005-12-14 Kuraray Co., Ltd. Polyvinyl acetal and its use
JP4870919B2 (ja) * 2004-09-27 2012-02-08 積水化学工業株式会社 セラミックグリーンシート用スラリー組成物、セラミックグリーンシート及び積層セラミックコンデンサ
JP4733004B2 (ja) * 2006-11-28 2011-07-27 日本酢ビ・ポバール株式会社 脂肪族ビニルエステルの重合方法およびポリビニルアルコール系樹脂の製造方法
JP5479752B2 (ja) * 2008-02-19 2014-04-23 株式会社クラレ ビニルアルコール系重合体およびその製造方法
JP5616736B2 (ja) * 2010-09-30 2014-10-29 積水化学工業株式会社 ポリビニルアルコール系樹脂の脱色方法及びポリビニルアルコール系樹脂
JP5829086B2 (ja) * 2011-09-13 2015-12-09 積水化学工業株式会社 ポリビニルアセタールの製造方法及びポリビニルアセタール

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4743638B1 (ja) * 1970-12-22 1972-11-04
JPS5728121A (en) 1980-07-28 1982-02-15 Kuraray Co Ltd Production of low polymerization-degree polyvinyl acetate and low polymerization-degree polyvinyl alcohol
JPS63278911A (ja) 1987-05-09 1988-11-16 Nippon Synthetic Chem Ind Co Ltd:The 超低分子量ポリビニルアルコ−ルの製造法
JPH03175404A (ja) * 1989-12-05 1991-07-30 Kuraray Co Ltd 偏光フイルムおよびその製造法
JPH061853A (ja) 1992-06-18 1994-01-11 Sekisui Chem Co Ltd ポリビニルアルコール水溶液を得る方法及びポリビニルアセタール樹脂の製造方法
JPH09110930A (ja) * 1995-10-17 1997-04-28 Unitika Chem Kk ポリビニルアセタール樹脂の製造方法
JP2007269881A (ja) 2006-03-30 2007-10-18 Kuraray Co Ltd ポリビニルアセタールの製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2623524A4

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067270A (ja) * 2010-09-27 2012-04-05 Sekisui Chem Co Ltd ポリビニルアセタールの製造方法及びポリビニルアセタール
CN103122171A (zh) * 2013-02-05 2013-05-29 保定宝轶塑料有限公司 溶胶-凝胶法制备纳米聚乙烯醇涂布液的方法及其涂层
WO2014158786A1 (en) * 2013-03-14 2014-10-02 Solutia Inc. Hydrogen peroxide as a reactive extrusion additive for poly(vinyl butyral)
CN103193905A (zh) * 2013-04-03 2013-07-10 东莞市龙怡阻燃材料有限公司 一种低粘度聚乙烯醇缩丁醛树脂、制备方法及其用途
RU2689010C2 (ru) * 2014-03-31 2019-05-23 Курарей Ко., Лтд. Добавка для раствора, буровой раствор и цементный раствор
WO2015151910A1 (ja) * 2014-03-31 2015-10-08 株式会社クラレ スラリー用添加剤、掘削泥水及びセメントスラリー
JP2015196733A (ja) * 2014-03-31 2015-11-09 株式会社クラレ スラリー用添加剤、掘削泥水及びセメントスラリー
US10563109B2 (en) 2014-03-31 2020-02-18 Kuraray Co., Ltd. Additive for slurry, drilling mud, and cement slurry
JPWO2016152783A1 (ja) * 2015-03-20 2018-01-11 積水化学工業株式会社 リチウム二次電池電極用組成物
JPWO2018096937A1 (ja) * 2016-11-24 2018-11-29 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2018096937A1 (ja) * 2016-11-24 2018-05-31 デンカ株式会社 変性ビニルアルコール系重合体及びその製造方法
WO2019189625A1 (ja) * 2018-03-30 2019-10-03 積水化学工業株式会社 ポリ塩化ビニル懸濁重合用分散剤として用いるポリビニルアルコール、該ポリビニルアルコールを含む分散剤、及び該ポリビニルアルコールを用いたポリ塩化ビニルの製造方法
CN111918885A (zh) * 2018-03-30 2020-11-10 积水化学工业株式会社 用作聚氯乙烯悬浮聚合用分散剂的聚乙烯醇、包含该聚乙烯醇的分散剂及使用了该聚乙烯醇的聚氯乙烯的制造方法
JPWO2019189625A1 (ja) * 2018-03-30 2021-06-24 積水化学工業株式会社 ポリ塩化ビニル懸濁重合用分散剤として用いるポリビニルアルコール、該ポリビニルアルコールを含む分散剤、及び該ポリビニルアルコールを用いたポリ塩化ビニルの製造方法
JP7023350B2 (ja) 2018-03-30 2022-02-21 積水化学工業株式会社 ポリ塩化ビニル懸濁重合用分散剤として用いるポリビニルアルコール、該ポリビニルアルコールを含む分散剤、及び該ポリビニルアルコールを用いたポリ塩化ビニルの製造方法
CN111918885B (zh) * 2018-03-30 2023-06-06 积水化学工业株式会社 用作聚氯乙烯悬浮聚合用分散剂的聚乙烯醇、包含该聚乙烯醇的分散剂及使用了该聚乙烯醇的聚氯乙烯的制造方法

Also Published As

Publication number Publication date
TWI522371B (zh) 2016-02-21
JP5555718B2 (ja) 2014-07-23
JPWO2012043280A1 (ja) 2014-02-06
EP2623524B1 (en) 2017-01-11
EP2623524A4 (en) 2014-07-16
KR101902025B1 (ko) 2018-09-27
KR20130099115A (ko) 2013-09-05
EP2623524A1 (en) 2013-08-07
CN103124748B (zh) 2014-10-29
CN103124748A (zh) 2013-05-29
TW201223969A (en) 2012-06-16
US20130197154A1 (en) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5555718B2 (ja) 変性ポリビニルアセタールの製造方法
TWI515250B (zh) 聚氧化烯改性乙烯縮醛系聚合物及含有其之組成物
JP6162962B2 (ja) ポリオキシアルキレン変性ビニルアセタール系重合体、その製造方法及び組成物
JP5750507B2 (ja) アルキル変性ビニルアセタール系重合体及び組成物
JP5616736B2 (ja) ポリビニルアルコール系樹脂の脱色方法及びポリビニルアルコール系樹脂
JP4794121B2 (ja) インキまたは塗料用バインダー
JP4828278B2 (ja) ポリビニルアセタールの製法
JP6442405B2 (ja) ビニルアセタール系重合体
JP2015034242A (ja) ビニルアセタール系重合体
WO2019244967A1 (ja) ビニル系重合体の製造方法
JP5767930B2 (ja) ポリビニルアセタールの製造方法及びポリビニルアセタール
JP4083641B2 (ja) インキおよび塗料用バインダー
JP5677794B2 (ja) ポリビニルアセタールの製造方法及びポリビニルアセタール
JP2012072256A (ja) エポキシ変性ポリビニルアセタール樹脂、セラミックスラリー及びセラミックグリーンシート
JP2013060519A (ja) ポリビニルアセタールの製造方法及びポリビニルアセタール
JP5841407B2 (ja) ポリビニルアセタールの製造方法及びポリビニルアセタール
JP5009302B2 (ja) 一酸化炭素−ビニルアルコール系共重合体の製造方法ならびに一酸化炭素−ビニルアルコール系共重合体とこれを用いた耐水性組成物
TW202106724A (zh) 聚乙烯醇、其製造方法及其用途
JP2013170107A (ja) セラミックグリーンシート用スラリー組成物
JP6258219B2 (ja) ビニルアセタール系重合体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180046243.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011544310

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13824498

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2011828840

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011828840

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010388

Country of ref document: KR

Kind code of ref document: A